
 

© Thomas Chabot, 2018 
 

 

Material handling optimization in warehousing 
operations 

Thèse 

Thomas Chabot 

Doctorat en sciences de l’administration - opérations et systèmes de décision 

Philosophiæ doctor (Ph. D.) 

Québec, Canada 
 



Material Handling Optimization in Warehousing
Operations

Thèse

Thomas Chabot

Sous la direction de:

Jacques Renaud, directeur de recherche
Leandro Callegari Coelho, codirecteur de recherche



Résumé

Les activités de distribution et d’entreposage sont des piliers importants de la chaîne d’ap-
provisionnement. Ils assurent la stabilité du flux de matières et la synchronisation de toutes
les parties prenantes du réseau. Un centre de distribution (CD) agit comme un point de dé-
couplage entre l’approvisionnement, la production et les ventes. La distribution comprend un
large éventail d’activités visant à assurer la satisfaction de la demande. Ces activités passent
de la réception au stockage des produits finis ou semi-finis, à la préparation des commandes et
à la livraison. Les opérations d’un CD sont maintenant perçues comme des facteurs critiques
d’amélioration. Elles sont responsables de la satisfaction d’un marché en évolution, exigeant
des délais de livraison toujours plus rapides et plus fiables, des commandes exactes et des
produits hautement personnalisés. C’est pourquoi la recherche en gestion des opérations met
beaucoup d’efforts sur le problème de gestion des CDs. Depuis plusieurs années, nous avons
connu de fortes avancées en matière d’entreposage et de préparation de commandes. L’activité
de préparation de commandes est le processus consistant à récupérer les articles à leur empla-
cement de stockage afin d’assembler des commandes. Ce problème a souvent été résolu comme
une variante du problème du voyageur de commerce, où l’opérateur se déplace à travers les
allées de l’entrepôt. Cependant, les entrepôts modernes comportent de plus en plus de familles
de produits ayant des caractéristiques très particulières rendant les méthodes conventionnelles
moins adéquates.

Le premier volet de cette thèse par articles présente deux importants et complexes problèmes de
manutention des produits lors de la préparation des commandes. Le problème de préparation
des commandes a été largement étudié dans la littérature au cours des dernières décennies.
Notre recherche élargit le spectre de ce problème en incluant un ensemble de caractéristiques
associées aux installations physiques de la zone de prélèvement, comme les allées étroites, et
aux caractéristiques des produits (poids, volume, catégorie, fragilité, etc.). Une perspective
plus appliquée à la réalité des opérations est utilisée dans notre développement d’algorithmes.

Les déplacements liés à la préparation des commandes sont fortement influencés par le posi-
tionnement des produits. La position des produits dans la zone de prélèvement est déterminée
par une stratégie d’affectation de stockage (storage assignment strategy). Beaucoup de ces
stratégies utilisent de l’information sur les ventes des produits afin de faciliter l’accès aux plus
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populaires. Dans l’environnement concurrentiel d’aujourd’hui, la durée de vie rentable d’un
produit peut être relativement courte. Des promotions peuvent également être faites pour
pousser différents produits sur le marché. Le positionnement fourni par la stratégie d’hier ne
sera probablement plus optimal aujourd’hui. Il existe plusieurs études mesurant l’impact d’une
bonne réaffectation de produits sur les opérations de prélèvement. Cependant, ils étudient la
différence des performances avec les positionnements passés et actuels. La littérature démontre
clairement que cela apporte des avantages en termes d’efficacité. Toutefois, les déplacements
nécessaires pour passer d’une position à une autre peuvent constituer une activité très exi-
geante. Ceci constitue le second volet de cette thèse qui présente des avancées intéressantes sur
le problème de repositionnement des produits dans la zone de prélèvement. Nous présentons le
problème de repositionnement des produits sous une forme encore peu étudiée aux meilleurs
de nos connaissances : le problème de repositionnement. Plus précisément, nous étudions la
charge de travail requise pour passer d’une configuration à l’autre.

Cette thèse est structuré comme suit. L’introduction présente les caractéristiques et les mis-
sions d’un système de distribution. Le chapitre 1 fournit un survol de la littérature sur les
principales fonctions d’un centre de distribution et met l’accent sur la préparation des com-
mandes et les décisions qui affectent cette opération. Le chapitre 2 est consacré à l’étude d’un
problème de préparation de commandes en allées étroites avec des équipements de manutention
contraignants. Dans le chapitre 3, nous étudions un problème de préparation des commandes
où les caractéristiques des produits limitent fortement les routes de prélèvement. Le chapitre 4
présente une variante du problème de repositionnement (reassignment) avec une formulation
originale pour le résoudre. La conclusion suit et résume les principales contributions de cette
thèse.

Mots clés : Préparation des commandes, entreposage, problèmes de routage, algorithmes
exacts et heuristiques, réaffectation des produits, manutention.
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Abstract

Distribution and warehousing activities are important pillars to an effective supply chain.
They ensure the regulation of the operational flow and the synchronization of all actors in the
network. Hence, distribution centers (DCs) act as crossover points between the supply, the
production and the demand. The distribution includes a wide range of activities to ensure the
integrity of the demand satisfaction.

These activities range from the reception and storage of finished or semi-finished products
to the preparation of orders and delivery. Distribution has been long seen as an operation
with no or low added value; this has changed, and nowadays it is perceived as one of the
critical areas for improvement. These activities are responsible for the satisfaction of an
evolving market, requiring ever faster and more reliable delivery times, exact orders and highly
customized products. This leads to an increased research interest on operations management
focused on warehousing. For several years, we have witnessed strong advances in warehousing
and order picking operations. The order picking activity is the process of retrieving items
within the storage locations for the purpose of fulfilling orders. This problem has long been
solved as a variant of the travelling salesman problem, where the order picker moves through
aisles. However, modern warehouses with more and more product families may have special
characteristics that make conventional methods irrelevant or inefficient.

The first part of this thesis presents two practical and challenging material handling problems
for the order picking within DCs. Since there are many research axes in the field of warehousing
operations, we concentrated our efforts on the order picking problem and the repositioning of
the products within the picking area. The order picking problem has been intensively studied
in the literature. Our research widens the spectrum of this problem by including a set of
characteristics associated with the physical facilities of the picking area and characteristics
of the product, such as its weight, volume, category, fragility, etc. This means that a more
applied perspective on the reality of operations is used in our algorithms development.

