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There are still no good quantitative methods to be applied in psychiatric diagnosis.

The interview is still the main and most important tool in the psychiatrist work. This

paper presents the results of electroencephalographic research with the subjects of a

group of 30 patients with psychiatric disorders compared to the control group of healthy

volunteers. All subjects were solving working memory task. The digit-span working

memory task test was chosen as one of the most popular tasks given to subjects

with cognitive dysfunctions, especially for the patients with panic disorders, depression

(including the depressive phase of bipolar disorder), phobias, and schizophrenia. Having

such cohort of patients some results for the subjects with insomnia and Asperger

syndrome are also presented. The cortical activity of their brains was registered by the

dense array EEG amplifier. Source localization using the photogrammetry station and

the sLORETA algorithm was then performed in five EEG frequency bands. The most

active Brodmann Areas are indicated. Methodology for mapping the brain and research

protocol are presented. The first results indicate that the presented technique can be

useful in finding psychiatric disorder neurophysiological biomarkers. The first attempts

were made to associate hyperactivity of selected Brodmann Areas with particular

disorders.

Keywords: electroencephalography, sLORETA, psychiatric disorders, frequency band analysis, biomarkers,

working memory, DIGITS

INTRODUCTION

Dense array electroencephalographic amplifiers can be considered as a reasonable alternative
for magnetic resonance imaging (MRI) thanks to their better temporal resolution (Tohka
and Ruotsalainen, 2012) and application of algorithms like standardized low-resolution brain
electromagnetic tomography (sLORETA) (Pascual-Marqui et al., 1994; Pascual-Marqui, 2002) that
allow to compute and then visualize brain cortex activity in resolution similar to that obtained
from computer tomography with temporal precision enabling observation of cortical responses
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appearing right after given stimuli. Such techniques of imaging
are widely used in laboratories of experimental psychology
and more and more often for research in neuroscience.
What is more—the electroencephalography (EEG) is much
cheaper than other methods, practically non-invasive and the
subject or patient can participate in the experiment without
any special requirements (Tohka and Ruotsalainen, 2012).
Electroencephalographic techniques find applications in adult
psychiatry (Sand et al., 2013). Electrophysiological methods
have developed in recent decades (Kamarajan and Porjesz,
2015; Martínez-Rodrigo et al., 2017). Recently there has been a
rapid advance in therapeutic use of Brain-Computer Interfaces
(BCI) in which the acquisition of electrical activity of selected
areas of brain cortex plays the main role (Mikołajewska and
Mikołajewski, 2012, 2013, 2014; Teruel et al., 2017) and Event-
Related Potentials (ERP) and other evoked potentials can lead
not only to explanation of psychological behaviors in particular
situations (Kotyra and Wojcik, 2017a,b) but also to finding some
biomarkers characteristic of psychiatric disorders (Chapman and
Bragdon, 1964; Sutton et al., 1965; Campanella, 2013; Golonka
et al., 2017). Together with the development of neurocomputing,
neuroinformatics and artificial intelligence a lot of new tools and
possibilities appeared and made their use possible for a wide
range of classification tasks in biomedical engineering (Ogiela
et al., 2008; Szaleniec et al., 2008, 2013) or brain functions
simulations which are also a subject of our investigations (Ważny
andWojcik, 2014; Wojcik andWażny, 2015). The computational
approach can explain some behavior characteristic of complex
systems (Wojcik et al., 2007; Wojcik and Kaminski, 2008; Wojcik
and Garcia-Lazaro, 2010) or even investigate the influence of
electrophysiological parameters of single cells on the dynamics
of the whole simulated system (Wojcik and Kaminski, 2007;
Wojcik, 2012) but it still cannot explain such complicated
phenomena like psychiatric disorders or mechanisms responsible
for variety of syndromes (e.g., burn-out; Chow et al., 2018).

