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‖University of Lübeck, Germany oezcep@ifis.uni-luebeck.de
∗∗Sapienza Università di Roma, Italy rosati@dis.uniroma1.it

Abstract—Despite the dramatic growth of data accumulated
by enterprises, obtaining value out of it is extremely challenging.
In particular, the data access bottleneck prevents domain experts
from getting the right piece of data within a constrained time
frame. The Optique Platform unlocks the access to Big Data
by providing end users support for directly formulating their
information needs through an intuitive visual query interface.
The submitted query is then transformed into highly optimized
queries over the data sources, which may include streaming
data, and exploiting massive parallelism in the backend whenever
possible. The Optique Platform thus responds to one major
challenge posed by Big Data in data-intensive industrial settings.

Keywords—8.II.VIII.VI Knowledge management applications,
8.II.IV.IV Distributed databases, 8.V.II.VI Graphical user interfaces,
8.II.IV.VIII Query processing, 8.II.IV.XIII Temporal databases

I. INTRODUCTION

In order for end users to create value out of the vast
resources of data that are now to a rapidly increasing degree
available, they need to be able to explore the data in ways not
foreseen when the data was stored. A key aspect of this is the
ability to flexibly access the data, and in particular the ability
to pose ad hoc queries that join information from different
sources. Any system that, in the context of Big Data, pretends
to put such capabilities in the hands of the end users must
provide a wide range of advanced functionalities. The designers
of such solutions must at least seek to touch a balance on the
following, partially contradictory, requirements:

(i) Prerequisites: The system must have an acceptable instal-
lation overhead. In the context of Big Data this will in
most cases rule out solutions that require, e.g., a massive
reorganization of data sources or a massive manual re-
engineering of meta-data, like tagging.

(ii) Usability: End users must be able to access the data on
their own, without the need for a specialized IT support
staff. In the context of Big Data, this requires that most of
the complexity of the various data sources must by default
be hidden from the end users. End users must then be
exposed to details on demand, in a gradual and controlled
way.

(iii) Scalability: The solution must scale, not only with respect
to the volumes of Big Data, but also with respect to schema
complexity and data velocity.

(iv) Scope: Big Data scenarios typically involve a wide variety
of data types and sources, and a combination of static
and streaming data arriving at a high velocity. The system
must be able to accommodate the variety and velocity of
the underlying data sources.

In this paper, we present the Optique Platform, a new and
novel solution to one of the great challenges posed by Big Data:
End users’ difficulty of getting hold of the data needed for a
particular task within the time frame they have for accessing
it. We thus concentrate on the access to large, complex and
structured corporate data sources, i.e. not only large volumes of
data, but also complex schemata, with varied types, and, often,
streaming data. Such end users correspond to domain experts
from engineering disciplines, e.g. hydrocarbon exploration,
that are not skilled in database access or data manipulation.
Nevertheless, they require the ability to pose ad hoc complex,
structured queries, typically combining information from a
variety of tables.

If we disregard for a moment the extreme size and
complexity and the streaming aspect, the shape of the data
and the targeted queries is therefore similar to the situation
in conventional relational data stores. In order to provide an
automated, end-to-end connection between complex information
needs and relational data stores, a technology known as Ontol-
ogy Based Data Access (OBDA) [1], [2] has recently emerged.
The central idea of OBDA is to allow end users to express their
information needs using familiar and comprehensible terms,
and to translate these information needs into queries over the
data sources.

More specifically, OBDA uses an ontology to describe the
end users’ domain vocabulary in a way that allows a rigorous
mathematical interpretation. End user queries are formulated
using that ontology. On the other hand a set of mappings is
provided that describes for each concept, relationship, and
attribute in the ontology, how it is represented in the data
sources. The ontology and mappings together form a declarative
description of the OBDA setup that can be used to drive the
query translation process.

A number of prototypes implementing the OBDA idea have
been developed, but they concentrate mostly on the aspect of
rewriting formal relational queries from an end user schema
to a source schema. This is important and challenging, but we
argue that it is only one aspect of what is required to provide



an end-to-end solution for accessing Big Data sources. In the
remainder of this article we will point out some ways in which
the conventional OBDA approach breaks down under the stress
of Big Data, and present how the Optique Platform remedies
the situation.

