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Abstract
We study whether for a given planar family F there is an m such that any finite set of
points can be 3-colored so that anymember ofF that contains at leastm points contains
two points with different colors. We conjecture that if F is a family of pseudo-disks,
then such an m exists. We prove this in the special case when F is the family of all
homothetic copies of a given convex polygon. We also study the problem in higher
dimensions.

Keywords Geometric hypergraphs · Coloring · Homothets

1 Introduction

In the present paper, we primarily focus on the following proper coloring problem.
Given a finite set of points in the plane, S, we want to color the points of S with a
small number of colors so that every member of some given geometric family F that
intersects S in many points will contain at least two different colors.

Pach conjectured in [28] that for every convex set D there is an m such that any
finite set of points admits a 2-coloring such that any translate of D that contains at least
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m points contains both colors. This conjecture inspired a series of papers studying the
problem and its variants—for a recent survey, see [31]. Eventually, the conjecture was
shown to hold in the case when D is a convex polygon in a series of papers [29,37,41],
but disproved in general [30]. In fact, the conjecture fails for any D with a smooth
boundary, e.g., for a disk.

It follows from basic properties of generalized Delaunay triangulations (to be
defined later) and the Four Color Theorem that for any convex D it is possible to
4-color any finite set of points so that any homothetic copy1 of D that contains at least
two points will contain at least two colors. Therefore, the only case left open is when
we have three colors. We conjecture that for three colors the following holds.

Conjecture 1.1 For every plane convex set D there is an m such that any finite set
of points admits a 3-coloring with the property that any homothetic copy of D that
contains at least m points contains two points with different colors.

The special case of Conjecture 1.1 when D is a disk has been posed earlier by the
first author [17], and is also still open. Our main result is the proof of Conjecture 1.1
for convex polygons.

Theorem 1.2 For every convex n-gon D there is an m such that any finite set of points
admits a 3-coloring with the property that any homothetic copy of D that contains at
least m points contains two points with different colors.

We would like to remark that the constructions from [30] do not exclude the pos-
sibility that for convex polygons the strengthening of Theorem 1.2 using only two
colors instead of three might also hold; this statement is known to hold for triangles
[19] and squares2 [1].

The constant m which we get from our proof depends not only on the number
of sides, but also on the shape of the polygon. However, we conjecture that this
dependence can be removed, and in fact the following stronger conjecture holds for
any pseudo-disk arrangement. We define a pseudo-disk arrangement as a family of
planar bodies whose boundaries are Jordan curves such that any member of the family
intersects the boundary of any other member in a connected curve.3

Conjecture 1.3 There is an m such that for any pseudo-disk arrangement any finite
set of points admits a 3-coloring with the property that any pseudo-disk that contains
at least m points contains two points with different colors.

In Conjecture 1.3 the constantm might in fact be quite a small number. In an earlier
version of this paperwe have conjectured thatm = 3might be sufficient; this, however,
has been disproved by Géza Tóth (personal communication); m = 4 is still possible.

Conjecture 1.3 also has a natural dual counterpart.

1 A homothetic copy or homothet of a set is a scaled and translated copy of it (rotations are not allowed).
2 And since affine transformations have no effect on the question, also for parallelograms.
3 This is slightly non-standard, as usually it is assumed that any two boundaries intersect at most twice (the
structure of the boundary curves is also called a pseudo-circle arrangement). We use our definition as in
our case any family of homothets of a convex set forms a pseudo-disk arrangement, see, e.g., [27].
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Conjecture 1.4 There is an m such that the members of any pseudo-disk arrangement
admit a 3-coloring with the property that any point that is contained in at least m
pseudo-disks is contained in two pseudo-disks with different colors.

We believe that these are fundamental problems about geometric hypergraphs, and
find it quite surprising that they have not been studied much.

The rest of this paper is organized as follows. In the rest of this section, we give an
overview of related results. In Sect. 2 we give the definition and basic properties of
generalized Delaunay triangulations. In Sect. 4 we prove Theorem 1.2, using the proof
method of [1]. In Sect. 5 we study the higher dimensional variants of the problem and
present some constructions. In Sect. 6 we briefly discuss further related topics.

