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Summary

Differential Evolution (DE) is arguably one of the most powerful meta-

heuristics for solving numerical optimization problems. Although considerable

research has been devoted to the development and improvement of DE, there

still exist several open issues in DE community. This thesis focuses on design-

ing new DE operators and algorithms to overcome the limitations of existing

approaches in solving single-objective, multi-objective and minimax optimiza-

tion problems.

First, a multiple exponential recombination strategy is proposed to fill the

research gap in DE crossover operator development. Most of the existing DE

variants simply utilized traditional binomial recombination or exponential re-

combination, which have intrinsic limitations in handling dependent subsets of

variables. By exchanging multiple segments among individuals simultaneously,

the new strategy is able to inherit all the main advantages of existing crossover

operators while possessing a stronger ability in handling dependent variables.

The properties of multiple exponential recombination is examined both theoret-

ically and empirically. Experimental results reveal that the proposed operator is

robust in solving problems with unknown variable interrelations.

Second, a novel multi-objective DE algorithm is designed for circumvent-

ing the convergence slowdown, parametric sensitivity and lack of flexibility is-

sues while extending DE to multi-objective optimization. Two new mutation op-

erators and one parameter adaptation mechanism are proposed based on the in-

volvement of individuals from different generations. The new cross-generation

mechanisms enable the algorithm to achieve good convergence-diversity trade-

v



off and robust self-adaptation of control parameters. Implementations in two

famous multi-objective optimization frameworks indicate the superiority of the

proposed method over other state-of-the-art multi-objective optimization evolu-

tionary algorithms.

Finally, a new minimax DE algorithm is developed to efficiently address

the fundamental issues in current minimax optimization area, e.g., restriction on

problem properties, low optimization efficiency and high computational cost. A

Bottom-Boosting Scheme is proposed to substantially reduce the computational

expense in identifying promising solutions without loss of reliability. Further-

more, a Partial-Regeneration Strategy together with a new mutation operator is

devised to enhance the exploration efficiency. Integration of all the new mech-

anisms contributes to an algorithm that can handle problems with various prop-

erties. Empirical comparisons with famous minimax evolutionary algorithms

demonstrate the outstanding ability of the proposed algorithm in solving min-

imax optimization problems. Successful applications in robust optimal design

of iterative learning control and robust stabilization of uncertain time-delay sys-

tems further validate the effectiveness of the new approach.
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Chapter 1

Introduction

Numerical optimization aims at finding the best input values with regard to some

criteria for the given objective function(s). It is widely involved in science, en-

gineering, economics and industry [1]. In the past century, many deterministic

optimization techniques were developed, e.g., linear programming, integer pro-

gramming and quadratic programming. The most significant limitation of these

techniques is the additional requirements for objective functions, e.g., linearity,

convexity, differentiability and continuity. However, in real world problems,

it is very common to encounter mathematically intractable objective functions,

where traditional deterministic methods cannot be applied. Under these circum-

stances, stochastic searching techniques like metaheuristics are more suitable

and efficient.

As one of the most famous metaheuristics, Evolutionary Algorithm (EA)

has proved its capability of solving complex optimization problems in many

practical applications [2–8]. EA is a population-based optimization algorithm

inspired by natural evolution process. Each individual in the population repre-
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CHAPTER 1. INTRODUCTION

sents a single solution, and these individuals will evolve themselves by perform-

ing crossover, mutation and survival selection iteratively. The most significant

advantage of EAs is that they ideally do not make any assumption about the un-

derlying landscape of the optimization problems, thereby leading to exceptional

ability in solving mathematically intractable problems.

Among numerous EAs, Differential Evolution (DE) [9] is arguably one

of the most powerful approaches for solving numerical optimization problems.

DE has many inherent advantages [10], e.g., it is simple and straightforward

to implement and exhibits good performance on a wide variety of problems;

the number of control parameters in DE is small and the space complexity is

low. Because of these superiorities, DE has gained more and more attention

in recent years. Although considerable research has been devoted to the devel-

opment and improvement of DE-based methods, there still exist several open

issues and research gaps in DE community: the intrinsic limitations of exist-

ing DE crossover operators in handling problems with dependent variables, the

difficulties in applying DE for multi-objective optimization (MO), and the lack

of efficient algorithms in tackling minimax optimization problems. This thesis

aims at addressing all the afore-mentioned issues by proposing new operators

and algorithms.
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CHAPTER 1. INTRODUCTION

1.1 Basic Concepts in Differential Evolution

1.1.1 Initialization

The first step of DE is the initialization of the population of N and D over

the search space, where N denotes the population size and D denotes the vari-

able dimensions. We symbolize each individual by Xi,g = (x1
i,g, x

2
i,g, . . . , x

D
i,g),

where i = 1, 2, . . . , N, g = 0, 1, . . . , Gmax and Gmax denotes the maximum

number of generations. Furthermore, let us define the lower search bound

as Xmin = (x1
min, x

2
min, . . . , x

D
min) and the upper search bound as Xmax =

(x1
max, x

2
max, . . . , x

D
max). Finally, the initial value of the ith individual is gen-

erated as:

xji,0 = xjmin + rand(0, 1) · (xjmax − x
j
min), j = 1, 2, 3, . . . , D (1.1)

where rand(0, 1) is a uniformly distributed random number lying within the

range (0,1).

1.1.2 Mutation

In this step, each individual will generate a new individual, called the mutant

vector Vi,g. The most frequently used mutation strategies are listed below:

“DE/rand/1”

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) (1.2)

“DE/best/1”

Vi,g = Xbest,g + F · (Xr1,g −Xr2,g) (1.3)

“DE/rand/2”

Vi,g = Xr1,g + F · (Xr2,g −Xr3,g) + F · (Xr4,g −Xr5,g) (1.4)

3



CHAPTER 1. INTRODUCTION

“DE/best/2”

Vi,g = Xbest,g + F · (Xr1,g −Xr2,g) + F · (Xr3,g −Xr4,g) (1.5)

“DE/current-to-best/2”

Vi,g = Xi,g+F ·(Xbest,g−Xi,g)+F ·(Xr1,g−Xr2,g)+F ·(Xr3,g−Xr4,g) (1.6)

“DE/current-to-rand/2”

Vi,g = Xi,g +F · (Xr1,g−Xi,g)+F · (Xr2,g−Xr3,g)+F · (Xr4,g−Xr5,g) (1.7)

where Xbest,g denotes the individual with the best fitness value in current gen-

eration. The indices r1, r2, r3, r4, r5 are randomly selected integers from

{1, 2, . . . , N} that are distinct from i and mutually different. F ∈ [0, 1] is a

real parameter, called the scaling factor.

1.1.3 Crossover

After mutation, crossover operation is employed to generate the trial vectors

Ui,g. During crossover, mutant vectors are recombined with the original mem-

bers of the current population, called target vectors, to form trial vectors. Two

basic crossover schemes of DE are exponential recombination and binomial re-

combination. Binomial recombination is mostly used in DE literature [11].

Binomial recombination is performed on each variable and it could be out-

lined as below:

uji,g =


vji,g, if rand(0, 1) ≤ Cr or j = jrand

xji,g, otherwise

(1.8)

where jrand ∈ {1, 2, 3, . . . , D} is a randomly selected index to ensure that the

trial vector could get at least one component from the mutant vector. rand(0, 1)

4



CHAPTER 1. INTRODUCTION

is a uniform random number on the interval [0, 1] and independently generated

for each i and each j. Cr is called the crossover probability.

In exponential recombination, first two integers n and L are generated sep-

arately, where n is the starting point of crossover operation in the involved vec-

tors and L is the number of variables that get exchanged during the crossover

operation. More specifically, n is randomly chosen between the interval [1, D],

whereD denotes the problem dimension. The pseudo-code to obtain L is shown

below:

L = 0;

WHILE ((rand(0, 1) ≤ Cr) AND (L ≤ D))

DO{L = L+ 1};

where Cr is the crossover probability. rand(0, 1) is a uniform random number

generator on the inverval [0, 1]. If L ≥ 1, then the trial vectors are generated as:

uji,g =


vji,g, for j = n, n+ 1, n+ 2, . . . , n+ L− 1

xji,g, for all other j ∈ [1, D]

(1.9)

Otherwise, trial vectors will be identical to target vectors (L = 0).

1.1.4 Selection

Selection is the last step to generate the population of next generation. The

process of selection is to determine whether the target vector or the trial vector

survives to the next generation according to their fitness value. The selection

operation in DE is described below:

Xi,g+1 =


Ui,g, if f(Ui,g) ≤ f(Xi,g)

Xi,g, otherwise

(1.10)

5



CHAPTER 1. INTRODUCTION

where f(X) is the fitness function to be minimized.

After selection, the algorithm will proceed to next generation and contin-

uously perform mutation, crossover and selection until the termination criterion

is satisfied (e.g., the maximum generation is reached).

1.2 Multi-objective Optimization Problem

Problems in real world usually have multiple objectives instead of one single

objective. A Multi-Objective Optimization Problem (MOP) can be defined as

max /minF (X) = (f1(X), f2(X), . . . , fm(X)) (1.11)

subject to:

x ∈ Ω

where fi is the i-th objective function; m is the total number of objective func-

tions; X refers to the decision variables and Ω represents the decision space.

The MOP consists of m objective functions and it maps the decision space Ω

into an m-dimensional objective space Rm, i.e., F : Ω→ Rm.

Since the objectives of a MOP are often conflicting with each other, the

optimal solution for one objective generally does not produce optimal results for

the other objectives. The concepts of Pareto dominance are therefore defined for

convenience of solution comparisons:

Assuming that all the objective functions are minimization problems, then solu-

tion X1 is said to dominate X2 if and only if

fi(X1) ≤ fi(X2) for i = 1, 2, . . . ,m and ∃fi(X1) < fi(X2) for at least one i.

6



CHAPTER 1. INTRODUCTION

Solution X1 and X2 are incomparable if and only if

∃i, j ∈ {1, 2, . . . ,m} such thatfi(X1) < fi(X2) and fj(X1) > fj(X2).

Based on the above definitions, a solution is said to be Pareto optimal if

there is no other solutions that can dominate it. All the Pareto optimal solutions

in desicion space jointly form the Pareto Optimal Set (POS), and their corre-

sponding objective vectors (each element represents the value of one objective

function) define the Pareto Optimal Front (POF) in objective space. Thus, in-

stead of finding one optimal solution, the aim of MO solvers is to generate a

set of solutions that can approximate the best trade-offs among multiple objec-

tive functions. More specifically, the obtained solutions should distribute their

corresponding objective vectors not only close to the POF but also evenly along

the POF. These two aspects are often referred to as convergence and diversity,

respectively.

1.3 Minimax Optimization Problem

Minimax optimization, which is actively involved in numerous robust design

problems [12–19], aims at pursuing the solutions with best worst-case perfor-

mances. In general, a minimax optimization problem is represented as

min
X∈X

max
S∈S

f(X,S) (1.12)

where f(X,S) is the objective function , X is a solution selected from solution

space X, and S is a scenario selected from scenario space S. For each X , its

cost is measured by maximizing the objective function over scenario space S,

that is, to search for the worst-case cost of X . Subsequently, the problem aims

7



CHAPTER 1. INTRODUCTION

at minimizing the worst-case cost over solution space X. An optimal solution

for this problem is the one that provides the best worst-case performance.

The problem is defined as symmetrical if

min
X∈X

max
S∈S

f(X,S) = max
S∈S

min
X∈X

f(X,S) (1.13)

This statement is a sufficient and necessary condition [20] for the existence of

X∗ ∈ X and S∗ ∈ S such that

f(X∗, S) ≤ f(X∗, S∗) ≤ f(X,S∗) (1.14)

for ∀X ∈ X and ∀S ∈ S. According to [21], this implies that there exists a

scenario S∗ ∈ S such that

min
X∈X

max
S∈S

f(X,S) = min
X∈X

f(X,S∗) (1.15)

This symmetrical condition will substantially simplify the original problem be-

cause now it is possible to reach the global optima by optimizing over solution

space X and scenario space S separately. For most existing algorithms [22–27],

this symmetrical condition is necessary because they evaluate the fitness of each

solution based on the same scenario set.

However, most minimax optimization problems do not satisfy condition

(1.13), and this type of problems are defined as asymmetrical. For asymmetrical

problems, no single scenario is eligible for evaluating all the solutions, thereby

leading to essential difficulty for most optimization approaches.

1.4 Scope of the Thesis

This thesis focuses on solving the open problems related to DE and numerical

optimization as listed below:

8



CHAPTER 1. INTRODUCTION

1. As one of the basic algorithmic components of DE, the crossover opera-

tion has not been sufficiently examined in existing works. Most of the

main DE variants solely employed traditional binomial recombination,

and few works utilized traditional exponential recombination. However,

these two conventional crossover operators have intrinsic limitations in

handling dependent subsets of variables, thereby leading to difficulties

for existing DE algorithms in solving non-separable problems. A more

robust crossover strategy that can efficaciously handle different types of

variable interrelations is desirable.

2. Although many researchers have made efforts to extend DE for MO, there

are still several open issues that tend to be neglected: first, DE is very sen-

sitive to the setup of control parameters, and this issue will become more

challenging when multiple objective functions are optimized simultane-

ously; second, while most existing algorithms emphasize on the mainte-

nance of population diversity, a satisfactory convergence speed towards

POF cannot be guaranteed; third, most existing MO-DEs are inconve-

nient to implement among different MO frameworks (more details will

be discussed in section 4.1). Since varied types of MO frameworks may

be needed depending on the nature of problems, it is helpful to design

MO-DE in a more flexible manner.

3. Although considerable research has been devoted by EA community to

the resolution of minimax optimization problems, there do exist several

fundamental drawbacks for existing minimax optimization EAs: first,

many of the existing methods can only work properly under a symmetrical
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condition (see section 1.3 for detailed definition). However, generally this

condition does not hold, and problems not satisfying this condition are

known to be extraordinarily difficult to solve [28] (detailed analysis of the

reason is provided in subsection 5.2.1); second, since existing algorithms

spend most of the computational budget on exploration in scenario space,

the optimization over solution space is insufficient. A bias towards reli-

ability at the cost of quality is therefore inevitable; third, the evaluation

criteria for solutions in existing approaches are underdeveloped. Either

expensive computational cost or omission of excellent solutions may re-

sult from current evaluation mechanisms.

1.5 Contributions

The contributions of this thesis are summarized as follows:

1. A multiple exponential recombination is proposed to inherit all the main

advantages of existing crossover operators while possessing a stronger

ability in managing dependent variables. Multiple segments of the in-

volved solutions will be exchanged during the proposed operator. The

properties of the new scheme are examined both theoretically and empir-

ically. Experimental results demonstrate the robustness of the proposed

operator in solving problems with unknown variable interrelations.

2. A multi-objective DE variant is developed through integration of two

novel mutation operators and a new parameter adaptation mechanism.

The main innovation of the proposed algorithm is the simultaneous use of

10
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individuals across generations from an objective-based perspective. Good

convergence-diversity trade-off and satisfactory exploration-exploitation

balance are achieved via the hybrid cross-generation mutation operation.

Furthermore, the cross-generation adaptation mechanism enables individ-

uals to self-adapt their associated parameters not only optimization-stage-

wise but also objective-space-wise. Empirical results indicate the statisti-

cal superiority of the proposed algorithm over several state-of-the-art evo-

lutionary algorithms in handling multi-objective optimization problems.

3. A Minimax DE algorithm is proposed to overcome the limitations of ex-

isting minimax optimization approaches. First, a novel Bottom-Boosting

Scheme enables the algorithm to identify the promising solutions in a re-

liable yet efficient manner. After that, a Partial-Regeneration Strategy to-

gether with a new mutation operator contribute to an in-depth exploration

over solution space. Finally, a proper integration of these newly proposed

mechanisms leads to an algorithmic structure that can appropriately han-

dle both symmetrical and asymmetrical problems. Empirical comparison

with 7 famous methods demonstrates the statistical superiority of the pro-

posed algorithm. Successful applications in two open problems of robust

design further validate the effectiveness of the new approach.

1.6 Organization

The organization of the remaining thesis is as follows:

Chapter 2 provides a through literature review covering several related re-

11
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search topics. Current research gaps are concluded based on the review of ex-

isting works.

Chapter 3 presents a new crossover operator for DE, namely, multiple ex-

ponential recombination. The limitations of traditional DE crossover operators

are discussed followed by the technical details and underlying rationales of the

proposed strategy. The properties of the new operator is analyzed via both the-

oretical mathematics and empirical studies. The optimization performance of

multiple exponential recombination is then evaluated through comparison ex-

periments.

Chapter 4 proposes a novel DE algorithm for solving MOPs. Detailed ex-

planations about the basic structures and underlying rationales of each algorith-

mic component are provided. The new algorithm is implemented in different

MO frameworks, and the effectiveness of the proposed mechanisms are vali-

dated via experimental comparisons with several state-of-the-art multi-objective

evolutionary algorithms (MOEAs) on a wide variety of benchmark problems. A

parametric sensitivity study is also conducted empirically.

Chapter 5 describes a new algorithm based on DE for minimax optimiza-

tion. The fundamental drawbacks of existing methods are analyzed before dis-

cussing the algorithmic details and underlying rationales of the proposed ap-

proach. Optimization performance and parametric sensitivity of the new algo-

rithm is studied via experiments. Furthermore, two open problems in robust

control area are formulated into minimax optimization problems, and the pro-

posed algorithm is applied to solve them.

Chapter 6 concludes this thesis, and highlights future research directions.

12



Chapter 2

Literature Review

This chapter summarizes the existing research works that are related to the focus

of this thesis. Current research gaps are also discussed based on the literature

review.

2.1 Crossover Operators for Differential Evolution

The behavior of the DE algorithm is deeply influenced by selection of mutation

scheme, crossover strategy and control parameters. In order to improve the

performance of traditional DE, a good volume of enhanced DE variants were

proposed in the past 20 years [11, 29–41]. Among these studies, most of them

are related with mutation operators [42–47] and control parameters [44, 48, 49].

In comparison, crossover operator attracted much less attention and only few

works focused on examining the crossover in DE.

The major role of crossover is to enhance the potential diversity of the

population by recombining the mutant vector with one existing solution. Two

different crossover strategies were proposed in the original work of Storn and

13
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Price [9, 50], namely, the exponential recombination and the binomial recombi-

nation. In the later development of new DE variants, the binomial version was

much more frequently employed as the crossover scheme [10, 51, 52]. Mezura-

Montes et al. [53] compared the performances of several DE variants with dif-

ferent mutation and crossover strategies. Based on the results on various types

of problems, they concluded that binomial recombination was much better than

exponential recombination due to the fact that not all the recombinations of

mutant vector and current parent can be sampled in the exponential variant.

In Josef’s empirical study [54], the use of exponential recombination only in-

creased efficiency in comparison with binomial recombination for small part of

the tested problems. The superiority of binomial recombination over exponen-

tial one was also claimed by Jeyakumar et al. in their two comparative stud-

ies [55, 56]. Although different behaviors for the two crossover schemes were

observed in the above works, no further investigation was conducted to examine

the cause of these differences. Chuan et al. [52] discovered that the consecutive

crossover was more reliable in solving some non-separable problems but did not

provide detailed explanations for this phenomenon. Zaharie [51] analyzed the

relationship between parameter Cr and mutation probability for both crossover

strategies from a mathematical perspective. It was suggested after implement-

ing empirical tests [51, 57] that the behavior of the algorithm during crossover

depended more on the mutation probability.

Besides the comparative studies on existing crossover strategies, a small

number of improved crossover operations were proposed in the recent years.

Islam et al. [38] introduced the p-Best crossover operation, in which a greedy
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parent selection strategy was incorporated with binomial recombination. Guo

et al. [58] utilized eigenvectors of covariance matrix of individual solutions in

binomial recombination. Zhao et al. [59] fixed the length of the crossover in

exponential recombination according to the dimensionality of the problems and

named it as the linearly scalable exponential crossover operator (LS-EXP). It is

notable that actually these new strategies are intrinsically identical with the orig-

inal binomial recombination or exponential recombination in terms of selection

strategy for exchanging positions, only the involved solutions or the crossover

length are changed. Development of an essentially new crossover operator for

DE is still a research niche. Chapter 3 further examines the limitations of ex-

isting crossover strategies, and proposes a new crossover operator to overcome

these limitations.

2.2 Differential Evolution Algorithms for Multi-

objective Optimization

Being a powerful heuristic for numerical optimization, DE has been extended

into MO by many researchers. Chang et al. [60] constitute the first systematical

attempt to extend DE in MO. In their paper, DE/rand/1/bin is utilized with a

Pareto optimal set, which is an external archive to store the non-dominated so-

lutions during the search process. Fitness sharing is also incorporated into their

approach in order to maintain the diversity of the whole population. Babu and

Jehan [61] proposed the Differential Evolution for Multi-Objective Optimiza-

tion approach. One objective function is incorporated as an additional constraint

15



CHAPTER 2. LITERATURE REVIEW

in their algorithm, and an aggregation function is utilized. Li and Zhang [62]

developed a MO Differential Evolution based on decomposition for continuous

MO problems with variable linkages. Kukkonen and Lampinen [63] [64] mod-

ified basic DE algorithm for MO problems, and named the framework Gener-

alized Differential Evolution (GDE). The survival selection between the parent

and the offspring is based on Pareto Dominance and the constraints of the prob-

lems are also handled with Pareto Dominance in the constraint space. In their

later work [65] [66], two new versions of GDE were proposed to achieve a bet-

ter diversity of the final population. Other MO-DEs where Pareto Dominance

works as the criterion for survival selection include [67–70]. Another branch

of the Pareto-based algorithms encompass approaches that introduce a Pareto

ranking procedure into DE. Representative methods include Pareto-Based Dif-

ferential Evolution (PBDE) algorithm [71], Nondominated Sorting Differential

Evolution (NSDE) [72] and Differential Evolution for Multi-Objective Opti-

mization (DEMO) [73]. In these algorithms, a (µ+λ)-selection is implemented

after a set of trial vectors have been generated from the current population. One

of the more recent works that gave an outstanding performance would be the

MOEA/D-DE and NSGA-II-DE proposed in [74]. In that paper, a neighbor-

hood selection mechanism is utilized to enhance the diversity maintenance abil-

ity of MOEA/D-DE, whilst the NSGA-II-DE with tournament selection is an

improved version of NSDE [72].

Based on the above review, most existing works on MO-DE focus on com-

bining the traditional DE mutation strategies with diversity-based survival se-

lection procedures, which are commonly used in other MOEAs. However, the
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natures of single-objective optimization (SO) and MO are inherently different.

SO aims at reaching the global optimal solution of one particular objective func-

tion. MO involves simultaneous optimization of multiple conflicting objectives

and targets at obtaining a solution set with not only high quality but also good

diversity. During the design of traditional DE recombination operators, only

the SO scenarios were considered and the special requirements of MO were not

taken into account. Therefore, it is inefficient to directly apply the traditional

SO-DE operators for MO. Development of new mutation schemes that are ori-

ented exclusively toward MO is still a research gap. In Chapter 4, two novel

mutation strategies are specially designed to enhance both diversity and conver-

gence in MO.

2.3 Direction-guided Evolutionary Algorithms

Steering the optimization process in an effective and efficient way is desirable in

the design of an evolutionary algorithm. Among the numerous search schemes,

direction-guided search has proved to be quite promising [75]. In SO, the idea

of “direction” is incorporated into DE via various ways. Fan and Lampinen im-

proved TDE [76] with a weighted directed mutation strategy [77]. Feoktistov et

al. [78] [79] proposed to use fitness values to determine a “good” direction, and

similar mutation strategy was introduced in [80]. Kaelo and Ali [81] employed

the attraction-repulsion concept to boost the mutation operator of canonical DE.

In [82], direction information is utilized in a classification-based self-adaptive

DE. More recently, Cai and Wang [42] designed two new operators for DE to

better exploit the neighborhood and direction information of the population, re-
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spectively.

For MO, only a limited number of works have investigated the role of “di-

rection” in DE (subsection 4.2.2 provides a detailed definition of “direction”

in MO, which may be different from those in existing literatures). Zhang and

Sanderson [83] proposed JADE2 by obtaining direction information from the

archived solutions and current population. Iorio and Li examined the direc-

tional convergence and directional spread in [84]. Liu et al. ranked the popu-

lation to provide the direction information in SRDE [85]. Li et al. considered

the search direction during the strategy adaptation in MODE/SN [86]. Besides

DE, researchers have designed other evolutionary algorithms based on direction

guidance for MO. Bui et al. [75] proposed the direction-based multi-objective

evolutionary algorithm (DMEA), in which a population evolves over time along

some directions of improvement. Later, several new features were added into

DMEA to make it more robust (named DMEA-II) [87], and a new niching

method was designed for DMEA [88]. In [89] [90], local models based on

direction information are utilized to guide the evolutionary algorithm. Li and

Dario [91] proposed Evolutionary Multi-objective Simulated Annealing Algo-

rithm (EMOSA) with adaptive and competitive search direction. Goh et al. [92]

investigated on different types of gradient information and successfully imple-

mented the evolutionary gradient search in MO (MOEGS).

Although external archives are used in some direction-guided MOEAs

(e.g., DMEA, DMEA-II and JADE2), little attention is paid to the application

of information across generations, which may imply the efficient searching di-

rections. Another open problem with current direction-guided MOEAs is the
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insufficient analysis regarding objective space. Objective-based relationships

among individuals are in fact critical in the estimation of converging directions

(see Chapter 4 for definition). To fill this research niche, Chapter 4 develops a

cross-generation mutation strategy, in which individuals from different genera-

tions are employed based on their relationships in objective space. Promising

searching directions for specified solutions are then generated to guide the ex-

ploration.

