380 research outputs found

    Sources of Atmospheric Fine Particles and Adsorbed Polycyclic Aromatic Hydrocarbons in Syracuse, New York

    Get PDF
    Land surface temperature (LST) images from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor have been widely utilized across scientific disciplines for a variety of purposes. The goal of this dissertation was to utilize MODIS LST for three spatial modeling applications within the conterminous United States (CONUS). These topics broadly encompassed agriculture and human health. The first manuscript compared the performance of all methods previously used to interpolate missing values in 8-day MODIS LST images. At low cloud cover (\u3c30%), the Spline spatial method outperformed all of the temporal and spatiotemporal methods by a wide margin, with median absolute errors (MAEs) ranging from 0.2°C-0.6°C. However, the Weiss spatiotemporal method generally performed best at greater cloud cover, with MAEs ranging from 0.3°C-1.2°C. Considering the distribution of cloud contamination and difficulty of implementing Weiss, using Spline under all conditions for simplicity would be sufficient. The second manuscript compared the corn yield predictive capability across the US Corn Belt of a novel killing degree day metric (LST KDD), computed with daily MODIS LST, and a traditional air temperature-based metric (Tair KDD). LST KDD was capable of predicting annual corn yield with considerably less error than Tair KDD (R2 /RMSE of 0.65/15.3 Bu/Acre vs. 0.56/17.2 Bu/Acre). The superior performance can be attributed to LST’s ability to better reflect evaporative cooling and water stress. Moreover, these findings suggest that long-term yield projections based on Tair and precipitation alone will contain error, especially for years of extreme drought. Finally, the third manuscript assessed the extent to which daily maximum heat index (HI) across the CONUS can be estimated by MODIS multispectral imagery in conjunction with land cover, topographic, and locational factors. The derived model was capable of estimating HI in 2012 with an acceptable level of error (R 2 = 0.83, RMSE = 4.4°F). LST and water vapor (WV) were, by far, the most important variables for estimation. Expanding this analytical framework to a more extensive study area (both temporally and spatially) would further validate these findings. Moreover, identifying an appropriate interpolation and downscaling approach for daily MODIS imagery would substantially increase the utility of the corn yield and HI models

    Insights into heat islands at the regional scale using a data-driven approach

    Get PDF
    Urban heat island (UHI) phenomenon is crucial in the context of climate change. However, while substantial attention has been given to studying UHIs within cities, our understanding at the regional level still needs to be improved. This study delves into the intricate dynamics of the regional heat island (RHI) by examining its relationship with land use/land cover (LULC), vegetation, and elevation. The objective is to enhance our knowledge of RHI to inform effective mitigation strategies. The research employs a data-driven approach, leveraging satellite data and spatial modeling, examining surface and canopy-layer regional heat islands, and considering daytime and nighttime variations. To assess the impact of LULC, the study evaluates three main categories: anthropized (urbanized), agricultural, and wooded/semi-natural environments. Furthermore, it delves into the influence of vegetation on RHI and incorporates elevation data to understand its role in RHI intensity. The findings reveal meaningful variations in heat islands across different LULCs, providing essential insights. Although urbanized areas exhibit the highest RHI intensity, agricultural regions contribute notably to RHI due to land use changes and reduced vegetation cover. This emphasizes the significant impact of human activities. In contrast, wooded and semi-natural environments demonstrate potential for mitigating RHI, owing to their dense vegetation and shading effects. Elevation, while generally associated with reduced heat island, shows variations based on local conditions. Ultimately, this research underscores the complexity of the RHI phenomenon and the importance of considering factors such as different temperatures and their daily variation, landscape heterogeneity, and elevation. Additionally, the study emphasizes the significance of sustainable spatial planning and land management. Targeted efforts to increase vegetation in high daytime land surface temperature areas can reduce heat storage and mitigate RHI. Similarly, planning for agroforestry and green infrastructure in agricultural areas can significantly increase resilience to climate

    Retrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data

    Get PDF
    Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective air temperature (Ta) retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic information from MODIS Ta and 37 GHz frequency brightness temperature (Tb) retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) for estimating surface level Ta under both clear and cloudy sky conditions in the United States for 2006. The instantaneous Ta retrievals showed favorable agreement with in situ air temperature records from 40 AmeriFlux tower sites; mean R2 correspondence was 86.5 and 82.7 percent, while root mean square errors (RMSE) for the Ta retrievals were 4.58 K and 4.99 K for clear and cloudy sky conditions, respectively. Daily mean Ta was estimated using the instantaneous Ta retrievals from day/night overpasses, and showed favorable agreement with local tower measurements (R2 = 0.88; RMSE = 3.48 K). The results of this study indicate that the combination of MODIS and AMSR-E sensor data can produce Ta retrievals with reasonable accuracy and relatively fine spatial resolution (~5 km) for clear and cloudy sky conditions

    Estimating High Spatial Resolution Air Temperature for Regions with Limited in situ Data Using MODIS Products

    Get PDF
    The use of land surface temperature and vertical temperature profile data from Moderate Resolution Imaging Spectroradiometer (MODIS), to estimate high spatial resolution daily and monthly maximum and minimum 2 m above ground level (AGL) air temperatures for regions with limited in situ data was investigated. A diurnal air temperature change model was proposed to consider the differences between the MODIS overpass times and the times of daily maximum and minimum temperatures, resulting in the improvements of the estimation in terms of error values, especially for minimum air temperature. Both land surface temperature and vertical temperature profile data produced relatively high coefficient of determination values and small Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values for air temperature estimation. The correction of the estimates using two gridded datasets, National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and Climate Research Unit (CRU), was performed and the errors were reduced, especially for maximum air temperature. The correction of daily and monthly air temperature estimates using the NCEP/NCAR reanalysis data, however, still produced relatively large error values compared to existing studies, while the correction of monthly air temperature estimates using the CRU data significantly reduced the errors; the MAE values for estimating monthly maximum air temperature range between 1.73 degrees C and 1.86 degrees C. Uncorrected land surface temperature generally performed better for estimating monthly minimum air temperature and the MAE values range from 1.18 degrees C to 1.89 degrees C. The suggested methodology on a monthly time scale may be applied in many data sparse areas to be used for regional environmental and agricultural studies that require high spatial resolution air temperature data.open

    Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China

    Get PDF
    Afforestation has been implemented worldwide as regional and national policies to address environmental problems and to improve ecosystem services. China\u27s central government launched the “Grain for Green” Program (GGP) in 1999 to increase forest cover and to control soil erosion by converting agricultural lands on steep slopes to forests and grasslands. Here a variety of satellite data products from the Moderate Resolution Imaging Spectroradiometer were used to assess the biophysical consequences of the GGP for the Loess Plateau, the pilot region of the program. The average tree cover of the plateau substantially increased because of the GGP, with a relative increase of 41.0%. The GGP led to significant increases in enhanced vegetation index (EVI), leaf area index, and the fraction of photosynthetically active radiation absorbed by canopies. The increase in forest productivity as approximated by EVI was not driven by elevated air temperature, changing precipitation, or rising atmospheric carbon dioxide concentrations. Moreover, the afforestation significantly reduced surface albedo, leading to a positive radiative forcing and a warming effect on the climate. The GGP also led to a significant decline in daytime land surface temperature and exerted a cooling effect on the climate. The GGP therefore has significant biophysical consequences by altering carbon cycling, hydrologic processes, and surface energy exchange and has significant feedbacks to the regional climate. The net radiative forcing on the climate depends on the offsetting of the negative forcing from carbon sequestration and higher evapotranspiration and the positive forcing from lower albedo

    Evaluation of MODIS Land Surface Temperature Data to Estimate Near-Surface Air Temperature in Northeast China

