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Abstract

We consider the problem of 2-coloring geometric hypergraphs. Specifically, we show
that there is a constant m such that any finite set of points in the plane S ⊂ R2 can
be 2-colored such that every axis-parallel square that contains at least m points from S
contains points of both colors. Our proof is constructive, that is, it provides a polynomial-
time algorithm for obtaining such a 2-coloring. By affine transformations this result
immediately applies also when considering 2-coloring points with respect to homothets
of a fixed parallelogram.
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1 Introduction

In this paper we consider the problem of coloring a given set of points in the plane such that
every region from a given set of regions contains a point from each color class. To state our
results, known results and open problems, we need the following definitions and notations.

A hypergraph is a pair (V, E) where V is a set and E is a set of subsets of V. The elements
of V and E are called vertices and hyperedges, respectively. For a hypergraph H := (V, E),
let H|m := (V, {e ∈ E : |e| ≥ m}). A proper coloring of a hypergraph is a coloring of its
vertex set such that in every hyperedge not all vertices are assigned the same color. Proper
colorability of a hypergraph with two colors is also called Property B in the literature. A
polychromatic k-coloring of a hypergraph is a coloring of its vertex set with k colors such
that every hyperedge contains at least one vertex from each of the k colors.

Given a family of regions F in Rd (e.g., all disks in the plane), there is a natural way to
define two types of finite hypergraphs that are dual to each other. First, for a finite set of
points S, let HF (S) denote the primal hypergraph on the vertex set S whose hyperedges are
all subsets of S that can be obtained by intersecting S with a member of F . We say that
a finite subfamily F0 ⊆ F realizes HF (S) if for every hyperedge S ′ ⊆ S of HF (S) there is
F ′ ∈ F0 such that F ′ ∩ S = S ′. The dual hypergraph H∗(F0) is defined with respect to a
finite multi-subfamily1 F0 ⊆ F . Its vertex set is F0 and for each point p ∈ Rd it has one
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1In a multisubfamily we allow taking multiple copies of the same set.
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hyperedge that consists of exactly those regions in F0 that contain p.
The general problems we are interested in are the following.

Problem 1. For a given family of regions F ,

(i) Is there a constant m such that for any finite set of points S the hypergraph HF (S)|m
admits a proper 2-coloring?

(ii) Is there a constant m∗ such that for any finite subset F0 ⊆ F the hypergraph H∗(F0)|m∗
admits a proper 2-coloring?

(iii) Given a constant k, is there a constant mk such that for any finite set of points S the
hypergraph HF (S)|mk

admits a polychromatic k-coloring? If so, is mk = O(k)?

(iv) Given a constant k, is there a constant m∗k such that for any finite subset F0 ⊆ F the
hypergraph H∗(F0)|m∗k admits a polychromatic k-coloring? If so, is m∗k = O(k)?

Examples of families F for which such coloring problems are studied are translates of
convex sets [3, 10, 23, 30, 33, 37], homothets of triangles [6, 7, 15, 16, 17, 18], axis-parallel
rectangles [8, 9, 28, 26] and half-planes [13, 36]. If F is the family of disks in the plane, then
these hypergraphs generalize Delaunay graphs.

The main motivation for studying proper and polychromatic colorings of such geometric
hypergraphs comes from cover-decomposability problems [25] and conflict-free coloring prob-
lems [35]. We concentrate on the first connection, as the problems we regard are in direct
connection with cover-decomposability problems. We give a short introduction to this topic
here, however we recommend the interested reader to consult the survey paper [25] or the
webpage [31] that contains a summary of results about decomposition of multiple coverings
and polychromatic colorings.

Multiple coverings and packings were first studied by Davenport and L. Fejes Tóth almost
50 years ago. Since then a wide variety of questions related to coverings and packings
has been investigated. In 1986 Pach [23] published the first paper about decomposability
problems of multiple coverings. It turned out that this area is rich of deep and exciting
questions, and it has important practical applications as well (e.g., in the area of surveillance
systems [10, 25]). Following Pach’s papers, most of the efforts were concentrated on studying
coverings by translates of some given shape. Recently, several researchers started studying
cover-decomposability of homothets of a given shape.

A family of planar sets is called an r-fold covering of a region R, if every point of
R is contained in at least r members of the family. A 1-fold covering is simply called a
covering. A family F of planar sets is called cover-decomposable, if there is an integer `
with the property that for any multi-subfamily of F that forms an `-fold covering of the
whole plane can be decomposed into two coverings2. A family F of planar sets is called
totally-cover-decomposable, if there is an integer `T with the property that for any region R,
any multi-subfamily of F that forms an `T -fold covering of R can be decomposed into two
coverings.

One can also ask for a decomposition into more than two coverings. That is, whether
there exists an integer `k (resp., `Tk ) such that any multi-subfamily of F that forms an `k-
fold covering of the whole plane (resp., an `Tk -fold covering of R, for any region R), can be
decomposed into k coverings of the plane (resp., of R).

2In fact in early papers that considered only coverings by translates, all mentioned variants of cover-
decomposability were defined for sets instead of families, where a set is cover-decomposable if the family of
its translates is cover-decomposable in the way we define it in this paper.
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If we consider only coverings with finite multi-subfamilies, then we call it the finite
cover-decomposition problem. It is easy to see that the finite cover-decomposition problem
is equivalent to Problems 1(ii) and (iv).

One of the first observations of Pach was that if F is the family of translates of an open
convex set, then finite cover-decomposability implies cover-decomposability. Thus for the
family of the translates of an open convex set ` ≤ m∗ and `k ≤ m∗k in the notation above.
Pach also observed that if F is the family of translates of some set, then Problems 1(i) and (ii)
are equivalent and also Problems 1(iii) and (iv) are equivalent, i.e., m∗ = m and m∗k = mk.
Thus, for the family of translates of an open convex set ` ≤ m∗ = m and `k ≤ m∗k = mk and
so it is enough to consider the primal hypergraph coloring problem.

Pach conjectured that the family of all translates of any open convex planar set is cover-
decomposable [22]. During the years researchers acquired a good understanding of convex
planar shapes whose translates are cover-decomposable. On the positive side, Pach’s con-
jecture was verified for every open convex polygon: Pach himself proved it for every open
centrally symmetric convex polygon [23], then Tardos and Tóth [37] proved the conjecture
for every open triangle, and finally Pálvölgyi and Tóth [33] proved it for every open convex
polygon. They also gave a complete characterization of open non-convex polygons whose
translates are finite cover-decomposable. For open convex polygons it is even known that
mk = m∗k = O(k) [3, 10, 30]. However, Pach’s conjecture was refuted in [24]. Specifically, it
does not hold for disks and for convex shapes with a smooth boundary.

Considering the three dimensional space, it follows from cover-indecomposability of cer-
tain non-convex polygons [32] that every bounded polytope is not cover-decomposable. Thus,
it is not easy to come up with a cover-decomposable set in the space. An important exception
is the octant3, whose translates were proved to be cover-decomposable [15]. The currently
best bounds for octants are 5 ≤ m ≤ 9 [18] and mk = m∗ = O(k5.09) [7, 17, 18]. It is a
challenging open problem whether mk = m∗k = O(k) in this case.

For a long time no positive results were known about cover-decomposability and geo-
metric hypergraph coloring problems concerning homothets of a given shape. For disks, the
answer is negative for all parts of Problem 1 [24, 27]. As a first positive result, the cover-
decomposability of octants along with a simple reduction implied that both the primal and
dual hypergraphs with respect to homothets of a triangle are properly 2-colorable:

Theorem 2 ([15, 18]). For the family F of all homothets of a given triangle both Problems
1(i) and 1(iii) have a positive answer with m = m∗ ≤ 9.

This result was later used to obtain polychromatic colorings of the primal and dual
hypergraphs defined by the family of homothets of a fixed triangle. For the dual hypergraph,
the best bound comes from the corresponding result about octants and so it is m∗k = O(k5.09).
For the primal hypergraph there is a better bound mk = O(k4.09) [16, 18]. An important
tool for obtaining these results is the notion of self-coverability (see Section 2.2), which is
also essential for proving our results. The questions whether mk = O(k) and m∗k = O(k) for
the homothets of a given triangle are still open. The web-page [31] contains an up-to-date
collection of results considering all of these problems and related ones.

For polygons other than triangles, somewhat surprisingly, Kovács [20] recently provided
a negative answer for Problems 1(ii) and (iv). Namely, he showed that the homothets of any
given convex polygon with at least four sides are not cover-decomposable. In other words,
there is no constant m∗ for which the dual hypergraph consisting of hyperedges of size at
least m∗ is 2-colorable. Our main contribution is showing that this is not the case when
considering 2-coloring the primal hypergraph. Indeed, Problem 1(i) has a positive answer
for homothets of any given parallelogram.

