25 research outputs found

    Making Octants Colorful and Related Covering Decomposition Problems

    Full text link
    We give new positive results on the long-standing open problem of geometric covering decomposition for homothetic polygons. In particular, we prove that for any positive integer k, every finite set of points in R^3 can be colored with k colors so that every translate of the negative octant containing at least k^6 points contains at least one of each color. The best previously known bound was doubly exponential in k. This yields, among other corollaries, the first polynomial bound for the decomposability of multiple coverings by homothetic triangles. We also investigate related decomposition problems involving intervals appearing on a line. We prove that no algorithm can dynamically maintain a decomposition of a multiple covering by intervals under insertion of new intervals, even in a semi-online model, in which some coloring decisions can be delayed. This implies that a wide range of sweeping plane algorithms cannot guarantee any bound even for special cases of the octant problem.Comment: version after revision process; minor changes in the expositio

    Making Triangles Colorful

    Get PDF
    We prove that for any point set P in the plane, a triangle T, and a positive integer k, there exists a coloring of P with k colors such that any homothetic copy of T containing at least ck^8 points of P, for some constant c, contains at least one of each color. This is the first polynomial bound for range spaces induced by homothetic polygons. The only previously known bound for this problem applies to the more general case of octants in R^3, but is doubly exponential.Comment: 6 page

    More on Decomposing Coverings by Octants

    Get PDF
    In this note we improve our upper bound given earlier by showing that every 9-fold covering of a point set in the space by finitely many translates of an octant decomposes into two coverings, and our lower bound by a construction for a 4-fold covering that does not decompose into two coverings. The same bounds also hold for coverings of points in R2\R^2 by finitely many homothets or translates of a triangle. We also prove that certain dynamic interval coloring problems are equivalent to the above question

    Convex Polygons are Self-Coverable

    Get PDF
    We introduce a new notion for geometric families called self-coverability and show that homothets of convex polygons are self-coverable. As a corollary, we obtain several results about coloring point sets such that any member of the family with many points contains all colors. This is dual (and in some cases equivalent) to the much investigated cover-decomposability problem

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Online and quasi-online colorings of wedges and intervals

    Get PDF
    We consider proper online colorings of hypergraphs defined by geometric regions. We prove that there is an online coloring algorithm that colors NN intervals of the real line using Θ(logN/k)\Theta(\log N/k) colors such that for every point pp, contained in at least kk intervals, not all the intervals containing pp have the same color. We also prove the corresponding result about online coloring a family of wedges (quadrants) in the plane that are the translates of a given fixed wedge. These results contrast the results of the first and third author showing that in the quasi-online setting 12 colors are enough to color wedges (independent of NN and kk). We also consider quasi-online coloring of intervals. In all cases we present efficient coloring algorithms

    Proper Coloring of Geometric Hypergraphs

    Get PDF
    We study whether for a given planar family F there is an m such that any finite set of points can be 3-colored so that anymember ofF that contains at leastm points contains two points with different colors. We conjecture that if F is a family of pseudo-disks, then such an m exists. We prove this in the special case when F is the family of all homothetic copies of a given convex polygon. We also study the problem in higher dimensions

    Coloring Points with Respect to Squares

    Get PDF
    We consider the problem of 2-coloring geometric hypergraphs. Specifically, we show that there is a constant m such that any finite set of points in the plane (Formula presented.) can be 2-colored such that every axis-parallel square that contains at least m points from (Formula presented.) contains points of both colors. Our proof is constructive, that is, it provides a polynomial-time algorithm for obtaining such a 2-coloring. By affine transformations this result immediately applies also when considering 2-coloring points with respect to homothets of a fixed parallelogram

    Survey on Decomposition of Multiple Coverings

    Get PDF
    The study of multiple coverings was initiated by Davenport and L. Fejes Tóth more than 50 years ago. In 1980 and 1986, the rst named author published the rst papers about decompos-ability of multiple coverings. It was discovered much later that, besides its theoretical interest, this area has practical applications to sensor networks. Now there is a lot of activity in this eld with several breakthrough results, although, many basic questions are still unsolved. In this survey, we outline the most important results, methods, and questions. 1 Cover-decomposability and the sensor cover problem Let P = { Pi | i ∈ I} be a collection of sets in Rd. We say that P is an m-fold covering if every point of Rd is contained in at least m members of P. The largest such m is called the thickness of the covering. A 1-fold covering is simply called a covering. To formulate the central question of this survey succinctly, we need a denition. Denition 1.1. A planar set P is said to be cover-decomposable if there exists a (minimal) constant m = m(P) such that every m-fold covering of the plane with translates of P can be decomposed into two coverings. Note that the above term is slightly misleading: we decompose (partition) not the set P, but a collection P of its translates. Such a partition is sometimes regarded a coloring of the members of P

    An abstract approach to polychromatic coloring: shallow hitting sets in ABA-free hypergraphs and pseudohalfplanes

    Full text link
    The goal of this paper is to give a new, abstract approach to cover-decomposition and polychromatic colorings using hypergraphs on ordered vertex sets. We introduce an abstract version of a framework by Smorodinsky and Yuditsky, used for polychromatic coloring halfplanes, and apply it to so-called ABA-free hypergraphs, which are a generalization of interval graphs. Using our methods, we prove that (2k-1)-uniform ABA-free hypergraphs have a polychromatic k-coloring, a problem posed by the second author. We also prove the same for hypergraphs defined on a point set by pseudohalfplanes. These results are best possible. We could only prove slightly weaker results for dual hypergraphs defined by pseudohalfplanes, and for hypergraphs defined by pseudohemispheres. We also introduce another new notion that seems to be important for investigating polychromatic colorings and epsilon-nets, shallow hitting sets. We show that all the above hypergraphs have shallow hitting sets, if their hyperedges are containment-free
    corecore