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1. Introduction 

In many real-world applications, the arrangement, ordering, and selection of a discrete set of 
objects from a finite set, is used to satisfy a desired objective. The problem of finding optimal 
configurations from a discrete set of objects is known as the combinatorial optimisation 
problem. Examples of combinatorial optimisation problems in real-world scenarios include 
network design for optimal performance, fleet management, transportation and logistics, 
production-planning, inventory, airline-crew scheduling, and facility location.  
While many of these combinatorial optimisation problems can be solved in polynomial time, 

a majority belong to the class of NP -hard (Aardal et al., 1997). To deal with these hard 

combinatorial optimisation problems, approximation and heuristic algorithms have been 
employed as a compromise between solution quality and computational time (Festa and 
Resende, 2008). This makes heuristic algorithms well-suited for applications where 
computational resources are limited. These include dynamic ad-hoc networks, decentralised 
multi-agent systems, and multi-vehicle formations. The success of these heuristic algorithms 
depends on the computational complexity of the algorithm and their ability to converge to 
the optimal solution (Festa and Resende, 2008). In most cases, the solutions obtained by 
these heuristic algorithms are not guaranteed optimal.  
A recently developed class of heuristic algorithms, known as the meta-heuristic algorithms, 
have demonstrated promising results in the field of combinatorial optimisation. Meta-
heuristic algorithms represent the class of all-purpose search techniques that can be applied 
to a variety of optimisation problems including combinatorial optimisation. The class of 
meta-heuristic algorithms include (but not restricted to) simulated annealing (SA), tabu 
search, evolutionary algorithms (EA) (including genetic algorithms), ant colony 
optimisation (ACO) (Aguilar, 2001), bacterial foraging (Passino, 2002), scatter search, and 
iterated local search. 
Recently, a new family of computationally efficient meta-heuristic algorithms better posed 
at handling non-linear constraints and non-convex solution spaces have been developed. 
From this family of meta-heuristic algorithms, is particle swarm optimisation (PSO) 
(Kennedy and Eberhart, 1995). Like other biologically inspired meta-heuristic algorithms, 
PSO is an adaptive search technique that is based on the social foraging of insects and 
animals. In PSO, a population of candidate solutions are modelled as a swarm of particles. 
At each iteration, the particles update their position (and solution) by moving stochastically 
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towards regions previously visited by the individual particle and the collective swarm. The 
simplicity, robustness, and adaptability of PSO, has found application in a wide-range of 
optimisation problems over continuous search spaces. While PSO has proven to be 
successful on a variety of continuous functions, limited success has been demonstrated to 
adapt PSO to more complex richer spaces such as combinatorial optimisation.  
In this chapter, the concepts of the standard PSO model are extended to the discrete 
combinatorial space and a new PSO is developed to solve the combinatorial optimisation 
problem. The chapter is organised as follows: In Section 2, a brief review of related works to 
solving the combinatorial optimisation space using meta-heuristics is presented. In Section 
3, the standard PSO model is introduced. The nature of the combinatorial optimisation 
problem is then presented in Section 4 before the concepts of the standard PSO model are 
adapted to the combinatorial space in Section 5. Section 6 analyses the stability and 
performance of the newly developed algorithm. The performance of the newly developed 
algorithm is then compared to the performance of a traditional genetic algorithm in Section 
7 before Section 8 concludes with final remarks. 

2. Related Works 

In recent years, variants of traditional PSO have been used to solve discrete and 
combinatorial optimisation problems. A binary PSO was first developed in (Kennedy and 
Eberhart, 1997) to solve discrete optimisation problems. In the binary PSO, each particle 
encoded a binary string in the solution space. A particle moved according to a probability 
distribution function determined using the Hamming distance between two points in the 
binary space. The early concepts introduced by the binary PSO appeared in later PSO 
algorithms for combinatorial optimisation such as in (Shi et al., 2006); (Tasgetiren et al., 
2004); (Liu et al., 2007b); (Pang et al., 2004); (Martínez García and Moreno Pérez, 2008); (Song 
et al., 2008); and (Wang et al., 2003). Tasgetiren et al. (Tasgetiren et al., 2004) introduced the 
smallest position value rule (SPV) to enable the continuous PSO algorithm to be applied the 
class of sequencing and combinatorial problems. In SPV, each particle assigns a position 
value in continuous space to each dimension in the discrete space. At each iteration, the 
position value is updated according to the traditional velocity update equation and the 
sequence of objects is re-sorted according to the values assigned to the continuous space. 
The method proposed by (Tasgetiren et al., 2004) is similar to the random keys in GA (Bean, 
1994). Following a similar method to (Kennedy and Eberhart, 1997), Wang et al. (Wang et 
al., 2003) introduced the concept of a swap operator to exchange dimensions in the particle 
position. In (Wang et al., 2003), each particle encoded a permutation of objects and a 
transition from one position to the next was achieved by exchanging elements in the 
permutation. To account for both the personal best positions and global best positions, 
Wang et al. extended the concept of swap operator to swap sequence. The swap sequence 
was used to move a particle from one position to the next by successively applying a 
sequence of swap operators. Using this approach, the notion of velocity on the 
combinatorial space was defined; and the Hamming distance was used to exclusively 
determine the motion of a particle. Premature convergence was addressed by randomly 
applying the swap operator to the particle. Similar approaches to Wang et al. include (Shi et 
al., 2006); (Martínez García and Moreno Pérez, 2008); and (Bonyadi et al., 2007), where a 
swap sequence was also constructed through the concatenation of successive swap 
operators. The ordering of these swap operators influences the position of the particle at the 
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end of each iteration. In (Wang et al., 2003); (Shi et al., 2006); (Martínez García and Moreno 
Pérez, 2008); and (Bonyadi et al., 2007), the swap sequence is constructed by first applying 
the swap operators that move the particle to it’s personal best, followed by the swap 
operators that move the particle to it’s global best. For sufficiently small perturbations, the 
particles will tend towards the global best position of the swarm and stimulate the loss of 
solution diversity. This invariably leads to the rapid convergence of the algorithm and poor 
solution quality. For large complex optimisation problems, the PSO must compromise the 
local and global search strategies effectively to find high-quality (if not optimal) solutions 
rapidly. In addition, the PSO framework must be sufficiently robust to adapt to a wide 
variety of discrete and combinatorial optimisation problems. In this chapter, a generalised 
combinatorial optimisation framework is introduced that builds on the works of (Wang et 
al., 2003); (Shi et al., 2006); (Tasgetiren et al., 2004); and (Kennedy and Eberhart, 1997) to 
develop a new combinatorial optimisation PSO. In the following section, a brief introduction 
into the traditional PSO is presented before the main results of this chapter are developed. 

