14 research outputs found

    Remote Sensing Monitoring of Land Surface Temperature (LST)

    Get PDF
    This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research

    Biomass Estimation Using Satellite-Based Data

    Get PDF
    Comprehensive measurements of global forest aboveground biomass (AGB) are crucial information to promote the sustainable management of forests to mitigate climate change and preserve the multiple ecosystem services provided by forests. Optical and radar sensors are available at different spatial, spectral, and temporal scales. The integration of multi-sources sensor data with field measurements, using appropriated algorithms to identify the relationship between remote sensing predictors and reference measurements, is important to improve forest AGB estimation. This chapter aims to present different types of predicted variables derived from multi-sources sensors, such as original spectral bands, transformed images, vegetation indices, textural features, and different regression algorithms used (parametric and non-parametric) that contribute to a more robust, practical, and cost-effective approach for forest AGB estimation at different levels

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    Unmanned Aerial Vehicles for Vegetation Mapping: Opportunities and Challenges

    Get PDF
    Pflanzen sind eng mit einer Reihe von Ökosystemprozessen und -dienstleistungen wie die Bereitstellung von Lebensmitteln und Trinkwasser, die Klimaregulierung sowie die Bodenbildung und Kohlenstoffspeicherung verbunden. Deshalb können Vegetationseigenschaften wie Artenreichtum, BiodiversitĂ€t und Pflanzenmerkmale zur Bewertung und Überwachung von Ökosystemprozessen genutzt werden. Die genaue Beobachtung von VegetationsverĂ€nderungen ist daher entscheidend fĂŒr das VerstĂ€ndnis der aktuellen und zukĂŒnftigen Ökosystemdynamik. Fernerkundungsdaten haben hohes Potenzial Vegetationseigenschaften und -prozesse rĂ€umlich abzubilden. Die zunehmende VerfĂŒgbarkeit von sehr hochauflösenden Fernerkundungsdaten ermöglicht auch die Untersuchung von feinskaligen Prozessen. Die fĂŒr niedriger aufgelöste Fernerkundungsdaten entwickelten Auswertungsverfahren sind hĂ€ufig nicht auf sehr hochaufgelöste Daten ĂŒbertragbar. Daher werden neue Verfahren benötigt, um das volle Potenzial auszuschöpfen. Die Vorteile von sehr hochauflösenden Daten liegen unter anderem in der Erkennung von einzelnen Pflanzen und der besseren rĂ€umlichen Feinabstimmung mit Felddaten. Diese Vorteile ermöglichen die genaue Kartierung von Pflanzenarten auf der Ebene einzelner Individuen und Vegetationseigenschaften auf der Ebene von Pflanzengesellschaften, wie die BiodiversitĂ€t, oberirdische Biomasse oder Artenzusammensetzung. Unbemannte Luftfahrzeuge (UAVs) werden als kostengĂŒnstige Plattform zur Gewinnung von Daten mit sehr hoher Auflösung, insbesondere fĂŒr kleine Gebiete, verwendet. Daher ist ihr Einsatz gut zur Entwicklung neuer Methoden geeignet. Das Ziel dieser Arbeit war die Feststellung von Vorteilen und Limitierungen der Nutzung von UAVs zur Vegetationskartierung. Der Fokus der Arbeit lag auf zwei Hauptthemen, die Kartierung von Pflanzenarten und kleinrĂ€umigen Ökosystemprozessen. Eine der Fallstudien zeigte, dass die Verwendung von sehr hochauflösenden Daten zur Klassifizierung von Pflanzenarten durch die Überlappung verschiedener Arten erschwert wird. Daher ist Nutzung solcher Daten zur direkten Kartierung von GrĂŒnlandarten nur fĂŒr Habitate mit geringer Vegetationsbedeckung und einfachen Strukturen, wie beispielsweise DĂŒnenhabitate, vielversprechend. Eine zweite Fallstudie ergab, dass der Schattenwurf von Baumkronen den Erfolg von UAV-basierten Klassifikationen der invasiven Baumarten Ulex europaeus\textit{Ulex europaeus}, Acacia dealbata\textit{Acacia dealbata} und Pinus radiata\textit{Pinus radiata} erheblich beeinflusst. Dabei machte es keinen Unterschied ob optische Daten oder Informationen ĂŒber die Textur oder Kronenstruktur verwendet wurden. Anhand von Simulationen wurde dargestellt, dass jede Art aufgrund ihrer spezifischen Kronenarchitektur unterschiedliche Schatten erzeugt. Die optimalen Zeitfenster zur Klassifikation im Verlaufe eines Tages unterscheiden sich daher zwischen den einzelnen Arten. In einer dritten Fallstudie wurde gezeigt, dass Merkmale der oberirdischen Vegetation als Proxy genutzt werden können um Kartierungen von unterirdischen KohlenstoffvorrĂ€ten in Mooren zu verbessern. Ein empirisches Modell wurde genutzt um unter- und oberirdische Merkmale zu verknĂŒpfen. DafĂŒr wurden kontinuierliche Daten mit Informationen ĂŒber Höhe, Biomasse, sowie den Artenreichtum und die Artenzusammensetzung der Vegetation verwendet. UAV Daten wurden genutzt um die relevanten oberirdischen Merkmale zu kartieren. Der unterirdische Kohlenstoffvorrat wurde dann durch die Parametrisierung des plotbasierten Modells mit den UAV-Extrapolationen kartiert. Dies deutet darauf hin, dass auch Ökosystemeigenschaften mit geringem direkten Einfluss auf die Reflektanz mit Hilfe von Vegetationsmerkmalen als Proxies kartiert werden können. Da bei Kopplung empirischer Modelle in jedem Modellierungsschritt fehlerbehaftete Voraussagen entstehen können, wird ein solcher Ansatz nur empfohlen, wenn starke empirische Verbindungen zwischen den feldbasierten Variablen vorliegen. Diese Arbeit zeigt, dass mit UAVs erhobene Erdbeobachtungsdaten geeignet sind, um die technischen und umweltbedingten Voraussetungen fĂŒr eine erfolgreiche Kartierung von Pflanzenarten zu erforschen, um neue Methoden zu entwickeln, welche die Genauigkeit von Klassifikationen aus sehr hochaufgelösten Daten erhöhen und um Vegetationseigenschaften mit unterirdischen Gradienten zu verknĂŒpfen. Die Arbeit enthĂ€lt außerdem Empfehlungen und VorschlĂ€ge fĂŒr die zukĂŒnftige Erforschung von feinskaligen Vegetationsprozessen

