10 research outputs found

    Técnicas de machine Learning para la detección de Ransomware: Revisión sistemática de Literatura

    Get PDF
    El ransomware es uno de los problemas de seguridad informática más críticos, es un tipo de malware que cifra o bloquea la información de la víctima para solicitar el pago de un rescate y devolverles el acceso a sus datos. La presente investigación tuvo el propósito de identificar las técnicas y/o algoritmos de Machine Learning (ML) utilizadas para la detección y clasificación de las diferentes familias ransomware, así como las herramientas de software que se utilizan para la aplicación de estos algoritmos. Está revisión sistemática de literatura (RSL) se apoyó en la metodología propuesta por Bárbara Kitchenham y en el uso de la herramienta Parsifal. Los resultados obtenidos muestran que los algoritmos y/o técnicas de machine learning más utilizados son: Random Forest (RF) con el 23 %, Decisión Tree (DT) con un 14 %, Long Short-Term Memory (LSTM) utilizado en un 9 %, Support Vector Machine Learning (SVM) y Deep Neural Network (DNN) con el 6 %. Las herramientas más utilizadas para la aplicación de los algoritmos de machine learning, fueron Cuckoo Sandbox y Weka Framework con el 17 %. Llegando a la conclusión que el machine learning permite detectar en las etapas iniciales patrones de diferentes familias ransomware

    Dynamic ransomware detection for windows platform using machine learning classifiers

    Get PDF
    In this world of growing technological advancements, ransomware attacks are also on the rise. This threat often affects the finance of individuals, organizations, and financial sectors. In order to effectively detect and block these ransomware threats, the dynamic analysis strategy was proposed and carried out as the approach of this research. This paper aims to detect ransomware attacks with dynamic analysis and classify the attacks using various machine learning classifiers namely: Random Forest, Naïve Bayes, J48, Decision Table and Hoeffding Tree. The TON IoT Datasets from the University of New South Wales' (UNSW) were used to capture ransomware attack features on Windows 7. During the experiment, a testbed was configured with numerous virtual Windows 7 machines and a single attacker host to carry out the ransomware attack. A total of 77 classification features are selected based on the changes before and after the attack. Random Forest and J48 classifiers outperformed other classifiers with the highest accuracy results of 99.74%. The confusion matrix highlights that both Random Forest and J48 classifiers are able to accurately classify the ransomware attacks with the AUC value of 0.997 respectively. Our experimental result also suggests that dynamic analysis with machine learning classifier is an effective solution to detect ransomware with the accuracy percentage exceeds 98%

    A Cryptojacking Detection System With Product Moment Correlation Coefficient (Pmcc) Heatmap Intelligent

    Get PDF
    Cryptocurrency, often known as electronic money, is a currency that exists in digital form. As a result, numerous attackers or hackers are taking advantage of this chance to employ cryptojacking to gain access to a victim's computer or other device resources and mine cryptocurrency without the users' permission. Because the number of cryptojacking attacks is on the rise, this project use machine learning to detect cryptojacking. However, the feature of the data is too many, lowering the machine-learning detection prediction. Hence, a feature selection method is necessary to pick the right features. Aside from that, the objective of this project is to investigate cryptojacking in cryptocurrency users' devices, develop a machine learning model to detect cryptojacking, and evaluate the machine learning model's accuracy, true positive rate (TPR), false positive rate (FPR), and precision in detecting cryptojacking. This project research will present the PMCC Heatmap to choose the optimal attributes for using machine learning to detect cryptojacking in order to utilise machine learning to detect embedded malware. Furthermore, a random forest model is used in this study's machine learning classification. At the end of the process, the system will utilise this model to detect cryptojacking and users will be able to detect new cryptojacking malware based on the model. This study aims to develop a cryptojacking detection system based to the random forest algorithm

    Reducing False Negatives in Ransomware Detection: A Critical Evaluation of Machine Learning Algorithms

    Get PDF
    Technological achievement and cybercriminal methodology are two parallel growing paths; protocols such as Tor and i2p (designed to offer confidentiality and anonymity) are being utilised to run ransomware companies operating under a Ransomware as a Service (RaaS) model. RaaS enables criminals with a limited technical ability to launch ransomware attacks. Several recent high-profile cases, such as the Colonial Pipeline attack and JBS Foods, involved forcing companies to pay enormous amounts of ransom money, indicating the difficulty for organisations of recovering from these attacks using traditional means, such as restoring backup systems. Hence, this is the benefit of intelligent early ransomware detection and eradication. This study offers a critical review of the literature on how we can use state-of-the-art machine learning (ML) models to detect ransomware. However, the results uncovered a tendency of previous works to report precision while overlooking the importance of other values in the confusion matrices, such as false negatives. Therefore, we also contribute a critical evaluation of ML models using a dataset of 730 malware and 735 benign samples to evaluate their suitability to mitigate ransomware at different stages of a detection system architecture and what that means in terms of cost. For example, the results have shown that an Artificial Neural Network (ANN) model will be the most suitable as it achieves the highest precision of 98.65%, a Youden’s index of 0.94, and a net benefit of 76.27%, however, the Random Forest model (lower precision of 92.73%) offered the benefit of having the lowest false-negative rate (0.00%). The risk of a false negative in this type of system is comparable to the unpredictable but typically large cost of ransomware infection, in comparison with the more predictable cost of the resources needed to filter false positives