II. THE OPTIQUE PLATFORM

The Optique Platform [1], [2] is based on OBDA, but goes
beyond the OBDA paradigm by addressing the four require-
ments for Big Data Access from Section I: (i) Prerequisites:
OBDA requires an ontology and mappings. In a Big Data
setting, these can become enormous artifacts that need to be
authored and maintained. (ii) Usability: most end users cannot
be expected to know a formal query language to formulate their
information needs. They need the support of a user interface
for query formulation, and one that can help them to find their
way in an ontology with thousands of concepts. (iii) Scalability:
existing OBDA approaches do not deal well with very large
ontologies and mappings. (iv) Scope: much of the relevant data
is often more than ‘relational,’ it may be temporal, streaming,
geospatial, etc., and a system needs to be equipped to handle
such data types appropriately.

The Optique project1 is addressing these issues, driven
by real-world case studies provided by Siemens AG and
Statoil ASA. The project is developing an integrated end-to-
end platform for end user access to Big Data, according to the
architecture in Figure 1. The configuration of the platform is
done by IT-experts, using a bespoke ontology and mapping
management component. An important part of this is the
‘bootstrapping’ of ontologies and mappings from existing data
models and ontologies, and the source schemas, as described in
Section III. Configuration artefacts such as the ontologies and
mappings, but also previously formulated queries are stored in
the platform’s central semantic repository.

End users formulate queries using the query formulation
interface described in Section IV. End-user queries then get
transformed into queries over the data sources, using the
techniques of Section V. A planning component will then
prepare them for execution; possibly by federation over several
data sources, and possibly by including stream processing as
outlined in Section VI. As results become available, they are
passed on to the end-user’s existing visualisation and analysis
tools.

The Optique platform is designed to provide end user
access to data without moving it out of the storage in which it
currently resides. Typically this will be a RDBMS. In addition
to connecting to standard RDBMS, the Optique platform
includes the Exareme system [3] as query execution component.
Exareme is a massively parallel database back-end, that will
improve scalability whenever the application allows relocating
the data to an elastic cloud. Moreover, the capabilities of
Exareme are used for federation between multiple data sources,
and to combine streaming and static data. Exareme also makes
it easy to interface with alternative storage layers like NoSQL
or graph-based stores. This way, the Optique platform is not
limited to RDBMS backends.

In the remainder of this article we present the different
components of the Optique platform, stressing how the Big

1http://www.optique-project.eu/

Data challenges are addressed. To illustrate our points we
employ the following running example:

Which hydrocarbon fields contain a wellbore with
gas content.

We assume that the data is stored according to the following
relational schema:

• Well(id, name, type)
• Field(id, name)
• Wellbore(id, name, content, well fk, field fk)
• DevelopmentWellbore(wellbore fk, production facility)

where primary keys are underlined, and foreign keys’ names
end in fk.

This example is based on a case study we performed on the
Norwegian Petroleum Directorate’s FactPages data set [4]. This
is one of the information sources routinely used by domain
experts in the Optique project’s Statoil case study. The query
is similar to real information needs in the Statoil case study,
but kept simple for the purpose of illustration. Note that there
is a dedicated table in the schema for development wellbores,
which are a special kind of wellbore.

III. REDUCING INSTALLATION OVERHEAD

Building an ontology and connecting it to the data sources
via mappings is a costly process, especially for large and
complex databases. To aid this process, tools that can extract a
preliminary ontology and mappings from the source schema are
useful. To improve the quality of the ontology and mappings,
but also to maintain them, e.g. when source schemas change,
tool support for editing ontologies and mappings is crucial.
While ontology editing is well covered by existing tools,
mapping editors are not as readily available, which is why
such an editor [5] is developed as part of the Optique platform.

In order to ease the production of initial versions of
the ontology and mappings, the Optique platform includes a
bootstrapping component that takes a set of database schemata
as input, and constructs an ontology and a set of mappings
that connect the terms occurring in the ontology to the schema
elements. ‘Guessing’ an ontology from a database schema is
no easy task, since the database modelling step that produces
a database schema from (explicit or implicit) knowledge of
a domain is typically lossy. Automatic bootstrapping means
to make a best effort at reverse engineering this step and is
necessarily imperfect. However, depending on the quality of
the data source schemata, the results often provide a very good
starting point for later manual optimisations that can be applied
as required.

Our current implementation is based on the approach called
‘direct mapping’ by the W3C:2 every table in the database
(except for those representing many-to-many relationships) is
mapped to one class in the ontology; every data attribute is
mapped to one data property; and every foreign key to one
object property.

Additionally, explicit and implicit database constraints from
the schema can be used to enrich the ontology with axioms

2http://www.w3.org/TR/rdb-direct-mapping/

http://www.optique-project.eu/
http://www.w3.org/TR/rdb-direct-mapping/


End-user IT-expert

Data models
Std. ontologies. . .

