
University of Huddersfield Repository

Balyo, Tomas, Chrpa, Lukáš and Kilani, Asma

On Different Strategies for Eliminating Redundant Actions from Plans

Original Citation

Balyo, Tomas, Chrpa, Lukáš and Kilani, Asma (2014) On Different Strategies for Eliminating

Redundant Actions from Plans. In: Proceedings of the Seventh Annual Symposium on

Combinatorial Search. SoCS 2014 . AAAI Press, Prague, Czech Republic, pp. 10-18. ISBN 978-1-

57735-676-9

This version is available at http://eprints.hud.ac.uk/22091/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/30730308?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On Different Strategies for Eliminating Redundant Actions from Plans

Tomáš Balyo
Department of Theoretical Computer Science

and Mathematical Logic,
Faculty of Mathematics and Physics

Charles University in Prague
biotomas@gmail.com

Lukáš Chrpa and Asma Kilani
PARK Research Group

School of Computing and Engineering
University of Huddersfield

{l.chrpa,u0950056}@hud.ac.uk

Abstract

Satisficing planning engines are often able to generate
plans in a reasonable time, however, plans are often far
from optimal. Such plans often contain a high number
of redundant actions, that are actions, which can be re-
moved without affecting the validity of the plans. Ex-
isting approaches for determining and eliminating re-
dundant actions work in polynomial time, however, do
not guarantee eliminating the ‘best’ set of redundant ac-
tions, since such a problem is NP-complete. We intro-
duce an approach which encodes the problem of deter-
mining the ‘best’ set of redundant actions (i.e. having
the maximum total-cost) as a weighted MaxSAT prob-
lem. Moreover, we adapt the existing polynomial tech-
nique which greedily tries to eliminate an action and
its dependants from the plan in order to eliminate more
expensive redundant actions. The proposed approaches
are empirically compared to existing approaches on
plans generated by state-of-the-art planning engines on
standard planning benchmarks.

Introduction
Automated Planning is an important research area for its
good application potential (Ghallab, Nau, and Traverso
2004). With intelligent systems becoming ubiquitous there
is a need for planning systems to operate in almost real-time.
Sometimes it is necessary to provide a solution in a very lit-
tle time to avoid imminent danger (e.g damaging a robot)
and prevent significant financial losses. Satisficing planning
engines such as FF (Hoffmann and Nebel 2001), Fast Down-
ward (Helmert 2006) or LPG (Gerevini, Saetti, and Serina
2003) are often able to solve a given problem quickly, how-
ever, quality of solutions might be low. Optimal planning
engines, which guarantee the best quality solutions, often
struggle even on simple problems. Therefore, a reasonable
way how to improve the quality of the solutions produced
by satisficing planning engines is to use post-planning opti-
mization techniques.

In this paper we restrict ourselves to optimizing plans
only by removing redundant actions from them which may
serve as a pre-processing for other more complex plan opti-
mization techniques. Even guaranteeing that a plan does not
contain redundant actions is NP-complete (Fink and Yang
1992). There are polynomial algorithms, which remove most
of the redundant actions, but none of them removes all of

them. One of these algorithms, Action Elimination (Nakhost
and Müller 2010), iteratively tries to remove an action and
its dependants from the plan. We adapt the Action Elimina-
tion algorithm in order to take into account action cost and
propose two new algorithms which guarantee to remove the
‘best’ set of redundant actions. One uses partial maximum
satisfiability (PMaxSAT) solving, the other one relies on
weighted partial maximum satisfiability (WPMaxSAT) solv-
ing. We compare our new algorithms with existing (polyno-
mial) algorithms for removing redundant actions. The com-
parison is done on plans obtained by state-of-the-art plan-
ners on IPC-20111 benchmarks.

Related Work

Various techniques have been proposed for post-planning
plan optimization. Westerberg and Levine (2001) proposed
a technique based on Genetic Programming, however, it is
not clear whether it is required to hand code optimization
policies for each domain as well as how much runtime is
needed for such a technique. Planning Neighborhood Graph
Search (Nakhost and Müller 2010) is a technique which ex-
pands a limited number of nodes around each state along the
plan and then by applying Dijsktra‘s algorithm finds a bet-
ter quality (shorter) plan. This technique is anytime since we
can iteratively increase the limit for expanded nodes in order
to find plans of better quality. AIRS (Estrem and Krebsbach
2012) improves quality of plans by identifying suboptimal
subsequences of actions according to heuristic estimation
(a distance between given pairs of states). If the heuristic
indicates that states might be closer than they are, then a
more expensive (optimal) planning technique is used to find
a better sequence of actions connecting the given states. A
similar approach exists for optimizing parallel plans (Balyo,
Barták, and Surynek 2012). A recent technique (Siddiqui
and Haslum 2013) uses plan deordering into ‘blocks’ of par-
tially ordered subplans which are then optimized. This ap-
proach is efficient since it is able to optimize subplans where
actions might be placed far from each other in a totally or-
dered plan.

