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ABSTRACT 

Crypto-ransomware is a malware that leverages cryptography to encrypt files 

for extortion purposes. Even after neutralizing such attacks, the targeted files remain 

encrypted. This irreversible effect on the target is what distinguishes crypto-

ransomware attacks from traditional malware. Thus, it is imperative to detect such 

attacks during pre-encryption phase. However, existing crypto-ransomware early 

detection solutions are not effective due to inaccurate definition of the pre-encryption 

phase boundaries, insufficient data at that phase and the misuse-based approach that 

the solutions employ, which is not suitable to detect new (zero-day) attacks. 

Consequently, those solutions suffer from low detection accuracy and high false 

alarms. Therefore, this research addressed these issues and developed an Ensemble-

Based Anomaly-Behavioural Pre-encryption Detection Model (EABDM) to overcome 

data insufficiency and improve detection accuracy of known and novel crypto-

ransomware attacks. In this research, three phases were used in the development of 

EABDM.  In the first phase, a Dynamic Pre-encryption Boundary Definition and 

Features Extraction (DPBD-FE) scheme was developed by incorporating Rocchio 

feedback and vector space model to build a pre-encryption boundary vector. Then, an 

improved term frequency-inverse document frequency technique was utilized to 

extract the features from runtime data generated during the pre-encryption phase of 

crypto-ransomware attacks’ lifecycle. In the second phase, a Maximum of Minimum-

Based Enhanced Mutual Information Feature Selection (MM-EMIFS) technique was 

used to select the informative features set, and prevent overfitting caused by high 

dimensional data. The MM-EMIFS utilized the developed Redundancy Coefficient 

Gradual Upweighting (RCGU) technique to overcome data insufficiency during pre-

encryption phase and improve feature’s significance estimation. In the final phase, an 

improved technique called incremental bagging (iBagging) built incremental data 

subsets for anomaly and behavioural-based detection ensembles. The enhanced semi-

random subspace selection (ESRS) technique was then utilized to build noise-free and 

diverse subspaces for each of these incremental data subsets. Based on the subspaces, 

the base classifiers were trained for each ensemble. Both ensembles employed the 

majority voting to combine the decisions of the base classifiers. After that, the decision 

of the anomaly ensemble was combined into behavioural ensemble, which gave the 

final decision. The experimental evaluation showed that, DPBD-FE scheme reduced 

the ratio of crypto-ransomware samples whose pre-encryption boundaries were missed 

from 18% to 8% as compared to existing works. Additionally, the features selected by 

MM-EMIFS technique improved the detection accuracy from 89% to 96% as 

compared to existing techniques. Likewise, on average, the EABDM model increased 

detection accuracy from 85% to 97.88% and reduced the false positive alarms from 

12% to 1% in comparison to existing early detection models. These results 

demonstrated the ability of the EABDM to improve the detection accuracy of crypto-

ransomware attacks early and before the encryption takes place to protect files from 

being held to ransom. 
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ABSTRAK 

perisian tebusan-kripto adalah malware yang memanfaatkan kriptografi untuk 

menyulitkan fail bagi tujuan pemerasan. Walaupun setelah serangan dineutralkan, fail 

yang disasarkan kekal tersulit. Kesannya yang tidak dapat dikembalikan kepada 

sasaran adalah apa yang membezakan serangan perisian tebusan-kripto dari serangan 

malware tradisional. Oleh itu, adalah penting untuk mengesan serangan tersebut 

semasa fasa pra-penyulitan. Walau bagaimanapun, penyelesaian pengesanan awal 

serangan perisian tebusan-kripto yang sedia ada tidak berkesan kerana penggunaan 

definisi sempadan fasa pra-penyulitan yang tidak tepat, data yang tidak mencukupi 

pada fasa tersebut dan pendekatan berasaskan penyalahgunaan yang menggunakan 

penyelesaian yang tidak sesuai untuk mengesan serangan yang baru. Oleh itu, 

penyelesaian tersebut menyumbang kepada kadar pengesanan yang rendah dan 

penggera palsu yang tinggi. Oleh itu, penyelidikan ini membincangkan isu-isu ini 

dengan membangunkan Model Pengesanan Pra-penyulitan Perilaku Anomali 

(EABDM) bagi mengatasi kekurangan data dan meningkatkan ketepatan pengesanan 

serangan perisian tebusan-kripto yang sedia diketahui dan yang baru. Dalam kajian ini, 