3. The Standard Particle Swarm Optimisation Model 

Let P  denote a D -dimensional problem, and R→Xxf :)( an objective function for the 

problem that maps X to the set of real numbers. Without loss of generality, consider the 

following optimisation problem )(minarg xfxXx Xx∈

∗∗ =⇔∈  Xx∈∀ . In traditional PSO, a 

solution i  is represented by a particle in a swarm P  moving through D -dimensional space 

with position vector ))(,),(,),1(( Dxdxxx i

k

i

k

i

k

i

k KK=  for any time k . At each iteration, the 

particles adjust their velocity i

kv  along each dimension according to the previous best 

position of the i -th particle i

kp  and the best position of the collective swarm g

kp  (see Fig. 1). 

The position i

kx  for the i -th particle is updated according to the following velocity function: 

 )()( 22111

i

k

g

k

i

k

i

k

i

k

i

k xprcxprcvwv −⋅⋅+−⋅⋅+⋅=+  (1a) 

 i

k

i

k

i

k vxx +=+1  (1b) 

where ]1,0[, 21 ∈rr are random variables affecting the search direction, R∈21 ,cc are 

configuration parameters weighting the relative confidence in the personal best solutions 
and the global best solutions respectively, and w is an inertia term influencing the 

momentum along a given search direction. Algorithm 1 summarises the iterative nature of 
the PSO algorithm. 

The terms 1c  and 2c are the main configuration parameters of the PSO that directly influence 

the convergence of the algorithm. For large values of 1c , exploration of particles is bounded 

to local regions of the best previously found solutions i

kp . This maintains population 

diversity and is favourable when the problem is characterised by non-linear and non-convex 

solution spaces. In contrast, large 2c values will encourage particles to explore regions closer 

to the global best solution g

kp at each iteration. Generally, this search strategy will converge 

faster and is practical for convex solution spaces with unique optima. Adjusting the inertia 
term w affects the relative weighting of the local and global searches. A large w  encourages 

the particles to explore a larger region of the solution space at each iteration and maximise 
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global search ability, whilst a smaller w  will restrict the particles to local search at each 

iteration (Shi and Eberhart, 1998b). 

x
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Figure 1. Particle position and velocity on a two-dimensional vector space 

0: for all particle i do 

1:  initialise position i

kx randomly in the search space 

2: end for 

3: while termination criteria not satisfied do 

4:  for all particle i do 

5:   set personal best i

kp as the best position found by the particle so far 

6:   set global best g

kp as the best position found by the swarm so far 

7:  end for 

8:  for all particle i do 

9:   update velocity according to 

   )()( 22111

i

k

g

k

i

k

i

k

i

k

i

k xprcxprcvwv −⋅⋅+−⋅⋅+⋅=+  

10:   update position according to 

   i

k

i

k

i

k vxx +=+1  

11:  end for 
12: end while 

Algorithm 1. Traditional PSO 

4. Problem Description and Model Construction 

The combinatorial optimisation problem for PSO is now discussed. Let },,,,{ 21 KK ixxxX =  

denote the finite set of solutions to the combinatorial optimisation problem with objective 

function R→Xf : . Assume the objective of the combinatorial optimisation problem is to 

find Xx ∈∗ , such that )(minarg xfxXx Xx∈

∗∗ =⇔∈  Xx∈∀ . Consider the case where a 
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solution Xx i ∈ to the combinatorial optimisation problem is given by the linear ordering of 

elements in the set },,2,1{][ nn K= , such that Xx i ∈∀ , },,2,1{))(,),2(),1(( nnxxxx iiii KK ∈= . 

Then !nX = . Each integer value in the list encodes the relative ordering of a set of objects 

and is referred to as a permutation of objects (Bóna, 2004). These include cities in a tour, 
nodes in a network, jobs in a schedule, or vehicles in a formation. For convenience, a 

permutation is represented using two-line form. Let ][][: ndg → be a bijection on the ordered 

list. If ][n describes the list of numbers },,1{][ nn K= , then },,1{][ nd K=  and g is also a 

permutation of the set ][n (Bóna, 2004).  

Example 1. 

As an example, consider the following permutation }2,5,1,4,3{ . The function ]5[]5[: →g  

defined by 3)1( =g , 4)2( =g , 1)3( =g , 5)4( =g , and 2)5( =g is also permutation of ]5[  

(Bóna, 2004). In two-line form, the set ]5[  can be written as: 

 
25143

54321
=g   

where it is implied that g maps 1 to 3, 2 to 4, 3 to 1, 4 to 5, and 5 to 2. 