The order picking workload is strongly influenced by the positioning of the products. The
position of products within the picking area is determined by a storage assignment strategy.
Many of these strategies use product sales information in order to facilitate access to the most
popular items. In today’s competitive environment, the profitable lifetime of a product can be
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relatively short. The positioning provided by yesterday’s assignment is likely not the optimal
one in the near future. There are several studies measuring the impact of a good reassignment
of products on the picking operations. However, they study the difference between the two
states of systems on the picking time. It is clear that this brings benefits. However, moving
from one position to another is a very workload demanding activity. This constitutes the
second part of this thesis which presents interesting advances on the repositioning of products
within the picking area. We introduce the repositioning problem as an innovative way of
improving performance, in what we call the reassignment problem. More specifically, we study
the workload required to move from one setup to the next.

This thesis is structured as follows. The introduction presents the characteristics and missions
of a distribution system. Chapter 1 presents an overview of the literature on the main functions
of a DC and emphasizes on order picking and decisions affecting this operation. Chapter 2 is
devoted to the study of a picking problem with narrow aisles facilities and binding material
handling equipment. In Chapter 3, we study the picking problem with a set of product features
that strongly constrain the picking sequence. Chapter 4 presents a variant of the reassignment
problem with a strong and new formulation to solve it. The conclusion follows and summarizes
the main contributions of this thesis.

Key words: Order-picking, warehousing, routing problems, exact and heuristic algorithms,
products reassignment, material handling.
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Introduction

Warehousing and distribution activities are critical and among the most important activities
in the supply chain. Several products such as raw materials, products-in-progress and finished
products need to move from a location to another (origin, manufacturers, end users, etc.).
Sometimes these products will have to be stored, serving as a buffer stock during a certain
period. Warehousing activities influence the speed of the supply network and therefore have
significant logistics and financial impacts. Manufacturing strategies cannot be efficiently de-
ployed without a systematic control of distribution activities. Distribution activities exist
throughout the logistics network: in the supply of the raw materials, between the production
units, to the assembly until the final distribution to the customers and so on. The distribution
center (DC) system also significantly affects the product quality, the consumers service level
and the logistic costs.

The global mission of a DC is the same as the traditional definition of logistics - efficiently
delivering products to the right place at the right time, in good quantity and without damage
[Slack, 2015]. However, operating a DC often involves large investments and operating costs
(i.e., cost of land, facility equipment, labor). So, why do DCs exist and why they are now
essential? According to Lambert et al. [1998] they contribute to a multitude of the company’s
missions, such as:

— achieving transportation economies (e.g., combine shipment, full-container load),

— achieving production economies,

— taking advantage of purchase discounts,

— supporting the firm’s customer service policies,

— meeting changing market and uncertainties (seasonality and demand fluctuations),

— overcoming the time and space differences that exist between producers and customers,

— accomplishing least cost logistics with a desired level of customer service,

— supporting just-in-time programs,

— providing customers with a mix of products instead of a single product on each order,

— providing temporary storage for reverse logistics, and

— providing a buffer location for cross-docking.

1



There have been many innovations in warehouse management in recent decades. DCs now
provide value-added activities or services in order to be more functional. One finds activities
and services such as product consolidating, cross-docking, quality checking, final assembling,
packaging, reverse logistics, information services, etc. [Le-Duc, 2005]. In this perspective, it
is not surprising to see the DCs becoming bigger and also much more flexible. Hence, they
need various technologies to become faster, while responding to the demand and managing
a multiplication of products. As Le-Duc [2005] presents, the industry tends to consolidate
their warehousing activity in order to reduce the network management effort. It also allows to
reduce the safety stock (less incertitude with fewer storage locations) and to gain economies of
scale. In fact, the DC management became such a complex operation that several companies
prefer to outsource this activity in order to focus in their core business.

Operating a DC implies several operations. Among them, we have the order picking as the
process of retrieving items within the storage locations for the purpose of fulfilling a customer’s
order. It is identified as a very labor intensive operation in manual systems, and a very capital
intensive operation in automated systems [Goetschalckx and Ratliff, 1988]. Order picking
may consume as much as 60% of all labor activities and cost in the DC [Drury, 1988, Frazelle,
2002, Tompkins et al., 2010]. This explains why warehousing professionals and researchers are
putting so much effort into the optimization of this process. It is also the main theme of this
thesis. The literature in this field is very rich and will be properly explored and categorized
in Chapter 1.

This research is positioned on high volume and technologically advanced DCs. This type
of DC is flexible and adapted to frequent changes in demand pattern and product types.
This high level of flexibility requires the development of specific planning methods to address
this dynamism. Demand analysis and forecasting tools have been developed to become more
accurate. In Chapter 1, we study the spectrum of activities that have a direct impact on the
performance of a DC, in particular activities impacting and related to order picking operations.
The chapter explains how each main function relates to the order preparation, from the input
to the output of the DC, have to be managed together in order to have the best overall system.
These include receiving activities, storage strategies, picking routing strategies, layout design
and the choice of equipment, among others.

The reminder of this thesis is organized as follows. In Chapter 2 we address some physical
characteristics of a DC containing what is called narrow aisles. This type of structure imposes
particular operational constraints, which make classical and naive picking routing methods
inefficient. Our hypothesis is that we can significantly improve a classical routing exact method
by incorporating practical features of the problem. We show that one needs to properly
consider and model all distances between pairs of product locations realistically, considering
the structure of the DC. We solve the problem by exact and heuristic methods and solve
instances containing up to 480 locations per aisle.
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In Chapter 3 we extend our research to consider general DC structures, but we study many
properties arising from the characteristics of the products. These are, for example, products
that are fragile and could be crushed if heavy ones are placed on top of them, or products that
could contaminate others. These characteristics impose many constraints on the planning of a
picking tour, and we study their impact from an algorithmic performance. Again, we propose
different mathematical models and several heuristic methods. We test all methods on large
instances containing up to 100 picks.

In Chapter 4 we propose a way to change the assignment of products to their locations. As we
will show, many studies have demonstrated the value of updating the product assignments on
the picking performance, but they do not show how to change from one assignment to another.
Here, we define what we call the reassignment problem. We formally define this problem in a
different, more efficient and realistic way from what the literature currently proposes.