2.4 Parameter Adaptation in Differential Evolu-

tion

The success of DE in solving a particular problem is very closely related to the

fine-tuning of its control parameters. In the literature, a good volume of work

has been undertaken to enhance the ultimate performance of DE via adaptive

parameters.

One of the early works is Liu and Lampinen’s fuzzy adaptive differen-

tial evolution (FADE) algorithm [93]. Fuzzy logic controllers are used to adapt

the scaling factor F and crossover probability Cr by incorporating the relative

function values and individuals of the successive generations into inputs. Qin et

al. [30] proposed the famous SaDE algorithm, in which both the mutation strate-

gies and their associated control parameters are self-adapted according to their

previous performance. Another representative self-adaptation scheme is the one

that proposed by Brest et al. [29] in their jDE. They encoded F and Cr into

each individual and updated them according to respective uniform distributions.
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Following the same line of thinking, Zhang et al. [31] implemented Gaussian

distribution and Cauchy distribution to help regenerate the control parameters in

JADE algorithm. According to their empirical studies, JADE achieves overall

better performance than jDE and SaDE. Inspired by JADE, Islam [38] designed

a new parameter adaptation scheme based on the record of recent successful F

and Cr. In their paper, the proposed mechanism was also integrated with JADE

and jDE, and significant improvement was reported. Recently, Yu et al. [48]

introduced a two-level parameter adaptation approach that considers not only

the overall state of the population but also the characteristics of different indi-

viduals. Comparisons with SaDE, jDE and JADE demonstrate the efficiency of

tuning parameters in individual-level and population-level. Other adaptive DE

algorithms that derived from above work include [94–97].

In contrast to SO, adapting the parameters in DE for solving multi-

objective problems received less interest from researchers. Zaharie and Petcu

[98] developed an adaptive Pareto DE for multiobjective optimization from their

previous single-objective DE [99], in which the parameter adaptation is guided

by the population diversity evolution. In [68], Abbass enhanced their PDE [67]

algorithm with self-adaptive parameters for crossover and mutation. Zamuda

et al. [100] applied the self adaptation mechanism from evolution strategies

to DEMO algorithm [73] [101]. Huang et al. extended the original SaDE into

multi-objective optimization [102], and proposed objective-wise learning strate-

gies (OW-MOSaDE) [103] to further improve the algorithm.

According to the above survey, knowledge in objective space is neglected

by most existing adaptation methods for MO-DE. The intrinsic difference be-
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tween SO and MO is not revealed in the design of these schemes. The only

exception is the OW-MOSaDE, in which the good parameters are recorded for

each objective respectively. However, the algorithm is not fully developed be-

cause only one set of parameters is randomly selected for optimizing all the ob-

jectives. Moreover, the mechanism is only applied to crossover probability Cr,

while another important control parameter, namely scaling factor F , is simply

generated from a normal distribution. To fill this research gap, a new parame-

ter adaptation mechanism is introduced in Chapter 4 to dynamically adapt the

parameters from an objective-based perspective.

2.5 Evolutionary Algorithms for Minimax Opti-

mization

When mathematically intractable properties are involved in the minimax opti-

mization problems, EAs are promising replacements for traditional determinis-

tic approaches. In recent years, a good number of algorithms have been pro-

posed by EA community for handling minimax optimization problems.

Following the consideration that two decision spaces are explored simul-

taneously in minimax optimization, it is natural for researchers to apply co-

evolutionary algorithms, in which two populations are maintained during the

optimization process. Herrmann [27] proposed a two-space genetic algorithm

(GA) for solving minimax optimization problems. Two populations, represent-

ing solutions and scenarios respectively, are evolved in parallel. An individual

in one population is evaluated with respect to all the individuals in the other
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population. More specifically, the cost of a solution X is given by

h(X) = max
S∈PS

f(X,S) (2.1)

where PS represents the scenario population. The cost of a scenario S is calcu-

lated as

g(S) = min
X∈PX

f(X,S) (2.2)

where PX represents the solution population. The algorithm then evolves the

two populations concurrently using traditional GA operators. Similarly, Bar-

bosa [26] proposed another coevolutionary GA using the above fitness evalu-

ation mechanisms. The only modification is that the two populations will be

optimized alternately, which means the algorithm will evolve one population

for several generations while fixing the other population. In [22, 24, 25], three

algorithms were introduced by replacing the GA operators in Herrmann’s frame-

work [27] with evolution strategies (ES), evolutionary programming (EP) and

particle swarm optimization (PSO). The most significant limitation for these

methods is that they will fail on asymmetrical problems [104], which is more

common than symmetrical problems in real-world applications.

In order to better handle the asymmetrical situations, various types of fit-

ness assignment methods were developed for evaluating scenarios in coevolu-

tionary EAs. Hur et al. [105] proposed the best remaining strategy wherein

the fitness of a scenario is decided by the rank of corresponding solution that

it performs best. Jensen [104] designed a rank-based evaluation method by as-

signing fitness based on the maximum rank a scenario can achieve against any

solution. An evaluation scheme based on stackelberg strategy was suggested

in [21]. Four new ranking-based methods were introduced in [106], namely,
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worst case method, average greedy method, distance greedy method and ranking

greedy method. All these approaches aim at properly addressing the asymmet-

rical problems by improving the scenario evaluation strategies. However, as we

will analyze in section 5.2, due to the intrinsic limitations of coevolution-based

frameworks, the existing solution evaluation mechanisms will lead to inevitable

problems in face of asymmetrical conditions. Another issue with the coevo-

lutionary algorithms is the prohibitively expensive evaluation for each solution

and scenario. If the population size is N , then N times of objective function

evaluations are required to determine the fitness of one single solution or sce-

nario. This will severely impair the overall optimization performance given a

limited computational budget.

Apart from coevolutionary approaches, a small number of non-

coevolutionary EAs were also proposed for tackling minimax optimization

problems. Laskari et al. [107] modified traditional PSO algorithm by evalu-

ating each solution over all the possible scenarios. This algorithm is only ap-

plicable to discrete problems and the computational cost is too high. Zhou and

Zhang [108] proposed a surrogate-assisted EA for minimax optimization. A

surrogate model based on Gaussian process is built to regress the fitness func-

tion for solution space. One drawback with this method is that a large number

of hidden objective function evaluations (1 × 105 according to the original pa-

per) are required to obtain the true fitness of one single solution. The difficulty

for building reliable models may also increase dramatically when the problems

become more complex. In [21], Cramer et al. proposed an aging sampled GA

(ASGA) that can handle both symmetrical and asymmetrical problems properly.
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The fitness of a solution is based on the worst performance over all the scenarios

it has been tested so far, and all these scenarios are sampled randomly. Except

for fitness, the concept of age is introduced as a second criterion during the sur-

vival selection. Experimental results showed that ASGA could outperform most

state-of-the-art EAs in solving different types of minimax optimization prob-

lems. However, since all the tested scenarios are simply sampled randomly, it

may take great numbers of trials for one solution to reach its worst-case scenario,

and poor solutions may replace good solutions because of “lucky” samplings.

The overall optimization efficiency will then be diminished.

Based on the above literature review, there are several unsolved issues

with the existing minimax optimization EAs. In order to circumvent these is-

sues, Chapter 5 presents a new minimax DE algorithm that can overcome all the

aforementioned limitations.
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Chapter 3

Multiple Exponential

Recombination for Differential

Evolution

As the first part of main works in this thesis, this chapter focuses on enhancing

the basic DE algorithms by proposing a new crossover operator. Both theoret-

ical and empirical studies demonstrate that the proposed multiple exponential

recombination successfully overcome the limitations of existing DE crossover

strategies in handling dependent variables.

3.1 Introduction

DE has gained more attention in recent years, and many new variants of DE

are emerging [11, 29–31, 37–41, 109–112]. Among the existing DE variants,

most works focus on designing new mutation strategies and adapting control

parameters intelligently. However, as one of the basic steps in traditional DE [9],
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crossover operation has not been sufficiently examined in the main DE variants

and most of the algorithms solely applied binomial recombination [11, 51]. In

contrast, exponential recombination received less attention during the design of

new DE algorithms.

According to some comparative studies [52, 53], binomial recombination

is generally more robust and efficient than exponential recombination. To seek

the reason, the relation between the mutation probability [51] and the value of

control parameter Cr (crossover rate) is linear in binomial recombination while

in exponential recombination it is nonlinear. Thus it may result in difficulties

in choosing proper values for Cr during implementations of exponential re-

combination, especially in solving high-dimensional problems [51]. Moreover,

binomial recombination is able to generate all the 2D possible solutions during

crossover (where D is the dimension of decision space of the problem) whereas

exponential recombination can only cover part of the 2D possibilities [53].

Intrinsically, the main difference between the two recombination opera-

tors lies in the distribution of the exchanged variables. Exponential recombi-

nation leads to a consecutive crossover so that a set of adjacent elements are

exchanged. In binomial recombination, the exchanged variables are dispersed

randomly after the non-consecutive crossover. Based on existing empirical in-

vestigations [51, 52], consecutive crossover shows promising results in solv-

ing non-separable problems, in which the variables are strongly dependent with

each other. The global optima of a non-separable problem cannot be achieved

by optimizing each variable separately, thus maintaining the dependent subsets

of variables is very critical in solving this kind of problems [113].
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As a consecutive crossover operator, exponential recombination tends to

preserve strongly dependent components that are adjacent or physically proxi-

mate to each other. For binomial recombination, all the elements are presumed

to be linked equally strongly and all the dependent variables stand the same

chance to be split up during crossover. Consequently, the efficiency of the two

crossover operators depend heavily on the interrelationships among variables.

Considering the fact that the variable linkage information is not available in ad-

vance for most optimization problems [114], selection of the proper crossover

strategy becomes a difficult issue for existing DE algorithms. In addition, even

though the highly related variables are arranged adjacent to one another, the

current exponential recombination is still inconvenient to use in face of high-

dimensional problems and may also be ineffective regardless of the problem

dimensionality due to its intrinsic disadvantages mentioned above. A more ro-

bust crossover strategy that can efficaciously handle different types of variable

interrelations is highly desirable.

To circumvent the above issue, a new crossover operator named multiple

exponential recombination is proposed in this chapter. The main innovation

of the proposed operator is the semi-consecutive crossover strategy, in which

multiple segments of the involved individuals will be combined to form a new

solution. In this way, the new operator becomes more robust than the tradi-

tional crossover strategies in handling dependent variables. Moreover, the spe-

cially designed mechanisms enable the new operator to preserve all the main

advantages of binomial recombination and exponential recombination: linear

relationship between mutation probability and control parameter value, cover-
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age of all possible offsprings, and strengths in preserving particular types of

dependent subsets. The properties of multiple exponential recombination is ex-

amined both theoretically and empirically. Implementation in different DE vari-

ants demonstrates the robustness of the proposed operator in solving problems

with unknown variable interrelations.

3.2 Multiple Exponential Recombination

3.2.1 Overview

The aim of the proposed new crossover strategy is to inherit all the main advan-

tages of traditional crossover operators while providing a more robust perfor-

mance in handling different types of variable interrelations.

As the most widely used crossover scheme in DE literatures, binomial

recombination offers two main advantages when compared with exponential re-

combination: it is convenient to control the mutation probability in binomial

recombination via adapting the value of parameter Cr; all possible 2D recombi-

nations of the mutant vector and target vector can be generated during binomial

recombination, where D is the dimension of decision space. In order to pre-

serve these two strengths, a linear relationship between the control parameter

and the mutation probability has been created during the design of the new op-

erator. In addition, the new operator is developed as a multi-point crossover

operation [115] so that all the possible configurations can be covered during

recombination.

Besides the above features, the new strategy is expected to overcome
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the limitations of existing crossover operators in handling dependent variables.

More specifically, under similar mutation probability [51], the adjacent or phys-

ically proximate variables are more likely to be disrupted in binomial recombi-

nation than in exponential recombination. Conversely, the chance to update to-

gether the variables that are distributed distantly from each other is much lower

in exponential recombination than in binomial recombination.

Fig. 3.1 illustrates the limitations of the two traditional crossover operators

in solving non-separable problems. Since the crossover operation is conducted

in a circular manner in exponential recombination, we use the outer circle and

inner circle to represent the target vector and mutant vector, respectively. Each

rectangle represents a decision variable and the variables marked with red and

blue represent two dependent subsets. Optimizing the elements within one sub-

set simultaneously will lead to more efficient exploration. The two-headed ar-

rows mean that the pointed variable in the target vector will be replaced by the

corresponding variable in the mutant vector to form the trial vector. Assum-

ing that both crossover operations are going to change 6 out of 12 variables,

two common situations are depicted in Fig. 3.1 to demonstrate the limitations

of each strategies. For binomial recombination, the crossover is performed on

each variable independently so that the exchange points are more likely to be

distributed uniformly. In this case, the dependent subset x3 and x4 will be dis-

rupted since they are adjacent to each other. As a consecutive crossover opera-

tion, exponential recombination exchanges a segment of the involved solutions

at each time. Thus, adjacent variables like x3 and x4 have a higher chance to be

updated together. However, if the distance between two variables exceeds the
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Figure 3.1: This figure illustrates the limitations of binomial recombination and expo-
nential recombination in handling dependent variables via two examples. The elements
with same color (red or blue) are strongly dependent on each other. All the involved

solutions are visualized in a circular manner.
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Figure 3.2: This figure depicts the detailed behaviors during a multiple exponential
recombination. The elements in color are the ones selected to construct the trial vector.

length of this segment, it is impossible to update these variables concurrently in

exponential recombination. As shown in Fig. 3.1, given the fact that the length

of exchange segment is less than 7, under no circumstances can x1 and x7 be

replaced by the corresponding elements in mutant vector at the same time. Only

binomial recombination is able to update x1 and x7 simultaneously. In summary,

solely applying a consecutive or non-consecutive crossover operator is not suf-

ficient to properly handle different types of variable interrelations. To address

this issue, a semi-consecutive crossover operator is developed in this chapter.
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3.2.2 Algorithmic Structure

The main idea of the proposed strategy is to perform the basic operations of tra-

ditional exponential recombination multiple times. Segments from the mutant

vector and the target vector will alternately constitute the trial vector, thereby

leading to a semi-consecutive crossover. Fig. 3.2 and Algorithm 3.1 demon-

strate the standard procedure of multiple exponential recombination.

First, a starting point n is randomly selected from [1, D], where D is the

dimension of the optimization problem. Starting from dimension n, a segment

of the mutant vector will be extracted to construct the trial vector. The length

of this segment is decided by a sequence of Bernoulli trials with success prob-

ability Crm. Similar to the operations in traditional exponential recombination,

each successful event will increase the segment length by 1. This process will

be terminated once an unsuccessful trial happened. Please note that the length

can be 0 if the first Bernoulli trial fails. Subsequently, starting from the dimen-

sion where last unsuccessful event happened, another segment from the target

vector will be selected to constitute the trial vector. The procedure to decide

this segment length is the same as in last step, and the only difference is that the

success probability for each trial is changed to Crs. The proposed operator will

keep switching between the above two processes until all the components of the

trial vector have been decided.

From the above description, it is obvious that the behavior of the operator

depends heavily on the selection of Crm and Crs. However, the relationship

between Crm (or Crs) and the segment length is nonlinear, and the effect of

Crm and Crs on mutation probability is even more complicated. This issue
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Algorithm 3.1 Procedure of Multiple Exponential Recombination
Require:

Xi,g = (x1
i,g, x

2
i,g, . . . , x

D
i,g): Target Vector

Vi,g = (v1
i,g, v

2
i,g, . . . , v

D
i,g): Mutant Vector

Cr: Parameter to control the mutation probability
T : Parameter to control the lengths of the exchanged segments

Ensure:
Ui,g = (u1

i,g, u
2
i,g, . . . , u

D
i,g): Trial vector

1: Em = T · Cr
2: Es = T · (1− Cr)
3: Crm = Em/(Em + 1)
4: Crs = Es/(Es + 1)
5: Set n as an integer randomly generated from the interval [1, D]
6: k = 1,Mutation Enable = 1
7: while k ≤ D do
8: if Mutation Enable = 1 then
9: while k ≤ D and rand(0, 1) ≤ Crm do

10: d = 〈n〉D, where 〈n〉D equals to n if n ≤ D and equals to n−D if
n > D

11: udi,g = vdi,g
12: n = n+ 1
13: k = k + 1
14: end while
15: Mutation Enable = 0
16: else
17: while k ≤ D and rand(0, 1) ≤ Crs do
18: d = 〈n〉D
19: udi,g = xdi,g
20: n = n+ 1
21: k = k + 1
22: end while
23: Mutation Enable = 1
24: end if
25: end while
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will cause difficulty in controlling the behavior of the proposed operator during

applications. To address this issue, another two control parameters are used

instead, namely Cr and T . The users are only required to set Cr and T , and the

value of Crm and Crs will then be automatically decided as follows:

Em = T · Cr (3.1)

Es = T · (1− Cr) (3.2)

Crm = Em/(Em + 1) (3.3)

Crs = Es/(Es + 1) (3.4)

Briefly speaking, Em and Es are the approximate average lengths of the seg-

ments extracted from the mutant vector and target vector, respectively. Cr de-

cides the mutation probability and T controls the length of exchanged segments.

The underlying rationale of this design will be discussed from a mathematical

perspective in the next subsection.

3.2.3 Theoretical Analysis

In this subsection, the properties of the proposed operator will be investigated

theoretically. The purpose of this theoretical analysis is to prove the three main

advantages of multiple exponential recombination from a mathematical perspec-

tive.

In both traditional binomial and exponential recombination, the value of

parameter Cr strongly affects the mutation probability pm [51], which repre-

sents the probability that a component of the trial vector is mutated (means this

component is taken from the mutant vector). A higher pm will lead to more
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mutant elements in the trial vector, whereas a lower pm tends to deliver more

variables from the target vector to the trial vector. As a result, the convergence

speed of the population and even the entire optimization performance are heav-

ily influenced by the value of pm. Creating a linear relationship between Cr

and pm will make it more convenient for the users to control the behavior of the

algorithm. Among the existing crossover operations, this is only achieved by

binomial recombination. In order to preserve this main advantage of binomial

recombination, the control parameters in multiple exponential recombination

are specially designed based on the following mathematical analysis.

Proposition 1. An approximate linear relationship is achieved between the mu-

tation probability pm and control parameter Cr in multiple exponential recom-

bination.

Proof. In the proposed strategy, multiple segments from both mutant vector and

target vector construct the trial vector. Thus, the mutation probability is actually

decided by the average lengths of these segments. Following the definition of

Crm, the length of one segment extracted from the mutant vector (denoted as

Lm) is decided via the following process:

Lm = 0;

WHILE ((rand(0, 1) ≤ Crm) AND (Lm ≤ D))

DO{Lm = Lm + 1};

where rand(0, 1) is a uniform random number generator on the interval [0, 1].

Lm is the number of variables contained by the segment and D is the dimension

of the decision space.
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In such a process, the probability for Lm to be h is given by:

P (Lm = h) =


Crhm · (1− Crm), if 0 ≤ h < D

CrDm , if h = D

(3.5)

The mathematical expectation of this length Lm is computed as follows:

E(Lm) =
D−1∑
h=0

h · Crhm · (1− Crm) +D · CrDm

= (1− Crm) · (Crm + 2Cr2
m + 3Cr3

m + . . .+ (D − 1)CrD−1
m ) +D · CrDm

= Crm · [(1− Crm) · (1 + 2Crm + 3Cr2
m + . . .+ (D − 1)CrD−2

m ) +D · CrD−1
m ]

= Crm · [(1− Crm)(
1− CrD−1

m

1− Crm
+ Crm ·

1− CrD−2
m

1− Crm

+ Cr2
m ·

1− CrD−3
m

1− Crm
+ . . .+ CrD−2

m · 1− Crm
1− Crm

) +D · CrD−1
m ]

= Crm[1 + Crm + Cr2
m + Cr3

m + . . .+ CrD−2
m − (D − 1)CrD−1

m +D · CrD−1
m ]

= Crm ·
1− CrDm
1− Crm

(3.6)

Analogously, given a Crs, the expectation of the length of one segment

taken from the trial vector is calculated as below:

E(Ls) = Crs ·
1− CrDs
1− Crs

(3.7)

where Ls represents the number of components inside the segment.

Under the assumption that the dimension of the problem D is larger than

50 and both Crm and Crs are less than 0.9, we will have:

1− CrDm ≈ 1− CrDs ≈ 1 (3.8)

Thus,

E(Lm) ≈ Crm
1− Crm

(3.9)

E(Ls) ≈
Crs

1− Crs
(3.10)
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In the proposed strategy, Em and Es are the expected values of E(Lm) and

E(Ls), respectively. By replacing E(Lm) and E(Ls) with Em and Es in (3.9)

and (3.10), we will obtain:

Em ≈
Crm

1− Crm
(3.11)

Es ≈
Crs

1− Crs
(3.12)

Consequently, the required values of Crm and Crs can be computed using (3.3)

and (3.4), respectively.

Considering the mutation probability pm is defined as the probability that

an element in the trial vector is inherited from the mutant vector, the value of

pm can be approximated using E(Lm) and E(Ls) as below:

pm ≈
E(Lm)

E(Lm) + E(Ls)
(3.13)

It is notable that the higher the dimension D is, the closer the true pm and the

above approximated value will be. Thus, the relationship between pm and Cr is

given by:

pm ≈
Em

Em + Es
=

T · Cr
T · Cr + T · (1− Cr)

= Cr (3.14)

An approximate linear relationship is achieved between the mutation probability

pm and control parameter Cr.

Remark 1. This is the first advantage of the proposed operator. In order to fulfill

the assumption that both Crm and Crs are less than 0.9 (0.9 included), we will

have:

Crm = Em/(Em + 1) ≤ 0.9⇒ Em ≤ 9 (3.15)

Crs = Es/(Es + 1) ≤ 0.9⇒ Es ≤ 9 (3.16)
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Thus, considering (3.1), (3.2) and the fact that the Cr value is commonly chosen

from [0.1, 0.9], we will have:

Em = T · Cr ≤ T · 0.9 ≤ 9⇒ T ≤ 10 (3.17)

Es = T · (1− Cr) ≤ T · 0.9 ≤ 9⇒ T ≤ 10 (3.18)

Based on (3.1) and (3.2), a relatively higher T value will lead to a longer average

length of the exchange segments. This is beneficial to increase the chance of

preserving the physically proximate dependent variables. Taking all the above

analysis into account, the value of T will be fixed as 10 for all the experiments

in this chapter.

Proposition 2. All 2D possible trial vectors can be generated during the

crossover process of multiple exponential recombination.

Proof. To explain briefly, the number of the exchanged segments is unfixed and

the lengths of these segments can vary between 0 to D, thereby leading to 2D

possibilities during the recombination process.

Remark 2. This is the second advantage of multiple exponential recombination.

As a result, the explorative ability of the crossover operator will be enhanced.

The last and most important strength of the new operator is the robust-

ness in handling different types of variable interrelations. Since preservation

of dependent subsets is very critical in solving non-separable problems, one

quantitative criterion to judge the ability of an operator in managing dependent

variables is the distribution of probabilities to split up these subsets. Both the

physical distance between the dependent variables in the vector representation

and the values of other control parameters will affect the disruption probabil-

ity. We have mathematically derived the probabilities to disrupt two dependent
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variables with different physical distances while employing multiple exponen-

tial recombination. The derivation is based on modeling the crossover process

as a discrete-time Markov Chain [116].

Proposition 3. A transition matrix A is used in the representation of the ob-

tained probability:

A =

 Crm
1−(1−Crm)(1−Crs)

(1−Crs)Crm
1−(1−Crm)(1−Crs)

(1−Crm)Crs
1−(1−Crm)(1−Crs)

Crs
1−(1−Crm)(1−Crs)

 (3.19)

The probability to disrupt two variables during multiple exponential recombina-

tion is calculated as:

Pdisruption = pv · qx + px · qv (3.20)

where pv, px, qv and qx are given by:pv
px

 =
1

n
(AD−1 + . . .+ A+ A0)

 Crm
1−(1−Crm)(1−Crs)

(1−Crm)Crs
1−(1−Crm)(1−Crs)

 (3.21)

qv
qx

 = AL

pv
px

 (3.22)

where D is the dimensionality of the optimization problem and L is the dimen-

sion difference between the two variables in the circular representation of the

solutions (count from the variable that first undergoes the crossover operation).