Determining and removing redundant actions from plans
is a specific sub-category of post-planning plan optimiza-
tion. Removing redundant actions from plans is a comple-

1http://www.plg.inf.uc3m.es/ipc2011-deterministic

mentary technique to those mentioned above, since it can be
used to ‘pre-optimize’ plans before applying a more com-
plex optimization technique. An influential work (Fink and
Yang 1992) defines four categories of redundant actions and
provides complexity results for each of the categories. One
of the categories refers to Greedily justified actions. A greed-
ily justified action in the plan is, informally said, such an ac-
tion which if it and actions dependent on it are removed from
the plan, then the plan becomes invalid. Greedy justification
is used in the Action Elimination (AE) algorithm (Nakhost
and Müller 2010) which is discussed in detail later in the
text. Another of the categories refers to Perfectly Justified
plans, plans in which no redundant actions can be found.
Minimal reduction of plans (Nakhost and Müller 2010) is
a special case of Perfectly Justified plans having minimal
cost of the plan. Both Perfect Justification and Minimal re-
duction are NP-complete. Determining redundant pairs of
inverse actions (inverse actions are those that revert each
other’s effects), which aims to eliminate the most com-
mon type of redundant actions in plans, has been also
recently studied (Chrpa, McCluskey, and Osborne 2012a;
2012b).

Preliminaries

In this section we give the basic definitions used in the rest
of the paper.

Satisfiability

A Boolean variable is a variable with two possible values
True and False. A literal of a Boolean variable x is either x
or ¬x (positive or negative literal). A clause is a disjunction
(OR) of literals. A clause with only one literal is called a unit
clause and with two literals a binary clause. An implication
of the form x ⇒ (y1 ∨ · · · ∨ yk) is equivalent to the clause
(¬x ∨ y1 ∨ · · · ∨ yk). A conjunctive normal form (CNF)
formula is a conjunction (AND) of clauses. A truth assign-
ment φ of a formula F assigns a truth value to its variables.
The assignment φ satisfies a positive (negative) literal if it
assigns the value True (False) to its variable and φ satisfies
a clause if it satisfies any of its literals. Finally, φ satisfies
a CNF formula if it satisfies all of its clauses. A formula F
is said to be satisfiable if there is a truth assignment φ that
satisfies F . Such an assignment is called a satisfying assign-
ment. The satisfiability problem (SAT) is to find a satisfying
assignment of a given CNF formula or determine that it is
unsatisfiable.

Maximum Satisfiability

The Maximum Satisfiability (MaxSAT) problem is the prob-
lem of finding a truth assignment of a given CNF formula,
such that the maximum number of clauses are satisfied. A
Weighted CNF (WCNF) formula is a CNF formula where
each clause has a non-negative integer weight assigned to
it. The Weighted MaxSAT (WMaxSAT) problem is to find a
truth assignment that maximizes the sum of the weights of
satisfied clauses. MaxSAT is a special case of WMaxSAT
where each clause has the same weight.

A partial maximum satisfiability (PMaxSAT) formula is
a CNF formula consisting of two kinds of clauses called
hard and soft clauses. The partial maximum satisfiability
(PMaxSAT) problem is to find a truth assignment φ for a
given PMaxSAT formula such that φ satisfies all the hard
clauses and as many soft clauses as possible.

Similarly to MaxSAT, PMaxSAT also has a weighted
version called Weighted Partial MaxSAT (WPMaxSAT). In
WPMaxSAT the soft clauses have weights and the task is to
find a truth assignments that satisfies all the hard clauses and
maximizes the sum of the weights of satisfied soft clauses.

Planning

In this subsection we give the formal definitions related
to planning. We will use the multivalued SAS+ formalism
(Bäckström and Nebel 1995) instead of the classical STRIPS
formalism (Fikes and Nilsson 1971) based on propositional
logic.

A planning task Π in the SAS+ formalism is defined as a
tuple Π = 〈X,O, sI , sG〉 where

• X = {x1, . . . , xn} is a set of multivalued variables with
finite domains dom(xi).

• O is a set of actions (or operators). Each action a ∈ O
is a tuple (pre(a), eff(a)) where pre(a) is the set of pre-
conditions of a and eff(a) is the set of effects of a. Both
preconditions and effects are of the form xi = v where
v ∈ dom(xi). Actions can have a non-negative integer
cost assigned to them. We will denote by C(a) the cost of
an action a.

• A state is a set of assignments to the state variables. Each
state variable has exactly one value assigned from its re-
spective domain. We denote by S the set of all states. By
sI ∈ S we denote the initial state. The goal conditions are
expressed as a partial assignment sG of the state variables
(not all variables have assigned values) and a state s ∈ S
is a goal state if sG ⊆ s.

An action a is applicable in the given state s if pre(a) ⊆
s. By s′ = apply(a, s) we denote the state after executing
the action a in the state s, where a is applicable in s. All
the assignments in s′ are the same as in s except for the as-
signments in eff(a) which replace the corresponding (same
variable) assignments in s.

A (sequential) plan P of length k for a given planning task
Π is a sequence of actions P = [a1, . . . , ak] such that sG ⊆
apply(ak, apply(ak−1 . . . apply(a2, apply(a1, sI)) . . .)).
By P [i] we will mean the i-th action of a plan P .
We will denote by |P | the length of the plan P . The
cost of a plan P is denoted by C(P) and it is defined
as the sum of the costs of the actions inside P , i.e.,
C(P) :=

∑

{C(P [i]); i ∈ 1 . . . |P |}. A plan P for a
planning task Π is called an optimal plan (cost optimal
plan) if there is no other plan P ′ for Π such that |P ′| < |P |
(C(P ′) < C(P)).

Redundant Actions in Plans

Intuitively, redundant actions in a plan are those, which if re-
moved then the rest of the plan is still valid. Subsequences of

original plans from which redundant actions were removed
are called plan reductions (Nakhost and Müller 2010).