tiga fasa digunakan dalam pembangunan EABDM. Pada fasa pertama, skema Definisi 

Sempadan Pra-penyulitan Dinamik dan Pengekstrakan Ciri (DPBD-FE) telah 

dibangunkan dengan memasukkan model ruang maklum balas dan vektor Rocchio 

untuk membina vektor sempadan pra-penyulitan. Kemudian, teknik baru kekerapan 

terma-frequensi dokumen songsang yang lebih baik telah digunakan untuk 

mengekstrak ciri-ciri dari data perilaku sampel yang dijana semasa kitar hayat fasa 

pra-penyulitan perisian tebusan-kripto. Pada fasa kedua, teknik Maksimum Minimum 

Pemilihan Ciri Maklumat Bersama Tertingkat (MM-EMIFS) digunakan untuk 

memilih ciri-ciri maklumat yang ditetapkan, dan mencegah limpahan yang disebabkan 

oleh dimensi data yang tinggi. MM-EMIFS menggunakan Teknik Peningkatan 

Beransur-ansur Pekali Lebihan (RCGU) yang dibangunkan untuk mengatasi masalah 

kekurangan data semasa fasa pra-penyulitan dan meningkatkan anggaran ciri-ciri yang 

penting. Pada fasa akhir, teknik yang dipertingkatkan yang disebut penambahan 

penyarungan (iBagging) telah dicadangkan untuk membina subset data tambahan bagi 

kesatuan pengesanan berasaskan perilaku dan anomali. Teknik Dipertingkat Pemilihan 

Subruang Separa-Rawak (ESRS) kemudian digunakan untuk membina subruang 

pelbagai yang bebas hingar bagi setiap subset data tambahan itu. Berdasarkan 

subruang tersebut, pengklasifikasi asas dilatih bagi setiap kesatuan. Kedua-dua 

kumpulan itu menggunakan pengundian majoriti untuk menggabungkan keputusan 

pengkelas asas. Selepas itu, keputusan anomali digabungkan menjadi kesatuan 

perilaku yang akan memberikan keputusan muktamad. Penilaian eksperimen 

menunjukkan bahawa, skema DPBD-FE mengurangkan nisbah sampel perisian 

tebusan-kripto yang sempadan pra-penyulitannya tidak terjawab dari 18% ke 8% 

berbanding dengan kerja yang ada. Selain itu, ciri-ciri yang dipilih oleh teknik MM-

EMIFS meningkatkan ketepatan pengesanan dari 89% ke 96% berbanding dengan 

teknik sedia ada. Begitu juga secara purata, model EABDM meningkatkan ketepatan 

pengesanan dari 85% hingga 97.88% dan mengurangkan penggera positif palsu dari 

12% ke 1% berbanding model pengesanan awal yang sedia ada. Hasil tersebut 

menunjukkan keupayaan EABDM untuk meningkatkan ketepatan pengesanan 

serangan perisian tebusan-kripto awal sebelum penyulitan berlaku, melindungi fail 

daripada disulitkan untuk tebusan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

The rapid proliferation of internet technologies and online services is 

accompanied with several cybersecurity concerns that impedes the momentum of such 

technologies and obstructs the full integration of those services into people’s daily life 

and business. Malicious software; also called malware; is one of those concerns that 

compromise the confidentiality, integrity and availability of the data in the computer 

systems (Nong et al., 2004). Since its first occurrence on early 1970s, several types of 

malware have been witnessed in the wild such as Viruses, Worms, Trojans, Spyware 

and Ransomware. Ransomware is a malware category that locks user data and files 

and demands ransom to release them (Azmoodeh et al., 2017; Yalew et al., 2017; 

Yaqoob et al., 2017; Chen et al., 2018). 