Proof. During the proposed Multiple Exponential Recombination, segments

from the mutant vector (Vi,g = (v1
i,g, v

2
i,g, . . . , v

D
i,g)) and the target vector

(Xi,g = (x1
i,g, x

2
i,g, . . . , x

D
i,g)) will alternately constitute the trial vector (Ui,g =

(u1
i,g, u

2
i,g, . . . , u

D
i,g)). Here, D is the dimension of decision space. i is the index

of the vector, and g is the current generation number. First, we will calculate

the probability for udi,g to be vdi,g given that we already knew ud−1
i,g is inherited
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from vd−1
i,g . According to the process of Multiple Exponential Recombination

(Algorithm 3.1), this conditional probability is given by:

P (udi,g = vdi,g|ud−1
i,g = vd−1

i,g ) =Crm + (1− Crm) · (1− Crs) · Crm

+ (1− Crm)
2 · (1− Crs)

2 · Crm

+ . . .+ (1− Crm)
∞ · (1− Crs)

∞ · Crm

=
Crm

1− (1− Crm)(1− Crs)
(3.23)

Similarly, we can have the conditional probabilities for the other three situa-

tions:

P (udi,g = vdi,g|ud−1
i,g = xd−1

i,g ) =
(1− Crm)Crs

1− (1− Crm)(1− Crs)
(3.24)

P (udi,g = xdi,g|ud−1
i,g = xd−1

i,g ) =
Crs

1− (1− Crm)(1− Crs)
(3.25)

P (udi,g = xdi,g|ud−1
i,g = vd−1

i,g ) =
(1− Crs)Crm

1− (1− Crm)(1− Crs)
(3.26)

From the above analysis, the probability for udi,g to be vdi,g or xdi,g depends only

on the state of previous element ud−1
i,g . Thus, the procedure of Multiple Expo-

nential Recombination can be modeled as a discrete-time Markov Chain, and

the transition matrix A is as below:

A =

P (udi,g = vdi,g|ud−1
i,g = vd−1

i,g ) P (udi,g = xdi,g|ud−1
i,g = vd−1

i,g )

P (udi,g = vdi,g|ud−1
i,g = xd−1

i,g ) P (udi,g = xdi,g|ud−1
i,g = xd−1

i,g )



=

 Crm
1−(1−Crm)(1−Crs)

(1−Crs)Crm
1−(1−Crm)(1−Crs)

(1−Crm)Crs
1−(1−Crm)(1−Crs)

Crs
1−(1−Crm)(1−Crs)

 (3.27)
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Second, we are going to calculate the probability for udi,g to be vdi,g or xdi,g without

precondition. Without loss of generality, we assume that the dimension differ-

ence between the starting element ustarti,g (the first element in Ui,g that undergoes

the crossover operation) and udi,g is K, then we will have:P (udi,g = vdi,g|〈d− start〉D = K)

P (udi,g = xdi,g|〈d− start〉D = K)

 = AK

P (ustarti,g = vstarti,g )

P (ustarti,g = xstarti,g )



= AK

 Crm
1−(1−Crm)(1−Crs)

(1−Crm)Crs
1−(1−Crm)(1−Crs)

 (3.28)

where 〈d − start〉D equals to d − start if d − start ≤ D and equals to

d − start − D if d − start > D. Thus, in order to calculate the uncondi-

tional probability P (udi,g = vdi,g) and P (udi,g = xdi,g), we need to consider all the

possible situations, in which K ranges from 0 to D − 1. Since each dimension

has the same probability to become the starting position, we will have:P (udi,g = vdi,g)

P (udi,g = xdi,g)

 =
1

n
(AD−1 + AD−2 + . . .+ A+ A0)

 Crm
1−(1−Crm)(1−Crs)

(1−Crm)Crs
1−(1−Crm)(1−Crs)


(3.29)

where 1
n

is the probability for a particular dimension to become the starting

position.

Third, we consider two elements udi,g and ud2
i,g. If the dimension difference

between them is 〈d2− d〉D = L, we will have:P (ud2
i,g = vd2

i,g|〈d2− d〉D = L)

P (ud2
i,g = xd2

i,g|〈d2− d〉D = L)

 = AL

P (udi,g = vdi,g)

P (udi,g = xdi,g)

 (3.30)

where P (udi,g = vdi,g) and P (udi,g = xdi,g) are given by (3.29).

Finally, the probability that udi,g and ud2
i,g are inherited from different vectors
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(either Vi,g or Xi,g) is calculated as follows:

PL
disruption = P (udi,g = xdi,g) · P (ud2

i,g = vd2
i,g|〈d2− d〉D = L)

+P (udi,g = vdi,g) · P (ud2
i,g = xd2

i,g|〈d2− d〉D = L) (3.31)

Since we do not make any assumption in the exact value of d or d2(we only as-

sume the dimension difference between d and d2), the above PL
disruption actually

represents the probability for Multiple Exponential Recombination to disrupt

two variables that have the dimension difference L.

In the final results, we use symbols pv, px, qv and qx to represent P (udi,g =

vdi,g), P (udi,g = xdi,g), P (ud2
i,g = vd2

i,g|〈d2 − d〉D = L) and P (ud2
i,g = xd2

i,g|〈d2 −

d〉D = L), respectively.

Remark 3. From the above derivation results, it is not straightforward to inter-

pret the properties of this disruption probability. In order to provide a clearer

demonstration, simulation experiments will be conducted in the next section to

approximate the distribution of disruption probability using relative frequency.

Based on the simulation result (Fig. 3.4), in comparison with traditional bino-

mial recombination, the proposed operator has a similar probability to preserve

the distant dependent subsets while possessing a lower probability to disrupt

the physically proximate variables. This characteristic enables the proposed

strategy to be more robust in managing variables with unknown interrelations.

Details of the simulation experiments will be given in the next section.

42



CHAPTER 3. MULTIPLE EXPONENTIAL RECOMBINATION FOR DIFFERENTIAL EVOLUTION

3.3 Empirical Study

3.3.1 Properties of the proposed strategy

Two critical properties of the proposed strategy will be examined in this subsec-

tion via experiments. One is the relationship between mutation probability pm

and the control parameter Cr. An approximate linear relationship will provide

convenience in controlling the behavior of algorithm. The other one is the prob-

ability to split up two dependent variables during crossover operations. Visual-

izing the disruption probability under different circumstances will give a clear

picture about the robustness of the operator in handling dependent variables.

Based on the theoretical analysis in subsection 3.2.3, the relationship be-

tween pm andCr is approximately linear in multiple exponential recombination.

In order to verify this conclusion empirically, the values of pm under different

Cr are approximated using the relative frequency (or empirical probability),

which is defined as the number of times an event occurred normalized by the

total number of trials. When the number of trials is large enough, the obtained

relative frequency can accurately reveal the true probability. In this study, T

is fixed as 10 for multiple exponential recombination and the value of Cr will

change from 0 to 1 gradually at an interval of 0.01. For each value of Cr,

1× 106 independent trials will be performed to simulate the process of the pro-

posed operation and the traditional binomial recombination, respectively. The

relative frequency of the event that a variable is mutated during the crossover is

calculated for each Cr value, and we name this relative frequency as ”Mutation

frequency”. Fig. 3.3 shows simulation results when the dimensionality of deci-
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Figure 3.3: This figure plots the mutation frequency of multiple exponential recombi-
nation and binomial recombination under different Cr values. The upper plot is for the

50-dimensional problems and the lower one is for the 100-dimensional case.
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sion space is 50 and 100. “Mexp” refers to multiple exponential recombination

and “Bin” refers to binomial recombination. Consistent abbreviations are also

used in all the following figures and tables.

From Fig. 3.3, it can be observed that both the crossover operators are able

to produce an approximate linear relationship between the mutation frequency

and Cr value. More specifically, the value of mutation frequency is very close

to that of Cr in 50-dimensional problems and is nearly identical with that of

Cr in 100-dimensional situations. Considering that the mutation frequency is

a reliable approximation of pm, this observation is in accordance with our pre-

vious discussions in subsection 3.2.3. A higher dimensionality will lead to a

smaller discrepancy between pm and Cr and an approximate linear relationship

is achieved between them in the proposed strategy.

Next, behavior of multiple exponential recombination in handling depen-

dent variables is investigated via simulations. To demonstrate the robustness of

the proposed strategy, dependent variables with different distances are tested in

the experiments. The probabilities to split up these dependent subsets is com-

pared between multiple exponential recombination and binomial recombination.

The dimension of the decision space is set as 50, T is set as 10 for multiple expo-

nential recombination and Cr is fixed as 0.5 for both operators. Since the value

of pm is similar for the two strategies under same Cr, any difference in the per-

formance is mainly due to the positions of the mutated components instead of

the number of mutated variables. Without loss of generality, one variable is al-

ways placed in the first dimension and the other dependent variable will change

its position from the second dimension till the last. The difference between their
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Figure 3.4: This figure shows the disruption frequency for multiple exponential recom-
bination and binomial recombination under different distance settings. The dimension-

ality of the decision space is 50 and the Cr value is 0.5 for both strategies.

dimension indices is defined as the “distance” between them (e.g., a distance of

“1” means the two variables are adjacent to each other). In the experiments, the

distance between the two dependent variables will change from 1 to 49. 1× 106

independent trials will be simulated for each setting. The relative frequency for

the event that the two dependent variables are disrupted during crossover is com-

puted and referred to as “disruption frequency”. Fig. 3.4 presents the disruption

frequency over different distances for both crossover operators.

For binomial recombination, the disruption frequency stays around 0.5

for all the distance settings. Similar disruption frequency is also observed in

multiple exponential recombination for distances between 15 to 35. However,

when the distance is less than 15 or larger than 35, the performances of the two

strategies become vastly different. Multiple exponential recombination exhibits

a gradually decreasing disruption frequency when the distance value becomes
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Figure 3.5: This figure compares the disruption frequency for multiple exponential re-
combination and binomial recombination under different Cr values and distance set-

tings. The dimensionality of the decision space is 50.

closer to 1 or 49. Considering the crossover operation in multiple exponential

recombination is conducted in a circular manner, actually a distance of 49 also

means the two variables are adjacent to each other and a distance of 25 is the

most distant situation. Following this consideration, it can be concluded that the

closer the two variables are placed, the less probable the two variables will be

split up by multiple exponential recombination. In the most extreme case, where

the two dependent variables are adjacent to each other, the disruption frequency

may drop to around 0.15. Even in the worst case, where the distance between the

two dependent variables is 25, the disruption frequency of the proposed strategy

will not exceed that of the traditional binomial recombination.
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To examine further, we have changed the Cr value from 0 to 1 at an inter-

val of 0.01, and tested eachCr value under different distance settings. Similarly,

1× 106 independent trials will be conducted for each parametric setup on each

crossover operator. Fig. 3.5 shows the obtained disruption frequencies after

aforementioned simulations. Based on Fig. 3.5, the behaviors of the two opera-

tors are almost the same when the distance between the two dependent variables

is 25. In contrast, under the “Distance=1” setting, multiple exponential recom-

bination is able to provide a much lower disruption frequency under most Cr

values. For the “Distance=5” case, this lower disruption frequency is observed

when theCr value falls between 0.2 to 0.8. These results validate the conclusion

that the proposed strategy is better than binomial recombination in preserving

physically proximate variables without deteriorating the performance in han-

dling distant variables.

To summarize, the proposed multiple exponential recombination preserves

the advantages of traditional binomial recombination in handling distant depen-

dent variables whilst has a lower chance to disrupt the physically proximate

dependent subsets. A more robust behavior is achieved by the proposed strategy

in handling different types of variable interrelations.

3.3.2 Performance Evaluation

To evaluate the optimization performance of the new crossover operator, the

proposed multiple exponential recombination will be implemented with 6 clas-

sical DE mutation strategies, namely “DE/rand/1”, “DE/best/1”, “DE/rand/2”,

“DE/best/2”, “DE/current-to-best/2”, “DE/current-to-rand/2”. 14 representative
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benchmark problems from the special session and competition on real param-

eter optimization held under the IEEE CEC 2005 [117] (f1-f14) are utilized to

evaluate the performance of the algorithms. Both the 50-dimensional and 100-

dimensional versions of these problems are tested. Numerous types of problems

are covered including unimodal, multi-modal, shifted and rotated. All the prob-

lems are non-separable except for f1 and f9. The performance of the algorithms

with multiple exponential recombination is compared with those variants with

binomial recombination. For all algorithms, population size is fixed as 100, F

is set as 0.5, Cr is set as 0.5, and the maximum number of function evaluations

is set to 50× 104. T is fixed as 10 for multiple exponential recombination. The

performance evaluation of the algorithm is based on the best-of-run error, which

corresponds to the absolute difference between the best-of-run fitness value and

the actual global optimum. All of the simulations were done on an Intel (R)

Core (TM) i7 machine with 16-GB RAM and 3.40-GHz speed. Table 3.1 and

Table 3.2 show the mean and standard deviation of the best-of-run errors over

30 independent runs for each algorithm on 50-dimensional and 100-dimensional

benchmarks, respectively. In order to judge whether the results of multiple ex-

ponential variants and binomial variants differ in a statistically significant way, a

non-parametric statistical test called Wilcoxon rank-sum test [118] is conducted

at the 5% significance level. The entries which are significantly better than

the counterparts are marked in boldface in Table 3.1 and Table 3.2.

From the experimental results, the variants with multiple exponential re-

combination exhibits superior overall performance in comparison with the bino-

mial variants. When incorporated with “DE/rand/1”, “DE/rand/2”, “DE/current-
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Table 3.1: Mean and Standard Deviation of the Best-of-run Errors for 30 Independent
Runs Over 50-Dimensional Benchmark Set

fi DE/rand/1/bin DE/rand/1/Mexp DE/best/1/bin DE/best/1/Mexp
(50D) Mean Std Mean Std +/=/- Mean Std Mean Std +/=/-
f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 4.54E+00 2.48E+01 2.97E-13 1.52E-13 +
f2 6.43E+04 1.05E+04 5.38E+03 9.83E+02 + 3.76E+00 1.92E+01 1.28E-12 1.18E-12 +
f3 4.59E+08 5.59E+07 2.94E+08 4.52E+07 + 1.12E+07 4.85E+06 3.76E+06 1.65E+06 +
f4 8.95E+04 1.14E+04 1.66E+04 2.49E+03 + 4.19E+03 4.28E+03 1.95E+03 3.79E+03 +
f5 4.90E+03 1.08E+03 3.43E+03 1.20E+03 + 5.57E+03 1.45E+03 6.13E+03 1.42E+03 =
f6 3.58E+01 4.52E-01 2.73E+00 1.24E+00 + 5.66E+00 1.24E+01 6.64E-01 1.51E+00 +
f7 1.36E-02 5.17E-03 4.48E-03 1.99E-03 + 1.25E-02 1.38E-02 9.23E-03 1.77E-02 =
f8 2.11E+01 3.83E-02 2.11E+01 3.84E-02 = 2.11E+01 3.36E-02 2.11E+01 4.72E-02 =
f9 2.33E+02 1.10E+01 1.82E+02 1.14E+01 + 8.52E+01 2.42E+01 8.77E+01 2.76E+01 =
f10 3.85E+02 1.26E+01 3.79E+02 1.32E+01 = 3.06E+02 1.10E+02 1.89E+02 1.08E+02 +
f11 7.30E+01 1.07E+00 7.24E+01 1.05E+00 + 3.95E+01 1.94E+01 3.26E+01 1.17E+01 =
f12 7.93E+05 5.49E-14 7.99E+05 5.49E-14 = 1.12E+05 8.09E+04 1.29E+05 1.16E+05 =
f13 2.98E+01 1.41E+00 2.23E+01 1.10E+00 + 1.24E+01 5.66E+00 1.43E+01 8.22E+00 =
f14 2.32E+01 1.44E-01 2.33E+01 1.66E-01 = 2.27E+01 2.89E-01 2.26E+01 2.72E-01 =

Total Number of (+/=/-) 9/5/0 Total Number of (+/=/-) 6/8/0
fi DE/rand/2/bin DE/rand/2/Mexp DE/best/2/bin DE/best/2/Mexp

(50D) Mean Std Mean Std +/=/- Mean Std Mean Std +/=/-
f1 4.90E-03 8.93E-04 6.92E-04 1.17E-04 + 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =
f2 1.03E+05 1.33E+04 3.15E+04 2.48E+03 + 2.93E+04 7.19E+03 6.55E+02 3.56E+02 +
f3 6.96E+08 7.89E+07 5.29E+08 7.22E+07 + 1.52E+08 4.38E+07 6.08E+07 2.04E+07 +
f4 1.30E+05 1.36E+04 5.28E+04 6.35E+03 + 4.97E+04 1.03E+04 5.10E+03 2.90E+03 +
f5 1.59E+04 1.35E+03 1.47E+04 1.40E+03 + 5.28E+03 2.08E+03 3.73E+03 1.59E+03 +
f6 7.42E+03 2.14E+03 7.19E+02 1.60E+02 + 3.82E+01 2.22E+01 2.36E-07 9.10E-07 +
f7 1.49E+02 3.03E+01 5.22E+01 9.97E+00 + 2.31E-03 4.75E-03 1.81E-03 4.38E-03 +
f8 2.11E+01 3.74E-02 2.11E+01 3.38E-02 = 2.11E+01 2.78E-02 2.11E+01 2.88E-02 =
f9 2.84E+02 8.61E+00 2.29E+02 1.01E+01 + 2.38E+02 1.27E+01 1.96E+02 1.38E+01 +
f10 4.33E+02 1.24E+01 4.34E+02 1.40E+01 = 3.88E+02 1.43E+01 3.82E+02 1.70E+01 =
f11 7.28E+01 1.36E+00 7.28E+01 1.24E+00 = 7.27E+01 1.56E+00 7.13E+01 2.10E+00 +
f12 1.74E+06 1.12E+05 1.40E+06 1.57E+05 + 9.91E+04 8.64E+04 8.81E+04 7.08E+04 =
f13 5.87E+01 6.09E+00 3.47E+01 1.60E+00 + 2.94E+01 1.41E+00 2.30E+01 1.39E+00 +
f14 2.33E+01 1.73E-01 2.33E+01 1.31E-01 = 2.31E+01 1.79E-01 2.32E+01 1.38E-01 =

Total Number of (+/=/-) 10/4/0 Total Number of (+/=/-) 9/5/0
fi DE/c-t-b/2/bin DE/c-t-b/2/Mexp DE/c-t-r/2/bin DE/c-t-r/2/Mexp

(50D) Mean Std Mean Std +/=/- Mean Std Mean Std +/=/-
f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 = 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =
f2 2.44E+04 2.76E+03 3.26E+02 7.32E+01 + 5.03E+04 5.07E+03 3.50E+03 4.29E+02 +
f3 1.84E+08 2.32E+07 1.09E+08 2.35E+07 + 3.30E+08 3.19E+07 2.42E+08 3.03E+07 +
f4 3.90E+04 7.13E+03 3.63E+03 6.76E+02 + 7.17E+04 8.09E+03 1.58E+04 2.10E+03 +
f5 3.76E+03 1.49E+03 3.79E+03 1.61E+03 = 1.01E+04 7.28E+02 9.16E+03 9.47E+02 +
f6 2.78E+01 2.48E+00 4.91E-06 1.86E-05 + 3.79E+01 1.33E+00 1.26E+01 3.08E+00 +
f7 1.92E-03 4.79E-03 7.45E-05 2.18E-04 + 1.18E-01 4.64E-02 7.73E-02 4.21E-02 +
f8 2.11E+01 3.21E-02 2.11E+01 4.51E-02 = 2.11E+01 3.98E-02 2.11E+01 4.33E-02 =
f9 2.54E+02 1.15E+01 2.06E+02 1.00E+01 + 2.56E+02 9.21E+00 2.08E+02 1.16E+01 +
f10 3.88E+02 1.14E+01 3.79E+02 1.26E+01 + 3.93E+02 1.46E+01 3.92E+02 1.24E+01 =
f11 7.21E+01 2.10E+00 7.19E+01 1.43E+00 = 7.25E+01 1.87E+00 7.18E+01 1.72E+00 =
f12 3.60E+05 2.28E+05 4.70E+05 2.07E+05 = 1.30E+06 1.37E+05 1.11E+06 1.04E+05 +
f13 2.90E+01 1.48E+00 2.25E+01 8.71E-01 + 3.04E+01 1.41E+00 2.30E+01 1.10E+00 +
f14 2.32E+01 1.57E-01 2.31E+01 2.17E-01 = 2.32E+01 1.53E-01 2.31E+01 1.55E-01 =

Total Number of (+/=/-) 8/6/0 Total Number of (+/=/-) 9/5/0
The symbols “+/=/-” indicate the statistical test results using Wilcoxon rank sum test at the 5% significance level. “+”
and “-” mean that the performance of the variant with multiple exponential recombination is significantly superior or

inferior than that of the variant with binomial recombination, respectively. “=” means the performance difference
between the two variants is not statistically significant. “c-t-r” and “c-t-b” represent “current-to-rand” and

“current-to-best”, respectively.
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Table 3.2: Mean and Standard Deviation of the Best-of-run Errors for 30 Independent
Runs Over 100-Dimensional Benchmark Set

fi DE/rand/1/bin DE/rand/1/Mexp DE/best/1/bin DE/best/1/Mexp
(100D) Mean Std Mean Std +/=/- Mean Std Mean Std +/=/-
f1 1.61E-05 4.09E-06 5.28E-06 1.41E-06 + 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =
f2 4.31E+05 3.02E+04 2.46E+05 1.94E+04 + 2.50E+04 1.20E+04 2.78E+03 3.92E+03 +
f3 2.55E+09 2.98E+08 2.37E+09 2.85E+08 + 4.87E+07 1.48E+07 3.70E+07 1.39E+07 +
f4 5.01E+05 3.65E+04 3.32E+05 2.82E+04 + 1.35E+05 3.62E+04 7.53E+04 2.02E+04 +
f5 2.48E+04 1.75E+03 2.39E+04 1.55E+03 = 1.62E+04 2.90E+03 1.61E+04 2.88E+03 =
f6 3.86E+02 7.63E+01 1.13E+02 7.78E+00 + 1.09E+02 4.81E+01 1.19E+00 1.86E+00 +
f7 1.08E+01 1.82E+00 4.85E+00 1.11E+00 + 4.76E-03 6.66E-03 6.89E-03 8.40E-03 =
f8 2.13E+01 2.11E-02 2.13E+01 3.54E-02 = 2.13E+01 2.48E-02 2.13E+01 2.70E-02 =
f9 7.01E+02 1.62E+01 6.61E+02 1.78E+01 + 2.80E+02 5.34E+01 2.86E+02 5.05E+01 =
f10 9.69E+02 2.29E+01 9.65E+02 2.65E+01 = 8.21E+02 2.82E+02 6.85E+02 2.94E+02 +
f11 1.62E+02 2.15E+00 1.62E+02 1.70E+00 = 1.60E+02 2.67E+00 8.59E+01 2.39E+01 +
f12 9.37E+06 6.29E+05 8.93E+06 6.18E+05 + 5.94E+05 3.19E+05 5.62E+05 2.80E+05 =
f13 9.74E+01 4.65E+00 8.24E+01 2.74E+00 + 8.54E+01 3.17E+01 8.99E+01 2.10E+01 =
f14 4.79E+01 1.47E-01 4.79E+01 1.65E-01 = 4.75E+01 3.49E-01 4.74E+01 3.19E-01 =

Total Number of (+/=/-) 9/5/0 Total Number of (+/=/-) 6/8/0
fi DE/rand/2/bin DE/rand/2/Mexp DE/best/2/bin DE/best/2/Mexp

(100D) Mean Std Mean Std +/=/- Mean Std Mean Std +/=/-
f1 6.57E+03 4.64E+02 4.39E+03 2.81E+02 + 0.00E+00 0.00E+00 0.00E+00 0.00E+00 =
f2 5.25E+05 3.69E+04 3.63E+05 2.09E+04 + 2.70E+05 2.66E+04 1.35E+05 1.98E+04 +
f3 3.79E+09 3.56E+08 3.55E+09 3.40E+08 + 7.51E+08 1.65E+08 6.63E+08 1.73E+08 =
f4 6.19E+05 6.01E+04 4.53E+05 4.20E+04 + 3.37E+05 3.65E+04 2.17E+05 3.64E+04 +
f5 4.11E+04 1.89E+03 4.07E+04 2.15E+03 = 1.72E+04 2.20E+03 1.75E+04 1.78E+03 =
f6 1.14E+09 1.36E+08 6.93E+08 9.37E+07 + 1.17E+02 3.23E+01 8.11E+01 1.51E+01 +
f7 1.75E+04 9.76E+02 1.49E+04 8.68E+02 + 6.32E-01 9.61E-02 5.45E-01 1.14E-01 +
f8 2.13E+01 2.20E-02 2.13E+01 2.39E-02 = 2.13E+01 2.51E-02 2.13E+01 2.86E-02 =
f9 8.45E+02 2.15E+01 7.94E+02 1.72E+01 + 7.17E+02 2.91E+01 6.76E+02 2.43E+01 +
f10 1.16E+03 2.57E+01 1.16E+03 2.67E+01 = 9.78E+02 4.05E+01 9.74E+02 3.70E+01 =
f11 1.62E+02 2.12E+00 1.61E+02 1.76E+00 = 1.61E+02 1.95E+00 1.62E+02 1.38E+00 =
f12 1.45E+07 6.02E+05 1.33E+07 7.53E+05 + 5.68E+05 2.22E+05 5.82E+05 2.56E+05 =
f13 4.36E+05 6.65E+04 2.69E+05 3.77E+04 + 8.01E+01 2.83E+00 7.32E+01 2.40E+00 +
f14 4.80E+01 1.80E-01 4.79E+01 1.57E-01 = 4.79E+01 1.95E-01 4.79E+01 1.83E-01 =

Total Number of (+/=/-) 9/5/0 Total Number of (+/=/-) 6/8/0
fi DE/c-t-b/2/bin DE/c-t-b/2/Mexp DE/c-t-r/2/bin DE/c-t-r/2/Mexp

(100D) Mean Std Mean Std +/=/- Mean Std Mean Std +/=/-
f1 1.13E-10 2.33E-11 4.28E-11 1.23E-11 + 4.47E-04 8.26E-05 2.91E-04 4.56E-05 +
f2 2.41E+05 2.26E+04 1.08E+05 1.13E+04 + 3.44E+05 1.84E+04 1.99E+05 1.04E+04 +
f3 1.09E+09 1.50E+08 9.39E+08 1.41E+08 + 1.89E+09 1.83E+08 1.76E+09 1.58E+08 +
f4 2.99E+05 3.70E+04 1.78E+05 1.71E+04 + 4.17E+05 3.77E+04 2.79E+05 1.72E+04 +
f5 2.01E+04 1.09E+03 1.93E+04 1.52E+03 + 3.17E+04 1.19E+03 3.09E+04 1.69E+03 +
f6 9.12E+01 3.13E-01 7.48E+01 1.07E+00 + 9.42E+02 1.18E+02 3.92E+02 6.12E+01 +
f7 7.44E-01 3.09E-02 6.60E-01 4.49E-02 + 4.60E+01 9.81E+00 2.96E+01 5.18E+00 +
f8 2.13E+01 2.85E-02 2.13E+01 2.32E-02 = 2.13E+01 2.24E-02 2.13E+01 1.96E-02 =
f9 7.37E+02 2.11E+01 6.99E+02 2.23E+01 + 7.62E+02 1.32E+01 7.19E+02 1.84E+01 +
f10 9.67E+02 1.79E+01 9.56E+02 2.45E+01 + 1.01E+03 1.42E+01 1.01E+03 2.64E+01 =
f11 1.62E+02 1.62E+00 1.61E+02 1.87E+00 = 1.62E+02 1.57E+00 1.61E+02 2.19E+00 =
f12 5.75E+06 1.66E+06 5.84E+06 1.46E+06 = 1.26E+07 6.95E+05 1.17E+07 7.92E+05 +
f13 7.95E+01 2.13E+00 7.28E+01 1.60E+00 + 1.08E+02 5.86E+00 8.79E+01 3.09E+00 +
f14 4.78E+01 2.01E-01 4.78E+01 2.55E-01 = 4.78E+01 1.97E-01 4.79E+01 1.56E-01 =

Total Number of (+/=/-) 10/4/0 Total Number of (+/=/-) 10/4/0
The symbols “+/=/-” indicate the statistical test results using Wilcoxon rank sum test at the 5% significance level. “+”
and “-” mean that the performance of the variant with multiple exponential recombination is significantly superior or

inferior than that of the variant with binomial recombination, respectively. “=” means the performance difference
between the two variants is not statistically significant. “c-t-r” and “c-t-b” represent “current-to-rand” and

“current-to-best”, respectively.
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to-best/2” and “DE/current-to-rand/2”, the proposed crossover operator is able

to significantly improve the performance of the algorithm in most benchmark

problems under both 50 dimensions and 100 dimensions. For “DE/best/2”,

the “Mexp” version significantly outperforms the “bin” version in 9 out of

14 50-dimensional problems and 6 out of 14 100-dimensional problems. For

“DE/best/1”, the proposed strategy also provides significantly better perfor-

mance on 6 out 14 benchmarks in both 50-dimensional and 100-dimensional

cases. As discussed before, the mutation probabilities are almost the same in

these two crossover operations under identical Cr values. Thus, the different

performances of these two operators only result from their different behaviors

in selecting the exchange positions.

