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Abstract

We introduce a new notion for geometric families called self-cover-

ability and show that homothets of convex polygons are self-coverable.
As a corollary, we obtain several results about coloring point sets such
that any member of the family with many points contains all colors.
This is dual (and in some cases equivalent) to the much investigated
cover-decomposability problem.

1 Introduction

De�nition 1. A collection of closed sets S is self-coverable if there exists a

self-coverability function f such that for any S ∈ S and for any �nite point

set P ⊂ S, |P | = k there exists a subcollection S ′ ⊂ S, |S ′| ≤ f(k) such that

∪S ′ = S but no point of P is in the interior of an S′ ∈ S ′.

Note that by de�nition points of P are only in the exterior or on the
boundary of regions from S ′. Also, points outside or on the boundary of S
are irrelevant, thus we can and will assume that all points of P are in the
interior of S.

E.g., it is easy to see that (closed) axis-parallel rectangles are self-coverable
with f(k) = k + 1 and that all discs in the plane (or, in fact, the homothets
of any set that is a concave polygon or a set with a smooth boundary) are
not self-coverable as already f(1) does not exist.

The motivation to study this notion is the following theorem, which is a
generalization of a theorem contained implicitly in Cardinal et al. [1]. Note
that all logarithms are base two in this paper and every polygon is closed,
unless stated otherwise.
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Theorem 2. If S is self-coverable with a monotone self-coverability function

f and any �nite set of points can be colored with two colors such that any

member of S with at least m points contains both colors, then any �nite

set of points can be colored with k colors such that any member of S with

mk = m(f(m − 1))⌈log k⌉−1 ≤ kd points contains all k colors (here d is a

constant that depends only on S).

As the version stated here is more general, we include a proof, which is
similar to the ideas of [1], which in fact extend the ideas of [4].

Note that this statement is dual to the statement that if S is cover-
decomposable to two coverings then it is cover-decomposable into k coverings
as well. Unfortunately the dual statement is not equivalent to, nor implied
by the above theorem. As we use Theorem 2 several times, it is useful to
introduce some notation for the quantities that appear in it.

Our main results about self-coverability are about homothets of convex
polygons where we prove the following.

Theorem 3. The family of all homothets of a given convex polygon C is

self-coverable with f(k) ≤ ck where the constant c depends only on C.

Corollary 4. For a given convex polygon1 C there is a constant d such

that if any �nite set of points can be colored with two colors such that any

homothetic copy of C with at least m points contains both colors then any

�nite set of points can be colored with k colors such that any homothetic copy

of P with at least mk = kd points contains all k colors.

For triangles and squares we could even determine the exact value of f .

Theorem 5. The family of all homothets of a given triangle is self-coverable

with f(k) = 2k + 1 and this is sharp.

Using that for homothets of a given triangle m ≤ 12 by a previous result
of ours [3], we deduce

Corollary 6. For a given triangle T any �nite set of points can be col-

ored with k colors such that any homothet of T with at least mk = 12 ·
(23)⌈log k⌉−1 ≤ 12 · klog 23 = O(k4.53) points contains all k colors.

This result improves the previous best upper bound which was approxi-
mately O(k7.17) in [1] which was already a big improvement upon our original

upper bound from [4] which was about 122
k
. On the other hand, we remark

that this latter bound, although it is much worse, works in a more general
setting, as it proved the cover-decomposability of octants into many cover-
ings. Since the �rst draft of this paper, using a method similar to the one
introduced here, this was also improved to O(k5.53) by Cardinal et al. [2].

1Note that in this corollary (and in the followings as well) it does not matter whether
the underlying polygon is open or closed as any �nite hypergraph system that we obtain
by the covering relation can be realized by open polygons if and only if it can be realized
by closed polygons.
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Theorem 7. The family of all homothets of a square is self-coverable with

f(k) = 2k + 2 and this is sharp.

Unfortunately the existence of m is an open problem for squares thus we
can only deduce an if-then statement in this case:

Corollary 8. If any �nite set of points can be colored with two colors such

that any axis-aligned square with at least m points contains both colors then

any �nite set of points can be colored with k colors such that any (open or

closed) square with at least mk = m(2m)⌈log k⌉−1 points contains all k colors.