1.1 Previous Results

Most earlier papers on colorings and geometric ranges focused not on proper colorings,
but on polychromatic colorings and its dual, cover-decomposition. In the polychro-
matic k-coloring problem our goal is to color the points of some finite S with k colors
so that every member of some family F that contains many points of S contains all
k colors. Gibson and Varadarajan [13] have shown that for every convex polygon D
there is a cD such that every finite set of points can be k-colored so that any translate
of D that contains at least mk = cDk points contains all k colors. Whether such a
polychromatic k-coloring exists for homothetic copies of convex polygons for anymk

is an open problem, which would be a significant strengthening of our Theorem 1.2.
This conjecture has only been proved in a series of papers for triangles [7,8,19–22] and
very recently [1] for squares using the Four Color Theorem. The derived upper bound
on mk is polynomial in k in both cases. It is, however, conjectured in a much more
general setting [35] that whenevermk exists, it is linear in k, just like for the translates
of convex polygons. This is also known for axis-parallel bottomless rectangles:4 any
finite set of points can be k-colored so that any axis-parallel bottomless rectangle that
contains at least mk = 3k − 2 points contains all k colors [3]. (The value of mk is
known to be optimal only for k = 2 [17].) Their proof reduces the problem to coloring
a one-dimensional dynamic point setwith respect to intervals, which turns the problem
into a variant of online colorings. We will not introduce these notions here; for some
related results, see [8,18,22].

The dual notion of polychromatic colorings is cover-decomposition. In the cover-
decomposition problem we are given some finite family F that covers some region
mk-fold (i.e., each point of the region is contained in at least mk members of F) and
our goal is to partition F into k families that each cover the region. By considering
the respective underlying incidence hypergraphs in the polychromatic coloring and in
the cover-decomposition problems, one can see that they are about colorings of dual
hypergraphs.5 In fact, the two problems are equivalent for translates of a given set, as
the following observation shows.

4 A bottomless rectangle is a planar set of the form {(x, y) | a ≤ x ≤ b, y ≤ c}.
5 The dual of a hypergraph H = (V ,E) is the hypergraph H with vertex set E , edge set V , and with the
incidences reversed, i.e., in H a vertex corresponding to e ∈ E is contained in the edge corresponding to
v ∈ V if and only if v is contained in e inH.
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Observation 1.5 (Pach [28]) For any set D, if H is the inclusion hypergraph of some
points and some translates of D, then the dual hypergraph of H is also such an
inclusion hypergraph.

Combining this with the result of Gibson andVaradarajan [13], we get that for every
convex polygon D there is a cD such that if F is an (mk = cDk)-fold covering of a
region by the translates of D, then F can be decomposed into k coverings of the same
region. It follows from the proofs about polychromatic k-colorings for triangles that
the same holds for coverings by the homothets of a triangle, with a polynomial bound
on mk (this function is slightly weaker than what is known for the polychromatic
k-coloring problem). By homothets of other convex polygons, however, surprisingly
for any m it is possible to construct an indecomposable m-fold covering [26]. The
homothets of the square are the only family which is known to behave differently for
polychromatic coloring and cover-decomposition.

Proper colorings of (primal and dual) geometric hypergraphs have been first studied
systematically in [17], for halfplanes and axis-parallel bottomless rectangles, proving
several lower and upper bounds. Other papers mainly studied the dual variant of our
question. Smorodinsky [39] has shown that any pseudo-disk family can be colored
with a bounded number of colors so that every point covered at least twice is covered
by at least two differently colored disks. He also proved that four colors are sufficient
for disks, and later this was generalized by Cardinal and Korman [9] to the homothetic
copies of any convex body. Smorodinsky has also shown that any family of n axis-
parallel rectangles can be colored with O(log n) colors so that every region covered at
least twice is covered by at least two differently colored rectangles. This was shown to
be optimal by Pach and Tardos [32]; they proved that there is a C such that for every
m there is a family of n axis-parallel rectangles such that for any

(
C log n

m logm

)
-coloring

of the family there is a point covered by exactly m rectangles, all of the same color.
It was shown by Chen et al. [10], answering a question of Brass et al. [5], that for
every c and m there is a finite point set S such that for every c-coloring of S there
is an axis-parallel rectangle containing m points that are all of the same color. This
latter construction is the closest to the problem that we study. It also shows why the
pseudo-disk property is crucial in Conjecture 1.3.