Ransomware history dates back to the late 1980s when the first sample called 

AIDS was released. Since then, ransomware has become a major threat that intimidates 

the accessibility to user and business data (Gomez-Hernandez et al., 2018). By creating 

ransomware, the attackers have introduced the extortion concept into cyberspace 

(Caporusso et al., 2019). Due to the monetary motivation, adversaries have been 

tempted to develop many variants of ransomware which explains the dominance of 

ransomware in the threat landscape recently (Homayoun et al., 2017; Cusack et al., 

2018; Hampton et al., 2018; Kao and Hsiao, 2018).  

Not only are individuals targeted by ransomware attacks, but also business and 

governmental institutions (Cohen and Nissim, 2018). In 2014, the attackers earned 

around $3 million through ransomware attacks (Homayoun et al., 2017). According to 

the reports, $352 million were paid by victims around the world in 2015 to the attackers 

in order to unlock their data (Cohen and Nissim, 2018). In 2016, up to $220K was 



 

2 

spent in Indiana county only to recover from ransomware attacks (Cohen and Nissim, 

2018). Inability to access data is not the only ramification that ransomware victims 

incur, the damage could also include downtime costs, loss of money and reputation 

(Azmoodeh et al., 2017).  

  There are two types of ransomware, namely locker-ransomware and crypto-

ransomware (Cohen and Nissim, 2018; Gomez-Hernandez et al., 2018). While the 

former locks the user’s device and/or resources, the latter employs the cryptography 

mechanism of the underlying operating system to encrypt user-related data and files 

(Chen et al., 2018; Gonzalez and Hayajneh, 2018). Contrary to locker-ransomware 

attacks whose effect can easily be mitigated, the effect of crypto-ransomware attacks 

persist even after detection and removal and; in many cases; the victim has no choice 

but to pay the ransom in order to get the decryption key (Gomez-Hernandez et al., 

2018). With the help of Ransomware-as-a-Service (RaaS), cryptography, and the 

difficult-to-trace cyber-currency technologies like Bitcoin, it becomes easy and 

feasible for even novice attackers to develop and distribute their own crypto-

ransomware (Gomez-Hernandez et al., 2018; Moussaileb et al., 2018). Consequently, 

the rate of crypto-ransomware attacks has increased dramatically in recent years 

(Kharraz et al., 2015; Everett, 2016; Kharraz et al., 2016).  

Two main characteristics distinguish crypto-ransomware from other types of 

malware, namely the benign-alike behaviour and the irreversible nature of the attack 

(Scaife et al., 2016; Sgandurra et al., 2016; Kharraz et al., 2018; Lokuketagoda et al., 

2018). By targeting user-related files using the system legitimate cryptography 

applications and APIs, the behaviour of crypto-ransomware resembles the behaviour 

of benign programs. Similarly, the employment of cryptography leaves the targeted 

files inaccessible even after detecting and removing the causing crypto-ransomware. 

Once crypto-ransomware encrypts the targeted resource, it is difficult to regain the 

access without holding the decryption key (Homayoun et al., 2017; Cabaj et al., 2018; 

Chen et al., 2018). Such irreversibility entails the early detection to effectively 

confront crypto-ransomware attacks (Homayoun et al., 2017; Yaqoob et al., 2017; 

Gomez-Hernandez et al., 2018; Rhode et al., 2018). 
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The goal of this study is to propose an enhanced early detection solution able 

to detect crypto-ransomware attacks at the early phases of their execution lifecycle. To 

be effective, it is imperative that such detection takes place early before the encryption 

is carried out (Gomez-Hernandez et al., 2018). Such period can be referred to as pre-

encryption phase which begins from the moment when crypto-ransomware starts 

installing itself in the victim’s machine and lasts until the first call of any of 

cryptography-related APIs. 

1.2 Problem Background 

Several studies have been conducted to detect crypto-ransomware attacks. 

These studies could be categorized into data-centric and process-centric approaches. 