In current psychiatry, the interview is still a main tool for
diagnosis. This is the clinical interview that in most cases
determines the psychiatrist to choose the optimal method of
treatment. So it is easy to imagine that sometimes the treatment is
not as optimal as it should be. As far as the EEG-based diagnosis
support for psychiatry is concerned some works were presented
by John in the late eighties (John et al., 1988) using spectral
analysis, however, the source localization algorithms technique
did not developed yet at that time.

There are different types of representation for EEG activity
but one of the oldest and most popular is its characteristic in
frequency bands that describe rhythmical nature of its waves.
Thus there are a few bands that in the literature (Niedermeyer
and da Silva, 2005) are described as follows: δ—delta band (less
than 4 Hz), θ—theta (4–7 Hz), α—alpha (8–15 Hz), β—beta (16–
31 Hz), γ—gamma (more than 31 Hz) and sometimes µ—mu
(8–12 Hz).

The aim of the research presented in this paper was to prepare
the protocol and methodology for mapping the brain in five
bands of EEG spectrum using the sLORETA algorithms. Source
localization, among other algorithms, seems to be one of the
most appropriate approaches for finding biomarkers in EEG

signals. The method used in a wide range of research—from
neurodegenerativie diseases (Wu et al., 2014) to attention-deficit-
hyperactivity disorder (ADHD) (Mann et al., 1992) proves its
effectiveness also in frequency band analysis (Moretti et al., 2004;
Saletu et al., 2010) and on the electrophysiological landscape it
was applied in psychiatry even by one of its pioneers in Pascual-
Marqui et al. (1999). This is the initial stage of the research and
this technique is believed to be crucial for finding psychiatric
disorder neurophysiological biomarkers.

For this contribution the brain activity of a group of 30
patients with selected psychiatric disorders was measured using
256-channel dense array EEG. The sLORETA algorithm was
applied in alpha, beta, gamma, delta and theta EEG frequency
bands. These results were compared with those obtained for the
participants of a control group both doing working memory span
task.

MATERIALS AND METHODS

The EEG Laboratory (see Figure 1) in the Department of
Neuroinformatics is equipped with the dense array amplifier able
to record the brain electrical activity with 500 Hz frequency
through 256 channels HydroCel GSN 130 Geodesic Sensor Nets
provided by EGI1. In addition, there was used the Geodesic
Photogrammetry System (GPS) which owing to 11 cameras put in
its corners makes a model of subject brain based on its calculated
size, proportion and shape and then puts all computed activity
results on this model with very good accuracy. The amplifier
works with the Net Station 4.5.4 software, GPS under control of
the Net Local 1.00.00 and GeoSource 2.0. The gaze calibration,
eye blinks and saccades elimination are obtained owing to the
application of eye-tracking system operated by SmartEye 5.9.7.
The ERP experiments are designed in the PST e-Prime 2.0.8.90
environment 2.

The cohort of 30 patients, 21 males and 9 females (avg. age
28.1, s.d. 12.4) diagnosed a wide range of psychiatric disorders
classified in ICD-10 as: 1× F20 (Schizophrenia), 2× F31 (Bipolar
affective disorder), 5 × F32.1 (Moderate depressive episode),
3 × F40 (Phobic anxiety disorders), 12 × F41 (Other anxiety
disorders, Panic disorder), 2 × F42 (Obsessive-compulsive
disorder – among patients with F84.5), 2 × F51.1 (Non-organic
hypersomnia), 5 × F84.5 (Asperger syndrome). They were
not treated earlier and participated in the experiment before
taking the first dose of suggested medications. The results were
compared with those of the participants from the control group
of 30 healthy volunteers, males (avg. age 22.4, s.d. 1.7). In fact,
about 30% more subjects both from patients and control groups
have been investigated, because all those for whom the signal was
too noisy or incomplete had to be eliminated.