3An octant is the set of points {(x, y, z)|x < a, y < b, z < c} in the space for some a, b and c.
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Theorem 3. There is an absolute constant mq ≤ 215 such that the following holds. Given
an (open or closed) parallelogram Q and a finite set of points in the plane S ⊂ R2, the points
of S can be 2-colored in polynomial time, such that any homothet of Q that contains at least
mq points contains points of both colors.

This is the first example that exhibits such different behavior for coloring the primal
and dual hypergraphs with respect to the family of some geometric regions. Furthermore,
combined with results about self-coverability, the proof of Theorem 3 immediately implies the
following generalization to polychromatic k-colorings, thus partially answering also Problem 1
(iii) (it remains open whether linearly many points per hyperedge/parallelogram suffice).

Corollary 1.1. Let Q be a given (open or closed) parallelogram and let S be a set of points
in the plane. Then for every integer k ≥ 1 it is possible to color S with k colors, such that
any homothet of Q that contains at least mk = Ω(k8.75) points from S contains points of all
k colors.

Our proof of Theorem 3 also works for homothets of a triangle, i.e., we give a new proof
for the primal case of Theorem 2 (with a larger constant though):

Theorem 4 ([15]). There is an absolute constant mt such that the following holds. Given
an (open or closed) triangle T and a finite set of points in the plane S ⊂ R2, the points of S
can be 2-colored in polynomial time, such that any homothet of T that contains at least mt

points contains points of both colors.

This paper is organized as follows. In Section 2 we introduce definitions, notations, tools
and some useful lemmas. In Section 3 we describe a general 2-coloring algorithm and then
apply it for parallelograms and for triangles. Concluding remarks and open problems appear
in Section 4. A preliminary version of this paper was presented at the 32nd International
Symposium on Computational Geometry (SoCG 2016). In the current version some of
the proofs are simplified, the constant in Theorem 3 is better, and the limitations of our
techniques are discussed in more details.

2 Preliminaries

Unless stated otherwise, we restrict ourselves to the two-dimensional Euclidean space R2.
For a point p ∈ R2 let (p)x and (p)y denote the x- and y-coordinate of p, respectively. We
denote by ∂S the boundary of a subset S ⊆ R2 and by Cl(S) the closure of S. A homothet
of S is a translated and scaled copy of S. That is, a set S′ = αS + p for some number α > 0
and a point p ∈ R2. We will use the following folklore lemma:

Lemma 2.1. Let C be a convex and compact set and let C1 and C2 be homothets of C. Then
if ∂C1 and ∂C2 intersect finitely many times, then they intersect in at most two points.

For a proof of this lemma, see, e.g., [21, Corollary 2.1.2.2].

2.1 Generalized Delaunay triangulations

For proving Theorems 3 and 4 we will use the notion of generalized Delaunay triangulations,
which are the dual of generalized Voronoi diagrams. In the generalized Delaunay triangu-
lation of a point set S with respect to some compact convex set C, two points of S are
connected by a straight-line segment if there is a homothet of C that contains these two
points and does not contain any other point of S. The generalized Delaunay triangulation
of S with respect to C is denoted by DT (C,S). Without causing confusion we also regard
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such a Delaunay triangulation as an abstract graph with S as its vertex set and the above
defined segments correspond to its edges. We say that S is in general position with respect
to (homothets of) C, if there is no homothet of C whose boundary contains four points from
S. If S is in general position with respect to a convex polygon P and no two points of S
define a line that is parallel to a line through two vertices of P , then we say that S is in
very general position with respect to P . The following properties of generalized Delaunay
triangulations will be useful.

Lemma 2.2 ([4, 19, 34]). Let C be a compact convex set and let S be a set of points in
general position with respect to C. Then DT (C,S) is a well-defined connected plane graph
whose inner faces are triangles.

It would be convenient to consider generalized Delaunay triangulations in which the
boundary of the outer face is a convex polygon. In such a case we say that DT (C,S) is nice.

Lemma 2.3. Let P be a closed convex polygon and let S be a set of points in the plane
that is in very general position with respect to P . Suppose that P ′ is a homothet of P and
Z ⊆ S∩∂P ′. Then there is a homothet of P , denote it by P ′′, such that P ′′∩S = (P ′∩S)\Z.

Proof. Since S is in general position, |∂P ′ ∩ S| ≤ 3.
If |Z| = 3, then there are no other points on ∂P ′, thus shrinking P ′ from an inner point

gives us the required P ′′.
If |Z| = 2, then if there is no other point on ∂P ′, then we can again shrink from an

inner point slightly to get the required P ′′. Otherwise, there is exactly one point q on ∂P ′

besides the two points of Z. Now slightly shrink P ′ from q. As the points are in very general
position, the resulting homothet will contain exactly the points (P ′ ∩ S) \ Z.

Finally, suppose that |Z| = 1 and let Z = {z}. We consider three cases.

Case 1: ∂P ′ ∩ S = {z}. In this case we slightly shrink P ′ with respect to some point in its
interior and obtain the desired homothet P ′′.
Case 2: |∂P ′∩S| = 2. Let ∂P ′∩S = {x, z}. Since S is in very general position, x and z are
on different sides of ∂P ′. Therefore if we slightly shrink P ′ with respect to x, the resulting
homothet of P contains x, does not contain z and contains all other points in P ′ ∩ S.
Case 3: |∂P ′ ∩ S| = 3. Let ∂P ′ ∩ S = {x, y, z}. In this case first we enlarge P ′ from z to
get a homothet P+. Since the points in S are in very general position with respect to P ,
this can be done so that ∂P+ ∩ S = {z} and P ′ ∩ S = P+ ∩ S. Then by slightly shrinking
P+ with respect to an interior point we get the desired homothet P ′′.

For a homothet C ′ of a compact convex set C we denote by DT (C,S)[C ′] the subgraph
of DT (C,S) that is induced by the points of S ∩ C ′. Note that it is not the same as
DT (C,S ∩ C ′), however the following is true.

Lemma 2.4. Let P be a closed convex polygon, let S be a set of points in very general
position with respect to P , and let P ′ be a homothet of P . Then DT (P,S)[P ′] is a connected
graph that is contained in P ′.

Proof. Let DT := DT (P,S). Obviously all the points in DT [P ′] are in P ′ by definition. An
edge in DT [P ′] must also be in P ′, since P ′ is convex. We prove that DT [P ′] is connected
by induction on |S ∩P ′|. This is true by definition if there are at most two points from S in
P ′. Suppose that the claim holds whenever a homothet of P contains k − 1 points from S
and let P ′ be a homothet of P that contains exactly k points from S with k ≥ 3. We may
assume without loss of generality that P ′ contains two points, x and z, on its boundary, for
otherwise we can continuously shrink P ′ until such points exist (first from an interior point,
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then from the point that first appears on the boundary). Now apply Lemma 2.3 twice: once
with Z = {x} and once with Z = {z}. Denote the homothets of P that we get by Px and
Py, respectively. By the induction hypothesis DT [Px] and DT [Pz] are both connected, their
intersection contains at least one point (as k ≥ 3), and their union is contained in DT [P ′].
Thus, DT [P ′] is also connected, as required.

Corollary 2.5. Let P be a closed convex polygon and let S be a set of points in very general
position with respect to P . Suppose that P ′ is a homothet of P and e is an edge of DT (P,S)
that crosses ∂P ′ twice and thus splits P ′ into two parts. Then one of these parts does not
contain a point from S.

A rotation of a vertex v in a plane graph G is the clockwise order of its neighbors. For
three straight-line edges vx, vy, vz we say that vy is between vx and vz if x, y, z appear in
this order in the rotation of v and ∠xvz < π (∠xvz is the angle by which one has to rotate
the vector ~vx around v clockwise until its direction coincides with that of ~vz) or if z, y, x
appear in this order in the rotation of v and ∠zvx < π. The following will be useful later
on.

Proposition 2.6. Let C be a compact convex set and let S be a set of points in very general
position with respect to C and such that DT := DT (C,S) is nice. Let C ′ be a homothet of
C and let v be a vertex in DT [C ′]. Suppose that x and z are two vertices that are neighbors
of v in DT [C ′] and ∠xvz < π and xz /∈ DT . Then there exists an edge vy ∈ DT between vx
and vz. Moreover, if z immediately follows x in the rotation of v in DT [C ′] then y /∈ C ′.

Proof. If x and z are not consecutive in the rotation of v in DT then by definition there
exists a vertex y between them in the rotation of v.

Thus we are done unless x and z are consecutive in the rotation of v in DT .
Suppose that such an y does not exist, that is, x and z are also consecutive in the rotation

of v in DT . Then the face that is incident to vx and vz and is to the right of ~vx and to the
left of ~vz cannot be the outer face since ∠xvz < π and DT is nice. However, since this face
is an inner face, then by Lemma 2.2 it must be a triangle and so xz ∈ DT .