Definition 1. Let P be a plan for a planning task Π. Let P ′

be a (possibly improper) subsequence of P . We say that P ′

is a plan reduction of P denoted as P ′ � P if and only if P ′

is also a plan for Π. If P ′ = P , then we say that P ′ is an
empty plan reduction of P .

Remark 1. We can easily derive that � is a partial-order
relation, since � is reflexive, transitive and antisymmetric.

Definition 2. We say that a plan P for a planning task Π
is redundant if and only if there exists P ′ such that P ′ � P
and |P ′| < |P | (P ′ is a non-empty plan reduction of P).

In literature, a plan which is not redundant is called a
perfectly justified plan. Note that deciding whether a plan
is perfectly justified is NP-complete (Fink and Yang 1992).
From this we can derive that deciding whether there exists a
non-empty reduction of a given plan is NP-complete as well.
Clearly, an optimal plan is not redundant (it is perfectly jus-
tified). However, as the following example shows we might
obtain several different plan reductions of an original plan.
Even if these reductions are perfectly justified plans, their
quality might be (very) different.

Example 1. Let us have a simple path planning scenario
on a graph with n vertices v1, . . . , vn and edges (vi, vi+1)
for each i < n and (vn, v1) to close the circle. We have one
agent traveling on the graph from v1 to vn. We have two
move actions for each edge (for both directions), in total 2n
move actions. The optimal plan for the agent is a one action
plan [move(v1, vn)].

Let us assume that we are given the following plan:
[move(v1, vn), move(vn, v1), move(v1, v2), move(v2, v3),
. . ., move(vn−1, vn)].

The plan can be made non-redundant by either removing
all but the first action (and obtaining the optimal plan) or by
removing the first two actions (ending up a with a plan of n
actions).

Achieving maximum possible plan optimization just by
removing redundant actions means that we have to identify
the ‘best’ set of them. In other words, we have to find a
minimal reduction of the original plan, which is also NP-
complete (Nakhost and Müller 2010).

Definition 3. Let P be a plan for a planning task Π. We
say that P ′ is a minimal plan reduction of P if and only if
P ′ � P , P ′ is not a redundant plan and there is no P ′′ such
that P ′′ � P and C(P ′′) < C(P ′).

Given the example, it matters which redundant actions
and in what order are removed. Polynomial methods (dis-
cussed in the Related Work Section) such as Action Elim-
ination (Nakhost and Müller 2010) are identifying and re-
moving sets of redundant actions successively. Even if we
get a non-redundant plan, which is not guaranteed by such
methods, it might not necessarily be a minimal plan reduc-
tion. In other words, we can ‘get stuck’ in local minima.

Intuitively, compatible plan reductions are those that it is
possible to successively eliminate the corresponding sets of
redundant actions. The formal definition follows.

Definition 4. Let P be a plan for a planning task Π. Let P 1

and P 2 be plan reductions of P (i.e. P 1 � P and P 2 � P).
We say that P 1 and P 2 are compatible if and only if there
exists P k such that P k � P 1 and P k � P 2. Otherwise, we
say that P 1 and P 2 are incompatible.

Informally speaking, having all plan reductions of a given
plan compatible means that eliminating any set of redun-
dant actions from the plan will not hinder the possibility of
finding a minimal plan reduction afterwards. It is formally
proved in the following lemma.

Lemma 1. Let P be a plan for a planning task Π. Let
R = {P ′ | P ′ � P} be a set of all plan reductions of P .
If ∀P 1, P 2 ∈ R it is the case that P 1 and P 2 are compat-
ible, then for every P ′ ∈ R there exists P ′′ ∈ R such that
P ′′ � P ′ and P ′′ is a minimal reduction of P (and P ′).

Proof. Without loss of generality, we assume that P ′′ is a
minimal plan reduction of P and P ′ is a plan reduction of P
(not necessarily minimal). According to Definition 4 we can
see that for P ′ and P ′′ there exists P k such that P k � P ′

and P k � P ′′. Since P ′′ is a minimal reduction of P and,
clearly, P ′′ is not a redundant plan, we can derive that P k =
P ′′ and thus P ′′ � P ′.

Deciding that all plan reductions are compatible is clearly
intractable, since deciding whether a plan is redundant (it
has a plan reduction) is intractable as well (as mentioned be-
fore). Despite this we believe that in some cases we might
be able to use polynomial methods without losing the possi-
bility to reach minimal plan reductions.

Greedy Action Elimination
There are several heuristic approaches, which can identify
most of the redundant actions in plans in polynomial time.
One of the most efficient of these approaches was introduced
by Fink and Yang (1992) under the name Linear Greedy Jus-
tification. It was reinvented by Nakhost and Müller (2010)
and called Action Elimination. In this paper we use the lat-
ter name and extend the algorithm to take into account the
action costs. Initially, we describe the original Action Elim-
ination algorithm.

Action Elimination (see Figure 1) tests for each action if it
is greedily justified. An action is greedily justified if remov-
ing it and all the following actions that depend on it makes
the plan invalid. One such test runs in O(np) time, where
n = |P | and p is the maximum number of preconditions
and effects any action has. Every action in the plan is tested,
therefore Action Elimination runs in O(n2p) time.