Data-centric approach monitors user data and files subjected to attack and raises the 

alarm when it discovers a suspicious change in those files. Several techniques such as 

decoy technique, entropy and similarity measures were employed to monitor the file 

structure before and after it gets accessed (Kharraz et al., 2016; Mbol et al., 2016; 

Shahriari, 2016; Song et al., 2016; Gomez-Hernandez et al., 2018). However, this 

approach does not distinguish between the changes that have been carried out by 

benign programs from those caused by crypto-ransomware, which lead to high rate of 

false alarms (Scaife et al., 2016; Morato et al., 2018; Moussaileb et al., 2018). More 

importantly, this approach does not fully protect user data from being held to ransom 

as it sacrifices part of the data; which could be more valuable to victim than the 

remaining data; before detection (Scaife et al., 2016; Sotelo Monge et al., 2018). Thus, 

data-centric approach is not effective for crypto-ransomware early detection. 

Process-centric approach monitors the behaviour of the running process so as 

to discover the suspicious patterns. Several studies like Shahriari (2016); Chen and 

Bridges (2017); Chen et al. (2017); Cohen and Nissim (2018) have employed such 

approach and acquired different types of behavioural data by which, machine learning 

classifiers like Random Forests and Naïve Bayes have been trained. However, most of 

those studies follow malware detection approach that depends on the entire runtime 

data; which include pre-encryption and post-encryption data; to detect the attacks 
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(Mehnaz et al., 2018; Rhode et al., 2018). Such approach assumes the availability of 

the entire data at detection time (Rhode et al., 2018).  Thus, they are not suitable for 

crypto-ransomware early detection where the data of the instance in question are not 

fully available.  

Monitoring the computational resources used and/or dealt with by ransomware 

processes is another type of process-centric approach. That is, one or more resources 

in the user machine like CPU, network, I/O buffer and memory are observed, and the 

alarm raises when some events related to ransomware and/or cryptography were 

encountered. Maltester is one of those solutions proposed by Cabaj et al. (2015) to 

detect the infection chain of Cryptowall ransomware family via introspecting the 

network traffic. Likewise, Cabaj et al. (2018); Cusack et al. (2018) have proposed 

detection solutions based on monitoring the network traffic between the infected 

devices and ransomware’s command and control (C&C) server. In their study, Kharraz 

et al. (2016) proposed UNVEIL that observes I/O access patterns and file system 

activities. Similarly, Song et al. (2016) put forward a model that monitors CPU, I/O 

and device’s memory in order to detect the suspicious activities caused by 

ransomware. However, the reliance on ad-hoc events leads to high rate of false alarms 

as those events are not mutually exclusive to crypto-ransomware and some benign 

programs raise such events as well (Morato et al., 2018). Additionally, those events 

could happen after the encryption takes place, which renders this approach ineffective 

for the early detection (Kharraz et al., 2016). To be effective, it is essential that the 

detection takes place during early phases before the attack starts the main sabotage, 

which is the encryption in crypto-ransomware’s case. 

To early detect crypto-ransomware attacks effectively, the detection solutions 

need to be able to accurately identify known and novel attacks on time, i.e. before the 

encryption takes place (Sgandurra et al., 2016; Homayoun et al., 2017; Gomez-

Hernandez et al., 2018; Homayoun et al., 2019). This could be achieved by focusing 

on the pre-encryption phase, i.e. the phase in the crypto-ransomware lifecycle that 

precede the encryption’s starting point. However, detecting crypto-ransomware at 

early phases of its attack is challenging (Alam et al., 2018).  Several factors contribute 

to such challenge including the static definition of the pre-encryption phase boundary, 



 

5 

the insufficient information about the attack at this early phase, the high dimensional 

data and the inability to detect novel (zero-day)  attacks (Das et al., 2016a; Morato et 

al., 2018; Nissim et al., 2018; Rhode et al., 2018). Figure 1.1 summarizes the 

challenges of the existing works along with the current status, gaps and desired 

solutions. 

- Irreversible effect of crypto-ransomware attack.

- Limited amount of data during the initial phases of the attack.

- Benign-like behavior of the crypto-ransomware attacks.

- High rate of novel (zero-day) attacks.

- Static pre-encryption phase definition.

- High dimensional data.

- Low detection accuracy and high false alarms.

- Misuse-based solutions unable to identify novel attacks.

1. Improved pre-encryption phase boundary definition.

2. Ability to cope with limited amount of data more effectively .

3. High detection accuracy and low false alarms.

4. Ability to detect novel (zero-day) attacks.

- Inadequate definition of pre-encryption phase boundary.