Visualisation
& Analysis

Query
Formulation

Ontology & Mapping
Management

Ontology MappingsQueries

Query Transformation

Query Planning

Query Execution Query Execution Query Execution

· · · · · ·

re
su

lts

streaming data temporal data static data

central repository

Fig. 1. The Optique platform can access static, temporal, and streaming data in diverse sources; artefacts like queries, ontologies, and mappings are kept in a
central semantic repository.

about the classes and properties from these direct mappings.
For instance, in the example schema, the DevelopmentWellbore
table’s primary key is also a foreign key pointing to the Wellbore
table. It turns out to be an effective heuristic in such cases
to add class inclusion axioms between the directly mapped
classes, in this case DevelopmentWellbore vWellbore.

Even after applying such heuristics to enrich the ontology,
it will still usually be too close to the source schema. It is
however increasingly often the case that a high quality ontology
of (parts of) the domain already exists, that captures the domain
experts’ vocabulary better than the directly mapped ontology.

When such a high quality ontology is available, the
bootstrapping component allows importing it and using it
in the bootstrapping process. This is achieved through a
heuristic alignment of the directly mapped and the imported
ontologies, using the LogMap system [6]. LogMap is a highly
scalable ontology matching system that discovers ontology-to-
ontology mappings, e.g. class equivalence axioms, between the
vocabularies of the input ontologies.

Special care needs to be taken to avoid introducing unwanted
consequences: for instance the bootstrapper will avoid adding
alignment axioms that would lead to inconsistencies, or faulty
consequences like Well vWellBore that are not supported by
the domain ontology. This is based on novel techniques to
avoid violations of the so called consistency and conservativity
principles [7].

We evaluated our bootstrapper on Statoil’s corporate explo-
ration and production data store, an SQL database comprising
over 1500 tables with a total of over 19000 columns. Parts
of the directly mapped ontology were automatically aligned
with an independently hand-crafted ontology based on the NPD
FactPages data set. The resulting ontology fully covered 30%3

350% if considering partially covered terms (i.e. semi-true positives)

of the terms of a previously collected catalogue of representative
information needs of petroleum exploration experts.

This is a very good coverage for a fully automated process
that only requires a few seconds. However, to achieve a really
high coverage of end-user information needs, the ontology and
mappings will have to be improved further; and both have to be
maintained when end user requirements or data sources change.
An important insight is that the data sources, ontology and
mappings together are a complex combination of artifacts where
it is easy to introduce mistakes. To support the maintenance
and evolution of mappings, advanced analysis techniques are
required that are based on the equivalence between the SQL
queries in mappings and formulae of first-order logic [8].

IV. ELICITING INFORMATION NEEDS

As discussed above, end users should be able to pose
expressive queries for an arbitrary domain in order to exploit
available Big Data sources. Ideally, the query specification
mechanism should be usable even for users without specialised
IT skills. Accordingly, the following approaches can be found
in the literature:

• Query language editors allow highly expressive queries
through query languages such as SPARQL4. However,
knowledge of a query language is a too exigent require-
ment for end users in most cases.

• Information retrieval approaches mimic traditional key-
word queries. Although simple to use, expressiveness is
rather limited.

• Natural language interfaces aim to interpret a query as a
whole in order to give more relevant responses than with
keywords. However, ambiguities and linguistic variability
limit their effectiveness.

4http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/sparql11-query/


Fig. 2. Snapshot of the query interface of OptiqueVQS.

• Visual approaches try to achieve good usability and
sufficient expressiveness, although finding a good tradeoff
is difficult. For example, visual SPARQL query builders are
still too complicated for mainstream users, while typical
facet-based systems limit queries to one class.

To address this challenge we have proposed a novel
visual query interface named OptiqueVQS [9]. It allows the
formulation of rather expressive queries through a visual user
interface that hides the syntax of the query language – see
Figure 2. The bottom-left widget can be used to browse the
concept taxonomy and include new concepts to the query. This
is shown as a tree in the top widget and can be manipulated,
e.g. to select or delete a concept variable, reacting after each
query change. A selected concept can be further refined using
the controls of the bottom-right widget, which are built from
the concept properties in the ontology. Figure 2 represents
the query built with OptiqueVQS for the information need
presented in Section II.

Overall, OptiqueVQS integrates concept browsing, facet-
based search and visual query manipulation in the query
interface. Behind the scenes, a SPARQL query is built and sent
to the query transforming component of the Optique platform
– for our running example we obtain:

SELECT ?field WHERE {
?field a npdfp:Field .
?wb a npdfp:Wellbore ;

npdfp:wellboreForField ?field ;
npdfp:wellboreContent "GAS"ˆˆxsd:string .