5. Fitness Landscape 

In order to adapt PSO to the combinatorial space, it is convenient to define a metric space 

characteristic of the combinatorial optimisation problem. Let XX 2: →N  denote a syntactic 

neighbourhood function that attaches to each solution Xx i ∈  the neighbouring set of 

solutions Xxx i

i

j ⊆∈ )(N that can be reached by applying a unitary syntactic operation 

moving ji xx a  (Moraglio and Poli, 2004). Denote this unitary syntactic operator by ϕ and 

assume that the operation is reversible, i.e. )()( j

j

ii

i

j xxxx NN ∈⇔∈ . Such a 

neighbourhood can be associated to an undirected neighbourhood graph ),( EVG = , where 

V is the set of vertices representing the solutions Xx i ∈ , and E the set of edges representing 

the transformation paths for permutations. By definition, the combinatorial space endowed 

with a neighbourhood structure )( i

i xN and induced by a distance function ),( ji

ij xxh is a 

metric space. Formally, the definition of a metric or distance function is any real valued 

function ),( ji

ij xxh that conforms to the axioms of identity, symmetry, and triangular 

inequality, i.e.: 

1. 0),( ≥ji

ij xxh  and 0),( =ii

ij xxh  (identity); 

2. ),(),( ij

ij

ji

ij xxhxxh = (symmetric); 

3. ),(),(),( ji

ij

il

li

jl

ij xxhxxhxxh +≤ (triangle inequality); 

4. if ji ≠ , then 0),( >ji

ij xxh . 

A neighbourhood structure )( i

i xN induced by a distance function ),( ji

ij xxh can then be 

formally expressed as: 

 }),(,|{)( sxxhXxxx ji

ij

jji

i ≤∈=N  (2) 
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where R∈s . On a combinatorial space with syntactic operator ϕ , any configuration ix can 

be transformed into any other jx by applying the operator ϕ a finite number of times 

( ns ≤<1 ) (Misevicius et al., 2004). In such a case, the distance metric ),( ji

ij xxh  is given by 

the Hamming distance: 

∑
=

−=
n

l

jiji

ij dxdxxxh
1

)()(sgn),(  

and s represents the minimum number of exchanges to transform ix into jx . Other distance 

metrics can be similarly defined (see (Ronald, 1997); (Ronald, 1998); and (Moraglio and Poli, 
2004) references therein for a comprehensive treatment on distance metrics defined on the 
combinatorial space). 
For generality, only the deviation distance metric (Ronald, 1998) will be considered hereafter. 
While other distance metrics can be defined for discrete and combinatorial spaces, the 
decision to use the deviation distance metric is trivial with respect to algorithmic design. 
Other problem-specific metrics can be substituted into the developed algorithm with little 
influence on the procedural implementations of the algorithm. 
The deviation distance metric provides a measure of the relative distance of neighbouring 

elements between two permutations ix  and jx . In problems where the adjacency of two 

elements influences the cost of the objective function )(xf , such as in TSP and flow-shop 

scheduling, the deviation distance function provides an appropriate choice of metric for the 

problem space (Ronald, 1998). Formally, the positional perturbation a∆  of one element value 

)( 1dx i  to its matching value in )( 2dx j , such that adxdx ji == )()( 21 , ][na∈ , is given by the 

following: 

 21 dda −=∆  (3) 

For convenience, a∆ is normalised ]1,0[∈∆a : 

 
1−

∆
=∆
n

a

a
 (4) 

The deviation distance ),( ji

ij xxh  is then defined as the sum of the a
∆ values: 

 ∑∆=
n

a

a

ji

ij xxh ),(  (5) 

From Eq. (5) a large position deviation induces a greater distance in the metric space. The 
notion of position deviation is now used to construct the combinatorial optimisation PSO. 

6. Proposed Algorithm 

In Section 4.1, the concept of a syntactic operatorϕ  was discussed as a method of 

transforming one configuration ix to another )( i

i

j xx N∈ . In the following section, the 

parallel between a syntactic operator ϕ and the motion of a particle i in the combinatorial 
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space is described. Let Xx i ∈ encode a permutation of ][d  objects in D -dimensional space. 

The position Xx i ∈  of a particle i  in the D -dimensional space corresponds to a 

permutation of ][d  objects. Define ϕ  by a two-way perturbation (transformation) operator 

),(: 21 ddSO=ϕ  as the swap operator that exchanges elements 1d  and 2d  in solution ix , such 

that XX → , },2,1{, 21 Ddd K∈ , 21 dd ≠ . Applying the swap operator to the permutation ix , 

the following solution is derived: 

 ),( 211 ddSOxx i

k

i

k ⊕=+  (6) 

where adxdx ji == )()( 21 , and )(,, 1 i

ki

ji

k

j

k xxxx N∈+ , and the notation ⊕ is used to 

denote i

kx 1+ is obtained from i

kx by applying the perturbation ),( 21 ddSO . In the combinatorial 

optimisation PSO, i

kx  and Xxx i

ki

j

k ⊆∈ )(N , j

k

i

k xx ≠  encode two permutations in the 

combinatorial optimisation problem and represents positions in the combinatorial search 

space. Applying the notions of swap operator to PSO, the swap operator ),( 21 ddSO for a 

particle i  can be interpreted as a motion of the particle i

kx  to a position j

kx  displaced from i

kx  

by the deviation distance ),( j

k

i

kij xxh . Consider the case when )( i

ki

j

k xx N∉ . Then, the 

following transition j

k

i

k xx a is not possible by Eq. (6) alone. Define the following swap 

sequence (Knuth, 1998): 

 },,,{ 21 nSOSOSOSS K=  (7) 

where SS is the concatenation of swap operators and the order of the swap operators iSO , 

ni ,,1K=  is influential to the final position i

kx 1+ . The minimum number of swap operators 

required to move j

k

i

k xx a  is given by the Hamming distance and is referred to as the basic 

swap sequence (Knuth, 1998). 