    Get PDF
    Air temperature (Tair) near the ground surface is a fundamental descriptor of terrestrial environment conditions and one of the most widely used climatic variables in global change studies. The main objective of this study was to explore the possibility of retrieving high-resolution Tair from the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) products, covering complex terrain in Northeast China. The All Subsets Regression (ASR) method was adopted to select the predictors and build optimal multiple linear regression models for estimating maximum (Tmax), minimum (Tmin), and mean (Tmean) air temperatures. The relative importance of predictors in these models was evaluated via the Standardized Regression Coefficients (SRCs) method. The results indicated that the optimal models could estimate the Tmax, Tmin, and Tmean with relatively high accuracies (Model Efficiency ≥ 0.90). Both LST and day length (DL) predictors were important in estimating Tmax (SRCs: daytime LST = 0.53, DL = 0.35), Tmin (SRCs: nighttime LST = 0.74, DL = 0.23), and Tmean (SRCs: nighttime LST = 0.72, DL = 0.28). Models predicting Tmin and Tmean had better performance than the one predicting Tmax. Nighttime LST was better at predicting Tmin and Tmean than daytime LST data at predicting Tmax. Land covers had noticeable influences on estimating Tair, and even seasonal vegetation greening could result in temporal variations of model performance. Air temperature could be accurately estimated using remote sensing, but the model performance was varied across different spatial and temporal scales. More predictors should be incorporated for the purpose of improving the estimation of near surface Tair from the MODIS LST production

    Satellite thermographies as an essential tool for the identification of cold air pools: an example from SE Spain

    Get PDF
    The processes involved in the formation of nocturnal temperature inversions (NTIs) are of great relevance throughout the year, notably influencing the surface distribution of minimum temperatures during nights of atmospheric stability. The low density of surface meteorological stations in the study area motivated the use of thermographies for the mapping and identification of cold air pools CAPs. Thermal distribution during stable nights leads to the formation of CAPs in valley areas and depressed areas, and in areas with warmer air (WAM) in orographically complex areas. The thermographies carried out with satellite products from AQUA and SUOMI-NPP (MODIS and VIIRS LST) represent the only tool capable of fully radiographing the territory under study, thus overcoming the limitations in the interpolation of minimum surface temperatures. The main objective of the research was, therefore, to value thermography as an important tool in the identification of CAPs. The products used were subjected to statistical validation with the surface temperatures recorded in meteorological observatories (R2 0.87/0.88 and Bias −1.2/-1.3) with a new objective of making thermal distribution maps in nocturnal stability processes

    Improving mean minimum and maximum month-to-month air temperature surfaces using satellite-derived land surface temperature

    Get PDF
    Month-to-month air temperature (T) surfaces are increasingly demanded to feed quantitative models related to a wide range of fields, such as hydrology, ecology or climate change studies. Geostatistical interpolation techniques provide such continuous and objective surfaces of climate variables, while the use of remote sensing data may improve the estimates, especially when temporal resolution is detailed enough. The main goal of this study is to propose an empirical methodology for improving the month-to-month T mapping (minimum and maximum) using satellite land surface temperatures (LST) besides of meteorological data and geographic information. The methodology consists on multiple regression analysis combined with the spatial interpolation of residual errors using the inverse distance weighting. A leave-one-out cross-validation procedure has been included in order to compare predicted with observed values. Different operational daytime and nighttime LST products corresponding to the four months more characteristic of the seasonal dynamics of a Mediterranean climate have been considered for a thirteen-year period. The results can be considered operational given the feasibility of the models employed (linear dependence on predictors that are nowadays easily available), the robustness of the leave-one-out cross-validation procedure and the improvement in accuracy achieved when compared to classical T modeling results. Unlike what is considered by most studies, it is shown that nighttime LST provides a good proxy not only for minimum T, but also for maximum T. The improvement achieved by the inclusion of remote sensing LST products was higher for minimum T (up to 0.35 K on December), especially over forests and rugged lands. Results are really encouraging, as there are generally few meteorological stations in zones with these characteristics, clearly showing the usefulness of remote sensing to improve information about areas that are difficult to access or simply with a poor availability of conventional meteorological data
    corecore