It is notable that for all the mutation strategies, in no benchmarks can bino-

mial recombination show a significantly better performance than the proposed

operator. To seek the reason, the specially designed mechanism enables multi-

ple exponential recombination to be more robust than binomial recombination in

tackling different types of dependent subsets. Compared to binomial recombi-

nation, multiple exponential recombination not only handle the distant variables

similarly but also possess a higher chance to preserve the physically proximate

dependent subsets. Among all tested problems, only f1 and f9 are separable

problems. A very interesting phenomenon is that even for these two separable

problems, multiple exponential recombination is able to significantly outper-

form traditional binomial recombination in most situations. The explanation is

that some favorable variable configurations may form during the optimization

process and multiple exponential recombination is more likely to preserve these
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structures when the involved variables are physically proximate to each other.

To give a clearer picture of the performance difference between the two

crossover operators, Fig. 3.6 plots the change of best-of-run errors over genera-

tions for each algorithms on 6 problems. It can be observed that all the “Mexp”

variants converge towards the global optimum faster than the “bin” counterparts

during the entire optimization process. A more effective search is achieved by

multiple exponential recombination in solving these problems. The different

convergence speeds of each mutation strategy are beyond the scope of our dis-

cussion.

3.3.3 Implementation in SaDE

In this subsection, the proposed multiple exponential recombination is imple-

mented in SaDE [30], which is a very powerful state-of-the-art DE variant. The

original SaDE will self-adapt the control parameter values and mutation strate-

gies by learning from the successful experiences in generating promising solu-

tions. However, the crossover operator in the original SaDE is fixed as binomial

recombination due to its popularity in other DE literatures [30]. During the ex-

periments, multiple exponential recombination will replace binomial recombi-

nation in crossover operation and all the other mechanisms of the original SaDE

will be reserved. The performance of the modified SaDE will be compared with

that of the original SaDE.

The purpose of this implementation is to further investigate the behav-

iors of the proposed operator when incorporated with self-adaptive DE variant.

Both the 50-dimensional and 100-dimensional versions of f1-f14 from CEC-05
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Figure 3.6: This figure plots the average best-of-run errors of 30 independent runs over
generations. “c-t-r” and “c-t-b” represent “current-to-rand” and “current-to-best”, re-

spectively.
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benchmark suite will be tested. For both algorithms, the population size is fixed

as 100 and the maximum number of fitness evaluation is set to 50 × 104 for

50-dimensional problems and 100 × 104 for 100-dimensional problems. T is

fixed as 10 for multiple binomial recombination. The Cr value used in the two

crossover operators will be adapted via the parameter adaptation mechanism in

SaDE. For all the remaining parameters in SaDE, the recommended paramet-

ric setup in the original literature [30] is utilized. Table 3.3 presents the mean

and standard deviation of the best-of-run errors over 30 independent runs for

each algorithm on each problem. Wilcoxon rank-sum test is conducted at the

5% significance level for each pair of results. The entries that significantly

outperform the counterparts are marked in boldface.

From Table 3.3, the modified SaDE variant with multiple exponential re-

combination provides significantly better performance than the original ver-

sion with binomial recombination in 11 out of 28 benchmarks. In all the re-

maining 17 problems, the performance difference between the two variants is

not statistically significant. This observation indicates that replacing binomial

recombination with multiple exponential recombination has enhanced the ro-

bustness of SaDE in solving problems with different types of variable interrela-

tions.

Subsequently, the behaviors of the parameter adaptation mechanism in tun-

ing Cr values are studied. In SaDE, the adaptation of Cr value is based on a

normal distribution with mean value CRm (please note this is the control pa-

rameter in the original SaDE, it is different from our control parameter Crm)

and standard deviation 0.1. Each mutation strategy in the candidate pool will
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Table 3.3: Mean and Standard Deviation of the Errors (30 runs)

Problems Original SaDE SaDE/Mexp

(Dimensions) Mean ± Std Mean± Std

f1 (50) 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f2 (50) 3.20E-10 ± 4.39E-10 4.36E-16 ± 7.91E-16
f3 (50) 8.87E+04 ± 3.47E+04 8.97E+04 ± 4.32E+04

f4 (50) 7.48E+02 ± 7.22E+02 3.13E+01 ± 4.15E+01
f5 (50) 3.57E+03 ± 5.87E+02 3.52E+03 ± 6.40E+02

f6 (50) 6.05E+00 ± 1.55E+01 1.99E+00 ± 2.03E+00
f7 (50) 5.66E-03 ± 1.04E-02 3.44E-03 ± 8.16E-03
f8 (50) 2.11E+01 ± 4.94E-02 2.11E+01 ± 3.60E-02

f9 (50) 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

f10 (50) 9.39E+01 ± 1.38E+01 9.28E+01 ± 1.37E+01

f11 (50) 3.43E+01 ± 9.58E+00 3.27E+01 ± 9.26E+00

f12 (50) 9.60E+03 ± 6.05E+03 7.17E+03 ± 7.25E+03
f13 (50) 9.34E+00 ± 6.13E-01 8.46E+00 ± 5.77E-01
f14 (50) 2.24E+01 ± 1.91E-01 2.24E+01 ± 2.38E-01

f1 (100) 1.68E-30 ± 9.22E-30 1.68E-30 ± 9.22E-30

f2 (100) 3.28E-03 ± 3.21E-03 6.59E-05 ± 9.53E-05
f3 (100) 9.43E+05 ± 2.48E+05 9.10E+05 ± 3.00E+05

f4 (100) 3.50E+04 ± 6.25E+03 1.98E+04 ± 4.94E+03
f5 (100) 9.14E+03 ± 1.29E+03 9.48E+03 ± 1.31E+03

f6 (100) 4.88E+01 ± 3.25E+01 2.52E+00 ± 1.95E+00
f7 (100) 5.25E-03 ± 7.33E-03 4.60E-03 ± 6.65E-03

f8 (100) 2.13E+01 ± 2.17E-02 2.13E+01 ± 2.50E-02

f9 (100) 1.33E+00 ± 1.09E+00 1.53E+00 ± 1.22E+00

f10 (100) 3.14E+02 ± 3.79E+01 3.12E+02 ± 3.97E+01

f11 (100) 8.86E+01 ± 5.96E+00 8.86E+01 ± 7.10E+00

f12 (100) 4.20E+04 ± 1.63E+04 3.67E+04 ± 2.56E+04
f13 (100) 2.94E+01 ± 1.39E+00 2.58E+01 ± 1.81E+00
f14 (100) 4.67E+01 ± 2.86E-01 4.67E+01 ± 2.87E-01
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Figure 3.7: This figure shows the adaptation behaviors of the CRm values in SaDE.
Strategy 1 and Strategy 2 are the first two default candidate mutations strategies in

original SaDE, namely, DE/rand/1 and DE/current-to-best/2.

have one associated CRm and the value of this CRm is adapted according to

previous Cr values that have generated promising trial vectors. Fig. 3.7 plots

the change of CRm values during optimization process for the first two muta-

tion strategies in both modified and original SaDE on 100-dimensional f6, f7

and f12. According to Fig. 3.7, changes of CRm values in both operators show

similar pattern. For strategy 1, both the operator tends to preserve higher CRm

values whereas in strategy 2, lower CRm values are preferred by both crossover

operations. Considering that the Cr values are generated based on CRm, the

distribution of actually usedCr values will be similar in both variants . Thus, the

performance difference between the two variants are not caused by utilizing dif-

ferent Cr values. All the improvements in the “Mexp” variants are mainly due

to the new mechanisms in selecting crossover positions. Another observation is
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that either the value above 0.8 or below 0.2 is preferred by the Cr adaptation

mechanisms in SaDE. Based on the simulation results in Fig. 3.5, when the Cr

value is close to 0 or 1, the disruption frequency distribution will become similar

for both crossover operators. As a result, the performance difference between

the two SaDE variants may not be significant in some benchmark problems.

3.4 Conclusion

This chapter has presented a new DE crossover operator, in which multiple seg-

ments will be exchanged among involved vectors. The specially designed mech-

anisms enable the proposed strategy to inherit all the main advantages of exist-

ing crossover operators while providing a more robust performance in handling

variable interrelations. The properties of the new operator is investigated both

theoretically and empirically. Implementation in 6 classical DE algorithms and

1 adaptive DE variant demonstrates the superiority of the proposed strategy in

solving problems with unknown variable interrelations.
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Chapter 4

Adaptive Cross-Generation

Differential Evolution Operators

for Multi-objective Optimization

In previous chapter, the target problems are restricted to the general single-

objective optimization problems due to the nature of traditional DE algorithms.

However, many optimization problems involve multiple objectives that are con-

flicting to each other. In order to circumvent the limitation of DE in solving

MOPs, this chapter proposes a novel multi-objective DE algorithm, which will

make use of the information across generations to improve the overall perfor-

mance. Superiority of the proposed mechanisms are validated via experiments.

4.1 Introduction

DE, proposed by Storn and Price [9], is arguably one of the most efficient evo-

lutionary algorithms for numerical optimization. Due to its inherent superiority
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over many EAs [10], DE generally produces good performance in a wide vari-

ety of single-objective optimization problems (SOPs) [119–123]. This success

triggered the popularity of extending DE to multi-objective optimization (MO)

in recent years.

Intrinsically, the main task of any evolutionary multi-objective optimiza-

tion (EMO) algorithm is to achieve best trade-offs among multiple objectives. In

practice, EMO algorithms operate by evolving a set of solutions to approximate

the Pareto Optimal Front (POF), which is defined by the ideally optimal trade-

offs [124–126]. How to distribute these solutions along the POF more evenly,

which means a better diversity of the population, and more closely, which means

a faster convergence speed of the algorithm, then becomes the core problem

during the design of EMO algorithms. When extending DE to MO, researchers

focus more on maintaining diversity and developing survival selection crite-

rion [127]. Although impressive progress has been reported, there are still sev-

eral issues that tend to be neglected: first, the performance of DE is sensitive to

the setup of its control parameters [10,29–31]. It emerges as a thorny issue when

multiple objectives are optimized simultaneously [68, 99, 128]; second, while

much effort has been paid to maintain the diversity of the population, a satisfac-

tory convergence speed cannot be guaranteed [129] [130]; third, most existing

MO-DEs are inconvenient to implement among different MO frameworks since

they have already fixed the whole evolutionary process [60, 61, 71, 72] or are

tightly combined with one category of MO frameworks (e.g., Pareto dominance-

based or decomposition-based) [62, 66, 67, 70, 131–133]. During applications,

varied types of MO frameworks are needed depending on the nature of the prob-
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lem [7, 8, 74, 128]. It is desirable to design MO-DE in a more flexible way.

To address the above issues, this chapter proposes a novel multi-objective

Differential Evolution algorithm utilizing information across generations. First,

two new mutation strategies are developed to enhance both convergence speed

and diversity maintenance. One is the neighborhood-based cross-generation

(NCG) mutation, which tries to estimate the ideal searching directions that can

guide the optimization. In general thought, defining an efficient direction is

not a trivial task, especially when the evolution process involves non-linear or

black-box functions [75]. Considering the essence of evolutionary algorithms,

solutions are evolved better and better throughout the whole optimization. Thus,

the differences between consecutive generations are analyzed in NCG mutation

to generate promising searching directions. Another is the population-based

cross-generation (PCG) mutation, in which populations from two generations

are involved to facilitate a more explorative search. The two new mutation

operators are employed in a hybrid manner in order to strike a delicate bal-

ance between exploitation and exploration. Subsequently, a new scheme called

cross-generation adaptation (CGA) mechanism is introduced to tune the param-

eters automatically. For DE, the optimal parametric setting varies over different

optimization problems. Even for a single problem, the proper parameters may

change over generations. In MO, this issue becomes more challenging because

of the possible distinct requirements by multiple objectives. The proposed CGA

mechanism self-adapts the parameters not only in a dynamic way but also from

the perspective of objective space. In each generation, the optimal parameters

for a limited region in objective space are gauged via integrating the parame-
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ter values of consecutive generations. Based on the aforementioned algorith-

mic components, an adaptive cross-generation differential evolution (ACGDE)

algorithm for multi-objective optimization is developed. There is no dedicated

survival selection criterion in ACGDE, thereby leading to sufficient flexibility in

implementation. To implement ACGDE into a MO framework, the main step is

to replace the original reproduction operator (e.g., mutation and crossover oper-

ators) with ACGDE. Regeneration of more promising offspring is the principal

role of ACGDE. To the best of the author’s knowledge, there is no previous study

that focuses on examining the usability of information across generations. The

experimental results validate the effectiveness of each algorithmic component.

The implementation into two well-known MO frameworks (i.e., NSGA-II [134]

and MOEA/D [135]) demonstrates that ACGDE is very powerful and robust in

handling multi-objective optimization problems (MOPs).

4.2 Proposed Algorithm

This section outlines the proposed ACGDE and discusses the details of each

algorithmic component.

4.2.1 Overview of the Algorithm

This chapter presents an adaptive Differential Evolution algorithm for multi-

objective optimization. Two novel mutation strategies and one new parameter

adaptation mechanism are developed. The proposed ACGDE differs from the

classical DE algorithms in the following aspects: first, information across dif-

ferent generations will be utilized to enhance both convergence and diversity;
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second, the relationships among individuals in objective space are considered

during selection of parents; third, adaptation of parameters operates from an

objective-based perspective.

Algorithm 4.1 shows the general structure of ACGDE. Detailed explana-

tions for the newly introduced mechanisms, parameters and concepts will be

provided in the following subsections.

4.2.2 Cross-Generation Mutation

Converging Direction and Searching Direction

To better explain the development of our idea, two kinds of directions are de-

fined, namely, converging direction and searching direction. Similar to con-

vergence direction in [75], converging direction is defined as the direction that

approaches the POF given a solution in the objective space, whereas search-

ing direction is referred to the moving direction of an individual in the decision

space. It is intuitive that the most efficient searching direction of an individual is

the mapping of its converging direction. Thus, it would be beneficial if the cor-

rect converging directions could be learned during the optimization process. Al-

though the exact converging directions are unavailable, it is possible to estimate

the converging directions using the information across generations. Consider-

ing the nature of evolutionary algorithms, the solutions are getting better and

better while the number of evolving generations increases. In MO, such selec-

tion pressure will move the population towards the true POF. The movement of

solutions across generations may, therefore, provide some hints for estimating

the converging directions. As shown in Fig. 4.1, the converging direction varies
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Algorithm 4.1 Procedure of ACGDE
1: Set the control parameters of ACGDE: population size N , Neighborhood

size T = 5% ·N , θF , θCr, Fmax, Fmin, Crmax and Crmin.
2: Set the generation number g = 0 and randomly initialize the population of
N individuals Pg = {X1,g, X2,g, ..., XN,g} together with their associated pa-
rameters {F1,g, F2,g, ..., FN,g} and {Cr1,g, Cr2,g, ..., CrN,g}. The generated
parameter values should be within [Fmin, Fmax] and [Crmin, Crmax], respec-
tively.

3: for g = 1 to Gmax do
4: if g = 1 then
5: Pg = P0

6: end if
7: Calculate the sub-rank for each individual in Pg.
8: for i = 1 to N do
9: Determine the neighborhood of current generation and previous gener-

ation for individual Xi,g in terms of sub-rank.
10: Perform CGA mechanism to produce Fspring,i,g and Crspring,i,g.
11: if rand[0, 1.0] ≤ 0.5 then
12: Utilize NCG mutation with Fspring,i,g to generate the mutant vector

Vi,g.
13: else
14: Utilize PCG mutation with Fspring,i,g to generate the mutant vector

Vi,g.
15: end if
16: Perform binomial recombination with Crspring,i,g on Xi,g and Vi,g to

generate the offspring Ui,g .
17: Survival selection by the MO framework that ACGDE is implemented

to.
18: end for
19: Generation number g = g + 1
20: Update Current Population Pg
21: end for
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Figure 4.1: Converging directions of different solutions in the objective space. The
curve denotes the Pareto Optimal Front of the 2-objective minimization problem. Each

dot represents a solution and the arrows denote their converging directions.

for the solutions from different regions in objective space. It is more reasonable

to separately estimate converging directions within different regions. Defining

neighborhood for each individual is an effective way to extract information over

a certain limited area in objective space. In the following subsection, a simple

yet efficient way to define the neighborhood will be discussed.

Neighborhood Based on Sub-rank

In MO, a common way to define the neighborhood of a solution in objective

space is to measure the Euclidean distance between two solutions based on

their objective values. The major weakness of this method is that the cal-

culated distance may be biased by the different ranges of objective functions

[126, 136, 137]. Under these circumstances, normalization is a necessary pre-

processing step [138, 139]. Nevertheless, it cannot be guaranteed that the true
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range of each objective is known before optimization [136]. Normalization be-

comes difficult without knowledge of true ranges. To circumvent this issue, a

new term, called “sub-rank”, is introduced. Similar to the ranking in [140], sub-

rank is a vector comprising the ranks of an individual in each separate objective

among current population. For instance, in a 2-objective problem, if the sub-

rank of one individual is (1, 1), it means this individual has the best fitness value

for both objectives. In the proposed algorithm, sub-rank would replace fitness

value to measure the distance between two individuals in objective space. In

this way, normalization could be skipped and the bias caused by various ranges

is eliminated. In the proposed algorithm, firstly the Euclidean distance is cal-

culated using sub-rank between any two individuals. Next, the neighborhood

of each individual will be decided based on the calculated distance and the

pre-defined neighborhood size T . The T nearest solutions are marked as the

neighborhood of this individual.

Neighborhood-based Cross-Generation Mutation

Classical DE mutation operators only make use of the information within the

current generation to generate the mutant vector [9, 141, 142]. However, based

on the above discussions, the information across generations may reveal the

trend of how solutions moved in the search space, and in turn help to guide

searching directions. In order to estimate the converging directions for different

regions in objective space and utilize the corresponding searching directions to

guide the evolutionary process, a novel neighborhood-based cross-generation

(NCG) mutation strategy is proposed. The mutant vector is generated based on

66



CHAPTER 4. ADAPTIVE CROSS-GENERATION DIFFERENTIAL EVOLUTION OPERATORS FOR
MULTI-OBJECTIVE OPTIMIZATION

the difference between two individuals from consecutive generations.

In the proposed strategy, each individual will generate one mutant vector,

and the individual is called the main parent of this mutant vector. One interesting

feature of the proposed mutation strategy is that the main parent is not involved

in the mutation process. Instead, the mutant vector is generated from the two

neighborhood pools of the main parent. One neighborhood pool is formed by

T individuals selected from the population of current generation, another con-

sists of T individuals picked from the population of previous generation. More

specifically, given a main parent, first the Euclidean distance from it to all the

other individuals at the current generation is computed using sub-rank, then the

T nearest individuals are marked to become the neighborhood of current genera-

tion for this main parent. Similarly, the distance between this main parent and all

the individuals of previous generation would be calculated based on sub-rank,

and the T nearest individuals are recorded as the main parent’s neighborhood

of previous generation. With these two neighborhood pools, the new mutation

operation can be conducted following the formula below:

Vi,g = Xrn1,g + F · (Xrn1,g −Xrn2,g−1) (4.1)

where Vi,g denotes the new generated individual, called the mutant vector,

and i is the index of the main parent, g is the number of current generation.

Xrn1,g is an individual randomly selected from the main parent’s neighborhood

of current generation, where index rn1 is a randomly selected integer from

{Ii,g,1, Ii,g,2, Ii,g,3, . . . , Ii,g,T}, which records the indices of neighborhood, and

T is the pre-defined neighborhood size. Xrn2,g−1 is an individual randomly se-

lected from the main parent’s neighborhood of previous generation, where index
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rn2 is a randomly selected integer from the recorded neighborhood indices set

{Ii,g−1,1, Ii,g−1,2, Ii,g−1,3, . . . , Ii,g−1,T}.

The underlying rationale of the designed strategy is that the movement of

the solutions during evolutionary process may assist to guide the subsequent

search direction. Following the proposed formula, Xrn1,g stays in the current

generation while Xrn2,g−1 comes from the previous generation, so taking into

account that both are selected from the neighborhood pools of the same main

parent, the difference between them may reveal the moving trend of the solu-

tions near the main parent in objective space. Since the essence of evolutionary

algorithm is to evolve solutions, the better solutions would have a higher chance

to survive to next generation and the weaker individuals will be discarded. The

moving directions of the solutions may be close to the true converging direc-

tions. Adding the difference between Xrn1,g and Xrn2,g−1 as a perturbation to

Xrn1,g is equivalent to making the current solution keep exploring based on the

searching direction corresponding to the estimated converging direction. It is

notable that proper selection of the neighborhood size T is critical to the overall

performance of the algorithm. One extreme case is to set T as 1, then the algo-

rithm may get stuck because of the overlap of Xrn1,g and Xrn2,g−1. Conversely,

if the neighborhood size is too large, it will become difficult to estimate the

converging direction near Xi,g since Xrn1,g and Xrn2,g−1 can be selected from

distant regions in objective space. Based on our parametric sensitivity tests (see

subsection 4.3.4), it is recommended to choose neighborhood size T as 5% of

population size. Fig. 4.2 illustrates the procedure of the proposed NCG mu-

tation and the relationship among involved individuals. In objective space, the
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uals. Both the objective functions are minimized. The Pareto Optimal Front, variable
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vector fromXrn2,g−1 toXrn1,g is the estimated converging direction. In decision

space, the difference of the two individuals decides the corresponding search-

ing direction. Subsequently, Xrn1,g will keep exploring following the searching

direction to generate the mutant vector Vi,g. The searching step is scaled by the

parameter F . Offspring is produced via recombination of main parent Xi,g and

mutant vector Vi,g. The effectiveness of the obtained searching direction is vali-

dated through a contrast experiment in subsection 4.3.3. Algorithm 4.2 presents

the pseudo-codes for implementing procedures of NCG mutation.

Algorithm 4.2 Procedure of NCG Mutation
Require:

Pg: Population at generation g
Pg−1: Population at generation g-1
Xi,g: Main parent
F : Scaling factor, in ACGDE, it is generated by CGA mechanism
T : Neighborhood size

Ensure:
Vi,g: Mutant vector

1: Calculate Euclidean Distance from Xi,g to all the other individuals in Pg
using sub-rank

2: Based on the calculated distances, the T nearest individuals in Pg are
recorded as Xi,g’s neighborhood of current generation Pneighbor,i,g

3: Calculate Euclidean Distance from Xi,g to all the individuals in Pg−1 using
sub-rank

4: Based on the calculated distances, the T nearest individuals in Pg−1 are
recorded as Xi,g’s neighborhood of previous generation Pneighbor,i,g−1

5: Randomly pick one individual Xrn1,g from Pneighbor,i,g
6: Randomly pick one individual Xrn2,g−1 from Pneighbor,i,g−1

7: Generate mutant vector Vi,g = Xrn1,g + F · (Xrn1,g −Xrn2,g−1)

Population-based Variant

One common issue with neighborhood-based mutation strategies is that the

searching step may become excessively small because of the gradually converg-

ing population [11,37,74,135]. Since the individuals involved in NCG mutation

are selected from neighborhoods of the same main parent, the explorative ability
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of the algorithm is impaired. In order to compensate for the above-mentioned

weakness of NCG mutation, another new mutation strategy is proposed, namely,

population-based cross-generation (PCG) mutation. The NCG mutation and

PCG mutation will be utilized simultaneously so that a reasonable trade-off be-

tween exploitation and exploration can be achieved. The details of the PCG

mutation operation are shown as follows:

Vi,g = Xi,g + F · (Xrp1,g −Xrp2,g−1) (4.2)

where Vi,g denotes the new generated mutant vector, and i is the index of the

main parent, g is the number of current generation. Xi,g is the main parent.