Suppose particle imoves according to i

k

i

k px a . The basic swap sequence transforming i

kx  

to i

kp can be determined by moving along each dimension of the initial position i

kx  and 

applying the Partially Mapped Crossover function (PMX) (Goldberg and Lingle, 1985) to 

each dimension along i

kx . The PMX function maps each dimension in the current position 
i

kx  to the corresponding dimension in i

kp  (see Fig. 2). A swap operator is invoked if the 

object in the 1d -th dimension of the i

kp solution and the i

kx are inconsistent. The 1d -th 

element in i

kx  is then swapped with the 2d -th element in i

kx  such that )()( 12 dpdx i

k

i

k = . 

Algorithm 2 summarises the basic swap operator used to move i

k

i

k px a  

1: while 0),( ≠ji xxd  

2:  if )()( 11 dxdx j

k

i

k ≠  then 

3:   find 2d such that 112 )()( adxdx j

k

i

k == , and },,1{, 21 Ddd K∈  

4:    set ),(
21
ddSO

j
and store as j -th entry in SS  

5:  else, end if 
4: end while 

Algorithm 2. Basic Swap Operator 
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Note, applying the algorithm from left-right gives 12 dd > , },,2,1{, 21 Ddd K∈ . 

Example 2. 

Consider the following two solutions )(
54321

54321=ix and )(
45132

54321=jx represented in two-

line form. Applying Algorithm 2 from left to right, the first swap operator is invoked if 

)1()1( ji xx ≠ . Since 1)1( =ix and 2)1( =jx , the following mapping is observed between 

object 21→ . The first swap operator is then given by the exchange of elements 1 and 2 in 

ix , )2,1(1SO . Following )2,1(1SO , particle i is now at position )(
54312

54321=′x . 

Comparing x′ to jx , the following mapping 31 ↔  is now observed between object 

)2(x′ and )2(jx . The next mapping is then given by )3,2(2SO taking x′ to )(
54132

54321=′′x . 

Repeating this procedure, the swap sequence SS that takes ix to jx is then given by 

)}5,4(),3,2(),2,1({ 321 SOSOSOSS =  such that SSxx ij ⊕= . 

)5,4(

)1,3(

)3,2(

)2,1(

SO

SO

SO

SO

 

2 3 1 5 4

1 2 3 4 5=:ix  

=:jx  

 

Figure 2. Partially-mapped crossover (PMX) 

In traditional PSO, the motion of a particle is influenced by the personal best position i

kp  

and global best of the swarm g

kp . In the combinatorial optimisation PSO, each position 

encodes a permutation to the combinatorial optimisation problem. If the personal best and 

global best positions are not coincident, i.e. g

k

i

k pp ≠ , then the swap sequences 1SS and 

2SS that moves the i -th particle along the transformations i

k

i

k px a and g

k

i

k px a  

respectively, are not equivalent, i.e. 21 SSSS ≠ . Application of 1SS or 2SS will yield i

k

i

k px =+1  

or g

k

i

k px =+1  and will cause the particles to converge towards the personal best solution, or 

the global best solution respectively. This leads to rapid convergence and sub-optimal 

solution quality. The local search induced by the exclusive application of 1SS , and the global 

search induced by the exclusive application of 2SS  is now combined to develop a velocity 

update function with similar characteristics to the original PSO algorithm. 
In the traditional PSO algorithm, the velocity of a particle is composed of three parts; the 

momentum term, i.e. wv ⋅ , the cognitive velocity )(11

i

k

i

k xprc −⋅⋅ , and the social velocity 

)(22

i

k

g

k xprc −⋅⋅ . Using the notions of momentum, cognitive velocity, and social velocity, the 

following decoupled velocity update for a particle in the combinatorial space with deviation 

distance metric a∆ is defined: 

 )),((1

,,

1

i

k

i

ka

il

k

il

k pxcvwv ∆′⋅+⋅=+  (8a) 
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 )),((2

,,

1

g

k

i

ka

ig

k

ig

k pxcvwv ∆′⋅+⋅=+  (8b) 

where w , 1c , and 2c have the same meanings as the original PSO algorithm. For convenience, 

denote Eq. (8a) as the local velocity and Eq. (8b) as the global velocity. Equation (8a) and (8b) 
preserve the same tuning parameters as the original PSO without the random variables 

]1,0[, 21 ∈rr . The decision to omit the random variables is trivial, but will become apparent in 

the proceeding section. 

Recall, the position of each particle i

kx , Pi∈∀  is a vector in the D -dimensional 

combinatorial space Xx ik ∈ and moves along the dimensions of the D -dimensional 

hypercube by exchanging elements via the swap operator ),( 21 ddSO . The velocity of each 

particle i

kv , Pi∈∀  is a vector in the D -dimensional continuous space Di

kv R∈  and describes 

the local gradient of the fitness landscape using the deviation distance metric. Using the 

velocity Di

kv R∈  , a probability mapping is described that invokes the swap operator and 

preserves the contributions of both the local velocity and global velocity. Let 

))(|)(Pr( dpdx ii  and ))(|)(Pr( dpdx gi  denote the sampling probability of the i -th particle for 

dimension d in the particle when the individual best is )(dp i and global best is )(dp g  

respectively. Then, the probability that )(dx i  moves to )(dp i and )(dp g is given by the 

following statements: 

 il

k

i

k

i

k vdpdx ,:))(|)(Pr( =  (9a) 

 ig

k

g

k

i

k vdpdx ,:))(|)(Pr( =  (9b) 

Since )(dp i and )(dp g  is a mapping for )()( dpdx ii a  and )()( dpdx gi a  respectively, the 

probability that the swap operator ),(
21
ddSO

j
is invoked by moving )()( dpdx ii a or 

)()( dpdx gi a  using Algorithm 2 is defined using the local and global velocities 

respectively: 

 il

kvddSO ,

21 :)),(Pr( =  (10a) 

 ig

kvddSO ,

21 :)),(Pr( =  (10b) 

where )()( 12 dpdx ii = or )()( 12 dpdx gi = for )()( dpdx ii a  and )()( dpdx gi a  respectively. 

