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Abstract

Multi-valued functions are common in computable analysis (built upon
the Type 2 Theory of Effectivity), and have made an appearance in com-
plexity theory under the moniker search problems leading to complexity
classes such as PPAD and PLS being studied. However, a systematic in-
vestigation of the resulting degree structures has only been initiated in
the former situation so far (the Weihrauch-degrees).

A more general understanding is possible, if the category-theoretic
properties of multi-valued functions are taken into account. In the present
paper, the category-theoretic framework is established, and it is demon-
strated that many-one degrees of multi-valued functions form a distribu-
tive lattice under very general conditions, regardless of the actual re-
ducibility notions used (e.g. Cook, Karp, Weihrauch).

Beyond this, an abundance of open questions arises. Some classic
results for reductions between functions carry over to multi-valued func-
tions, but others do not. The basic theme here again depends on category-
theoretic differences between functions and multi-valued functions.
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1 Introduction

What are multi-valued functions?

A (partial) multi-valued function f :⊆ A ⇒ B is just a set f ⊆ A × B – i.e. a
relation. However, the category of multi-valued functions is not the category
of relations! We write f(a) for {b ∈ B | (a, b) ∈ f} and dom(f) = {a ∈ A |
∃b ∈ f(a)}. Then the composition of multi-valued functions f :⊆ A ⇒ B,
g :⊆ B ⇒ C is defined via c ∈ (g ◦ f)(a) iff f(a) ⊆ dom(g) and ∃b ∈ f(a)
s.t. c ∈ g(a). In the usual definition of the composition for relations, the former
condition is absent!

The intended interpretation of a multi-valued function f :⊆ A⇒ B is that it
links problem instances to solutions. This draws interest to the following partial
order:

f � g ⇔ dom(f) ⊆ dom(g) ∧ g| dom(f) ⊆ f

We can read f � g as f is easier as g: There may be fewer instances for f than
for g, and a solution to a problem instance in g is a solution for it in f , too,
where applicable. This has the consequence that any procedure solving g also
solves f .

For any two multi-valued functions f, g :⊆ A ⇒ B there exists a hardest
multi-valued function easier than both, i.e. there are binary infima w.r.t. �.
These are given by f ∧ g = (f ∪ g)| dom(f)∩dom(g).

Why use them?

First, multi-valued functions are natural: From elimination orders on graphs
over Nash equilibria in games to fixed points of continuous mappings, there
are plenty of problems without a natural way to specify the desired solution
uniquely. In fact, if one accepts their formulation as multi-valued functions, one
can even prove that the latter two are non-equivalent to any function [Pau10a,
BLRP12]! [BG94] discusses further cases.

Then, they are well-behaved under realizability: It is a common situation
in computability and complexity theory that we have an algorithmic notion
for some functions on some special sets X, Y which we intend to lift to more
general spaces A, B. We do this by fixing surjective encodings δA :⊆ X → A,
δB :⊆ Y → B, and then calling e.g. a function f : A → B computable, iff
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there is a computable function F :⊆ X → Y such that the following diagram
commutes:

X
F−−−−→ YyδA yδB

A
f−−−−→ B

In general (depending on δA, δB), there will be algorithms (i.e. functions F :⊆
X → Y ) which do not compute any function f : A → B, which leads to the
canonization problem: The desire to find an algorithm CA :⊆ X → X with the
properties CA(x) = CA(y) whenever δA(x) = δA(y), and δA(CA(x)) = δA(x).
Note that in many cases canonization is known or suspected to be impossible
with the available means.

On the other hand, every algorithm computes a multi-valued function, hence,
the canonization problem is relegated to a far less fundamental position.

Algorithms lacking semantics as a function can nonetheless be very mean-
ingful. A common example for this is the multi-valued function χ : R→ {0, 1}
with 0 ∈ χ(x) iff x ≤ 1 and 1 ∈ χ(x) iff x ≥ 0. χ is computable – but the only
computable functions from R to {0, 1} are the constant ones. Hence, when work-
ing with real numbers, tests will have to be non-deterministic, i.e. multi-valued
functions. This then motivates an investigation of continuity for multivalued
functions as in [BH94, PZ13].

Finally, as will be demonstrated in this paper, the properties of multi-valued
functions have a nice impact on the degree-structure of many-one reductions:
One always obtains a distributive lattice here.

An abridged version of the present article lacking proofs has appeared as
[Pau12].

2 Background

Many-one reductions between multi-valued functions have been studied in com-
plexity theory for several decades now, with complexity classes such as PPAD
[Pap94], PLS [JPY88] and FIXP [EY07] garnering a lot of attention. All three
have a number of very interesting complete problems, often related to game
theory. We just mention finding Nash equilibria in finite two player games with
integer payoffs as a complete problem for PPAD [CD05], finding Nash equilibria
of generalized congestion games as complete for PLS [FPT04] and finding exact
Nash equilibria in finite three player games with integer payoffs as complete for
FIXP [EY07].

There also are a several problems which are known to be in both PPAD
and PLS, but where this is the best classification available. Computing win-
ning strategies in parity or discounted payoff games is a typical example here
(e.g. [JPZ08, Page 2]). Despite this strong motivation to study PPAD ∩ PLS,
only in 2011 it was noticed (in a publication) that this class actually has com-
plete problems [DP11] - a fact that is an obvious consequence of the degree
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structure being a distributive lattice (which we show here). A systematic inves-
tigation of the degree structure seems to be missing so far.

In another setting for many-one reductions between multi-valued functions is
the programme to classify the computational content of mathematical theorems
in the Weihrauch lattice initiated in [BG11a], [GM09]. Here a mathematical
theorem of the form

∀x ∈ X (x ∈ D ⇒ ∃y ∈ Y T (x, y))

is read as a multi-valued function T :⊆ X ⇒ Y with dom(T ) = D which has to
find a witness y ∈ Y given some x ∈ X. The tool for classification is Weihrauch-
reducibility, a form of many-one reducibility introduced originally in [Wei92a],
[Wei92b].

Various theorems been classified in this framework: e.g. the Hahn-Banach
theorem [GM09], Weak König’s Lemma, the Intermediate Value theorem [BG11b],
Nash’s theorem on the existence of equilibria [Pau10a], Bolzano-Weierstrass
[BGM12], Brouwer’s Fixed Point theorem [BLRP12], Ramsey’s theorem (par-
tially) [DDH+ar], the existence of the Radon-Nikodym derivative [HRW12] and
the Lebesgue Density Lemma [BGH15].

Accompanying the investigation of specific degrees, also the overall degree
structure has been studied. The Weihrauch degrees form a distributive lattice
[BG11b], [Pau10b], and can be turned into a Kleene algebra when equipped
with additional natural operations ×, ∗ [HP13]. While some additional results
in this area do depend on specific properties of Weihrauch reducibility, the
fundamental ones only use generic properties of many-one reductions and multi-
valued functions - and as such would also apply to the study of PPAD, PLS,
etc.!

By outlining the properties of the category Mult we simultaneously define
when a category is sufficiently similar to it to admit the same constructions
as those used to study Weihrauch reducibility. In particular, we show how to
introduce notions of many-one reductions in such a case, and derive the basic
properties of the induced degree structures. The spirit of this endeavor bears
similarity to the characterization of categories behaving like the one of partial
functions as p-categories in [RR88], which also serves as our starting point.

As a means to study partial functions in an abstract setting, p-categories
have largely been superseded by restriction categories introduced in [CL02,
CL03, CL07]. The primary additional structure of a p-category is its (par-
tial) product, whereas a restriction categories is built upon the mapping of a
function to the identity restricted to the functions domain. Given the product,
the restriction can be derived; and if a restriction category does admit a suit-
able product, then both settings are equivalent [CL07, Theorem 5.2]. Despite
restriction categories being the more general setting, we still use p-categories:
Our definitions require the existence of the p-product anyway, whereas in the
applications we have in mind the precise domain of a multivalued function is of
less relevance.

Many-one reductions between sets are closely tied to pullbacks (e.g. [Pau10b,
Subsection 6.6]), this ceases to be true for multivalued functions. The reason for
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this lies in the fact that post-processing is included in our notion of reducibility
for multivalued functions, whereas it generally is absent for sets.

While our goal of blending category and recursion theory has a significant
history (e.g. [LM84], [DH87], see the survey [CH08]), this does not include the
study of reductions. On the other hand, categorical models of linear logic as
studied in [dP89],[Bla95] admit certain similarities to the operations appearing
in the present paper, however, have no strong connections to recursion or even
complexity theory.

3 Many-one reductions in a categorical setting

3.1 The category Mult

It is easy to see that composition of multi-valued functions is associative, so they
form a category Mult . One can lift disjoint unions and cartesian products from
sets to multi-valued functions in the straight-forward way, we will denote the
results by f + g and f × g. The disjoint union retains its rôle as the coproduct,
however, the cartesian product is not the categorical product. In the remainder
of this subsection we shall explore some further specific properties of Mult ,
which, however, will not be needed for our development of many-one reduction.
The required properties are then axiomatized in Subsections 3.2, 3.3.

Like Rel , also Mult does have a categorical product. Unlike in Rel , where
the product is the same as the coproduct, in Mult it is found in A ⊗ B :=
A + (A × B) + B and projections πA : A ⊗ B → A defined via πA(a) = a for
a ∈ A, πA((a, b)) = a for (a, b) ∈ A × B and πA(b) = undef for b ∈ B. Thus,
Mult essentially has the same products as the category Par of partial functions.
For our purposes, ⊗ is badly behaved – e.g. it does not preserve computability.