Rotation invariant families have also been studied. It was shown in [33] using the
Hales–Jewett theorem [16] that for every c and m there is a finite planar point set S
such that for every c-coloring of S there is a line containing m points that are all of
the same color. Using duality, they have also shown that this implies that for every c
and m there is a finite collection of lines such that for every c-coloring of the lines
there is a point covered by exactly m lines, all of the same color. Halfplanes, on the
other hand, behave much more like one-dimensional sets and admit polychromatic
colorings. It was shown in [40], improving on earlier results [2,17,34], that any finite
point set can be k-colored so that any halfplane that contains mk = 2k − 1 points
contains all k colors, and this is best possible. In the dual, they have shown that any
finite set of halfplanes can be k-colored so that any point that is covered by at least
mk = 3k − 2 halfplanes is covered by all k colors. This bound is not known to be best
possible, except for k = 2 [12]. Except for this last sharpness bound, all other results
were extended to pseudo-halfplanes in [23].
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2 Generalized Delaunay Triangulations

With a slight perturbation of the points, it is enough to prove Theorem 1.2 (or any
similar statement) for the case when the points are in a general position with respect
to the convex polygon D in the sense that no two points are on a line parallel to a side
of D and no four points are on the boundary of a homothet of D. In the following,
we always suppose that our point set S is in general position with respect to D. We
will also suppose that D is open—this does not alter the validity of the statements and
makes some of the arguments simpler to present.

We say that a halfplane H is supporting D at a side ab of D if H contains D and
ab is on the boundary of H . A point s from some set is extremal (for a side ab) if a
translate of a halfplane supporting D at a side ab contains s but no other point of the
set.

We define a plane graph whose vertices are the points of S, called the generalized
Delaunay triangulation of S with respect to D, and we denote it by DT D(S), or
when clear from the context, simply by DT . As it leads to no confusion, we will
not differentiate between the points and their associated vertices. Two points of S are
connected by a straight-line edge inDT if there is a homothet of D that contains only
them from S. It follows [4,24] thatDT is a well-defined connected plane graph whose
inner faces are triangles. We recall a few simple statements about DT , most of which
also appeared in [1].

Proposition 2.1 If D′ is a homothet of D, the points D′ ∩ S induce a connected
subgraph of DT D(S).

Corollary 2.2 ([1]) If D′ is a homothet of D and e is an edge of DT that crosses D′
and splits it into two parts, then one of these parts does not contain any point from S.

3 Framework

In this section we outline the main idea behind the proof of Theorem 1.2. As discussed
in Sect. 2, we can suppose that S is in general position with respect to D, and we can
consider the generalized Delaunay triangulation DT = DT D(S). We will take an
initial coloring of S that has some nice properties. More specifically, we need a 3-
coloring for which the assumptions of the following lemma holds for c = 3 and for
some constant t that only depends on D.

Lemma 3.1 For every convex polygon D, for every c and t there is an m such that if
for a c-coloring of a point set S and a set of points R ⊂ S, and for every homothet D′

(i) if D′ ∩ S is monochromatic with at least t vertices, D′ contains a point of R,
(ii) if D′ contains t points from R colored with the same color, D′ also contains a

point from S\R that has the same color,

then there is a c-coloring of S with the property that no homothet that contains at least
m points of S is monochromatic.
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Fig. 1 Illustration for Theorem 3.2 for triangles (shading is only to improve visibility)

To prove Lemma 3.1, we use the following theorem about the so-called self-
coverability of convex polygons (Fig. 1).

Theorem 3.2 ([20]) Given a closed convex polygon D and a collection of k points in
its interior, we can take cDk homothets of D, whose union is D, such that none of the
homothets contains any of the given points in its interior, where cD is a constant that
depends only on D.

Proof of Lemma 3.1 The proper c-coloring will be simply taking the c-coloring given
in the hypothesis, and recoloring each vertex in R arbitrarily to a different color. Now
we prove the correctness of this new coloring. Let D′ be a homothet of D containing
at least m points (where m is to be determined later).

Supposefirst thatD′ containsm ≥ ct points from R.Using thepigeonhole principle,
D′ contains at least t points from R that originally had the same color. Using (ii), D′
will have a point both in R and in S\R that had the same color. These points will have
different colors after the recoloring, thus D′ will not be monochromatic.