We also show that the constant in Theorem 3 cannot depend only on the
number of vertices of P as even for a quadrangle it can be arbitrarily big:

Theorem 9. For every c there exists a quadrangle Q for whose homothets

f(k) ≥ ck.

In the rest of the paper, we prove Theorem 2 in Section 2, then Theorem
5 and 7 in Section 3 and �nally Theorem 3 and 9 in Section 4.

For more results on cover-decomposability and related problems, see [7]
or [8].

2 Connection to cover-decomposability and proof of Theo-

rem 2

Proof of Theorem 2. Suppose that S is self-coverable with self-coverability
function f and any �nite set of points P can be colored with two colors such
that any member of S with at least m points contains both colors. Now we
show by induction on k that any �nite set of points can be colored with k
colors such that any member of S with at least mk = m(f(m − 1))⌈log k⌉−1

points contains all k colors.

Suppose we already know the statement for a and b, from this we estab-
lish it for k = ab. Color P with a colors using induction and denote the color
classes by P1, . . . , Pa. Now color each of these color classes with b colors using
induction. We claim that this coloring is good for k = ab. By contradiction,
say S ∈ S does not contain all colors. This means that for some 1 ≤ i ≤ a
we have |S ∩Pi| ≤ mb− 1. Using the self-coverability of S, cover S \Pi with
f(mb − 1) sets of S. Using the monotonicity of f , one of these covering sets
contains at least ⌈ mk

f(mb−1)⌉ points of P but no points of Pi. This contradicts

that our coloring with a colors was good if ⌈ mk
f(mb−1)⌉ ≥ ma.

Using the above argument for b = 2, we can see that mk = m(f(m −
1))⌈log k⌉−1 satis�es m2a ≥ maf(m − 1), thus we are done (using the mono-
tonicity of mk if k is odd).
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(a) (b)

Figure 1: Lower bound constructions for self-covering (a) a triangle and (b)
a square

3 Self-coverability of triangles and squares

Proof of Theorem 5. We now prove that for the family T of homothets of
a given triangle T we have f(k) = 2k + 1. First by a�ne transformations
we can transform the triangle to any other triangle, thus it is enough to
prove the statement for one triangle. Further, by homothetic symmetry it is
enough to prove self-coverability of one �xed size triangle T0. Thus we can
assume that T has the three vertices (0, 0), (2, 0), (1, 1).

First we begin by giving a set P of k points for which 2k+1 triangles are
indeed needed to cover T0. Let the set of points be on a vertical line passing
through the vertex (1, 1), i.e. all points of P have coordinates (1, y); 0 < y <
1. Let ϵ be a small positive constant and for each point (1, y) of P assign
two dummy points (1− 2ϵ, y− ϵ) and (1+2ϵ, y− ϵ) inside T0 (i.e., we choose
ϵ such that ϵ < 1− y for all points of P ). Put an additional dummy point at
coordinate (1, ymax + ϵ) above the highest point (1, ymax) of P . It is easy to
see that if ϵ is small enough then any triangle from T contained in T0 and not
containing a point of P in its interior can cover at most one dummy point in
its interior. As to cover T0 in particular we need to cover all dummy points,
so we need at least 2k + 1 triangles. See Figure 1(a) for an illustration.

Now it is enough to prove that at most 2k+1 triangles are always enough
to cover T0. We prove this by induction on k. For k = 0 we can cover T0 by
itself. If k ≥ 1, then take the1 point p ∈ P with the smallest y-coordinate
and denote it by y(p). Denote by Hy the halfplane with the horizontal line
y = y(p) as its boundary containing an in�nite positive ray on the y-axis.
Apply induction on P \ p and the triangle T1 = T0 ∩Hy(p). See Figure 2 for
an illustration. We get a collection S1 of at most 2k−1 triangles (homothetic
to T0) covering T1. Denote by Sa those triangles from S1 whose bottom edge
e is on the bottom edge e1 of T1 but e does not contain p in its interior (thus

