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Abstract: Air temperature (Tair) near the ground surface is a fundamental descriptor of terrestrial
environment conditions and one of the most widely used climatic variables in global change studies.
The main objective of this study was to explore the possibility of retrieving high-resolution Tair

from the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST)
products, covering complex terrain in Northeast China. The All Subsets Regression (ASR) method was
adopted to select the predictors and build optimal multiple linear regression models for estimating
maximum (Tmax), minimum (Tmin), and mean (Tmean) air temperatures. The relative importance of
predictors in these models was evaluated via the Standardized Regression Coefficients (SRCs) method.
The results indicated that the optimal models could estimate the Tmax, Tmin, and Tmean with relatively
high accuracies (Model Efficiency≥ 0.90). Both LST and day length (DL) predictors were important in
estimating Tmax (SRCs: daytime LST = 0.53, DL = 0.35), Tmin (SRCs: nighttime LST = 0.74, DL = 0.23),
and Tmean (SRCs: nighttime LST = 0.72, DL = 0.28). Models predicting Tmin and Tmean had better
performance than the one predicting Tmax. Nighttime LST was better at predicting Tmin and Tmean

than daytime LST data at predicting Tmax. Land covers had noticeable influences on estimating Tair,
and even seasonal vegetation greening could result in temporal variations of model performance. Air
temperature could be accurately estimated using remote sensing, but the model performance was
varied across different spatial and temporal scales. More predictors should be incorporated for the
purpose of improving the estimation of near surface Tair from the MODIS LST production.

Keywords: air temperature; land surface temperature; remote sensing; MODIS; statistical models;
Northeast China

1. Introduction

Air temperature (Tair) near the ground surface is a fundamental descriptor of terrestrial
environment conditions [1,2] and one of the most widely used climatic variables in global change
studies. It plays an important role in multiple biological and physical processes among the hydrosphere,
atmosphere, and biosphere [3–5]. Accurate estimation of Tair and mapping its spatial distribution are
useful for predicting ecological consequences of climate change. For example, climate warming will
lead to higher temperatures and an increase of extreme weather events, which are associated with
changes in wildfire regime [6–8], forest biomass distribution [9] and crop yield [10,11]. The demand
for accurate spatial Tair data over large scale has continued to rise [12,13].

Air temperature is often measured in thermometer shelters 1.5 m–2 m above the ground at
meteorological stations, and is a commonly recorded form of meteorological observation data with
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high accuracy and temporal resolution [5,14,15]. However, these recorded data are limited by the
sparse distribution of meteorological stations. Hence, the spatial resolution of recorded air temperature
data is coarse [1,3,16]. Various interpolation methods such as global interpolators, kriging, and inverse
density weighting (IDW) are often carried out in order to compensate for this shortcoming [15,17].
These methods have been proven to be successful in estimating temperature near meteorological
stations, but it could lead to considerable uncertainties caused by inhomogeneous distribution of
meteorological stations, especially in the regions with complicated topography [4,18,19].

Satellite remote sensing can provide high spatio-temporal resolution data of land surface
temperature (LST) at a global coverage [16,20]. It might provide a feasible way to improve the
spatiotemporal accuracy of estimating Tair, because it is spatially contiguous and available on a
regular basis, especially in regions where ground observations are too sparse to support reliable
spatial interpolation [5,21]. Land surface temperature is defined as the “skin” temperature of the
ground, which was detected by satellites via looking through the atmosphere to the ground [15,17].
The LST is not equivalent to Tair, and their relationship is complex from a theoretical and empirical
perspective [22–24]. Most studies about estimating Tair using remote sensing indexes are based on
simple linear regression models. For example, Tao et al. [25] showed that the correlation between
nighttime LST and daily minimum Tair (R2 = 0.93) is significantly better than that between daytime LST
and maximum Tair (R2 = 0.79). During daytime when there is direct solar illumination, the difference
between LST and maximum Tair is mainly determined by the ground surface energy balance, which
is a complex system depending on many additional factors such as solar radiation, cloud-cover, soil
moisture and surface roughness [15,17]. Some effective measures were introduced to improve the
precision of estimating daily maximum Tair, for example, the temperature-vegetation index (TVX)
method was used in Zhu et al. [16]. This method is based on the assumption that the radiometric
temperature of a fully developed vegetation canopy is in equilibrium with ambient Tair [3,15]. However,
the performance of the TVX method mainly relies on the negative correlation between LST and the
normalized difference vegetation index (NDVI), and NDVI varies greatly with different satellite sensor
and land surface conditions [15,26]. In other studies, Benali et al. [5] used an optimization procedure
with mixed bootstrap and jackknife resample to estimate maximum air temperature (Tmax), minimum
air temperature (Tmin) and mean air temperature (Tmean) based on LST and auxiliary data. However,
previous studies often either lack spatial and/or temporal predictions, present relatively low predictive
power or do not consider the model’s uncertainty. They also do not take into account the relative
importance of the controls, such as latitude, longitude, elevation, Julian day, NDVI and so on, which
might influence the relationship between LST and Tair.

Northeast China is a special geographical and important economic region. From southeast to
northwest in this region, humid, semi-humid, and semi-arid zones distribute in turn with decreasing
annual precipitation. The land covers in this region are diverse with natural forests, grassland,
farmland, and urban area. Forests in Northeast China occupy about 30% of the total carbon storage and
provide approximately 30% of the total timber production in China [27,28]. Boreal larch forests in this
region are also fire prone, characterized by frequent surface fires, mixed with infrequent stand-replacing
crown fires, with an estimated historical mean fire return interval of 30–120 years [29,30]. Regular
spatial resolution of Tair can be used to predict possible changes in forest wildfire regimes and plant
phenology [1], and is of great use for quantifying ecosystem processes and functions such as forest
NPP and crop yield [31,32].