One of the tests that are quite often used in experimental
psychology is the digit-span task (Jones and Macken, 2015).
There is a handful of literature reviews and our own studies

1Electrical Geodesic Systems, Inc., 500 East 4th Ave. Suite 200, Eugene, OR 97401,

USA.
2Psychology Software Tools, Inc.PST, Sharpsburg Business Park, 311 23rd Street

Ext., Suite 200, Sharpsburg, PA 15215-2821 USA.
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FIGURE 1 | EEG Laboratory in the Department of Neuroinfomatics. From the top-left corner clockwise: (A) general lab view, (B) GPS photogrammetry station, (D)

256-channel dense array amplifier with response pad, (C) Geodesic Sensor Net with 256 electrodes.

which show that different cognitive functions in patients
with psychiatric disorders are not as effective as among
healthy representatives of populations (Trivedi, 2006). People
with mental disorders often suffer from working memory
dysfunctions and the digit-span task is used then tomeasure their
level. The digit-span task is very popular in the investigations
of subjects with phobias, panic disorders, depression (including
the depressive phase of bipolar disorder) and schizophrenia
(Alves et al., 2013; Zhou and Ni, 2017) and in our cohort
of patients including 23 with mentioned above diagnoses.
It was natural that to examine the influence of Asperger
syndrome and insomnia on working memory parameters –
as the rest of t patients from our cohort suffered from these
disorders.

Thus the digit-span task (DIGITS) was used in order to
determine subject’s working memory capacity3. The experiment
gives sets of 6 trials on a set of digits that starts with a length of 3
and goes up or down depending on subject’s performance (more
than 3 correct makes the number of digits increase, less than 2
makes it decrease). The longest sequence of digits is 8. There are
5 sequences of digits in each trial.

Then using an appropriate band filtering tool provided by
the Net Station software,the signal to analysis in the GeoSource
(see Figures 2, 3) was prepared. After applying the sLORETA
algorithm to the signal preprocessed in the above mentioned
it was possible to indicate precisely the Brodmann Area (BA)
of brain cortex that was most active during the experiment in
particular subjects.

The sLORETA implemented in our Laboratory was the most
standard version of the algorithm broadly described in the Brain

3The e-Prime scripts for this test can be found at https://step.talkbank.org.

Source Localization Using EEG Signals chapter of Nidal and
Malik (2014). The sLORETA method is based on the assumption
of the standardization of the current density. Its implication is
that not only the variance of the noise in the EEG measured
signal is taken into account but also that the biological variance
in the actual signal is considered (Goldenholz et al., 2009;
Nidal and Malik, 2014). This biological variance is taken as
independently and uniformly distributed across the brain which
results in a linear imaging localization technique having exact,
zero-localization error (Goldenholz et al., 2009; Nidal and Malik,
2014). Perfect and detailed comparison of different variations of
LORETA is presented in Nidal and Malik (2014).

The procedure of estimating the most active BAs was as
follows: after the signal acquisition, the subject was photographed
using 11 cameras in the GPS. Then the GeoSource software
calculated the activity of particular BAs (in nanoamperes) varying
in time and this varying activity together with its corresponding
BAa were saved in the appropriate list. Then our scripts chose
the activity that was the highest in a given short interval of
time. There was considered not only the maximum value of
the electrical current of a given BA in a given interval but also
the time in the range of the interval in which this activity was
maintained. Thus, in other words, the maximum activity was
equivalent to the electric charge that flew through the given
area.

Measuring the electric charge flowing thorough the
selected BA can shed some light on dynamic activity
analysis and seems to be better than typical amperage-based
interpretations. Together with the frequency band analysis
it creates a kind of quantitativeness in the quantitative
analysis of biomedical signal source localization based
analysis.
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FIGURE 2 | Typical visualization of sLORETA algorithm applied to the GeoSource pre-processed raw EEG signal in coronal, sagital, and axial cross-sections. Here the

BA35 (Parahippocampal Gyrus, Limbic Lobe) is indicated.