Whether it is about the physical characteristics of the installations, about the products or
about the order picker safety, one of the main contributions of this thesis is to clearly formulate
practical warehousing problems. We present different alternatives, from heuristics to exact
methods to solve these problems, but also which can be easily adapted to similar problems
with different constraints. The literature tends to present new order picking problems with
some real-life constraints. However, we show that the literature presents research for solving
hard problems with very precise methodology, lacking generic resolution methods that can be
reused for similar problems. This is what we try to avoid. Another important contribution of
this thesis is the study of a new formulation for a still little studied problem: the reassignment
of products. There is actually very few research trying to compute exactly the workload
needed to pass from a storage assignment to another. This problem is very important in real
life since warehouses often need to update their assignment. In our research, we develop a new
routing-based formulation indicating the order of all travel movements and product exchanges.
We hence compare this new formulation with an existing formulation in order to validate the
strength of our method. Our conclusions summarizes our main contributions.

3



Chapter 1

Literature Review

As we presented in the Introduction, warehouse management is an important area of research.
There is a large number of factors that have forced a continuous optimization of distribution
centers. As presented by Lu et al. [2016], one of them is reduced inventory combined with the
reduction of response time which put great pressure on the logistics network [Agarwal et al.,
2006, Naim and Gosling, 2011]. We see greater number of third parties logistic providers
(3PLs) managing larger, more complex warehouses with multiple customers with different
requirements [Selviaridis and Spring, 2007]. Finally, one of the most important factors is the
constant rise of e-commerce, in which a large number of small orders are managed directly
by warehouses [Gong and De Koster, 2008, Davarzani and Norrman, 2015, De Koster et al.,
2017]. These factors push researchers to develop even better techniques in response to growing
needs. At the DC level, this is achieved by optimizing order preparation.

As presented in Park [2012], an order is a list of one or more lines, each line representing a
needed stock-keeping-unit (SKU), going to a specific customer/destination. A line is a separate
item of supply on a transaction document. A SKU represents one unique inventory item in the
smallest physical unit handled in a warehouse. Thus, an item line and the requested quantity
should be expressed in terms of SKUs. Customer orders can be converted into one or many
pick lists for the picking operation within the warehouse. A pick list is a list of one or more
pick lines that typically consists of a SKU, its quantity to be picked, and the storage location.

Order picking is a crucial operation to optimize if we want to minimize costs and preparation
time. Since orders are increasingly coming directly to the warehouse via the online shopping,
efficiency must always be greater. Considering a high number of orders with few products
from the online shopping habits, it is easy to imagine how complex and dynamic the order
picking becomes. Even if the time between an order release and the time to reach its final
customer destination is always smaller, there is still ample opportunities for errors in accuracy,
completeness and time lost [De Koster et al., 2007]. This is true even when an order has just
two products to pick, so when an order contains hundreds of products, this error probability
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becomes important.

There can be more than one product family in a DC and it may imply several technical and
practical constraints. Some companies, like supermarkets, sell different product families. They
sell food and products such soaps, cleansers, frozen, oil, etc. One does not want to mix some
products in the same bags. The problem is exactly the same in the DC. The picking operation
should consider this type of practical constraints in order to avoid, for example, contamination
of products. To facilitate these operations, products must be positioned strategically within
aisles and picking wisely.

The literature on warehousing operations is so vast that it is almost impossible to cover.
Davarzani and Norrman [2015] perform a literature review to identify distinct research areas.
Some of these are illustrated in Figure 1.1. This framework is based on material handling
operations such as reception, storage, picking, packing, and shipping products and support-
ive entities like strategy, infrastructure design, human resource management, technology and
performance evaluation. Most of the literature focus on the material handling part.

two products to pick, so when an order contains hundreds of products, this error probability
becomes important.

I THINK WE COULD REMOVE THIS NEXT PARAGRAPH
There can be more than one product family in a DC and it may imply several technical and
practical constraints. Some companies, like supermarkets, sell different product families. They
sell food and products such soaps, cleansers, frozen, oil, etc. One does not want to mix some
products in the same bags. The problem is exactly the same in the DC. The picking operation
should consider this type of practical constraints in order to avoid, for example, contamination
of products. To facilitate these operations, products must be positioned strategically within
aisles and picking wisely. We now see these kinds of constraints in warehouse management.

The literature on warehousing operations is so vast that it is impossible to cover. Davarzani
and Norrman [2015] perform a literature review to identify research areas covered in the
literature. Some of these area are illustrated in Figure 1.1. This framework is based on material
handling operations like receive, store, pick, pack and ship products and supportive entities
like strategy, infrastructure design, human resource management, technology and performance
evaluation. Most of the literature focus on the material handling area.

Table 1.1 – Framework for warehousing research categories

Operation strategy
Infrastructure design

Human resource mangement
Technology

Performance evaluation
Receiving Storage Order picking Shipping

The classification of only material handling problem is also very vast, from strategic decisions
to operational ones. Van Gils et al. [2017b] offer a recent state-of-the-art review and classifica-
tion of the order picking problems. Some examples of these problems are presented in Figure
1.1.

This chapter makes a literature review of some important DC material handling and decision
making problem. It begins by an explanation of the most important warehouse operations,
using the flow of material as a guideline, as illustrated in the last row or Figure 1.1. More
specifically, it presents a review of the order picking problem and its recent advances in the
literature. This chapter will also review warehouse design problems that have an important
impact on the order picking performance. See De Koster et al. [2007], Le-Duc [2005] and
Van Gils et al. [2017b] for an excellent overview of the different warehouse functions and
classification.

5

Figure 1.1 – Warehousing reasearch area, inspired by [Davarzani and Norrman, 2015]

The classification of only material handling problems is also very vast, from strategic decisions
to operational ones. Van Gils et al. [2017b], inspired by De Koster et al. [2007], offer a recent
state-of-the-art review and classification of the order picking problems. Some examples of
these problems are presented in Figure 1.2 and summarize the material handling problems
classification for a reasonable part of the literature within this spectrum. This chapter presents
an overview of some of these decision problems. Particularly the layout of the storage area
for the strategic point of view, the storage assignment for the tactical one and ending with
batching and order picking routing problems for the operational decisions.

This chapter begins with an explanation of the flow of material within the warehouse. Most of
these constitutes what is illustrated in the last row of Figure 1.1. Afterwards, it presents several
order picking methods employing humans or machines to operate and the main objectives and
components of the picking operation. It reviews important decisions on warehouse design that
have an impact on the order picking performance. Finally, the chapter concludes with an
overview of the products reassignment problem literature. See De Koster et al. [2007], Le-Duc
[2005] and Van Gils et al. [2017b] for a more exhaustive overview of the different warehouse
functions and classification.
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  Strategic

  Tactical

  Operational

x Level of automation
x Material handling equipment
x Layout of the storage area

x Ressource dimension
x Zoning 
x Storage assignment

x Batching
x Routing/sequencing
x Job assignment

Figure 1.2 – Order picking problems classification, inspired by [Van Gils et al., 2017b]

1.1 Distribution center functions and operations

Products have to pass by a series of operations before getting ready to be shipped to the
final customer. Figure 1.3 shows the typical functional areas and flows within warehouses as
presented in Tompkins et al. [2010]. The main warehouse activities include: receiving, transfer
to the storage reserve and/or picking area, order picking, accumulation/sorting and shipping.
We can also add the cross-docking within accumulation and sortation area.