The main objective of our study was to systematically explore the relationship between Tair and
Moderate Resolution Imaging Spectroradiometer (MODIS) LST over Northeast China. In order to
estimate the eight-day Tmax, Tmin, and Tmean, a statistical approach was implemented based on MODIS
LST and auxiliary data. The specific objectives of this study were to (1) evaluate relative importance of
the driving factors influencing the relationship between LST and eight-day Tair, (2) develop optimal
models to predict Tair covering a large area that encompasses a broad variation of physiognomy and
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land cover, and (3) estimate the optimal models’ performance in temporal (i.e., month and season) and
spatial (i.e., land cover) scales.

2. Data and Methods

2.1. Study Area

The study area includes Heilongjiang, Jilin, Liaoning provinces and the eastern Inner Mongolia
Autonomous Region, which are located in Northeastern China (38◦45′N–53◦34′N, 115◦20′E–135◦05′E),
and encompasses about 1.47 × 106 km2. The altitude ranges from 0 m to 2691 m. Geographically, this
region is characterized by plains separated by four major mountain ranges (Changbai Mountains, Small
Xing’an Mountains, Great Xing’an Mountains and Yanshan Mountains), and the majority of croplands
and forests are distributed in these plain and mountain regions respectively (Figure 1). The climate is
controlled by the high latitude East Asia monsoon climate and includes warm temperate, intermediate,
and cool temperate zones distributed from south to north along latitude, and humid, semi-humid
and semiarid zones from east to west. Meteorological station data sets (1984–2016) show that annual
average temperature varies between −4.0 ◦C and 11.3 ◦C, with a strong spatial gradient pattern.
The monthly mean temperature ranges from the minimum −28.9 ◦C in January to the maximum
25.3 ◦C in July. Annual average rainfall ranges from 246.1 mm to 1095.0 mm, and the precipitation
from May to September accounts for 80% of the total. The vegetation in this area is dominated by
grass, conifer forest, mixed, and deciduous broadleaf forest. The growing season starts in May and
the vegetation reaches its maximum primary productivity in July or August, and then begins to grow
slowly thereafter.
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the meteorological stations.

2.2. Data

2.2.1. MODIS Data

The LST product from MODIS has been used in previous studies to derive Tair [5,15,16]. MODIS
sensors were launched on board the National Aerodynamics and Space Administration (NASA) Earth
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Observing System (EOS) Terra and Aqua satellites in December 1999 and May 2002, respectively [16].
Both sensors are aboard sun-synchronous polar orbiting satellites. MODIS Terra data is available
during 10:30–12:00 a.m. and p.m. (daytime/nighttime) local time, while MODIS Aqua sensor collects
the imagery during 1:00–3:00 a.m. and p.m. (daytime/nighttime). The Aqua LST images were chosen
instead of the scenes from the Terra platform for this study, because their acquisition time is closer
to the actual occurrence of observed maximum and minimum temperatures [5,33,34]. Two MODIS
land products (version 5) were chosen in this study: Aqua eight-day LST and emissivity (MYD11A2)
and reflectance of bands 1–7 (MYD09A1) covered the entire study period from July 2002 to July 2016.
Here, the eight-day LST, view zenith angle, and view time from MYD11A2 and reflectance of band 1
and band 2 from MYD09A1 were used in the following analysis. These data are available from the
Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive Center
(DAAC) at the Goddard Space Flight Center (GSFC) (https://ladsweb.nascom.nasa.gov/search/). The
eight-day LST product (MYD11A2) at 1 km resolution is the averaged LSTs of the MYD11A1 over eight
days, and LST products (MYD11A1) are retrieved from the MODIS thermal and mid-infrared spectral
regions using the generalized split window algorithm [35]. MYD09A1 provides MODIS bands 1–7
surface reflectance at 500 m resolution. Each pixel contains the best observation during an eight-day
period selected on the basis of high observation coverage, low view zenith angle, absence of clouds
or cloud shadow, and aerosol loading [36]. In this paper, MYD09A1 was used to calculate eight-day
NDVI. The land cover extracted from the MODIS Land Cover Type Yearly L3 Global 500 m SIN Grid
(MCD12Q1, 2000, download from https://ladsweb.nascom.nasa.gov/search/) were converted to 1 km
resolution using a nearest neighbor resample type to match the resolution of MODIS LST products.
The land cover of each meteorological station was extracted in terms of its position, and reclassified
into urban, farmland, forest, and grassland.

2.2.2. Vegetation Index

Normalized difference vegetation index is the most common remote sensing index used to
parameterize vegetation status [16,37,38]. The absorption and reflectivity of the vegetation cover are
correlated with their structural properties, such as leaf area index (LAI), fractional vegetation cover
(FVC), and their physiological condition [39,40]. The values of NDVI vary between −1 and 1, where
the range between 0.2 and 0.9 is mostly common in continuous vegetation cover [39]. The NDVI is
defined as:

NDVI =
NIR− RED
NIR + RED

(1)

where NIR is near-infrared band, RED is red band. In MODIS product MYD09A1, band 1 is the red
band and band 2 is the near-infrared band.

Applying Equation (1) to MYD09A1, eight days NDVI at 500 m resolution was produced, and
then resampled to 1 km resolution.

2.2.3. Meteorological Data

Air temperature observations were obtained from 123 meteorological ground stations in the
study area (Figure 1). The measurements included daily Tmin, Tmax, and Tmean. The time period
selected for our study ranged from July 2002 to July 2016 according to the availability of meteorological
station record and MODIS Aqua data. The meteorological station records were obtained from the
China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/home.do). This data was
aggregated to eight-day periods using the same compositing method applied to the daily remote
sensing LST data (i.e., by averaging the daily valid observations in the eight days period).