FIGURE 3 | Typical results of GeoSource BA activity visualization on the brain cortex so-called Flat Map. Increase of activity in BA21 (Middle Temporal Gyrus,

Temporal Lobe) and BA19 (Precuneus Lobe, Parietal Lobe) is indicated.
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FIGURE 4 | Diagram of the DIGITS research protocol proposed in this paper. All scripts used for preprocessing data in Net Station and postprocessing in GeoSource

are listed. Participation of the subject in the experiment begins when the Sensor Net is put on and ends when it is taken off. All data is collected by the Mac Pro

workstation which is the central part of the lab. Statistical analysis, finding the most active BAs in each of α, β, γ , δ, and θ frequency bands can be conducted on

other machines.

The time interval in which the BA activity was calculated was
set to 5 ms and there was chosen 800 ms segmentation (each
segment starting with the stimuli) for signal averaging.

BA1, BA2, and BA3 were eliminated from our considerations
as they are part of Primary Somatosensory Cortex (S1) which
must have been highly active (and in fact reported by our
algorithms) because of the subject’s fingertips contact with the
keyboard during the experiment.

The scheme of the methodology and research protocol are
presented in Figure 4.

The software used to conduct discussed experiments was
provided by EGI. In the Net Station package there are all scripts
shown in Figure 4 implemented as the so-called Waveform

Tools. The details of algorithms used in the preprocessing and
postprocessing phases of experiment are described in detail in
Electrical Geodesics (2003). Source Localization and algorithms
used in photogrammetry Net Local are also described in the
EGI Lab documentation (Electrical Geodesics, 2009, 2011),
respectively.

RESULTS

Some EEG biomarkers are assumed to appear and leave a kind
of particular disorder fingerprint in the selected EEG band. In
addition alpha, beta, and theta bands are important for as above

Frontiers in Neuroinformatics | www.frontiersin.org 5 October 2018 | Volume 12 | Article 73

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wojcik et al. Mapping Human Brain in Frequency

TABLE 1 | Most active BA in particular subjects of patients group during the

digit-span task experiment in the alpha, beta, gamma, delta, and theta EEG

bands.

No. Diag. α β γ δ θ

1 F20 R32 R32 LA R32, L28 R9

2 F31 R9 LA R9 R33 R9

3 F31 R9 R33, R9 S1 R33 R9

4 F32.1 LA L45 R9 R33 R9

5 F32.1 L27, R9 L27 R9 L27 R9, L27

6 F32.1 R9 L27 R9 L27 R9

7 F32.1 R33 R33, R9 L27, R9 R33, L27 R9, L27

8 F32.1 R9 R9, L45 S1 R33 R9

9 F40 LA R4 S1 R7 LA

10 F40 R9 R9, L45 R9 LA, R9 R9

11 F40 R9 R7 R23 R7 R9

12 F41 R9 L27 S1 L27 R9

13 F41 R9 R9, L45 R9 R34 LA

14 F41 R9, L45 L45 LA L45 R9

15 F41 L27, R41 L27, R41 LA L27, R33 L27, R41

16 F41 R27 R27 R9 L24, R4 R9

17 F41 R7 R7 R9, LH R4 R7

18 F41 R9 R33, R44 L36 R33 LH

19 F41 L27, R41 L27 R41 L27 L27

20 F41 R9 LA, R8 R9 R7 R9

21 F41 R13, R27, R34 R33, R34 R13, R34 R33, R34 R34

22 F41 L45 L45 L45, LA L45 L45

23 F41 R9 R7, R9 L29 S1 L27

24 F51.1 R9 L27 R41 L27 R9, LH

25 F51.1 L45 R41 LA L27 R9

26 F84.5 L9 R13, R33 S1 LA, L27 L7

27 F84.5 R9 R36, L24 R9 R36 R9

28 F84.5, F42 R24 R24 L45, LA R24 LH

29 F84.5, F42 LH, LA LA, R27 R9 L45 R9

30 F84.5 L45 L45, R44 L27, L37, L43 L27 L45, L37

“A” indicates Amygdala, “H” for Hippocampus areas. S1 the areas of Primary

Somatosensory Cortex. L and R the left and right hemispheres, respectively. Example: L45

is the left hemisphere BA45 and R41 is the right hemisphere BA41, LA—left hemisphere

of the Amygdala. The most active BA were manually counted for particular disorders. For

detail see Discussion section in text.

computing the engagement index (Lubar et al., 1995; Pope et al.,
1995; Chaouachi et al., 2010) and can play a significant role in
the differentmanifestations of psychiatric disorders as the activity
observed in those bands comes from different regions of the brain
representing, in fact, different cognitive processing abilities.