}

Since ontologies can be very large in a Big Data context,
OptiqueVQS addresses this challenge by gradually loading
on demand the information about classes, and offering input
fields to find classes and properties without having to navigate
endless lists. Moreover, its widget-based architecture can be
customized for different needs, e.g. we have developed widgets
to select geospatial objects on a map, or to specify a time
window for streaming data.

We have tested OptiqueVQS in four preliminary user
studies, two of which were performed with targeted end-
users in Siemens AG and Statoil ASA. Participants were able
to formulate non-trivial information needs using this search
interface, even without previous training. After using the system
for about an hour, all participants were able to author queries
joining up to 8 relations. These results support the central
hypothesis of query formulation in Optique, that end users
can interact with a query, instead of directly with the data, if
implemented carefully.

V. SCALING UP QUERY TRANSFORMATION

Query transformation is the task of rewriting end-user
queries over the data sources by taking into account the ontology
and mappings. With this approach there is no need to chase



GBs of data to generate all the facts derived by the ontology.
However, query transformation can be challenging and even
prohibitive in presence of large ontologies, complex schemas,
and numerous mappings. The Ontop query transformation
system5 used in Optique handles this problem by embedding
the consequences of the ontology into the mappings, generating
so called T -mappings. This is done off-line, i.e. independently
of any concrete query. End-user queries can then be rewritten
disregarding the ontology and considering only a small set of
necessary mappings.

For instance, in the running example, we have the axiom

DevelopmentWellbore vWellbore

and the following mappings to the relational schema

Wellbore(id) ←
SELECT id FROM Wellbore

DevelopmentWellbore(wellbore fk) ←
SELECT wellbore fk FROM DevelopmentWellbore

Ontop will embed the axiom above in the mappings by
generating the following new T -mapping:

Wellbore(id) ←
SELECT id FROM Wellbore
UNION
SELECT wellbore fk AS id FROM DevelopmentWellbore

Then to answer the triple pattern

?wb a :Wellbore

in our running example, we only need to consider the above
T -mapping and the data source.

The architecture of Ontop is depicted in Figure 3. The input
consists of an ontology, a database—with relative integrity
constraints, and the mappings connecting the ontology and the
database.

The off-line stage of Ontop pre-processes the ontology,
mappings and database schema as follows:

1) The ontology is classified using an ontology reasoner.
2) T -mappings are constructed to drastically simplify query

rewritings.
3) The T -mappings are then optimised in order to eliminate

redundancies.

The on-line stage takes a SPARQL query and unfolds it with
respect to the T -mappings. Then, it optimizes this query into
an SQL query. The optimized query is executed by the data
source.

We have shown using a range of standard benchmarks that
Ontop outperforms many commercial triples stores with and
without reasoning enabled, see e.g. [10].

In order to test the efficiency of Ontop in a challenging
OBDA setting, we have created a scalable benchmark based
on the previously mentioned NPD FactPages data set, ontology,
and mappings [4], as well as a set of real-world queries created
by users of the FactPages. The benchmark is equipped with
a data generator able to increase the initial dataset in order

5http://ontop.inf.unibz.it/

to allow a scalability analysis [11]. We took the OWL 2 QL
fragment of the NPD ontology, and we obtained 343 classes,
142 object properties, 238 data properties, 1451 axioms, and
maximum hierarchy depth of 10.

The results for Ontop show that most of the SPARQL
queries are translated into a single select-project-join SQL
query. Those SPARQL queries contain between 3 and 7 joins,
filters and modifiers. This set of queries can be evaluated
efficiently—11000 queries per hour on the original 2M triples
dataset—and that the execution times scale linearly w.r.t. the
growth of the dataset—14 queries per hour on the 4B triples
dataset. The benchmark also contains more challenging queries
which translate to a union of multiple SQL queries. Most of
these take 1–2 seconds to execute already in the 2M dataset. 6

VI. STREAMING QUERIES

Most Big Data processing involves a temporal dimension—
be it as time attributes within a static DB, or as timestamps on
data items arriving in streams. Hence, as the Optique platform
is intended to be used in a wide range of scenarios it comes
with means for querying temporal and streaming data.

In contrast to classical OBDA systems, the Optique platform
does not constrain the backend sources to relational DBMS
but allows them to be relational data stream management
system (DSMS). Relational DSMS are equipped with SQL like
query languages that offer stream operators (such as window
operators) for querying relational streams, i.e., potentially
infinite sets of timestamped relational tuples. In the Optique
prototype, the DSMS used is the highly distributable SQL
backend system Exareme [3].