Following Eq. (10a) and Eq. (10b), the velocity )(dv ik describes the probability that an 

element in )(dx ik will swap with the corresponding element in )(dx jk  and invoke Algorithm 

2, then the velocity on each dimension Dd∈ must be bounded over the interval 

]1,0[)( ∈dv ik . The velocities described in Eq. (10a) and Eq. (10b) are normalised according to: 

 
},max{arg ,

1

,

1

,

1,

1 ig

k

il

k

il

kil

k
vv

v
v

++

+
+ =  (11a) 
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},max{arg ,

1

,

1

,

1,

1 ig

k

il

k

ig

kig

k
vv

v
v

++

+
+ =  (11b) 

Normalising the velocities with respect to both the personal best and global best velocity 
profiles is used to prioritise the order of swap operations and preserve the probability map. 

Once an element )( 1dx ik has been swapped with the corresponding element )( 2dx ik  in 

)( 1dp ik , the associated velocity )( 2dv ik  at element )( 2dx ik is set to zero if )()( 22 dpdx i

k

i

k =  to 

prevent cyclic behaviour. 
Using the definition of the sample probability in Eq. (10a) and Eq. (10b) for the personal best 
and global best respectively, the swap sequence induced by the combinatorial optimisation 
PSO can now be described. From Eq. (8a) and Eq. (8b), large deviation distances incur a 
large velocity. This observation is complimentary to the original concepts of the traditional 
PSO algorithm. Following Eq. (10a) and Eq. (10b) a large velocity will induce a greater 
probability that a swap operation is invoked with either the personal best or global best. 
Using this concept, a swap sequence can be defined using the relative probabilities of the 

personal best and global best velocity profiles. Consider the case when )()( ,, dvdv ig

k

il

k > . Then, 

the probability of exchanging )()( dpdx i

k

i

k a is greater than the probability of exchanging 

)()( dpdx g

k

i

k a . In the swap sequence, the larger of the two probabilities will receive a 

higher priority in the swap sequence and take precedence over the lower probability swap 
operations. At a given iteration, particle iwill move according to the following swap 

sequence: 

 SSxx i

k

i

k ⊕=+1  (12) 

where )))(),(()),(),((( 21 dpdxSOdpdxSOSS g

k

i

k

i

k

i

k=  if ig

k

il

k vv ,, > . Algorithm 3 describes the 

implementation of the swap sequence SS . 

0: for all Dd ∈ do 

1:  if )()( ,, dvdv ig

k

il

k > do 

2:   invoke swap operator ),(
21
ddSO

j
for i

k

i

k px a  using Algorithm 2 

3:    if )()( 22 dpdx i

k

i

k = do 

4:     set 0)( 2

, =dv il

k  

5:    else, end if 

6:   goto 8 

7:  otherwise if )()( ,, dvdv il

k

ig

k > do 

8:   invoke swap operator ),(
21
ddSO

j
for g

k

i

k px a  using Algorithm 2 

9:    if )()( 22 dpdx g

k

i

k = do 

10:     set 0)( 2 =dv gk  

11:    else, end if 

12:   goto 2 
13:  end if 

14: end for 

Algorithm 3. Swap Sequence 
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Following the definition of the basic swap sequence and swap sequence in Algorithm 2 and 
Algorithm 3 respectively, the proposed combinatorial PSO algorithm can now be defined. 
Algorithm 4 describes the procedural implementation of the swap sequence within the 
context of the traditional PSO algorithm. 

7. Algorithmic Analysis 

The behaviour of each particle in the swarm can be viewed as a traditional line-search 
procedure dependent on a stochastic step size and a stochastic search direction. Both the 
stochastic step size and search direction depend on the selection of social and cognitive 
parameters. In addition, the stochastic search direction is driven by the best design space 
locations found by each particle and by the swarm as a whole. Unlike traditional line-search 
procedures however, PSO uses information from neighbouring particles to influence the 
search direction at each iteration. This exchange of information plays an important role in 
the stability and performance of the swarm. In the following section, the spectral properties 
of algebraic graph theory are used to show that for a fully interconnected swarm, the 
particles will reach a consensus on the equilibrium. The analysis begins by considering the 
original PSO algorithm with velocity and position update given by Eq. (1a) and Eq. (1b). 

0: for all particle i do 

1:  initialise position i

kx randomly in the search space 

2: end for 

3: while termination criteria not satisfied do 

4:  for all particle i do 

5:   set personal best i

kp as the best position found by the particle so far 

6:   set global best g

kp as the best position found by the swarm so far 

7:  end for 

8:  for all particle i do 

9:   update local velocity according to 

   )),((1

,,

1

i

k

i

kv

il

k

il

k pxcvwv ∆′⋅+⋅=+  

10:   update global velocity according to 

   )),((2

,,

1

g

k

i

kv

ig

k

ig

k pxcvwv ∆′⋅+⋅=+  

11:   normalise local velocity according to 

   },max{arg ,,,,

1

ig

k

il

k

il

k

il

k vvvv =+  

12:   normalise global velocity according to 

   },max{arg ,,,,

1

ig

k

il

k

ig

k

ig

k vvvv =+  

13:   update position according to 

   SSxx i

k

i

k ⊕=+1  

   where SS is determined from Algorithm 3 

14:  end for 
15: end while 

Algorithm 4. Combinatorial Optimisation PSO 

www.intechopen.com



Particle Swarm Optimization 

 

302 

Without loss of generality, consider the following objective function for the combinatorial 
optimisation problem:  

 )(minarg xfx Xx∈

∗ = Xx∈∀   

Then, the personal best i

kp is the current best solution of the i -th particle found so far; i.e. 
ii

k xp ττminarg= , ],0( k∈∀τ ; and the global best g

kp is the current best solution of the global 

swarm found so far; i.e. ig

k xp ττminarg= , ],0( k∈∀τ , Ni∈∀ . The swarm of particles is said 

to have reached an equilibria if and only if all the particles have reached a consensus on the 

value of g

kp , i.e., eg

k

l

k ppp == . For asymptotic convergence, all the particles in the swarm 

must globally asymptotically reach a consensus on the global best solution, such that 
i

kk

e xx +∞→= lim , and )min(,, Xxx je

k

ie

k == , Xji ∈∀ , , ji ≠ . For convenience, Eq. (1a) and Eq. 