The receiving activity includes the unloading of products from the transport carriers, updating
the inventory record, labelling and inspection to determine whether there is any quantity
or quality problems. It is the activity that ensures products to enter appropriately in the
warehouse and to be available for positioning and picking. In some large volume industries,
such as food retail, this activity is important as there are many different deliveries to the
warehouse each day.

The transfer to the reserve area (in Figure 1.3: Direct put away to reserve/primary) involves
the movement of incoming products to storage locations. It may also include repackaging (in
order to fit with the own company packages), and physical movements from the receiving docks
to different functional areas. Before transferring the product to the picking location or the
reserve, a storage assignment policy should have been decided. This consists of determining an
ideal location for each product within the reserve or the order picking area. This has a direct
impact on the performance (time, distance, errors) of the picking operation [Petersen, 1997]
and on the space utilization of the DC. In this step, it is usual to update location information
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the shipping docks (short stays or services may be required but no order picking is 
needed).  

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.1   Typical warehouse functions and flows (Tompkins et al., 2003) 

 
• The storage function is the physical containment of products while they are awaiting 

customer demands. The form of storage will depend on the size, quantity of the 
products stored, and the handling characteristic of products or their product carriers 
(Tompkins et al., 2003).  

• The information transfer is the third function of warehousing; it occurs simultaneously 
with the movement and storage functions. Warehousing information (inventory level, 
stock-keeping locations, customer data, inbound, outbound shipments, etc.) is not only 
important for administering the warehouse operations itself but also for the efficiency 
of the whole supply chain.  

1.2  Order picking 

1.2.1 Order picking systems 

As previously mentioned, order picking involves the process of clustering and scheduling 
the customer orders, releasing them to the floor, the picking of the items from storage 
locations and the disposal of the picked items. Many different order picking (OP) system 
types can be found in warehouses (often multiple OP systems are employed within one 
warehouse). Figure 1.2 distinguishes OP systems according to whether humans or 
automated machines are used. The majority of warehouses employ humans for order 
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Figure 1.3 – Typical warehouse functions and flows [Tompkins et al., 2010]

of products. Section 1.4 details the storage assignment problem.

Order picking involves the determination of the best way to pick all the items specified on
one or many picking lists. This is the main subject of this chapter and Sections 1.2 and 1.3
are devoted to more extensive explanations of this step and its research literature. Section 1.4
explains a series of warehouse problems that have an important impact on the order picking
process. When a reserve area is used, replenishment activity of the order picking area (fast
pick area) will take place. The order picking activities will reduce inventory in this area and
it will have to be replenished continuously. Hackman et al. [1990] develop a model to decide
which products should be assigned to the picking area and how much space must be allocated
to each of the products given a fixed storage capacity of the forward area. Frazelle et al. [1994]
extend the problem and the solution method of Hackman and Platzman [1990] by treating the
size of the forward area as a decision variable. Yu and De Koster [2010] study this problem in
a dynamic environment where products are continually relocated.

The consolidation of orders is a necessary activity in which orders will be picked in batches
(order batching). An order batching procedure is often necessary when the DC receives a lot
of small orders. It allows to reduce the number of picking tours and the movement within
aisles. This activity involves sorting the orders after the picking. We discuss this in more
details Section 1.4.3.

After the picking, orders often have to be packed and stacked on the right unit load (e.g.,
a pallet). The products carried by the order pickers are consolidated and packed according
to the original orders. At this step, the link is made between the warehouse and external
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distribution systems. The classic problems of this step are the selection of handling units, the
minimization of damage, the handling minimization between picking and loading of carriers
and management of queues at loading docks. In this phase, orders are sorted according to
customers and/or delivery vehicles, which in turn are assigned to different loading docks.
Everything must be in the right place at the right time. Vehicle loading may be a complex
problem when using a trailer with a single rear door (no lateral door). In this case, orders
must be positioned in the trailer according to the visits sequence of the delivery route (first-in
last-out). We can also see cross-docking operations performed when the received products are
transferred directly to the shipping docks (no order picking is necessary).

1.2 Order picking

As previously mentioned, order picking involves the process of batching customer orders (when
applicable), releasing them (picking list queue) and picking SKUs from storage locations.
There are different order picking strategies that can be used by a warehouse. In some ware-
houses, there can be more than one of these (different equipment, different product families,
etc.). Before discussing the literature on the order picking optimization, let explains several
systems as presented in De Koster et al. [2007]. Figure 1.4 separates the order picking methods
in two main families: manual and automated systems.

Order picking methods

Employing 
humans

Employing 
machines

Picker-to-
part Put system Parts-to-

picker

Low-level
High level

AS/RS
Mini-load
Carousel

Automates 
picking

Picking 
robots

A-frame
Dispenser

dd

Figure 1.4 – Classification of order-picking systems (based on De Koster [2012], De Koster
et al. [2007])
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Figure 1.5 – Classification of picker-to-parts systems based on batching and zoning

The majority of warehouses use the manual (human) system. Among these, the most common
is the picker-to-parts system. In this system, order picker moves with its picking vehicle within
the aisles. There are two main types of picker-to-parts systems. The first one is the low-level
picking where operators pick requested items from storage racks or bins (shelving storage)
at the ground level. Because of the labour intensity, low-level systems are sometimes called
manual-pick systems. Chapter 3 presents an example of low-level picking system. Some other
order picking systems have high storage racks (more than one level). In this case, pickers
travel to the pick locations on board of a lift truck or crane (man-aboard). The picker stops
in front of the appropriate pick location and uses his vehicle to reach the target bin. Chapter
2 presents an application of high-level order picking problem.

Figure 1.5 shows variants of picker-to-part systems. The first basic variants is either the
picking is done by group of articles (batch picking) or by picking by order (discrete picking).
In the picking by group of articles, multiple articles from several orders (a batch) are picked
simultaneously by a picker. Another variant of the picker-to-part system is the utilization
of picking zones. The picking area is separated in multiple zones with their own picker and
groups of products. We often see this kind of zone when the warehouse contains different
families of products (liquid, frozen, heavy, etc.).