Thus we can conclude that such an y exists and from the definition of the rotation order
it follows that y /∈ C ′.

Lemma 2.7. For every closed convex polygon P there is a constant ∆ := ∆(P ) such that
the following holds. Let S be a set of points in very general position with respect to P and
such that DT := DT (P,S) is nice. If P ′ is a homothet of P such that DT [P ′] is a tree, then
for every v ∈ S ∩ P ′ we have degDT [P ′](v) ≤ ∆.

Proof. Let n be the number of vertices of P and let v0, v1, . . . , vn−1 be the vertices of P ′

listed in their clockwise order around P ′. Let v ∈ S ∩ P ′ be a point and let Ni := {u ∈
S ∩ P ′ | u ∈ 4vvivi+1, vu ∈ DT [P ′]} be the neighbors of v in DT [P ′] that are also in the
triangle vvivi+1, for every i = 0, . . . , n − 1 (addition is modulo n). Let α := α(P ) be the
smallest angle formed by three vertices of P (hence, also of P ′).

Observation 2.8. For every point p′ in the interior of P ′ and every 0 ≤ i < j ≤ n− 1 we
have ∠vip′vj ≥ α.

Proposition 2.9. For every i = 0, . . . , n− 1 and every u, u′ ∈ Ni we have ∠uvu′ ≥ α.

Proof. It is enough to consider the case when u and u′ follow each other immediately in the
rotation of v. First note that uu′ is not an edge in DT [P ′], since otherwise there would be
a triangle in DT [P ′]. It follows from Proposition 2.6 that there is a point z /∈ P ′ such that
z is a neighbor of v in DT and is between u and u′ in the rotation of v. Thus, there is a
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v′i
v′i+1
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Figure 1: An illustration for the proof of Proposition 2.9.

homothet of P , denote it by Pz, such that Pz ∩ S = {v, z}. Let v′iv
′
i+1 be the side of Pz that

corresponds and is parallel to the side vivi+1 of P ′ (see Figure 1). Note that v′iv
′
i+1 is outside

of P ′, since z /∈ P ′. Furthermore, since u, u′ /∈ Pz, the side v′iv
′
i+1 lies inside the wedge whose

apex is v and whose boundary consists of the two rays that emanate from v and go through
u and u′, respectively. Therefore, ∠v′ivv

′
i+1 < ∠uvu′. It follows from Observation 2.8 that

∠v′ivv
′
i+1 ≥ α, thus we have ∠uvu′ ≥ α.

To complete the proof of Lemma 2.7 consider the neighbors of v in DT [P ′] in their
clockwise order around v, and for every set Ni remove the extreme neighbor in this order.
It follows from Proposition 2.9 that the angle between any two remaining neighbors of u is
at least α. Therefore, degDT [P ′](v) ≤ n+ 2π

α .

It follows that if P is an equilateral triangle, then Lemma 2.7 applies with ∆(P ) ≤
3 + 2π

π/3 = 9. By affine transformations we have:

Corollary 2.10. Suppose that T is a triangle and S is a set of points in very general position
with respect to T and such that DT := DT (T,S) is nice. If T ′ is a homothet of T such that
DT [T ′] is a tree, then for every point v ∈ T ′ ∩ S we have degDT [T ′](v) ≤ 9.

Corollary 2.11. Let P be convex polygon and let ∆ := ∆(P ) be the constant from Lemma 2.7.
Suppose that S is a set of points in very general position with respect to P and such that
DT := DT (P,S) is nice. If P ′ is a homothet of P such that DT [P ′] is a tree, then DT [P ′]
contains a simple path of length at least 2blog∆ |S ∩ P ′|c.

2.2 Self-coverability of convex polygons and polychromatic k-coloring

Keszegh and Pálvölgyi introduced in [16] the notion of self-coverability and its connection to
polychromatic k-coloring. In this section we list the definition and results from their work
that we use.

Definition 2.12 ([16]). A collection of closed sets F in a topological space is self-coverable
if there exists a self-coverability function f such that for any set F ∈ F and for any finite
point set S ⊂ F , with |S| = l there exists a subcollection F ′ ⊂ F , |F ′| ≤ f(l) such that⋃
F ′∈F ′ F

′ = F and no point of S is in the interior of some F ′ ∈ F ′.
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x

y

q

z

Q′

Figure 2: Considering homothets of an axis-parallel square, x-y-z is a good 2-path whereas
x-y-q is not since the square Q′ separates it and both xy and qy cross the left side of Q′.

Theorem 5 ([16]). For every convex polygon P there is a constant cf := cf (P ) such that
the family of all homothets of P is self-coverable with f(l) ≤ cf l.
Theorem 6 ([16]). The family of all homothets of a square is self-coverable with f(l) := 2l+2
and this is sharp.

Theorem 7 ([16]). The family of all homothets of a given triangle is self-coverable with
f(l) := 2l + 1 and this is sharp.

Theorem 8 ([16, Theorem 2]). If F is self-coverable with a monotone self-coverability func-
tion f(l) > l and any finite set of points can be colored with two colors such that any member
of F with at least m points contains both colors, then any finite set of points can be colored
with k colors such that any member of F with at least mk := m(f(m−1))dlog ke−1 ≤ kd points
contains all k colors (where d is a constant that depends only on F).4

Theorem 3 (which we have yet to prove) and Theorems 6 and 8 immediately imply
Corollary 1.1. Indeed, the required assumptions of Theorem 8 hold for squares with m ≤ 215
by Theorem 3 and f(l) = 2l+2 by Theorem 6. We get mk = f(m−1)dlog ke−1 ≤ (2m)log k =
klog 430 = O(k8.75) for squares, and also for parallelograms by affine transformations.

3 A 2-coloring algorithm

In this section we prove Theorems 3 and 4. In fact, we prove a more general result, for which
we need the following definitions.

Definition 3.1 (Good paths and good homothets). Let P be an (open or closed) convex
polygon, let S be a finite set of points, let DT := DT (P,S), and let P ′ be a homothet of P .

• Let x-y-z be a 2-path in DT (i.e., a simple path of length two). If Cl(P ′) does not
contain x and z and y is in the interior of P ′, then we say that it separates the 2-path
x-y-z.

• A 2-path x-y-z is good, if there is no homothet of P that separates it such that the edges
yx and yz cross the same side of this homothet of P (see Figure 2 for an example).

• A 3-path x-y-z-w in DT is good if both x-y-z and y-z-w are good 2-paths.

• P ′ is good if it contains a good 3-path or DT [P ′] contains a cycle.

Observe that whether a 2-path x-y-z is good depends only on the direction of the vectors
~yx and ~yz.

Definition 3.2 (Universally good polygons). We say that an (open or closed) convex polygon
P is universally good with a constant cg := cg(P ) if for any finite set of points S such that
S is in very general position with respect to P and DT (P,S) is nice, every homothet of P
that contains at least cg points from S is good.

4Unless stated otherwise, logarithms in this paper are base 2.
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Theorem 9. Let P be an (open or closed) convex polygon with n vertices such that P is a
universally good polygon with a constant cg := cg(P ), and let f(l) ≤ cf l be a self-coverability
function of the family of homothets of Cl(P ) (where cf := cf (P ) is a constant). Then there
is a constant m := m(P ) ≤ (cg − 1)f(n) +n+ 1 ≤ (cg − 1)cfn+n+ 1 such that it is possible
to 2-color in polynomial time the points of any given finite set of points S such that every
homothet of P that contains at least m points from S contains points of both colors.

We note that for the existence of m in Theorem 9 we need only that f(l) exists. However,
using that it is upper bounded by cf l [16] we can get a more explicit bound on m.

Theorems 3 and 4 immediately follow from Theorems 6, 7, 9, and the following two
lemmas.

Lemma 3.3. Every triangle is a universally good polygon with a constant cg ≤ 7382.

Lemma 3.4. Every parallelogram is a universally good polygon with a constant cg ≤ 22.

In particular, we get the value in Theorem 3 by taking m = (cg − 1)f(n) + n+ 1 = 215
with cg = 22, f(l) = 2l + 2 and n = 4 for squares.

In light of Theorem 9, it is enough to prove that a convex polygon is universally good to
conclude that Problem 1(i) has a positive solution with respect to homothets of that polygon.
However, as it turns out, parallelograms and triangles are the only universally good polygons.

Theorem 10. Let P be a convex polygon which is neither a triangle nor a parallelogram.Then
P is not universally good.

We proceed with the proof of Theorem 9, then prove that triangles and parallelograms
are universally good, and conclude this section with a proof that no other universally good
polygons exist.