A further – decisive – difference to the category Rel of relations is the fol-
lowing:

Proposition 1. Mult is not self-dual.

Sketch. Assume that Mult would admit a dual operation †. For reasons of
cardinality, † has to act like the identity on objects; in particular † : Mult(2, 2)→
Mult(2, 2). One can verify by exhausting all combinations that there is no self-
dual operations on this hom-set with (f ◦ g)† = g† ◦ f†, thus Mult cannot be
self-dual.

Both Rel and Mult can be obtained as the Kleisli-category of a monad acting
on Set – and in both cases, the functor involved is the powerset functor P. The
difference lies in the multiplication: For Rel , it is µRel : P(P(X)) → P(X)
defined by µRel(A) =

⋃
B∈AB. For Mult , it is µMult : P(P(X)) → P(X)

defined by µMult(A) =
⋃
B∈AB if ∅ /∈ A and µMult(A) = ∅ if ∅ ∈ A.(1)

1The observation in this paragraph is due to an anonymous referee.
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3.2 Categories of multivalued functions

As mentioned above, the starting point for our axiomatization are p-categories.
P-categories were introduced to capture the rôle of the cartesian product (i.e.
the pairing function 〈 〉) defined on partial functions, where it no longer coincides
with the categorical product.

Definition 2 ([RR88]). A p-category is a category C together with a natu-
rally associative and naturally commutative bifunctor × : C × C → C (the prod-
uct2), a natural transformation ∆ (the diagonal) between the identity functor
and the derived functor X 7→ X ×X, and two families of natural transforma-
tions (πA1 )A∈Ob(C) and (πB2 )B∈Ob(C) (the projections) where πA1 is between the
derived functor X 7→ X × A and the identity, while πB2 is between the derived
functor X 7→ B × X and the identity, such that the following properties are
given:

πX1 (X) ◦∆(X) = πX2 (X) ◦∆(X) = idX (πY1 (X)× πX2 (Y )) ◦∆(X × Y ) = idX×Y

πY1 (X) ◦ (idX × πZ1 (Y )) = π
(Y×Z)
1 (X) πZ1 (X) ◦ (idX × πY2 (Z)) = π

(Y×Z)
1 (X)

πX2 (Y ) ◦ (πY1 (X)× idZ) = π
(X×Y )
2 (Z) πX2 (Z) ◦ (πX2 (Y )× idZ) = π

(X×Y )
2 (Z)

For easier reading, we shall write πX,Y1 instead of πY1 (X), πX,Y2 for πX2 (Y )
and finally ∆X in place of ∆(X). If the superscripts are obvious from the
context, they may be dropped.

The treatment of partial maps in a categorical framework causes the concept
of the domain of a map to split into two separate ones. With Dom(f) we denote
the object A, if f : A→ B is a morphism. Following [DH87], we write dom(f)

for the morphism πA,B1 ◦ (idA × f) ◦∆A, where π1 is the first projection of the
product X × Y . One can interpret dom(f) : A → A as the partial identity on
that part of A where the partial map f is actually defined.

We point out that the composition f◦dom(g) for suitable morphisms f , g can
be read as the restriction of f to the domain of g. The concept of domains and
restrictions allows us to formulate how projections work together with diagonals,
as we find for any morphisms f : X → Y , g : X → Z:

πY,Z2 ◦ (f × g) ◦∆X = g ◦ dom(f) and πY,Z1 ◦ (f × g) ◦∆X = f ◦ dom(g)

In a slightly more general situation, we can omit the diagonal and find:

π
CDom(f),CDom(g)
1 ◦ (f × g) = f ◦ πDom(f),Dom(g)

1 ◦ (idDom(f) × dom(g))

On morphisms of the form dom f : X → X, a partial order ⊆ may be defined
via (dom f) ⊆ (dom g), if (dom f)◦(dom g) = dom f . This partial order even is a
meet-semilattice, with composition ◦ taking the rôle of the infimum representing
the intersection. For f : A → B and g : A → C, the morphism g ◦ dom(f) is

2We hope that this nomenclature will not cause confusion, and point out again that the
product in a p-category is not necessarily the product in the underlying category. It will be
made clear whenever we refer to the categorical product instead.
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the restriction of g to the domain of f , so we could introduce the extension
ordering for partial maps via f ⊆ g, if f = g ◦ dom(f). Hence, any p-category
may be considered to be poset enriched in a canonic way. In the general case,
morphisms that are not domains will lack an infimum though, hence the canonic
poset enrichment does not constitute a meet-semilattice enrichment.

Multivalued functions however have another preorder available, namely the
easier than-order � mentioned in the introduction. This does admit infima for
arbitrary pairs f, g : A ⇒ B of multivalued functions. Hence, we work in a
meet-semilattice enriched p-category. Before we give a formal definition, we
point out that the presence of coproduct is crucial for the later to be developed
properties of the degree structures.

Definition 3. A poset enriched p-category is a p-category (C,×) together with
a family (�A,B)A,B∈Ob(C), where �A,B is a preorder on the homsets C(A,B)
that satisfies the following properties (we drop the subscript for � from here
onwards):

1. f1 � f2 implies (g ◦ f1 ◦ h) � (g ◦ f2 ◦ h) for all suitable morphisms
f1, f2, g, h

2. f1 � f2 implies f1 × g � f2 × g for all suitable morphisms f1, f2, g

3. fν � gν for all ν < α implies
(∐

ν<α fν
)
�
(∐

ν<α gν
)

as long as these
coproducts exist

4. dom(f) ⊆ dom(g) ⊆ dom(h) together with dom(h) � dom(f) implies
dom(h) � dom(g)

We speak of a meet-semilattice enriched p-category, if additionally all preorders
� admit infima compatible with composition and products, i.e.

5. g◦ inf{f1, f2}◦h = inf{(g ◦ f1 ◦ h) , (g ◦ f2 ◦ h)} for all suitable morphisms
f1, f2, g, h

6. g × inf{f1, f2} = inf{(g × f1) , (g × f2)}

7. inf{
(∐

ν<α fν
)
,
(∐

ν<α gν
)
} =

∐
ν<α inf{fν , gν} as long as these coprod-

ucts exist

The conditions 1.-3. and 5.-7. are straight-forward postulations that the
local posets (meet-semilattice) are compatible with composition, the cartesian
product and coproducts. Condition 4. can be read as stating that if the new
preorder � behaves like the dual of the derived preorder ⊆ somewhere, then it
has to do so uniformly in a certain way. This is a technical criterion needed for
our proofs. In the case that � is the easier than preorder the conditions are
modelled upon, the situation of condition 4. can only happen if all three domains
coincide anyway. We point out that compatibility of � with composition and
products already implies compatibility with domains:
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Proposition 4. For any morphisms f, g : X → Y in a poset enriched p-
category, f � g implies dom(f) � dom(g).

Proof. From f � g we can conclude (idX×f) � (idX×g), which in turn implies:(
πX,Y1 ◦ (id× f) ◦∆X

)
�
(
πX,Y1 ◦ (id× g) ◦∆X

)
Evaluation of both sides of this statement yields the claim.

We require two more conditions pertaining to the coproducts. For this,

we fix some notation: Coproduct injections are denoted by ι
(Aν)ν<α
µ : Aµ →(∐

ν<αAν
)
. The co-diagonal is written as ∇αA :

(∐
ν<αA

)
→ A, it satisfies

∇αA ◦ ι
(A)ν<α
µ = idA for all µ < α.

Definition 5. A (poset enriched, meet-semilattice enriched) p-category has
distributive coproducts of size α, if all coproducts of size α exists in the un-
derlying category, and there is a natural isomorphism a : A ×

(∐
ν<αBν

)
→∐

ν<α (A×Bν).

Definition 6. A (poset enriched, meet-semilattice enriched) p-category is to-
tally connected, if the underlying category is totally connected, i.e. if for any
two objects A,B ∈ Ob(C) there is a morphism cA,B : A → B. We assume3

cA,A = idA.

The assumption of total connectedness for multivalued functions is based
on the nowhere defined multivalued function 0 : X → Y existing for any two
objects. This family of morphisms has further interesting properties, which
however are not relevant here. Now we can state and prove a number of useful
properties of coproducts in our setting:

Proposition 7 (cf [CL07, Page 4]). In a totally connected (poset enriched,
meet-semilattice enriched) p-category, coproduct injections are retractable.

Proof. A retract κ
(Aν)ν<α
µ :

(∐
ν<αAν

)
→ Aµ for the injection ι

(Aν)ν<α
µ : Aµ →(∐

ν<αAν
)

can be obtained as κ
(Aν)ν<α
µ = ∇αAµ ◦

(∐
ν<α cAν ,Aµ

)
. It is easy to

see that κ
(Aν)ν<α
µ ◦ ι(Aν)ν<αµ = idAµ .

A

A
∐
B A

∐
A

ι

idA + cB,A

∇

3While this assumption makes c·,· behaving badly w.r.t. equivalence of categories, it does
simplify the proofs to follow. As the connectedness-structure is not particularly relevant here
in its own right, this is a price we are willing to pay.
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Proposition 8 (cf [CL07, Lemma 2.1]). For any X ∈ Ob(C) in a p-category
with α-coproducts we find dom(∇αX) = idX .