2.2.4. Auxiliary Data

In addition to MODIS products (LST, view time, view zenith angle, and the number of clear days)
and NDVI, some auxiliary variables were used, including latitude, longitude, elevation, distance to the

https://ladsweb.nascom.nasa.gov/search/
https://ladsweb.nascom.nasa.gov/search/
http://cdc.cma.gov.cn/home.do
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coast, Julian day, and day length (in hours) (Table 1). These auxiliary variables either have a known
impact on Tair and LST or influence the relationship between Tair and LST. Latitude and longitude
were derived from the location file of meteorological stations. Elevation was obtained from a 90-m
resolution digital elevation model (DEM) (downloaded from http://www.glcf.umd.edu/data/srtm/),
and then converted to be the same resolution and projection as the LST dataset on the basis of the
nearest-neighbor method. This method is considered to be efficient and is widely used as a resampling
method in related research [41]. Distances to the coast (based on the Global Self-Consistent Hierarchical
High-Resolution Shoreline (GSHHS), download from http://www.soest.hawaii.edu/pwessel/gshhs/
index.html) were calculated in the ESRI ArcGIS 9.3. Both Julian day and day length are proxies for
the fraction of solar energy absorption during the day and emission during the night, influencing
the diurnal amplitude of Tair throughout the year. Julian day is the continuous count of days from
1 January every year. The day length was calculated [42]:

DayLen =
2 cos−1[− tan δ tan O]

ω
(2)

where DayLen is the day length in hours, δ is the solar declination in radians, Ø is the geographic
latitude in radians, and ω is the angular velocity of the earth’s rotation (0.2618 rad h−1). The value δ is
defined as follows:

δ = sin−1
{

0.4 sin
[

2π

365
(dn − 82)

]}
(3)

the value dn is the day number of the year (Julian day).

Table 1. Data sources and variables.

Abbreviation Variable Source Explanation

LD, LN Land Surface Temperature

MODIS 8-day average Land Surface temperature layers derived over the
2002–2016 time period using MYD11A2 product

AD, AN View Zenith Angle

TD, TN View Time

CD, CN Clear Days

NDVI Normalized difference
vegetation index MODIS

Calculated Normalized Difference Vegetation Index using 8-day
average the surface spectral reflectance layers derived over the
2002–2016 time period using MYD09A1 product

D Julian day Meteorological
data

The continuous count of days was from 1 January to the last day
every year

DL Day length Meteorological
data

Calculated the 8-day average day length using Julian day and
latitude in the meteorological data

Lon Longitude Meteorological
data

The geographical location of meteorological stations was
extracted from meteorological metadataLat Latitude

Ele Elevation DEM The altitude extracted from a 90 m resolution digital elevation
model (DEM) according to the location of meteorological stations

Dis Distance to the coast GSHHS coastline Distance to the coast was calculated based on the GSHHS
coastline in the ESRI ArcGIS 9.3

Tmax, Tmin,
Tmean

Maximum, Minimum and
Average Temperature

Meteorological
data

Calculated the 8-day average day maximum, minimum and
average temperature according to meteorological data

The low quality pixels in LST image were removed according to quality assessment (QA) layer,
then outlier pixels were eliminated using the application of several histogram and temperature
gradient-based outlier filters [43,44]. All the MODIS data, including LST, view zenith angle, view
time, clear days, and NDVI, were extracted from MYD11A2 and MYD09A1 products for the location
of the meteorological stations in ESRI ArcGIS. The auxiliary data sets were extracted using the same
method. All these data were combined to create a single dataset for each eight-day period and each
meteorological station. The combining criteria between meteorological and satellite-retrieved data
for the same date are based on a one-to-one relationship, relating eight-day Tmean, Tmax, and Tmin

from a station with eight-day satellite-retrieved data (daytime LST, nighttime LST, view zenith angle,

http://www.glcf.umd.edu/data/srtm/
http://www.soest.hawaii.edu/pwessel/gshhs/index.html
http://www.soest.hawaii.edu/pwessel/gshhs/index.html
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view time, clear days, and NDVI) and the auxiliary data (elevation, distance to the coast, Julian day,
and day length). Finally, all the records with null values were removed, and the numbers of valid
records for daytime LST, nighttime LST, and LST with both day and night are 56,507, 65,164 and 54,691
respectively. The collinearity of independent variables was detected using variance inflaction factor
(VIF > 10) and pair wise correlation (r > 0.7) [45,46].

2.3. Methodology

2.3.1. Predictor Selection and Model Building

All Subsets Regression (ASR) and Standardized Regression Coefficients (SRCs) methods were
adopted to select the predictors, and then used to build different multiple linear regression models.
The ASR method could overcome the limitation of the stepwise regression by inspecting every possible
model when all independent variables are taken into account. The best model was selected in terms
of the adjusted R2 from the possible models. The SRCs method could assess the relative importance
of predictors, which describe expected change in the response variable holding the other predictors
constant. We used the combination of ASR and SRCs to select the final predictors with strong
interpretation and prediction power.

2.3.2. Model Calibration and Validation

Cross-validation was used to evaluate the generalizability of a model for predicting air
temperature with the LST data. The observations of near surface air temperature were randomly
divided into two parts. 70% of observations were use for model calibration, and the rest were
used as test dataset for model validation. A set of statistic measures were calculated to assess the
accuracy of the predicted air temperature, including root mean square error (RMSE), model efficiency
(MEF), coefficient of residual mass (CRM), mean bias error (MBE), and mean absolute error (MAE).
The equations of the statistic measures followed as:

RMSE =

[
n

∑
i=1

(yi − ŷi)
2/n

]1/2

(4)

MEF = 1−
(

n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − yi)
2

)
(5)

CRM =

(
n

∑
i=1

yi −
n

∑
i=1

ŷi

)
/

n

∑
i=1

yi (6)

MBE =
1
n

n

∑
i=1

(yi − ŷi) (7)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (8)

where n is the number of records in validation datasets used in this study, ŷi is the estimated variable,
and yi is the observed variable.