3.1 Proof of Theorem 9

Let P be an (open or closed) convex polygon with n vertices and let P̄ := Cl(P ) be the closure
of P (thus, P̄ is a closed polygon and P̄ = P if P is closed). Let us assume also that P is a
universally good polygon with a constant cg := cg(P ), and let f(l) ≤ cf l be a self-coverability
function of the family of homothets of P̄ . Set m := (cg−1)f(n)+n+1 ≤ (cg−1)cfn+n+1.
We first argue that it is enough to prove Theorem 9 when P is a closed polygon. Indeed,
suppose that P is open and let P be the family of homothets of P . By slightly shrinking
every homothet of P in P with respect to an interior point, we get a family P ′ of homothets
that realizes HP(S) such that there is no point p ∈ S and homothet P ′ ∈ P ′ with p ∈ ∂P ′.

Note that by definition P̄ is universally good with the same constant cg and is self-
coverable with the same self-coverability function as P . Let P̄ ′ := {Cl(P ′)|P ′ ∈ P ′}. Since
there is no homothet of P in P ′ that contains a point of S on its boundary, every hyperedge
of HP(S) appears also in HP̄

′
(S). Thus, it is enough to show that P̄ satisfies Theorem 9.

Suppose therefore that P is a closed convex polygon. Let P be the family of homothets
of P and let P0 ⊆ P be a smallest size subfamily that realizes HP(S). For convenience we
pick P0 such that no P ′ ∈ P0 contains a point from S on its boundary (this can be achieved
by slightly inflating homothets if necessary).

We may also assume that S is in very general position with respect to P . Indeed,
otherwise note that a small perturbation of the points will achieve that while P0 will still
realize the same hypergraph HP(S). It will also be convenient to assume that the boundaries
of every two polygons in P0 do not overlap, and no edge in DT := DT (P,S) crosses the
boundary of a polygon in P0 at one of its vertices. It follows from Lemma 2.1 that P0 is a
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family of pseudo-disks.5 This implies that |P0| = O(|S|3) by a result of Buzaglo et al. [5]
who proved the following: Suppose that (V, E) is a hypergraph where V is a set of points in
the plane and for every hyperedge e ∈ E there is a region bounded by a simple closed curve
that contains the points of e and no other points from V. If all the regions that correspond
to E define a family of pseudo-disks, then |E| = O(|V|3).

We can also assume that DT is nice, that is, the boundary of its outer face is a convex
polygon: Set −P := {(−x,−y) | (x, y) ∈ P} and let −P ′ be a homothet of −P that contains
in its interior all the polygons in P0. By adding the vertices of −P ′ to S (and perturbing
again if needed) we obtain a set of points S ′ such that −P ′ is the boundary of the outer face
in its generalized Delaunay triangulation with respect to P . Moreover, the hypergraph we
get by intersecting homothets of P with S ′ is a hypergraph that contains all the hyperedges
that we get by intersecting polygons in P0 with S. The latter hyperedges are exactly the
hyperedges we get by intersecting homothets of P with S, since P0 realizes HP(S). Therefore
a valid 2-coloring of the new set of points induces a valid 2-coloring of the original set of
points.

Recall that DT is a plane graph, and therefore, by the Four Color Theorem, we can color
the points in S with four colors, say 1, 2, 3, 4, such that there are no adjacent vertices in DT
with the same color. In order to obtain two color classes, we recolor all the vertices of colors
1 or 2 with the color light red and all the vertices of colors 3 or 4 with the color light blue.

Call a homothet P ′ ∈ P0 heavy monochromatic if it contains exactly cg points from S
and all of them are of the same light color. If all of these points are colored light blue
(resp., red), then we call P ′ a heavy light blue (resp., red) homothet. Obviously, if there
are no heavy monochromatic homothets, then we are done since m > cg and it follows from
Lemma 2.3 that a monochromatic homothet with m > cg points from S can be shrinked to
a monochromatic homothet with exactly cg points from S.

Suppose that P ′ is a heavy monochromatic homothet of P . Observe that DT [P ′] is a tree,
for otherwise it would contain a cycle which in turn would contain a triangle by Lemma 2.2.
That triangle must be 3-colored in the initial 4-coloring, so not all of its points can be light
red or light blue, contradicting the monochromaticity of the points in P ′.

Since P is universally good, P ′ contains cg points and DT [P ′] is a tree, it follows that
P ′ contains a good 3-path x-y-z-w. We associate this 3-path with P ′. Suppose that P ′ is a
heavy light red homothet of P . Then one of y and z was originally colored 1 and the other
was originally colored 2. Recolor the one whose original color was 1 with the color dark blue.
Similarly, if P ′ is a heavy light blue homothet of P , then one of y and z was originally colored
3 and the other was originally colored 4. In this case we recolor the one whose original color
was 3 with the color dark red. Repeat this for every heavy monochromatic homothet, and,
finally, in order to obtain a 2-coloring, merge the color classes light red and dark red into
one color class, red; and merge the color classes light blue and dark blue into one color class,
blue.

Lemma 3.5. There is no homothet P ′ ∈ P0 that contains m points from S all of which are
of the same color.

Proof. Suppose for contradiction that P ′ is a homothet of P that contains m points from S
all of which of the same color. We may assume without loss of generality that all the points
in P ′ are colored red, therefore, before the final recoloring each point in P ′ was either light
red or dark red. We consider two cases based on the number of dark red points in P ′. Recall
that n is the number of vertices of P .

5In a family of pseudo-disks the boundaries of every two regions cross at most twice.
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Figure 3: An illustration for the proof of Lemma 3.5.

Case 1: There are at most n dark red points in P ′. By Definition 2.12 there is a set P ′
of at most f(n) homothets of P whose union is P ′ such that no dark red point in P ′ is in the
interior of one of these homothets. Using Lemma 2.3 we can change these homothets slightly
such that none of them contains a dark red point yet all light red points are still covered by
these homothets. Thus the at least m− n = (cg − 1)f(n) + 1 light red points are covered by
these at most f(n) homothets. By the pigeonhole principle one of these homothets, denote

it by P ′′, contains at least d (cg−1)f(n)+1
f(n) e = cg light red points and no other points. However,

in this case it follows from Lemma 2.3 that there is a heavy light red homothet in P0 that
contains exactly cg points from S ∩P ′′. Therefore, the coloring algorithm should have found
within this heavy light red homothet a good 3-path and recolored one of its vertices with
dark blue and then blue. This contradicts the assumption that all the points in P ′ are red.

Case 2: There are more than n dark red points in P ′. Let y be one of these dark
red points. Then there is a good 3-path x-y-z-w within a heavy light blue homothet Py ∈ P0

with whom this 3-path is associated. Furthermore, the original color of y is 3 and therefore
the original color of x and z is 4, and thus their final color is blue. It follows that P ′ separates
x-y-z, moreover, since x-y-z is a good 2-path, the edges yx and yz cross different sides of
P ′. Let sx be the side of P ′ that is crossed by yx, and let qx be the crossing point of yx and
sx. Similarly, Let sz be the side of P ′ that is crossed by yz, and let qz be the crossing point
of yz and sz. See Figure 3. Note that ∂P ′ and ∂Py cross each other exactly twice. Indeed,
this follows from Lemma 2.1 and the fact that there are points from S in each of P ′ ∩ Py
(e.g., y), Py \P ′ (e.g., x and z) and P ′ \Py (since |P ′ ∩S| ≥ m > cg = |Py ∩S|). The points
qx and qz partition ∂P ′ into two parts ∂P ′1 and ∂P ′2. Note that since qx, qz ∈ P ′ ∩ Py, the
two crossing points between ∂P ′ and ∂Py must lie either in ∂P ′1 or in ∂P ′2. Assume without
loss of generality that both of them lie in ∂P ′1. Thus ∂P ′2 ⊂ Py. Let v be a vertex of P ′ in
∂P ′2 (note that since sx 6= sz each of ∂P ′1 and ∂P ′2 contains a vertex of P ′). We associate
the vertex v with the dark red point y. We also define Ry to be the region whose boundary
consists of the segments yqx, yqz, and the part of ∂P ′2 whose endpoints are qx and qz (call
this part ∂P ′xz). Observe that Ry ⊆ P ′ ∩ Py.
Proposition 3.6. There is no other point but y in S ∩Ry.