- Inability to deal with the limited amount of data at early phase of the attack.

- Inability to detect novel (zero-day) attacks accurately.

 

Figure 1.1: Scenario describing the problem 

 

For detection model to carry out the early detection, it needs to be trained on 

the data that represent the early phases of the attacks’ lifecycle. The idea of building 

detection models using the early data extracted during the onset of crypto-ransomware 

attacks was introduced by Sgandurra et al. (2016). To define the amount of data 

required, authors proposed fixed time-based thresholding by which, the data captured 

during the first 30 seconds of ransomware instance runtime were collected and used to 

build an early detection model. Likewise, Homayoun et al. (2017) and Rhode et al. 

(2018) used the same approach but with decreasing the threshold into 10 seconds and 

1 second respectively. However, the fixed time-based thresholding implies that all 

instances start the encryption before the specified time. This does not hold for many 

crypto-ransomware attacks as the time for the main sabotage to start varies among 
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different instances due to the obfuscation techniques employed by those instances, 

which create different attack behaviours (Das et al., 2016a; Kharraz et al., 2016; 

Nissim et al., 2018). Therefore, the fixed thresholding could miss the encryption 

starting point and; consequently; the captured data would not accurately represent the 

pre-encryption phase of crypto-ransomware attacks, which adversely affects the ability 

of detection solutions to identify the attacks before the encryption takes place. As such, 

more accurate pre-encryption boundary definition approach that can cope with the 

dynamic nature of crypto-ransomware behaviour is needed. 

The small amount of data captured during the initial phases of the attack is one 

of the issues that early detection solutions face, which causes poor detection accuracy 

(Rhode et al., 2018). This issue exacerbates with high dimensional feature space 

caused by features extraction methods like n-gram adopted by most of detection 

solutions (Peng et al., 2016; Sgandurra et al., 2016; Ye et al., 2017; Stiborek et al., 

2018a). Such high dimensional data renders the model prone to overfitting, which 

degrades the detection accuracy (Reineking, 2016; Fallahpour et al., 2017; Li et al., 

2017). Several features selection approaches could be used to address this issue 

including similarity-based, statistical-based, sparse-learning-based and information 

theory-based techniques (Fallahpour et al., 2017; Li et al., 2017). Characterized by 

having no assumption about the distribution of the underlying data, information 

theory-based features selection techniques have been utilized by several malware and 

ransomware detection solutions as well as many other selection tasks (Liu et al., 2009; 

Sgandurra et al., 2016; Wang et al., 2017b; Ye et al., 2017). These techniques try to 

enhance a trade-off between the relevancy and redundancy terms by adjusting the 

values of redundancy coefficients (Brown et al., 2012; Li et al., 2017). Those 

coefficients are adjusted either statically or dynamically (Battiti, 1994; Yang and 

Moody, 1999; Hanchuan et al., 2005; Brown et al., 2012; Che et al., 2017).  

Nevertheless, selecting a static value for those parameters is difficult and need to be 

set experimentally (Brown et al., 2012; Che et al., 2017). On the other hand, the 

dynamic adjustment of these coefficients  changes the belief in the redundancy term at 

each iteration inversely proportional to the current size of the selected features set 

(Brown et al., 2012). While this approach is suitable for data with full observations of 

the attacks’ patterns, it hinders the ability of goal function to estimate features 

significance accurately when dealing with only small portion of data that contain 
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limited amount of observed attacks’ patterns (Bennasar et al., 2015; Che et al., 2017). 

Consequently, the selected set could include redundant and irrelevant features given 

the limited amount of attack patterns as it is the case in the early detection where the 

entire characteristics of the attack have not been observed yet (Das et al., 2016a; Che 

et al., 2017). Therefore, an improved technique that can overcome the limitation in 

pre-encryption data and estimate features significance more accurately is needed. 

