29 research outputs found

    Progress in Material Handling Research: 2014

    Get PDF

    Integrated Models and Tools for Design and Management of Global Supply Chain

    Get PDF
    In modern and global supply chain, the increasing trend toward product variety, level of service, short delivery delay and response time to consumers, highlight the importance to set and configure smooth and efficient logistic processes and operations. In order to comply such purposes the supply chain management (SCM) theory entails a wide set of models, algorithms, procedure, tools and best practices for the design, the management and control of articulated supply chain networks and logistics nodes. The purpose of this Ph.D. dissertation is going in detail on the principle aspects and concerns of supply chain network and warehousing systems, by proposing and illustrating useful methods, procedures and support-decision tools for the design and management of real instance applications, such those currently face by enterprises. In particular, after a comprehensive literature review of the principal warehousing issues and entities, the manuscript focuses on design top-down procedure for both less-than-unit-load OPS and unit-load storage systems. For both, decision-support software platforms are illustrated as useful tools to address the optimization of the warehousing performances and efficiency metrics. The development of such interfaces enables to test the effectiveness of the proposed hierarchical top-down procedure with huge real case studies, taken by industry applications. Whether the large part of the manuscript deals with micro concerns of warehousing nodes, also macro issues and aspects related to the planning, design, and management of the whole supply chain are enquired and discussed. The integration of macro criticalities, such as the design of the supply chain infrastructure and the placement of the logistic nodes, with micro concerns, such the design of warehousing nodes and the management of material handling, is addressed through the definition of integrated models and procedures, involving the overall supply chain and the whole product life cycle. A new integrated perspective should be applied in study and planning of global supply chains. Each aspect of the reality influences the others. Each product consumed by a customer tells a story, made by activities, transformations, handling, processes, traveling around the world. Each step of this story accounts costs, time, resources exploitation, labor, waste, pollution. The economical and environmental sustainability of the modern global supply chain is the challenge to face

