1,861 research outputs found

    Mapping the Human Brain in Frequency Band Analysis of Brain Cortex Electroencephalographic Activity for Selected Psychiatric Disorders

    Get PDF
    There are still no good quantitative methods to be applied in psychiatric diagnosis. The interview is still the main and most important tool in the psychiatrist work. This paper presents the results of electroencephalographic research with the subjects of a group of 30 patients with psychiatric disorders compared to the control group of healthy volunteers. All subjects were solving working memory task. The digit-span working memory task test was chosen as one of the most popular tasks given to subjects with cognitive dysfunctions, especially for the patients with panic disorders, depression (including the depressive phase of bipolar disorder), phobias, and schizophrenia. Having such cohort of patients some results for the subjects with insomnia and Asperger syndrome are also presented. The cortical activity of their brains was registered by the dense array EEG amplifier. Source localization using the photogrammetry station and the sLORETA algorithm was then performed in five EEG frequency bands. The most active Brodmann Areas are indicated. Methodology for mapping the brain and research protocol are presented. The first results indicate that the presented technique can be useful in finding psychiatric disorder neurophysiological biomarkers. The first attempts were made to associate hyperactivity of selected Brodmann Areas with particular disorders

    Complexity Analysis of Spontaneous Brain Activity in Attention-Deficit/Hyperactivity Disorder: Diagnostic Implications

    Get PDF
    Background: Attention-deficit/hyperactivity disorder (ADHD) is defined as the most common neurobehavioral disorder of childhood, but an objective diagnostic test is not available yet to date. Neurophychological, neuroimaging, and neurophysiological research offer ample evidence of brain and behavioral dysfunctions in ADHD, but these findings have not been useful as a diagnostic test. Methods: Whole-head magnetoencephalographic recordings were obtained from 14 diagnosed ADHD patients and 14 healthy children during resting conditions. Lempel-Ziv complexity (LZC) values were obtained for each channel and child and averaged in five sensor groups: anterior, central, left lateral, right lateral, and posterior. Results: Lempel-Ziv complexity scores were significantly higher in control subjects, with the maximum value in anterior region. Combining age and anterior complexity values allowed the correct classification of ADHD patients and control subjects with a 93% sensitivity and 79% specificity. Control subjects showed an age-related monotonic increase of LZC scores in all sensor groups, while children with ADHD exhibited a nonsignificant tendency toward decreased LZC scores. The age-related divergence resulted in a 100% specificity in children older than 9 years. Conclusions: Results support the role of a frontal hypoactivity in the diagnosis of ADHD. Moreover, the age-related divergence of complexity scores between ADHD patients and control subjects might reflect distinctive developmental trajectories. This interpretation of our results is in agreement with recent investigations reporting a delay of cortical maturation in the prefrontal corte

    Evidence of language-related left hypofrontality in Major Depression: An EEG Beta band study

    Get PDF
    Major depression (MDD) has been associated with an altered EEG frontal asymmetry measured in resting state; nevertheless, this association has showed a weak consistency across studies. In the present study, which starts from an evolutionistic view of psychiatric disorders, we investigated frontal asymmetry in MDD, using language as a probe to test the integrity of large inter- and intra-hemispheric networks and processes. Thirty MDD patients (22 women) and 32 matched controls (HC) were recruited for an EEG recording in resting state and during two linguistic tasks, phonological and semantic. Normalized alpha and beta EEG spectral bands were measured across all three conditions in the two groups. EEG alpha amplitude showed no hemispheric asymmetry, regardless of group, both at rest and during linguistic tasks. During resting state, analysis of EEG beta revealed a lack of hemispheric asymmetry in both groups, but during linguistic tasks, HC exhibited the typical greater left frontal beta activation, whereas MDD patients showed a lack of frontal asymmetry and a significantly lower activation of left frontal sites. In depressed patients, positive affect was negatively correlated with depression levels and positively correlated with left frontal EEG beta amplitude. Language represents the human process that requires the largest level of integration between and within the hemispheres; thus, language asymmetry was a valid probe to test the left frontal alteration encompassing highly impairing psychiatric disorders, such as schizophrenia and MDD. Indeed, these severe diseases are marked by delusions, ruminations, thought disorders, and hallucinations, all of which have a clear linguistic or metalinguistic basis

    Resting-State Quantitative Electroencephalography Reveals Increased Neurophysiologic Connectivity in Depression