1For simplicity we suppose that there is only one such point p yet the proof can be
easily modi�ed to the case when there are multiple points with the same y-coordinate, in
which case we have to handle all these points in one step of the induction.
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Figure 2: Extending a covering of T1 and adding the two triangles Tl and Tr

p can be a vertex of such a triangle).
Now we can scale all triangles in Sa, their top vertex as the center of

scaling, so that their bottom edge goes onto the bottom edge e0 of T0. Our
new collection will consist of these scaled triangles and S1 \ Sa. The points
of e1 not covered by the scaled triangles form an interval and p cuts this
interval into a left interval l and a right interval r. Now the triangle Tl is
(well) de�ned to be the triangle which intersects e1 in exactly l and has its
bottom edge on e0. Similarly, Tr is (well) de�ned to be the triangle which
intersects e1 in exactly r and has its bottom edge on e0. We claim that
these two triangles do not contain a point from P in their interior. Indeed,
�rst of all there are no points of P under Hy(p). Second, in the inductive
construction there must be a triangle T ′

l whose bottom edge contains the
whole l, thus T ′

l contains no point of P in its interior and Tl ∩Hy(p) ⊆ T ′
1.

The interior of Tr is similarly disjoint from P .
We have seen that none of the triangles in this new collection of at most

2k − 1 + 2 = 2k + 1 triangles contains a point of P in its interior. Now we
�nish the proof by showing that this collection of triangles covers T0. T1 is
trivially covered by induction. For an arbitrary point q ∈ T0 \T1 at least one
of the two diagonal lines (these are the lines parallel to the non-horizontal
edges of T ) across q intersects e1 in a point q′. If q′ is on l (or respectively
r), then q is covered by Tl (or respectively by Tr). If none of these happens
then q is covered by one of the scaled triangles.

Proof of Theorem 7. First we begin by giving a set P of k points for which
2k+2 squares are indeed needed to cover a square R = [0, 1]× [0, 1] if k ≥ 1.
The points are on one of the diagonals of R, the ith point has coordinates
(1 − 1/2i, 1 − 1/2i). Let ϵ be a small positive constant and for each point
(1− 1/2i, 1− 1/2i) of P assign two dummy points (1− 1/2(i−1) + iϵ, 1− ϵ)
and (1 − ϵ, 1 − 1/2(i−1) + iϵ) inside R. Put an additional dummy point
at coordinate (ϵ, ϵ) and (1 − ϵ, 1 − ϵ). It is easy to see that if ϵ is small
enough (ϵ < 1/2k(k + 1) is su�cient) then any square contained in R and
not containing a point of P in its interior can cover at most one dummy
point. As to cover R in particular we need to cover all dummy points, so we
need at least 2k + 2 squares. See Figure 1(b) for an illustration.
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Figure 3: the rectangle R to be covered by Lemma 10, in Case (ii) the squares
can cover parts of R′ \ R as well, but are not allowed to contain p in their
interior

Now it is enough to prove that at most 2k+2 squares are always enough
to cover a square. We again proceed by induction but we need a more general
statement, Lemma 10. The theorem follows from this lemma by taking R to
be a square.

The following lemma states that if the ratio of the two sides of an axis-
parallel rectangle R is at most 2 then it can be covered by 2k+2 axis-parallel
squares (while not covering the point set of size k), whereas if the ratio of
the sides is bigger, then we can cover R such that the squares may hang out
over the top edge of R but only until a limited height, and not covering an
additional �xed point p on the top edge.

Lemma 10. Given an axis-parallel rectangle R with width a, height b ≤ a
and a point set P ⊂ R, |P | = k and a point p on the top edge of R, there

is a collection R of at most 2k + 2 axis-parallel squares covering R, none of

them containing a point from P ∪ {p} in their interior, such that

(i) if a/2 ≤ b then ∪R = R,

(ii) if b < a/2 then R ⊆ ∪R ⊆ R∪R′, where R′ is a rectangle whose bottom

side is the top side of R and its height is b′ = a− 2b > 0.

Note that p is not in P . Also note that in the �rst case points of P on
the boundary of R do not matter while in the second case points of P on the
top edge of R are not irrelevant and can modify the choice of squares. See
Figure 3 for an illustration.

Proof. We can suppose that the bottom left corner of R is the origin (0, 0).
We prove the two cases simultaneously by induction on k. Both cases will
be quite similar, we always cut the rectangle through some point of P into
two as equal parts as possible and apply induction on both parts. We denote
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Figure 4: Proof of Lemma 10

the x- and y-coordinate of a point s by x(s) and by y(s), respectively. For a
rectangle Q we denote by intQ its interior.