Otherwise, suppose that D′ contains m points of which less than ct are from R.
Apply Theorem 3.2 with D′ and R′ = D′ ∩ R. This gives cDct homothets (where
cD comes from Theorem 3.2), each of which might contain at most three points on
their boundaries (which include the points from R′), thus by the pigeonhole principle
at least one homothet, D′′, contains no points from R and at least m−3cDct

cDct
points

from S\R. If we set m = cDct(t + 3), this is at least t . Thus, by (i), D′′ was not
monochromatic before the recoloring. As the recoloring does not affect points in S\R,
after the recoloring D′′ (and so also D′) still contains two points that have different
colors. Thus m = cDct(t + 3) is a good choice for m in both cases. �	

Therefore, to prove Theorem 1.2, we only need to show that we can find a coloring
with three colors that satisfy the conditions of Lemma 3.1 for some t .

4 Proof of Theorem 1.2

In this section we prove Theorem 1.2, that is, we show that for every convex polygon
D there is an m such that any finite set of points S admits a 3-coloring such that there
is no monochromatic homothet of D that contains at leastm points. If one could find a
3-coloringwhere everymonochromatic component ofDT is bounded, then that would
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immediately prove Theorem 1.2. This, however, is not true in general [25], only for
bounded degree graphs [11], but the DT can have arbitrarily high degree vertices for
any convex polygon, thus we cannot apply this result. Instead, we use the following
result (whose proof is just a couple of pages).

Theorem 4.1 (Poh [38] and Goddard [14]) The vertices of any planar graph can be
3-colored so that every monochromatic component is a path.

To prove Theorem 1.2, apply Theorem 4.1 toDT to obtain a 3-coloringwhere every
monochromatic component is a path. It follows from Lemma 3.1 that it is sufficient
to show that for t = 4n + 12 (where n denotes the number of sides of D) there is a
set of points R ⊂ S for which

(i) for every homothet D′ if D′ ∩ S is monochromatic with at least t vertices, D′
contains a point of R,

(ii) for every homothet D′ if D′ contains t points from R colored with the same color,
D′ also contains a point from S\R that has the same color.

Now we describe how to select R. First, partition every monochromatic path that
has at least t vertices into subpaths, called sections, so that the number of vertices of
each section is at least t

4 but at most t
2 . We call such a section cuttable if there is a

monochromatic homothet of D that contains all of its points. R will consist of exactly
one point from each cuttable section. These points are selected arbitrarily from the
non-extremal points of each section, except that they are required to be non-adjacent
on their monochromatic path. Since each section has at most two end points and n
extremal points, we can select such a point from each section if t

4 ≥ n+3. For an r ∈ R
wedenote its section byσr and a (fixed)monochromatic homothet containingσr by Dr .

Now we prove that R satisfies the requirements (i) and (ii).
To prove (i), suppose that a homothet D′ is monochromatic with at least t vertices.

Using Proposition 2.1, the subgraph induced on these vertices is connected. As any
monochromatic connected component is a path, D′ contains at least t consecutive
vertices of a monochromatic path, and thus also a section. Because of D′ this section
is cuttable, and thus contains a point of R.

To prove (ii), suppose that a homothet D′ contains t points from R colored with
the same color, red. Denote these points by R′. For each r ∈ R′, the neighbors of r
in σr are red but not in R, thus they must be outside D′, or otherwise (ii) holds and
we are done. Denote the geometric embedding of the two edges adjacent to r in σr by
�r . Therefore, �r will intersect the boundary of D′ in two points for each r ∈ R′. We
claim that these two intersection points usually fall on the same side of D′, i.e., they
are not separated along the boundary by a vertex.

Proposition 4.2 Both intersection points of �r and the boundary of D′ are on the
same side of D′ for all but at most n points of r ∈ R′.

Proof Suppose that there are more than n points r ∈ R′ for which �r intersects D′ in
two sides. For each such point r ∈ R′, for (at least) one of the two (one convex and
one non-convex) cones whose sides are the halflines starting in�r , denoted by Cr , we
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r2

D ′
r1

Λr1

Λr2

Dr2

Fig. 2 Proof of Proposition 4.2

have Cr ∩ D′ ⊂ Dr . Since the intersection Cr ∩ D′ is a connected curve, it contains
a vertex of D′. Using the pigeonhole principle, there are two points, r1, r2 ∈ R′, such
that Cr1 and Cr2 contain the same vertex of D′. (See Fig. 2.) As �r1 ∩ �r2 = ∅, we
have (without loss of generality) r1 ∈ Cr2 , which also implies r1 ∈ Dr2 . But using
Proposition 2.1, r1 must have a neighbor in D′. Since this neighbor is also in Dr2 , it
has to be red. As the red neighbors of any red point of R are not in R, we have found
a red point from S\R in D′, proving (ii). �	

Divide the points r ∈ R′ for which �r intersects only one side of D′ into n groups,
R′
1, . . . , R

′
n , depending on which side is intersected. By the pigeonhole principle there

is a group, R′
i , that contains at least

t−n
n ≥ 3 points. Suppose without loss of generality

that the side ab intersected by �r for r ∈ R′
i is horizontal, bounding D′ from below.