Xrp1,g is an individual randomly selected from the whole population in current

generation, where index rp1 is a randomly selected integer from {1, 2, 3, . . . , N}

and N is the population size. Xrp2,g−1 is an individual randomly selected from

the whole population of the previous generation, where index rp2 is a randomly

selected integer from {1, 2, 3, . . . , N}.

Unlike the NCG mutation, the difference vector in PCG mutation is com-

puted with two individuals randomly selected from the whole population, which

is similar to the traditional DE mutation strategy. However, because the two

individuals come from two different generations, the scale of their difference

will vary larger than the original DE mutation strategy. In this way, the ex-

plorative ability could be further enhanced. Another special modification of the

population-based variant is that the difference vector would be added to the main

parent directly. By this means, the searching will continue centering on the main

parent instead of performing a purely stochastic exploration. This could lead to

a more efficient optimization process. Algorithm 4.3 describes the procedures
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of PCG mutation.

Algorithm 4.3 Procedure of PCG Mutation
Require:

Pg: Population at generation g
Pg−1: Population at generation g-1
Xi,g: Main parent
F : Scaling factor, in ACGDE, it is generated by CGA mechanism

Ensure:
Vi,g: Mutant vector

1: Randomly pick one individual Xrp1,g from Pg
2: Randomly pick one individual Xrp2,g−1 from Pg−1

3: Generate mutant vector Vi,g = Xi,g + F · (Xrp1,g −Xrp2,g−1)

In ACGDE, the above two strategies are employed in a half-half manner,

which means they have the same probability (50%) to be utilized during each

mutation operation. Parametric sensitivity of this ratio would be analyzed via

experiments in subsection 4.3.5. Simulation results show that the performance

of the algorithm is better than, or at least comparable to, the versions with only

one of them in most testing problems. A final note about the new mutation

strategy is that each individual in the current generation would be a main parent

of a mutant vector, and after the above mutation operation, each mutant vector

still needs to go through a binomial recombination (crossover operation) with

the main parent to generate the final offspring.

Enhancing Both the Diversity and Convergence

When designing a multi-objective optimization algorithm, it is difficult to has-

ten the convergence speed without loss of diversity as if they were conflict-

ing to each other. Nonetheless, the specially designed mechanism enables the

proposed approach to enhance convergence along with diversity. In the NCG

mutation, the convergence is sped up by guiding the searching direction with
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information across generations. Meanwhile, due to the neighborhood-based se-

lection mode, the final offspring will stay around the main parent in objective

space so that the diversity of the population could be consistently maintained.

Analogously, the parent-centric search in PCG mutation helps preserve the di-

versity, whilst the more explorative mutation operator contributes to a higher

converging speed to true POF.

4.2.3 Cross-Generation Adaptation Mechanism

Parametric Sensitivity in Multi-objective Optimization

Sensitivity to the parametric setting is a critical issue during the extension of

DE into MO [68, 99, 128]. The performance of original DE may vary tremen-

dously with different selections of parameters [10, 29–31]. This problem be-

comes more challenging in solving MOPs. Multiple objectives may have dis-

parate requirements for the parametric setup, and even for a certain objective,

the optimal setup of parameters may vary over different searching stages, e.g.,

a large searching step is needed at the start of exploration whereas a relatively

smaller searching scope is preferred near the end of the search. Hence, it is

desirable to have an adaptation mechanism with the following features: first,

the scheme is able to estimate the appropriate parameters for a specific region

in objective space; second, there is a selection pressure to reserve more proper

parameters and discard poor parameters; third, as the current fitted parameters

may not conform to the requirement of the next searching stage, complete con-

vergence of parameters should be avoided. In order to achieve the above targets,

a novel adaptation mechanism that makes use of the information across genera-

73



CHAPTER 4. ADAPTIVE CROSS-GENERATION DIFFERENTIAL EVOLUTION OPERATORS FOR
MULTI-OBJECTIVE OPTIMIZATION

tions is proposed in this chapter.

Proposed Adaptation Mechanism

In the proposed Cross-Generation Adaptation (CGA) mechanism, the two con-

trol parameters in DE, namely scaling factor F and crossover probabilityCr, are

applied at the individual level. Each individual in the population is associated

with its own F and Cr. The neighborhood pools utilized in the NCG mutation

also contributes to the reproduction of parameters for offspring.

During initialization, for each individual Xi, the associated Fi and

Cri are randomly generated from the pre-defined interval [Fmin, Fmax] and

[Crmin, Crmax]. After that, the parameter values for any newly generated in-

dividual will be determined by the following formula:

Fspring,i,g = Fneighbor,i,g + θF ·Gaussian(0, 1) (4.3)

Crspring,i,g = Crneighbor,i,g + θCr ·Gaussian(0, 1) (4.4)

where Fspring,i,g and Crspring,i,g denote the parameter values assigned to the

newly generated offspring, and i is the index of the main parent shared in the

mutation operation, g is the current generation number. Gaussian(0, 1) is a

random number sampled from a Gaussian Distribution accordingly with mean

0 and standard deviation 1. θF and θCr are constants for scaling the outputs of

Gaussian Distribution. Fneighbor,i,g and Crneighbor,i,g are produced in the follow-

ing manner:

Fneighbor,i,g = meanA(NFi,g ∪NFi,g−1) (4.5)

Crneighbor,i,g = meanA(NCri,g ∪NCri,g−1) (4.6)
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with NFi,g denoting the set of scaling factors associated with all the individuals

in main parent’s neighborhood of current generation, and NFi,g−1 comprising

all the scaling factors for main parent’s neighborhood of previous generation.

Same rule is also applied for generating the Cr sets NCri,g and NCri,g−1.

meanA stands for the simple arithmetic mean. If the calculated Fspring,i,g or

Crspring,i,g falls outside the interval [Fmin, Fmax] or [Crmin, Crmax], its value will

be set as the nearest bound.

Following the above adaptation operation, the offspring will then be gener-

ated via mutation and crossover utilizing the obtained Fspring,i,g and Crspring,i,g.

In other words, the offspring itself is produced only after the generation of its

associated parameters. Once an individual is generated, its associated parame-

ters will not be altered until the individual fails to survive to the next generation.

Algorithm 4.4 shows the procedure of CGA mechanism.

Explanations of CGA mechanism

By encoding the control parameters at the individual level, CGA mechanism

is able to evaluate multiple sets of parameters simultaneously and preserve the

favorable control values for each solution. The computational complexity does

not increase compared to the fixed parametric scheme in original DE [29]. The

fundamental principle behind CGA mechanism is that suitable parameter values

tend to generate better individuals, and favorable individuals help to propagate

their associated parameters. Based on the above essence, CGA mechanism tries

to estimate the most proper parametric setting for the current interested region

in objective space. In SO, the target of optimization is to obtain the optimal
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Algorithm 4.4 Procedure of CGA Mechanism
Require:

Pg: Population at generation g
Pg−1: Population at generation g-1
Xi,g: Main parent
T : Neighborhood size
θF , θCr: constants for scaling the outputs of Gaussian Distribution
Fmin, Fmax, Crmin, Crmax: Boundaries for the new generated parameters

Ensure:
Fspring,i,g: Newly generated scaling factor
Crspring,i,g: Newly generated crossover probability

1: Calculate Euclidean Distance from Xi,g to all the other individuals in Pg
using sub-rank

2: Based on the calculated distances, the T nearest individuals in Pg are
recorded as Xi,g’s neighborhood of current generation Pneighbor,i,g

3: Calculate Euclidean Distance from Xi,g to all the individuals in Pg−1 using
sub-rank

4: Based on the calculated distances, the T nearest individuals in Pg−1 are
recorded as Xi,g’s neighborhood of previous generation Pneighbor,i,g−1

5: Create parameter set NFi,g by including all the associated F in Pneighbor,i,g
6: Create parameter set NFi,g−1 by including all the associated F in
Pneighbor,i,g−1

7: Create parameter set NCri,g by including all the associated Cr in
Pneighbor,i,g

8: Create parameter set NCri,g−1 by including all the associated Cr in
Pneighbor,i,g−1

9: Calculate arithmetic mean of two parameter sets: Fneighbor,i,g =
meanA(NFi,g ∪NFi,g−1)

10: Calculate arithmetic mean of two parameter sets: Crneighbor,i,g =
meanA(NCri,g ∪NCri,g−1)

11: Generate new scaling factor Fspring,i,g = Fneighbor,i,g + θF ·Gaussian(0, 1),
where Gaussian(0, 1) is a random number generator based on a Gaussian
Distribution with mean 0 and standard deviation 1

12: if Fspring,i,g > Fmax then
13: Fspring,i,g = Fmax

14: else
15: if Fspring,i,g < Fmin then
16: Fspring,i,g = Fmin

17: end if
18: end if
19: Generate new crossover probability Crspring,i,g = Crneighbor,i,g + θCr ·

Gaussian(0, 1)
20: if Crspring,i,g > Crmax then
21: Crspring,i,g = Crmax

22: else
23: if Crspring,i,g < Crmin then
24: Crspring,i,g = Crmin

25: end if
26: end if
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solution for one objective, thus, the adaptation of parameters is performed with-

out considering the individuals’ location in objective space. However, when

solving MOPs, multiple objectives may have disparate requirements for para-

metric setup and, hence, adjustment of parameters needs to be conducted in

an objecitve-space-based manner. Relationship in terms of the position in ob-

jective space plays an important role in CGA mechanism. Two neighborhood

pools, which are identical to those in NCG mutation, are defined for each in-

dividual. Based on the neighborhood pools of current generation and previous

generation, parameter sets NFi,g, NFi,g−1, NCri,g and NCri,g−1 are generated.

As stated before, good parameters are more likely to produce individuals that

are able to survive. The associated parameters of the neighborhood members,

therefore, reflect the required parametric setting for current region. Calculating

the mean of their parameters is a reasonable way to approximate the optimal

setup and moderate the effect of possible outliers.

Similar to NCG mutation, selection of the neighborhood size T is to

achieve a balance between robustness and accuracy. If the T is too large, then

the calculated mean is incapable of revealing the requirement of current region.

In case that the T is too small, the estimated results will depend heavily on the

parameters of a single or few individuals, which are unstable because of the ap-

plied perturbation operation. In this scenario, employment of the information

across consecutive generations provides an advantage. With the neighborhood

size T , actually 2T individuals are involved in the mean calculation. The in-

formation collected is twice what can be extracted from a single generation.

The estimation becomes more accurate, and the influence of outliers is further
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reduced. In the main algorithm, the neighborhood pools are shared by CGA

mechanism and NCG mutation with the recommended T as 5% of the popula-

tion size.

Subsequently, a perturbation randomly sampled from a scaled Gaussian

Distribution is added to the computed mean Fneighbor,i,g and Crneighbor,i,g to fi-

nalize the parameter values of offspring. The purpose of introducing perturba-

tions is to keep exploring new parameters throughout the evolutionary process.

Premature convergence of parameters should be avoided because even for a sin-

gle region in objective space, the optimal parameters may not stay consistent in

different optimization stages. Owing to the scaled Gaussian Distribution, ex-

ploration is centered on the estimated optimal values, whilst having a low prob-

ability to produce a dramatic variation. Values of Fneighbor,i,g and Crneighbor,i,g

remain relatively stable unless most neighborhood members are updated simul-

taneously by individuals with new parameters. It indicates that the previous

parametric setup is not suitable for the current searching stage, thereby the CGA

mechanism proceeds to adapt the parameters. It is notable that the newly gen-

erated Fspring,i,g and Crspring,i,g will be employed in the mutation and crossover

operators instead of the associated control parameters of parents. If the corre-

sponding offspring succeeds to survive, then the Fspring,i,g and Crspring,i,g be-

come its associated parameters.

4.2.4 The Contributions of ACGDE Algorithm

The main task of ACGDE is actually to regenerate better individuals for the

implemented MO framework (e.g. NSGA-II [134] and MOEA/D [135]). The
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mutation and crossover operation in original MO framework will be replaced by

components of ACGDE. Survival selection is performed with the existing mech-

anisms, e.g., non-dominated-sorting in NSGA-II or scalar function in MOEA/D.

As a result, ACGDE is flexible in responding to numerous optimization require-

ments. Depending on the properties of current problem, ACGDE is convenient

to implement into different MO frameworks. Experimental results in subsection

4.3 shows a significant improvement in NSGA-II and MOEA/D with ACGDE.

Compared with conventional DE operators, ACGDE introduces sub-rank

calculations and neighborhood assignment. The sub-rank computations require

sorting the population according to each objective function value in ascending

order of magnitude. The complexity of this procedure is O(MN logN), where

M is the number of objectives and N is the population size. Thereafter, for each

solution we calculate the distance from that solution to all the other individuals

in terms of sub-rank and determine the neighborhood members according to the

computed distances. In a proper implementation, this has O(MN2) computa-

tional complexity. Thus, the overall complexity of ACGDE is O(MN2), which

is identical with that of original NSGA-II [134].

4.3 Empirical Study

This section evaluates the overall performance of ACGDE and effectiveness of

each algorithmic component through experiments.
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4.3.1 Comparison with State-of-the-art MOEAs

To evaluate the optimization performance of the new algorithm, the pro-

posed ACGDE is implemented into nondominated sorting genetic algorithm II

(NSGA-II) [134], which is a well-known powerful multi-objective optimiza-

tion algorithm. The offspring in NSGA-II will be generated via ACGDE, and

the survival selection part of the original framework is preserved including non-

dominated sorting and density estimation. The performance of ACGDE-NSGA-

II is compared with seven state-of-the-art MOEAs:

1) NSGA-II(SBX) [134] with pc = 1.0, ηc = 20, ηm = 20, pm = 1/N ;

2) NSGA-II-DE [74] with F = 0.5, pc = 1.0, ηm = 20, pm = 1/N, δ =

0.9, T = 20, nr = 2;

3) MOEA/D(SBX) [135] with pc = 1.0, ηc = 20, ηm = 20, pm = 1/N ;

4) MOEA/D-DE [74] with F = 0.5, pc = 1.0, ηm = 20, pm = 1/N, δ =

0.9, T = 20, nr = 2;

5) CCPSO [143] with pc = 1.0, pm = 1/N , sub-population size: 4 for

two-objective problems and 15 for three-objective problems, turbulence oper-

ator with probability of 0.1, inertia weight as 0.4, dynamic sharing for niche

radius;

6) MOEGS [92] with κ = 10, No. of trial solutions as 50, Hypervolume

performance indicator for fitness assignment approach;

7) SPEA2 [144] with pc = 0.8, pm = 1/N, nbit = 15.

Recommended parametric settings in the original literatures are utilized for

the above MOEAs. Following the standard experimental settings [74,129,134],

for all the testing algorithms, the population size is fixed as 100 for 2-objective
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benchmarks, 300 for 3-objective benchmarks, and the maximum number of

function evaluations is set to 5 × 104 for 2-objective problems, 15 × 104

for 3-objective problems. The control parameters of ACGDE are set as fol-

lows: T = 5 for 2-objective problems, T = 15 for 3-objective problems.

θF = 0.4, θCr = 0.2, Fmax = 0.9, Fmin = 0.1, Crmax = 0.5, Crmin = 0.2.

The selection of T is according to our parametric sensitivity tests (see subsec-

tion 4.3.4), and the selection of other parameters are based on some empirical

studies about parametric setup in DE [10, 29, 51].

In total, 19 frequently-used MO benchmark problems were tested to eval-

uate the performances of the algorithms, among which UF1 to UF10 are un-

constrained problems from CEC-09 Special Session and Competition [145] and

WFG1 to WFG9 are from WFG test suites [146]. Regarding the number of

objective functions, UF1-UF7 and WFG1-WFG9 are 2-objective problems, and

UF8-UF10 are 3-objective problems. Numerous types of problems are cov-

ered in terms of separability, modality, bias and shape of Pareto Optimal Front,

and all of them are minimization problems. Inverted Generational Distance

(IGD) [147] and Hypervolume (HYP) [148] are selected as the performance

metrics to quantitatively compare the performance of algorithms in terms of

both convergence and diversity [149]. The values of hypervolume are calcu-

lated by means of Monte Carlo simulation as in [150]. All of the simulations

were done on an Intel (R) Core (TM) i7 machine with 16-GB RAM and 3.40-

GHz speed. Microsoft (R) Visual Studio (R) 2012 Express is used to develop

the coding and run the experiments. Table 4.1, Table 4.2, Table 4.3 and Table

4.4 show the mean and standard deviation of the IGD values and HYP values
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Table 4.1: Mean and Standard Deviation of the IGD Values for UF test suite (30 runs)

Problems
UF1 UF2 UF3 UF4 UF5

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

ACGDE-NSGA-II
0.0528† 0.0205 0.0947 0.0410 0.2870
(0.0148) (0.0027) (0.0139) (0.0003) (0.0932)

NSGA-II-DE
0.0603† 0.0429†‡ 0.1515†‡ 0.0723†‡ 0.8494†‡
(0.0162) (0.0047) (0.0271) (0.0078) (0.1698)

NSGA-II(SBX)
0.1230†‡ 0.0481†‡ 0.2179†‡ 0.0533†‡ 0.3257
(0.0318) (0.0125) (0.0666) (0.0018) (0.0943)

MOEA/D-DE
0.0475 0.0426†‡ 0.1513†‡ 0.0866†‡ 0.7643†‡

(0.0372) (0.0316) (0.0688) (0.0104) (0.1307)

MOEA/D(SBX)
0.1568†‡ 0.0640†‡ 0.3064†‡ 0.0560†‡ 0.4318†‡
(0.0652) (0.0310) (0.0300) (0.0034) (0.0812)

CCPSO
0.0483† 0.0481†‡ 0.3024†‡ 0.0639†‡ 0.4535†‡
(0.0108) (0.0079) (0.0390) (0.0068) (0.0734)

MOEGS
0.2207†‡ 0.0484†‡ 0.1318†‡ 0.1277†‡ 0.8727†‡
(0.1025) (0.0091) (0.0370) (0.0105) (0.5201)

SPEA2
0.1341†‡ 0.0626†‡ 0.3025†‡ 0.0682†‡ 0.4741†‡
(0.0407) (0.0071) (0.0410) (0.0031) (0.0877)

Problems
UF6 UF7 UF8 (3-Obj) UF9 (3-Obj) UF10 (3-Obj)

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

ACGDE-NSGA-II
0.1576 0.0262 0.1383†‡ 0.1776†‡ 0.6440†‡

(0.0849) (0.0071) (0.0420) (0.1091) (0.2715)

NSGA-II-DE
0.4181†‡ 0.0389† 0.1520†‡ 0.1938†‡ 2.4308†‡
(0.0819) (0.0422) (0.0300) (0.0646) (0.1848)

NSGA-II(SBX)
0.2302 0.2359†‡ 0.2194†‡ 0.1635†‡ 0.3236†

(0.0680) (0.1447) (0.0098) (0.0491) (0.0703)

MOEA/D-DE
0.4386†‡ 0.1018‡ 0.0911 0.1065 0.5826†‡
(0.2206) (0.1648) (0.0124) (0.0452) (0.0716)

MOEA/D(SBX)
0.4374†‡ 0.3536†‡ 0.148†‡ 0.134† 0.2937
(0.1509) (0.1552) (0.0358) (0.0624) (0.1304)

CCPSO
0.4701†‡ 0.0961†‡ 0.257†‡ 0.2873†‡ 0.4859†‡
(0.0356) (0.0381) (0.0528) (0.0501) (0.0298)

MOEGS
0.6323†‡ 0.0833†‡ 0.1585†‡ 0.199†‡ 6.9530†‡
(0.4519) (0.1027) (0.0319) (0.0632) (1.4222)

SPEA2
0.4609†‡ 0.1693†‡ 0.2781†‡ 0.3689†‡ 0.8201†‡
(0.1292) (0.1285) (0.0195) (0.0535) (0.2349)

† and ‡ indicate that the difference between the marked entry and the best entry is statistically
significant using Wilcoxon rank sum test and unpaired two-sample student’s t-test, respectively

(both are at the 5% significance level).
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Table 4.2: Mean and Standard Deviation of the IGD Values for WFG test suite (30 runs)

Problems
WFG1 WFG2 WFG3 WFG4 WFG5

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

ACGDE-NSGA-II
0.8084 0.0139 0.0201 0.0196†‡ 0.0682

(0.0316) (0.0008) (0.0009) (0.0014) (0.0015)

NSGA-II-DE
1.2181†‡ 0.0461†‡ 0.0344†‡ 0.0927†‡ 0.0754†‡
(0.0052) (0.0253) (0.0017) (0.0037) (0.0017)

NSGA-II(SBX)
1.0790†‡ 0.1604†‡ 0.0211†‡ 0.0189†‡ 0.0705†‡
(0.0813) (0.0277) (0.0016) (0.0011) (0.0005)

MOEA/D-DE
1.1634†‡ 0.1666†‡ 0.0204 0.0811†‡ 0.0692†‡
(0.0138) (0.0880) (0.0018) (0.0081) (0.0003)

MOEA/D(SBX)
1.0483†‡ 0.1871†‡ 0.0203† 0.0167 0.0691†‡
(0.0458) (0.0643) (0.0059) (0.0015) (0.0006)

CCPSO
0.9758†‡ 0.5447†‡ 0.1826†‡ 0.0614†‡ 0.0899†‡
(0.0359) (0.1463) (0.0521) (0.0328) (0.0134)

MOEGS
1.1818†‡ 0.5816†‡ 0.2399†‡ 0.1842†‡ 0.1698†‡
(0.0183) (0.1444) (0.0558) (0.0342) (0.1090)

SPEA2
1.0859†‡ 0.2381†‡ 0.1036†‡ 0.0363†‡ 0.0734†‡
(0.0185) (0.0281) (0.0305) (0.0052) (0.0012)

Problems
WFG6 WFG7 WFG8 WFG9

Mean(Std) Mean(Std) Mean(Std) Mean(Std)

ACGDE-NSGA-II
0.1175†‡ 0.0166 0.1089 0.1259†‡
(0.0205) (0.0007) (0.0036) (0.0004)

NSGA-II-DE
0.1079†‡ 0.0306†‡ 0.1413†‡ 0.1106†‡
(0.0349) (0.0019) (0.0101) (0.0380)

NSGA-II(SBX)
0.0640 0.0170 0.1371†‡ 0.0844‡

(0.0068) (0.0010) (0.0065) (0.0529)

MOEA/D-DE
0.1072†‡ 0.0190†‡ 0.1271†‡ 0.0597
(0.0319) (0.0011) (0.0128) (0.0287)

MOEA/D(SBX)
0.0820†‡ 0.0205 0.1270†‡ 0.0606‡
(0.0237) (0.0111) (0.0097) (0.0381)

CCPSO
0.1228†‡ 0.2122†‡ 0.2203†‡ 0.1519†‡
(0.0489) (0.0730) (0.0489) (0.0534)

MOEGS
0.1335†‡ 0.2250†‡ 0.2502†‡ 0.2660†‡
(0.0373) (0.1229) (0.0337) (0.1514)

SPEA2
0.0867†‡ 0.0507†‡ 0.1700†‡ 0.1070†
(0.0162) (0.0184) (0.0107) (0.0386)

† and ‡ indicate that the difference between the marked entry and the best entry is statistically
significant using Wilcoxon rank sum test and unpaired two-sample student’s t-test, respectively

(both are at the 5% significance level).
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Table 4.3: Mean and Standard Deviation of the HYP Values for UF test suite (30 runs)

Problems
UF1 UF2 UF3 UF4 UF5

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

ACGDE-NSGA-II
0.9479 0.9052 0.9287†‡ 0.7106 0.9560

(0.0115) (0.0103) (0.0179) (0.0017) (0.0278)

NSGA-II-DE
0.9431†‡ 0.8848†‡ 0.9347 0.6801†‡ 0.8709†‡
(0.0100) (0.0128) (0.0044) (0.0086) (0.0227)

NSGA-II(SBX)
0.9037†‡ 0.8750†‡ 0.7716†‡ 0.7021†‡ 0.8979†‡
(0.0199) (0.0169) (0.0316) (0.0017) (0.0299)

MOEA/D-DE
0.9309†‡ 0.8727†‡ 0.8276†‡ 0.6657†‡ 0.8402†‡
(0.0279) (0.0391) (0.0735) (0.0102) (0.0308)

MOEA/D(SBX)
0.8687†‡ 0.8556†‡ 0.7370†‡ 0.6927†‡ 0.8681†‡
(0.0429) (0.0344) (0.0160) (0.0048) (0.0223)

CCPSO
0.9441†‡ 0.8536†‡ 0.7799†‡ 0.6970†‡ 0.8931†‡
(0.0126) (0.0147) (0.0333) (0.0041) (0.0211)

MOEGS
0.8714†‡ 0.8824†‡ 0.8776†‡ 0.6314†‡ 0.8445†‡
(0.0502) (0.0198) (0.0463) (0.0109) (0.0688)

SPEA2
0.9035†‡ 0.8729†‡ 0.7496†‡ 0.6869†‡ 0.8758†‡
(0.0190) (0.0164) (0.0337) (0.0038) (0.0323)

Problems
UF6 UF7 UF8 (3-Obj) UF9 (3-Obj) UF10 (3-Obj)

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

ACGDE-NSGA-II
0.9756 0.9497 0.9985†‡ 0.9986 0.9989

(0.0205) (0.0037) (0.0024) (0.0015) (0.0015)

NSGA-II-DE
0.9473†‡ 0.9389†‡ 0.9968†‡ 0.9955†‡ 0.9347†‡
(0.0159) (0.0303) (0.0013) (0.0017) (0.0070)