Proof. Abbreviate π2 := π
X,(

∐
ν<αX)

2 . We have to show π2◦
(
∇αX × id(

∐
ν<αX)

)
◦

∆(
∐
ν<αX) = idX . Due to the uniqueness condition for coproducts, this is

equivalent to
[
π2 ◦

(
∇αX × id(

∐
ν<αX)

)
◦∆(

∐
ν<αX)

]
◦ ι(X)ν<α
µ = ι

(X)ν<α
µ for all

µ < α. By naturality of the diagonal and × being a functor, we obtain the

equivalence to: π2 ◦
(

idX × ι(X)ν<α
µ

)
◦∆X = ι

(X)ν<α
µ , which is true.

X
∐
X

(X
∐
X)× (X

∐
X) X × (X

∐
X)

∆

∇× id

π2

Proposition 9. For any family (Xν)ν<α, Xν ∈ Ob(C) in a p-category with

α-coproducts we find dom(ι
(Xν)ν<α
µ ) = idXµ for any µ < α.

Proof. The definition of coproducts requires
(∐

ν<α idXν
)
◦ ι(Xν)ν<αµ = idXµ .

Composition with dom(ι
(Xν)ν<α
µ ) from the right yields

(∐
ν<α idXν

)
◦ι(Xν)ν<αµ =

dom(ι
(Xν)ν<α
µ ), comparison of the two right sides provides the claim.

Proposition 10. For families (fν : Xν → Yν)ν<α, (gν : Xν → Z)ν<α of
morphisms in a p-category with distributive α-coproducts the following identity
holds:

∇α(∐ν<α(Yν×Z))◦a◦

[(∐
ν<α

fν

)
×

(∐
µ<α

gµ

)]
◦∆(

∐
ν<αXν)

=
∐
ν<α

((fν × gν) ◦∆Xν )

where a :
[(∐

ν<α Yν
)
×
(∐

µ<α Z
)]
→
[∐

µ<α

(∐
ν<α(Yν × Z)

)]
is the canonic

distributivity isomorphism.

Proof. We abbreviate ∇ := ∇α
(
∐
ν<α(Yν×Z))

. It is sufficient to show that both

sides of the equation are identical when composed with an arbitrary coproduct

injection ι
(Xν)ν<α
η for η < α from the right, hence we want to prove:

∇◦a◦

[(∐
ν<α

fν

)
×

(∐
µ<α

gµ

)]
◦∆(

∐
ν<αXν)

◦ι(Xν)ν<αη = ι(Yν×Z)ν<α
η ◦

(
(fη × gη) ◦∆Xη

)
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As ∆ is a natural transformation and × a functor, the injection ι
(Xν)ν<α
η can be

moved inwards to yield:

∇◦ a ◦
[
(ι(Yν)ν<αη ◦ fη)× (ι(Z)ν<α

η ◦ gη)
]
◦∆Xη = ι(Yν×Z)ν<α

η ◦
(
(fη × gη) ◦∆Xη

)
In the next step, the isomorphism a is taken into account:

∇◦ι
(
∐
ν<α(Yν×Z))

µ<α
η ◦ι(Yν×Z)ν<α

η ◦[fη × gη]◦∆Xη = ι(Yν×Z)ν<α
η ◦

(
(fη × gη) ◦∆Xη

)
The resulting identity follows directly from the definition of the co-diagonal.

Occasionally we will be interested in special objects – or morphisms that
behave sufficiently like objects, i.e. domains – in our categories. An initial
object in a p-category is just an initial object in the underlying category, i.e. an
object I ∈ Ob(C) such that |C(I, A)| = 1 for all A ∈ Ob(C). We can generalize
this notion to domains, by calling a domain dom i initial, if for any A ∈ Ob(C)
there is exactly one morphism g with g ◦ dom i = g and CDom(g) = A. Clear I
is initial, iff idI = dom idI is initial as a domain.

Usually an object E in a category C is called empty, if the existence of some
morphism g : A→ E implies that A is an initial object. Clearly, this definition
is somewhat contradicted with our requirement for the relevant categories to be
totally connected – only categories equivalent to the trivial category containing
a single object and no further morphisms fulfills the criteria.

Calling a morphism g in a p-category total, if dom(g) = idDom(g), we see
that the total morphisms in a p-category form a sub-p-category, on which the p-
category product even coincides with the categorical product. Now we define an
empty object of a p-category to be an initial object in the underlying category
which is empty in the subcategory of total morphisms. The concept of emptiness
is extended to domains by calling an initial domain dom e empty, if for any total
morphism g with dom(e) ◦ g = g we find Dom(g) to be an initial object.

Likewise, a final object of a p-category shall be a final object of the subcate-
gory of total maps (cf. [CL07, Proposition 4.1]). A domain dom f is called final,
if for any object A there is exactly one total morphism g with dom(f) ◦ g = g
and Dom(g) = A. Now we may conclude that E × A is isomorphic to E for
any empty object E and any object A in a p-category, while for a final object
F we find F × A to be isomorphic to A. These properties can be extended to
domains.

3.3 Category extensions

Many-one reductions (in a category theoretical framework) involve not only
one, but two categories. For example, much of the classical complexity theory
characterizes the degrees of computable sets under polynomial-time computable
reductions. Likewise, computability theory looks at arbitrary sets and com-
putable reductions. By moving to multivalued functions, we can drop the artifi-
cial structural dichotomy between the objects to be classified and the reduction
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witnesses, and find the latter to form a subcategory S of the former category
P. However, being a subcategory does not suffice: S and P will have to share
all their remaining structure, too.

This situation is familiar in computable analysis [Wei00], unrelated to reduc-
tions: Here both computable as well as continuous maps (between represented
spaces) form the ubiquitous foundation of the field, sharing the same structure.
The impact of this on the categories underlying the field was noted in particular
in [Bau, Bau98], see also [Pau1X]. Generalizing from computable to continuous
usually just requires relativizing the proofs w.r.t. an arbitrary oracle. Simply
stating that the two categories have (to a large extent) the same structural
properties does not do full justice to their relationship.

Definition 11. A category extension is a pair (P,S) of a category P and a
wide subcategory S ⊆ P.

1. A category extension has coproducts, if P has coproducts and S is closed
under the coproduct of P.

2. A category extension is turned into a p-category extension, if P is equipped
with a functor × turning it into a p-category, S is closed under × and a
p-category with the restriction of ×. Moreover, we demand that S contains
all domains of P.

3. A p-category extension has distributive coproducts, if it has coproducts and
the canonic distributivity morphism (Definition 5) is present in S.

4. A p-category extension is meet-semilattice enriched, if P is meet-semilattice
enriched. This implies that S is poset-enriched.

5. A category extension is totally connected, if S is totally connected.

6. A domain is initial (empty, final) in a p-category extension (P,S), if it
has this property in both P and S.

3.4 A generic definition of many-one reductions

Definition 12. A (α−)many-one category extension (moce) shall be a meet-
semilattice enriched totally connected p-category extension with distributive co-
products (up to size α).

With the framework now established, we can proceed to define many-one
reductions. There are two definitions of many-one reductions commonly found
in the literature on search or function problems, which differ in the question
whether the post-processing of the oracle answer still has access to the input.
Forgetting the input leads to a simpler definition, and may make proofs of
non-reducibility easier, while retaining it yields the nicer degree structure and
allows to formulate stronger and more meaningful separation statements. We
shall speak of strong many-one reductions if the original input is forgotten, and
of many-one reductions otherwise.

11



Throughout this subsection, we assume that some α-moce (P,S,×,�) is
given, with α ≥ 2, and refrain from mentioning it explicitly where this is un-
necessary.

Definition 13 (Strong many-one reductions). Let f ≤sm g hold for f, g ∈ P,
if there are H,K ∈ S with f � H ◦ g ◦K.

Proposition 14. (P,≤sm) is a preordered class.

Proof. For any f ∈ P, we have idDom(f), idCDom(f) ∈ S. Trivially, f = idCDom(f)◦
f ◦ idDom(f) holds. As � is a preorder, this implies f ≤sm f .

Now assume f ≤sm g and g ≤sm h witnessed by H,K,F,G ∈ S. Due to the
assumptions on �, g � F ◦ h ◦ K implies H ◦ g ◦ K � (H ◦ F ) ◦ h ◦ (G ◦ K).
Transitivity of � yields f � (H ◦ F ) ◦ h ◦ (G ◦K), hence f ≤sm h follows.

Definition 15 (Many-one reductions). Let f ≤m g hold for f, g ∈ P, if there
are H,K ∈ S with f � H ◦ (idDom(f) × (g ◦K)) ◦∆Dom(f).

Proposition 16. f ≤sm g implies f ≤m g.

Proof. As we require Ob(P) = Ob(S), and S is closed under products, in partic-

ular we also have π
Dom(f),CDom(g)
2 ∈ S for the respective projection. Now assume

f � H◦g◦K. Then also f � (H◦πDom(f),CDom(g)
2 )◦(idDom(f)×(g◦K))◦∆Dom(f)

is true.

Proposition 17. (P,≤m) is a preordered class.