    Progress in Material Handling Research: 2010

    Get PDF
    Table of Content

    Material handling optimization in warehousing operations

    Get PDF
    Tableau d’honneur de la FacultĂ© des Ă©tudes supĂ©rieures et postdoctorales, 2018-2019.Les activitĂ©s de distribution et d’entreposage sont des piliers importants de la chaĂźne d’approvisionnement. Ils assurent la stabilitĂ© du flux de matiĂšres et la synchronisation de toutes les parties prenantes du rĂ©seau. Un centre de distribution (CD) agit comme un point de dĂ©couplage entre l’approvisionnement, la production et les ventes. La distribution comprend un large Ă©ventail d’activitĂ©s visant Ă  assurer la satisfaction de la demande. Ces activitĂ©s passent de la rĂ©ception au stockage des produits finis ou semi-finis, Ă  la prĂ©paration des commandes et Ă  la livraison. Les opĂ©rations d’un CD sont maintenant perçues comme des facteurs critiques d’amĂ©lioration. Elles sont responsables de la satisfaction d’un marchĂ© en Ă©volution, exigeant des dĂ©lais de livraison toujours plus rapides et plus fiables, des commandes exactes et des produits hautement personnalisĂ©s. C’est pourquoi la recherche en gestion des opĂ©rations met beaucoup d’efforts sur le problĂšme de gestion des CDs. Depuis plusieurs annĂ©es, nous avons connu de fortes avancĂ©es en matiĂšre d’entreposage et de prĂ©paration de commandes. L’activitĂ© de prĂ©paration de commandes est le processus consistant Ă  rĂ©cupĂ©rer les articles Ă  leur emplacement de stockage afin d’assembler des commandes. Ce problĂšme a souvent Ă©tĂ© rĂ©solu comme une variante du problĂšme du voyageur de commerce, oĂč l’opĂ©rateur se dĂ©place Ă  travers les allĂ©es de l’entrepĂŽt. Cependant, les entrepĂŽts modernes comportent de plus en plus de familles de produits ayant des caractĂ©ristiques trĂšs particuliĂšres rendant les mĂ©thodes conventionnelles moins adĂ©quates. Le premier volet de cette thĂšse par articles prĂ©sente deux importants et complexes problĂšmes de manutention des produits lors de la prĂ©paration des commandes. Le problĂšme de prĂ©paration des commandes a Ă©tĂ© largement Ă©tudiĂ© dans la littĂ©rature au cours des derniĂšres dĂ©cennies. Notre recherche Ă©largit le spectre de ce problĂšme en incluant un ensemble de caractĂ©ristiques associĂ©es aux installations physiques de la zone de prĂ©lĂšvement, comme les allĂ©es Ă©troites, et aux caractĂ©ristiques des produits (poids, volume, catĂ©gorie, fragilitĂ©, etc.). Une perspective plus appliquĂ©e Ă  la rĂ©alitĂ© des opĂ©rations est utilisĂ©e dans notre dĂ©veloppement d’algorithmes. Les dĂ©placements liĂ©s Ă  la prĂ©paration des commandes sont fortement influencĂ©s par le positionnement des produits. La position des produits dans la zone de prĂ©lĂšvement est dĂ©terminĂ©e par une stratĂ©gie d’affectation de stockage (storage assignment strategy). Beaucoup de ces stratĂ©gies utilisent de l’information sur les ventes des produits afin de faciliter l’accĂšs aux plus populaires. Dans l’environnement concurrentiel d’aujourd’hui, la durĂ©e de vie rentable d’un produit peut ĂȘtre relativement courte. Des promotions peuvent Ă©galement ĂȘtre faites pour pousser diffĂ©rents produits sur le marchĂ©. Le positionnement fourni par la stratĂ©gie d’hier ne sera probablement plus optimal aujourd’hui. Il existe plusieurs Ă©tudes mesurant l’impact d’une bonne rĂ©affectation de produits sur les opĂ©rations de prĂ©lĂšvement. Cependant, ils Ă©tudient la diffĂ©rence des performances avec les positionnements passĂ©s et actuels. La littĂ©rature dĂ©montre clairement que cela apporte des avantages en termes d’efficacitĂ©. Toutefois, les dĂ©placements nĂ©cessaires pour passer d’une position Ă  une autre peuvent constituer une activitĂ© trĂšs exigeante. Ceci constitue le second volet de cette thĂšse qui prĂ©sente des avancĂ©es intĂ©ressantes sur le problĂšme de repositionnement des produits dans la zone de prĂ©lĂšvement. Nous prĂ©sentons le problĂšme de repositionnement des produits sous une forme encore peu Ă©tudiĂ©e aux meilleurs de nos connaissances : le problĂšme de repositionnement. Plus prĂ©cisĂ©ment, nous Ă©tudions la charge de travail requise pour passer d’une configuration Ă  l’autre. Cette thĂšse est structurĂ© comme suit. L’introduction prĂ©sente les caractĂ©ristiques et les missions d’un systĂšme de distribution. Le chapitre 1 fournit un survol de la littĂ©rature sur les principales fonctions d’un centre de distribution et met l’accent sur la prĂ©paration des commandes et les dĂ©cisions qui affectent cette opĂ©ration. Le chapitre 2 est consacrĂ© Ă  l’étude d’un problĂšme de prĂ©paration de commandes en allĂ©es Ă©troites avec des Ă©quipements de manutention contraignants. Dans le chapitre 3, nous Ă©tudions un problĂšme de prĂ©paration des commandes oĂč les caractĂ©ristiques des produits limitent fortement les routes de prĂ©lĂšvement. Le chapitre 4 prĂ©sente une variante du problĂšme de repositionnement (reassignment) avec une formulation originale pour le rĂ©soudre. La conclusion suit et rĂ©sume les principales contributions de cette thĂšse. Mots clĂ©s : PrĂ©paration des commandes, entreposage, problĂšmes de routage, algorithmes exacts et heuristiques, rĂ©affectation des produits, manutention.Distribution and warehousing activities are important pillars to an effective supply chain. They ensure the regulation of the operational flow and the synchronization of all actors in the network. Hence, distribution centers (DCs) act as crossover points between the supply, the production and the demand. The distribution includes a wide range of activities to ensure the integrity of the demand satisfaction. These activities range from the reception and storage of finished or semi-finished products to the preparation of orders and delivery. Distribution has been long seen as an operation with no or low added value; this has changed, and nowadays it is perceived as one of the critical areas for improvement. These activities are responsible for the satisfaction of an evolving market, requiring ever faster and more reliable delivery times, exact orders and highly customized products. This leads to an increased research interest on operations management focused on warehousing. For several years, we have witnessed strong advances in warehousing and order picking operations. The order picking activity is the process of retrieving items within the storage locations for the purpose of fulfilling orders. This problem has long been solved as a variant of the travelling salesman problem, where the order picker moves through aisles. However, modern warehouses with more and more product families may have special characteristics that make conventional methods irrelevant or inefficient. The first part of this thesis presents two practical and challenging material handling problems for the order picking within DCs. Since there are many research axes in the field of warehousing operations, we concentrated our efforts on the order picking problem and the repositioning of the products within the picking area. The order picking problem has been intensively studied in the literature. Our research widens the spectrum of this problem by including a set of characteristics associated with the physical facilities of the picking area and characteristics of the product, such as its weight, volume, category, fragility, etc. This means that a more applied perspective on the reality of operations is used in our algorithms development. The order picking workload is strongly influenced by the positioning of the products. The position of products within the picking area is determined by a storage assignment strategy. Many of these strategies use product sales information in order to facilitate access to the most popular items. In today’s competitive environment, the profitable lifetime of a product can be relatively short. The positioning provided by yesterday’s assignment is likely not the optimal one in the near future. There are several studies measuring the impact of a good reassignment of products on the picking operations. However, they study the difference between the two states of systems on the picking time. It is clear that this brings benefits. However, moving from one position to another is a very workload demanding activity. This constitutes the second part of this thesis which presents interesting advances on the repositioning of products within the picking area. We introduce the repositioning problem as an innovative way of improving performance, in what we call the reassignment problem. More specifically, we study the workload required to move from one setup to the next. This thesis is structured as follows. The introduction presents the characteristics and missions of a distribution system. Chapter 1 presents an overview of the literature on the main functions of a DC and emphasizes on order picking and decisions affecting this operation. Chapter 2 is devoted to the study of a picking problem with narrow aisles facilities and binding material handling equipment. In Chapter 3, we study the picking problem with a set of product features that strongly constrain the picking sequence. Chapter 4 presents a variant of the reassignment problem with a strong and new formulation to solve it. The conclusion follows and summarizes the main contributions of this thesis. Key words: Order-picking, warehousing, routing problems, exact and heuristic algorithms, products reassignment, material handling