NSGA-II(SBX)
0.9490†‡ 0.8326†‡ 0.9908†‡ 0.9545†‡ 0.9940†‡
(0.0182) (0.0836) (0.0005) (0.0160) (0.0099)

MOEA/D-DE
0.9346†‡ 0.9001†‡ 0.9986 0.9970†‡ 0.9650†‡
(0.0255) (0.0801) (0.0005) (0.0010) (0.0044)

MOEA/D(SBX)
0.9241†‡ 0.7722†‡ 0.9961‡ 0.9638†‡ 0.9870†‡
(0.0198) (0.0734) (0.0037) (0.0207) (0.0144)

CCPSO
0.9314†‡ 0.9303†‡ 0.9372†‡ 0.9372†‡ 0.9632†‡
(0.0164) (0.0330) (0.0265) (0.0157) (0.0045)

MOEGS
0.9266†‡ 0.9311†‡ 0.9935†‡ 0.9911†‡ 0.8477†‡
(0.0545) (0.0536) (0.0032) (0.0082) (0.0396)

SPEA2
0.9193†‡ 0.8663†‡ 0.9923†‡ 0.9641†‡ 0.9762†‡
(0.0199) (0.0764) (0.0026) (0.0279) (0.0107)

† and ‡ indicate that the difference between the marked entry and the best entry is statistically
significant using Wilcoxon rank sum test and unpaired two-sample student’s t-test, respectively

(both are at the 5% significance level).
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Table 4.4: Mean and Standard Deviation of the HYP Values for WFG test suite (30
runs)

Problems
WFG1 WFG2 WFG3 WFG4 WFG5

Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

ACGDE-NSGA-II
0.4690 0.6161 0.5841 0.3466†‡ 0.3651

(0.0105) (0.0013) (0.0017) (0.0016) (0.0019)

NSGA-II-DE
0.3301†‡ 0.5969†‡ 0.5741†‡ 0.3030†‡ 0.3582†‡
(0.0067) (0.0050) (0.0022) (0.0034) (0.0021)

NSGA-II(SBX)
0.3201†‡ 0.5999†‡ 0.5824†‡ 0.3462†‡ 0.3645†‡
(0.0312) (0.0040) (0.0018) (0.0020) (0.0014)

MOEA/D-DE
0.3430†‡ 0.5923†‡ 0.5822†‡ 0.3170†‡ 0.3641†‡
(0.0102) (0.0142) (0.0021) (0.0039) (0.0016)

MOEA/D(SBX)
0.3297†‡ 0.5950†‡ 0.5824†‡ 0.3483 0.3643†‡
(0.0210) (0.0129) (0.0033) (0.0014) (0.0015)

CCPSO
0.4009†‡ 0.4962†‡ 0.5068†‡ 0.2928†‡ 0.3239†‡
(0.0134) (0.0258) (0.0176) (0.0209) (0.0150)

MOEGS
0.3479†‡ 0.4199†‡ 0.4717†‡ 0.2581†‡ 0.3115†‡
(0.0058) (0.0279) (0.0257) (0.0191) (0.0462)

SPEA2
0.3774†‡ 0.5478†‡ 0.5384†‡ 0.3324†‡ 0.3608†‡
(0.0062) (0.0119) (0.0157) (0.0048) (0.0024)

Problems
WFG6 WFG7 WFG8 WFG9

Mean(Std) Mean(Std) Mean(Std) Mean(Std)

ACGDE-NSGA-II
0.2852†‡ 0.3942 0.4082 0.4444†‡
(0.0112) (0.0013) (0.0015) (0.0018)

NSGA-II-DE
0.2904†‡ 0.3852†‡ 0.3872†‡ 0.4490†‡
(0.0181) (0.0017) (0.0053) (0.0164)

NSGA-II(SBX)
0.3127 0.3937†‡ 0.3970†‡ 0.4621‡

(0.0039) (0.0016) (0.0020) (0.0231)

MOEA/D-DE
0.2918†‡ 0.3931†‡ 0.4014†‡ 0.4741
(0.0178) (0.0016) (0.0052) (0.0120)

MOEA/D(SBX)
0.3088†‡ 0.3918†‡ 0.4040†‡ 0.4710
(0.0063) (0.0045) (0.0032) (0.0159)

CCPSO
0.2825†‡ 0.2859†‡ 0.3093†‡ 0.4223†‡
(0.0094) (0.0342) (0.0219) (0.0256)

MOEGS
0.2867†‡ 0.2865†‡ 0.3487†‡ 0.3782†‡
(0.0110) (0.0571) (0.0180) (0.0599)

SPEA2
0.3006†‡ 0.3720†‡ 0.3859†‡ 0.4515†‡
(0.0079) (0.0098) (0.0038) (0.0164)

† and ‡ indicate that the difference between the marked entry and the best entry is statistically
significant using Wilcoxon rank sum test and unpaired two-sample student’s t-test, respectively

(both are at the 5% significance level).
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for 30 independent runs of each algorithm on each benchmark. The best entries

in terms of mean value are marked in boldface. In order to judge whether the

results of the best performing algorithm differ from the results of competitors in

a statistically significant way, Wilcoxon rank-sum test [118] and unpaired two-

sample student’s t-test are conducted at the 5% significance level. The entries

which are significantly different from the best entries are indicated by symbol †

and ‡.

From the comparative results, it clearly elucidates that ACGDE-NSGA-II

is powerful in tackling multi-objective problems when compared to its com-

petitors: For 2-objective problems, it achieves the best results in 12 out of 16

benchmarks in terms of both IGD and HYP. For 3-objective problems, ACGDE-

NSGA-II performs best in 2 out of 3 benchmarks in terms of HYP, whereas in

terms of IGD, the proposed algorithm is outperformed by MOEA/D variants.

The explanation is that NSGA-II is a dominance-based MOEA, the efficiency

of non-dominated-sorting will be deteriorated when the number of objectives

increases. The ability of ACGDE in solving 3-objective problems is further

evaluated by implementation into MOEA/D in next subsection. To validate

the effectiveness of ACGDE, it is reasonable to make a comparison between

ACGDE-NSGA-II and original NSGA-II-DE. Separate statistical tests are per-

formed between the two algorithms over all the benchmarks (partially shown in

Table 4.1-Table 4.4). In terms of HYP, ACGDE-NSGA-II provides significantly

better results in 16 out of 19 problems. In terms of IGD, ACGDE-NSGA-II

significantly outperforms original NSGA-II-DE in 17 out of 19 problems, and

the latter cannot give the best performance in any of the benchmarks. The only
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disparity between these two algorithms lies in the DE operator, from which we

can draw the conclusion that the success of ACGDE-NSGA-II benefit from the

newly developed cross-generation mutation operators and the parameter adap-

tation mechanism.

4.3.2 Implementation in MOEA/D

In this subsection, ACGDE is implemented into MOEA/D [135] by replacing

the original mutation and crossover operators in MOEA/D-DE [74]. Besides the

19 benchmarks used in subsection 4.3.1, 3-objective versions of WFG1-WFG9

are included as well. The experimental and parametric setups are identical with

those in subsection 4.3.1. Table 4.5 presents the mean and standard deviation of

the IGD values for 30 independent runs of both algorithms on each benchmark.

The best entries in terms of mean value are marked in boldface.

According to the results, ACGDE-MOEA/D is able to provide better per-

formance than original MOEA/D-DE in 26 out of 28 benchmark problems. Con-

sidering the statistical tests, ACGDE significantly improves the performance of

MOEA/D in 11 out of 12 3-objective problems, and 12 out of 16 2-objective

problems, respectively. To summarize, ACGDE is good at solving not only

2-objective problems but also those with 3 objectives. Moreover, successful

implementation in both NSGA-II and MOEA/D demonstrate the robustness of

ACGDE during combination with different MO frameworks.
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Table 4.5: Mean and Standard Deviation of the IGD Values (30 runs)

Problems
ACGDE MOEA/D

Problems
ACGDE MOEA/D

-MOEA/D -DE -MOEA/D -DE
Mean(Std) Mean(Std) Mean(Std) Mean(Std)

UF1 0.0448 0.0475 WFG5 0.0685 0.0692†‡
(2-obj) (0.0155) (0.0372) (2-obj) (0.0006) (0.0003)
UF2 0.0195 0.0426†‡ WFG6 0.0998 0.1072†

(2-obj) (0.0039) (0.0316) (2-obj) (0.0347) (0.0319)
UF3 0.1306 0.1513 WFG7 0.0149 0.019†‡

(2-obj) (0.0398) (0.0688) (2-obj) (0.0001) (0.0011)
UF4 0.0436 0.0866†‡ WFG8 0.1104 0.1271†‡

(2-obj) (0.0014) (0.0104) (2-obj) (0.0081) (0.0128)
UF5 0.4654 0.7643†‡ WFG9 0.1062†‡ 0.0597

(2-obj) (0.0974) (0.1307) (2-obj) (0.0404) (0.0287)
UF6 0.2893 0.4386† WFG1 1.0470 1.4836†‡

(2-obj) (0.1694) (0.2206) (3-obj) (0.0427) (0.0064)
UF7 0.0521 0.1018 WFG2 0.4011 0.4045†

(2-obj) (0.0882) (0.1648) (3-obj) (0.0142) (0.0331)
UF8 0.1045†‡ 0.0911 WFG3 0.0484 0.0674†‡

(3-obj) (0.0112) (0.0124) (3-obj) (0.0010) (0.0076)
UF9 0.0760 0.1065†‡ WFG4 0.3481 0.3797†‡

(3-obj) (0.0401) (0.0452) (3-obj) (0.0023) (0.009)
UF10 0.2481 0.5826†‡ WFG5 0.1934 0.1952†‡
(3-obj) (0.0660) (0.0716) (3-obj) (0.0004) (0.0011)
WFG1 0.9680 1.1634†‡ WFG6 0.2227 0.2611†‡
(2-obj) (0.0128) (0.0138) (3-obj) (0.0201) (0.0218)
WFG2 0.1297 0.1666† WFG7 0.1614 0.1735†‡
(2-obj) (0.0674) (0.088) (3-obj) (0.0004) (0.0062)
WFG3 0.0159 0.0204†‡ WFG8 0.2457 0.3392†‡
(2-obj) (0.0008) (0.0018) (3-obj) (0.0188) (0.0340)
WFG4 0.0226 0.0811†‡ WFG9 0.2136 0.2233†
(2-obj) (0.0025) (0.0081) (3-obj) (0.0348) (0.022)

† and ‡ indicate that the difference between ACGDE-MOEA/D and original MOEA/D-DE is statistically significant
using Wilcoxon rank sum test and unpaired two-sample student’s t-test, respectively (both are at the 5% significance

level ).
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4.3.3 Effectiveness of Searching Directions in NCG Mutation

In the proposed NCG mutation, the exploration is guided by the searching di-

rection corresponding to the estimated converging direction. For further inves-

tigation, one inevitable question to address is: Will these computed searching

directions really help the optimization process? Or maybe they are only ran-

domly generated perturbations? In order to clearly demonstrate the meaningful-

ness of calculated searching directions, a reverse version of NCG mutation will

be employed for a contrast experiment.

Original NCG mutation:

Vi,g = Xrn1,g + F · (Xrn1,g −Xrn2,g−1) (4.7)

Reverse version of NCG mutation:

Vi,g = Xrn1,g + F · (Xrn2,g−1 −Xrn1,g) (4.8)

As can be seen, all the individuals and parameters involved in the reverse

version are identical to those in the original version. The only difference comes

from the exchange of Xrn1,g and Xrn2,g−1. Thus, the influences of all the other

factors are eliminated, and the variation in performance, if any, only results from

their different searching directions. With this reverse version of NCG mutation,

it will be much easier to judge the effectiveness of searching directions in origi-

nal NCG mutation: first, if the obtained searching direction is no different from

a stochastic search, then the performance of the two mutation strategies should

be almost the same; second, if the utilized searching directions in original ver-

sion are meaningful and favorable, then an obvious improvement in performance

should be observed compared with that of reverse version.
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In this contrast experiment, the PCG mutation strategy and the CGA mech-

anism are removed from the original ACGDE. The simplified ACGDE only with

NCG mutation or reverse NCG mutation are implemented into NSGA-II. For

both algorithms, the scaling factor F is set as 0.5 and the crossover rate Cr is

set as 0.35 based on the parametric setup in subsection 4.3.1. WFG1 to WFG8

from WFG test suites are utilized as benchmark problems. Other experimen-

tal and parametric setups are identical with those in subsection 4.3.1. IGD is

employed as the indicator to quantitatively evaluate the performance of each al-

gorithm. Fig. 4.3, Fig. 4.4, Fig. 4.5 and Fig. 4.6 present the final solution

sets obtained by both algorithms for 30 independent runs and the average IGD

values of 30 runs over generations.

From Fig. 4.3, Fig. 4.4, Fig. 4.5 and Fig. 4.6, the performance of the

original NCG mutation is significantly better than the reverse version in 6 out

of 8 benchmark problems. For WFG1, the difference between the results of the

two algorithms is fairly significant. The final solution sets obtained by the re-

verse version is very poor in both diversity and convergence. It reveals that the

current searching directions are completely erroneous, and they have hampered

the whole optimization process of the algorithm. In other words, the opposite

searching directions, that utilized in the original NCG mutation, are close to the

correct searching directions. Actually, the performance provided by the orig-

inal NCG mutation in WFG1 is the best when compared with those of other

state-of-the-art MO algorithms in subsection 4.3.1. For WFG2, WFG3, WFG5,

WFG7 and WFG8, the original NCG mutation outperforms the reverse version

in terms of convergence enhancement and diversity maintenance. Since the so-
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Figure 4.3: This figure compares the performance of the original NCG mutation with
that of reverse NCG mutation on WFG1 and WFG2. For each benchmark, the final
solution sets obtained by both algorithms over 30 independent runs are plotted. The

average IGD values of 30 runs over generations are shown as well.
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Figure 4.4: This figure compares the performance of the original NCG mutation with
that of reverse NCG mutation on WFG3 and WFG4. For each benchmark, the final
solution sets obtained by both algorithms over 30 independent runs are plotted. The

average IGD values of 30 runs over generations are shown as well.
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Figure 4.5: This figure compares the performance of the original NCG mutation with
that of reverse NCG mutation on WFG5 and WFG6. For each benchmark, the final
solution sets obtained by both algorithms over 30 independent runs are plotted. The

average IGD values of 30 runs over generations are shown as well.
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Figure 4.6: This figure compares the performance of the original NCG mutation with
that of reverse NCG mutation on WFG7 and WFG8. For each benchmark, the final
solution sets obtained by both algorithms over 30 independent runs are plotted. The

average IGD values of 30 runs over generations are shown as well.
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lutions plotted are from 30 independent runs, the consistent improvement is

able to prove the effectiveness of the searching directions in NCG mutation. For

WFG4, the two tested algorithms gave similar results. However, as shown in the

zoomed plot, the performance of the original NCG mutation is slightly better at

the aspect of coverage of true Pareto Front. For WFG6, it can be observed that

the reverse version performs better in convergence while the original version

achieves greater diversity. If we look into the enlarged plot and the IGD values

over generations, it is obvious that the original NCG mutation is trapped into a

local optimum. This is a common issue for direction-based or gradient-based

approaches [42, 151–153]. Nevertheless, considering the significant improve-

ment in most benchmark problems, the proposed NCG mutation is still promis-

ing for solving MO problems without complex local optima. Furthermore, the

final version of ACGDE will include PCG mutation and CGA mechanism to

enhance the explorative ability of the algorithm so that the optimization process

is less likely to get stuck in local optimum.

4.3.4 Sensitivity Study for Neighborhood Size T

The selection of the control parameter T plays an important role in the over-

all performance of ACGDE. Both the neighborhood sizes of NCG mutation

and CGA mechanism are decided by the value of T , which is pre-defined by

users and kept fixed throughout the optimization process. To examine further, a

sensitivity test is conducted in this subsection to investigate the effect of neigh-

borhood size T . ACGDE is implemented into NSGA-II, and the value of T is

selected as 1%, 5%, 10%, 15% and 20% of population size, respectively. The

95



CHAPTER 4. ADAPTIVE CROSS-GENERATION DIFFERENTIAL EVOLUTION OPERATORS FOR
MULTI-OBJECTIVE OPTIMIZATION

population size N is fixed as 100. Other experimental settings are identical with

those in subsection 4.3.1. All the 9 problems from WFG benchmark suite are

utilized for evaluation. Table 4.6 presents the mean and standard deviation of

the IGD values for 30 independent runs of each variant on each benchmark. The

best entries in terms of mean value are marked in boldface.

Table 4.6: Mean and Standard Deviation of the IGD Values (30 runs)

Neighborhood 1% ·N 5% ·N 10% ·N 15% ·N 20% ·N
Size T Mean(Std) Mean(Std) Mean(Std) Mean(Std) Mean(Std)

WFG1
1.0925 0.8084 0.8393 0.8340 0.8461

(0.0163) (0.0322) (0.0289) (0.0298) (0.0238)

WFG2
0.0358 0.0139 0.0192 0.0341 0.0287

(0.0375) (0.0008) (0.0273) (0.0517) (0.0456)

WFG3
0.0268 0.0201 0.0210 0.0206 0.0207

(0.0026) (0.0009) (0.0008) (0.0010) (0.0009)

WFG4
0.0408 0.0196 0.0211 0.0219 0.0219

(0.0070) (0.0014) (0.0016) (0.0020) (0.0018)

WFG5
0.0687 0.0682 0.0686 0.0684 0.0688

(0.0004) (0.0016) (0.0006) (0.0020) (0.0006)

WFG6
0.1248 0.1175 0.1200 0.1220 0.1221

(0.0001) (0.0209) (0.0181) (0.0148) (0.0142)

WFG7
0.0199 0.0166 0.0172 0.0173 0.0171

(0.0013) (0.0007) (0.0009) (0.0013) (0.0009)

WFG8
0.1412 0.1089 0.1113 0.1101 0.1110

(0.0062) (0.0037) (0.0043) (0.0049) (0.0037)

WFG9
0.1259 0.1259 0.1259 0.1259 0.1260

(0.0003) (0.0004) (0.0003) (0.0002) (0.0003)

From Table 4.6, it can be observed that setting T as 5% of the population

size will lead to best results in 8 out of 9 benchmark problems. The results

on WFG9 are almost the same for each variant because all of them have been

trapped into local optimum. This observation is in accordance with the theo-

retical analysis in subsection 4.2.2 and subsection 4.2.3. If the size of neigh-

borhood pools is too small, the searching process will have a high probability

to get stuck due to the overlap of Xrn1,g and Xrn2,g−1 in (4.1). The estimated
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control parameters of CGA mechanism will also become too oscillatory because

of the small size of parameter pools. If the neighborhood size T is over large,

the estimated searching directions in NCG mutation and the estimated control

parameters in CGA mechanism are unable to reflect the true requirements of a

particular region in objective space. The efficiency of the whole algorithm will

thus be deteriorated. Experimental results in Table 4.6 show that a reasonable

trade-off is achieved by choosing T as 5% of the population size.

4.3.5 Effectiveness of Combining NCG mutation with PCG

mutation

NCG mutation is good at estimating the efficient searching direction but lim-

ited by its diminishing explorative ability. PCG mutation possesses a powerful

explorative capability but is weak in exploitation. To strike a delicate balance

between exploration and exploitation, NCG mutation and PCG mutation are em-

ployed concurrently in ACGDE algorithm. A rate is pre-defined to decide the

probability of utilizing NCG mutation scheme in each mutation operation, oth-

erwise, PCG mutation is performed. In the current version of ACGDE, this rate

is set as 50% so that both mutation strategies have the equal chance to be used.

In order to investigate the influence of this rate and to validate the effectiveness

of the combination, simulations have been run with different probabilities to uti-

lize NCG mutation. The experimental setup and parametric setting is the same

as those in subsection 4.3.3. 6 representative benchmark problems are selected

from WFG test suites and CEC-09, and each problem has been tested for 30

independent runs. Fig. 4.7 compares the performance of different variants in
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Figure 4.7: Boxplots of the IGD values over 30 independent runs. The simulations
are performed on UF3, UF4, UF5, WFG1, WFG2 and WFG4 separately. In each plot,
the leftmost box represents the variant only using NCG mutation, and the rightmost
box denotes the variant only utilizing PCG mutation. The percentages under each box

indicate the probability to employ NCG mutation in this variant.
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terms of IGD. Each box represents the distribution of IGD values obtained by

the corresponding variant in 30 independent simulation runs.

According to Fig. 4.7, the hybrid variants provide better results for 5 out

of 6 benchmarks when compared with pure NCG variant and pure PCG vari-

ant. For WFG1, the searching directions estimated by NCG mutation are rather

efficient, and there is no strong need for exploration. Thus, the performance

of the algorithm declines with the decreased proportion of NCG mutation. For

other problems, improvement over the variants with only one mutation strat-

egy demonstrates the advantage of the combination. Among the several hybrid

variants, the 50% version exhibits a relatively more robust performance. By

contrast, the outcomes of 70% and 30% versions are more problem-dependent.

For other experiments in this chapter, the 50% variant will always be applied.

4.3.6 Effectiveness of CGA mechanism

This subsection aims at observing the behavior of parameter adaptation and

verifying the effectiveness of the proposed CGA mechanism. Compared to

crossover probability Cr, the overall performance of DE depends more heav-

ily on the selection of scaling factor F [154] [155]. As shown in the mutation

formula, F has a big role in controlling the searching step of the algorithm.

In order to investigate how CGA mechanism adapts F during the optimization

process, the fluctuation of F values over generations are plotted for all the indi-

viduals in Fig. 4.8. To better visualize the distribution of F values in objective

space, before plotting, the individuals have already been sorted according to

their fitness in the first objective (better individuals are assigned with smaller
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indices). Since the two objectives in the tested benchmarks are conflicting with

each other, larger index means this individual focus more on optimizing the

second objective. As a result, the order of the individuals in the plot actually

follows their positions in objective space. In the simulation, ACGDE as stated

in Algorithm 4.1 is implemented in NSGA-II. The experimental and parametric

setups are identical with those in subsection 4.3.1. Fig. 4.8 visualizes the dis-

tribution of F values for the whole evolutionary process on three representative

benchmark problems.

Based on Fig. 4.8, distinct patterns are observed in the distribution of F

values while optimizing the three problems. For WFG3, F values below 0.5 are

preferred in the early searching stage. From generation 300 onward, F values

above 0.5 are accepted more frequently. The difference between the distribu-

tions in WFG5 and WFG8 is fairly obvious. Throughout the whole evolution,

lower F values always hold a higher chance to survive in WFG8, whereas larger

F values appear more in WFG5. From the perspective of objective space, in

WFG5, the individuals which optimize the two objectives with similar weights

(index around 50) are more likely to employ small F values in some search-

ing stages (shown as the blue areas in the middle of the plot) although the

whole population tend to reserve large F values. For WFG3 and WFG8, no

evident pattern with regards to objective space emerged. Actually, in most ex-

isting benchmark problems, the requirements of parametric setup are roughly

the same for its multiple objectives. From the testing results, it is explicit that

CGA mechanism is intelligently adapting the parameters according to the cur-

rent optimization task instead of a purely stochastic regeneration.
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Figure 4.8: This figure shows the associated F values for each individual in every gener-
ation. Vertical axis indicates the index of each individual, and horizontal axis represents
the number of current generation. The color of each dot reflects the F value of its cor-
responding individual in the following way: red: F ∈ [0.7 0.9]; yellow: F ∈ [0.5 0.7];
light blue: F ∈ [0.3 0.5]; dark blue: F ∈ [0.1 0.3]. A Gaussian smoothing operator is

utilized in the post process of these contour plots.

101



CHAPTER 4. ADAPTIVE CROSS-GENERATION DIFFERENTIAL EVOLUTION OPERATORS FOR
MULTI-OBJECTIVE OPTIMIZATION

Table 4.7: Mean and Standard Deviation of the IGD Values (30 runs)

Problems
with CGA without CGA

Mean ± Std Mean± Std
UF1 0.0528 ± 0.0148 0.0729 ± 0.0410
UF2 0.0205 ± 0.0027 0.0264 ± 0.0069
UF3 0.0947 ± 0.0139 0.0953 ± 0.0158
UF4 0.0410 ± 0.0003 0.0397 ± 0.0004
UF5 0.2870 ± 0.0932 0.3852 ± 0.1044
UF6 0.1576 ± 0.0849 0.1918 ± 0.0797
UF7 0.0262 ± 0.0071 0.0467 ± 0.0465
UF8 0.1383 ± 0.0420 0.1965 ± 0.0813
UF9 0.1776 ± 0.1091 0.2914 ± 0.1385
UF10 0.6440 ± 0.2715 1.3504 ± 0.6490
WFG1 0.8084 ± 0.0316 0.8917 ± 0.0154
WFG2 0.0139 ± 0.0008 0.0387 ± 0.0558
WFG3 0.0201 ± 0.0009 0.0206 ± 0.0010
WFG4 0.0196 ± 0.0014 0.0200 ± 0.0011
WFG5 0.0682 ± 0.0015 0.0686 ± 0.0003
WFG6 0.1175 ± 0.0205 0.1200 ± 0.0179
WFG7 0.0166 ± 0.0007 0.0164 ± 0.0009
WFG8 0.1089 ± 0.0036 0.1094 ± 0.0044
WFG9 0.1259 ± 0.0004 0.1261 ± 0.0003

Next, a contrast experiment is performed to validate the effectiveness of

CGA mechanism. CGA mechanism is removed from ACGDE, instead, fixed

parameters are utilized as in original DE. The performance of the simplified

version is compared with that of original ACGDE. Both algorithms are imple-

mented in NSGA-II. In the simplified version, F is fixed as 0.5 and Cr is fixed

as 0.35 based on the parameter intervals in CGA. Other experimental and para-

metric setups are identical with those in subsection 4.3.1. UF1 to UF10 from

CEC-09 and WFG1 to WFG9 from WFG test suites are tested. Table 4.7 shows

the mean and standard deviation of the IGD values for 30 independent runs

on each benchmark. The best entries in terms of mean value are marked in

boldface. According to Table 4.7, original ACGDE outperforms the simplified

version without CGA mechanism in 17 out of 19 benchmark problems, from
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which we can conclude that the introduction of CGA mechanism has substan-

tially improved the performance of the algorithm.