When no batching or zoning are used with a picker-to-parts system, we have a discrete order
picking in which each order picker retrieve one complete order at a time. If orders are splitted,
using batching, one can ensure the order integrity using a sort-while-pick or a pick-then-sort
system. When using zoning of the picking area, the order integrity is ensured by a system
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such as the pick-and-pass. A parallel order picking can be used when using both batching
and zoning. In this, all order pickers start at the same time with their part of a set of orders.
Each order picker picks the products of those orders from his zone. Accumulation is performed
afterwards.

Parts-to-picker systems include automated storage and retrieval systems (AS/RS), using auto-
mated moving cranes that retrieve SKUs and bring them to a pick position. One disadvantage
of this system is that in many cases a unit load is moved to the picker. As the picker may not
need such a quantity, the automated system has to replace the remaining products. This kind
of AS/RS can work under different operating modes: single, dual and multiple command cy-
cles as presented in Sarker and Babu [1995]. The single-command cycle means that one load is
moved from the input/output (I/O) location to a rack location and return empty or vice-versa.
In the dual -command mode a load is moved from the I/O to the rack location and another
load is retrieved from the rack to the I/O during the same cycle. In multiple-command cycles,
the AS/RS can pick up and drop off several loads in one cycle (multiple compartments). Other
systems use modular vertical lift modules, or carousels that also offer unit loads to the order
picker, who is responsible for taking the right quantity. With new technological advances, we
also see the emergence of ingenious systems. For example, the automated material handling
solution such as the Kiva Mobile Robotic using a fleet of mobile robotic drive units to move
shelves to the picker. To pick orders, operators stand at stations around the perimeter of the
building while inventory is stored on mobile shelving racks, called pods. Large companies like
Amazon are using this kind of new technology [Kirsner, 2012].

The complete automated picking and picking with robots system is much less used in practice
and therefore much less present in the scientific literature. These methods are used in very
technologically advanced warehouses and are very expensive. They are used in very special
cases as with valuable, small and delicate items [De Koster et al., 2007].

In the order picking part of this thesis (Chapters 2 and 3), we concentrate on picker-to-parts
picking systems employing humans with multiple picks per route.

1.3 Order picking objectives and components

The most common objective of order picking systems is to maximize the service level (often
seen as minimizing the lead time) subject to resource constraints such as labor, machines,
and capital [Goetschalckx and Ashayeri, 1989, Bartholdi and Hackman, 2011]. As mentioned
before, the order picking process must ensure that orders will be prepared with accuracy and
on time. An order must be prepared on time in order to leave sooner with the first available
carrier. If it cannot be prepared on time, the order will have to wait until the next shipping
period. Short picking times give the opportunity of handling late changes and offering short
delivery windows. Minimizing the lead time is, therefore, a need for any order picking system.
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Figure 1.6 shows the picking time components in a typical picker-to-parts warehouse. De Koster
et al. [1999a] and Dekker et al. [2004] show that activities other than travel may substantially
contribute to picking time. The travel time part remains the main component of the total
picking operation time. According to Bartholdi and Hackman [2011] travel time is a waste.
It costs labor hours but does not add any kind of value. It is, therefore, the first candidate
for improvement. Figure 1.6 shows that the travel time represents 50% of the total time, and
the search time (often considered in the travel time) up to 20%. With this, it is possible to
say that 70% of the total-picking time is not directly related to material handling. For these
reasons warehousing operation and order preparation studies are needed to reduce the travel
time.
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Figure 1.6 – Typical distribution of an order picker time (based on Tompkins et al. [2010])

For manual order picking systems, the travel time is an increasing function of the travel
distance as presented in Jarvis and McDowell [1991], Hall [1993], Petersen [1997, 1999], Rood-
bergen and De Koster [2001a,b], Petersen and Aase [2004]. It is then equivalent to reduce
the distance or time. It has been shown that minimizing the total travel time, the main ob-
jective minimized in most researches, is equivalent to minimizing the average time per route.
Another important objective is minimizing the total cost, that may include both investment
and operational costs. Other objectives could be the minimization of the time per order, the
use of equipment and labor [De Koster et al., 2007]. Recently, some authors consider human
factors in the optimization objective [Battini et al., 2017, Grosse et al., 2017].

1.4 Decisions affecting order picking operations

There are several design decisions that directly or indirectly affect the performance of the order
picking system. These families of warehouse design problems are often seen at the tactical
or operational levels [Van Den Berg, 1999, Rouwenhorst et al., 2000]. Common decisions are
those related to layout design (dimensioning of storage systems), storage assignment, batching,
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zoning, routing and order accumulation/sorting methods. The layout design and the storage
assignment are more tactical decisions while the others are more operational. These decisions
are what we call the design and planning of warehousing systems. They have been largely
studied for warehousing systems in Ashayeri and Gelders [1985], Cormier and Gunn [1992],
van den Berg [1999], Rouwenhorst et al. [2000], Roodbergen [2001], Gu et al. [2010b] and
Roodbergen et al. [2015]. Combining the decision of tactical and operational planning horizons
in a single model is still intractable [De Koster et al., 2007]. Thus, researchers limit their scope
to one or few decision areas simultaneously. In practice, decisions are also made sequentially,
but we see innovative research combining two or more control policies such as layout, storage
policies and routing (tactical and operational) in the same methodology [Roodbergen et al.,
2015]. Sprock et al. [2017] propose and formalize an up to date hierarchical design decision
support methodology based on decomposing the design problem into a set of subproblems.
In this section, we explain each of these decisions in more details for a manual order picking
system.

1.4.1 Layout design

The layout design (physical arrangement of the warehouse, including the reserve and picking
area) contains multiple decisions impacting the order picking. It involves locating the various
departments illustrated in Figure 1.3 (receiving, picking, storage, shipping, etc.). The problem
is to find a layout setup in which the material handling flow/costs are minimized. Meller and
Gau [1996] and Tompkins et al. [2010] make a description and review of several layout design
procedures. Figure 1.7 from De Koster et al. [2007] presents decisions within the order picking
area. The designer has to determine the length and number of aisles, where to locate the I/O
point (depot), the presence of cross-aisles, and if so, how many and where. He also chooses the
type of racking, their number and their positioning. The objective is to find the best picking
layout in order to minimize the order picking costs.