The Action Elimination algorithm ignores the cost of the
actions and eliminates a set of redundant actions as soon as
it discovers them. In this paper, we modify the Action Elimi-
nation algorithm to be less ‘impatient’. Before removing any
set of redundant actions, we will initially identify all the sets
of redundant actions and then remove the one with the high-
est sum of costs of the actions in it. We will iterate this pro-
cess until no more sets of redundant actions are found. We
will call this new algorithm Greedy Action Elimination.

Greedy Action Elimination relies on two functions:
evaluateRemove and remove (see Figure 2). The function

ActionElimination (Π, P)
AE01 s := sI
AE02 i := 1
AE03 repeat
AE04 mark(P [i])
AE05 s′ := s
AE06 for j := i+ 1 to |P | do
AE07 if applicable(P [j], s′) then
AE08 s′ := apply(P [j], s′)
AE09 else
AE10 mark(P [j])
AE11 if goalSatisfied(Π, s′) then
AE12 P := removeMarked(P)
AE13 else
AE14 unmarkAllActions()
AE15 s := apply(P [i], s)
AE16 i := i+ 1
AE17 until i > |P |
AE18 return P

Figure 1: Pseudo-code of the Action Elimination algorithm
as presented in (Nakhost and Müller 2010).

evaluateRemove tests if the k-th action and the following
actions that depend on it can be removed. It returns −1 if
those actions cannot be removed, otherwise it returns the
sum of their costs. The remove function returns a plan with
the k-th action and all following actions that depend on it
removed from a given plan. The Greedy Action Elimination
algorithm (see Figure 3) calls evaluateRemove for each po-
sition in the plan and records the most costly set of redun-
dant actions. The most costly set is removed and the search
for sets of redundant actions is repeated until no such set is
detected.

The worst case time complexity of Greedy Action Elim-
ination is O(n3p), where n = |P | and p is the maximum
number of preconditions or effects any action in P has. This
is due to the fact, that the main repeat loop runs at most n
times (each time at least one action is eliminated) and the
for loop calls n times evaluateRemove and once remove.
Both these functions run in O(np) time, therefore the total
runtime of the algorithm is O(n(n2p+ np)) = O(n3p).

There are plans, where Action Elimination cannot elimi-
nate all redundant actions (Nakhost and Müller 2010). This
also holds for the Greedy Action Elimination. An interesting
question is how often this occurs for the planning domains
used in the planning competitions (Coles et al. 2012) and
how much do the reduced plans differ from minimal plan re-
ductions. To find that out, we first need to design algorithms
that guarantee achieving minimal length reduction (elimi-
nate the maximum number of redundant actions regardless
their cost) and minimal plan reduction. As mentioned earlier,
these problems are NP-complete and therefore we find it rea-
sonable to solve it using a MaxSAT reduction approach. In
the next section we will introduce an encoding of the prob-
lem of redundant actions into propositional logic.

evaluateRemove (Π, P , k)
E01 s := sI
E02 for i := 1 to k − 1 do
E03 s := apply(P [i],s)
E04 cost := C(P [k])
E05 for i := k + 1 to |P | do
E06 if applicable(P [i], s) then
E07 s := apply(P [i], s)
E08 else
E09 cost := cost+ C(P [i])
E10 if goalSatisfied(Π, s) then
E11 return cost
E12 else
E13 return −1

remove (P , k)
R01 s := sI
R02 P ′ := [] // empty plan
R03 for i := 1 to k − 1 do
R04 s := apply(P [i],s)
R05 P ′ := append(P ′,P [i])
R06 for i := k + 1 to |P | do
R07 if applicable(P [i], s) then
R08 s := apply(P [i], s)
R09 P ′ := append(P ′, P [i])
R10 return P ′

Figure 2: Pseudo-code of the evaluateRemove and remove
functions used in the Greedy Action Elimination algorithm
(see Figure 3).

Propositional Encoding of Plan Redundancy

This section is devoted to introducing an algorithm, which
given a planning task Π and a plan P for Π, outputs a CNF
formula FΠ,P , such that each satisfying assignment of FΠ,P

represents a plan reduction P ′ of P , i.e.,P ′ � P .

We provide several definitions which are required to un-
derstand the concept of our approach. An action a is called
a supporting action for a condition c if c ∈ eff(a). An ac-
tion a is an opposing action of a condition c := xi = v if
xi = v′ ∈ eff(a) where v 6= v′. The rank of an action a
in a plan P is its order (index) in the sequence P . We will
denote by Opps(c, i, j) the set of ranks of opposing actions
of the condition c which have their rank between i and j
(i ≤ j). Similarly, by Supps(c, i) we will mean the set of
ranks of supporting actions of the condition c which have
ranks smaller than i.

In our encoding we will have two kinds of variables. First,
we will have one variable for each action in the plan P ,
which will represent whether the action is required for the
plan. We will say that ai = True if the i-th action of P
(the action with the rank i, i.e, P [i]) is required. The second
kind of variables will be option variables, their purpose and
meaning is described below.

The main idea of the translation is to encode the fact, that
if a certain condition ci is required to be true at some time i

greedyActionElimination (Π, P)
G01 repeat
G02 bestCost := 0
G03 bestIndex := 0
G04 for i := 1 to |P | do
G05 cost := evaluateRemove(Π, P, i)
G06 if cost ≥ bestCost then
G07 bestCost := cost
G08 bestIndex := i
G09 if bestIndex 6= 0 then
G10 P := remove(P, bestIndex)
G11 until bestIndex = 0
G12 return P

Figure 3: Pseudo-code of the Greedy Action Elimination al-
gorithm, an action cost-aware version of the Action Elimi-
nation algorithm. It greedily removes the most costly sets of
redundant actions.

in the plan, then one of the following must hold:

• The condition ci is true since the initial state and there is
no opposing action of ci with a rank smaller than i.