For each r ∈ R′
i , fix and denote by xr a point from σr whose y-coordinate is larger

than the y-coordinate of r . (Such a point exists because no r ∈ R is extremal in σr .)
Denote the path from r to xr in σr by Pr , and the neighbor of r in Pr by qr .

The geometric embedding of Pr starts above ab with r , then goes below ab as
qr /∈ D′, and finally xr is again above the line ab. Denote the first intersection (starting
from r ) of the embedding of the path Pr with the line ab by αr = ¯rqr ∩āb, and the next
intersection by βr . Since |R′

i | ≥ 3, without loss of generality, there are r1, r2 ∈ R′
i such

that βr1 is to the left of αr1 and βr2 is to the left of αr2 . For readability and simplicity,
let xi = xri , Pi = Pri , qi = qri , αi = αri , βi = βri .

Without loss of generality suppose that α1 is to the left of α2. Recall that P2 contains
only red points, of which only r2 is in R. Therefore, no other vertex of P2 can be in
D′. If β2 is to the right of α1, then one of the edges of P2 would separate r1 and r2 in
the sense described in Corollary 2.2. (See Fig. 3.) As this cannot happen, β2 is to the
left of α1.

This implies that q1 /∈ P2 is in the convex hull of P2 below the ab line. Take the
point q ∈ S\P2 with the smallest y-coordinate such that q is in the convex hull of P2
below the ab line. As q is not an extremal point of S, it is connected in DT to some
point in S whose y-coordinate is smaller (because the faces of DT are triangles). By
the definition of q, this neighbor must be in P2. As the end vertices of P2, r2 and x2,
are above the ab line, q is connected to an inner vertex of a monochromatic red path.
Since every monochromatic component is a path, q cannot be red. The homothet Dr2
contains the red vertices of P2 and thus all the points in the convex hull of P2. But Dr2
is monochromatic, so it cannot contain the non-red point q, a contradiction.

This finishes the proof of Theorem 1.2.
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r1

q1

α1 r2α2

q2

β2β1a b

D ′
P1

x 1
x 2

P2
r1

q1

α1 r2α2

q2

β2 β1

q

a b

Dr2

D ′P1

P2
x 2

x 1

Fig. 3 The two cases at the end of the proof of Theorem 1.2. To the left, β2 is to the right of α1, the part of
the edge splitting D′ is bold. To the right, β2 is to the left of α1, the shaded regions must contain q1

5 Higher Dimensions

In this section we study the following natural extension of the problem to higher
dimensions. Given a finite set of points S ∈ R

d and a family F , can we c-color S
so that every F ∈ F contains at least two colors? First we show that for d ≥ 4
this is not even possible for hextants. Define a (positive) hextant in R

4 as the set of
points {(x, y, z, w) | x ≥ x0, y ≥ y0, z ≥ z0, w ≥ w0} for some real numbers
x0, y0, z0, w0. Cardinal noticed that hextants can simulate the axis-parallel rectangles
of an appropriate subplane of R4 and thus the following holds.

Theorem 5.1 (Cardinal6) For any c and m there is a finite point set S such that for
every c-coloring of S there is a hextant that contains exactly m points of S, all of the
same color.

Proof As mentioned in the introduction, Chen et al. [10] have shown that for any c
and m there is a finite planar point set S such that for every c-coloring of S there is an
axis-parallel rectangle that contains exactly m points of S, all of the same color. Place
this construction on the � = {(x, y, z, w) | x + y = 0, z+w = 0} subplane of R4. A
hextant {(x, y, z, w) | x ≥ x0, y ≥ y0, z ≥ z0, w ≥ w0} intersects� in {(x, y, z, w) |
x0 ≤ x = −y ≤ −y0, z0 ≤ z = −w ≤ −w0}, which is a rectangle whose sides are
parallel to the lines {x+ y = 0, z = w = 0} and {x = y = 0, z+w = 0}, respectively.
Taking these perpendicular lines as axes, thus any “axis-parallel” rectangle of � is
realizable by an appropriate hextant, and the theorem follows. �	