The RMSE is an indicator showing the bias in the mean and in the spatial variance. The value
of MEF ranges from −1.0 to 1.0, and would be lower if the estimation method had a poor
performance. The CRM indicates overall under- or overestimation of the estimation method, with
the value approaching zero for perfect estimation. A positive value of CRM indicates the tendency to
underestimate the observed values, and vice versa. The MBE shows the direction of the error bias with
zero indicating unbiased estimation of the model. The MAE shows the error magnitude, and lower
values mean better performance [41,47].
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The uncertainty of predicted air temperature in spatial and temporal scales was also calculated.
The pairs of observations and predictions were compared in each meteorological station. Model
performance was compared across different land cover (static variable) and Julian day (dynamics
variable). Moreover, the impact of seasonality on model accuracy was also evaluated.

MODIS data processing was implemented in MODIS Reprojection Tool (MRT, https://lpdaac.
usgs.gov/tools/MODIS_reprojection_tool) and software R using the “sp”, “raster” and “rgdal”
packages. All the statistical analyses were performed in R using the basic function and “leap” package
(R Development Core Team 2015).

3. Results

3.1. Variable and Model Selection

The adjusted R2 of Tmax models ranged from 0.72 to 0.90 (Figure 2a, starting at the bottom).
The models with the following six independent variables were considered optimal with the adjusted
R2 fixed at 0.90. Further increasing independent variables didn’t enhance the adjusted R2. The day LST,
day length, Julian day, NDVI, the number of clear days, and latitude were all determined as important
independent variables with SRCs at 0.53, 0.35, 0.11, 0.11, 0.08, and −0.05, respectively (Figure 3a).
The candidate models involving these six independent variables (model 6 to model 7, Table 2) were
constructed to predict Tmax. In model selection of Tmin, three independent variables could elevate the
adjusted R2 to 0.94 (Figure 2b). The night LST whose SRC was 0.74 could predict Tmin well. The SRCs
of the other two predictors (day length and elevation) were 0.23 and 0.05, respectively (Figure 3b).
Models 9, 10, and 11 were the candidate models to predict Tmin (Table 2). The combination of nighttime
LST and day length could explain 94% of variation in Tmean, and the addition of other predictors did
not increase the adjusted R2 (Figure 2c). The nighttime LST, day length, the number of clear days, and
the number of clear nights were important independent variables, whose SRCs were 0.72, 0.28, 0.03,
and 0.03, respectively (Figure 3c). The candidate models included models 13–15.
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Figure 2. Best models for each subset size based on Adjusted R-squared, (a) Tmax, (b) Tmin, and
(c) Tmean variable selection. LD: 8-Day daytime 1 km grid land surface temperature, AD: Average
view zenith angle of daytime land surface temperature, CD: the days in clear sky conditions and with
valid daytime land surface temperature observation, LN: 8-Day nighttime 1 km grid land surface
temperature, AN: Average view zenith angle of nighttime land surface temperature, CN: the days in
clear sky conditions and with valid nighttime land surface temperature observation, Lat: Latitude, Lon:
Longitude, Ele: Elevation, Dis: The distance to the coastal line, D: Julian day, DL: Mean day length of
8-Day day length, NDVI: Normal difference vegetation index.
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Table 2. Model equations and validation accuracy for Tmax, model accuracy is given by Adj R2, RMSE, MAE, MFE and R2 change.

Model Equations Adj R2 RMSE MFE CRM MBE MAE 2.5% 97.5%

(1) Max = 0.8158 × LD − 0.8104 0.86 5.21 0.86 0.02 0.30 4.15 −10.94 9.49
(2) Max = 0.5899 LD + 0.5421 CD + 1.1267 DL + 9.880 NDVI − 15.2347 0.89 4.75 0.88 0.02 0.24 3.79 −9.52 9.14
(3) Max = 0.5560 LD + 0.0130 D + 1.5538 DL + 8.2394 NDVI − 20.0725 0.89 4.77 0.88 0.02 0.22 3.80 −10.01 8.76
(4) Max = 0.5082 LD − 0.2578 Lat + 0.0152 D + 1.9 DL + 7.631 NDVI − 12.23 0.89 4.75 0.88 0.01 0.20 3.77 −9.77 8.86
(5) Max = 0.5350 LD + 0.5312 CD + 0.0128 D + 1.6670 DL + 7.7470 NDVI − 22.6600 0.89 4.68 0.89 0.02 0.22 3.73 −9.57 8.83
(6) Max = 0.519 LD + 0.5729 CD − 0.0033 Ele + 0.0134 D + 1.778 DL + 7.711 NDVI − 23.03 0.90 4.64 0.89 0.02 0.21 3.69 −9.36 8.83
(7) Max = 0.4726 LD + 0.6268 CD − 0.3161 Lat + 0.0155 D + 2.112 DL + 6.913 NDVI − 13.51 0.90 4.63 0.89 0.01 0.19 3.69 −9.24 8.89
(8) Min = 0.9714 LN + 1.6738 0.93 4.20 0.92 0.43 −0.48 3.22 −8.63 8.06
(9) Min = 0.8262 LN + 1.0985 DL − 11.8179 0.94 4.04 0.93 0.39 −0.44 3.12 −8.21 7.91
(10) Min = 0.7933 LN − 0.1857 Lat + 1.2719 DL − 5.6884 0.94 4.00 0.93 0.38 −0.43 3.10 −8.05 7.88
(11) Min = 0.8053 LN − 0.0026 Ele + 1.209 DL − 12.42 0.94 3.99 0.93 0.38 −0.43 3.09 −8.04 7.84
(12) Mean = 0.9466 LN + 7.3698 0.92 4.09 0.91 −0.05 −0.36 3.12 −8.28 8.04
(13) Mean = 0.7479 LN + 1.5114 DL − 11.2209 0.94 3.67 0.93 −0.04 −0.31 2.86 −7.25 7.21
(14) Mean = 0.7343 LN + 1.5545 DL + 0.3246 CD − 12.8276 0.94 3.63 0.93 −0.04 −0.30 2.82 −7.23 7.16
(15) Mean = 0.7513 LN + 1.5653 DL + 0.3240 CN − 13.2565 0.94 3.60 0.93 −0.04 −0.29 2.80 −7.21 7.02

