429 research outputs found

    The use of ontologies for effective knowledge modelling and information retrieval

    Get PDF
    © 2017 The dramatic increase in the use of knowledge discovery applications requires end users to write complex database search requests to retrieve information. Such users are not only expected to grasp the structural complexity of complex databases but also the semantic relationships between data stored in databases. In order to overcome such difficulties, researchers have been focusing on knowledge representation and interactive query generation through ontologies, with particular emphasis on improving the interface between data and search requests in order to bring the result sets closer to users research requirements. This paper discusses ontology-based information retrieval approaches and techniques by taking into consideration the aspects of ontology modelling, processing and the translation of ontological knowledge into database search requests. It also extensively compares the existing ontology-to-database transformation and mapping approaches in terms of loss of data and semantics, structural mapping and domain knowledge applicability. The research outcomes, recommendations and future challenges presented in this paper can bridge the gap between ontology and relational models to generate precise search requests using ontologies. Moreover, the comparison presented between various ontology-based information retrieval, database-to-ontology transformations and ontology-to-database mappings approaches provides a reference for enhancing the searching capabilities of massively loaded information management systems

    Optique: Zooming in on Big Data

    Get PDF
    Despite the dramatic growth of data accumulated by enterprises, obtaining value out of it is extremely challenging. In particular, the data access bottleneck prevents domain experts from getting the right piece of data within a constrained time frame. The Optique Platform unlocks the access to Big Data by providing end users support for directly formulating their information needs through an intuitive visual query interface. The submitted query is then transformed into highly optimized queries over the data sources, which may include streaming data, and exploiting massive parallelism in the backend whenever possible. The Optique Platform thus responds to one major challenge posed by Big Data in data-intensive industrial settings

    Towards Analytics Aware Ontology Based Access to Static and Streaming Data (Extended Version)

    Full text link
    Real-time analytics that requires integration and aggregation of heterogeneous and distributed streaming and static data is a typical task in many industrial scenarios such as diagnostics of turbines in Siemens. OBDA approach has a great potential to facilitate such tasks; however, it has a number of limitations in dealing with analytics that restrict its use in important industrial applications. Based on our experience with Siemens, we argue that in order to overcome those limitations OBDA should be extended and become analytics, source, and cost aware. In this work we propose such an extension. In particular, we propose an ontology, mapping, and query language for OBDA, where aggregate and other analytical functions are first class citizens. Moreover, we develop query optimisation techniques that allow to efficiently process analytical tasks over static and streaming data. We implement our approach in a system and evaluate our system with Siemens turbine data

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    A Semantic Problem Solving Environment for Integrative Parasite Research: Identification of Intervention Targets for Trypanosoma cruzi

    Get PDF
    Effective research in parasite biology requires analyzing experimental lab data in the context of constantly expanding public data resources. Integrating lab data with public resources is particularly difficult for biologists who may not possess significant computational skills to acquire and process heterogeneous data stored at different locations. Therefore, we develop a semantic problem solving environment (SPSE) that allows parasitologists to query their lab data integrated with public resources using ontologies. An ontology specifies a common vocabulary and formal relationships among the terms that describe an organism, and experimental data and processes in this case. SPSE supports capturing and querying provenance information, which is metadata on the experimental processes and data recorded for reproducibility, and includes a visual query-processing tool to formulate complex queries without learning the query language syntax. We demonstrate the significance of SPSE in identifying gene knockout targets for T. cruzi. The overall goal of SPSE is to help researchers discover new or existing knowledge that is implicitly present in the data but not always easily detected. Results demonstrate improved usefulness of SPSE over existing lab systems and approaches, and support for complex query design that is otherwise difficult to achieve without the knowledge of query language syntax

    Emergent semantics in distributed knowledge management

    Get PDF
    Organizations and enterprises have developed complex data and information exchange systems that are now vital for their daily operations. Currently available systems, however, face a major challenge. On todays global information infrastructure, data semantics is more and more context- and time-dependent, and cannot be fixed once and for all at design time. Identifying emerging relationships among previously unrelated information items (e.g., during data interchange) may dramatically increase their business value. This chapter introduce and discuss the notion of Emergent Semantics (ES), where both the representation of semantics and the discovery of the proper interpretation of symbols are seen as the result of a selforganizing process performed by distributed agents, exchanging symbols and adaptively developing the proper interpretation via multi-party cooperation and conflict resolution. Emergent data semantics is dynamically dependent on the collective behaviour of large communities of agents, which may have different and even conflicting interests and agendas. This is a research paradigm interpreting semantics from a pragmatic prospective. The chapter introduce this notion providing a discussion on the principles, research area and current state of the art

    Experiencing OptiqueVQS: A Multi-paradigm and Ontology-based Visual Query System for End Users

    Get PDF
    This is author's post-print version, published version available on http://link.springer.com/article/10.1007%2Fs10209-015-0404-5Data access in an enterprise setting is a determining factor for value creation processes, such as sense-making, decision-making, and intelligence analysis. Particularly, in an enterprise setting, intuitive data access tools that directly engage domain experts with data could substantially increase competitiveness and profitability. In this respect, the use of ontologies as a natural communication medium between end users and computers has emerged as a prominent approach. To this end, this article introduces a novel ontology-based visual query system, named OptiqueVQS, for end users. OptiqueVQS is built on a powerful and scalable data access platform and has a user-centric design supported by a widget-based flexible and extensible architecture allowing multiple coordinated representation and interaction paradigms to be employed. The results of a usability experiment performed with non-expert users suggest that OptiqueVQS provides a decent level of expressivity and high usability and hence is quite promising
    • …
    corecore