The results for the patients are presented in Table 1 and for
the control group in Table 2.

Indeed, as one can see in Tables 1, 2 it was possible to indicate
the Brodmann Areas that were most active in each of five bands
during the working memory task completed by all subjects of the
experiment. In the subjects where the eliminated S1 was the only
high active part of the cortex, S1 was put in both tables. InTable 3,
the names of the anatomical brain structures of the most active
BA mentioned in text are presented.

TABLE 2 | The most active BA in particular subjects of control group during the

digit-span task experiment in the alpha, beta, gamma, delta and theta EEG bands.

No. α β γ δ θ

1 R9 R7, R33 R46 "R33, R34 R9, R33

2 R9 R9, LA S1 R33 R9

3 R9 R9 R9 L46 R9

4 L23, R9 L27, R41, R33 L33, R33 L18, L24 R44, L33, L45

5 R9 L27, R36, L24 L27, R8 L36, L27 R9

6 R9 L45, R9 LA, L24 L45, L46 R9

7 R41 R41 R27 L27 R9

8 R9 R33, R33 S1 L27 R9

9 R9 L27 R4 L27 R9

10 R32 R32 R9 L27 R9

11 R9 L27, R28 R9 L27 R9

12 R33, L27 R33, R41, L27 R36 LH L24

13 R9, R24 R41, LA, R11 R9 R11, R7, R24 R9

14 R9 R9 R9, LA R9 R9

15 R9 R7, LA LA, R4 R7 R9

16 R9 R9, L18 S1 L27, R7 S1

17 R7 R7 LA R7 LA

18 R9 LA R9 LA R9

19 R9 R33, R7 R9 R7 R9

20 L13 L13, L27 R9 L27 R9

21 R9, R33 R9 R33 R9

22 L27, R9 L27 L27 L27 L27

23 LA R44 R44 R44 LA

24 R9, L27, R7 L27 R27 L27 R9

25 LA, R27 LA S1 LA LA

26 S1 S1 S1 S1 S1

27 R9 R36, R9 R9 L24, L36 R9

28 R9 L45 S1 L27 R9

29 R9 LA, R9 R9 LA R9

30 R9 LA L44 S1 R9

“A” indicates Amygdala, “H” the Hippocampus areas. S1 the areas of Primary

Somatosensory Cortex. L and R the left and right hemispheres, respectively. Example: L27

is the left hemisphere BA27 and R33 is the right hemisphere BA33, RH—right hemisphere

of the Hippocampus.

TABLE 3 | The names of the anatomical brain structures of the most active BA

mentioned in text.

No. BA Anatomical brain structure

1 BA9 Dorsolateral prefrontal cortex

2 BA27 Piriform cortex

3 BA33 Anterior cingulate cortex

4 BA34 A part of the entorhinal area and the superior temporal gyrus

5 BA41 Anterior transverse temporal area

6 BA45 Pars triangularis of the inferior frontal gyrus

InTable 1 one can see that among the largest subset of patients
group, 12 suffered from F41—Panic disorders and 5 from F32.1—
Depression, 5 had the Asperger syndrome. At present it is, of
course, impossible to talk about the psychiatric atlas of the human
brain having such a small trial and so large group of disorders

Frontiers in Neuroinformatics | www.frontiersin.org 6 October 2018 | Volume 12 | Article 73

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Wojcik et al. Mapping Human Brain in Frequency

defined in ICD-10. However, one can read from Table 1 that
when compared to the control group in Table 3:

• Among patients with F41 the increased activity in right BA33,
BA34, BA41 in the auditory cortex and left Amygdala can be
observed.