    A memetic algorithm for the integral OBP/OPP problem in a logistics distribution center

    Get PDF
    In this paper, we present a new decision-making tool aimed at improving the efficiency of the operational planning of pick-up processes in logistic distribution centers. It is based on a memetic algorithm (MA) solving both the Order Batching Problem (OBP) and the Order Picking Problem (OPP). The result yields a sequence of simultaneous pick up operations of lots for different clients in a storing facility, satisfying a previously defined distribution plan. The objective is the minimization of the operational cost of the entire process, which is directly proportional to the time spent on different activities involved. The failure to satisfy the conditions, either leads to overstocking, delays in delivery or creates inefficiency costs. The analysis of the results obtained with our algorithmic tool indicates that it has a good performance in comparison with other known algorithms used to solve this kind of problem.Fil: Miguel, Fabio. Universidad Nacional de Río Negro; ArgentinaFil: Frutos, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Económicas y Sociales del Sur. Universidad Nacional del Sur. Departamento de Economía. Instituto de Investigaciones Económicas y Sociales del Sur; ArgentinaFil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemåtica Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemåtica. Instituto de Matemåtica Bahía Blanca; ArgentinaFil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemåtica Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemåtica. Instituto de Matemåtica Bahía Blanca; Argentin

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Optimization of storage and picking systems in warehouses