Kolja Knauer observed7 that all axis-parallel rectangles of a subplane of R3 can be
cut out in a similar way by the homothets of a (regular) tetrahedron. Indeed, let � be
the tetrahedron whose vertices are (1, 0, 1), (−1, 0, 1), (0,−1,−1), (0, 1,−1). Let
�h be a translate of � by −1 < h < 1 parallel to the z-axis. The intersection of �h

with the plane� = {(x, y, z) | z = 0} yields an axis-parallel rectangle Rh = �h ∩�.
The ratio of the sides of Rh depends on h, and can take any value, as it tends to ±∞
as h → ±1. It follows that by taking a homothetic scaling of Dh , we can obtain any
axis-parallel rectangle. Just like in the proof of Theorem 5.1, we obtain by [10] that

6 Cardinal (personal communication) stated this for c = 2 using the same reduction based on [33] about
axis-parallel rectangles; Theorem 5.1 is only more general because we use a stronger result [10] about
axis-parallel rectangles.
7 As our referee, disproving a bold conjecture we made in an earlier version of this paper.
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H1,2,2 H2,1,2 H2,2,1

p

Fig. 4 H(1, 2, 2) drawn with sets (left) and H(2, 2, 2) drawn as graph (right). Different colors represent
the edges from the different families Ei

for any c and m there is a finite point set S ⊂ R
3 such that for every c-coloring of S

there is a homothet of � that contains exactly m points of S, all of the same color.
For balls, however, we do not know of any counterexamples, even though a 3-

dimensionalDelaunay triangulation of any number of points might induce a complete
graph (for a recent proof, see [15]). We find it quite surprising that while in the plane
convex polygons admit polychromatic colorings and disks do not, in the space it might
be vice versa. We could only prove the following weaker statement.

Theorem 5.2 For every m there is a finite set of points S ∈ R
3 such that for any

3-coloring of S there is a unit ball that contains exactly m points of S, all of the same
color.

Earlier such a construction with unit balls was only known for 2-colorings [33].
For 2-colorings the analogue of Theorem 5.2 was also shown to hold when the family
is the translates of any polyhedron instead of unit balls [36]. The only known positive
result is that for octants any finite set of points can be 2-colored so that any octant that
contains at least nine points contains both colors [19,22]. We do not, however, know
the answer for 3-colorings and the translates or homothets of polyhedra.

The rest of this section contains a sketchof theproof ofTheorem5.2.The reasonwhy
we only sketch the proof is that it is a simple modification of the planar construction
with similar properties for unit disks from [30].

Abstract Hypergraph. First we define the abstract hypergraph that will be real-
ized with unit balls. It is a straight-forward generalization of the hypergraph defined
first in [36]. Instead of a single parameter, m, the induction will be on three param-
eters, k, l and m. For any k, l,m we define the (multi)hypergraph H(k, l,m) =
(V (k, l,m), E(k, l,m)) recursively. The edge set E(k, l,m) will be the disjoint union
of three sets, E(k, l,m) = E1(k, l,m)⊍ E2(k, l,m)⊍ E3(k, l,m). All edges belonging
to E1(k, l,m) will be of size k, all edges belonging to E2(k, l,m) will be of size l,
and all edges belonging to E3(k, l,m) will be of size m. We will prove that in every
3-coloring of H(k, l,m) with colors c1, c2 and c3 there will be an edge in Ei (k, l,m)

such that all of its vertices are colored ci for some i ∈ {1, 2, 3}. If k = l = m, we get
an m-uniform hypergraph that cannot be properly 3-colored (Fig. 4).

Nowwe give the recursive definition. DefineH(1, 1, 1) as a hypergraph on one ver-
tex with three edges containing it, with one edge in each of E1(1, 1, 1), E2(1, 1, 1) and
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E3(1, 1, 1). If at least one of k, l,m is bigger than 1, defineH(k, l,m) recursively from
H(k−1, l,m),H(k, l−1,m),H(k, l,m−1) by adding a “new” vertex p as follows.

V (k, l,m) = V (k − 1, l,m)⊍ V (k, l − 1,m)⊍ V (k, l,m − 1)⊍ {p}.