LD: 8-Day daytime 1 km grid land surface temperature, LN: 8-Day nighttime 1 km grid land surface temperature, NDVI: Normal difference vegetation index, DL: Mean day length of 8-Day
day length, D: Julian day, Ele: Elevation, Lat: Latitude, CD: the days in clear sky conditions and with valid daytime LST, CN: the days in clear sky conditions and with valid nighttime LST.
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(a) Tmax, (b) Tmin, and (c) Tmean.

3.2. Model Validation

Among the candidate models of Tmax, model 1 (Table 2) that included only one independent
variable (daytime LST) explained 86.0% of the variability in Tmax, while the addition of other predictors
in models 2 to 7 explained 3–4% more. Among these seven models, models 6 and 7 had lowest RMSE.
All Tmax models’ CRM and MBE were positive values, indicating models overestimated the Tmax.
Models 6 and 7 included the same number of predictors (Table 2), Model 7 was better at fitting and
predicting according to the set of statistic measures, and the latitude predictor in Model 7 was more
effective than elevation in Model 6 (Figure 3a).

Among candidate models of Tmin, model 11 was optimum. The RMSE (3.99 ◦C), MAE (3.09 ◦C),
and the confidence interval (−8.04 ◦C–7.84 ◦C) of Model 11 were smaller than others. Although
Model 10 and Model 11 included the same number of variables, and the MFE, CRM and MBE were
the same (Table 2), the SRC of elevation is larger than latitude (Figure 3b). Comparing the statistic
measures of Tmean models, model 15 was optimum for predicting Tmean. The RMSE of model 15 was
3.60 ◦C, which was smaller than other Tmean models. The other statistic measures (i.e., MBE =−0.29 ◦C,
MAE = 2.80 ◦C) also illustrated that model 15 was the best (Table 2).

Model 7, model 11, and model 15 which used auxiliary data (e.g., day length, Julian day,
and NDVI) were better than model 1, model 8, and model 12, which merely involved daytime
or nighttime LST data in predicting Tmax, Tmin, and Tmean respectively. The residuals of these optimal
models approximated normality. Autocorrelation of the residuals were found not significant as the
auto-correlation function (ACF) was smaller than 0.2 for all lags except at zero. The distribution
of relative bias (observed Tair—predicted Tair) was closely centralized to zero and analogous to
normal distribution (Figure 4). For all stations, the scatter plots between observed and predicted
Tair distributed agreeably along the diagonal line, indicating the accuracy of model fitting (Figure 5).
However, the effectiveness of optimum models was relatively poor under extreme low and high
temperature conditions. The performance of models for Tmin and Tmean was better than that of Tmax.

3.3. Spatial and Temporal Performance

The optimal models were analyzed in each meteorological station to assess their effectiveness.
The results showed that for the Tmax model about 80% of the stations had an RMSE lower than 5 ◦C
(Figure 6a), MAE lower than 4 ◦C, and MEF higher than 0.85 (Figure 6b). The distribution of MEF was
clearly skewed toward higher values. The stations’ RMSE and MEF ranged from 3.41 ◦C to 5.94 ◦C,
and 0.69 to 0.93 respectively, which were very similar to the overall results (RMSE = 4.63 ◦C and
MFE = 0.89). The Tmax model MBE in most stations ranged from −1.5 ◦C to 1.5 ◦C, gathering around
zero. These statistic measures illustrated that model 7 was able to predict Tmax accurately. The spatial
performance of optimal models predicting Tmin (model 11) and Tmean (model 15) was better than
model 7, because the distribution of their RMSE (Figure 6e,i) and MAE (Figure 6h,l) tended to be even,
and MEF more skewed to 1 (Figure 6f,j).
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Figure 4. (a–f) Relative bias distribution considering all eight days Tmax ((a) model 1, (b) model 7), 
Tmin ((c) Model 8, (d) model 11) and Tmean ((e) model 12, (f) model 15). The blue curves are normal 
density distribution curves, red curves are kernel density distribution curves, and green lines show 
the lower endpoint and upper endpoint of the relative bias 95% confidence interval.  

 
Figure 5. Scatter plots between predicted air temperature (°C) and observed air temperature (°C) of 
(a) Tmax, (b) Tmin, and (c) Tmean. The blue line was the relationship between predicted air temperature 
and observed air temperature, the green line is 1:1 line, which represents the relationship of 
observed air temperature = predicted air temperature. 

The spatial distribution of RMSE (model 7, model 11, and model 15) showed that the models 
generally performed worse for the stations located in the mountain and plateau areas than those in 
the plains (Figure 7a,c,e). The spatial distribution of MFE was similar, which performed well even in 
plain areas (Figure 7b,d,f). 

Figure 4. (a–f) Relative bias distribution considering all eight days Tmax ((a) model 1, (b) model 7),
Tmin ((c) Model 8, (d) model 11) and Tmean ((e) model 12, (f) model 15). The blue curves are normal
density distribution curves, red curves are kernel density distribution curves, and green lines show the
lower endpoint and upper endpoint of the relative bias 95% confidence interval.
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Figure 5. Scatter plots between predicted air temperature (◦C) and observed air temperature (◦C) of
(a) Tmax, (b) Tmin, and (c) Tmean. The blue line was the relationship between predicted air temperature
and observed air temperature, the green line is 1:1 line, which represents the relationship of observed
air temperature = predicted air temperature.