• There is a supporting action P [j] of ci with the rank j < i
and there is no opposing action of ci with the rank be-
tween j and i.

These two kinds of properties represent the options for sat-
isfying ci. There is at most one option of the first kind and at
most |P | of the second kind. For each one of them we will
use a new option variable yc,i,k, which will be true if the
condition c at time i is satisfied using the k-th option.

The main idea is similar to the ideas used in the ‘relaxed’
encodings for finding plans via SAT (Balyo 2013; Wehrle
and Rintanen 2007; Rintanen, Heljanko, and Niemelä 2006).

Now we demonstrate how to encode the fact, that we re-
quire condition c to hold at time i. If c is in the initial state,
then the first option will be expressed using the following
conjunction of clauses.

Fc,i,0 =
∧

j∈Opps(c,0,i)

(¬yc,i,0 ∨ ¬aj)

These clauses are equivalent to the implications below. The
implications represent that if the given option is true, then
none of the opposing actions can be true.

(yc,i,0 ⇒ ¬aj); ∀j ∈ Opps(c, 0, i)

For each supporting action P [j] (j ∈ Supps(c, i)) with rank
j < i we will introduce an option variable yc,i,j and add the
following subformula.

Fc,i,j = (¬yc,i,j ∨ aj)
∧

k∈Opps(c,j,i)

(¬yc,i,j ∨ ¬ak)

These clauses are equivalent to the implications that if the
given option is true, then the given supporting action is true
and all the opposing actions located between them are false.

Finally, for the condition c to hold at time i we need to
add the following clause, which enforces at least one option

variable to be true.

Fc,i = (yc,i,0
∨

j∈Supps(c,i)

yc,i,j)

Using the encoding of the condition requirement it is now
easy to encode the dependencies of the actions from the in-
put plan and the goal conditions of the problem. For an ac-
tion P [i] with the rank i we will require that if its action vari-
able ai is true, then all of its preconditions must be true at
time i. For an action P [i] the following clauses will enforce,
that if the action variable ai is true, then all the preconditions
must hold.

Fai
=

∧

c∈pre(ai)

(¬ai ∨ Fc,i) ∧ Fc,i,0

∧

j∈Supps(c,i)

Fc,i,j

We will need to add these clauses for each action in the plan.
Let us call these clauses FA.

FA =
∧

i∈1...|P |

Fai

For the goal we will just require all the goal conditions to
be true in the end of the plan. Let n = |P |, then the goal
conditions are encoded using the following clauses.

FG =
∧

c∈sG

Fc,n ∧ Fc,n,0

∧

j∈Supps(c,n)

Fc,n,j

The whole formula FΠ,P is the conjunction of the goal
clauses, and the action dependency clauses for each action
in P .

FΠ,P = FG ∧ FA

From a satisfying assignment of this formula we can pro-
duce a plan. A plan obtained using a truth assignment φ will
be denoted as Pφ. We define Pφ to be a subsequence of P
such that the i-th action of P , i.e., P [i] is present in Pφ if
and only if φ(ai) = True.

Proposition 1. An assignment φ satisfies FΠ,P if and only
if Pφ is a plan for Π.

Proof. (sketch) A plan is valid if all the actions in it are ap-
plicable when they should be applied and the goal conditions
are satisfied in the end. We constructed the clauses of FG to
enforce that at least one option of satisfying each condition
will be true. The selected option will then force the required
action and none of its opposing actions to be in the plan. Us-
ing the same principles, the clauses in FA guarantee that if
an action is present in the plan, then all its preconditions will
hold when the action needs to be applied.

The following observations follow directly from the
Proposition. The formula FΠ,P is always satisfiable for any
planning task Π and its plan P . One satisfying assignment
φ has all variables ai set to the value True. In this case, the
plan Pφ is identical to the input plan P . If P is already a
perfectly justified plan, then there is no other satisfying as-
signment of FΠ,P since all the actions in P are necessary to
solve the planning task.

Let us conclude this section by computing the following
upper bound on the size of the formula FΠ,P .

Proposition 2. Let p be the maximum number of precondi-
tions of any action in P , g the number of goal conditions
of Π, and n = |P |. Then the formula FΠ,P has at most

n2p + ng + n variables and n3p + n2g + np + g clauses,
from which n3p+ n2g are binary clauses.

Proof. There are n action variables. For each required con-
dition we have at most n option variables, since there are at
most n supporting actions for any condition in the plan. We
will require at most (g + np) conditions for the g goal con-
ditions and the n actions with at most p preconditions each.
Therefore the total number of option variables is n(np+ g).

For the encoding of each condition at any time we use
at most n options. Each of these options is encoded using
n binary clauses (the are at most n opposing actions for
any condition). Additionally we have one long clause say-
ing that at least one of the options must be true. We have np
required conditions because of the actions and g for the goal
conditions. Therefore in total we have at most (np + g)n2

binary clauses and (np+ g) longer clauses related to condi-
tions.