    Get PDF
    La croissance du commerce Ă©lectronique exige une hausse des performances des systĂšmes d'entreposage, qui sont maintenant repensĂ©s pour faire face Ă  un volume massif de demandes Ă  ĂȘtre satisfait le plus rapidement possible. Le systĂšme manuel et le systĂšme Ă  robots mobile (SRM) sont parmi les plus utilisĂ©s pour ces activitĂ©s. Le premier est un systĂšme centrĂ© sur l'humain pour rĂ©aliser des opĂ©rations complexes que les robots actuels ne peuvent pas effectuer. Cependant, les nouvelles gĂ©nĂ©rations de robots autonomes mĂšnent Ă  un remplacement progressif par le dernier pour augmenter la productivitĂ©. Quel que soit le systĂšme utilisĂ©, plusieurs problĂšmes interdĂ©pendants doivent ĂȘtre rĂ©solus pour avoir des processus de stockage et de prĂ©lĂšvement efficaces. Les problĂšmes de stockage concernent les dĂ©cisions d'oĂč stocker les produits dans l'entrepĂŽt. Les problĂšmes de prĂ©lĂšvement incluent le regroupement des commandes Ă  exĂ©cuter ensemble et les itinĂ©raires que les cueilleurs et les robots doivent suivre pour rĂ©cupĂ©rer les produits demandĂ©s. Dans le systĂšme manuel, ces problĂšmes sont traditionnellement rĂ©solus Ă  l'aide de politiques simples que les prĂ©parateurs peuvent facilement suivre. MalgrĂ© l'utilisation de robots, la mĂȘme stratĂ©gie de solution est rĂ©pliquĂ©e aux problĂšmes Ă©quivalents trouvĂ©s dans le SRM. Dans cette recherche, nous Ă©tudions les problĂšmes de stockage et de prĂ©lĂšvement rencontrĂ©s lors de la conception du systĂšme manuel et du SRM. Nous dĂ©veloppons des outils d'optimisation pour aider Ă  la prise de dĂ©cision pour mettre en place leurs processus, en amĂ©liorant les mesures de performance typiques de ces systĂšmes. Certains problĂšmes traditionnels sont rĂ©solus avec des techniques amĂ©liorĂ©es, tandis que d'autres sont intĂ©grĂ©s pour ĂȘtre rĂ©solus ensemble au lieu d'optimiser chaque sous-systĂšme de maniĂšre indĂ©pendante. Nous considĂ©rons d'abord un systĂšme manuel avec un ensemble connu de commandes et intĂ©grons les dĂ©cisions de stockage et de routage. Le problĂšme intĂ©grĂ© et certaines variantes tenant compte des politiques de routage communes sont modĂ©lisĂ©s mathĂ©matiquement. Une mĂ©taheuristique gĂ©nĂ©rale de recherche de voisinage variable est prĂ©sentĂ©e pour traiter des instances de taille rĂ©elle. Des expĂ©riences attestent de l'efficience de la mĂ©taheuristique proposĂ©e par rapport aux modĂšles exacts et aux politiques de stockage communes. Lorsque les demandes futures sont incertaines, il est courant d'utiliser une stratĂ©gie de zonage qui divise la zone de stockage en zones et attribue les produits les plus demandĂ©s aux meilleures zones. Les tailles des zones sont Ă  dĂ©terminer. GĂ©nĂ©ralement, des dimensions arbitraires sont choisies, mais elles ignorent les caractĂ©ristiques de l'entrepĂŽt et des demandes. Nous abordons le problĂšme de dimensionnement des zones pour dĂ©terminer quels facteurs sont pertinents pour choisir de meilleures tailles de zone. Les donnĂ©es gĂ©nĂ©rĂ©es Ă  partir de simulations exhaustives sont utilisĂ©es pour trainer quatre modĂšles de rĂ©gression d'apprentissage automatique - moindres carrĂ©s ordinaire, arbre de rĂ©gression, forĂȘt alĂ©atoire et perceptron multicouche - afin de prĂ©dire les dimensions optimales des zones en fonction de l'ensemble de facteurs pertinents identifiĂ©s. Nous montrons que tous les modĂšles entraĂźnĂ©s suggĂšrent des dimensions sur mesure des zones qui performent meilleur que les dimensions arbitraires couramment utilisĂ©es. Une autre approche pour rĂ©soudre les problĂšmes de stockage pour le systĂšme manuel et pour le SRM considĂšre les corrĂ©lations entre les produits. L'idĂ©e est que les produits rĂ©guliĂšrement demandĂ©s ensemble doivent ĂȘtre stockĂ©s prĂšs pour rĂ©duire les coĂ»ts de routage. Cette politique de stockage peut ĂȘtre modĂ©lisĂ©e comme une variante du problĂšme d'affectation quadratique (PAQ). Le PAQ est un problĂšme combinatoire traditionnel et l'un des plus difficiles Ă  rĂ©soudre. Nous examinons les variantes les plus connues du PAQ et dĂ©veloppons une puissante mĂ©taheuristique itĂ©rative de recherche tabou mĂ©mĂ©tique en parallĂšle capable de les rĂ©soudre. La mĂ©taheuristique proposĂ©e s'avĂšre ĂȘtre parmi les plus performantes pour le PAQ et surpasse considĂ©rablement l'Ă©tat de l'art pour ses variantes. Les SRM permettent de repositionner facilement les pods d'inventaire pendant les opĂ©rations, ce qui peut conduire Ă  un processus de prĂ©lĂšvement plus Ă©conome en Ă©nergie. Nous intĂ©grons les dĂ©cisions de repositionnement des pods Ă  l'attribution des commandes et Ă  la sĂ©lection des pods Ă  l'aide d'une stratĂ©gie de prĂ©lĂšvement par vague. Les pods sont rĂ©organisĂ©s en tenant compte du moment et de l'endroit oĂč ils devraient ĂȘtre demandĂ©s au futur. Nous rĂ©solvons ce problĂšme en utilisant la programmation stochastique en tenant compte de l'incertitude sur les demandes futures et suggĂ©rons une matheuristique de recherche locale pour rĂ©soudre des instances de taille rĂ©elle. Nous montrons que notre schĂ©ma d'approximation moyenne de l'Ă©chantillon est efficace pour simuler les demandes futures puisque nos mĂ©thodes amĂ©liorent les solutions trouvĂ©es lorsque les