Proof. Reflexivity of ≤m follows from Propositions 14, 16. Now assume f ≤m g
witnessed by F,G ∈ S, and g ≤m h witnessed by H,K ∈ S. We abbreviate
idDf := idDom(f), idDg := idDom(g). Due to the assumptions on �, g � H ◦
(idDg × (h ◦K)) ◦∆Dom(g) implies:

F◦(idDf×(g◦G))◦∆Dom(f) � F◦(idDf×(H◦(idDg×(h◦K))◦∆Dom(g)◦G))◦∆Dom(f)

Using the transitivity of � and the naturality of the diagonal, one obtains:

f � F ◦ (idDf × (H ◦ (G× (h ◦K ◦G)) ◦∆Dom(f))) ◦∆Dom(f)

Now we use the distributivity of products over composition (i.e. the fact that
× is a functor):

f � F ◦ (idDf ×H) ◦ (idDf × ((G× (h ◦K ◦G)) ◦∆Dom(f))) ◦∆Dom(f)

Then the associativity of products is used, with a ∈ S denoting the canonic
isomorphism a : ((A×B)× C)→ (A× (B × C)) of suitable type:

f � F ◦ (idDf ×H) ◦ a ◦ (((idDf ×G) ◦∆Dom(f))× (h ◦K ◦G)) ◦∆Dom(f)

In the next step, again the distributivity of products over composition is rele-
vant:

f � F◦(idDf×H)◦a◦(((idDf×G)◦∆Dom(f))×idCDom(h))◦(idDf×(h◦K◦G))◦∆Dom(f)

12



Now we abbreviate M = F ◦(idDf×H)◦a◦(((idDf×G)◦∆Dom(f))× idCDom(h))
and N = K ◦G and observe M,N ∈ S, hence the following proves the remaining
part of the claim:

f �M ◦ (idDom(f) × (h ◦N)) ◦∆Dom(f)

As usual, our interest is focused on the partial orders induced by the pre-
orders (in particular by ≤m) on their equivalence classes (or degrees). For any
moce (P,S,×,�), the partially ordered class of equivalence classes for ≤m shall
be denoted by D(P,S,×,�). The main result in this subsection is the following:

Theorem 18. D(P,S,×,�) is a distributive lattice.

The proof of Theorem 18 will be spread over the following lemmata, which
also give category-theoretic descriptions of the suprema and infima in D(P,S,×,�
).

Lemma 19. D(P,S,×,�) has α-suprema, and these are given by α-coproducts,
i.e.:

sup
≤m,ν<α

fν =
∐
ν<α

fν

Proof. 1. fλ ≤sm
∐
ν<α fν for all λ < α

By assumption, ι
(Dom(fν))ν<α
λ , κ

(CDom(fν))ν<α
λ ∈ S for the respective co-

product injections and the retracts of coproduct injections obtained via
Proposition 7. The claim then follows from the following equation:

fλ = κ
(CDom(fν))ν<α
λ ◦

(∐
ν<α

fν

)
◦ ι(Dom(fν))ν<α

λ

2. fλ ≤m
∐
ν<α fν for all λ < α

Follows from 1. via Proposition 16.

3.
∐
ν<α g ≤m g

Let a :
(∐

ν<α Dom(g)
)
×CDom(g)→ Dom(g)×

(∐
ν<α CDom(g)

)
be the

canonic isomorphism due to the distributive nature of α-coproducts and

products4. We abbreviate ∆ := ∆(
∐
ν<α Dom(g)); and use∇αDom(g), a, π

Dom(g),(
∐
ν<α CDom(g))

2 ∈
S. Hence, the following equation proves the claim:∐
ν<α

g = (π
Dom(g),(

∐
ν<α CDom(g))

2 ◦a)◦
[
id(
∐
ν<α Dom(g)) ×

(
g ◦ ∇αDom(g)

)]
◦∆

4To be more precise, in order to construct this isomorphism we need to invoke the dis-
tributivity law for α-coproducts and products twice, as well as the commutativity law for
products.
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A
∐
A

(A
∐
A)× (A

∐
A)

(A
∐
A)×A (A

∐
A)×B A× (B

∐
B)

B
∐
B

∆

id×∇
id× g a

π2

g + g

To derive this equation, first consider the effect of the isomorphism a:

∐
ν<α

g = π
Dom(g),(

∐
ν<α CDom(g))

2 ◦

[
∇αDom(g) ×

(∐
ν<α

g

)]
◦∆

The interaction of projections and diagonals makes this equivalent to:

∐
ν<α

g =

(∐
ν<α

g

)
◦ dom(∇αDom(g))

The latter equation follows directly from Proposition 8.

4. fν ≤m g for all ν implies
(∐

ν<α fν
)
≤m

(∐
ν<α g

)
.

Let fν ≤m g be witnessed by Hν , Kν . Further let

a :

(∐
ν<α

Dom(fν)

)
×

(∐
µ<α

CDom(g)

)
→
∐
µ<α

[∐
ν<α

(Dom(fν)× CDom(g))

]

be the canonic isomorphism obtained from the distributivity law. We use
∇α to abbreviate ∇α

[
∐
ν<α(Dom(fν)×CDom(g))]

. Then
((∐

ν<αHν

)
◦ ∇α ◦ a

)
and

(∐
ν<αKν

)
witness the claim. For this, consider:(∐

ν<α

Hν

)
◦∇α◦a◦

[
id(
∐
ν<α Dom(fν)) ×

((∐
ν<α

g

)
◦

(∐
ν<α

Kν

))]
◦∆(

∐
ν<α Dom(fν))

Composition always commutes with coproducts of the same type:(∐
ν<α

Hν

)
◦∇α◦a◦

[(∐
ν<α

idDom(fν)

)
×

(∐
ν<α

(g ◦Kν)

)]
◦∆(

∐
ν<α Dom(fν))

Now we can invoke Proposition 10 to obtain:(∐
ν<α

Hν

)
◦

[∐
ν<α

(
(idDom(fν) × (g ◦Kν)) ◦∆Dom(fν)

)]
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Invoking commutativity of coproducts and composition again, we get:∐
ν<α

[
Hν ◦

(
idDom(fν) × (g ◦Kν)

)
◦∆Dom(f)

]
As � and α-coproducts commute, we know that

(∐
ν<α fν

)
is �-below

the expression above. This concludes this part of the proof.

5. fν ≤m g for all ν implies
(∐

ν<α fν
)
≤m g.

This follows by applying transitivity of ≤m from Proposition 17 to 3. and
4.

6. The claim is equivalent to 2. and 5.

The infima are not given by a purely category-theoretic construction, but
rather rely on the poset enrichment together with the assumption that in P,
suitable binary infima actually exist. As projections and injections are all in-
cluded in S by assumption, we can define the following:

Definition 20. For any morphisms f, g ∈ P define (f ⊕ g) : (Dom(f) ×
Dom(g))→ (CDom(f)

∐
CDom(g)) via:

(f ⊕ g) = inf
�,i∈{1,2}

{ιCDom(f),CDom(g)
i ◦ πCDom(f),CDom(g)

i } ◦ (f × g)

Lemma 21. D(P,S,×,�) has (binary) infima, and these are given by ⊕, i.e.:

inf
≤m
{f, g} = f ⊕ g

Proof. 1. (f ⊕ g) ≤sm f and (f ⊕ g) ≤sm g

As ⊕ inherits commutativity from products and coproducts, it is suf-
ficient to prove (f ⊕ g) ≤sm f . This is witnessed by the morphisms

ι
CDom(f),CDom(g)
1 and[
π
Dom(f),Dom(g)
1 ◦ (idDom(f) × dom(g))

]
, as we find:

ι
CDom(f),CDom(g)
1 ◦ f ◦

[
π
Dom(f),Dom(g)
1 ◦ (idDom(f) × dom(g))

]
= ι

CDom(f),CDom(g)
1 ◦ πCDom(f),CDom(g)

1 ◦ (f × g)

The latter expression is clearly �-above f ⊕ g, as can be verified from
Definition 20.

X ×A

X ×A

Y ×B

X Y Y

id× dom(g)

f × g

π f ι

π
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2. (f ⊕ g) ≤m f , (f ⊕ g) ≤m g

Follows from 1. via Proposition 16.

3. If h ≤m f and h ≤m g, then h ≤m (f ⊕ g).

Let h ≤m f be witnessed by H1, K1 and let h ≤m g be witnessed by H2,
K2. Further let a : [Dom(h)× (CDom(f)

∐
CDom(g))]→ [(Dom(h)× CDom(f))

∐
(Dom(h)× CDom(g))]

be the canonic distributivity isomorphism. We abbreviate ιi := ι
CDom(f),CDom(g)
i ,

πi := π
CDom(f),CDom(g)
i .

The claim now is witnessed by
[
∇CDom(h) ◦

(∐
i∈{1,2}Hi

)
◦ a
]

and
[
(K1 ×K2) ◦∆Dom(h)

]
.