Roodbergen et al. [2008] and Gu et al. [2010a] present the steps of a typical design project for
a picking area. First, one must determine the area and the choice of shelving and handling
equipment. Then the physical structure of the aisles must be decided (wide, narrow, one-
way) and finally the control policies managing the picking operations. Control policies are for
example storage assignment procedures and routing strategies. Roodbergen [2001] proposed
a non-linear objective function with the average travel time in terms of the number of picks
per route and pick aisles. This helps determine the aisle configuration for random storage
warehouses that minimizes the average tour length. Gu et al. [2010a] present key performance
indicators (KPI) that are important for both warehouse design and operations. Evaluating
performance in terms of cost, throughput and use of space provides feedback on the design
quality. These generic performance evaluation and design steps are described in more detail
in a review by Baker and Canessa [2009]. Roodbergen et al. [2015] present different design
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cussed in Ashayeri and Gelders (1985), Cormier and
Gunn (1992), Cormier (1997), Van den Berg (1999),
Van den Berg and Zijm (1999) and Rouwenhorst
et al. (2000). Issues in design and control of order-
picking processes in particularly are mentioned in
Goetschalckx and Ashayeri (1989), Choe and Sharp
(1991), Roodbergen (2001) and Wäscher (2004). An
extensive bibliography on order-picking systems is
gathered in Goetschalckx and Wei (2005) and Rood-
bergen (2001). As many papers on the order-picking
problem have appeared recently, most of the above-
mentioned overview publications are not up-to-date.
Wäscher (2004) chooses a similar approach to ours
and discusses storage assignment, order batching
and picker routing problems, but treats only a small
fraction of the available literature.

3. Layout design

In the context of order picking, the layout design
concerns two sub-problems: the layout of the facil-
ity containing the order-picking system and the
layout within the order-picking system. The first
problem is usually called the facility layout problem;
it concerns the decision of where to locate various
departments (receiving, picking, storage, sorting,
and shipping, etc.). It is often carried out by taking
into account the activity relationship between the
departments. The common objective is minimising
the handling cost, which in many cases is repre-
sented by a linear function of the travel distance.
We refer to Tompkins et al. (2003) for a description
of several efficient layout design procedures and to
Meller and Gau (1996) for a general literature over-
view on this subject. Furthermore, Heragu et al.
(2005) give a model and heuristic for sizing of areas
and assignment of products to areas. In this paper,
we focus on the second sub-problem, which can also
be called the internal layout design or aisle configura-
tion problem. It concerns the determination of the
number of blocks, and the number, length and
width of aisles in each block of a picking area (see
Fig. 5). The common goal is to find a ‘best’ ware-
house layout with respect to a certain objective
function among the layouts which fit a given set of
constraints and requirements. Again, the most com-
mon objective function is the travel distance.

Literature on layout design for low-level manual
order-picking systems is not abundant. An early
publication, albeit focussing on unit loads, is by
Bassan et al. (1980). They compare two different
parallel-aisle layouts for handling (including travel)

and layout costs. Rosenblatt and Roll (1984), using
both analytical and simulation methods, study the
effect of storage policy (i.e. how to assign products
to storage locations) on the internal layout of ware-
house. Rosenblatt and Roll (1988) examine the
effect of stochastic demands and different service
levels on the warehouse layout and storage capacity.
Recently, Roodbergen (2001) proposed a non-linear
objective function (i.e. average travel time in terms
of number of picks per route and pick aisles) for
determining the aisle configuration for random stor-
age warehouses (including single and multiple
blocks) that minimises the average tour length. Also
considering minimisation of the average tour length
as the major objective, Caron et al. (2000) consider
2-block warehouses (i.e., one middle cross aisle)
under the COI-based storage assignment (see Sec-
tion 4 for a discussion of storage assignment meth-
ods), while Le-Duc and De Koster (2005b) focus on
the class-based storage assignment. For both ran-
dom and volume-based storage assignment meth-
ods, Petersen (2002) shows, by using simulation,
the effect of the aisle length and number of aisles
on the total travel time. Much of the existing knowl-
edge on warehouse layout is captured in the Eras-
mus-Logistica website (http://www.fbk.eur.nl/OZ/
LOGISTICA) that can be used to interactively opti-
mise warehouse layouts for various storage and
routing strategies.

Compared to manual-pick order-picking sys-
tems, the layout design problem for unit-load

depotLength and 
number of 
aisles? 

Cross aisle: yes 
or no? If yes: 
how many and 
where?

Location of 
depot?

Storage blocks:
how many? 

Fig. 5. Typical layout decisions in order picking system design
(top view of storage area).

R. de Koster et al. / European Journal of Operational Research 182 (2007) 481–501 487

I/O
I/O

soso:

Figure 1.7 – Example of layout decisions for the order picking problem [De Koster et al., 2007]

policies for more details and apply them to a real case study to determine the best aisle
configuration and control policy. They develop a simulation tool to estimate the average order
picking distances including the innovative order picking layouts proposed by Gue and Meller
[2009] and Gue et al. [2012]. These layouts have new type of cross-aisle and fishbone aisles
which result in reduced travelling distance to retrieve SKUs, and consequently in improved
efficiency in the storage area. The layout design problem for AS/RS has also received a lot
of attention. For more details, readers are directed to Sarker and Babu [1995], Johnson and
Brandeau [1996], van den Berg [1999], Le-Duc [2005], De Koster et al. [2007], Park [2012], Roy
et al. [2017].

1.4.2 Storage assignment policies

After being received, products must be allocated to storage locations before the order picking
process can take place. A storage assignment policy is a set of rules to determine the allocation
of a SKU to a physical location. Heskett [1963] was one of the first to formalize a relation
between products location and their characteristics. He established the relation between the
number (or volume) of products to be allocated and their demand frequency. A popular
method is to separate the picking zone in two areas: a forward area (also called fast-picking
area) and a reserve area. The forward area is designed for fast picking operations while the
reserve is used to replenish the first one. In general, the forward area is smaller in order to
increase product density and to minimize the picking distance and does not contain all the
products. The selection of products in the forward area and its configuration have a major
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impact on the efficiency of picking operations [Walter et al., 2013]. As Gu et al. [2010a]
showed, the problem of product selection (and how many) to be placed in the forward area is
comparable to a backpacking problem and its resolution is then NP-hard.

There exists several classical storage assignment policies as presented in Hausman et al. [1976]
and reviewed in Roodbergen [2012] and Kofler et al. [2014]:

— dedicated storage assignment,

— random storage assignment,

— full-turnover-based storage assignment and,

— class-based storage assignment.