    Linking Canopy Reflectance and Plant Functioning through Radiative Transfer Models

    Get PDF
    Von den Tropen bis zur Tundra hat sich die Pflanzenwelt durch Anpassungen an lokale UmwelteinflĂŒsse diversifiziert. Diese Anpassungen sind in der Funktionsweise der Pflanzen manifestiert, welche unter anderem Wachstum, Fortpflanzung, KonkurrenzfĂ€higkeit oder Ausdauer beinhalten. Pflanzenfunktionen haben nicht nur direkten Einfluss auf die Artenzusammensetzung, sondern auch auf großrĂ€umige Prozesse wie Bio- und AtmossphĂ€reninteraktionen oder StoffkreislĂ€ufe. Folglich wurden viele Forschungsanstrengungen unternommen um Pflanzenfunktionen weiter zu verstehen und zu erfassen, z.B. darauf abzielend generalisierende Modelle von Pflanzenfunktionen zu entwickeln oder individuelle Pflanzenmerkmale als Indikatoren fĂŒr Pflanzenfunktion zu identifizieren. Trotz der wissenschaftlichen Fortschritte fehlt ein vollstĂ€ndiges Bild der Funktionsvielfalt der Pflanzenwelt, sowohl in geographischer als auch funktioneller Hinsicht. Dies ist im Wesentlichen auf die KomplexitĂ€t und die logistischen EinschrĂ€nkungen bei der Messung von Pflanzenfunktionen im Feld zurĂŒckzufĂŒhren. Um dieses Bild zu vervollstĂ€ndigen wird insbesondere optischen Erdbeobachtungsdaten ein hohes Potenzial zugeschrieben. Optische Erdbeobachtungssensoren erfassen das vom Kronendach reflektierte Sonnenlicht. Letzteres wird durch verschiedene biochemische und strukturelle Pflanzenmerkmale (im Folgenden optische Merkmale) beeintrĂ€chtigt (z.B. Blattchlorophyllgehalt oder Blattwinkel). Das Abfangen und Absorbieren von Sonnenlicht ist die Grundlage des pflanzeneigenen Metabolismus und folglich liegt es Nahe, dass diese optischen Merkmale direkt mit Pflanzenfunktionen zusammenhĂ€ngen. Der Zusammenhang dieser optische Merkmale mit Pflanzenfunktionen wurde jedoch noch nicht systematisch untersucht, und ebenso ist der Zusammenhang zwischen Pflanzenfunktion und Kronendachreflektion noch nicht vollstĂ€ndig untersucht. Die physikalischen Interaktionen von Licht und optischen Pflanzenmerkmalen sind bereits hinreichend verstanden und in Strahlungstransfermodellen (RTM) fĂŒr VegetationskronendĂ€cher formuliert. RTM können als prozessbasierte Modelle betrachtet werden, die die Reflektion des Kronendachs in AbhĂ€ngigkeit von optische Merkmalen, dem Bodenhintergrund und der Sonnen-Sensorgeometrie modellieren. Das Ziel und die Innovation dieser Dissertation war die kausalen ZusammenhĂ€nge zwischen Kronendachreflektion und Pflanzenfunktion mittels RTM zu verstehen und zu nutzen. Es wurde gezeigt, dass fĂŒr die Fernerkundung von Pflanzenfunktionen die Kopplung von Kronendachreflektion und Pflanzenfunktionen durch RTM mehrere Potentiale bietet: Erstens, ermöglichen RTM die Kartierung von Pflanzenmerkmalen. Innerhalb einer Fallstudie wurde gezeigt, dass eine Inversion von RTM mit hyperspektralen Daten eine