To prove this, we have to show that the following morphism is �-above h:
∇CDom(h) ◦

 ∐
i∈{1,2}

Hi

 ◦ a
◦[idDom(h) ×

(
inf

�,i∈{1,2}
{ιi ◦ πi} ◦ (f × g) ◦

[
(K1 ×K2) ◦∆Dom(h)

])]
◦∆Dom(h)

As inf and ◦ are compatible, we can move the inf-operator to the outside,
and obtain a morphism that is �-below the preceding one, hence it will
suffice to show that h is �-below the following:

inf
�,i∈{1,2}

∇CDom(h) ◦

 ∐
j∈{1,2}

Hj

 ◦ a ◦ [idDom(h) ×
(
ιi ◦ πi ◦ [(f ◦K1) × (g ◦K2)] ◦∆Dom(h)

)]
◦∆Dom(h)


Using the standard properties of the isomorphism a, coproducts, injec-

tions and the co-diagonal, this is equivalent to:

inf
�,i∈{1,2}

{
Hi ◦

[
idDom(h) ×

(
πi ◦ [(f ◦K1)× (g ◦K2)] ◦∆Dom(h)

)]
◦∆Dom(h)

}
Applying the projections yields the following equivalent expression:

inf
�

{ [
H1 ◦

(
idDom(h) × [f ◦K1 ◦ dom(g ◦K2)]

)
◦∆Dom(h)

]
,[

H2 ◦
(
idDom(h) × [g ◦K2 ◦ dom(f ◦K1)]

)
◦∆Dom(h)

] }
The domain-morphisms can be moved past the diagonal to arrive at:

inf
�

{ [
H1 ◦

(
idDom(h) × [f ◦K1]

)
◦∆Dom(h)

]
◦ dom(g ◦K2),[

H2 ◦
(
idDom(h) × [g ◦K2]

)
◦∆Dom(h)

]
◦ dom(f ◦K1)

}
By assumption, we have h �

[
H2 ◦

(
idDom(h) × [g ◦K2]

)
◦∆Dom(h)

]
, so

from Proposition 4 we can conclude dom(h) � dom(
[
H2 ◦

(
idDom(h) × [g ◦K2]

)
◦∆Dom(h)

]
).

Straight-forward consideration shows dom(
[
H2 ◦

(
idDom(h) × [g ◦K2]

)
◦∆Dom(h)

]
) ⊆

dom(g ◦K2). By composition with dom(h) from the right, we arrive at

dom(
[
H2 ◦

(
idDom(h) × [g ◦K2]

)
◦∆Dom(h)

]
◦dom(h)) ⊆ dom(g◦K2◦dom(h)) ⊆ dom(h)

and dom(h) � dom(
[
H2 ◦

(
idDom(h) × [g ◦K2]

)
◦∆Dom(h)

]
◦ dom(h)), so

3 (4) implies dom(h) � dom(g ◦K2 ◦ dom(h)). If H2, K2 witnesses h � g,
then so do H2, (K2 ◦ dom(h)), so w.l.o.g. we may assume dom(g ◦K2 ◦
dom(h)) = dom(g ◦K2), so we even find dom(h) � dom(g ◦K2). But then
h �

[
H1 ◦

(
idDom(h) × [f ◦K1]

)
◦∆Dom(h)

]
implies:

h �
[
H1 ◦

(
idDom(h) × [f ◦K1]

)
◦∆Dom(h)

]
◦ dom(g ◦K2)
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By symmetry, we can use the same way to prove:

h �
[
H2 ◦

(
idDom(h) × [g ◦K2]

)
◦∆Dom(h)

]
◦ dom(f ◦K1)

This concludes the proof of the claim.

4. 2. and 3. are the defining properties of the infimum.

Lemma 22. D(P,S,×,�) is distributive, i.e. for all f, gν ∈ P:

f ⊕

(∐
ν<α

gν

)
≡m

∐
ν<α

(f ⊕ gν)

Proof. 1. f ⊕
(∐

ν<α gν
)
≤sm

∐
ν<α(f ⊕ gν)

Let a :
[
Dom(f)×

(∐
ν<α Dom(gν)

)]
→
[∐

ν<α(Dom(f)×Dom(gν))
]

be
the canonic distributivity isomorphism. Further consider the canonic asso-
ciativity isomorphism b :

[∐
ν<α (CDom(f)

∐
CDom(gν))

]
→
[
CDom(f)

∐(∐
ν<α CDom(gν)

)]
.

Then a and b witness the reduction, i.e.:[
f ⊕

(∐
ν<α

gν

)]
� b ◦

[∐
ν<α

(f ⊕ gν)

]
◦ a

We abbreviate πi := π
CDom(f),CDom(gµ)
i and ιi := ι

CDom(f),(
∐
ν<α CDom(gν))

i .
As a is an isomorphism, we can apply the inverse a−1 from the right on
both sides and obtain an equivalent statement:[

f ⊕

(∐
ν<α

gν

)]
◦ a−1 � b ◦

[∐
ν<α

(f ⊕ gν)

]
Now both sides have a coproduct as a domain, so by compatibility of �
and coproducts as well as composition, the statement above is equivalent
to the one below holding for all µ < α:[
f ⊕

(∐
ν<α

gν

)]
◦a−1◦ι(Dom(f)×Dom(gν))ν<α

µ � b◦

[∐
ν<α

(f ⊕ gν)

]
◦ι(Dom(f)×Dom(gν))ν<α
µ

This evaluates to:[
f ⊕

(∐
ν<α

gν

)]
◦(idDom(f)×ι(Dom(gν))ν<α

µ ) � b◦ι(CDom(f)
∐

CDom(gν))ν<α
µ ◦(f⊕gµ)

To prove this statement, we insert the definition of ⊕ and move the co-
product injection on the left side further to the left:

inf
�,i∈{1,2}

{ιi ◦ π
CDom(f),(

∐
ν<α CDom(gν))

i } ◦ (idCDom(f) × ι(CDom(gν))ν<α
µ ) ◦ [f × gµ]

�
b ◦ ι(CDom(f)

∐
CDom(gν))ν<α

µ ◦ inf�,i∈{1,2}{ι
CDom(f),CDom(gµ)
i ◦ πi} ◦ (f × gµ)
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As we assume that composition preserves infima, we can move these to
the outside. Additionally, we can drop the composition with (f×gµ) from
both sides to arrive at a stronger statement:

inf
�,i∈{1,2}

{
ιi ◦ π

CDom(f),(
∐
ν<α CDom(gν))

i ◦ (idCDom(f) × ι(CDom(gν))ν<α
µ )

}
�

inf
�,i∈{1,2}

{
b ◦ ι(CDom(f)

∐
CDom(gν))ν<α

µ ◦ ιCDom(f),CDom(gµ)
i ◦ πi

}
On the left side, we can move the projections past the product due to

dom(ι
(CDom(gν))ν<α
µ ) = idCDom(gµ) (Proposition 9), and on the right side

we take into consideration the effects of the isomorphism b:

inf
�

{
[ι1 ◦ π1] ,

[
ι2 ◦ ι(CDom(gν))ν<α

µ ◦ π2
]}
� inf
�

{
[ι1 ◦ π1] ,

[
ι2 ◦ ι(CDom(gν))ν<α

µ ◦ π2
]}

As both sides are identical, this statement true, and, as shown above,
implies our claim.

2. f ⊕
(∐

ν<α gν
)
≤m

∐
ν<α(f ⊕ gν)

Follows from 1. via Proposition 16.

3.
∐
ν<α(f ⊕ gν) ≤m f ⊕

(∐
ν<α gν

)
This direction holds in every lattice, hence, it follows from the first part
of Theorem 18.

The presence of special objects in a moce (P,S,×,�) implies the existence
of special degrees in D(P,S,×,�), as will be elaborated next:

Proposition 23. If (P,S,×,�) has an initial domain, then D(P,S,×,�) has
a bottom element.

Proof. Let i = dom i : I → I be an initial domain in S. We claim i ≤sm f for
any f ∈ P. By Proposition 16 this implies the original statement. As S is totally
connected, there is some morphism cCDom(f),I : CDom(f)→ I in S. Also, there
is a morphism cI,Dom(f) : I → Dom(f) satisfying cI,Dom(f) ◦ i = cI,Dom(f), as i
is initial. Then cCDom(f),I ◦ f ◦ cI,Dom(f) : I → I must be equal to i, as we have
both i◦i = i as well as cCDom(f),I ◦f ◦cI,Dom(f)◦i = cCDom(f),I ◦f ◦cI,Dom(f).

3.5 The Kleene-algebra of many-one degrees

Besides the lattice-structure, the many-one degrees also have the structure of a
Kleene-algebra5[Koz90], provided certain conditions are fulfilled. We shall start
by discussion the underlying idempotent semiring. The addition in the Kleene-
algebra is the supremum of the lattice, i.e. the coproduct. The multiplication in
the Kleene-algebra is induced by the product of the p-category, as to be shown
next.

5We are referring to the algebraic concept here, not to the distributive lattice with an
involution!
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Lemma 24. × induces an operation on D(P,S,×,�), i.e. fi ≤m gi for i ∈
{1, 2} implies (f1 × f2) ≤m (g1 × g2).

Proof. Let fi ≤m gi be witnessed by Hi, Ki, and let

a : [(Dom(f1)×Dom(f2))× (CDom(g1)× CDom(g2))]
→ [(Dom(f1)× CDom(g1))× (Dom(f2)× CDom(g2))]

be the canonic isomorphism constructed from associativity and commutativity
of ×. Then (H1 ×H2) ◦ a and (K1 ×K2) witnesses (f1 × f2) ≤m (g1 × g2) as
can be seen from

(H1×H2)◦a◦
[
idDom(f1)×Dom(f2) × ((g1 × g2) ◦ (K1 ×K2))

]
◦∆Dom(f1)×Dom(f2)

being equal to[
H1 ◦

(
idDom(f1) × (g1 ◦K1)

)
◦∆Dom(f1)

]
×
[
H2 ◦

(
idDom(f2) × (g2 ◦K2)

)
◦∆Dom(f2)

]
together with the fact that × is compatible with �.