Proof. Suppose that the claim is false and let y′ ∈ S ∩ Ry be another point in Ry. As y′

is in P ′, it must be red after the final coloring. Also, as it is also in Py, it must be a dark
red point (which was light blue before having been recolored to dark red and finally to red).
Thus, y′ is a dark red point in Ry.
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Since x and y′ both lie in the heavy light blue homothet Py, they are connected by a path
in DT [Py] that alternates between points of colors 3 and 4 (considering the initial 4-coloring).
We may assume without loss of generality that y′ is the first point in Ry along this path
from x to y′: indeed, there are no points of color 4 in Ry, and if there is a point of color 3
before y′, then we can name it y′. Denote by ` the path (in DT ) from y to y′ that consists
of the edge yx and the above-mentioned path from x to y′. Consider the polygon P̂ whose
boundary consists of ` and a straight-line segment yy′ (P̂ is not a homothet of P ). Since
y′ and y are the only vertices of P̂ in Ry, there is no edge of ` that crosses yy′. Indeed, if
there was such an edge, then it would split P ′ into two parts such that one contains y and
the other contains y′. This would contradict Corollary 2.5. Hence P̂ is a simple polygon.

Since every simple polygon has at least three convex vertices, P̂ has a convex vertex
different from y and y′ (thus this vertex is not in Ry). Denote this vertex by b and let a and
c be its neighbors along ` such that ∠abc < π. Since the initial colors of a and c are the
same, we have ac /∈ DT and so it follows from Proposition 2.6 that there is a neighbor d of
b in DT in between a and c. Let us choose d such that it is the neighbor of b that is closest
to a in the rotation of b. Thus, it is connected to both a and b. Since the initial colors of a
and b are 3 and 4, the initial color of d was 1 or 2. Note that P̂ ⊆ Py since all of its edges
are inside Py. Thus d /∈ P̂ and also d /∈ Py since Py does not contain vertices of color 1
or 2. Now consider the directed edge bd: it starts inside P̂ (since d is in between a and c)
and so it must cross yy′. Before doing so bd must cross ∂Ry and so it crosses ∂P ′xz, since
it cannot cross yqz or yqx. After crossing yy′, the directed edge bd must cross ∂P ′xz again,
since d /∈ Ry. But then bd splits P ′ into two parts such that one contains y and the other
contains y′, which is impossible by Corollary 2.5.

In a similar way to the one described above, we associate a vertex of P ′ with every dark
red point in P ′. Since there are more than n dark red points in P ′, there are two of them,
denote them by y and y′, that are associated with the same vertex of P ′, denote it by v. Let
x-y-z be the good 2-path that corresponds to y, let yqx and yqz be the edge-segments of yx
and yz, and let Ry be the region as defined above. Similarly, let x′-y′-z′ be the good 2-path
that corresponds to y′,. let yqx′ and yqz′ be the edge-segments of y′x′ and y′z′, and let Ry′

be the region as defined above.
It follows from Proposition 3.6 that y /∈ Ry′ and y′ /∈ Ry. However, ∂Ry and ∂R′y both

contain v. This implies that one of the segments yqx and yqz crosses one of the segments y′qx′
and y′qz′ , which is impossible since these are segments of edges of a plane graph. Lemma 3.5
is proved.

To complete the proof of Theorem 9, we need to argue that the described algorithm
runs in polynomial time. Indeed, constructing the generalized Delaunay triangulation and
then 4-coloring it can be done in polynomial time. Recall that there are at most O(|S|3)
combinatorially different homothets of P . Among them, we need to consider those that
contain exactly cg points, and for each such heavy monochromatic homothet P ′ we need to
find a good 3-path in DT [P ′], for the final recoloring step. This takes a constant time for
every heavy monochromatic homothet, since cg is a constant. Therefore, the overall running
time is polynomial with respect to the size of S.

3.2 Triangles are universally good

In this section we prove Lemma 3.3.
Let T be a triangle, let S be a set of points in very general position with respect to T ,

and let DT := DT (T,S) be the generalized Delaunay triangulation of S with respect to T
such that DT is nice (i.e., the boundary of its outer face is a convex polygon). By applying
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Figure 4: An illustration for the proof of Lemma 3.3.

an affine transformation, if needed, we may assume without loss of generality that T is an
equilateral triangle. Suppose that T ′ is a homothet of T that contains at least 7382 points
from S and that DT [T ′] is a tree. We will show that T ′ contains a good 3-path.

By Corollary 2.10 for every point v ∈ T ′ ∩S we have degDT [T ′](v) ≤ 9. Since DT [T ′] is a

tree with at least 7382 = 1 + 9 + 92 + 93 + 94 + 1 vertices of maximum degree 9, it contains
a simple path of length 9. Let Z = v1-v2- . . . -v10 be such a path. We will prove that there is
2 ≤ i ≤ 8 such that vi−1-vi-vi+1 and vi-vi+1-vi+2 are good 2-paths, and therefore T contains
the good 3-path vi−1-vi-vi+1-vi+2. Call a 2-path vi−1-vi-vi+1 (for 2 ≤ i ≤ 9) bad if it is not
good, that is, there is a homothet of T , Ti, such that Ti contains vi, does not contain vi−1

and vi+1, and the edges vivi−1 and vivi+1 cross the same side of Ti.
Denote the sides of T by s1, s2, s3. For j = 1, 2, 3, let Bj be the set of bad 2-paths

vi−1-vi-vi+1 such that there is a homothet Ti that contains vi and does not contain vi−1

and vi+1, and the edges vivi−1 and vivi+1 both cross the side of Ti that is homothetic to sj .
Suppose for contradiction that Z does not contain two consecutive good 2-paths. Then, at
least one of the sets Bj contains two bad 2-paths. Assume without loss of generality that
B1 contains two bad 2-paths vi−1-vi-vi+1 and vk−1-vk-vk+1 such that i < k. We may further
assume that s1 is horizontal and that T lies above it.

There is a homothet of T that separates vi−1-vi-vi+1 such that vi−1vi and vivi+1 both
cross its side that is homothetic to s1, therefore both vi−1 and vi+1 lie below vi. Similarly,
both vk−1 and vk+1 lie below vk. Let vr be the lowest point among vi, . . . , vk. Since vi+1 is
lower than vi and vk−1 is lower than vk it follows that r 6= i, k and so vr is lower than vr−1

and vr+1. Suppose without loss of generality that vr+1 is to the right of the line through vr
and vr−1. By applying Proposition 2.6 to two vertices that are between vr−1 and vr+1 and
follow each other immediately in the rotation of vr in DT [T ′] (they can coincide with vr−1

and/or vr+1), we get that there is at least one neighbor of vr between vr−1 and vr+1 that lies
outside of T ′. Let u be such a neighbor of vr and let Tu be a homothet of T that contains vr
and u and no other point from S. Note that u is higher than vr, thus vru crosses either the
right or the left side of T ′. Suppose without loss of generality that vru crosses the right side
of T ′ at a point qu (refer to Figure 4). It follows that the right side of Tu is to the right of the
right side of T ′. Thus, a horizontal ray that begins at vr and goes to the right will first cross
the right side of T ′ (denote this crossing point by q) and then cross the right side of Tu (note
that this ray does not cross the left sides of Tu and T ′ since vr ∈ Tu ∩ T ′). Now consider
the triangle 4quqvr. All of its vertices are in Tu ∩ T ′, therefore 4quqvr ∈ Tu ∩ T ′. However,
since vr+1 follows u in the rotation of vr, it follows that the edge vrvr+1 lies in 4quqvr since
it cannot cross none of its sides. This is impossible since vr+1 should be outside of Tu and
hence outside of 4quqvr. Lemma 3.3 is proved.
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3.3 Parallelograms are universally good

In this section we prove Lemma 3.4. Let Q be a parallelogram, let S be a set of points in very
general position with respect to Q, and let DT := DT (Q,S) be the generalized Delaunay
triangulation of S with respect to Q such that DT is nice (i.e., the boundary of its outer
face is a convex polygon). By applying an affine transformation, we may assume without
loss of generality that Q is an axis-parallel square. Since S is in very general position, no
two points in S share the same x- or y-coordinate.

Suppose that Q′ is a homothet of Q that contains at least 22 points from S and that
DT [Q′] is a tree. We will show that Q′ contains a good 3-path.

Let q ∈ S be a point. We partition the points of the plane into four open quadrants
according to their position with respect to q: NE(q) (North-East), NW(q) (North-West),
SE(q) (South-East), and SW(q) (South-West).

Proposition 3.7. Let x, y, z be three points in S such that xy and xz are edges in DT .
Then for every quadrant Qd ∈ {NW,NE,SW,SE} if y ∈ Qd(x), then z /∈ Qd(y).

Proof. Suppose for contradiction and without loss of generality that y ∈ NE(x) and z ∈
NE(y). Then the smallest rectangle that contains x and z has x at its bottom-left corner,
z at its top-right corner and y in its interior. Therefore, there is no square that contains x
and z and does not contain y and so xz cannot be an edge in DT .

Proposition 3.8. For every point q ∈ S ∩Q′ there are no two neighbors of q in DT [Q′] that
lie in the same quadrant of q.