vagues sont planifiĂ©es sans tenir compte de l'avenir. Cette thĂšse est structurĂ©e comme suit. AprĂšs un chapitre d'introduction, nous prĂ©sentons une revue de la littĂ©rature sur le systĂšme manuel et le SRM, et les dĂ©cisions communes prises pour mettre en place leurs processus de stockage et de prĂ©lĂšvement. Les quatre chapitres suivants dĂ©taillent les Ă©tudes pour le problĂšme de stockage et de routage intĂ©grĂ©, le problĂšme de dimensionnement des zones, le PAQ et le problĂšme de repositionnement de pod. Nos conclusions sont rĂ©sumĂ©es dans le dernier chapitre.The rising of e-commerce is demanding an increase in the performance of warehousing systems, which are being redesigned to deal with a mass volume of demands to be fulfilled as fast as possible. The manual system and the robotic mobile fulfillment system (RMFS) are among the most commonly used for these activities. The former is a human-centered system that handles complex operations that current robots cannot perform. However, newer generations of autonomous robots are leading to a gradual replacement by the latter to increase productivity. Regardless of the system used, several interdependent problems have to be solved to have efficient storage and picking processes. Storage problems concern decisions on where to store products within the warehouse. Picking problems include the batching of orders to be fulfilled together and the routes the pickers and robots should follow to retrieve the products demanded. In the manual system, these problems are traditionally solved using simple policies that pickers can easily follow. Despite using robots, the same solution strategy is being replicated to the equivalent problems found in the RMFS. In this research, we investigate storage and picking problems faced when designing manual and RMFS warehouses. We develop optimization tools to help in the decision-making process to set up their processes and improve typical performance measures considered in these systems. Some classic problems are solved with improved techniques, while others are integrated to be solved together instead of optimizing each subsystem sequentially. We first consider a manual system with a known set of orders and integrate storage and routing decisions. The integrated problem and some variants considering common routing policies are modeled mathematically. A general variable neighborhood search metaheuristic is presented to deal with real-size instances. Computational experiments attest to the effectiveness of the metaheuristic proposed compared to the exact models and common storage policies. When future demands are uncertain, it is common to use a zoning strategy to divide the storage area into zones and assign the most-demanded products to the best zones. Zone sizes are to be determined. Commonly, arbitrary sizes are chosen, which ignore the characteristics of the warehouse and the demands. We approach the zone sizing problem to determine which factors are relevant to choosing better zone sizes. Data generated from exhaustive simulations are used to train four machine learning regression models - ordinary least squares, regression tree, random forest, and multilayer perceptron - to predict the optimal zone sizes given the set of relevant factors identified. We show that all trained models suggest tailor-made zone sizes with better picking performance than the arbitrary ones commonly used. Another approach to solving storage problems, both in the manual and RMFS, considers the correlations between products. The idea is that products constantly demanded together should be stored closer to reduce routing costs. This storage policy can be modeled as a quadratic assignment problem (QAP) variant. The QAP is a traditional combinatorial problem and one of the hardest to solve. We survey the most traditional QAP variants and develop a powerful parallel memetic iterated tabu search metaheuristic capable of solving them. The proposed metaheuristic is shown to be among the best performing ones for the QAP and significantly outperforms the state-of-the-art for its variants. The RMFS allows easy repositioning of inventory pods during operations that can lead to a more energy-efficient picking process. We integrate pod repositioning decisions with order assignment and pod selection using a wave picking strategy such that pods are parked after being requested considering when and where they are expected to be requested next. We solve this integrated problem using stochastic programming considering the uncertainty about future demands and suggest a local search matheuristic to solve real-size instances. We show that our sample average approximation scheme is effective to simulate future demands since our methods improve solutions found when waves are planned without considering the future demands. This thesis is structured as follows. After an introductory chapter, we present a literature review on the manual and RMFS, and common decisions made to set up their storage and picking processes. The next four chapters detail the studies for the integrated storage and routing problem, the zone sizing problem, the QAP, and the pod repositioning problem. Our findings are summarized in the last chapter