    An ensemble-based anomaly-behavioural crypto-ransomware pre-encryption detection model

    Get PDF
    Crypto-ransomware is a malware that leverages cryptography to encrypt files for extortion purposes. Even after neutralizing such attacks, the targeted files remain encrypted. This irreversible effect on the target is what distinguishes crypto-ransomware attacks from traditional malware. Thus, it is imperative to detect such attacks during pre-encryption phase. However, existing crypto-ransomware early detection solutions are not effective due to inaccurate definition of the pre-encryption phase boundaries, insufficient data at that phase and the misuse-based approach that the solutions employ, which is not suitable to detect new (zero-day) attacks. Consequently, those solutions suffer from low detection accuracy and high false alarms. Therefore, this research addressed these issues and developed an Ensemble-Based Anomaly-Behavioural Pre-encryption Detection Model (EABDM) to overcome data insufficiency and improve detection accuracy of known and novel crypto-ransomware attacks. In this research, three phases were used in the development of EABDM. In the first phase, a Dynamic Pre-encryption Boundary Definition and Features Extraction (DPBD-FE) scheme was developed by incorporating Rocchio feedback and vector space model to build a pre-encryption boundary vector. Then, an improved term frequency-inverse document frequency technique was utilized to extract the features from runtime data generated during the pre-encryption phase of crypto-ransomware attacks’ lifecycle. In the second phase, a Maximum of Minimum-Based Enhanced Mutual Information Feature Selection (MM-EMIFS) technique was used to select the informative features set, and prevent overfitting caused by high dimensional data. The MM-EMIFS utilized the developed Redundancy Coefficient Gradual Upweighting (RCGU) technique to overcome data insufficiency during pre-encryption phase and improve feature’s significance estimation. In the final phase, an improved technique called incremental bagging (iBagging) built incremental data subsets for anomaly and behavioural-based detection ensembles. The enhanced semi-random subspace selection (ESRS) technique was then utilized to build noise-free and diverse subspaces for each of these incremental data subsets. Based on the subspaces, the base classifiers were trained for each ensemble. Both ensembles employed the majority voting to combine the decisions of the base classifiers. After that, the decision of the anomaly ensemble was combined into behavioural ensemble, which gave the final decision. The experimental evaluation showed that, DPBD-FE scheme reduced the ratio of crypto-ransomware samples whose pre-encryption boundaries were missed from 18% to 8% as compared to existing works. Additionally, the features selected by MM-EMIFS technique improved the detection accuracy from 89% to 96% as compared to existing techniques. Likewise, on average, the EABDM model increased detection accuracy from 85% to 97.88% and reduced the false positive alarms from 12% to 1% in comparison to existing early detection models. These results demonstrated the ability of the EABDM to improve the detection accuracy of crypto-ransomware attacks early and before the encryption takes place to protect files from being held to ransom

    Ransomware detection using the dynamic analysis and machine learning: A survey and research directions

    Get PDF
    Ransomware is an ill-famed malware that has received recognition because of its lethal and irrevocable effects on its victims. The irreparable loss caused due to ransomware requires the timely detection of these attacks. Several studies including surveys and reviews are conducted on the evolution, taxonomy, trends, threats, and countermeasures of ransomware. Some of these studies were specifically dedicated to IoT and android platforms. However, there is not a single study in the available literature that addresses the significance of dynamic analysis for the ransomware detection studies for all the targeted platforms. This study also provides the information about the datasets collection from its sources, which were utilized in the ransomware detection studies of the diverse platforms. This study is also distinct in terms of providing a survey about the ransomware detection studies utilizing machine learning, deep learning, and blend of both techniques while capitalizing on the advantages of dynamic analysis for the ransomware detection. The presented work considers the ransomware detection studies conducted from 2019 to 2021. This study provides an ample list of future directions which will pave the way for future research

    A Study on the Evolution of Ransomware Detection Using Machine Learning and Deep Learning Techniques

    Get PDF
    This survey investigates the contributions of research into the detection of ransomware malware using machine learning and deep learning algorithms. The main motivations for this study are the destructive nature of ransomware, the difficulty of reversing a ransomware infection, and how important it is to detect it before infecting a system. Machine learning is coming to the forefront of combatting ransomware, so we attempted to identify weaknesses in machine learning approaches and how they can be strengthened. The threat posed by ransomware is exceptionally high, with new variants and families continually being found on the internet and dark web. Recovering from ransomware infections is difficult, given the nature of the encryption schemes used by them. The increase in the use of artificial intelligence also coincides with this boom in ransomware. The exploration into machine learning and deep learning approaches when it comes to detecting ransomware poses high interest because machine learning and deep learning can detect zero-day threats. These techniques can generate predictive models that can learn the behaviour of ransomware and use this knowledge to detect variants and families which have not yet been seen. In this survey, we review prominent research studies which all showcase a machine learning or deep learning approach when detecting ransomware malware. These studies were chosen based on the number of citations they had by other research. We carried out experiments to investigate how the discussed research studies are impacted by malware evolution. We also explored the new directions of ransomware and how we expect it to evolve in the coming years, such as expansion into IoT (Internet of Things), with IoT being integrated more into infrastructures and into homes

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues
    corecore