Proof. Suppose for contradiction that q has two neighbors, x and y, that lie in the same
quadrant. In this case we can choose them such that there is no other neighbor of q between
them. Assume without loss of generality that x, y ∈ NE(q), such that qx forms a smaller
angle with the x-axis than qy (refer to Figure 5) and they follow each other immediately in
the rotation of q. It follows from Proposition 2.6 that there is a point z /∈ Q′ such that z is a
neighbor of q in DT and is between x and y in the rotation of q. By Proposition 3.7 we have
y /∈ NE(x). Since qx forms a smaller angle with the x-axis than qy we have y /∈ SE(x). If
y ∈ SW(x), then x ∈ NE(y) which is impossible by Proposition 3.7. Thus, y ∈ NW(x). Using
the same arguments we get that z ∈ NW(x)∩SE(y). However, this implies that z is contained
in any axis-parallel rectangle that contains x and y and thus z ∈ Q′, a contradiction.

Proposition 3.9. Let x and y be two neighbors of q in DT [Q′]. Let z /∈ Q′ be a neighbor of
q in DT that lies between x and y in the rotation of q and let Qz be a square that contains
q and z and no other point from S. Then:

• if x ∈ NW(q) and y ∈ NE(q), then qz crosses the top side of Q′, x is to the left of Qz
and y is to the right of Qz;

• if x ∈ NE(q) and y ∈ SE(q), then qz crosses the right side of Q′, x is above Qz and y
is below Qz;

• if x ∈ SE(q) and y ∈ SW(q), then qz crosses the bottom side of Q′, x is to the right of
Qz and y is to the left of Qz; and
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• if x ∈ SW(q) and y ∈ NW(q), then qz crosses the left side of Q′, x is below Qz and y
is above Qz.

Proof. By symmetry it is enough to consider the first case, that is, x ∈ NW(q) and y ∈ NE(q).
Since z is between x and y in the rotation of q we have z /∈ SW(x) and z /∈ SE(y). By
Proposition 3.7 z /∈ NW(x) and z /∈ NE(y). Thus z is to the right of x and to the left of
y. It follows that z is above Q′ and qz crosses the top side of Q′. Therefore, the top side of
Qz is above Q′. Thus, qx cannot cross the top side of Qz so it must cross its left side. This
implies that x lies to the left of Qz. Similarly, qy cannot cross the top side of Qz so it must
cross its right side. This implies that y lies to the right of Qz.

Call a (simple) path in DT x-monotone (resp., y-monotone) if there is no vertical (resp.,
horizontal) line that intersects the path in more than one point.

Proposition 3.10. Every path in DT [Q′] is x-monotone or y-monotone.

Proof. Suppose for contradiction that there is a path p := q1-q2- . . . -qk which is neither x-
monotone nor y-monotone. Since p is a polygonal path, it follows that there are two points,
qi and qj , that are “witnesses” to the non-x- and non-y-monotonicity of p, respectively. That
is, both qi−i and qi+1 are to the left of qi or both of them are to its right, and both qj−1

and qj+1 are above qj or both of them are below qj . We choose i and j such that |i − j|
is minimized, and assume without loss of generality that i < j (note that it follows from
Proposition 3.8 that i 6= j). Thus, the sub-path p′ := qi-qi+1- . . . , qj−1-qj is both x-monotone
and y-monotone.

By reflecting about the x- and/or y-axis if needed, we may assume that p′ is ascending,
that is, for every l = i, . . . , j−1 we have ql+1 ∈ NE(ql). Then it follows from Proposition 3.8
that qi−1 ∈ SE(qi) and qj+1 ∈ SE(qj). By applying Proposition 2.6 to two vertices that are
between qi−1 and qi+1 and follow each other immediately in the rotation of qi in DT [Q′] (they
can coincide with qi−1 and/or qi+1), we get that there is a point x /∈ Q′ which is a neighbor
of qi and is between qi−1 and qi+1 in the rotation of qi, and it follows from Proposition 3.9
that qix crosses the right side of Q′. The same argument implies that there is a point y /∈ Q′
which is a neighbor of qj and is between qj+1 and qj−1 in the rotation of qj , such that qjy
crosses the bottom side of Q′. However, since qj is to the right of qi and above it, the edges
qix and qjy must cross, which is impossible.

Call a 2-path w-q-z bad if it is not good, that is, there is an axis-parallel square Q′′ that
contains q, does not contain w and z, and qw and qz are edges in DT that cross the same
side of Q′′. We say that w-q-z is a bad left 2-path if qw and qz cross the left side of Q′′, and
define right, top, and bottom bad 2-paths analogously.

Proposition 3.11. Let w-q-z be a 2-path. Then:

• w-q-z is a bad left 2-path iff w ∈ SW(q) and z ∈ NW(q), or vice versa;

• w-q-z is a bad right 2-path iff w ∈ SE(q) and z ∈ NE(q), or vice versa;

• w-q-z is a bad top 2-path iff w ∈ NW(q) and z ∈ NE(q), or vice versa; and

• w-q-z is a bad bottom 2-path iff w ∈ SW(q) and z ∈ SE(q), or vice versa.

Proof. By symmetry it is enough to consider the first claim. If w-q-z is a bad left 2-path,
then there is a square Q′′ that separates it such that the edges qw and qz cross the left side
of Q′′. Therefore, these edges go leftwards from q and so w, z ∈ SW(q) ∪ NW(q). It follows
from Proposition 3.8 that w ∈ SW(q) and z ∈ NW(q), or vice versa.

For the other direction, assume without loss of generality that w ∈ SW(q) and z ∈ NW(q).
Let Q′′ be the square whose left side is the straight-line segment between ((q)x−ε, (w)y) and
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Figure 6: An illustration for the proof of Proposition 3.12.

((q)x − ε, (z)y), for some small ε > 0. Then Q′′ separates w-q-z and both qw and qz cross
its left side, therefore, w-q-z is a bad left 2-path.

Proposition 3.12. Every path in DT [Q′] contains at most four bad 2-paths.

Proof. Let p := q1-q2- . . . -qk be a simple path in DT [Q′] and suppose for a contradiction
that p contains at least five bad 2-paths. By Proposition 3.10 the path p is x-monotone
or y-monotone. Assume without loss of generality that p is y-monotone and that it goes
upwards, that is, qi+1 is above qi for every i = 1, 2, . . . , k − 1. It follows that p does not
contain bad top or bad bottom 2-paths, for otherwise it would not be y-monotone. It is not
hard to see that bad left and bad right 2-paths must alternate along p, that is, between every
two bad left 2-paths there is a bad right 2-path and vice versa.

Consider the first five such bad 2-paths along the path p, and denote them by qi1−1-qi1-qi1+1,
qi2−1-qi2-qi2+1, qi3−1-qi3-qi3+1, qi4−1-qi4-qi4+1 and qi5−1-qi5-qi5+1. By symmetry we may
assume without loss of generality that qi1−1-qi1-qi1+1 is a bad left 2-path, and therefore
qi3−1-qi3-qi3+1 and qi5−1-qi5-qi5+1 are also bad left 2-paths, whereas the 2-paths qi2−1-qi2-qi2+1

and qi4−1-qi4-qi4+1 are bad right.
Note that we may assume without loss of generality that qi1 is to the right of qi4 , for

otherwise qi5 must be to the right of qi2 and by reflecting about the x-axis and renaming
the points we get the desired assumption. By applying Proposition 2.6 to two vertices that
are between qi1−1 and qi1+1 and follow each other immediately in the rotation of qi1 in
DT [Q′] (they can coincide with qi1−1 and/or qi1+1), we get that qi1 has a neighbor z /∈ Q′
between qi1−1 and qi1+1 in the rotation of qi1 . Let Qz be a square that contains qi1 and z
and no other point from S and let sz be its side length (refer to Figure 6). It follows from
Proposition 3.9 that qi1−1 lies below Qz, qi1+1 lies above Qz, and z lies to the left of Q′.
Therefore, (qi1+1)y − (qi1−1)y > sz. Similarly, qi4 has a neighbor w /∈ Q′ between qi4+1 and
qi4−1 in the rotation of qi4 . Let Qw be a square that contains qi4 and w and no other point
from S and let sw be its side length. Then qi4−1 lies below Qw, qi4+1 lies above Qw, and w
lies to the right of Q′. Therefore, (qi4+1)y − (qi4−1)y > sw.

Note that since qi1 is to the right of qi4 and z and w are to the left and to the right of Q′,
respectively, we have sz + sw > ((qi1)x − (z)x) + ((w)x − (qi4)x) > sQ′ , where sQ′ is the side
length of Q′. Observe also that since there are at least two other vertices between qi1 and
qi4 along p, we have that qi1+1 6= qi4−1, and thus qi1+1 lies below qi4−1. This implies that
((qi1+1)y − (qi1−1)y) + ((qi4+1)y − (qi4−1)y) < sQ′ . Combining the inequalities we get, sQ′ >
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of their NW and SW quadrants, there is a path
yj-qj- . . . -qk-yk which is not monotone.