If k = 0 then in Case (i) it is trivial to cover R using two squares. In
Case (ii) we can suppose without loss of generality that x(p) ≥ a/2. Now
put a square of height min(a − b, x(p)) in the bottom left corner of R and
a square of height max(b, a − x(p)) in the bottom right corner of R, so by
de�nition these do not contain p in their interior. It is easy to check that
they cover R and are contained in R′.

Next suppose k > 0 and we are in Case (i). If there exists s ∈ P such
that b/2 ≤ x(s) ≤ a − b/2 then cut the rectangle R into two parts R1, R2

by a vertical line through s and then by induction (Case (i)) we can �nd
squares covering R1 and R2, together they cover R and the number of the
squares is at most 2k1 + 2 + 2k2 + 2 = 2(k1 + k2 + 1) + 2 ≤ 2k + 2, where
k1 = |P ∩ intR1|, k2 = |P ∩ intR2|.

If there is no such s then choose s to be the point of P which is closest to
the vertical halving line of R, i.e. for which |x(s)−a/2| is minimal. Without
loss of generality we can suppose that x(s) < a/2 and thus we also know
that x(s) < b/2. We again cut by the vertical line through s. To get a
covering of the right rectangle R2 we can apply the induction hypothesis
with Case (i). For the left rectangle R1 we apply the induction hypothesis
with Case (ii) by setting p1 := s, R1 := R1 and R′

1 being the part of R
between the vertical lines at x-coordinate x(s) and b − x(s). The two set
of squares together cover R and as b − x(s) < b < a implies R′

1 ⊂ R, they
do not hang out from R. We need to check if the covering of R1 does not
interfere with the points in P ∩ intR1. This is true if intR

′
1 does not contain

points from P , which follows from the fact that there is no point of P with
x-coordinate between x(s) and a − x(s) and the right edge of R′

1 has x-
coordinate b − x(s) < a − x(s). Finally, the number of squares we used
is again at most 2k1 + 2 + 2k2 + 2 = 2(k1 + k2 + 1) + 2 ≤ 2k + 2, where
k1 = |P ∩ intR1|, k2 = |(P ∩R2) \ {s}|. See Figure 4(a) for an illustration.

Suppose now that k > 0 and we are in Case (ii). Similarly to the previous
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case, if there exists s ∈ P such that b/2 ≤ x(s) ≤ a − b/2 then cut the
rectangle R into two parts R1, R2 by a vertical line through s and then by
induction (using Case (i) or Case(ii), see details below) we can �nd squares
covering R1 and R2, together they cover R and the number of the squares
is at most 2k1 + 2 + 2k2 + 2 = 2(k1 + k2 + 1) + 2 ≤ 2k + 2, where k1 =
|P ∩ intR1|, k2 = |P ∩ intR2|. The induction is done in the following way.
We just consider R2, R1 can be handled in the same way. If the ratio of the
two sides of the rectangle is at most 2, then we can simply apply induction
Case (i). If the ratio of the sides is bigger than 2, i.e., b < (a−x(s))/2, then
we apply induction Case (ii) with p2 = p if p is on the top edge of R2 and
choosing an arbitrary p2 on the top edge of R2 if p is not on the top edge of
R2.

If there is no such s then choose s to be the point of P which is closest to
the vertical halving line of R, i.e. for which |x(s)−a/2| is minimal. Without
loss of generality we can suppose that x(s) < a/2 and thus we also know
that x(s) < b/2. We again cut by the vertical line through s. Now in the
same way as in Case (i) we can apply induction Case (ii) on the left part R1.
It is easy to see that by the choice of s, R′

1 corresponding to R1 is contained
by R and does not contain points from P in its interior. On the right part
R2, again, if the ratio of the two sides b and a − x(s) is at most 2, then
we can simply apply induction Case (i). If the ratio of the sides of R2 is
bigger than 2, i.e., b < (a − x(s))/2, then we apply induction Case (ii) on
R2 with p2 = p if p is on the top edge of R2 and choosing an arbitrary p2
on the top edge of R2 if p is not on the top edge of R2. It is easy to see
that the rectangle R′

2 corresponding to R2 is contained in R′. Thus, the two
set of squares we get by induction again cover the whole R, are contained
in R ∪ R′, none of the squares contains p in its interior and the number of
squares is at most 2k1 + 2 + 2k2 + 2 = 2(k1 + k2 + 1) + 2 ≤ 2k + 2, where
k1 = |P ∩ R1|, k2 = |P ∩ (R2 \ R1)|. See Figure 4(b) for an illustration of
this case.