Kartierung von optischen Merkmalen erlaubt, fĂŒr die keine Felddaten zur Modellkalibrierung benötigt werden. Die kartierten Merkmale zeigten eine hohe Übereinstimmung mit MerkmalsausprĂ€gungen aus unabhĂ€ngigen Datenbanken und spiegelten die im Feld gemessenen ökologischen Gradienten wider. Dies deutet darauf hin, dass RTM-Inversion als Ă€ußerst ĂŒbertragbare Methode betrachtet werden kann, um rĂ€umliche Karten von Pflanzenmerkmalen zu erstellen, die als Proxies fĂŒr Pflanzenfunktionen dienen können. Allerdings erfordert die Implementierung von RTM Inversionen fundierte Kenntnisse ĂŒber die Prinzipien der Strahlentransfermodellierung und der zu untersuchenden Vegetationscharakteristiken. Zweitens, ermöglichen RTM die Untersuchung von ZusammenhĂ€ngen zwischen Pflanzenfunktion und der Kronendachreflektion. In der vorliegenden Thesis wurden simulierte Kronendachspektren aus einem RTM verwendet, um den Beitrag der optischen Merkmale zu den spektralen Unterschieden zwischen Pflanzenfunktionstypen zu erfassen. Die Ergebnisse zeigten die dominanten Pflanzenmerkmale und die entsprechenden spektralen Charakteristiken die fĂŒr eine fernerkundliche Unterscheidung der Pflanzenfunktion von großer Relevanz sind. DarĂŒber hinaus wurde gezeigt, dass RTM-basierte Simulationen EinschrĂ€nkungen von Fallstudien kompensieren und Kenntnisse ĂŒber die ZusammenhĂ€nge von Pflanzenfunktionen, Pflanzeneigenschaften und Kronendachtreflektion erweitern können. Diese Kenntnisse bilden die Grundlage fĂŒr die Entwicklung und Verbesserung von Sensoren und Algorithmen zur Fernerkundung von Pflanzenfunktionen. Drittens, erweitern RTM und die darin enthaltenen optischen Merkmale unsere Möglichkeiten Unterschiede in der Pflanzenfunktion zu verstehen und zu quantifizieren. Mit Hilfe von in-situ gemessenen MerkmalsausprĂ€gungen konnte gezeigt werden, dass die in RTM enthaltenen optischen Merkmale kausal mit primĂ€ren Pflanzenfunktionen zusammenhĂ€ngen. Dies wiederum bedeutet, dass die Reflexion des Kronendachs unmittelbar mit den primĂ€ren Funktionen der Pflanze zusammenhĂ€ngt (‘Reflektion folgt Funktion’). DarĂŒber hinaus wurde festgestellt, dass optische Merkmale vergleichbare oder sogar höhere Korrelationen mit den verwendeten pflanzlichen Funktionsgradienten aufweisen als die in der Pflanzenökologie ĂŒblich verwendeten Merkmale. Entsprechend bieten RTM sowohl eine alternative Perspektive als auch ein Set von Pflanzenmerkmalen mit denen Unterschiede der Pflanzenfunktion charakterisiert und quantifiziert werden können. Diese Merkmale können somit als wertvolle ErgĂ€nzung oder Alternative zu den in der Pflanzenökologie ĂŒblichen Merkmalen dienen. Zusammengefasst zeigt diese Thesis, dass RTM unsere Möglichkeiten erweiterten können die funktionelle Vielfalt der globalen Vegetationsbedeckung weiter zu verstehen und zu erfassen und fĂŒhrt zukunftsrelevante Forschungspotentiale auf