Minimal Length Reduction

In this section we describe how to do the best possible re-
dundancy elimination for a plan if we do not consider ac-
tion costs. This process is called Minimal Length Reduction
(MLR) and its goal is to remove a maximum number of ac-
tions from a plan. It is a special case of minimal reduction,
where all actions have unit cost.

The plan resulting from MLR is always perfectly justified,
on the other hand a plan might be perfectly justified and at
the same time much longer than a plan obtained by MLR
(see Example 1).

The solution we propose for MLR is based on our redun-
dancy encoding and using a partial maximum satisfiability
(PMaxSAT) solver.

Recall, that a PMaxSAT formula consists of hard and soft
clauses. The hard clauses will be the clauses we introduced
in the previous section.

HΠ,P = FΠ,P

The soft clauses will be unit clauses containing the negations
of the action variables.

SΠ,P =
∧

ai∈P

(¬ai)

The PMaxSAT solver will find an assignment φ that satisfies
all the hard clauses (which enforces the validity of the plan
Pφ due to Proposition 1) and satisfies as many soft clauses
as possible (which removes as many actions as possible).

The algorithm (Figure 4) is now very simple and straight-
forward. We just construct the formula and use a PMaxSAT
solver to obtain an optimal satisfying assignment φ. Using
this assignment we construct an improved plan Pφ as de-
fined in the previous section.

MinimalLengthReduction (Π,P)
MLR1 F := encodeMinimalLengthReduction(Π,P)
MLR2 φ := partialMaxSatSolver(F)
MLR3 return Pφ

Figure 4: Pseudo-code of the minimal length reduction algo-
rithm.

MinimalReduction (Π, P)
MR1 F := encodeMinimalReduction(Π, P)
MR2 φ := weightedPartialMaxSatSolver(F)
MR3 P ′ := MinimalLengthReduction (Π, Pφ)
MR4 return P ′

Figure 5: Pseudo-code of the minimal reduction algorithm.

Minimal Reduction
The problem of minimal (plan) reduction can be solved in
a very similar way to MLR. The difference is that we need
to construct a Weighted Partial MaxSAT (WPMaxSAT) for-
mula and use a WPMaxSAT solver.

Our WPMaxSAT formula is very similar to the PMaxSAT
formula from the previous section. The hard clauses are
again equal to FΠ,P and the soft clauses are unit clauses con-
taining the negations of the action variables. Each of these
unit clauses has an associated weight, which is the cost of
the corresponding action. The WPMaxSAT solver will find
a truth assignment φ that maximizes the weight of satis-
fied soft clauses which is equivalent to removing actions
with a maximal total cost. The validity of the plan Pφ ob-
tained from the optimal assignment φ is guaranteed thanks
to Proposition 1 and the fact that all the hard clauses must
be satisfied under φ.

The plan Pφ obtained from the WPMaxSAT solution φ
may contain redundant actions of zero cost. To obtain a per-
fectly justified plan we will run MLR on Pφ. The algorithm
is displayed in Figure 5.

Experimental Evaluation
In this section we present the results of our experimental
study regarding elimination of redundant actions from plans.
We implemented the Action Elimination (AE) algorithm as
well as its greedy variant and the PMaxSAT and WPMaxSat
based algorithms – minimal length reduction (MLR) and
minimal reduction (MR). We used plans obtained by three
state-of-the-art satisficing planners for the problems of the
International Planning Competition (Coles et al. 2012) and
compared the algorithms with each other and with a plan op-
timization tool which focuses on redundant inverse actions
elimination (IAE) (Chrpa, McCluskey, and Osborne 2012a).

Experimental Settings

Since, our tools take input in the SAS+ format, we used
Helmert’s translation tool, which is a part of the Fast Down-
ward planning system (Helmert 2006), to translate the IPC
benchmark problems that are provided in PDDL.

To obtain the initial plans, we used the following state-of-
the-art planners: FastDownward (Helmert 2006), Metric FF

Table 1: Experimental results on the plans for the IPC 2011 domains found by the planners Fast Downward, Metric FF, and
Madagascar. The planners were run with a time limit of 10 minutes. The column ‘Found Plan’ contains the number and the
total cost of the found plans. The following columns contain the total cost of the eliminated actions (∆) and the total time in
seconds (T[s]) required for the optimization process for the five evaluated algorithms.

Domain Found Plan IAE AE Greedy AE MLR MR

Nr. Cost ∆ T[s] ∆ T[s] ∆ T[s] ∆ T[s] ∆ T[s]