    Get PDF
    Symptoms of Major Depressive Disorder (MDD) are hypothesized to arise from dysfunction in brain networks linking the limbic system and cortical regions. Alterations in brain functional cortical connectivity in resting-state networks have been detected with functional imaging techniques, but neurophysiologic connectivity measures have not been systematically examined. We used weighted network analysis to examine resting state functional connectivity as measured by quantitative electroencephalographic (qEEG) coherence in 121 unmedicated subjects with MDD and 37 healthy controls. Subjects with MDD had significantly higher overall coherence as compared to controls in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–20 Hz) frequency bands. The frontopolar region contained the greatest number of “hub nodes” (surface recording locations) with high connectivity. MDD subjects expressed higher theta and alpha coherence primarily in longer distance connections between frontopolar and temporal or parietooccipital regions, and higher beta coherence primarily in connections within and between electrodes overlying the dorsolateral prefrontal cortical (DLPFC) or temporal regions. Nearest centroid analysis indicated that MDD subjects were best characterized by six alpha band connections primarily involving the prefrontal region. The present findings indicate a loss of selectivity in resting functional connectivity in MDD. The overall greater coherence observed in depressed subjects establishes a new context for the interpretation of previous studies showing differences in frontal alpha power and synchrony between subjects with MDD and normal controls. These results can inform the development of qEEG state and trait biomarkers for MDD

    Brain Networks Modulation in Young and Old Subjects During Transcranial Direct Current Stimulation Applied on Prefrontal and Parietal Cortex

    Get PDF
    Published Online 15 October 2021Evidence indicates that the transcranial direct current stimulation (tDCS) has the potential to transiently modulate cognitive function, including age-related changes in brain performance. Only a small number of studies have explored the interaction between the stimulation sites on the scalp, task performance, and brain network connectivity within the frame of physiological aging. We aimed to evaluate the spread of brain activation in both young and older adults in response to anodal tDCS applied to two different scalp stimulation sites: Prefrontal cortex (PFC) and posterior parietal cortex (PPC). EEG data were recorded during tDCS stimulation and evaluated using the Small World (SW) index as a graph theory metric. Before and after tDCS, participants performed a behavioral task; a performance accuracy index was computed and correlated with the SW index. Results showed that the SW index increased during tDCS of the PPC compared to the PFC at higher EEG frequencies only in young participants. tDCS at the PPC site did not exert significant effects on the performance, while tDCS at the PFC site appeared to influence task reaction times in the same direction in both young and older participants. In conclusion, studies using tDCS to modulate functional connectivity and influence behavior can help identify suitable protocols for the aging brain.This work was partially supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and by Basque Government through the BERC 2018–2021 progra

    Default Mode Network alterations in alexithymia: An EEG power spectra and connectivity study

    Get PDF
    Recent neuroimaging studies have shown that alexithymia is characterized by functional alterations in different brain areas [e.g., posterior cingulate cortex (PCC)], during emotional/social tasks. However, only few data are available about alexithymic cortical networking features during resting state (RS). We have investigated the modifications of electroencephalographic (EEG) power spectra and EEG functional connectivity in the default mode network (DMN) in subjects with alexithymia. Eighteen subjects with alexithymia and eighteen subjects without alexithymia matched for age and gender were enrolled. EEG was recorded during 5 min of RS. EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Compared to controls, alexithymic subjects showed a decrease of alpha power in the right PCC. In the connectivity analysis, compared to controls, alexithymic subjects showed a decrease of alpha connectivity between: (i) right anterior cingulate cortex and right PCC, (ii) right frontal lobe and right PCC, and (iii) right parietal lobe and right temporal lobe. Finally, mediation models showed that the association between alexithymia and EEG connectivity values was directed and was not mediated by psychopathology severity. Taken together, our results could reflect the neurophysiological substrate of some core features of alexithymia, such as the impairment in emotional awareness

    Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Slow waves in the delta (0.5–4 Hz) frequency range are indications of normal activity in sleep. In neurological disorders, focal electric and magnetic slow wave activity is generated in the vicinity of structural brain lesions. Initial studies, including our own, suggest that the distribution of the focal concentration of generators of slow waves (dipole density in the delta frequency band) also distinguishes patients with psychiatric disorders such as schizophrenia, affective disorders, and posttraumatic stress disorder.</p> <p>Methods</p> <p>The present study examined the distribution of focal slow wave activity (ASWA: abnormal slow wave activity) in116 healthy subjects, 76 inpatients with schizophrenic or schizoaffective diagnoses and 42 inpatients with affective (ICD-10: F3) or neurotic/reactive (F4) diagnoses using a newly refined measure of dipole density. Based on 5-min resting magnetoencephalogram (MEG), sources of activity in the 1–4 Hz frequency band were determined by equivalent dipole fitting in anatomically defined cortical regions.</p> <p>Results</p> <p>Compared to healthy subjects the schizophrenia sample was characterized by significantly more intense slow wave activity, with maxima in frontal and central areas. In contrast, affective disorder patients exhibited less slow wave generators mainly in frontal and central regions when compared to healthy subjects and schizophrenia patients. In both samples, frontal ASWA were related to affective symptoms.</p> <p>Conclusion</p> <p>In schizophrenic patients, the regions of ASWA correspond to those identified for gray matter loss. This suggests that ASWA might be evaluated as a measure of altered neuronal network architecture and communication, which may mediate psychopathological signs.</p

    Relationship between default mode network and resting-state electroencephalographic alpha rhythms in cognitively unimpaired seniors and patients with dementia due to alzheimer’s disease

    Get PDF
    Here we tested the hypothesis of a relationship between the cortical default mode network (DMN) structural integrity and the resting-state electroencephalographic (rsEEG) rhythms in patients with Alzheimer’s disease with dementia (ADD). Clinical and instrumental datasets in 45 ADD patients and 40 normal elderly (Nold) persons originated from the PDWAVES Consortium (www.pdwaves.eu). Individual rsEEG delta, theta, alpha, and fixed beta and gamma bands were considered. Freeware platforms served to derive (1) the (gray matter) volume of the DMN, dorsal attention (DAN), and sensorimotor (SMN) cortical networks and (2) the rsEEG cortical eLORETA source activities. We found a significant positive association between the DMN gray matter volume, the rsEEG alpha source activity estimated in the posterior DMN nodes (parietal and posterior cingulate cortex), and the global cognitive status in the Nold and ADD participants. Compared with the Nold, the ADD group showed lower DMN gray matter, lower rsEEG alpha source activity in those nodes, and lower global cognitive status. This effect was not observed in the DAN and SMN. These results suggest that the DMN structural integrity and the rsEEG alpha source activities in the DMN posterior hubs may be related and predict the global cognitive status in ADD and Nold persons.IRCCS San Raffaele Pisana of Rome ; Ministero della Salut

    Analysis of changes in electrogenesis in schizoprenia using computer electroencephalography

    Get PDF
    Rationale. Psychiatrists do not have objective methods for identifying the brain disorders responsible for mental illness, which prevents timely diagnosis. Therefore, the search for markers of this disease, primarily related to CNS activity, is very relevant.The purpose. A comparative study; by using periodometric analysis of EEG indicators, interhemispheric asymmetry of EEG rhythm amplitudes, and by using multiple regression analysis to identify connections-relations between EEG amplitude and frequency rhythms of different leads in healthy people and schizophrenic patients.Material and Methods. EEG recording was performed in a state of quiet wake with closed eyes on the Neuron-Spectrum-2 electroencephalograph. The analysis was performed using periodometric analysis.The differences of the indicators were monitored using the calculation of the coefficients of concordance (CCs). Connections-relations between indicators were investigated using multiple regression analysis.Own research. In patients with schizophrenia compared with healthy people, there was detected a decrease in the amplitudes of rhythms of EEG, an increase in the duration indices in the delta and theta ranges and a decrease in the duration indices of the alpha and beta rhythms. In patients with schizophrenia, there was a decrease in negativity and an inversion of functional interhemispheric asymmetry (FIHA) to positivity in the delta, theta, and alpha ranges and an increase of (FIHA) positivity in low-frequency and high-frequency EEG beta rhythms. Multiple regression and correlation analysis of the rhythm amplitudes interactions revealed that in the delta and theta ranges in the main group the number of regression coefficients was less than in the control group and in alpha, beta-LF and beta-HF – more than in control group.Conclusions. 1. The obtained results indicated the activation of the right hemisphere in comparison with the left in patients with schizophrenia, possibly due to a decrease in the activating effect of the reticular formation of the brain stem.2. It has been suggested that these changes in the aggregate are the neurophysiological basis of disorders of higher nervous (mental) activity in patients with schizophreni
    corecore