4 Self-coverability of convex polygons using Delaunay trian-

gulation

In this section we prove Theorem 3. Since the proof is a little complicated,
to illustrate it, �rst we will reprove Theorem 5, then Theorem 7 (with a
worse self-coverability function) and only then prove Theorem 3 in its full
generality.

The proof uses the notion of generalized Delaunay triangulation, which
are the dual of generalized Voronoi diagrams. In the generalized Delaunay
triangulation (with respect to some convex shape C) of a point set P , two
points of P are connected if they are covered by a homothet of C not con-
taining any point of P in its interior. We will use the following properties of
such triangulations (see e.g., [5]).

8



T

D
H

′

H

(a) Proof of Theorem 5

R

D

H
′

H

(b) Proof of Theorem 7

Figure 5: Proof of Theorem 5 and Theorem 7 using Delaunay-triangulations

Fact 11. The generalized Delaunay triangulation with respect to some convex

shape C is a connected graph which is unique if the points are in general

position with respect to C (meaning no four points fall on the boundary of a

homothet of C). The inner faces of this graph are triangles and each inner

face is covered by a homothet of C not containing any points in its interior.

For illustrations of the following proofs, see Figure 5(a) and Figure 5(b).

Second proof of Theorem 5. We add three new points to P which are far,
outside of T , and form a re�ected copy of T . Denote the new point set by
P ′. In the1 Delaunay triangulation determined by T , these three points will
be all connected, making all the faces triangles. Using Euler's formula, there
are k+ 3 vertices and thus 2(k+ 3)− 4 faces, so we have 2k+ 1 inner faces,
all of which can be covered by a homothet of T not containing any point of
P ′ in its interior.

The only problem is that these homothets might extend beyond the
boundary of T . But it is easy to see that for any homothet H of T the
triangle H ′ = H ∩ T is also a homothet of T , so these give at most 2k + 1
covering triangles.

Second proof of Theorem 7. (with worse self-coverability function) Similarly
to the proof for triangles, we add a few points to P and we denote the new
point set by P ′. Now all new points will be on the boundary of the square
R. The new points are obtained as follows. For each p ∈ P project it
orthogonally to all four sides of R and add it to P ′. Also we add the four
corners of R to P ′. Thus |P ′| = 5k + 4 if all vertices of P have di�erent
coordinates, which we suppose from now on for simplicity. In the Delaunay
triangulation determined by R, all boundary points will be connected to their
neighbors (on the boundary), making all inner faces triangles. The in�nite

1Since it might not be unique, we should say a Delaunay triangulation but to avoid
confusion we �x one of the Delaunay triangulations if there are more and use the de�nite
article.
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outer face has 4k+4 vertices. Using Euler's formula, there are 5k+4 vertices
and thus 2 · (5k + 4) − 4 − (4k + 1) = 6k + 3 faces. The 6k + 2 triangular
inner faces partition R and all of them can be covered by a homothet of R
not containing any point of P ′ in its interior.

Again, the problem is that these homothets might extend beyond the
boundary of R. To take care of this, observe �rst that each square H that
extends beyond R intersects only one side s of R. For each such H, push
H perpendicularly to s until its outer side overlaps with s, call the pushed
square H ′. This way no point p ∈ P can get into the interior of H ′ since
then the projection of p to s would have been also inside H. So we get
f(k) ≤ 6k + 2.

Proof of Theorem 3. Let C be an arbitrary convex polygon. Denote its ver-
tices in clockwise order by c0c1 . . . cn−1 and its sides by ei = cici+1. We will
again add some points to P to de�ne P ′ and take the Delaunay triangulation
of P ′ with respect to C. All the added points lie on the boundary or outside
of C and their positions depend on the point set P as follows.

For each p ∈ P and side ei (indices are always modulo n) of C we do the
following. First draw two lines through p such that the �rst is parallel to
ei−1 and the second is parallel to ei+1. These intersect the supporting line
li of ei in two points, pl and pr. (See Figure 6(a) for an illustration.) Any
homothet C ′ of C that intersects li and has p on its boundary contains a
point of the plpr segment. (Here we allow C ′ to contain more points in its
interior.) Take a C ′ for which the length of the intersection of (the closure
of) C ′ and li is minimal and denote this minimum by ϵ. It is easy to see that
ϵ is well-de�ned and positive.