Due to this extension of data sources to DSMS, the
mappings in Optique do not generate (virtual) static data only,
which can be processed by ontology-level query languages such
as SPARQL. But they may also generate (virtual) ontology-level
streams, which cannot be processed with SPARQL. Trying to
meet the need for a query language over ontology-level streams,
one faces challenges that are different from the ones known
from classical stream analytics. In fact, for Optique, none of
the recent ontology-level stream engines relying on SPARQL
extensions was adequate. The reason is that these engines
implement time-oblivious window operators which lead to
potential inconsistencies with natural functionality constraints
the engineer wants to formulate: For example, the amount of
gas produced by a wellbore is unique at every time point but
may be different at different time points. So, in Optique the new
query language framework STARQL (Streaming and Temporal
ontology Access with a Reasoning-Based Query Language)
[12] was developed and integrated into the architecture.

In order to illustrate the functions and use of STARQL, we
extend the running example from the beginning of the paper:
For all fields containing a well with gas content, compute a
moving 3 month average over the field’s gas production. This
can be done using the following STARQL query:

CREATE STREAM Sout AS
SELECT ?field, AVG(?p), NOW

6The benchmark is available online: https://github.com/ontop/
npd-benchmark/

http://ontop.inf.unibz.it/
https://github.com/ontop/npd-benchmark/
https://github.com/ontop/npd-benchmark/
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FROM proddata[NOW-3month, NOW]->1 month, npdfp
WHERE {

?field a :Field .
?wb a :Wellbore ;
:wellboreForField ?field ;
:wellboreContent "GAS"ˆˆxsd:string .}

SEQUENCE BY StdSeq AS SEQ
HAVING EXISTS i in SEQ:

GRAPH i : { ?wb :producedGas ?p }

In STARQL, querying historical data and querying stream-
ing data proceeds in an analogous way. In both cases, the query
may refer to static data, i.e., data that is not equipped with
timestamps as they are assumed to be non-temporal or to hold at
every time point. In general, the static part of a STARQL query
is formulated in the WHERE clause. For instance, the example
query asks for wellbores containing gas, which is assumed to be
a static property for this query. Answers produced by the static
sub-query are used as a pre-filter for the stream processing in
the remainder of the query. This separation facilitates processing
high volume static data and high velocity streaming data within
one query.

Relevant slices of the temporal data are specified with a
window. It contains a reference to the developing time NOW and
a sliding parameter that determines the rate at which snapshots
of the data are taken. The example query has a three month
sliding window over gas production data stored in proddata.
The contents of the temporal data are grouped according to
a sequencing strategy into a sequence of small graphs that
represent different states. In the example, the strategy used is
standard sequencing according to which assertions with the
same timestamps come into the same graph.

On top of the sequence, relevant patterns, and aggregations

are formulated in the HAVING-clause, using an expressive
template language. The example query asks for every three-
month snapshot whether there is a state i such that field ?f
produced gas volume ?p at that state.

The sequencing idea underlying STARQL is a necessary
component for a proper treatment of ontology-level streams.
Though this is not a direct contribution to the challenges of
classical stream analytics (e.g., the problems of concept drift
for reliable prediction), the sequencing strategy parameter in
combination with the template language of the HAVING clause
provides the place for implementing various adaptive strategies.

VII. CONCLUSION

Giving end users with limited IT expertise flexible access
to Big Data is a major bottleneck in data-intensive industries.
We have argued how ontology-based data access (OBDA) can
provide a solution: By capturing the end users’ vocabulary
in a formal model (ontology), and maintaining a set of
mappings from this vocabulary to the data sources, we can
automate the translation work previously done by the IT-experts.
Yet current OBDA systems lack a holistic approach to the
problem of establishing an integrated, end-to-end connection
from the end user to large scale and distributed data sources.
Specific problems pertain to usability, prerequisites, scope,
and scalability. We have shown how these problems can be
overcome by a novel combination of techniques, encompassing
an end user oriented query interface for eliciting information
needs, semi-automated methods for managing ontologies and
mappings, new techniques for scalable query rewriting, temporal
and streaming data processing.

These techniques are implemented in an integrated platform,
in which all components ranging from low-level distributed
query execution to visual end user interfaces interact seamlessly.



To tackle the issue of cross-component communication and
optimization, components communicate through a unified
semantic layer of abstraction. Knowledge artifacts such as
ontologies, mappings, metadata and queries are stored in the
central semantic repository based on open standards such as
OWL 2 QL for ontologies, SPARQL as a query language,
and R2MRL for the mappings. As a result, the Optique
platform provides a single point of entry for administrative
tasks (e.g. management of mappings and ontologies) as well
as visual components through which end users can satisfy their
information needs in interacting with Big Data.
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