457 research outputs found

    Many-one reductions and the category of multivalued functions

    Get PDF
    Multi-valued functions are common in computable analysis (built upon the Type 2 Theory of Effectivity), and have made an appearance in complexity theory under the moniker search problems leading to complexity classes such as PPAD and PLS being studied. However, a systematic investigation of the resulting degree structures has only been initiated in the former situation so far (the Weihrauch-degrees). A more general understanding is possible, if the category-theoretic properties of multi-valued functions are taken into account. In the present paper, the category-theoretic framework is established, and it is demonstrated that many-one degrees of multi-valued functions form a distributive lattice under very general conditions, regardless of the actual reducibility notions used (e.g. Cook, Karp, Weihrauch). Beyond this, an abundance of open questions arises. Some classic results for reductions between functions carry over to multi-valued functions, but others do not. The basic theme here again depends on category-theoretic differences between functions and multi-valued functions.Comment: an earlier version was titled "Many-one reductions between search problems". in Mathematical Structures in Computer Science, 201

    Selective Categories and Linear Canonical Relations

    Full text link
    A construction of Wehrheim and Woodward circumvents the problem that compositions of smooth canonical relations are not always smooth, building a category suitable for functorial quantization. To apply their construction to more examples, we introduce a notion of highly selective category, in which only certain morphisms and certain pairs of these morphisms are "good". We then apply this notion to the category SLREL\mathbf{SLREL} of linear canonical relations and the result WW(SLREL){\rm WW}(\mathbf{SLREL}) of our version of the WW construction, identifying the morphisms in the latter with pairs (L,k)(L,k) consisting of a linear canonical relation and a nonnegative integer. We put a topology on this category of indexed linear canonical relations for which composition is continuous, unlike the composition in SLREL\mathbf{SLREL} itself. Subsequent papers will consider this category from the viewpoint of derived geometry and will concern quantum counterparts

    On Different Strategies for Eliminating Redundant Actions from Plans

    Get PDF
    Satisficing planning engines are often able to generate plans in a reasonable time, however, plans are often far from optimal. Such plans often contain a high number of redundant actions, that are actions, which can be removed without affecting the validity of the plans. Existing approaches for determining and eliminating redundant actions work in polynomial time, however, do not guarantee eliminating the "best" set of redundant actions, since such a problem is NP-complete. We introduce an approach which encodes the problem of determining the "best" set of redundant actions (i.e. having the maximum total-cost) as a weighted MaxSAT problem. Moreover, we adapt the existing polynomial technique which greedily tries to eliminate an action and its dependants from the plan in order to eliminate more expensive redundant actions. The proposed approaches are empirically compared to existing approaches on plans generated by state-of-the-art planning engines on standard planning benchmark

    History and new possible research directions of hyperstructures

    Get PDF
    We present a summary of the origins and current developments of the theory of algebraic hyperstructures. We also sketch some possible lines of research
    corecore