• Among patients with F32.1 the increased activity of right
BA33, especially in δ band ought to be noted. Please note that
BA33 is also very active in the bipolar affective patients F31.

• Among patients with F84.5 hyperactive are the left BA45 and
left Amygdala.

As above that BA33 is responsible for the modulation of
emotional responses (Posner and DiGirolamo, 1998; Bush et al.,
2000; Nieuwenhuis et al., 2001).

Similarly, BA45 is associated with semantic tasks and working
memory (Buckner, 1996; Gabrieli et al., 1998).

Overactive BA9 in both patients and control groups is engaged
in management of cognitive processes (Elliott, 2003), including
working memory (Barbey et al., 2013), cognitive flexibility
(Monsell, 2003), and planning (Chan et al., 2008). This supports
the evidence for our properly working experimental set-up.

It is interesting that also BA27 associated with the sense of
smell (Howard et al., 2009) is active in most of the subjects as
well.

It may be also interesting to specify the role of auditory
cortex hyperactivity among some patients and interesting EEG
experiments were presented (e.g., in Martínez-Rodrigo et al.,
2017).

DISCUSSION

We have proposed the research protocol and methodology
for investigation of working memory in patients with selected
psychiatric disorders. The sLORETA algorithms and source
localization were chosen to find highly active areas of brain
cortex during the experimental task. Profound analysis of cortical
activity in five EEG frequency bands allows to us look into the
brain dynamics in different spectral ways just as we are used to
looking at the Universe and its stars.

Having so many mental disorders defined in ICD-10 one can
imagine the size and complexity of the job that must be done to
build a good atlas for psychiatrists. Designing new experiments
the attempt will me made to choose the most appropriate tests
for particular disorders and apply other variations of sLORETA
described in Nidal and Malik (2014). Building appropriate
statistical groups of patients with a given disorder, untreated, in
similar age ranges and distinguished for genders seems to be a
task for many years of research.

However, these first results make us hope that it is really
possible to find association of selected Brodmann Areas activity
with psychiatric disorders. As it was mentioned above—we will
need a huge number of untreated patients suffering from each of
disorders that we want to map and if we are right—finally it will
lead to the creation of Atlas which can throw lights on modern
psychiatry. Collecting the above mentioned data is also a great
challenge for current neuroinformatics (Bigdely-Shamlo et al.,
2016; Cavanagh et al., 2017).

Finding biomarkers for a wide range of psychiatric patients
with completely different symptoms and clinical characteristics
is a challenging task. The aim of this paper was not, however,
to hypothesize dysfunctions of some parts of the brain in
particular disorders but to show a new way in which this can be
accomplished. In the group of 30 there were representatives of 8
different diagnoses. Under ideal conditions it would be proper to
have c.a. 30 patients of each gender and handedness as well as in
three ranges of age. That would make us record systematically
the electrical activity of 1,440 patients only for these 8
disorders.

Under the above mentioned conditions it would be possible
to quantify results statistically. Without an appropriate number
of patients we can only show directions toward which the future
research ought to be oriented.This preliminary, exploratory
analysis could be a starting point for a classification or prediction
strategy using large databases and data science tools, to map the
brain regions involved in different psychiatric disorders and find
neurophysiological biomarkers for them. Such classification and
prediction study of the areas involved in different psychiatric
disorders would be a much stronger and useful objective,
using the presented methodology, but larger databases properly
balanced and stratified are needed for that purpose. They
would help answer the following questions: What are the most
consistent areas within groups or type of disorder? What are the
the differences between activation maps and amplitudes between
groups? Is the variability in active areas different between
groups? Would the results be the same if using other inverse
methods?.

And above all results and implications coming from such
works can increase the comfort of life of many people notably.
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