4.4 Conclusion

This chapter has presented a new DE variant for multi-objective optimization,

which employs information across generations to help guide the searching di-

rections. Two variants of cross-generation mutation operators have been pro-

posed to enhance both the convergence and diversity in the evolution. Fur-

thermore, a cross-generation adaptation mechanism is introduced to tune the

parameters dynamically from a perspective of objective space. Experimental

results demonstrate that the proposed algorithmic components are effective and

the new algorithm is able to significantly enhance the performance of NSGA-II

and MOEA/D.
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Chapter 5

Minimax Differential Evolution for

Robust Design

In chapter 3 and chapter 4, all the involved objective functions are optimized

under the assumption that one solution only has one corresponding objective

value. However, in many real-world applications, the objective value is decided

by both solution and the associated scenario. Even for the same solution, the

objective value may vary dramatically under different scenarios. Taking the

scenario factor into consideration, this chapter further extends the scope of this

thesis by studying the minimax optimization problems, in which solutions with

best worst-case performances are pursued. A new minimax DE algorithm is

designed to circumvent the limitations of existing minimax optimization algo-

rithms. Experimental comparisons over benchmark problems and implementa-

tions in two robust design applications demonstrate the effectiveness of the new

approach.
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5.1 Introduction

Minimax optimization problems, in which the solutions with best worst-case

performances are preferred, can be utilized to model a wide variety of robust

design tasks [12–19]. Unlike traditional optimization problems, two decision

spaces are introduced simultaneously in minimax optimization, namely, solu-

tion space X and scenario space S (more detailed introduction is provided in

subsection 1.3). For each solution in X, its fitness depends on the correspond-

ing worst-case scenario in S. Thus, solving a minimax optimization problem

involves explorations and communications among two interrelated spaces. This

makes minimax optimization problems inherently challenging and difficult to

address [27].

In the past 40 years, considerable research has been devoted to resolution

of minimax optimization problems. Traditional approaches include branch-and-

bound algorithms [156–158], mathematical programming [16,159–164] and ap-

proximation methods [165]. The most significant limitation of these conven-

tional approaches is that additional restrictions will be imposed on the objective

functions [21], e.g., finite possibilities in scenario space [166], differentiabil-

ity [167] and linearity [159].

Recently, a good volume of EAs have been developed to solve minimax

optimization problems [22–26, 28, 106–108] where traditional methods are not

applicable. The main advantage of EAs is that ideally no prior assumption is

made about the underlying objective landscape. This generality allows EAs to

handle those mathematically intractable problems, which may involve nondif-

ferentiable, nonlinear, nonconvex or even more complex properties. Although
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promising performances were observed in some works [21, 24, 104, 105], there

do exist several fundamental drawbacks for existing minimax optimization EAs.

First, many of the existing methods can only work properly under a symmetri-

cal condition [22–27,104–106], which means the original minimax optimization

problem is equivalent to a symmetrical maximin problem (see subsection 1.3 for

detailed definition). However, this condition does not hold generally, and prob-

lems not satisfying this condition are known to be extraordinarily difficult to

solve [28]. Second, since most of the computational budget is assigned to the

search of worst-case scenario for each solution, the overall optimization effi-

ciency is deteriorated. While too much effort is spent on exploration in scenario

space [21–26, 106], the optimization over solution space may be insufficient.

This will lead to a bias towards reliability at the cost of quality. Third, while

most existing algorithms focus on elaborating the evaluation mechanisms for

scenarios, the evaluation criteria for solutions are underdeveloped. Either ex-

pensive computational cost or omission of excellent solutions may result from

current evaluation approaches [21–27, 104–106].

To circumvent the above issues, a novel Minimax Differential Evolution

(MMDE) algorithm is proposed by completely redesigning the whole algorith-

mic structure of conventional DE [9], which proves to be one of the most pow-

erful methods for solving traditional optimization problems [10, 32, 34, 36, 40,

44, 45, 58, 109, 111, 112, 168]. In MMDE, a new Bottom-Boosting Scheme is

developed to identify the promising solutions accurately while skipping con-

siderable numbers of unnecessary objective function evaluations. Moreover, a

Partial-Regeneration Strategy and a new DE mutation operator are introduced to
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enhance both the reliability and efficiency of the solution optimization. Finally,

with a proper combination of these algorithmic components, MMDE is able to

overcome the limitations of existing algorithms in solving asymmetrical prob-

lems. Superior performance of MMDE is observed in empirical comparisons

with other famous minimax optimization EAs. In addition, two open problems

in robust design area are formulated into minimax optimization tasks, and both

of them are successfully solved by applying the proposed MMDE algorithm.

5.2 Minimax Differential Evolution

5.2.1 Overview

During the development of MMDE, three main limitations of existing minimax

optimization EAs are considered and addressed.

The first issue is the incapability of most approaches, especially coevolu-

tionary EAs, in solving asymmetrical problems. Take the following two-plane

function [104] as an example

f(x, s) = min{3− 2

10
x+

3

10
s, 3 +

2

10
x− 1

10
s} (5.1)

Our target is to solve the following minimax optimization problem

min
x∈[0,10]

max
s∈[0,10]

f(x, s) (5.2)

Fig. 5.1 shows the surface plot for (5.1). In coevolutionary EAs, the solu-

tion population and scenario population are optimized interactively. No matter

what evaluation strategy is employed, the purpose for scenario optimization is

always to find the worst-case scenarios for the individuals in solution popula-

tion. Analogously, the target of solution optimization is always to obtain the
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Figure 5.1: This figure plots the surface of objective function described by (5.1). The
color level represents the objective value. The four arrows demonstrate the optimization

cycle that will occur during existing coevolutionary algorithms.

best-performing solutions under the scenarios maintained in scenario popula-

tion. According to Fig. 5.1, this objective function has 4 corners that may lead

to optimization convergence, namely, A(0,10), B(0,0), C(10,0) and D(10,10).

Suppose all the individuals in solution population and scenario population are

randomly dispersed during the initialization, then in the solution optimization

phase, all the individuals in solution population will have an evolutionary pres-

sure to move to either 0 or 10. This will drive the solution-scenario combinations

to distribute along the edge AB or CD. Similarly, in the scenario optimization

process, the solution-scenario combinations tend to move to the diagonal BD,

which can represent the worst-case situations for all the solutions. Based on the

above analysis, the attractive areas overlap at point B and point D. However,
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the solutions located in B and D are still under evolutionary pressure to move

towards C and A, respectively. After that, the scenarios located in C and A will

be optimized towards D and B, respectively. It can be observed that actually

there is an endless optimization cycle among A, B, C and D. The existence of

this cycle is the fundamental cause for the failures of coevolutionary EAs in

solving asymmetrical problems. It is notable that although some coevolutionary

algorithms were claimed to successfully handle asymmetrical problems by mod-

ifying the evaluation schemes for scenarios [104–106], none of these approaches

are able to avoid the above issue. The reason is that in all coevolutionary EAs,

the essence of the optimization over solution space is searching for the best-

performing solutions under certain scenarios rather than finding the solutions

with best worst-case performance. Even though the algorithm successfully con-

verges to the global optima, which is point B(0,0), the optimization over solution

space will move the solutions away from 0, since solution X = 10 gives a lower

cost than X = 0 under scenario S = 0. Our theoretical analysis was verified by

the empirical results in [21], which show that all the coevolutionary EAs even

perform worse than a purely random search in solving asymmetrical problems.

To overcome this issue, MMDE introduced a totally new algorithmic structure

to avoid any optimization cycle. The solution optimization process in MMDE

will only focus on moving the solutions towards the regions that provide better

worst-case performance.

The second issue is the excessive search for worst-case scenarios, which

may lead to imbalance between solution reliability and solution quality. In exist-

ing approaches, all the solutions are treated equally and same efforts are spent on
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exploring their corresponding worst-case scenarios. However, a great number

of fitness evaluations may be wasted in finding the worst-case scenarios for poor

solutions, thereby degrading the overall optimization efficiency. In MMDE, the

exploration of worst-case scenarios will be performed in a more flexible manner.

A Bottom-Boosting Scheme is proposed to skip large quantities of unnecessary

scenario evaluations.

The third issue with existing algorithms is the difficulty in selecting

promising solutions both inexpensively and correctly. A greedy evaluation strat-

egy is able to avoid the miss of good solutions, but the computational cost is

extremely high. A low-cost evaluation strategy can substantially reduce the

numbers of objective function evaluation while it is at the risk of propagating

poor solutions. In order to trigger a delicate trade-off between efficiency and

reliability, a Partial-Regeneration Strategy and a new DE mutation operator are

developed in MMDE. Together with Bottom-Boosting Scheme, the combination

of these new mechanisms enables the algorithm to efficiently identify the truly

promising solutions and continue exploiting based on this information.

5.2.2 Algorithmic Description

General Structure

Algorithm 5.1 and Fig. 5.2 show the general structure of MMDE. The first

step is the parametric setup and initialization of population, in which each indi-

vidual is represented as a pair of solution and scenario. Subsequently, at the start

of each generation, a min heap [169] will be constructed based on the current

population. Each individual will form one node in the min heap, and the key of
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Figure 5.2: This flowchart presents the procedure of Minimax Differential Evolution
algorithm.
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Algorithm 5.1 Procedure of Minimax Differential Evolution
1: Parametric setup for MMDE: population size N , solution dimension DX ,

scenario dimension DS , maximum generation number Gmax and control
parameters for each algorithmic component

2: Set generation g = 0 and randomly initialize the population
Pg = {(X1,g, S1,g), (X2,g, S2,g), . . . , (XN,g, SN,g)}, where Xi,g =
{x1

i,g, x
2
i,g, . . . , x

DX
i,g } and Si,g = {s1

i,g, s
2
i,g, . . . , s

DS
i,g }, i = 1, 2, . . . , N

3: for i = 1 to N do
4: Evaluate objective value for individual (Xi,g, Si,g)
5: end for
6: for g = 1 to Gmax do
7: Construct a min heap with each individual in Pg as one node, the key of

each node is the objective value of corresponding individual.
8: Perform Bottom-Boosting Scheme based on the constructed min heap
9: for i = 1 to N do

10: Update individual (Xi,g, Si,g) with the individual stored in the root
node of the min heap

11: Pop the root node from the min heap
12: end for
13: Xbest = X1,g

14: Perform Partial-Regeneration Strategy to update Pg
15: Pg+1 = Pg
16: end for

each node is the objective value of the corresponding individual. The main fea-

ture of a min heap is that the node with the minimum key value will always be

placed at the root, and it only takes O(log n) time to delete the current root node

and O(1) time to insert a new node [170], where n is the total number of nodes

inside the heap. Based on the constructed min heap, a Bottom-Boosting Scheme

will be performed to update the scenarios associated with the nodes. After that,

the current population will be updated by continuously extracting root nodes

from the min heap. This will lead to a population wherein all the individuals

are sorted according to their corresponding objective values in non-descending

order. The associated solution of the first individual is recorded as the best so-

lution found so far. Finally, a Partial-Regeneration Strategy will be conducted

to further update current population, and the algorithm will then proceed to the
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next generation. The whole optimization process will be terminated when the

maximum generation number is reached.

Bottom-Boosting Scheme

Algorithm 5.2 Bottom-Boosting Scheme
Require:

A min heap constructed from current population Pg
KS: Parameter to control the total number of objective function evaluations
F and Cr: Control parameters for DE operators

Ensure:
An updated min heap

1: k = 0
2: while k < KS do
3: Read the root node of the min heap, suppose the individual stored inside

the root node is (Xi,g, Si,g)
4: generate mutant scenario as

SVi,g = Sr1,g + F · (Sr2,g − Sr3,g)
where indices r1, r2, r3 are randomly selected integers from
{1, 2, . . . , N} that are distinct from i and mutually different, and N is
the population size

5: Perform binomial recombination on Si,g and SVi,g to generate the trial
scenario SUi,g

6: if f(Xi,g, SUi,g) > f(Xi,g, Si,g) then
7: Pop the root node from the min heap
8: Si,g = SUi,g
9: Push the updated individual (Xi,g, Si,g) into the min heap

10: end if
11: k = k + 1
12: end while

Algorithm 5.2 describes the internal procedure of the proposed Bottom-

Boosting Scheme. A new parameter KS is introduced to control the total num-

ber of objective function evaluations incurred. Given the min heap constructed

from current population, the individual stored in the root node will be extracted.

Based on the scenario associated with this individual, a traditional “DE/rand/1”

mutation strategy [9] and binomial recombination will be performed to gener-

ate the trial scenario. Afterward, the original solution will be evaluated with
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the trial scenario to obtain a new objective value. If the new objective value is

larger than the original objective value, the scenario associated with the original

individual will be updated using the trial scenario. The corresponding node will

also undergo a pop-update-push process to ensure the min heap is updated. The

above steps will be repeated KS times so totally KS objective function evalua-

tions are involved. Please note that the updating of scenarios will be performed

on both current population and the min heap.

Partial-Regeneration Strategy

Algorithm 5.3 Partial-Regeneration Strategy
Require:

Current population Pg with population size N , all the individuals have al-
ready been sorted according to their corresponding objective values in non-
descending order
T : Parameter to control the number of regenerated individuals
F and Cr: Control parameters for DE operators

Ensure:
Updated population Pg

1: i = 1
2: while i ≤ T do
3: Vi,g = Xi,g + F · (Xr1,g −Xr2,g)

where indices r1, r2 are randomly selected integers from {1, 2, . . . , N}
that are distinct from i and mutually different

4: Perform binomial recombination on Xi,g and Vi,g to generate the trial
solution Ui,g

5: XN+1−i,g = Ui,g
6: Randomly reinitialize SN+1−i,g
7: Evaluate the objective value of the updated individual

f(XN+1−i,g, SN+1−i,g)
8: i = i+ 1
9: end while

Algorithm 5.3 shows the basic steps of the proposed Partial-Regeneration

Strategy. A new parameter T is introduced to control the total number of re-

generated individuals. Before performing Partial-Regeneration Strategy, all the

individuals have already been sorted according to their corresponding objective
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values in non-descending order. For the first T individuals, a new mutation strat-

egy, namely “DE/current/1”, will be performed on each associated solution to

generate T mutant solutions. SupposeXi,g is the associated solution for ith indi-

vidual, its corresponding mutant solution will be generated via “DE/current/1”

as

Vi,g = Xi,g + F · (Xr1,g −Xr2,g) (5.3)

where indices r1, r2 are randomly selected integers from {1, 2, . . . , N} that are

distinct from i and mutually different, andN is the population size. After that, T

trial solutions will be generated by performing binomial recombination on each

mutant solution and its corresponding original solution. Next, the associated

solutions of the last T individuals will be updated using these trial solutions,

and their associated scenarios will also be randomly reinitialized. The last step

is to evaluate all these regenerated individuals and record their new objective

values. Totally T objective function evaluations are carried out in the whole

process.

5.2.3 Underlying Rationale

Different from traditional coevolutionary EAs, there is only one population in

MMDE and each individual is represented as a pair of solution and scenario.

Based on this representation, the optimization process in each generation is di-

vided into two phases, in which the scenarios and solutions are updated respec-

tively. Briefly speaking, the scenario updating phase aims at searching for the

promising solutions in terms of worst-case performance, and the solution updat-

ing phase tries to further exploit based on these solutions.
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In scenario updating phase, the Bottom-Boosting Scheme is employed to

identify the promising solutions. Naturally, this can be done by searching for

the worst-case scenarios for each solution. However, a large number of objec-

tive function evaluations will be wasted because our target is actually to find

those solutions with good worst-case performance rather than obtain the worst-

case scenarios for all the solutions. If the performance of solution X1 under

certain scenario has already been worse than the worst-case performance of X2,

it becomes pointless to further explore X1 over scenario space. Following this

consideration, the Bottom-Boosting Scheme will focus on evolving scenarios

for the best-performing individuals only. A heap data structure is utilized to

minimize the computation time for finding the new best-performing individual

after each updating. Compared to a normal sorting approach, the computational

complexity for each best-finding operation can be reduced from O(n log n) to

O(log n) by using a heap. The root node of the min heap always stores the

individual with the lowest objective value. The Bottom-Boosting Scheme will

keep performing traditional “DE/rand/1” mutation operation and binomial re-

combination to search for worse scenarios for current best-performing solution.

Due to the strong explorative ability of “DE/rand/1” operator, it will be very

difficult for one solution to keep staying in the root node unless this solution is

truly superior in terms of worst-case performance. Those solutions with poor

performance under certain scenario will be eliminated from the optimization

process in the early stage so that a large number of unnecessary evaluations can

be skipped. In contrast, the solutions with robust performance under various

scenarios will be more frequently challenged during their stay in the root node,
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thereby further strengthening the reliability of the final outstanding solutions.

In solution updating phase, the Partial-Regeneration Strategy is adopted

to evolve the whole population. Based on the min heap constructed in previ-

ous step, a heap sort is carried out to sort all the existing individuals based on

their objective values. The worst T individuals will then be replaced by the off-

spring of the best T individuals. The proposed “DE/current/1” mutation strategy

generates the mutant solution by adding a scaled perturbation into the original

solution. In this way, the offspring will keep exploiting around the promising

solutions so that the overall optimization efficiency is enhanced. The associated

scenarios of the regenerated solutions are randomly reinitialized because main-

taining the diversity of the scenarios is beneficial to both explorative ability and

reliability of the scenario updating phase. Same as the best T individuals, the

remaining intermediate individuals are kept unchanged so that their robustness

can be further judged in the next scenario updating phase.

With the specially designed algorithmic structure, MMDE is able to avoid

the infinite optimization cycles that coevolutionary approaches will encounter

in handling asymmetrical problems. The key point is that MMDE success-

fully avoid the behaviors of finding good solutions for any particular scenarios.

MMDE only searches for bad scenarios for particular solutions. The evolution

of solutions in MMDE is only based on their performance during scenario up-

dating phase. The individuals survive to next generation are the ones providing

robust performance under various scenarios instead of the ones with superior

performance under particular scenario.
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5.3 Empirical Study

5.3.1 Comparison with Existing Algorithms

The optimization performance of the proposed MMDE is evaluated by com-

paring with seven famous minimax optimization EAs, namely, Aging Sampled

GA (ASGA) [21], Alternating Coevolutionary PSO (ACPSO) [24], Alternating

Coevolutionary GA (ACGA) [26], Parallel Coevolutionary GA (PCGA) [27],

Best Remaining Coevolutionary GA (BRCGA) [105], Rank-Based Coevolu-

tionary GA (RBCGA) [104] and Stackelberg Strategy Coevolutionary GA (SS-

CGA) [21]. For all the existing algorithms, parametric settings suggested in [21]

are utilized. For MMDE, the control parameters are set as follows: F = 0.7 and

Cr = 0.5 for both Bottom-Boosting Scheme and Partial-Regeneration Strategy,

N = 100, KS = 190, T = 10.

Following the recent minimax optimization studies [21, 28, 108], the six

most commonly used benchmark problems [104, 171] are tested in our experi-

ments. Table 5.1 shows the objective functions, searching domains and global

optima of the six benchmarks. F1, F5 and F6 are symmetrical problems, and

F2, F3 and F4 are asymmetrical problems. Mean square error (MSE) [104]

is used as the performance metric to quantitatively compare the optimization

performances of algorithms. MSE is calculated according to the best solution

obtained by the algorithm and the global optimal solution as

MSE(Xbest, Xopt) =
1

DX

DX∑
j=1

(xjbest − x
j
opt)

2 (5.4)

where Xbest is the best solution found by the algorithm, Xopt is the global op-

timal solution, DX is dimensionality of solution space, xjbest and xjopt are the
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Table 5.1: Description of Benchmark Problems

F1
Objective f(x, s) = (x− 5)2 − (s− 5)2

Domain x ∈ [0, 10], s ∈ [0, 10]

Optimum (x∗, s∗) = (5, 5)

F2
Objective f(x, s) = min{3− 0.2x+ 0.3s, 3 + 0.2x− 0.1s}
Domain x ∈ [0, 10], s ∈ [0, 10]

Optimum (x∗, s∗) = (0, 0)

F3
Objective f(x, s) = sin(x−s)√

x2+s2

Domain x ∈ (0, 10], s ∈ (0, 10]

Optimum (x∗, s∗) = (10, 2.125683)

F4
Objective f(x, s) = cos

√
x2+s2√

x2+s2+10

Domain x ∈ [0, 10], s ∈ [0, 10]

Optimum (x∗, s∗) = (7.044146333751212, 10 or 0)

F5

Objective
f(X,S) = 100(x2 − x2

1)2 + (1− x1)2

−s1(x1 + x2
2)− s2(x2

1 + x2)

Domain X ∈ [−0.5, 0.5]× [0, 1], S ∈ [0, 10]2

Optimum (X∗, S∗) = (0.5, 0.25, 0, 0)

F6

Objective
f(X,S) = (x1 − 2)2 + (x2 − 1)2

+s1(x2
1 − x2) + s2(x1 + x2 − 2)

Domain X ∈ [−1, 3]2, S ∈ [0, 10]2

Optimum (X∗, S∗) = (1, 1, any, any)

variables in dimension j. All of the simulations were done on an Intel (R) Core

(TM) i7 machine with 16-GB RAM and 3.40-GHz speed. Microsoft (R) Visual

Studio (R) 2012 Express is used to develop the coding and run the experiments.

Table 5.2 and Table 5.3 present the mean, median and standard deviation of

the MSEs for each algorithm on each benchmark problem over 100 independent

runs. For all the algorithms, the maximum number of objective function eval-

uations or fitness evaluations (FEs) is fixed as 100000. Apart from the limited

number of FEs, another termination condition is that the mean of the MSEs over

100 independent runs reaches 10−20 level or lower. For each problem, the total

number of FEs performed by each algorithm in each run is also shown in Table
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Table 5.2: Summarized Results over 100 Independent Runs for F1-F3

Problems Mean Median Std P -value FEs

F1

MMDE 0.0000E+00 0.0000E+00 0.0000E+00 NA 48500
ASGA 6.7677E-17 3.2221E-20 4.3812E-16 5.6400E-39 100000

ACPSO 3.8636E-02 9.3041E-03 7.1026E-02 5.6400E-39 100000

ACGA 3.8149E-05 6.9977E-15 2.7335E-04 5.6400E-39 100000

PCGA 1.4495E-04 1.7041E-16 9.6055E-04 8.0734E-32 100000

BRCGA 3.2412E-05 1.9274E-17 1.5046E-04 8.0708E-32 100000

RBCGA 3.1323E-04 8.5099E-21 1.7825E-03 8.3171E-29 100000

SSCGA 4.8554E-06 5.4367E-17 3.2735E-05 2.7251E-30 100000

F2

MMDE 0.0000E+00 0.0000E+00 0.0000E+00 NA 68500
ASGA 8.0707E-05 1.1160E-12 7.5651E-04 5.6400E-39 100000

ACPSO 1.7507E+01 1.5118E-02 3.5838E+01 5.6400E-39 100000

ACGA 3.0871E+01 1.0128E-04 4.6208E+01 5.6400E-39 100000

PCGA 3.0010E+01 1.1536E-04 4.5080E+01 5.6400E-39 100000

BRCGA 2.8730E+01 1.5118E-02 3.5838E+01 5.6400E-39 100000

RBCGA 9.4512E+00 9.2164E-09 2.8471E+01 5.6400E-39 100000

SSCGA 4.8793E+01 1.7764E+01 4.9080E+01 5.6400E-39 100000

F3

MMDE 0.0000E+00 0.0000E+00 0.0000E+00 NA 2700
ASGA 1.3934E-04 2.3755E-09 8.0636E-04 5.6400E-39 100000

ACPSO 2.9861E+00 6.4173E-01 3.5121E+00 5.6400E-39 100000

ACGA 2.5216E+01 1.4978E+01 2.7667E+01 5.6400E-39 100000

PCGA 2.1888E+01 1.2116E+01 2.7996E+01 5.6400E-39 100000

BRCGA 2.8629E+01 1.0285E+01 3.6638E+01 5.6400E-39 100000

RBCGA 1.4610E+01 6.2826E-02 2.8781E+01 5.6400E-39 100000

SSCGA 2.7145E+01 9.0744E+00 3.6543E+01 5.6400E-39 100000
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Table 5.3: Summarized Results over 100 Independent Runs for F4-F6

Problems Mean Median Std P -value FEs

F4

MMDE 1.2098E-21 7.0997E-30 1.2020E-20 NA 59900
ASGA 8.7356E-03 8.4006E-04 6.7046E-02 1.9751E-34 100000
ACPSO 5.8835E+00 1.4031E+00 9.1577E+00 1.9751E-34 100000
ACGA 1.1798E+01 6.7570E+00 1.3040E+01 1.9751E-34 100000
PCGA 1.1210E+01 3.1082E+00 1.5225E+01 1.9751E-34 100000

BRCGA 7.3399E+00 2.7788E+00 1.0651E+01 1.9751E-34 100000
RBCGA 1.7349E+00 2.8796E-05 4.9994E+00 1.9751E-34 100000
SSCGA 1.1879E+01 5.0549E+00 1.5445E+01 1.9751E-34 100000

F5

MMDE 9.9702E-20 8.1885E-20 8.7226E-20 NA 27300
ASGA 5.8738E-03 8.5873E-04 1.2063E-02 2.5621E-34 100000
ACPSO 3.5519E-02 2.2115E-02 4.1838E-02 2.5621E-34 100000
ACGA 1.4323E-02 4.4641E-03 2.2798E-02 2.5621E-34 100000
PCGA 1.1241E-02 2.1755E-03 2.0305E-02 2.5621E-34 100000

BRCGA 1.6391E-02 2.8940E-03 2.9882E-02 2.5621E-34 100000
RBCGA 1.5835E-02 4.9840E-03 2.4590E-02 2.5621E-34 100000
SSCGA 1.4666E-02 4.0267E-03 2.3430E-02 2.5621E-34 100000

F6

MMDE 1.6830E-13 1.6055E-17 8.4048E-13 NA 100000
ASGA 8.0846E-04 8.4348E-05 1.6708E-03 4.2663E-34 100000
ACPSO 1.2959E-01 9.4149E-02 1.2564E-01 2.5621E-34 100000
ACGA 1.3966E-02 3.7605E-03 2.3574E-02 2.5621E-34 100000
PCGA 9.2942E-03 4.5820E-04 2.3378E-02 2.5621E-34 100000

BRCGA 2.1609E-02 2.7748E-04 9.7750E-02 2.5621E-34 100000
RBCGA 2.9893E-03 1.1057E-04 1.5591E-02 2.5621E-34 100000
SSCGA 4.2151E-02 1.8814E-03 1.2522E-01 2.5621E-34 100000
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5.2 and Table 5.3. In order to judge whether the results of the best-performing

algorithm in terms of mean of MSEs differ from the results of the competitors

in a statistically significant way, a non-parametric statistical test called Wilcox-

ons rank-sum test [118] is conducted at the 5% significance level. The P -values

obtained through the rank sum test between the best algorithm and each of the

remaining algorithms over all the benchmark functions are presented in Table

5.2 and Table 5.3. NA stands for not applicable and occurs for the best perform-

ing algorithm itself in each case. If the P -values are less than 0.05, it indicates

that the better performances achieved by the best algorithm in each case are sta-

tistically significant and have not occurred by chance [172]. In Table 5.2 and

Table 5.3, the best entries in terms of mean of MSEs, median of MSEs and

number of FEs are marked in boldface.