Figure 7: Illustrations for the proof of Proposition 3.13.

((qi1+1)y− (qi1−1)y)+((qi4+1)y− (qi4−1)y) > sz +sw > ((qi1)x− (z)x)+((w)x− (qi4)x) > sQ′ ,
a contradiction.

To complete the proof of Lemma 3.4 we will consider a path of length 11 in DT [Q′]. It
follows from Proposition 3.8 that for every q ∈ S∩Q′ we have degDT [Q′](q) ≤ 4. This implies

that if Q′ contains at least 1 +
∑5

i=1 4i = 1366 points from S, then DT [Q′] contains a simple
path of length at least 11. However, one can show that already 22 points suffice to guarantee
the existence of a path of length 11. To prove this, we will need the following proposition.

Proposition 3.13. There are at most two points in S∩Q′ whose degree in DT [Q′] is greater
than two. If one of these points has degree four, then no other point has degree greater than
two.

Proof. Suppose first that there is a point qk with degDT [Q′](qk) = 4 and another point q0

with degDT [Q′](q0) ≥ 3 (see Figure 7(a) for an example). Let p := q0-q1-q2- . . . -qk be the path
connecting these points in the tree DT [Q′]. We may assume without loss of generality that
q1 ∈ SE(q0) and that q0 has a neighbor z0 ∈ SW(q0). In this case the path z0-q0-q1-q2- . . . -qk
is not y-monotone. Therefore this path must be x-monotone by Proposition 3.10, and thus
p is also x-monotone. It follows that qk−1 ∈ SW(qk) ∪ NW(qk). Since by Proposition 3.7 a
point cannot have two neighbors in the same quadrant and the degree of qk is four, it has
another neighbor zk 6= qk−1 in SW(qk) ∪ NW(qk). Therefore, the path z0-q0-q1- . . . -qk-zk is
not monotone, a contradiction.

Now suppose that each point in DT [Q′] has degree at most three, and suppose for con-
tradiction that there are at least three points in S ∩ Q′ whose degree in DT [Q′] is three.
Since DT [Q′] is a tree, there must exist a path p := q0-q1-q2- . . . -qk (k ≥ 2) between two
points q0 and qk with degree three that contains a third point qj (0 < j < k) with degree
three. We can assume without loss of generality that q1 ∈ SE(q0). Since the degree of q0 is
three, it has a neighbor in NE(q0) ∪ SW(q0).

We can also assume that q0 has a neighbor z0 ∈ SW(q0) (see Figure 7(b) for an example).
In this case the path z0-q0-q1- . . . -qk is not y-monotone, thus it must be x-monotone and so p
is also x-monotone. It follows, that if qi, for i ∈ {j, k}, has two neighbors in SW(qi)∪NW(qi),
then for one of them, denote it by zi 6= qi−1, a path that ends with qi−1-qi-zi is not x-monotone
and hence the path z0-q0-q1- . . . -qi−1-qi-zi is not monotone. Therefore, qi has two neighbors
in SE(qi)∪NE(qi), for i ∈ {j, k}. It follows that qj has a neighbor yj 6= qj+1 such that a path
that starts with yj-qj-qj+1 is not x-monotone, and qk has a neighbor yk such that a path
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that ends with qk−1-qk-yk is not y-monotone. Therefore the path yj-qj-qj+1- . . . -qk−1-qk-yk
is not monotone, a contradiction.

Lemma 3.14. If Q′ contains at least 22 points from S, then DT [Q′] contains a simple path
of length at least 11.

Proof. If DT [Q′] contains a vertex q whose degree is four, then it follows from Proposi-
tion 3.13 that by deleting it we decompose the tree DT [Q′] into four paths, having 21 vertices
altogether. By the pigeonhole principle either the first two or the second two together have
at least 11 vertices. Along with q they form a path with 12 vertices, as required.

If DT [Q′] does not contains a vertex whose degree is four, then by Proposition 3.13 it
contains at most two vertices with degree three, and no other vertex has degree greater than
two. We can assume that we have exactly two vertices whose degree is three, q and q′, and
let p be the path connecting them in DT [Q′]. By deleting these two vertices we obtain five
paths: a path that consists of p without its two endpoints, two paths p1, p2 that are incident
to q and two paths p3, p4 that are incident to q′. Considering the number of vertices in each
of these paths we have |V (p1)|+ |V (p2)|+ |V (p)|+ |V (p3)|+ |V (p4)|+ |V (p)| ≥ 22 + 2 = 24,
since |V (p)| ≥ 2. Therefore, one of the paths formed by p1, p, p3 and p2, p, p4 must contain
at least 12 vertices, as required.

Let p := q1-q2- . . . -q12 be a simple path of length 11 in DT [Q′]. By Proposition 3.12
there are at most four bad 2-paths qi−1-qi-qi+1 in p. Therefore, there is 2 ≤ i ≤ 10 such
that qi−1-qi-qi+1 and qi-qi+1-qi+2 are good 2-paths, and therefore Q′ contains a good 3-path
qi−1-qi-qi+1-qi+2. Lemma 3.4 is proved.

3.4 A universally good polygon is either a triangle or a parallelogram

In this section we prove that triangles and parallelograms are the only universally good
polygons. That is, for any other polygon P we can construct a set of points S such that
there is a homothet of P that intersects DT (P,S) in a long path, while every other vertex
of this path can be separated from its neighbors by the same side of a homothet of P (thus
there is no good 3-path in P ). See Figure 8. The rest of this section contains the exact
description and validity of this construction.

We start with a simple statement that will be used later.

Proposition 3.15. Let P ′ be a homothet of a convex closed polygon P that is contained
in P . If ∂P ∩ ∂P ′ 6= ∅, then an edge of P ′ is contained in an edge of P (to which it is
homothetic).

Proof. Suppose for contradiction that ∂P ∩∂P ′ 6= ∅ and no edge of P ′ is contained in an edge
of P . Then there is a vertex v′ of P ′ that lies on ∂P such that the edges that are incident to
v′ lie in the interior of P . It is impossible thus that v′ coincides with v, the vertex to which
it is homothet, since then these vertices would be incident to edges of different slopes. v′

cannot coincide with another vertex of P either, since then there is a direction in which v′

is extreme in P ′ and a different vertex than v is extreme at P . Thus v lies on an edge of P .
One of the endpoints of this edge must be v, for otherwise as before there is a direction in
which v′ is extreme in P ′ and a different vertex than v is extreme at P . But then, again, it
follows that v and v′ are incident to edges of different slopes. Therefore, there is an edge of
P ′ which is contained in an edge of P , and since both P ′ and P are on the same side of the
line through this edge, it follows that these edges are homothetic to each other.

Suppose that P is a convex closed n-gon which is neither a triangle nor a parallelogram.
We will show that P is not universally good. Let uv be an edge of P which is not parallel
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Figure 8: A construction showing that P is not universally good.

to any other edge of P if n = 4 and an arbitrary edge otherwise. Assume without loss of
generality that uv is horizontal, u is left of v, and P lies above uv.

In order to have only a single case to deal with, if P has a unique highest vertex, then
we regard this vertex as two vertices joined by a horizontal edge of length 0. This way P
always has a top horizontal edge yz (possibly of length 0) such that y is left of z and P lies
below yz. Since P is neither a triangle nor a parallelogram it has a vertex x /∈ {u, v, y, z}.
Assume without loss of generality that x is on the clockwise polygonal chain from y to v on
the boundary of P . Denote by y0 the point on the clockwise polygonal chain from u to y on
the boundary of P that has the same y-coordinate as x and observe that the line-segment
y0x lies in P .

Proposition 3.16. For every two distinct points a and b that lie on y0x there is a homothet
of P , denote it by P ′, such that P ′ is contained in P and y0x ∩ P ′ = ab.

Proof. We can obtain such a homothet P ′ as follows. Initially, set P ′ := P . Now shrink P ′

with respect to a until b lies on ∂P ′. Then shrink P ′ with respect to b until a lies on ∂P ′.
Since P ′ is convex we have y0x ∩ P ′ = ab.

For a polygon R and a vertex r ∈ R, we denote by r− and r+ the vertices of R that precede
and succeed r, respectively, in the clockwise order of the vertices of R. For a homothet P ′

(resp., Pi) of P and a vertex r ∈ P , we denote by r′ (resp., ri) the vertex of P ′ (resp., Pi)
that is homothetic to r. Since, e.g., (ri)

+ = (r+)i, we simply write r+
i , r−i , r′−, etc.