The lack of enough data at the initial phases of the attack also adversely affects 

the accuracy of the detection solutions (Das et al., 2016a; Nissim et al., 2018; Rhode 

et al., 2018). That is, incomplete observations lead to sparse data with which, weak 

classifiers are created (Wei et al., 2017; Ryu et al., 2018). In addition, existing 

solutions were built based on the premise that the data required for the detection is 

complete and ready to use at detection time, which does not hold for the early detection 

tasks while the attack is underway and the data are not fully available (Das et al., 

2016a). Furthermore, the design of those solutions does not reflect the progression of 

crypto-ransomware behaviour during the time of the attack, which renders those 

solutions unable to early detect the attacks accurately (Alrawashdeh and Purdy, 2016; 

Das et al., 2016a). Some studies have employed ensemble learning to overcome such 

weakness and boost the detection accuracy (Homayoun et al., 2017; Rhode et al., 

2018). It turned out that the accuracy of ensemble-based models rely on the accuracy 

of the individual components of the ensemble (base classifiers) and the diversity 

among those components (Mao et al., 2017). However, the random sampling 

employed by the ensemble techniques to consolidate the diversity might produce weak 

base classifiers based on suboptimal subspaces with many noisy and irrelevant features 

which, consequently, degrades the overall accuracy of the ensemble (Yang et al., 2010; 

Aburomman and Reaz, 2017; Koziarski et al., 2017). As such, an enhanced ensemble-

based model that builds the data subsets in a way that reflects the attack progression 

as well as improves the diversity-relevancy trade-off among its different components 

is needed. 

The monetary motivation increased the rate of novel (zero-day) crypto-

ransomware attacks, which explains the dominance of ransomware in the threat 

landscape recently (Ahmadian and Shahriari, 2016; Kaspersky, 2016; Symantec, 
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2016a; Homayoun et al., 2017; Cusack et al., 2018; Gomez-Hernandez et al., 2018; 

Hampton et al., 2018; Kao and Hsiao, 2018). The inability to identify novel (zero-day) 

attacks is one of the main limitations of most of existing crypto-ransomware detection 

solutions (Cohen and Nissim, 2018). Existing crypto-ransomware early detection 

solutions are misuse-based (Sgandurra et al., 2016; Homayoun et al., 2017). As such, 

these solutions are deemed ineffective as they are not able to detect the previously 

unseen attacks due to the reliance on pre-defined signatures extracted from known 

crypto-ransomware instances statically (structural-based) or dynamically 

(behavioural-based) (Mercaldo et al., 2016; Morato et al., 2018; Homayoun et al., 

2019). Although the behavioural detection approaches can detect the variants with 

common known signature, they are unable to detect those whose signatures are not 

previously seen (Liao et al., 2013; Creech and Hu, 2014; Gandotra et al., 2014; 

Ganame et al., 2017; Turaev et al., 2018). Thus, adopting the anomaly detection 

approach is needed to overcome such limitation. 

1.3 Problem Statement 

Detecting crypto-ransomware at early phases of its attack is challenging due to 

several issues that render existing solutions not effective. The first issue is that these 

solutions employ fixed time-based thresholding to define the pre-encryption phase 

boundary, which is not suitable given the dynamic nature of crypto-ransomware 

behaviour. As such, the static threshold could miss the encryption’s starting point for 

many instances. Consequently, the captured data do not accurately represent the pre-

encryption phase of crypto-ransomware attacks. The second issue is the limited 

amount of data observed at the early phases of the attack. The impact of this issue is 

twofold. On the one hand, it obstructs the accurate estimation of features significance 

during the feature selection process, which leads to the inclusion of many redundant 

and irrelevant features in the selected set. On the other hand, it provides the detection 

model with incomplete patterns, which hinders the ability of existing solutions to 

detect the attacks accurately. The third issue is that the existing solutions are unable to 

identify novel (zero-day) attacks accurately due to the misuse nature that those 

solutions have been built based on. 
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The focus of this research is to clearly define the boundary of pre-encryption 

phase of crypto-ransomware lifecycle from which, the related features are extracted 

and selected based on the small portion of the data available at this phase. Such data 

and features are then used to build a model able to early detect the known and novel 

attacks more effectively with high accuracy and low false alarms. The research 

hypothesis is stated as follows. 