These strategies can be adapted in the case of multiple blocks, where aisles are divided by
cross-aisles (see Figure 1.7). In a dedicated storage policy, a specific location is reserved for
each product. Products will always be placed in their respective locations. This minimizes the
need to use an information system to locate products because the picker knows by experience
each location. In the random assignment policy, products are assigned to a random location
(with equal probability) in the warehouse. When a location has been emptied (by picking op-
erations), any new incoming product can take its place. If there are multiple empty locations,
they have equal probability to be selected [Petersen, 1997]. Under the closest open location
policy, a new product is always placed at the nearest empty location. This random storage
policy is regularly used in practice because it allows to use the warehouse evenly and avoid
congestion. In return, it requires the use of a system for locating products in the warehouse
in order to carry out the picking operation [De Koster et al., 1999a]. Using a random storage
with the closest open location strategy typically leads to a warehouse where racks are full
around the I/O and gradually emptier towards the back (if there is excess capacity).

The full-turnover-based storage policy needs more information about products. They are
ranked from the most requested to the least. Locations are ranked by distance to the I/O point
location. Then the products are assigned by respecting these two rankings, the most requested
product in the best location. Periodic relocation should be made depending on promotions
and product life cycles, but in general, this policy is dedicated. Unlike the random method,
the use of the warehouse will be less uniform and may cause congestion in the high-sales zone.

A class-based storage policy combines the random method and the full-turnover-based method.
It divides all the products into several groups or classes. Each class has its own storage zone.
The assignment of locations is in general random within a class zone. This saves some internal
congestion problems. Classes can be created in different ways. The most common method is
to separate products according to their demand, i.e., a Pareto ABC classification. The Pareto
law interpretation for our problem suggests that 20% of products tend to represent 80% of
sales. These fast-moving products are referred as A-items. The following are the B-items
and the least requested are the C-items. Each category (A, B and C) is assigned to a zone.
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Then the sizing of each zone must be done accordingly. Note that the number of zones is not
restricted.

Figure 1.8, from Roodbergen [2012], shows four examples of configurations of class-based
storage policy with ABC classification. Black squares are locations occupied by A-items, dark
gray are for B-items and light grey for C-items. It shows four ways to assign products to
locations in a class-based storage policy.

Within-aisle storage

Nearest-subaisle storage

Depot

Across-aisle storage

Nearest-location storage

Depot

Depot Depot

Fig. 7.3 Four ABC-storage assignment methods. Black locations indicate A-items, dark gray
locations indicate B-items and light gray locations indicate C-items

146 K. J. Roodbergen

Figure 1.8 – Four ABC-storage assignment methods. Black locations indicate A-items, dark
gray locations indicate B-items and light gray locations indicate C-items [Roodbergen, 2012]

Across-aisle storage is a policy where the A-items are assigned to the front-most locations of
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each pick aisle. C-items are stored at the back of each pick aisle and B-locations are stored
in-between. With the within-aisle storage, all products from the same class are in the same
aisle (from the front cross-aisle to the rear one). The pick aisles nearest to the I/O (depot)
contain the A-items. Jarvis and McDowell [1991] give more details on this policy and obtain
good experiment results with it. The nearest-subaisle storage assumed that all items in a
subaisle belong to the same class, meaning that we have multiple blocks (separating the aisle
in 2 or more subaisles). The subaisles with their center closest to the I/O contain the A-items.
This is a variation of the within-aisle storage rule. In the nearest-location storage, the A-items
are assigned to closest locations from the I/O point. One aisle (or subaisle) may contain more
than one class. This policy storage has been proved to minimize the travel time of a unit load
picking [Petersen, 1999].

For single-block layouts, Jarvis and McDowell [1991] suggest that each aisle should contain
only one class, resulting in the within-aisle storage policy. Petersen [1999, 2002], Petersen and
Schmenner [1999], Petersen and Aase [2004] and Petersen et al. [2004] compare multiple con-
figurations and policies for single-block layouts. The simulation experiments from Petersen
and Aase [2004] demonstrates that methods dividing products into classes (such the ABC
method) require significantly fewer movements than for random storage. However, if these
methods reduce travel, they also increase the administrative workload associated with ware-
house management and information management [Petersen et al., 2004]. In addition, multiple
pickers who frequently work in the same picking area may generate congestion [Gu et al., 2007].
A system with a large number of orders and multiple pickers will generate a congestion that
may slow down the picking operation [Gue et al., 2006]. Pan et al. [2012] present a simulation
and approximation methods to compare several storage assignment strategies in presence of
congestion with a given order routing strategy.

Finally, a class-based system with one class corresponds to a random storage system and a
system with n classes is a full-turnover system, in which n is the number of SKUs.

It is often possible to identify some links between products, such that some of them are regu-
larly ordered together. Products that are frequently ordered at the same time are called cor-
related or affine [Garfinkel, 2005, Kofler et al., 2014]. It is then straightforward to understand
that placing these products near each others will decrease the average travel distance/time.
Some call this family grouping. When a product from this family of correlated products is out
of stock, in sales, etc., other products will be impacted. This introduces some dynamic aspects
of storage assignment management, called the dynamic space allocation problem (DSAP) in
which managers try to dynamically move products according to a set of insights. For exam-
ple, consider a set of table and chairs in which the table is backordered. We know that the
demand for this set will be lower and we have no interest to keep the chairs of this set in a
good position. We can exchange its location with a product that we know will replace this
one. It is an example of DSAP with products having affinity.
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1.4.3 Order batching

When an order contains a large number of SKUs, it can be picked individually, i.e., a single
pick list corresponds to this order. However, when orders are small, it is possible to reduce the
travel times by picking a group (batch) of orders at the same time. Order batching corresponds
to grouping two or more orders in a single picking list [Ruben and Jacobs, 1999, De Koster
et al., 2007, Roodbergen and Vis, 2009]. The crucial question is therefore to determine how
many orders and which orders to combine into a batched picking list in order to minimize total
work and time [Park, 2012] while respecting operational constraints. This problem is a variant
of the bin packing problem, making the order batching an NP-hard problem [Gademann and
Velde, 2005].