For completeness, we shall also state the following, while omitting the trivial
proof:

Lemma 25. × induces an operation on the ≤sm-degrees, i.e. fi ≤sm gi for
i ∈ {1, 2} implies (f1 × f2) ≤sm (g1 × g2).

Theorem 26. Let the p-category P have an empty domain e and a final domain
f . Then the degrees D(P,S,×,�) together with the operations

∐
and × and

the induced constants e, f ∈ D form an idempotent commutative semiring, i.e.
the following hold for all a,b, c ∈ D:

1. a
∐

a = a, (a
∐

b)
∐

c = a
∐

(b
∐

c), a
∐

b = b
∐

a

2. a
∐

e = a

3. (a× b)× c = a× (b× c), a× b = b× a

4. a× f = a, a× e = e

5. a× (b
∐

c) = (a× b)
∐

(a× c)

Proof. First of all, note that by Lemmata 19, 24 the operations are well-defined.
Further, by Proposition 16 morphisms in P that are isomorphic over S represent
the same degree in D(P,S,×,�). Hence, 1. follows from Lemma 19. As every
empty domain is initial, 2. follows from Lemma 19 and Proposition 23. Claim
3. is a direct consequence of associativity and commutativity of the functor
×, while 4. comes from the interaction of × with special objects or domains.
Finally, 5. is implied by the requirement that the functor × distributes over
coproducts.
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The product can be iterated: We inductively define f1 = f , fn+1 = fn × f
for any morphism, and follow by f∗ =

∐
n∈N f

n, assuming this coproduct exists.
Intuitively, access to f∗ allows us to use f for any predetermined finite number of
times in parallel; hence, the operation ∗ is suitable to introduce a generalization
of wtt-degrees in our framework.

In a ℵ0-moce, we have the prerequisites to deal with all countable coproducts,
in particular with f∗. However, our computability-inspired examples do not ful-
fill the respective criteria: The category of computable functions is not closed
under countable coproducts. However, forming countable coproducts is usually
unproblematic in the super-category P, and sufficiently uniform countable co-
products, such as f∗ even preserve computability. (Alternatively, a formulation
using internal category theory inside the effective topos should resolve the is-
sue.) We will prove the existence of the Kleene-algebra structure assuming that
S has all needed coproducts; so in order to apply the result, their presence has
to be checked individually.

As preparation, we point out that for any two objects X,Y ∈ Ob(S) we find

X∗×Y ∗ to be isomorphic to (X×Y )∗
∐(∐

n,m∈N,n6=m(Xn × Y m)
)

, hence, we

have a retractable embedding (X×Y )∗ ↪→ (X∗×Y ∗) in S due to the assumption
that S is totally connected. Further, we need to consider objects of the form
(X∗)m. Iterating the distributivity of products over coproducts, we obtain an
isomorphism am : (X∗)m →

∐
n1,...,nm∈NX

n1+...+nm in S. For any n ∈ N,
we let p(n) denote the number of distinct order-depending summations of the
form n = n1 + . . . nm with varying m ∈ N. Then we obtain an isomorphism

a : (X∗)∗ →
∐
n∈N

(∐
i≤p(n)X

n
)

in S by taking first the coproduct over all

am, and then rearranging the resulting coproduct. Motivated by this, we will

use ∇∗X : (X∗)∗ → X∗ to denote the composition ∇∗X =
(∐

n∈N∇
p(n)
X

)
◦ a.

Furthermore, consider the product
(∐

n∈N

(∐
i≤p(n)X

n
))
×
(∐

m∈N Y
m
)
. Due

to distributivity and associativity, this is isomorphic to:∐
n∈N

∐
i≤p(n)

(Xn × Y n)

∐ ∐
n,m∈N,n6=m

∐
i≤p(n)

(Xn × Y m)


Compose the respective isomorphisms with a retract to the first component of

the final coproduct to obtain a canonic morphism c : (X∗)∗×Y ∗ →
[∐

n∈N
∐
i≤p(n)(X

n × Y n)
]
.

Finally, apply
(∐

n∈N π
Xn,Y n

1

)
and another isomorphism to obtain the canonic

morphism χX,Y : ((X∗)∗ × Y ∗)→ (Y ∗)∗.

Theorem 27. Given an ℵ0-moce (P,S,×,�), the operation ∗ induces a closure
operator on D(P,S,×,�), i.e. for all f, g ∈ P:

1. f ≤m f∗

2. f ≤m g implies f∗ ≤m g∗
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3. (f∗)∗ ≤m f∗

Proof. 1. f ≤m f∗

This follows directly from Lemma 19 (2) together with the definition of ∗.

2. f ≤m g implies f∗ ≤m g∗

Let f ≤m g be witnessed by H,K ∈ S. Let a ∈ S be an retract of
the embedding (Dom(f)∗ × CDom(g)∗) ↪→ (Dom(f)× CDom(g))∗. Then
(H∗ ◦ a) and K∗ witness the claim.

3. (f∗)∗ ≤m f∗

The witnesses are ∇∗Dom(f) and χDom(f),CDom(f).

Corollary 28. Let the p-category P have an empty object E and a final object
F . Then (D,

∐
,×, E, F,∗ ) is a continuous Kleene-algebra.

An important consequence of Theorem 27 is that the following actually de-
fines a preorder:

Definition 29. Let Theorem 27 hold for D(P,S,×,�). For f, g ∈ P, define
f ≤wtt g, if f ≤m g∗, or equivalently f∗ ≤m g∗ holds. The resulting degrees are
denoted by D∗.

Corollary 30. D∗ is a lattice, and a sub-meet-semilattice of D.

4 Examples

To breathe life into the generic concept of many-one reductions in a categorical
setting, we shall discuss a number of applications of the framework. These ex-
amples range from merely providing a category theoretic background for known
results over providing a new structure theory for previously studied objects to
outlining completely new lines of investigation. The basic example have a full
subcategory of Mult acting as the outer category P, but also concrete cate-
gories over Mult , i.e. categories of sets equipped with additional structure, and
structure-preserving multivalued functions between them, make an appearance.
Finally, we also exhibit how further degree-theoretic properties do depend on
the particulars of the categories involved.

4.1 Computable many-one reductions (Type 1)

Let C1 to be the subcategory of Mult containing all partial computable functions
f :⊆ {0, 1}∗ → {0, 1}∗. As the identity id{0,1}∗ is computable, and the compo-
sition of computable functions yields a computable function, this actually is a
category. Moreover, the computable functions are closed under the formation
of products and finite coproducts, and also contain all standard projections and
injections, if we use the following definition:
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Definition 31. For two multi-valued functions f, g :⊆ {0, 1}∗ ⇒ {0, 1}∗, define
(f
∐
g), (f ⊕ g) :⊆ {0, 1}∗ ⇒ {0, 1}∗ via (f

∐
g)(0x) = 0f(x), (f

∐
g)(1x) =

1g(x) and (f ⊕ g)(〈x, y〉) = 0f(x) ∪ 1g(x).

Thus, we find (Mult |{0,1}∗ , C1,×,�) to be a moce, and study
C1 := D(Rel|{0,1}∗ , C1,×,�). We give the special cases of the definitions and
results from Subsection 3.4 below:

Definition 32 (special case of Definition 15). For two multi-valued functions
f, g :⊆ {0, 1}∗ ⇒ {0, 1}∗, define f ≤m g, if there are computable functions
H,K :⊆ {0, 1}∗ → {0, 1}∗ with H〈x, y〉 ∈ f(x) whenever y ∈ g(K(x)).

Corollary 33 (of Theorem 18). (C1,⊕,
∐

) is a distributive lattice.

In C1, there exists both an empty domain and final domains, namely the
no-where defined multi-valued function ∅ ⊂ {0, 1}∗×{0, 1}∗ and any {(x, x)} ⊆
{0, 1}∗ × {0, 1}∗. The corresponding degrees shall be denoted by 0, 1 ∈ C1.

Proposition 34. 1 is the least element in C1 \ {0} and contains exactly those
multi-valued functions admitting a computable choice function.

We do point out that decision problems cannot be considered as a special
case of multi-valued functions in the straight-forward way, as our definition of
many-one reductions allows modifications of the output; in particular, the char-
acteristic function of a set is trivially equivalent to the characteristic function
of its complement. However, many results proven for many-one reductions be-
tween search problems hold - with identical proofs - also for Turing reductions
with the number of oracle queries limited to 1, which corresponds to the notion
employed here.

For example, Yates’ result regarding the existence of minimal pairs applies
here as follows:

Proposition 35 ([Yat66]). There are a,b ∈ C1\{0, 1} with total representatives
such that for any c ≤m (a ⊕ b) that has a representative f ∈ c of the type
f : {0, 1}∗ → {0, 1}, we find c = 1.

However, the constraint on the type of some representative is crucial, as we
will demonstrate below. Instrumental is the next technical lemma:

Lemma 36. There are Turing functionals Ψ, Φ, such that for all total multi-
valued functions f, g : {0, 1}∗ ⇒ {0, 1}∗ and for any choice function I of (f⊕g),
either ΨI is a choice function of f or ΦI is a choice function of g.