(1b) are combined into compact matrix form: 

 ⎥
⎦

⎤
⎢
⎣
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⎡
+⎥
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⎢
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⎡
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⎤
⎢
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+−
=⎥

⎦

⎤
⎢
⎣

⎡

+

+

g

k

i

k

i

k

i

k

i

k

i

k

p

p

rcrc

rcrc

v

x

wrcrc

wrcrc

v

x

2211

2211

2211

2211

1

1

)(

)(
 (13) 

which can be considered as a discrete-dynamic system representation of the original PSO 
algorithm. 

7.1 Equilibrium of the PSO 

Before the main analysis results are presented, a brief introduction into algebraic graph 
modelling of swarms is presented. The information flow in the swarm of particles can be 

represented using an interconnected graph ),( EVG = , where V is the enumerated set of 

particles Vx ik ∈ , },,1{ Ni K∈ in the swarm, and VVE ×⊆ is the set of edge relations between 

neighbouring particles. The order V and size E of the graph G physically represents the 

number of particles in the swarm and the number of edge connections. For a fully connected 
swarm, each particle communicates with every other particle in the population, and the 
graph is said to be complete. This is the case of the original PSO algorithm. The connectivity 

of a graph is described by the square matrix A , with size V , and elements 
ij
a  describing the 

connectivity of adjacent vertices ix and jx , such that: 

 
( )
otherwise

, if

,0

,1 Exx
a

ji

ij

∈

⎩
⎨
⎧

=  (14) 

The matrix A uniquely defines the connectivity of the graphG and is referred to as the 

adjacency matrix. Associated with the adjacency matrix A is the graph Laplacian L , and its 

Laplacian potential GΨ : 

 )(1 AL −ΛΛ= −  (15) 
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 LxxT
G

2

1
=Ψ  (16) 

where Λ is the square matrix containing the out-degree of each vertex along the diagonal, 
and x is the concatenation of particles in the swarm. A well-known property of the 

Laplacian potential is that it is positive semi-definite and satisfies the following sum-of-
squares property (Godsil and Royle, 2001): 

 ( ) n

Eji

ij

ij

T xxxALxx R∈−= ∑
∈

,
,

2

 (17) 

Using Eq. (17), the objective is to show that the personal best positions of each particle 
reaches a consensus (by way of equilibria) coincident to the global best of the swarm, i.e. 

g

k

i

k pp = , P∈∀ . Eq. (16) becomes: 

 ( ) ni

k

Eji

i

k

j

kij

T pppALpp R∈−= ∑
∈

,
,

2

 (18) 

where p is the concatenated states of the personal best of each of the particles in the swarm. 

The closed-loop dynamics of the global best position evolve according to the following 
continuous-time dynamic equation: 

 GLpp Ψ−∇=−=&  (19) 

The equilibrium points of Eq. (19) correspond to stationary points of GΨ and the region 

outside of these points, the potential is strictly decreasing (Moreau, 2004); i.e., if ex is an 

equilibrium of Eq. (18), then 0=eLx . From Eq. (16): 

 0)(
2

1
)( ==Ψ eTee

G
Lppp  (20) 

Following the connectivity of G , cpp e

j

e

i == , Nji ∈∀ , , i.e. Te ccp ),,( K= , Xc∈ . Since the 

Laplacian potential equals zero at equilibrium, then )min(pp g = is an invariant quantity, 

Given the invariance property of )min(p , then ))0(min()min( pp e = , and cp e =)min( . This 

implies ))0(min(, pp ie

k = , Pi∈∀ (Olfati-Saber and Murray, 2003). This leads to the following 

observations for the particle dynamics in Eq. (1a) and Eq. (1b) that are consistent with the 
works of (Clerc and Kennedy, 2002); (Trelea, 2003); and (Kadirkamanathan et al., 2006): 

1. The system dynamics are stochastic and order two; 

2. The system does not have an equilibrium point if l

k

g

k pp ≠ ; 

3. If eg

k

l

k ppp == is time invariant, there is a unique equilibrium at 0=ev , ee px = . 

An equilibrium point thus exists only for the best particle whose local best solution is the 
same as the global best solution (Kadirkamanathan et al., 2006).  
Consider the case for a given particle iwhen the external input is constant (as is the case 

when no personal or global better positions are found). From Eq. (15) the eigenvalues of L−  
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are negative in the complex plane. Then, for particle i , the position asymptotically 

converges to the point ex in the eigenspace associated to the global minimum found by the 

swarm of particles (Olfati-Saber and Murray, 2003). Such a position ex  is not necessarily a 

local or global minimiser of the combinatorial optimisation problem. Instead, it will improve 

towards the optimum ∗x  if a better individual or global position is found. Discovery of 

better individual or global positions can be improved by increasing the population diversity 
of the swarm through the introduction of chaos or turbulence (Kennedy and Eberhart, 1995). 
In the following section, a non-stationary Markov chain is constructed to integrate the 
discrete syntactic swap operators introduced in Section 5 to the continuous time-dynamics 
of the traditional PSO 