M
et

ri
c

F
F

elevators 20 25618 2842 1,31 2842 0,87 2842 0,91 2842 0,17 2842 1,77

floortile 2 195 29 0,00 30 0,01 30 0,03 30 0,00 30 0,00

nomystery 5 107 0 0,14 0 0,01 0 0,01 0 0,00 0 0,00

parking 18 1546 118 0,16 124 0,10 124 0,30 124 0,03 124 0,27

pegsol 20 300 0 0,00 0 0,07 0 0,06 0 0,02 0 0,28

scanalyzer 18 1137 0 0,00 62 0,04 62 0,06 62 0,01 62 0,17

sokoban 13 608 0 0,71 2 0,40 2 0,33 2 0,36 2 9,12

transport 6 29674 2650 0,32 3013 0,27 3035 0,52 3035 0,25 3035 3,34

F
as

t
D

o
w

n
w

ar
d

barman 20 7763 436 0,98 753 0,51 780 1,08 926 0,43 926 10,85

elevators 20 28127 1068 1,51 1218 0,79 1218 1,20 1218 0,19 1218 1,99

floortile 5 572 66 0,00 66 0,04 66 0,08 66 0,00 66 0,01

nomystery 13 451 0 4,25 0 0,04 0 0,04 0 0,01 0 0,04

parking 20 1494 4 0,06 4 0,09 4 0,10 4 0,04 4 0,21

pegsol 20 307 0 0,00 0 0,06 0 0,06 0 0,02 0 0,30

scanalyzer 20 1785 0 0,01 78 0,06 78 0,08 78 0,04 78 0,49

sokoban 17 1239 0 6,48 58 0,53 58 0,75 102 1,92 102 250,27

transport 17 74960 4194 1,11 5259 0,56 5260 1,02 5260 0,19 5260 1,92

M
ad

ag
as

ca
r

barman 8 3360 296 0,97 591 0,25 598 0,52 606 0,28 606 6,33

elevators 20 117641 7014 6,77 24096 1,21 24728 10,44 28865 1,90 28933 37,34

floortile 20 4438 96 0,09 96 0,31 96 0,37 96 0,04 96 0,24

nomystery 15 480 0 2,63 0 0,04 0 0,04 0 0,01 0 0,02

parking 18 1663 152 0,17 152 0,12 152 0,40 152 0,04 152 0,36

pegsol 19 280 0 0,00 0 0,05 0 0,06 0 0,01 0 0,26

scanalyzer 18 1875 0 0,05 232 0,19 236 0,47 236 0,04 236 0,31

sokoban 1 33 0 0,01 0 0,02 0 0,04 0 0,01 0 0,19

transport 4 20496 4222 0,23 6928 0,20 7507 0,56 7736 0,16 7736 9,56

(Hoffmann 2003), and Madagascar (Rintanen 2013). Each
of these planners was configured to find plans as fast as pos-
sible and ignore plan quality.

We tested five redundancy elimination methods:

• Inverse action elimination (IAE) is implemented in C++
and incorporates techniques described in (Chrpa, Mc-
Cluskey, and Osborne 2012a)

• Action Elimination (AE) is our own Java implementation
of the Action Elimination algorithm as displayed in Fig-
ure 1.

• Greedy Action Elimination (Greedy AE) is our Java im-
plementation of the Greedy Action Elimination algorithm
as displayed in Figure 3.

• Minimal Length Reduction (MLR) is a Partial MaxSAT
reduction based algorithm displayed in Figure 4. We im-
plemented the translation in Java and used the QMaxSAT
(Koshimura et al. 2012) state-of-the-art MaxSAT solver
written in C++ to solve the instances. We selected
QMaxSAT due to its availability and very good results in
the 2013 MaxSAT competition.

• Minimal Reduction (MR) is a Weighted Partial MaxSAT
reduction based algorithm displayed in Figure 5. The
translation is implemented in Java and we used the Toysat
(Sakai 2014) Weighted MaxSAT solver written in Haskell
to solve the instances. Although Toysat did not place very
well in the 2013 MaxSAT competition, it significantly
outperformed all the other available solvers on our for-

mulas.

For each of these methods we measured the total runtime and
the total cost of removed redundant actions for each domain
and planner.

All the experiments were run on a computer with Intel
Core i7 960 CPU @ 3.20 GHz processor and 24 GB of mem-
ory. The planners had a time limit of 10 minutes to find the
initial plans. The benchmark problems are taken from the
satisficing track of IPC 2011 (Coles et al. 2012).

Experimental Results

The results of our experiments are displayed in Table 1. We
can immediately notice that the runtime of all of the meth-
ods is usually very low. Most of the optimizations run un-
der a second and none of the methods takes more than two
seconds on average for any of the plans except for the Fast
Downward plans for the sokoban domain.

Looking at the total cost of removed actions in Table 1
we can make several interesting observations. For example,
in the nomystery and pegsol domains no redundant actions
were found in plans obtained by any planner.

The IAE method does not often eliminate as many redun-
dant actions as the other methods. Clearly, this is because of
the IAE method is specific, i.e., only pairs or nested pairs of
inverse actions are considered. Surprisingly, the runtime is
high despite the complexity results (Chrpa, McCluskey, and
Osborne 2012a). This can be partially explained by the fact,
that IAE takes input in the PDDL format, which is much
more complex to process than the SAS+ format.

The Action Elimination (AE) algorithm, although it ig-
nores the action costs, performs rather well. Except for eight
planner/domain combinations it achieves minimal reduction,
i.e., the best possible result. Furthermore, AE has consis-
tently very low runtime.

The Greedy Action Elimination algorithm improves upon
AE in seven cases and achieves minimal reduction in all but
five planner/domain pairs. The runtime of the greedy variant
is not significantly increased in most of the cases except for
the Madagascar plans for the elevators domain. Overall, we
can say, that using Greedy AE instead of just plain AE pays
off in most of the cases.

The Minimal Length Reduction (MLR) algorithm is guar-
anteed to remove the maximum number of redundant actions
(not considering their cost) and this is also enough to achieve
minimal reduction in each case except for the Madagascar
plans for the elevators domain. The runtime of this method
is very good, considering it is guaranteed to find an optimal
solution for an NP-hard problem.