    Designing new models and algorithms to improve order picking operations

    Get PDF
    Order picking has been identified as a crucial factor for the competitiveness of a supply chain because inadequate order picking performance causes customer dissatisfaction and high costs. This dissertation aims at designing new models and algorithms to improve order picking operations and to support managerial decisions on facing current challenges in order picking. First, we study the standard order batching problem (OBP) to optimize the batching of customer orders with the objective of minimizing the total length of order picking tours. We present a mathematical model formulation of the problem and develop a hybrid solution approach of an adaptive large neighborhood search and a tabu search method. In numerical studies, we conduct an extensive comparison of our method to all previously published OBP methods that used standard benchmark sets to investigate their performance. Our hybrid outperforms all comparison methods with respect to average solution quality and runtime. Compared to the state-of-the-art, the hybrid shows the clearest advantages on the larger instances of the existing benchmark sets, which assume a larger number of customer orders and larger capacities of the picking device. Finally, our method is able to solve newly generated large-scale instances with up to 600 customer orders and six items per customer order with reasonable runtimes and convincing scaling behavior and robustness. Next, we address a problem based on a practical case, which is inspired by a warehouse of a German manufacturer of household products. In this warehouse, heavy items are not allowed to be placed on top of light items during picking to prevent damage to the light items. Currently, the case company determines the sequence for retrieving the items from their storage locations by applying a simple S-shape strategy that neglects this precedence constraint. As a result, order pickers place the collected items next to each other in plastic boxes and sort the items respecting the precedence constraint at the end of the order picking process. To avoid this sorting, we propose a picker routing strategy that incorporates the precedence constraint by picking heavy items before light items, and we develop an exact solution method to evaluate the strategy. We assess the performance of our strategy on a dataset provided to us by the manufacturer. We compare our strategy to the strategy used in the warehouse of the case company, and to an exact picker routing approach that does not consider the given precedence constraint. The results clearly demonstrate the convincing performance of our strategy even if we compare our strategy to the exact solution method that neglects the precedence constraint. Last, we investigate a new order picking problem, in which human order pickers of the traditional picker-to-parts setup are supported by automated guided vehicles (AGVs). We introduce two mathematical model formulations of the problem, and we develop a heuristic to solve the NP-hard problem. In numerical studies, we assess the solution quality of the heuristic in comparison to optimal solutions. The results demonstrate the ability of the heuristic in finding high-quality solutions within a negligible computation time. We conduct several computational experiments to investigate the effect of different numbers of AGVs and different traveling and walking speed ratios between AGVs and order pickers on the average total tardiness. The results of our experiments indicate that by adding (or removing) AGVs or by increasing (or decreasing) the AGV speed to adapt to different workloads, a large number of customer orders can be completed until the respective due date

    Sequencing and Routing in a Large Warehouse with High Degree of Product Rotation

    Get PDF
    The paper deals with a sequencing and routing problem originated by a real-world application context. The problem consists in defining the best sequence of locations to visit within a warehouse for the storage and/or retrieval of a given set of items during a specified time horizon, where the storage/retrieval location of an item is given. Picking and put away of items are simultaneously addressed, by also considering some specific requirements given by the layout design and operating policies which are typical in the kind of warehouses under study. Specifically, the considered sequencing policy prescribes that storage locations must be replenished or emptied one at a time by following a specified order of precedence. Moreover, two fleet of vehicles are used to perform retrieving and storing operations, whose routing is restricted to disjoint areas of the warehouse. We model the problem as a constrained multicommodity flow problem on a space-time network, and we propose a Mixed-Integer Linear Programming formulation, whose primary goal is to minimize the time traveled by the vehicles during the time horizon. Since large-size realistic instances are hardly solvable within the time limit commonly imposed in the considered application context, a matheuristic approach based on a time horizon decomposition is proposed. Finally, we provide an extensive experimental analysis aiming at identifying suitable parameter settings for the proposed approach, and testing the matheuristic on particularly hard realistic scenarios. The computational experiments show the efficacy and the efficiency of the proposed approach
    corecore