Proof. On input x, Ψ will search for some y such that I〈x, y〉 = 0z. Once
this is found, it will output z. On input y, Φ will search for some x such that
I〈x, y〉 = 1z, and output z.

It is clear that if I is a choice function of (f ⊕ g), then ΨI(x) ∈ f(x) and
ΦI(y) ∈ g(y) whenever the former values exist. It remains to show that for
any suitable I, either ΦI(x) exists for all x or ΨI(y) exists for all y. Assume
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that ΦI(x) does not exist for some x0. That means the search for some y with
I〈x0, y〉 = 0z for some z was unsuccessful, hence, I〈x0, y〉 = 1zy for all y. But
this means that x0 always is a solution to the search performed by ΨI , hence
ΨI(y) always exists.

Corollary 37. If a,b ∈ C1 have total representatives, then a ⊕ b = 1 implies
a = 1 or b = 1.

Proof. Let f ∈ a and g ∈ b be total. If a⊕b = 0, then f ⊕ g has a computable
choice function I. By Lemma 36, either ΨI is a (computable!) choice function
of f , implying a = 1; or ΦI is a (computable!) choice function of g, implying
b = 1.

Following the template of Subsection 3.5, we can introduce the ∗-operation
and derive the corresponding results about being a closure operator and inducing
a Kleene algebra.

Definition 38. For f :⊆ {0, 1}∗ ⇒ {0, 1}∗ define f∗ :⊆ {0, 1}∗ ⇒ {0, 1}∗
by f∗(0n1〈p1, . . . , pn〉) = 0n1〈f(p1), . . . , f(pn)〉.

Proposition 39. ∗ is a closure operator.

4.2 Polynomial-time many reductions (Type 1)

This time we consider the category P1 of polynomial-time computable partial
functions f :⊆ {0, 1}∗ → {0, 1}∗. This is closed under the products and coprod-
ucts given by Definition 31, hence, we can study P1 = D(Mult |{0,1}∗ ,P1,×,�)
in the usual way. It is worth noting that the same considerations apply to other
usual resource-bounded reducibilities.

Definition 40. For two multi-valued functions f, g :⊆ {0, 1}∗ ⇒ {0, 1}∗, define
f ≤pm g, if there are polynomial-time computable functions H,K :⊆ {0, 1}∗ →
{0, 1}∗ with H〈x, y〉 ∈ f(x) whenever y ∈ g(K(x)). Let P1 denote the set of
≤m-degrees of multi-valued functions of this type.

Corollary 41 (of Theorem 18). (P1,⊕,
∐

) is a distributive lattice.

The empty and final domains of P1 are exactly those of C1 considered in
Subsection 4.1; again we shall use 0 and 1 to denote the respective degrees.
Also, we find the following counterpart to Proposition 34

Proposition 42. 1 is the least element in P1 \ {0} and contains exactly those
multi-valued functions admitting a polynomial-time computable choice function.

As in Subsection 4.1, the many-one degrees of decision problems (Karp de-
grees [Kar72]) are not a substructure of P1 in the natural way; however, many
results proven about them also hold for polynomial-time Turing reductions with
a single permitted oracle query, which do form a natural substructure.

Some results and their proofs can even be extended to include search prob-
lems; this shall be demonstrated for Ladner’s density result [Lad75, Theorem
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2]. For this, note that two notions coinciding for single-valued functions differ
for multi-valued functions, namely the existence of a computable choice func-
tion and the decidability of the graph. In accordance with Proposition 34, it
makes sense to call those multi-valued functions satisfying the former condition
computable. Additionally, the latter condition has the disadvantage of not be-
ing preserved downwards by many-one reductions. However, a decidable graph
is the condition needed for the following theorem. Its proof closely resembles
the one of [Lad75, Theorem 2], which in turn was inspired by techniques from
[BCH69].

Theorem 43. Let a,b ∈ P1 admit representatives with decidable graphs and
satisfy b �pm a. Then there are b0,b1 ∈ P1 with b = b0

∐
b1, bi �pm a and

b �pm a
∐

bi for both i ∈ {0, 1}.

Proof. Let a ∈ a and b ∈ b both have a decidable graph. The proof constructs
a polynomial-time decidable set D ⊆ {0, 1}∗ such that representatives b0, b1 of
b0, b1 fulfilling the given criteria are obtained as b0(x) = 0, b1(x) = b(x) for
x ∈ D, and b0(x) = b(x), b1(x) = 0 otherwise. The set D will have the form
D = {x ∈ {0, 1}∗ | |x| ∈ D′} for some D′ ⊆ N.

This definition of b0, b1 already ensures the first condition to be true. For
the remain ones, a priority argument is employed. Using a enumeration Re of
polynomial-time many-one reductions, and the notation Re(f) for the multi-
valued function arising from the application of the reduction procedure Re to
f , we obtain the following conditions to be satisfied:

(P4e ) Re(a
∐
b0) * b

(P4e+1) Re(a
∐
b1) * b

(P4e+2) Re(a) * b1

(P4e+3) Re(a) * b0

The polynomial-time decision procedure for D now works in stages, such that
on input x all stages s ≤ |x| are performed. A clock is employed to ensure
that the computation for a stage s does not take longer than cs steps for some
fixed constant c. In each stage the procedure searches exhaustively for a witness
verifying the condition Pn+1, where n is the number of the last condition for
that the search was successful. After the last stage, the procedure sets x ∈ D,
iff the least number of an open condition is even.

In order to do this search, knowledge about a, b and D is needed. By assump-
tion, the graphs of a and b are computable. The circularity in the definition of D
is resolved by aborting the search in stage s, if any question x ∈ D? for |x| ≥ s
arises. For smaller inputs, the set D is already fixed at this stage. Finally, if
the time for a stage runs out, the search is also aborted.

It remains to prove that for every condition a witness will eventually be
found. Such a witness remains valid, hence, finding a witness proves truth of
the condition. On the other hand, as the time available for the search increases
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unboundedly, if the condition is true, eventually a witness will be found. So let
Pl be the condition with the least number that remains unsatisfied, and let s
be the first stage in which a witness for Pl was sought.

Case Pl = P4e By construction, this implies b0(x) = 0 for |x| ≥ s. Hence, b0
is polynomial-time computable and a

∐
b0 = a. But then Re(a

∐
b0) ⊆ b

implies b ≤m a in violation to the initial assumption.

Case Pl = P4e+1 By construction, this implies b1(x) = 0 for |x| ≥ s. Hence, b1
is polynomial-time computable and a

∐
b1 = a. But then Re(a

∐
b1) ⊆ b

implies b ≤m a in violation to the initial assumption.

Case Pl = P4e+2 By construction, this implies b1(x) = b(x) for |x| ≥ s. Hence,
b1 = b. But then Re(a) ⊆ b1 implies b ≤m a in violation to the initial
assumption.

Case Pl = P4e+3 By construction, this implies b0(x) = b(x) for |x| ≥ s. Hence,
b0 = b. But then Re(a) ⊆ b0 implies b ≤m a in violation to the initial
assumption.

As every case of the contrary assumption leads to a contradiction, the con-
structed set must fulfill the desired criteria.

Corollary 44. The degrees in P1 admitting decidable graphs are dense (in
themselves).

A question that has received a lot of attention regarding (polynomial-time)
many-one reductions between decision problems is about the existence and na-
ture of minimal pairs. In terms of lattice theory6, this asks whether the degree 1
is meet-irreducible, and if not, what kind of pairs can satisfy a⊕b = 1. Following
the initial result by Ladner that minimal pairs for polynomial-time many-one
reductions between decision problems exist [Lad75], Ambos-Spies could prove
that every computable super-polynomial degree is part of a minimal pair [AS87].

For search problems, however, the question remains open:

Open Question 45. Is 1 ∈ P1 meet-irreducible?

The techniques used to construct a minimal pair in [Lad75, AS87] diagonalize
against pairs of reductions Re, Rf trying to prevent Re(a) = Rf (b) for the
constructed representatives a, b. If the equality cannot be prevented, then one
can prove that the resulting set is already polynomial-time decidable using a
constant prefix of b, hence, polynomial-time decidable. However, for search
problems any pair of reductions to a pair of search problems produces a search
problem, namely Re(a) ∪Rf (b).

A non-computable minimal pair for Type-2 search problems was constructed
in [HP13]. Here, the crucial part is the identifiability of hard and easy instances,
which is not available in a Type-1 setting. The negative answer we obtained for

6Which are of course not applicable to the original setting.
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computable many-one reductions in Subsection 4.1 relied on Lemma 36, which
again cannot be transferred to the time-bounded case: There are polynomial-
time decidable relations R such that neither R nor its inverse ¬R† admit a
polynomial-time choice function, even if P = NP should hold7.

4.3 Many-one reductions between sets

In the two previous subsections, we warned that the traditional many-one re-
ductions between sets are not special cases of the many-one reductions between
multivalued functions discussed there. This is due to the fact that our defini-
tion permits modification of the output, in particular usually the (characteristic
function of) a set will be equivalent to its complement.