The effectiveness of crypto-ransomware early detection can be improved by 

dynamically defining the pre-encryption phase of the attack from which, the data and 

features are extracted and selected; and used to derive incremental subsets by which, 

the design of detection model is improved to compensate the lack of enough data at 

early phases of the attack’s lifecycle, which in turns increases the detection accuracy 

and decreases the false alarms. 

To prove the research hypothesis, the following are the research questions that 

will be addressed: 

(i) How to extract the features related to the dynamic pre-encryption phase of 

crypto-ransomware attacks? 

(ii) What is the suitable technique to estimate the features significance given the 

limitation in the data observed during the pre-encryption phase of crypto-

ransomware attacks such that, only relevant and non-redundant features can be 

selected, and data dimensionality can be reduced? 

(iii) How to build an early detection model that overcomes the data limitation at the 

early phases of crypt-ransomware attacks and accurately detect novel and 

known attacks early? 

 

1.4 Research Aim 

The aim of this research is to propose and develop an Ensemble-Based 

Anomaly-Behavioural Crypto-ransomware Pre-encryption Detection model, which 
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dynamically defines the boundary of pre-encryption phase of the attacks from which, 

the data and features are extracted and selected, and used to train an enhanced 

anomaly-behavioural ensemble-based model able to early detect novel and known 

attacks more accurately. 

1.5 Research Objectives 

The objectives of the research are: 

(i) To propose an enhanced feature extraction scheme, by integrating a dynamic 

thresholding-based boundary definition technique with an annotation-based 

features extraction technique, in order to improve the boundary definition of 

pre-encryption phase of crypto-ransomware attacks and extract its related 

features which increases the detection accuracy.  

(ii) To propose an enhanced feature selection technique, by integrating an 

improved redundancy term calculation technique into the goal function, in 

order to enhance features significance estimation and filter out the 

redundant/irrelevant features, which reduces the data dimensionality and 

increases the detection accuracy. 

(iii) To develop an anomaly-behavioural early detection model, by incorporating 

the techniques proposed in (i) and (ii) into an enhanced anomaly-misuse-based 

ensemble, in order to compensate the limitation of the pre-encryption data, 

which increases the detection accuracy of novel and known attacks and reduces 

the false alarms. 

 

1.6 Research Scope 

This research study is limited to the following: 
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(i) Crypt-ransomware samples used for the research were acquired from 

http://www.viresshare.com, which is a public malware repository used by 

many researchers (Sgandurra et al., 2016; Chen et al., 2017; Hasan and 

Rahman, 2017; Lu et al., 2017; Rhode et al., 2018; Turaev et al., 2018). The 

samples are current (at the time of this research) and could be found in the wild. 

(ii) Ground truth data were obtained through VirusTotal 

(http://www.virustotal.com/), which provides scan results for all malware 

categories including crypto-ransomware. Similar to related works, more than 

55 different Anti-Virus (AV) engines were involved in such scan (Wang et al., 

2018; Zimba et al., 2018b; Zhang et al., 2019). 

(iii) In this research, Windows X86’s benign/malicious programs were utilized to 

conduct the experiments (Shashidhar, 2017; Hampton et al., 2018; Rhode et 

al., 2018). 

(iv) This research used crypto-ransomware samples that leverage API calls to carry 

out their attacks and leaves an artefact in the trace file, as this is the common 

approach for detecting ransomware as well as malware attacks (Ki et al., 2015; 

Sgandurra et al., 2016; Hampton et al., 2018; Jung and Won, 2018; Moussaileb 

et al., 2018; Zimba et al., 2018a). 

(v) The dynamic analysis was carried out in a Cuckoo Sandbox analysis platform, 

as it is one of the most popular analysis platforms used in malicious code 

analysis studies including those related to crypto-ransomware (Sgandurra et 

al., 2016; Maniath et al., 2017; Genç et al., 2018; Rhode et al., 2018; Popli and 

Girdhar, 2019). 

(vi) This study includes neither remedial nor response actions to the detection of 

crypto-ransomware. 

 

http://www.viresshare.com/
http://www.virustotal.com/
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1.7 Significance of the Research 

The research is important and significant as it addresses several real-world 

problems in the field of malicious programs research. Among those addressed are: 

(i) The irreversible effect of encryption employed by crypto-ransomware families 

renders it imperative to detect such attacks before they carry out the encryption. 