    Forest biomass retrieval approaches from earth observation in different biomes

    Get PDF
    The amount and spatial distribution of forest aboveground biomass (AGB) were estimated using a range of regionally developed methods using Earth Observation data for Poland, Sweden and regions in Indonesia (Kalimantan), Mexico (Central Mexico and Yucatan peninsula), and South Africa (Eastern provinces) for the year 2010. These regions are representative of numerous forest biomes and biomass levels globally, from South African woodlands and savannas to the humid tropical forest of Kalimantan. AGB retrieval in each region relied on different sources of reference data, including forest inventory plot data and airborne LiDAR observations, and used a range of retrieval algorithms. This is the widest inter-comparison of regional-to-national AGB maps to date in terms of area, forest types, input datasets, and retrieval methods. The accuracy assessment of all regional maps using independent field data or LiDAR AGB maps resulted in an overall root mean square error (RMSE) ranging from 10 t ha−1 to 55 t ha−1 (37% to 67% relative RMSE), and an overall bias ranging from −1 t ha−1 to +5 t ha−1 at pixel level. The regional maps showed better agreement with field data than previously developed and widely used pan-tropical or northern hemisphere datasets. The comparison of accuracy assessments showed commonalities in error structures despite the variety of methods, input data, and forest biomes. All regional retrievals resulted in overestimation (up to 63 t ha−1) in the lower AGB classes, and underestimation (up to 85 t ha−1) in the higher AGB classes. Parametric model-based algorithms present advantages due to their low demand on in situ data compared to non-parametric algorithms, but there is a need for datasets and retrieval methods that can overcome the biases at both ends of the AGB range. The outcomes of this study should be considered when developing algorithms to estimate forest biomass at continental to global scale level

    Error Propagation Analysis for Remotely Sensed Aboveground Biomass

    Get PDF
    Edited version available. Full version will remain embargoed due to copyright. AS DCAbstract Above-Ground Biomass (AGB) assessment using remote sensing has been an active area of research since the 1970s. However, improvements in the reported accuracy of wide scale studies remain relatively small. Therefore, there is a need to improve error analysis to answer the question: Why is AGB assessment accuracy still under doubt? This project aimed to develop and implement a systematic quantitative methodology to analyse the uncertainty of remotely sensed AGB, including all perceptible error types and reducing the associated costs and computational effort required in comparison to conventional methods. An accuracy prediction tool was designed based on previous study inputs and their outcome accuracy. The methodology used included training a neural network tool to emulate human decision making for the optimal trade-off between cost and accuracy for forest biomass surveys. The training samples were based on outputs from a number of previous biomass surveys, including 64 optical data based studies, 62 Lidar data based studies, 100 Radar data based studies, and 50 combined data studies. The tool showed promising convergent results of medium production ability. However, it might take many years until enough studies will be published to provide sufficient samples for accurate predictions. To provide field data for the next steps, 38 plots within six sites were scanned with a Leica ScanStation P20 terrestrial laser scanner. The Terrestrial Laser Scanning (TLS) data analysis used existing techniques such as 3D voxels and applied allometric equations, alongside exploring new features such as non-plane voxel layers, parent-child relationships between layers and skeletonising tree branches to speed up the overall processing time. The results were two maps for each plot, a tree trunk map and branch map. An error analysis tool was designed to work on three stages. Stage 1 uses a Taylor method to propagate errors from remote sensing data for the products that were used as direct inputs to the biomass assessment process. Stage 2 applies a Monte Carlo method to propagate errors from the direct remote sensing and field inputs to the mathematical model. Stage 3 includes generating an error estimation model that is trained based on the error behaviour of the training samples. The tool was applied to four biomass assessment scenarios, and the results show that the relative error of AGB represented by the RMSE of the model fitting was high (20-35% of the AGB) in spite of the relatively high correlation coefficients. About 65% of the RMSE is due to the remote sensing and field data errors, with the remaining 35% due to the ill-defined relationship between the remote sensing data and AGB. The error component that has the largest influence was the remote sensing error (50-60% of the propagated error), with both the spatial and spectral error components having a clear influence on the total error. The influence of field data errors was close to the remote sensing data errors (40-50% of the propagated error) and its spatial and non-spatial Overall, the study successfully traced the errors and applied certainty-scenarios using the software tool designed for this purpose. The applied novel approach allowed for a relatively fast solution when mapping errors outside the fieldwork areas.HCED iraq, Middle Technical Universit

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management
    corecore