7.2 Non-Stationary Markov Model of combinatorial PSO 

Markov chains are important in the theoretical analysis of evolutionary algorithms 
operating on discrete search spaces (Poli et al., 2007) and have been used to model the 
probabilistic convergence of population-based meta-heuristic algorithms (see (Rudolph, 
1996); (Cao and Wu, 1997); (Poli and Langdon, 2007); and (Greenwood and Zhu, 2001) for 
examples of their implementation). While traditional PSO has operated on a continuous 
search space, the combinatorial PSO operates on a discrete combinatorial space. This makes 
Markov chains a suitable method of modelling and analysing the behaviour of the 
combinatorial PSO. The use of Markov chains on bare-bones PSO has previously been 
investigated by (Poli and Langdon, 2007) where the continuous search space was discretised 
using a hypercube sampling. In the following section, a non-stationary Markov chain is used 
to model the combinatorial PSO and account for the newly introduced swap operator. 

Let X denote the finite state space describing the set of permutation encodings with 

!nXr == possible solutions. Let XP ⊂ be a population of solutions from X with size 

NP = . Then a finite Markov chain X⊆Γ  describes a probabilistic trajectory over the finite 

state space X  (Rudolph, 1996) with )( 1!

1!

−+

−= nm

nN  possible populations as states; i.e.: 

 },,,{ 21 N
SSSX K=  (21) 

The probability )(Pr: 1

,1 m

k

n

k

mn

mn

kk
SSq =Γ=Γ= −

− of transitioning from state XSm ∈ to XSn ∈ , 

N∈nm, at step k is called the transition probability from m to n at step k . The transition 

probability of a finite Markov chain can be gathered into a transition matrix  }{ ,1

mn

kkk qQ −=  

(Rudolph, 1994), where each dimension ]1,0[,1 ∈−

mn

kkq . In a stationary Markov chain the 

probabilities remain fixed, and the Markov chain is said to be homogenous; i.e., 

}{ ,1

mn

kkk qQQ −== , K,2,1=∀k , and N,,2,1, K=nm . In the case of the combinatorial PSO, the 

probabilities of the swap operator are updated according to Eq. (8a) and Eq. (8b). This 
results in a non-stationary Markov chain. The transition probabilities of non-stationary 
Markov chains are calculated by considering how the population incidence vector 

j
S describes the composition of the next iteration (Cao and Wu, 1997). Denote 

il

k

i

k

i

k

il

k
vpxz ,, )Pr( == as the sampling probability when the personal best is i

kp ; likewise, 
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denote g

k

g

k

i

k

ig

k
vpxz == )Pr(, as the sampling probability when the global best is g

kp . The 

probability that a particle i  will move according to i

k

i

k px a or g

k

i

k px a  i

kx  is given by 

)( g

k

i

k

i

k ppz U= . From Algorithm 3, the dimension for )Pr(, i

k

i

k

il

k
pxz = and )Pr(, g

k

i

k

ig

k
pxz = is 

calculated independently using Eq. (8a) and Eq. (8b) and the probability of a particle 

sampling i

kp or g

kp is given by: 

 ( )∏
=

=
D

d

g

k

i

k

g

k

i

k

g

k

i

k dpdpdpdppp
1

)(),()()(Pr)Pr( UU  (22a) 

 ))(Pr())(Pr())(Pr())(Pr()Pr(
1

dpdpdpdppp g

k

D

d

i

k

g

k

i

k

g

k

i

k ∏
=

⋅−+=U  (22b) 

Since personal bests can only change if there is a fitness improvement, only certain state 

transitions can occur. That is, a transition from state nm SS a is possible only if the fitness of 

at least one particle in the swarm improves (Poli and Langdon, 2007). Because of the 
independence of the particles (over one time step), the state transition probability for the 
whole PSO is given by: 

 ∏=−

i

g

k

i

k

mn

kk ppq )Pr(,1 U  (23) 

From Sec. 6.1, the local velocity il

kv
,  and global velocity ig

kv
, will tend to zero as +∞→k . This 

implies 0limlimlim ,,

,1 === ∞→∞→−∞→

ig

kk

il

kk

mn

kkk vvq , N,,2,1, K=nm . Therefore, the swap operator 

preserves the convergent behaviour of traditional PSO and the combinatorial PSO converges 

to the equilibrium pair ),( ee vx . 

8. Numerical Examples 

8.1 The Travelling Salesman Problem 

To test the efficiency of the proposed algorithm, the combinatorial optimisation PSO is 
tested on the travelling salesman problem (TSP). TSP is an invaluable test problem that 

belongs to the class of NP -hard combinatorial optimisation problems. The objective of 

TSP is to find a minimum-cost tour that visits a set of n cities and returns to an initial 

point (Applegate et al., 2006). Mathematically, TSP is a combinatorial optimisation 

problem on an undirected graph ),( EVG = . Each city ][nci ∈ , ni ,,2,1 K= ,  is represented 

by a vertex Vvi ∈  in the graph ),( EVG =  with cost of travel between adjacent cities given 

by Eh
ij

∈ . A solution to TSP can be represented as a sequence of cities encoded by a 

permutation Xx∈ . Mathematically, the objective of TSP is given by the following 

optimisation problem: 

 ))1(),(())1(),((minarg
1

1
xnxhdxdxhxXx

ij

n

d ijXx
++=⇔∈ ∑ −

=∈

∗∗  (24) 
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Various problems, including path-finding, routing, and scheduling, can be modelled as a 
TSP. A repository of test-instances (and their solutions) is available through the TSPLIB 
library (Reinelt, 1991). In the following section, the combinatorial PSO is tested on several 
instances of the TPSLIB library. Table 1 summarises the test instances of TSPLIB used to 
validate and compare the combinatorial PSO. 