(ii) The number of crypto-ransomware released is ever increasing that entails 

having an accurate zero-day attack detection mechanism. 

(iii) The study advances the body of knowledge in cybersecurity by introducing 

techniques that can cope with the lack of enough data at early phases of the 

attacks. This might as well be useful for future research into confronting not 

only ransomware but also other similar attacks at the early phases, which 

consolidates the protection of both personal and business data. 

(iv) The proposed model contributes to advance the knowledge by introducing the 

dynamic pre-encryption boundary definition, redundancy gradual coefficient 

upweighting and incremental bagging concepts into ensemble learning 

techniques which further enhances the classification performance especially in 

the absence of enough information as it is the case in the ransomware early 

detection tasks. 

 

1.8 Research Methodology 

The research methodology is described in detail in Chapter 3. The proposed 

approach for this study includes three phases as shown in Figure 1.3. In the first phase, 

the dynamic pre-encryption boundary definition and features extraction scheme is 

designed and implemented. The second phase proposes and implements the 

redundancy coefficient gradual up-weighting technique for features selection process. 

In phase 3, the anomaly-behavioural crypto-ransomware early detection is proposed 

and implemented based on the data and features prepared in the phases 1 and 2. 



 

13 

Redundancy Coefficient Gradual 

Upweighting-Based Mutual 

Information Feature Selection 

Technique

Dynamic Pre-encryption Boundary 

Definition and Features Extraction 

Scheme

An Ensemble-based Anomaly-

Behavioral Crypto-ransomware 

Pre-encryption Detection Model

 

Figure 1.2: Research phases 

 

1.9 Research Contribution 

The main contribution of this research is an anomaly-behavioural crypto-

ransomware early detection model able to identify the imminent encryption attacks. 

This contribution has been achieved by several enhancements carried out on the 

different components of the model as follows. 

(i) An effective features extraction scheme able to extract the features relevant to 

pre-encryption phase of crypto-ransomware lifecycle, which includes: 

a. A dynamic pre-encryption boundary definition technique to track the 

encryption starting points for all crypto-ransomware instances. 

b. An annotated term frequency-inverse document frequency technique 

able to distinguish the general-purpose APIs given the absence of full 

runtime data. 
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(ii) A redundancy coefficient gradual up-weighting (RCGU) technique to improve 

relevancy-redundancy trade-off calculation in the feature selection process. 

(iii) An enhanced anomaly-behavioural ensemble-based detection model which 

includes: 

a. An incremental bagging (iBagging) ensemble technique for training 

data subsets preparation, which compensates the lack of enough data at 

the early phases of crypto-ransomware attacks. 

b. An enhanced semi-random subspace selection (ESRS) technique to 

improve the diversity among the ensemble’s features subspaces while 

maintaining high relevant features within each subspace. 

c. A stack-based hybridization method between anomaly and behavioural 

detection approaches which improves the zero-day detection accuracy 

of the entire model without compromising the low false rate of the 

behavioural module. 

 

 

1.10 Thesis Organization 

In this chapter, the general idea of this research, problem background as well 

as the problem formalization has been presented along with research questions and 

objectives. The rest of this thesis is organized as follows. 

Chapter 2 provides the theoretical foundation of the research into crypto-

ransomware early detection. It provides a comprehensive and thorough investigation 

to the state-of-the-art solutions in the context of crypto-ransomware early detection.  It 

also summarizes the current research issues and directions. The research methodology 

adopted by this study is described in Chapter 3. In addition, this chapter elaborates on 

the research frameworks along with dataset description and evaluation metrics. In 

Chapter 4, the design and implementation of the dynamic pre-encryption boundary 

definition and features extraction scheme is discussed. Chapter 5 presents the design 
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and implementation of the redundancy coefficient gradual up-weighting technique. In 

Chapter 6, the design and implementation of the anomaly-behavioural crypto-

ransomware early detection model is elaborated. This thesis is concluded with Chapter 

7 which elucidates research objectives revisiting, research findings, contributions and 

implications and provides suggestions for future work. 
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