Also observe that |plpr|/ϵ depends only on C and i and is independent
of the position of p, since translating p parallel to ei only shifts the pplpr
triangle with the same quantity, while moving p perpendicularly to ei only
scales pplpr, thus scaling both ϵ and |plpr| by the same value.

Now put Ni = ⌊|plpr|/ϵ⌋ evenly spaced points on the segment plpr, so
that the distance between any two of them is less than ϵ. Moreover, add one
point very close to pl and another very close to pr onto li but not on plpr,
such that the distances from them to the next point is still less than ϵ. We
add these Ni + 2 points to P ′. Since the distance between any two of them
is less than ϵ, any homothet of C with p on its boundary and intersecting li
contains one of the just added Ni + 2 points in its interior by the de�nition
of pl, pr and ϵ. The number of points we added depends only on C and
i, not on p. Repeating this for all points and edges of C, we add at most
k
∑n

i=1(Ni + 2) = O(k) points. (Here the constant in the O(.) notation
depends on C.)

To ensure that the outerface would not intersect the interior of C, we
add n more points to P ′ which are far, outside of C, and form a re�ected
copy of C. This way these n points will be the vertices of the outerface.
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In the Delaunay triangulation of P ′ the inner faces are triangles, with a
homothet of C covering each triangle not containing any point of P ′ in its
interior. Further, if any of these homothets would extend beyond C, then
it would contain an added point in its interior, as each of them touches at
least one point p ∈ P .

Using Euler's formula, there are O(k) vertices and thus at most O(k)
faces. Each inner face is a triangle which can be covered by a homothet of
C not containing any point of P ′ in its interior.

Finally, we prove Theorem 9, which states that even for a quadrangle we
may need many points. For that we basically prove that while by the above
upper bound states that at most k

∑n
i=1(Ni + 2) copies are enough to cover

C, also at least kminiNi copies are necessary to cover C.

Proof of Theorem 9. Given c > 1, let Q be a symmetric trapezoid with ver-
tices q1, q2, q3, q4 in clockwise order, with two horizontal edges, the bottom
edge, q1q2 has length 1/c, while the length of the top edge, q3q4, and the
height of Q are both equal to 1. We show that for Q we have f(k) ≥ (c−1)k.

Put a point p very close to the bottom edge of Q, say the distance of p
from the bottom edge is δ. We de�ne pl and pr as in the previous proof (see
Figure 6(b)). Evidently, in the self-cover of Q, the points of plpr can only
be covered by homothetic copies of Q whose upper edge touches or is below
p, thus have height at most δ. The length of the top edge of such a Q′ is
thus also at most δ and thus the length of its bottom edge is at most δ/c.
We also know that |plpr| = δ(1 − 1/c). Thus to cover the points of plpr we

need at least δ(1−1/c)
δ/c = c− 1 such homothets.

Now if instead of one, we put k points very close to the bottom edge, but
far from each other, then for each point we need c−1 homothets to cover the
respective segment on the boundary of Q, thus altogether we need at least
(c− 1)k homothets, as claimed.
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5 Remarks and open problems

Since the �rst version of this paper, the framework developed here was al-
ready successfully applied by Cardinal et al. [2] and they obtained that
for an octant any �nite set of points can be colored with k colors such
that any translate of the octant with at least mk = 12 · (23)⌈log k⌉−1 ≤
12(k− 1) · klog 23 = O(k5.53) points contains all k colors. As a corollary, they
also obtained that any mk-fold covering of the plane with homothets of a
triangle can be decomposed into k coverings. It was also shown recently by
Kovács [6] that this result cannot be extended to other polygons, as for any
m and any non-triangle polygon C there is an m-fold covering of the plane
with homothets of C that does not decompose into 2 coverings.

The main question left open is whether for every self-coverable family
mk = O(k), that is, is it true that any �nite set of points can be colored
with k colors such that any member of the family with mk = O(k) points
contains all k colors if there is an m such that any �nite set of points can be
colored with two colors such that any member of the family with m points
contains both colors?

Similar questions are also open for the dual problem about cover-decom-
position, for more see [7] or [8].

We would like to thank the anonymous referees for their useful sugges-
tions about how to improve our paper.
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