Given an integer k ≥ 1, we describe a way to construct a set of k homothets of P ,
P1, P2, . . . , Pk, such that:

(1) P contains Pi, for every i ≥ 1;

(2o) the edge x−i xi of Pi is contained in the edge x−x of P , for every odd i ≥ 1;

(2e) the edge xix
+
i of Pi is contained in the edge xx+ of P , for every even i ≥ 2;

(3o) the edge uivi of Pi is contained in the open segment yi−1x, for every odd i ≥ 1; and

(3e) the edge yizi of Pi is contained in the open segment vi−1x, for every even i ≥ 2.

We will use the following proposition for the construction.
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Figure 9: An illustration for the proof of Proposition 3.17.

Proposition 3.17. Let u∗ be a point in the open line-segment y0x. Then there is homothet
of P , P ′, such that P ′ is contained in P , u′v′ is contained in the open line-segment u∗x, and
x′−x′ is contained in x−x.

Proof. For an arbitrary u′ on u∗x we can fix a homothet of P , denote it by P ′′, such that
its edge u′′v′′ that is homothetic to uv coincides with u′x (i.e., u′′ = u′ and v′′ = x). Clearly,
by choosing u′ close enough to x, the intersection of ∂P ′′ and ∂P is contained in the edge

x−x. Since P is convex, it follows that the vector
−−→
vv− forms a smaller angle with the positive

x-axis than does the vector
−−→
xx−. Therefore, the (open) edge v′′v−′′ of P ′′ homothetic to vv−

lies outside of P . We now continuously shrink P ′′ with respect to u′ until it is contained in
P . Let P ′ be the resulting homothet of P (see Figure 9). Clearly, P ′ is contained in P . Note
that an edge of P ′ is contained in an edge of P by Proposition 3.15. Also, as P ′ is in P ′′

and the intersection of ∂P ′′ and ∂P is contained in x−x, the only possibility is that x′−x′ is
contained in x−x. Observe also that since we had to shrink P ′′, the vertex v′ of P ′ that is
homothetic to v lies on the open segment u′x.

By reflecting P about the x-axis and applying Proposition 3.17 we get:

Corollary 3.18. Let u∗ be a point in the open line-segment y0x. Then there is homothet of
P , P ′, such that P ′ is contained in P , y′z′ is contained in the open line-segment u∗x, and
x′+x′ is contained in x+x.

By applying Proposition 3.17 with u∗ = y0 we get a homothet P1 that satisfies Properties
(1)–(3) such that v1 is on the open segment y0x. Suppose that we have homothets P1, . . . , Pi
that satisfy Properties (1)–(3). For an even i we apply Proposition 3.17 with u∗ = vi to
get Pi+1. For an odd i we apply Corollary 3.18 with u∗ = zi to get Pi+1. Thus we obtain
homothets of P that satisfy Properties (1)–(3). Note that Pi is contained in the closed half-
plane that is bounded from below (resp., above) by the line containing y0x for every odd
(resp., even) i ≥ 1.

Suppose for contradiction that P is universally good with a constant c := cg(P ). We may
assume that c ≡ 0 mod 4 (by increasing c if necessary). We will construct a set of points S
such that |S ∩ P | = c, DT (P,S)[P ] is a path, and P does not contain a good 3-path. This
will contradict the fact that P is universally good.

We begin with an empty set of points S and a set of homothets of P , P1, . . . , Pk, as
above, for k = c. Next, for every i = 1, . . . , c − 1 we add a point pi to S as follows: if i is
odd, then pi = ui, that is, it coincides with the vertex of Pi that is homothetic to u, whereas
if i is even, then pi = yi, that is, it coincides with the vertex of Pi that is homothetic to y.

Proposition 3.19. The points x−1 , x
−
3 , . . . , x

−
c−1 appear on x−x in this order. The points

x−2 , x
−
4 , . . . , x

−
c appear on x+x in this order.
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Figure 10: An illustration for the proof of Proposition 3.19.

Proof. By symmetry it is enough to prove the first statement. Suppose for contradiction that
there are two odd indices i1 < i2 such that x−i1 is closer than x−i2 to x. Consider the triangles

4ui1vi1x−i1 and 4ui2vi2x−i2 . Since ui2vi2 is to the right of ui1vi1 on y0x, it follows that their
boundaries cross at four points (see Figure 10). However, these triangles are homothetic,
and thus such crossing is impossible.

It follows from Proposition 3.19 that x−i (resp., x+
i ) is not contained in Pi+2j for every

i ≥ 1 and every j for which Pi+2j exists.
Let ε > 0 be some small positive constant that is much smaller than the smallest distance

between any pair of distinct points at vertices of the above mentioned polygons (that is, P
and P1, . . . , Pc). For every odd i we fix a point qi outside of P at distance εi from x−i in the
direction of the normal to x−x and add this point to S. Similarly, for every even i we fix a
point qi outside of P at distance εi from x+

i in the direction of the normal to xx+ and add
this point to S. Then, for every i, by slightly inflating Pi with respect to some inner point,
we obtain a homothet of P , denote it by P ′i , such that P ′i ∩ S = {pi, qi}.

Let DT := DT (P,S) be the generalized Delaunay triangulation of S with respect to P .
It follows from the construction that (pi, qi) is an edge in DT , for every i = 1, . . . , c. By
Proposition 3.16 it follows that DT also contains the edge (pi, pi+1), for every i = 1, . . . , c−1.

Next we apply a small perturbation of the points in S and slightly scale and translate
the polygons Pi, such that for every i = 1, . . . , c we have:

1. Pi still contains the same (perturbed) points pi and qi and no other (perturbed) point
from S;

2. if i is odd, then the point pi lies slightly below y0x; and

3. if i is even, then the point pi lies slightly above y0x.

Thus, the above-mentioned edges of DT of type (pi, qi) and (pi, pi+1) are still edges of
DT . See Figure 8 for an example of the construction at this point.

To complete the construction we add some points to S, as in the proof of Theorem 9, to
obtain a nice set of points with respect to P and perturb the points to obtain a set of points
in very general position with respect to P .

Observe that DT [P ] consists of the path p1-p2- . . . -pc. Therefore, if P contains a good
3-path, then it must be of the form pi-pi+1-pi+2-pi+3 for some 1 ≤ i ≤ c − 3. Thus, it
is enough to prove that for every even i the 2-path pi−1-pi-pi+1 is not good. Suppose for
contradiction that pi−1-pi-pi+1 is a good 2-path for some even i. Recall that while we allowed
y = z, we know that u 6= v, that is, uv is an edge of positive length. Since i is even, pi lies
slightly above y0x whereas pi−1 and pi+1 lie slightly below y0x. Let P ′ be a homothet of P
such that the endpoints of its edge u′v′ that is homothetic to uv are on y0x, and u′ (resp.,
v′) has the same x-coordinate as pi−1 (resp., pi+1). It follows that pi lies inside P ′ whereas
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pi−1 and pi+1 are outside of P ′. Moreover, the edges pipi−1 and pipi+1 both cross the edge
u′v′ of P ′i . Therefore, the 2-path pi−1-pi-pi+1 is not a good 2-path, a contradiction.

4 Discussion

The main open problem related to our work is the following.

Problem 11. Is it true that for every convex polygon P there is a constant m := m(P ) such
that it is possible to 2-color any set of points S such that every homothet of P that contains
at least m points from S contains points of both colors?

By Theorem 9 it would be enough to show that every convex polygon is universally good.
However Theorem 10 shows that no other polygon is universally good besides triangles and
parallelograms, thus for other classes of convex polygons additional ideas are needed. We
remark that in a recent manuscript using the techniques developed in this article Keszegh
and Pálvölgyi [14] solved the above problem with 3 colors.

We conclude with two challenging related open problems. Considering coloring of points
with respect to disks, recall that in [24] it is proved that there is no constant m such that any
set of points in the plane can be 2-colored such that any (unit) disk that contains at least
m points from the given set is non-monochromatic (that is, contains points of both colors).
Coloring the points with four colors such that any disk that contains at least two points
is non-monochromatic is easy since the (generalized) Delaunay graph is planar. Therefore,
it remains an interesting open problem whether there is a constant m such that any set of
points in the plane can be 3-colored such that any disk that contains at least m points is
non-monochromatic (this problem was posed originally in [12, 13], for more general variants
see also [14]).

Perhaps the most interesting problem of coloring geometric hypergraphs is to color a
planar set of points S with the minimum possible number of colors, such that every axis-
parallel rectangle that contains at least two points from S is non-monochromatic. It is
known that Ω(log(|S|)/ log2 log(|S|)) colors are sometimes needed [9], and it is conjectured
that polylog(|S|) colors always suffice. The latter holds when considering rectangles that
contain at least three points [1], however, for the original question only polynomial upper
bounds are known [2, 8, 11, 29].

Acknowledgement. We thank the reviewers for reading our paper and for their valuable
remarks. In particular, one reviewer’s suggestions helped simplifying some basic lemmas and
improving the constant in our main theorem.
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