The spatial distribution of RMSE (model 7, model 11, and model 15) showed that the models
generally performed worse for the stations located in the mountain and plateau areas than those in the
plains (Figure 7a,c,e). The spatial distribution of MFE was similar, which performed well even in plain
areas (Figure 7b,d,f).



Remote Sens. 2017, 9, 410 11 of 19
Remote Sens. 2017, 9, 410  11 of 19 

 

 
Figure 6. (a–l) Tmax, Tmin, and Tmean model performance distribution for all the meteorological stations 
used: RMSE (a,e,i); MEF (b,f,j); MBE (c,g,k) and MAE (d,h,l). 

 

Figure 7. (a–f) Spatial distribution of the optimal models RMSE: (a) Tmax, (c) Tmin, (e) Tmean and MEF: 
(b) Tmax, (d) Tmin, (f) Tmean for all the meteorological stations. 

Figure 6. (a–l) Tmax, Tmin, and Tmean model performance distribution for all the meteorological stations
used: RMSE (a,e,i); MEF (b,f,j); MBE (c,g,k) and MAE (d,h,l).

Remote Sens. 2017, 9, 410  11 of 19 

 

 
Figure 6. (a–l) Tmax, Tmin, and Tmean model performance distribution for all the meteorological stations 
used: RMSE (a,e,i); MEF (b,f,j); MBE (c,g,k) and MAE (d,h,l). 

 

Figure 7. (a–f) Spatial distribution of the optimal models RMSE: (a) Tmax, (c) Tmin, (e) Tmean and MEF: 
(b) Tmax, (d) Tmin, (f) Tmean for all the meteorological stations. 

Figure 7. (a–f) Spatial distribution of the optimal models RMSE: (a) Tmax, (c) Tmin, (e) Tmean and MEF:
(b) Tmax, (d) Tmin, (f) Tmean for all the meteorological stations.



Remote Sens. 2017, 9, 410 12 of 19

The models performed well for stations located in urban areas and farmland, and performed
poorly in forest and grassland areas (Table 3). The RMSEs of Tmax model 7 in urban, farmland, forest
and grassland areas were 4.62 ◦C, 4.55 ◦C, 4.77 ◦C, and 5.09 ◦C, and MFEs were 0.89, 0.89, 0.84, and
0.88, respectively. For Tmin model 11, the RMSEs in urban, farmland, forest, and grassland areas were
3.97 ◦C, 3.82 ◦C, 4.81 ◦C, and 4.33 ◦C, respectively, and MFEs were 0.93, 0.93, 0.90, and 0.92. The RMSEs
for Tmean model 15 in urban, farmland, forest, and grassland areas were 3.63 ◦C, 3.53 ◦C, 3.76 ◦C, and
3.77 ◦C, respectively, and MFEs were 0.93, 0.93, 0.90, and 0.93. Model 11 and model 15, predicting Tmin

and Tmean, were better than model 7 at predicting Tmax across all land cover types.
The temporal distributions of model performance were evaluated at season, month, and 8-day

scales. A set of statistic measures were calculated for all predicted/observed pairs within a specific
season (Table 4), month (Table 5), and 8-day (Figure 8) periods, comprising all the years. Model 7
for Tmax, model 11 for Tmin, and model 15 for Tmean performed well at predicting air temperature in
summer according to RMSE (3.82 ◦C, 2.71 ◦C, and 2.70 ◦C, respectively), while they underperformed
in terms of MFE (−0.04, 0.62, and 0.45, respectively). These showed that uncertainty existed in summer.
Based on the synthesis of all statistic measures, all the models performed better in spring and worse in
winter. The model 11 for Tmin and model 15 for Tmean performed better than model 7 for Tmax, which
was similar to the model performance at the spatial scale. Model performance at the monthly scale
was similar to that at the seasonal scale. At the eight-day period scale, data availability was poor in
winter and late autumn, during which the RMSE and MAE of model 7 for Tmax were high (Figure 8a).
An similar pattern was also found in model 15 for Tmean, and poor data availability was accompanied
by higher RMSE and MAE (Figure 8c). Although the data availability used to predict Tmin was high in
winter and late autumn, the performance of model 11 was poor with high RMSE and MAE (Figure 8b).
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Table 3. The performance of optimal models for Tmax, Tmin, and Tmean for different land cover types. Model accuracy is given by RMSE, MEF, CRM, MAE, and MBE.

Land Cover
Tmax Tmin Tmean

RMSE MFE CRM MBE MAE RMSE MFE CRM MBE MAE RMSE MFE CRM MBE MAE

Urban 4.62 0.89 0.03 0.44 3.71 3.97 0.93 0.75 –0.65 3.09 3.63 0.93 −0.09 −0.68 2.84
Farmland 4.55 0.89 0.02 0.27 3.61 3.82 0.93 −0.23 0.08 2.96 3.53 0.93 0.03 0.22 2.72

Forest 4.77 0.84 −0.04 −0.57 3.73 4.81 0.90 0.34 −0.92 3.61 3.76 0.90 −0.12 −1.01 2.88
Grass 5.09 0.88 −0.06 −0.67 4.06 4.33 0.92 0.11 −0.54 3.41 3.77 0.93 −0.09 −0.43 2.99

Table 4. The performance of optimal models for Tmax, Tmin, and Tmean in different seasons. Model accuracy is given by RMSE, MEF, CRM, MAE, and MBE.