Based on the experimental results in Table 5.2 and Table 5.3, the proposed

MMDE is able to significantly outperform all the other algorithms in all the

benchmark problems in terms of both mean and median of MSEs over 100 inde-

pendent runs. For the first three problems, MMDE can reach the global optimal

solution without any errors using only 48500, 68500 and 2700 FEs in all the

100 independent runs. For problem F4 and F5, the number of FEs required for

MMDE to reduce the mean of MSEs into 10−20 level or lower is only 59900 and

27300, respectively. For problem F6, MMDE also achieves considerably lower

MSEs than other approaches in all the 100 independent runs. For all the co-

evolutionary EAs, poor performances were observed in the three asymmetrical

problems (F2, F3 and F4). This is in accordance with our theoretical analysis in

subsection 5.2.1. Besides MMDE, ASGA is the only algorithm that solves both
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symmetrical and asymmetrical problems correctly. However, from the perspec-

tive of optimization efficiency, MMDE shows substantially better performance

than ASGA. To summarize, MMDE is capable of solving both symmetrical and

asymmetrical minimax optimization problems not only reliably but also effi-

ciently.

5.3.2 Effectiveness of Bottom-Boosting Scheme

In MMDE, the Bottom-Boosting Scheme plays a very critical role in increas-

ing the efficiency of the whole algorithm. A large number of objective function

evaluations are skipped during the proposed mechanism. In order to further in-

vestigate the effectiveness of Bottom-Boosting Scheme, the performance of the

original MMDE is compared with that of a simplified version. In the simpli-

fied MMDE, the only modification is that during the scenario updating phase,

instead of only optimizing the current best-performing individual, the mutation,

recombination and updating operations will be conducted on each individual

one by one. For a more comprehensive investigation, the number of FEs used

in each scenario updating phase of the simplified version (also defined by KS)

will be set from 200 to 2000, and all these different variants will be tested for

comparison. For all the other control parameters and experimental setups, same

settings as described in subsection 5.3.1 are employed. Fig. 5.3 shows the box-

plots of the MSE values obtained by each algorithm over 100 independent runs

on problem F2, F4 and F5.

From the experimental results, the original MMDE achieves consistently

better performance than all the variants of the simplified version. For problem
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Figure 5.3: Boxplots of the MSE values over 100 independent runs. “SV200” represents
the simplified version with KS = 200. Same rule applies to all the remaining labels.
On each box, the red line is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not consider outliers,

and outliers are plotted individually using red markers.

F2, a KS value less then 500 will lead to a very poor performance of the simpli-

fied version. The reason is that due to the evenly distribution of computational

budget, each individual can only perform a limited number of FEs, which may

not be sufficient to correctly evaluate their true quality. According to the re-

sults, a great number of FEs are required for the simplified version to provide an

acceptable performance in F2. In comparison, the proposed Bottom-Boosting

Scheme successfully reaches the global optimal solution with no errors in all

the 100 independent runs with only 190 FEs in each scenario updating phase.

Similar pattern can also be observed from the experimental results on problem

F4. This implies that the proposed mechanism successfully enhances both the
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efficiency and reliability of the whole algorithm. For problem F5, a small KS is

preferred by the simplified version. This is because F5 is a symmetrical problem

that satisfies (1.14) and (1.15). All the individuals will gradually evolve their as-

sociated scenarios towards the same one (e.g., S∗ in (1.15)), thereby reducing the

difficulty for scenario optimization. Since a smaller number of FEs in each sce-

nario updating phase allows more exploration over solution space, the solution

quality is further enhanced. Under this circumstance, Bottom-Boosting Scheme

still provides better overall performance than the simplified version with similar

KS values. This indicates the consistent effectiveness of the proposed scheme

in solving problems with different properties.

5.3.3 Sensitivity Study for KS and T

This subsection aims at studying the influences of the two new control parame-

ters KS and T on the overall optimization performance.

Fig. 5.4 shows the boxplots of MSEs over 100 independent runs for dif-

ferent KS settings. All the other control parameters and experimental setups are

identical with those in subsection 5.3.1. For the three symmetrical problems F1,

F5 and F6, relatively lower KS values are desirable. As discussed in subsection

5.3.2, with the reduced difficulty in scenario optimization, the exploration over

solution space becomes more important in handling symmetrical problems. A

better trade-off between the scenario optimization, which is related to solution

reliability, and solution optimization, which is relevant to solution quality, will

be achieved by selecting a relatively smaller KS . For the three asymmetrical

problems F2, F3 and F4, the difficulty of the scenario optimization has increased
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Figure 5.4: Boxplots of the MSE values over 100 independent runs for different KS

settings. On each box, the red line is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not consider

outliers, and outliers are plotted individually using red markers.
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Figure 5.5: Boxplots of the MSE values over 100 independent runs for different T
settings. On each box, the red line is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme data points not consider

outliers, and outliers are plotted individually using red markers.
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because each individual has disparate worst-case scenarios. Based on the exper-

imental results, aKS value less than 100 is insufficient for the scenario updating

phase to correctly identify the true promising solutions, and an over large KS

value may increase the solution reliability by sacrificing the solution quality. A

moderate KS value is therefore more suitable for asymmetrical problems.

Fig. 5.5 presents the boxplots of MSEs over 100 independent runs for dif-

ferent T settings. All the other control parameters and experimental setups are

identical with those in subsection 5.3.1. For both symmetrical and asymmetri-

cal problems, a T value of 10 provides the most robust performance. Either an

over small or over large T may lead to unsatisfactory optimization performance

regardless of the problem properties. This is because the value of T decides the

number of regenerated individuals during each solution updating phase. If T is

too small, the exploration over solution space will be conducted in a very slow

manner. If T is too large, the regeneration of solutions will become excessively

frequent, and the probability to discard promising solutions is increased. In or-

der to avoid these two issues, a T value that is around 10% of the population

size is recommended.

5.4 Applications

5.4.1 Robust Optimal Design of Iterative Learning Control

In this subsection, the proposed MMDE algorithm is applied to address an open

problem in iterative learning control (ILC): how to systematically design an

appropriate learning control gain matrix for nonlinear multi-input-multi-output
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(MIMO) systems. An appropriately chosen learning gain matrix can speed up

learning convergence in the presence of the system nonlinearities and uncertain-

ties. Targeting at time-optimal (fastest convergence) and robustness properties

concurrently, the ILC design task is formulated into a minimax optimization

problem.

Consider an ILC for MIMO dynamic systems

ẋ(t) = f(x(t), u(t), t) x(0) = x0

y(t) = g(x(t), u(t), t)

(5.5)

where t ∈ [0, T ], x(t) ∈ X ⊂ Rn, y(t) ∈ Y ⊂ Rm, u(t) ∈ U ⊂ Rm, X, Y, U

are compact convex subsets. Nonlinear functions f(·) and g(·) satisfy the global

Lipschitz continuity condition with respect to state x and input u.

The target of ILC is to find a sequence of appropriate control inputs such

that the system output yi(t) can track the reference trajectory yr(t). A typical

ILC is given as

ui+1(t) = ui(t) +Q∆yi(t) (5.6)

where Q ∈ Rm×m is the learning gain matrix. According to [173–175], The

ILC convergence condition is

‖ ∆yi+1 ‖≤‖ Im×m −G(ξ)Q ‖‖ ∆yi ‖ (5.7)

where G , ∂g
∂u

is the direct feed-through matrix, ξ is a point in the compact

set Ω = X × U × [0, T ], ‖ · ‖ is an appropriate vector norm and the induced

matrix norm. Clearly, to warrant a convergent learning sequence of ‖ ∆yi ‖, a

sufficient condition is

‖ Im×m −G(ξ)Q ‖≤ γ, ∀ξ ∈ Ω (5.8)
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where γ ∈ (0, 1) is a constant. Moreover, the smaller is ‖ Im×m −G(ξ)Q ‖, the

faster is the learning convergence speed. Hence, the ILC design task becomes

to find an appropriate gain matrix Q ∈ Rm×m, such that ‖ Im×m − G(ξ)Q ‖ is

minimal under the worst-case G(ξ), ∀ξ ∈ Ω.

Now the robust optimal design can be formulated as the following minimax

optimization problem

min
Q∈X

max
ξ∈Ω
‖ Im×m −G(ξ)Q ‖ (5.9)

where X = Rm×m.

Due to the existence of nonlinearities, uncertainties and non-symmetry in

the system direct feed-through matrix, it is in general a very difficult task to

directly solve the original minimax optimization problem with a closed-form

solution. Nevertheless, the proposed MMDE does not make any prior assump-

tion about the mathematical properties of the problem. It is practicable to apply

MMDE to solve this mathematically intractable optimization problem.

To verify the effectiveness of MMDE, the proposed algorithm is applied to

the robust optimal design of a two-link robotic manipulator, which is a nonlinear

dynamic system described by

M(x)ẍ+ f(x, ẋ) = u (5.10)

where

M(x) =

m11 m12

m21 m22

 (5.11)
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is the inertia matrix with

m11 = m1l
2
c1 + I1 +m2[l21 + l2c2 + 2l1lc2 cos(x2) + I2]

m12 = m21 = m2l1lc2cos(x2) +m2l
2
c2 + I2

m22 = m2l
2
c2 + I2

(5.12)

and

f(x, ẋ) =

f11

f12

 (5.13)

represents all Centrifugal, Corioli‘s and gravity terms with

f11 = −2hẋ1ẋ2 − hẋ2
2 +m1lc1g cos(x1)

+m2g[lc2cos(x1 + x2) + l1 cos(x1)]

f12 = hẋ2
1 +m2lc2g cos(x1 + x2)

(5.14)

x = [x1, x2]T are the two joint angles, u = [u1, u2]T are the joint inputs.

The angular velocities are selected to be the system output, y = ẋ. The

desired trajectories are

yr,1 = yr,2 = 20(60τ 3 − 30τ 4 − 30τ 2) (5.15)

where yr = [yr,1, yr,2]T and τ = t/Tc. We choose Tc = 1 second to be the period

of learning cycle.

The system parameters are given as: link masses m1 = 4Kg; m2 =

3 + ∆m2Kg; link lengths l1 = 0.5meter; center of gravity co-ordinates

lc1 = 0.3meter; lc2 = 0.25meter; and moments of inertia I1 = 0.4Kg-meter2;

I2 = 0.25 + ∆IxKg-meter2. In addition, there exist parametric uncertainties in

m2 and I2: ±50% deviations from their nominal values.

Since there is no direct feed-through item in the input-output mapping, a

D-type ILC scheme is employed

ui+1(t) = ui(t) +Q[ẏr(t)− ẏi(t)] (5.16)
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where Q ∈ R2×2. The resulting direct feed-through matrix is G = M−1, and G

is positive definite. With the above definitions of Q and G, the robust optimal

design can be formulated into a minimax optimization problem using (5.9), and

MMDE is applied to solve it.

Conventionally, the gain matrix Q is a diagonal matrix. Therefore in this

example, Q can be represented as

Q =

x11 0

0 x22

 . (5.17)

Thus, x11 and x22 are the two variables to be optimized over solution space.

In the scenario space, there are three variables, namely, m2 ∈ [1.5, 4.5], I2 ∈

[0.125, 0.375] and x2 ∈ [−π, π]. The objective values are calculated using ‖

Im×m − G(ξ)Q ‖. The control parameters are set as follows: F = 0.7 and

Cr = 0.5 for both Bottom-Boosting Scheme and Partial-Regeneration Strategy,

N = 100, KS = 990, T = 10, the maximum number of FEs is 2× 107.

Based on the experimental results, the proposed MMDE is able to find

numerous solutions that satisfy condition (5.8). Based on the solutions provided

by MMDE, the feasible region in solution space have been successfully located,

in which all the solutions are valid. Fig. 5.6 plots the worst-case objective values

of all the solutions within or around the feasible region in solution space. All

the solutions with worst-case objective values less than 1 are valid solutions for

this design problem. Within the feasible region, the solutions with lower worst-

case objective values are preferred since they provide generally faster learning

convergence speed.
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Worst-Case Objective Value

Figure 5.6: This figure plots the worst-case objective values of the solutions within or
around the feasible region in solution space.
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5.4.2 Robust Stabilization of Uncertain Time-Delay Systems

Time-delays are inevitable in many natural and industrial applications, and they

often give rise to oscillations or instability of the entire systems. The robust sta-

bilization of time-delay systems with uncertainties have been a very challenging

problem in the realm of control theory [176, 177]. In [177], a linear matrix in-

equality (LMI) based approach was proposed to solve this robust stabilization

problems, and it was claimed that the LMI approach obtained less conservative

results compared to other traditional methods. In order to further examine the

effectiveness of MMDE, this Robust Stabilization task will be formulated into

a minimax optimization problem, and the results generated by MMDE will be

compared with those of LMI method.

Consider an uncertain time-delay system containing nonlinear saturating

actuators

ẋ(t) = A(δ)x(t) + A1(δ)x(t− d) +B(δ)u′(t)

u′(t) = sat(u(t))

sat(u(t)) = [sat(u1(t))sat(u2(t)) . . . sat(um(t))]

x(t) = φ(t), t ∈ [−τ, 0]

(5.18)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector of the

actuator, u′(t) ∈ Rm is the control input vector to the plant, A(δ) = A+∆A(δ),

A1(δ) = A1 + ∆A1(δ), B(δ) = B + ∆B(δ), A ∈ Rn×n, A1 ∈ Rn×n and B ∈

Rn×m are constant matrices, ∆A(·), ∆A1(·) and ∆B(·) represent parameter

uncertainties, sat(·) is the nonlinear saturation function, φ(t) is a smooth vector-

valued continuous initial function.
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The admissible uncertainties are assumed to be of the form

∆A(δ) = H1F1(δ)E1

∆A1(δ) = H2F2(δ)E2

∆B(δ) = H3F3(δ)E3

(5.19)

where Fi(δ) ∈ Rsi×qi , i = 1, 2, 3 are unknown real matrices with Lebesgue

measurable elements that satisfy

F T
i (δ)Fi(δ) ≤ I, i = 1, 2, 3 (5.20)

and Hi, Ei, i = 1, 2, 3 are known real constant matrices.

The purpose of our task is to extend the upper bound τ of time-delay d

such that the uncertain linear time-delay system is robustly stabilizable for any

0 < d ≤ τ . In order to convert the robust stabilization task into a minimax

optimization problem, the original system described in (5.18) is written as

ẋ(t) = Āx(t) + Ā1x(t− d) + B̄Lx(t) (5.21)

where Ā = A + ∆A(δ), Ā1 = A1 + ∆A1(δ), B̄ = B + ∆B(δ), Lx(t) = u′(t)

and L is a predefined real-valued matrix. After performing Laplace transform

on (5.21), we will have

sIX(s) = ĀX(s) + Ā1e
−dsX(s) + B̄LX(s) (5.22)

To ensure the system stability, all poles of the system must be negative, and this

is equivalent to ensuring all the roots s of equation

det(sI − Ā− Ā1e
−ds − B̄L) = 0 (5.23)

are negative. det(·) means the determinant of a matrix. Now the target becomes

to find a matrix L such that all the roots s of (5.23) are negative under any
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uncertainties resulted from Ā, Ā1 and B̄. This can be achieved by solving a

minimax optimization problem that aims at minimizing the value of the largest

root of (5.23) under the worst-case uncertainty.

min
L

max
Ā,Ā1,B̄

{smax|det(sI − Ā− Ā1e
−ds − B̄L) = 0} (5.24)

where smax is the largest root of the equation. If the obtained largest root is less

than 0, then it is guaranteed that all the remaining poles are also negative so that

the system is successfully stabilized.

The same numerical example in [177] is tested here:

A =

−2 0

1 −3

 , A1 =

 −1 0

−0.8 −1

 , B =

 1 2

−1 4



Hi =

0.2 0

0 0.2

 , Ei =

1 0

0 1

 , i = 1, 2, 3

Fi =

sin(δ) 0

0 cos(δ)

 , i = 1, 2, 3 (5.25)

Based on the above assumptions, L is a 2 by 2 matrix, and the 4 elements of

L will be optimized by MMDE as variables in solution space. The searching

domain for all the solution variables are [−100, 100]. δ will be treated as the

variable in scenario space, and the search domain is [0, 2π]. Other control pa-

rameters of MMDE are set as follows: F = 0.7 and Cr = 0.5 for both Bottom-

Boosting Scheme and Partial-Regeneration Strategy, N = 100, KS = 990,

T = 10, the maximum number of FEs is 1 × 106. Newton-Raphson method

is employed to obtain the largest roots of (5.23) with an extremely big initial

guess. For each L found by MMDE, an exhaustive search will be performed
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over scenario space to ensure that the system is stabilized by L under all the

possible uncertainties.

During the experiments, the time-delay d will be gradually increased if

MMDE is able to find a matrix L that can robustly stabilized the system. Fi-

nally, the d value has been increased to 1.33, and it has been validated that

MMDE is able to solve this robust stabilization task for any 0 < d ≤ 1.33. In

comparison, the LMI approach can only robustly stabilize this system for time-

delay d ≤ 0.2961 [177]. Using MMDE, the upper bound for feasible time-delay

has increased by 349.17%.

5.5 Conclusion

A MMDE algorithm is proposed in this chapter to overcome the limitations of

existing approaches in solving minimax optimization problems. In scenario up-

dating phase, the Bottom-Boosting Scheme successfully skips a large number

of unnecessary objective function computations while maintaining the reliabil-

ity of solution evaluations. In solution updating phase, the Partial-Regeneration

Strategy and “DE/current/1” mutation operator allow an efficient solution explo-

ration based on current population. Moreover, the overall algorithmic structure

enables the proposed method to properly handle the asymmetrical problems.

Experimental results show that MMDE outperforms all the other tested algo-

rithms in both symmetrical and asymmetrical benchmarks. The effectiveness of

MMDE is further validated by solving two open problems in robust design.
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Conclusion & Future Work

6.1 Conclusion

The primary focus of this thesis is to develop new DE-based operators and al-

gorithms for solving various types of numerical optimization problems, e.g.,

problems with unknown variable interrelations, multi-objective problems and

minimax problems. The proposed approaches in this thesis have successfully

addressed several open issues in EA community, and the effectiveness of the

new methods have been validated via both theoretical analysis and empirical

studies.

In chapter 3, a multiple exponential recombination is proposed to over-

come the limitations of existing DE crossover operators in handling dependent

variables. By exchanging multiple segments among individuals simultaneously,

the new operator is able to preserve all the main advantages of traditional bino-

mial recombination and exponential recombination while showing a more robust

performance in tackling different types of dependent variables. Implementations
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in 6 classical DE variants and 1 adaptive DE algorithm demonstrate the strength

of the proposed operator in solving problems with unknown variable interrela-

tions.

In chapter 4, two novel mutation operators and one new parameter adap-

tation mechanism are proposed to circumvent the following issues for existing

MO-DEs: slow convergence speed, parametric sensitivity and lack of flexibility

in implementation. A new ACGDE algorithm is developed by systematically

combining the proposed operators and mechanisms. ACGDE utilizes the in-

formation across different generations to predict the promising searching direc-

tions and favorable control parameters. Experimental results show that ACGDE

is able to trigger a delicate trade-off between diversity and convergence. Com-

parisons with other state-of-the-art MOEAs verify the superiority of ACGDE in

solving MOPs.

In chapter 5, a new DE-based algorithm is devised for solving several

fundamental problems with existing minimax optimization EAs: incapability

of solving asymmetrical problems, high computational cost and low optimiza-

tion efficiency. The proposed Bottom-Boosting Scheme significantly reduce the

computational cost for searching promising solutions without sacrificing the re-

liability. The new Partial-Regeneration Strategy and “DE/current/1” mutation

operator substantially enhance the exploration efficiency for solution optimiza-

tion. Proper integration of all the new mechanisms generates an algorithm that

can successfully avoid the infinite optimization cycle while handling asymmet-

rical problems. The proposed algorithm is proved to be very powerful in solv-

ing both symmetrical and asymmetrical problems by comparing with several
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famous minimax optimization EAs. Applications in robust optimal design of

ILC and robust stabilization of uncertain time-delay systems further validate the

effectiveness of the proposed method.

Besides the above specific conclusions, some high-level thoughts about the

area of evolutionary computation are also inspired by the works in this thesis:

first, the mathematical analysis of the behaviors of EAs is very critical in solidi-

fying the theoretical basis of EAs. However, because of the involvement of large

numbers of stochastic processes, most researchers in EA community found it too

difficult to systematically theorize the behaviors of EAs. Similar to the studies

in Chapter 3, a combination of mathematical proof and experimental verifica-

tion may be an effective way for EA community to overcome this issue; second,

during the design of EAs, researchers should take into account the usability and

extensibility of the algorithm in addition to the optimization efficiency. Like

the proposed operators in Chapter 3 and Chapter 4, the convenience in control-

ling the algorithm behaviors and the easy steps for implementing to different

frameworks have substantially increase the practical values of the new opera-

tors; third, the EA researchers should consider comparing EAs with traditional

approaches from other areas, e.g., the LMI method in Chapter 5. These com-

parisons will further validate the effectiveness of EAs and provide more useful

insights for the whole scientific community.

6.2 Future Work

Similar to all the traditional crossover operators, the proposed multiple expo-

nential recombination is sensitive to the selection of control parameter Cr. The
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value of Cr has a significant impact on the average lengths of the exchanged

segments among individuals. Development of an automatic adaptation mecha-

nism exclusively for multiple exponential recombination would further improve

the optimization efficiency of the proposed operator. The adaptation mechanism

could be based on the detection of variable interrelations. By analyzing the de-

pendency relationships among variables, a proper Cr value could be employed

to achieve the desired exchanging length. Another limitation with the current

research works is the lack of new benchmark problems that possess more dif-

ferent variable dependency configurations. Design of a benchmark suite with

various variable interrelations could provide more convenience for the testing

and comparison of related approaches.

In the proposed ACGDE algorithm, the utilization probability of NCG mu-

tation and PCG mutation are both fixed as 50%. It would be interesting if a dy-

namic mechanism could be introduced to intelligently adapt the ratio between

NCG mutation and PCG mutation. Online performance assessment of the two

mutation strategies can be conducted to dynamically decide the utilization ratio.

Another potential enhancement of ACGDE could be the involvement of more

than two generations. The current ACGDE only uses the information from two

consecutive generations, which may not be enough for a reliable estimation of

correct searching directions. Extracting information from more generations is

expected to increase the accuracy of predictions. Last, in Chapter 4, ACGDE is

implemented in dominance-based and decomposition-based MO frameworks. It

will provide more insightful results to implement ACGDE in many other types

of MO frameworks, e.g., indicator-based MO frameworks.
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From the empirical results in Chapter 5, different types of problems may

require different choices of KS values. In order to introduce a self-adaptive

mechanism for KS in MMDE, the properties of the minimax optimization prob-

lem need to be analyzed. One possible way is to decide whether the problem

is symmetrical or asymmetrical by comparing the associated scenarios among

different solutions. After that, relatively smaller KS values can be used for

symmetrical problems and larger KS values can be employed for asymmetrical

ones. As a result, the robustness of the proposed algorithm will be enhanced.

In section 5.4, MMDE is successfully applied to solve two practical problems

in robust control. In future works, the new algorithm will be extended to more

application areas. One promising domain is the minimax optimal design in bio-

statistics. Most of the biostatistics researchers are solving minimax optimization

problems with basic EAs [178], which may suffer from low efficiency and poor

robustness. The proposed MMDE will provide the biostatistics community a

more powerful solver for minimax optimal design problems.
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