If k = 1, then E1(1, l,m) = {{v} : v ∈ V (1, l,m)}, otherwise

E1(k, l,m) = {e ∪ {p} : e ∈ E1(k − 1, l,m)}⊍ E1(k, l − 1,m)⊍ E1(k, l,m − 1).

Similarly, if l = 1, then E2(k, 1,m) = {{v} : v ∈ V (k, 1,m)}, otherwise

E2(k, l,m) = {e ∪ {p} : e ∈ E2(k, l − 1,m)}⊍ E2(k − 1, l,m)⊍ E2(k, l,m − 1),

and if m = 1, then E3(k, l, 1) = {{v} : v ∈ V (k, l, 1)}, otherwise

E3(k, l,m) = {e ∪ {p} : e ∈ E3(k, l,m − 1)}⊍ E3(k − 1, l,m)⊍ E3(k, l − 1,m).

Lemma 5.3 In every 3-coloring of H(k, l,m) with colors c1, c2 and c3 there is an
edge in Ei (k, l,m) such that all of its vertices are colored ci for some i ∈ {1, 2, 3}.
Therefore, H(k, l,m) has no proper 3-coloring.

The proof is a simple modification of the respective statement from [36].

Proof If k = l = m = 1, the statement holds. Otherwise, suppose without loss of
generality that the color of p is c1. If k = 1, we are done as {p} ∈ E1(1, l,m).
Otherwise, consider the copy ofH(k − 1, l,m) contained inH(k, l,m). If it contains
an edge in E2(k−1, l,m) or E3(k−1, l,m) such that its vertices are all colored c2 or all
colored c3, respectively, we are done. Otherwise, it contains an e ∈ E1(k−1, l,m) such
that its vertices are all colored c1. But then all the vertices of (e ∪ {p}) ∈ E1(k, l,m)

are also all colored c1, we are done. �	
Geometric Realization. Now we sketch how to realize H(k, l,m) by unit balls in

R
3. The construction will build on the construction of [30], where the edges belonging

to E1(k, l, 1)⊍ E2(k, l, 1) of H(k, l, 1) were realized by unit disks.
The vertices V (k, l,m) will be embedded as a point set, S(k, l,m), and the edge

set Ei (k, l,m) as a collection of unit balls, Bi (k, l,m), where a point is contained
in a ball if and only if the respective vertex is in the respective edge. All the points
of S(k, l,m) will be placed in a small neighborhood of the origin. The centers of the
balls fromB1(k, l,m),B2(k, l,m) andB3(k, l,m)will be close to (0,−1, 0), (0, 1, 0)
and (0, 0,−1), respectively. The realization ofH(1, 1, 1) contains only one point, the
origin, and one ball in each family, centered appropriately close to the required center.

Suppose that not all of k, l,m are 1, and we have already realized the hypergraphs
H(k − 1, l,m), H(k, l − 1,m) and H(k, l,m − 1). Place the new point p in the
origin, and shift the corresponding realizations (i.e., the point sets, S(k − 1, l,m),
S(k, l − 1,m) and S(k, l,m − 1), and the collection of balls, B(k − 1, l,m), B(k, l −
1,m) and B(k, l,m − 1)) by the following vectors, where ε = ε(k, l,m) is a small
enough number, but such that ε(k − 1, l,m), ε(k, l − 1,m) and ε(k, l,m − 1) are all
O(ε5(k, l,m)).
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p
S (k − 1, �, m )

B1(k, � − 1, m )

B1(k − 1, �, m )

B2(k, � − 1, m )

B2(k − 1, �, m )

S (k, � − 1, m )

B1(k, �, m − 1)

B2(k, �, m − 1)

B3(k, �, m − 1)

Fig. 5 The intersection ofH(k, l,m)with the z = 0 plane. Point sets/collections of balls that are at distance
O(ε5) are represented by a single point/ball. As the balls B3(k − 1, l,m) intersect in a O(ε5) vicinity of
S(k − 1, l,m) and the balls B3(k, l − 1,m) intersect in a O(ε5) vicinity of S(k, l − 1,m), they are not
drawn to avoid overcrowding the picture

1. Shift H(k − 1, l,m) by (2ε − 1.5ε3, 2ε2, 0).
2. Shift H(k, l − 1,m) by (−2ε + 1.5ε3,−2ε2, 0).
3. Shift H(k, l,m − 1) by (0, 0, 2ε2).

For an illustration, see Fig. 5.