Seasons
Tmax Tmin Tmean

RMSE MFE CRM MBE MAE RMSE MFE CRM MBE MAE RMSE MFE CRM MBE MAE

Spring 4.80 0.75 0.01 0.09 3.85 3.64 0.85 −0.30 −0.55 2.91 3.67 0.83 0.02 0.21 2.92
Summer 3.82 −0.04 0.01 0.20 3.06 2.71 0.62 −0.04 −0.69 2.11 2.70 0.45 −0.05 −1.06 2.13
Autumn 4.96 0.78 0.05 0.58 4.00 4.15 0.82 0.11 −0.21 3.34 3.66 0.85 0.04 0.22 2.91
Winter 5.10 0.57 0.04 −0.25 4.04 5.02 0.66 0.01 −0.27 3.93 4.51 0.68 0.05 −0.61 3.51

Table 5. The performance of optimal models for Tmax, Tmin, and Tmean in different months. Model accuracy is given by RMSE, MEF, CRM, MAE, and MBE.

Month
Tmax Tmin Tmean

RMSE MFE CRM MBE MAE RMSE MFE CRM MBE MAE RMSE MFE CRM MBE MAE

January 5.23 0.53 −0.15 1.40 4.04 4.52 0.72 0.01 −0.21 3.55 4.21 0.69 0.07 −1.05 3.36
February 4.76 0.56 −0.06 0.21 3.86 5.47 0.62 0.05 −0.77 4.43 4.34 0.68 0.05 −0.55 3.50

March 4.81 0.57 −0.05 −0.35 3.84 3.78 0.71 0.18 −1.16 3.01 3.59 0.68 −3.22 −1.01 2.87
April 4.60 0.50 0.07 1.36 3.84 3.42 0.62 −0.10 −0.27 2.73 3.69 0.54 0.15 1.60 2.94
May 4.95 0.34 −0.03 −0.61 3.88 3.68 0.61 −0.01 −0.14 2.95 3.72 0.54 0.01 0.16 2.94
June 4.13 −0.28 −0.08 −2.00 3.25 2.64 0.55 −0.07 −1.01 2.01 3.16 0.10 −0.10 −1.97 2.52
July 3.48 −0.15 0.03 0.87 2.79 2.69 0.44 −0.02 −0.35 2.11 2.51 0.26 −0.03 −0.80 1.97

August 3.81 0.07 0.07 1.70 3.11 2.80 0.62 −0.05 −0.67 2.22 2.36 0.57 −0.02 −0.38 1.87
September 4.46 0.30 0.09 1.80 3.58 3.72 0.56 −0.03 −0.21 3.06 3.25 0.59 0.06 0.81 2.62

October 5.05 0.36 0.12 1.31 4.18 4.11 0.53 0.12 −0.24 3.34 3.59 0.58 0.12 0.50 2.90
November 5.48 0.36 −23.03 −1.68 4.38 4.60 0.64 0.02 −0.19 3.64 4.23 0.62 0.16 −0.86 3.33
December 5.32 0.47 0.29 −2.21 4.23 5.02 0.60 −0.01 0.20 3.81 4.92 0.58 0.02 −0.28 3.66
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3.4. Patterns of Estimated Annual Air Temperature

The annual spatial Tair pattern was consistent with prior knowledge of this region solely derived
from the meteorological stations data. Predicted annual Tmax, Tmin and Tmean exhibited marked spatial
gradients decreasing from south to north (Figure 9). The spatial gradients of predicted Tair varied not
only along the latitude, but also with the longitude. Estimated annual Tair presented obvious patterns
with higher temperature in the center of this region, and lower in both east and west sides. Meanwhile,
the patterns of estimated Tair were influenced by the distance to the coastline. Air temperature was
relatively lower in the west of this region further away from the coastline than the east, and the lowest
air temperature was found in the northwest.
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4. Discussion

Our study showed that it was feasible to estimate Tair by simply building a linear model between
Tair and LST. However, this model performed poorly in extreme temperatures. The variation of model
performance mainly depended on the spatial heterogeneity (i.e., topography, land cover) and time
cycle (i.e., seasonal alteration).

4.1. Spatial Uncertainties of Models

Complex topography could affect the relationship between Tair and LST data, and give rise to
the model uncertainty in predicting Tair. Cooler conditions prevail in regions with high altitude due
to a steep lapse rate under the influence of cold-air drainage [48]. In stands with similar altitude,
south-facing slopes tend to receive greater solar radiation than shaded areas, and have higher
temperature. In the meantime, cold-air pooling or temperature inversions occur frequently in mountain
regions, especially under weather conditions with calm wind and clear sky, which would lead to
model uncertainties in predicting Tair from LST data [49].

Physiographic factors also influenced snow accumulation and melt. Yan et al. [50] found that Tair

was lower if the land was covered with snow in winter. Additionally, the linear correlation between Tair

and LST was weak during snow-covered periods in high mountains [22]. This is because snow cover
could enhance the visible reflectance, and reduce the solar radiation absorption of ground surface.
Snow cover also strongly affected vegetation greening through influences on the biotic and abiotic
environment. Air temperature would be reduced if the snow cover period lengthened [49]. Shifts
in vegetation greening could also change soil moisture content due to snow melt, and alter the land
surface temperature. It would result in uncertainty in predicting Tair through LST data irrespective of
physiographic factors. Thus, the poor model performance in our study in extreme low temperature
during winter could be attributed to snow cover (Figure 5).
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Land cover plays an important role in influencing the relationship between Tair and LST. Our
results showed that the effectiveness of optimal models in predicting Tair varied in different land cover
types (Table 3). This variation could be introduced by the specific heat capacities of different land
covers. Air temperature mainly depended on the heat transfer process which was strongly influenced
by the local radiation budget [22]. In general, barren land has lower heat capacity than forest. Hence,
air was heated much quicker over barren land than forest. Vegetation could also alter latent heat flux,
such as enhancing or reducing transpiration [51,52], and cool the Tair in forests [53,54]. The cooling
effect was not explicitly incorporated in our models due to uneven distribution of meteorological
stations across different vegetation types. The meteorological station was too scarce in some vegetation
types. Thus, it was hard to take consider of vegetation type in our models. However, land cover
also affected land surface albedo, and a slight warming was observed in winter due to dense canopy
reducing the albedo of snow cover [49]. Thus, the influence of land cover on estimating Tair was
conditional and time dependent.