Name Dimension Optimal )(xf  Optimal Solution 

burma 14 30.8785 

 

gr17 17 2085 

 

gr24 24 1272 

 

eil51 51 426 

 

Table 1. Test instances taken from TSPLIB (Reinelt, 1991) used for the validation of the 
combinatorial PSO 
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8.2 Optimisation Results and Discussion 

In the following experiments, the combinatorial PSO is applied to each case of the TSP in 
Table 1. The parameters used in each experiment are selected based on the findings reported 
in the literature (Zhang et al., 2005); (Shi and Eberhart, 1998a); (Zheng et al., 2003); (Clerc 
and Kennedy, 2002); and (Eberhart and Shi, 2000). While the inertia weight, cognitive and 
social parameters are sensitive to the problem domain in traditional PSO, a parametric 
analysis of their influence on the combinatorial PSO is beyond the scope of this chapter. For 
illustrative purposes, the parameters given in Table 2 are considered throughout the 
remainder of this chapter. The influence of these parameters on the performance of the 
combinatorial PSO remains the subject of future research. 

Parameter Value

w  0.8 

1c  2.025 

2c  2.025 

Table 2. Combinatorial PSO parameters 

To demonstrate the relative efficiency of the proposed algorithm, the performance of the 
combinatorial PSO is compared to a genetic algorithm. Each TSP experiment was trialled 
100 times using randomly generated individuals. In both algorithms, a population of 

30=P was maintained for each iteration. The fitness values obtained by the combinatorial 

PSO and the GA over the 100 trials are presented in Table 3. Table 4 compares the success 
rate of the PSO and GA for each of the problems. Figure 3 compares the percentage of the 
solution space explored by the combinatorial PSO and the GA. This is determined as the 

number of unique solutions tested Xx ik ∈ , Pi∈∀ , 1000,,1K=k by the PSO and GA versus 

the size of the solution space !nX = . 

Minimum Maximum Average 
Problem 

Optimal 
Solution PSO GA PSO GA PSO GA 

burma 30.87 30.87 30.87 30.87 34.62 30.87 31.20 

gr17 2085 2085 2085 2687 2489 2141.55 2175.02 

gr24 1272 1272 1282 1632 1810 1453.52 1488.68 

eil51 426 494.80 495.46 687.52 671.85 573.55 573.95 

Table 3. Performance of the proposed algorithm compared to a traditional genetic algorithm 
for combinatorial optimisation 

From Table 3, the combinatorial PSO outperformed the GA in all problem instances, except 
for the 51 variable eil51 problem. In this case, both the GA and combinatorial PSO failed to 
find the best solution over the 100 trials. Examination of Fig. 3 suggests that both the 

combinatorial PSO and GA were only able to search a small percentage ( %1<< ) of the total 

solution space over the 1000 iterations. This suggests, that both the combinatorial PSO and 
GA experience a loss of solution diversity over the optimisation procedure. Figure 3 also 
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indicates that the GA was able to cover a larger percentage of the solution space for each 
trial than the combinatorial PSO. This suggests that the combinatorial PSO suffers from the 
same rapid convergence and stagnation issues of traditional PSO. Loss of solution diversity 
and rapid convergence is a well-known problem in traditional PSO. In traditional PSO, the 
performance of the algorithm deteriorates as the number of iterations increases. Once the 
algorithm has slowed down (becomes stagnant), it is usually difficult to achieve a better 
fitness value; particularly for high-dimensionality problem spaces. 

Success Rate (%)
Problem

PSO GA 

burma 100 92 

gr17 36 17 

gr24 4 0 

eil51 0 0 

Table 4. Success rate of the combinatorial PSO and GA 

Recently, several methods have been proposed to improve solution diversity and avoid 
stagnation in traditional PSO. These methods include the use of chaos variables (Fieldsend 
and Singh, 2002); (Kennedy and Eberhart, 1995); and (He et al., 2004); variable 
neighbourhood topologies (Kennedy, 1999); and (Liu et al., 2007a); and mutation operators 
(Liu et al., 2007b); and (Andrews, 2006). Many of these techniques have had varying levels 
of success on the traditional PSO algorithm. It is expected, that these same strategies can be 
adapted to the combinatorial PSO. Future work aims to investigate the potential to 
implement these algorithmic improvements to the combinatorial PSO and solve for larger 
scale combinatorial optimisation problems. 
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Figure 3. Comparison of the solution space searched by the combinatorial PSO and the GA 
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9. Conclusion 

The PSO’s simplicity, robustness, and low computational costs, makes it an ideal method for 
continuous optimisation problems. Previous efforts to adapt the traditional PSO algorithm 
to combinatorial spaces have shown varying levels of success. In this chapter, a new 
combinatorial optimisation PSO that builds on previous works is introduced. A distance 
metric was introduced to define a metric space for the combinatorial optimisation problem 
and a syntactic swap operator introduced. Motion was induced by associating a probability 
sampling function to the velocity profile of a particle on the combinatorial space and 
invoking the defined swap operator. The proposed algorithm was tested on several 
instances of TSPLIB and compared to the performance of a GA. Preliminary test results 
demonstrated superior performance over the GA in all test cases. For larger set sizes, the 
proposed algorithm failed to converge to the optimal solution. Examination of the sampled 
solution space suggested that the proposed algorithm suffered from the same rapid 
convergence and stagnation issues observed in traditional PSO. Further research is needed 
to clarify the effect of the various tuning parameters on the performance of the proposed 
algorithm, and their influence on loss of solution diversity. The generalised approach to the 
algorithm’s development allows for the consideration of other metrics on discrete spaces, 
and the implementation of further algorithmic improvements. Future work aims to 
investigate methods to mitigate the stagnation issues of the proposed algorithm and 
extending the combinatorial optimisation PSO’s capabilities to other discrete optimisation 
problems. 
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