The last and the strongest of the evaluated algorithms,
Minimal Reduction (MR), is guaranteed to achieve minimal
reduction. Nevertheless, its runtime is still very reasonable
for each planner/domain pair. Even the 250 seconds required
to optimize the 17 sokoban plans from Fast Downward is
negligible compared to the time planners need to solve this
difficult domain.

Discussion

Clearly, the WPMaxSAT based method is guaranteed to pro-
vide minimal reduction of plans and therefore cannot be out-

performed (in terms of quality) by the other methods. De-
spite NP-completeness of this problem, runtimes are usually
very low and in many cases even lower than the other poly-
nomial methods we compared with. On the other hand, when
the problem becomes harder the runtimes can significantly
increase (e.g in the Sokoban domain). We have observed
that the problem of determining redundant actions (includ-
ing minimal reduction) is in most of the cases very easy.
Therefore, runtime often depends more on the efficiency of
implementation of particular methods rather than the worst
case complexity bounds.

Our results also show that in the most cases using the
polynomial method (AE or Greedy AE) provides minimal
reduction, so the WMaxSAT method usually does not lead to
strictly better results. Guaranteeing in which cases (Greedy)
AE provides minimal reduction is an interesting open ques-
tion. To answer this question we have to identify cases in
which we can decide in polynomial time that the optimized
plan is not redundant as well as that all reductions of the
original plan are compatible (see Lemma 1).

Conclusions

In this paper we adapted the Action Elimination algorithm
to work with action costs and experimentally showed that it
often improves plans better that the original Action Elimina-
tion algorithm. We have also introduced a SAT encoding for
the problem of detecting redundant actions in plans and used
it to build two algorithms for plan optimization. One is based
on partial MaxSAT solving and the other on weighted par-
tial MaxSAT solving. Contrary to existing algorithms, both
of our algorithms guarantee, that they output a plan with no
redundant actions. Additionally, the partial MaxSAT based
algorithm always eliminates a maximum number of redun-
dant actions and the weighted partial MaxSAT based algo-
rithm removes a set of actions with the highest total cost.

According to our experiments we have done on the IPC
benchmarks with plans obtained by state-of-the-art planners,
our newly proposed algorithms perform very well in general.
However, in a few cases the weighted MaxSAT algorithm is
slow. This supports the complexity results for the problem
of finding minimal reduction. Interestingly, (Greedy) AE has
found minimal reductions in many cases. Therefore, it is an
interesting question in which cases we can guarantee finding
minimal reductions by the (greedy) AE.

In future, apart from addressing that question, we plan to
incorporate the IAE algorithm into the (greedy) AE one. For
determining redundancy of pairs of inverse actions we need
to investigate only actions placed in between (Chrpa, Mc-
Cluskey, and Osborne 2012b), so we believe that we can im-
prove the efficiency of the (greedy) AE algorithm.

Acknowledgments The research is supported by the
Czech Science Foundation under the contract P103/10/1287
and by the Grant Agency of Charles University under con-
tract no. 600112. This research was also supported by the
SVV project number 260 104.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11:625–656.

Balyo, T.; Barták, R.; and Surynek, P. 2012. Shortening
plans by local re-planning. In Proceedings of ICTAI, 1022–
1028.

Balyo, T. 2013. Relaxing the relaxed exist-step parallel
planning semantics. In ICTAI, 865–871. IEEE.

Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012a. De-
termining redundant actions in sequential plans. In Proceed-
ings of ICTAI, 484–491.

Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012b. Op-
timizing plans through analysis of action dependencies and
independencies. In Proceedings of ICAPS, 338–342.

Coles, A. J.; Coles, A.; Olaya, A. G.; Celorrio, S. J.; López,
C. L.; Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. AI Magazine 33(1).

Estrem, S. J., and Krebsbach, K. D. 2012. Airs: Anytime
iterative refinement of a solution. In Proceedings of FLAIRS,
26–31.

Fikes, R., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artif. Intell. 2(3/4):189–208.

Fink, E., and Yang, Q. 1992. Formalizing plan justifications.
In Proceedings of the Ninth Conference of the Canadian So-
ciety for Computational Studies of Intelligence, 9–14.

Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs.
Journal of Artificial Intelligence Research (JAIR) 20:239 –
290.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state variables.
Journal Artificial Intelligence Research (JAIR) 20:291–341.

Koshimura, M.; Zhang, T.; Fujita, H.; and Hasegawa, R.
2012. Qmaxsat: A partial max-sat solver. JSAT 8(1/2):95–
100.

Nakhost, H., and Müller, M. 2010. Action elimination and
plan neighborhood graph search: Two algorithms for plan
improvement. In Proceedings of ICAPS, 121–128.

Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artif. Intell. 170(12-13):1031–1080.

Rintanen, J. 2013. Planning as satisfiability: state of the art.
http://users.cecs.anu.edu.au/ jussi/satplan.html.

Sakai, M. 2014. Toysolver home page.
https://github.com/msakai/toysolver.

Siddiqui, F. H., and Haslum, P. 2013. Plan quality optimisa-
tion via block decomposition. In Proceedings of IJCAI.

Wehrle, M., and Rintanen, J. 2007. Planning as satisfia-
bility with relaxed exist-step plans. In Orgun, M. A., and
Thornton, J., eds., Australian Conference on Artificial Intel-
ligence, volume 4830 of Lecture Notes in Computer Science,
244–253. Springer.

Westerberg, C. H., and Levine, J. 2001. Optimising plans
using genetic programming. In Proceedings of ECP, 423–
428.