4.2. Temporal Uncertainties of Models

The temporal variation also had strong influence on the estimation of Tair from LST data. Seasonal
vegetation greening changed the physical properties of land surface, such as vegetation coverage,
snow cover, and soil moisture. Our study area is mainly covered with lush crops and pasture, as
well as frondent forests during growing season; and it would turn into bare land, leafless forests, or
snow cover afterwards (Figure 1). The variation of land cover due to seasonal vegetation greening
enhanced the spatial heterogeneity of LST data, and increased the temporal uncertainties in predicting
air temperature [55]. It is important to consider temporal variation caused by vegetation greening on
the estimation of Tair from LST over complex terrain [22].

In addition to vegetation greening, air masses and aerosol affected the temporal variation in the
performance of Tair models as well. This region is characterized by a typical temperate continental
monsoon climate, and controlled by the Siberian high pressure system in winter and the Hawaiian
high pressure system in summer [56,57]. The basic mechanism for estimating Tair with LST relies
on the intense heat exchange between land surface and the atmosphere, yet the air masses strike the
local energy balance due to coming from different sources [21,51]. Dry and cold air masses come from
Siberia in winter; conversely wet and cool air masses come from the sea surface of the Hawaiian system
in summer. Cool air moving over a warmer land surface is heated discriminately from below, due to
the fact that moisture content is different in such air masses. Moisture content of air is an important
control on thermal conduction between air and surface [22,58]. A time lag existed for establishing the
new balance between air and land surface [51]. Both the moisture content and time lag could result in
uncertainties in estimating Tair from LST data.

Aerosol varies with season, and is an important component of the air that essentially determines
the energy relationship between Tair and land surface [21]. In this region, there are more aerosols
in winter than summer due to burning fossil fuel for heating. Aerosols can absorb short-wave solar
radiation to warm the atmosphere, while they usually scatter and reflect short-wave radiations to cool
the ground surface. The residence time of aerosols in the atmosphere is regional and seasonal, which
affects the radiative forcing of aerosols [21]. Huang et al. [59] also indicated that high concentration of
aerosol retained the heat by acting, to some extent, as insulators that trapped outgoing radiation.

Our results showed that the performance of models estimating Tmin and Tmean using nighttime
LST were better than that estimating Tmax using daytime LST (Figure 5). Nighttime LST was stable
and affected by fewer factors compared with daytime LST due to the absence of solar radiation [51,59].
Generally, the land surface warms faster than ambient air in the day, and cools more rapidly during
the night. The warmer land surface heated the ambient air to stimulate the turbulence of ground
atmosphere in the day, while the turbulence turned weak on account of lacking solar radiation to
heat land surface in the night. An isothermal and homogeneous surface was established over the
ground surface in the night, and improved the estimation accuracy of Tair. Shen and Leptoukh [55]
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indicated that the relationship between Tmax and daytime LST depended significantly on land cover,
but Tmin and nighttime LST had little dependence on land cover, especially during the summer time.
The influences of direct solar illumination and land cover resulted in more complex interactions
between ambient air and land surface. That is why the daytime LST was not as good as the nighttime
LST in predicting air temperature.

4.3. Spatial Variations of Annual Air Temperature

The spatial patterns of all the predicted annual Tmax, Tmin and Tmean were relatively higher in
the south, and lower in the north (Figure 9). In the south, the Earth’s surface could receive more solar
radiation to heat the ambient air, while the energy was relatively lower in the north. In this region, the
mountains covered by forests are located in the north and both sides of this region, while the cities
and farm fields are located in the center (Figure 1). Air temperature becomes low where the altitude
increases, and the forests are also able to cool the air temperature. Meanwhile, the artificial buildings
in the plains could absorb more solar radiation to heat the ambient air. The south and east parts are
closer to the coastline, so the warmer vapor coming from the sea is able to heat the ambient air through
latent heat fluxes.

5. Conclusions

The results of this study confirm that the eight-day average of Tmax, Tmin, and Tmean can be
accurately estimated using LST and auxiliary data. The simple multiple linear regression models were
established for Tmax, Tmin, and Tmean using different predictors for each value, but LST and day length
were both relatively important predictors in all models. The performance of optimal models was
efficient to estimate Tmax (RMSE = 4.63 ◦C, MFE = 0.89), Tmin (RMSE = 3.99 ◦C, MFE = 0.93) and Tmean

(RMSE = 3.60 ◦C, MFE = 0.93) for all meteorological stations. The performance was better for models
predicting Tmin and Tmean than that of Tmax. Nighttime LST data was better in predicting Tmin and
Tmean than daytime LST data in predicting Tmax. Nighttime or combining daytime and nighttime LST
should be taken into account to improve the performance of the model for Tmax.

The model performance varied across different spatial and temporal scales. The models performed
well in the plains, and relatively poorly in the complex terrain of the mountains. Land covers had
noticeable influences on estimating air temperature, and seasonal changes of land covers could result
in temporal variations of model performance. The RMSE values for the models during the summer
were slightly better than the other seasons. The changes in physical and chemical composition of
near-surface atmosphere may also contribute to the models’ temporal variations. More predictors
should be considered for the purpose of improving the models estimating air temperature. It is possible
that non-linear models or advanced ensemble models such as boosted regression trees may produce
better estimation for Tair.
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