Nonetheless, our framework is sufficiently powerful to include many-one re-
ductions between sets. For this, we simply need a two-element object 2 such
that for any other object X ∈ Ob(S) and any morphism f : 2×X → X we find

f = π2,X
1 . In this way, sets and their complements can potentially be distin-

guished, and the post-processing allowed in our framework becomes useless. To
give an example for such a situation: If we want to describe computable many-
one reductions between sets, we can pick two Turing-incomparable sequences
to represented yes and no8, and thus obtain a substructure of Weihrauch-
reducibility discussed in the next subsection.

4.4 Weihrauch reducibility (Type 2)

As mentioned before, the investigation of Weihrauch reducibility served as the
prototype for the present approach to many-one reductions between multivalued
functions. The degree structure can be obtained by choosing P as the full
subcategory of Mult induced by the object NN, and by picking S as the category
of partial computable functions on Baire space NN.

More faithful to the applications, the category of multivalued functions be-
tween represented spaces might serve as P, with S being its subcategory of
the computable multivalued functions between represented spaces. Both cate-
gories are examples of concrete categories over (subcategories of) Mult . For an
overview on the theory of represented spaces, we refer to [Pau1X].

As there is extensive literature on Weihrauch reducibility [BG11b, BG11a,
BdBP12, BP10, GM09, BGM12, Pau10a, HP13, BLRP12], we shall not discuss
its structure here in detail. It is worth pointing out that the rôle of the category
extension of the continuous (multivalued) functions between represented spaces
over the computable (multivalued) functions also influences the investigation of
the reducibilities, as besides Weihrauch reducibility the variant of continuous

7A counterexample can be constructed as follows. On input (x, y), the decision procedure
works in stages i, starting at i = 1. In stage 2i, it tests |x| ≤ i ∧ |y| ≤ 2i, deciding (x, y) ∈ R
if yes, and proceeding to the next stage otherwise. In stage 2i+ 1, it tests |x| ≤ 2i ∧ |y| ≤ i,
deciding (x, y) /∈ R if yes, and proceeding to the next stage otherwise.

8This answers a question asked by Mathieu Hoyrup at CCA 2011.

26



Weihrauch reducibility appears. In light of the category-theoretic background,
it is no surprise that both reducibilities behave very similarly.

A further variation of interest would consist in replacing computable in the
definition of Weihrauch reducibility by polynomial time computable, using the
recent introduction of a sufficiently general notion of polynomial time com-
putability in [KC12]. Again, based on our framework, the basic structural the-
ory remains the same. Moreover, as shown in [KP14a, KP14b], the Weihrauch
degrees form a substructure of the polynomial-time Weihrauch degrees. A very
restricted version of type-2 polynomial time many-one reductions between mul-
tivalued function already appeared in [BCE+98].

4.5 Parameterized Search Problems

While parameterized complexity theory [DF99, FG06] is certainly well-established,
parameterized search problems are only cursorily touched upon in [Got05]. How-
ever, the main ideas can readily be developed in our framework.

The crucial new element in parameterized complexity theory are parameter-
izations, which are usually defined to be polynomial-time computable functions
κ : {0, 1}∗ → N [FG06, Definition 1.1]. We shall take the broader approach of
considering any function κ : {0, 1}∗ → N as a parameterization initially. The
parameterizations are the objects in our categories Ppsp, Spsp. A Ppsp-morphism
from κ1 to κ2 is any triple (κ1, κ2, R) where R ⊆ {0, 1}∗ × {0, 1}∗ is a partial
multi-valued function. In particular, all hom-sets Ppsp(κ1, κ2) are isomorphic
in Ppsp.

The morphisms in Spsp are those (κ1, κ2, R) where R is the graph of some
function f such that there is an algorithm computing f with run-time bounded
by t(κ1(w)) ·p(|w|) where t is some computable function and p some polynomial,
and f furthermore satisfies κ2(f(w)) ≤ F (κ1(w)) for some computable function
F : N→ N. It is clear that Spsp is closed under suitable composition, i.e. indeed
a category.

Now we need products and coproducts of parameterizations. We can define
these via (κ1×κ2)(〈u, v〉) = max{κ1(u), κ2(v)} and (κ1 +κ2)(iu) = κi(u). This
allows us to define products and coproducts of morphisms in Ppsp by demanding
(κ1, κ2, R)×(κ′1, κ

′
2, Q) = (κ1×κ′1, κ2×κ′2, R×Q) and (κ1, κ2, R)

∐
(κ′1, κ

′
2, Q) =

(κ1 + κ′1, κ2 + κ′2, R
∐
Q). Straight-forward calculation verifies that these actu-

ally are products and coproducts (when amended with suitable projections and
injections), and that Spsp is closed under them.

Finally, we define (κ1, κ2, R) � (κ1, κ2, Q) to hold, iff dom(R) ⊆ dom(Q) ∧
R ⊆ Q holds. We find that � commutes with coproducts, products and
composition, and that coproducts and products also commute. The infimum
inf{ι1π1, ι2π2} always exists, hence, we find the parameterized search problems
to form a distributive lattice as a corollary of Theorem 18, which we shall denote
by Ppsp.

At first it may seem surprising that a parameterized search problem has
two parameterizations, not only one for the input, but also for the output.
This does enable some nice structural results, for example the identity as a map
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from the parameterization κ⊥ to the parameterization κ>, where κ⊥(x) = 1
and κ>(x) = |x| + 1, turns out to be complete for computable parameterized
search problems.

However, for applications one might prefer to use a single parameterization
to specify a search problem. In particular, this is a necessary step to consider
parameterized approximation problems and parameterized counting problems as
a special case of parameterized search problems. This can be achieved by fixing
κ⊥ as the parameterization on the output side. One readily verifies κ⊥ + κ⊥ =
κ⊥ × κ⊥ = κ⊥, hence, this restriction is compatible with the lattice operations.
The definition of reductions then takes the form:

Definition 46. For simply parameterized search problems (κ1, P ), (κ2, Q), let
P ≤m Q hold, if there are functions F , G such that x 7→ F (〈x, gG(x)〉) is
a selector of P for any selector q of Q, additionally satisfying that F (〈x, y〉)
is computable in time f(κ1(x)) · p(|x| + |y|) and G(x) is computable in time
f(κ1(x)) · p(|x|) for some computable function f and some polynomial p, and
furthermore that κ2(G(x)) ≤ g(κ1(g)) for some computable function g.

We find empty and initial domains in both Ppsp and Spsp, namely the no-
where defined multi-valued function with arbitrary parameterization, and all
multi-valued functions x 7→ x for some constant x ∈ {0, 1}∗, again with arbitrary
parameterization. As in Subsections 4.1, 4.2 we refer to the respective degrees
by 0 and 1. We find again a counterpart to Propositions 34, 42:

Proposition 47. 1 is the least element in Ppsp \ {0} and contains exactly
those parameterized multi-valued functions admitting a fixed parameter tractable
choice function.

This in turn shows us that it is reasonable to consider any non-{0, 1} degree of
parameterized search problems as intractable. Comparison with the suggestion
made before [Got05, Theorem 4.2] to regard a parameterized search problem
as intractable, iff its tractability would imply tractability of a decision problem
regarded as intractable invites the following question:

Open Question 48. Is there a non-fixed parameter tractable single-valued pa-
rameterized search problem with binary image below any non-fixed parameter
tractable parameterized search problem?

4.6 Medvedev-reducibility

While Medvedev-reducibility [Med55] is not commonly regarded as a many-one
reduction, we can nonetheless apply Theorem 18 in order to prove that it is a
distributive lattice. For this, we choose PM to be all computable partial multi-
valued functions on Baire space, and SM to be all computable partial functions
on Baire space (equivalently, we could use SM := PM). Proceeding as before for
the remaining parts of a moce, we obtain just the dual of Medvedev reducibility,
as demonstrated in [HP13].
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5 Outlook

There are two main avenues of further research based upon the presented work:
First, the specific settings of many-one reductions discussed in the preceding
section contain a variety of interesting open questions. The parameterized search
problems of Subsection 4.5 seem to be particularly virgin territory. Question 45
also seems to have the potential of inspiring new techniques in degree-theoretic
complexity theory.

Second, we do not claim to have spoken the last word on a categorical treat-
ment of multivalued functions – our goal rather is to demonstrate the relevance
of such an approach, and to provide some preliminary results. A deeper in-
vestigation would probably be linked to looking into poset-enriched restriction
categories. The result of Proposition 4 would offer itself as a definition there:

Definition 49. A poset-enriched restriction category is a category C with both
a poset-enrichment structure (≤A,B)A,B∈Ob(C) and a restriction endofunctor

satisfying f ≤ g ⇒ f ≤ g.

Natural questions would be whether completing the poset-enrichment to a
meet-semilattice enrichment can somehow be related to moving from Par to
Mult ; and how the inherent poset-enrichment obtainable from the restriction
functor via f ⊆ g :⇔ f = g ◦ f interacts with the explicit poset-enrichment.
Regarding the latter, it would be interesting to see whether Condition 4 in
Definition 3 arises in a more natural way.

A general understanding of how exponentials behave in such categories might
allow to generalize the development of the composition ? for Weihrauch degrees
[BP] to the generic setting of the present paper.

Other recent developments that should be mentioned are the observation
that restriction categories can be understood in terms of enriched category the-
ory in [CG14]; as well as an approach to understand Weihrauch reducibility in
categorical terms based on fibrations in [Yos14].
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