Proposition 5.4 The above construction realizes H(k, l,m).

The proof of this proposition is a routine calculation, we only show some parts.

Proof Denote by oB the center of the ball B and denote by dist(p, q) the Euclidean
distance between two points p, q.

1. p ∈ B ∈ B1(k − 1, l,m):

dist2(p, oB) = (2ε − 1.5ε3)2 + (1 − 2ε2)2 + O(ε5) = 1 − 2ε4 + O(ε5) < 1.

2. p /∈ B ∈ B1(k, l − 1,m):

dist2(p, oB) = (2ε − 1.5ε3)2 + (1 + 2ε2)2 + O(ε5) = 1 + 4ε2 + O(ε3) > 1.

3. p /∈ B ∈ B1(k, l,m − 1):

dist2(p, oB) = 12 + (2ε2)2 + O(ε5) = 1 + 4ε4 + O(ε5) > 1.
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4. If s ∈ S(k, l − 1,m), then s /∈ B ∈ B1(k − 1, l,m):

dist2(s, oB) = (4ε − 3ε3)2 + (1 − 4ε2)2 + O(ε5) = 1 + 8ε2 + O(ε3) > 1.

5. If s ∈ S(k, l − 1,m), then s /∈ B ∈ B1(k, l,m − 1):

dist2(s, oB) = (2ε − 1.5ε3)2 + (1 − 2ε2)2 + (2ε2)2 + O(ε5)

= 1 + 2ε4 + O(ε5) > 1.

6. If s ∈ S(k, l − 1,m), then s /∈ B ∈ B3(k, l,m − 1):

dist2(s, oB) = (2ε − 1.5ε3)2 + (2ε2)2 + (1 − 2ε2)2 + O(ε5)

= 1 + 2ε4 + O(ε5) > 1.

7. If s ∈ S(k, l,m − 1), then s /∈ B ∈ B1(k − 1, l,m):

dist2(s, oB) = (2ε − 1.5ε3)2 + (1 − 2ε2)2 + (2ε2)2 + O(ε5)

= 1 + 2ε4 + O(ε3) > 1.

The other incidences can be checked similarly and thus Proposition 5.4 follows. �	
Lemma 5.3 and Proposition 5.4 imply Theorem 5.2 by selecting k = l = m,

therefore this also finishes the proof of Theorem 5.2.

6 Further Remarks

Combining Theorems 1.2 and 3.2, for any convex polygon, D, and for any finite point
set, S, we can first find a 3-coloring of S using Theorem 1.2 such that every large (in the
sense that it containsmany points of S) homothet of D contains two differently colored
points, then using Theorem 3.2 we can conclude that every very large homothet of
D contains many points from at least two color classes, and finally we can recolor
every color class separately using Theorem 1.2. This proves that for every k there is a
3k-coloring such that every large homothet of D contains at least 2k colors. Of course,
the colors that we use when recoloring need not be different for each color class, so we
can also prove for example that there is a 6-coloring such that every large homothet
of D contains at least three colors. What are the best bounds of this type that can be
obtained?

Given a planar graph, G, and a pair of paths on three vertices, uvw and u′vw′, we
say that the paths cross at v if u, u′, w,w′ appear in this order around v. A possible
equivalent reformulation of Conjecture 1.3 is the following. Is it true that for any planar
graph and any pairwise non-crossing collection of its paths on three vertices, P , there
is a 3-coloring of the vertices such that every path from P is non-monochromatic?

Finally, we would like to draw attention to the study of realizable hypergraphs.
Unfortunately, planar hypergraphs are traditionally defined dully as a hypergraph
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whose (bipartite) incidence graph is planar. Instead, it would be more natural to define
them as the hypergraphs realizable by a pseudo-disk arrangement in the sense that the
vertices are embedded as points and the edges as pseudo-disks such that a point is
contained in a pseudo-disk if and only if the respective vertex is in the respective edge.
This was done in [6], where it was proved that such a hypergraph on n vertices can have
at most O(k2n) edges that each contain at most k points, while there can be at most
3n−6 edges containing exactly two points, matching Euler’s bound for planar graphs.
Despite [6], these hypergraphs received little attention and even simple statements are
highly non-trivial; see the recent proof by Kisfaludi-Bak8 that the complete 3-uniform
hypergraph on five vertices is not realizable by pseudo-disks. We believe that these
hypergraphs deserve more attention.
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