Since this problem is hard to solve to optimality, many researchers have worked on heuristic
procedures. For instance, Chen and Wu [2005] use clustering heuristics to batch orders with
the aim of maximizing similarity of orders within a batch. There exists two main ways to
regroup orders with similar characteristics. The first one assigns each order to a batch based
on the distance between each other. This is what we call proximity batching. Zhang et al.
[2016] present an updated literature list of heuristic methods for the batching problem. The
most popular proximity batching heuristics is the seed algorithm [De Koster et al., 2007]. The
seed algorithm constructs batches in two phases: seed selection and order congruency. The
seed selection has a great impact on the given solution. We can select the seed order with
different rules: random order, the largest one, longest estimated pick tour, the farthest one,
etc. De Koster et al. [1999b] present a large set of seed selection rules. The seed algorithm in
an automated environment is considered in Hwang and Lee [1988], Gibson and Sharp [1992],
Pan and Liu [1995] and Ruben and Jacobs [1999]. For a manual order picking system, this
heuristic is considered in Rosenwein [1994], De Koster et al. [1999a], Ruben and Jacobs [1999],
Chen and Wu [2005], Ho and Tseng [2006] and Ho et al. [2008].

Another heuristic rule is the time window batching. It is used when the picking operation is
made at the same time as orders enter the system (often with due dates). In this case, orders
with the same arriving time (or the same due date) are grouped in the same pick list. In
most cases, the bin-packing first-fit rule is used, but different sorting rules are also presented
in De Koster et al. [2007]. The time-window batching is considered in Tang and Chew [1997],
Chew and T. [1999], Le-Duc and De Koster [2007], Gong and De Koster [2008] and Lu et al.
[2016] with a fixed number of orders per batch and stochastic order arrivals. Henn [2012] and
Bukchin et al. [2012] adapt some determinist batching approaches for a dynamic environment
with a fixed time period length. These researches do not consider due dates for orders. When
due dates are considered, the main objective is to minimize the total tardiness of all orders.
Elsayed et al. [1993] and Elsayed and Lee [1996] consider the batching problem aiming at
minimizing the tardiness.
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Several recent studies have been made on metaheuristic frameworks which aim to improve the
batching solution (from the seed or time-windows approaches). Pan et al. [2015] and Koch
and Wäscher [2016] present two genetic algorithm approaches, Matusiak et al. [2014b] work
on a simulated annealing, Henn and Wäscher [2012] with a tabu search and Henn and Schmid
[2013] with an iterated local search algorithm. Žulj et al. [2018] present a hybrid of adaptive
large neighborhood search and tabu search. For a more complete list of metaheuristics used
for the batching problems, see Zhang et al. [2016].

1.4.4 Routing/sequencing of picking

Until now, we have presented problems impacting the order picking performance, but we have
not yet explained how pickers move across the warehouse and aisles. They follow a given route
(or sequence) given by a pick list. This pick list determines a sequence of locations that reduces
the travel time (or any other criteria). In picker-to-parts systems, this problem of visiting a
given set of locations as quickly as possible is a variant of the travelling salesman problem
(TSP), which is another NP-hard problem [Lawler et al., 1985, Laporte, 1992]. Knowing
locations of a set of SKUs and the distances between each other, it is possible to create
a routing graph as in the TSP. The distance computation remains different because of the
physical layout of the DC where pickers move within aisles. In a special case of TSP with
narrow aisles (no lateral movement within an aisle) and one block, Ratliff and Rosenthal
[1983] show that we can use a dynamic-programming method to solve the problem in linear
running time with the number of aisles and the number of pick locations. This method has
been extended by De Koster and Van der Poort [1998] to determine the shortest order picking
routes in a warehouse of one block with a decentralized depot (example: deposit products at
the end of each aisle). Roodbergen and De Koster [2001b] extended again this method and
developed an algorithm for a warehouse with two blocks (one cross-aisle). Clearly, the distance
will be longer when the distance between each side of the aisle is non-negligible (wide aisle).
Hall [1993] and Goetschalckx and Ratliff [1988] demonstrate that it still easy to obtain optimal
solutions for the traversal of a single aisle. Some classical heuristic methods are presented in
Hall [1993], Petersen [1997] and Roodbergen [2001] in the case of one-block warehouse. Most
popular methods are presented in Figure 1.9. The bold squares represent SKUs to be picked,
and the dashed arrow as the routing path of the picker.

The first heuristic, and probably the most used one, is the S-shape heuristic also called the
traversal heuristic. It is the simplest one to apply in practice. Routing pickers by using the
S-shape method means that any aisle containing at least one pick is traversed entirely. An
aisle without picks is not entered (it is the same thing for all the other heuristics). From the
last visited aisle, the order picker returns to the depot. Another simple heuristic is the return
method in which the picker enters and leaves an aisle from the same end.

In the mid-point heuristic we divide the warehouse into two halves. Picks on the front side
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Figure 1.9 – Classical heuristic methods for the sequencing problem [Roodbergen, 2001]

are reached by the front aisle, and picks on the back side reached from the rear aisle. The
picker only crosses through the first and last aisles of the warehouse containing products from
the pick list. Intermediate aisles are never crossed completely. According to Hall [1993], this
method performs better than the S-shape when the number of picks per aisle is small.
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In the largest gap heuristic, the picker follows the same idea as the mid-point, but instead of
traversing the aisle up to the middle, he enters the aisle up to the item that will leave the
largest gap for the next item in that aisle [Petersen, 1997]. This heuristic tries to maximize the
parts of the aisles that are not traversed (and which have no reason to be). The picker returns
and leaves the aisle from the same side (back or front) used to enter it. Again, the first and
last aisles are completely crossed. The largest gap method outperforms the mid-point method
[Hall, 1993] in most cases. However, from the implementation point of view, the mid-point
method is simpler.

The combined heuristic approach is based on the composite heuristic of Petersen [1997]. It
combines the best features of the return and traversal strategies. It minimizes the travel dis-
tance between the farthest picks in two adjacent aisles, and determines for each aisle whether
it is shorter to travel the aisle entirely (S-shape strategy) or to make a turn in it (the return
strategy). For the combined method, aisles with picks are either entirely traversed or entered
and left at the same end. For each visited aisle, the choice is made by using dynamic program-
ming. The reader is directed to Roodbergen and De Koster [2001b] and Roodbergen [2001] for
a more comprehensive study of these methods. The combined heuristic is extended to adapt
to multi-block warehouses by Roodbergen and De Koster [2001a], named the combined+ in
which we force to visit aisles from the right to the left in the block closest to the starting
point. The combined+ also allows the picker to start within another than the most left aisle
and use the middle aisle afterwards.

Another classical heuristic is the aisle-by-aisle method as presented in Vaughan and Petersen
[1999]. Order picking routes resulting from this heuristic visit every pick aisle exactly once
and come back to the front aisle (never use the rear aisle). All items in the first aisle are
picked, then all items in pick aisle 2, and so on. When there is a middle (cross) aisle, dynamic
programming is used to determine the best cross-aisles to take to pass from an aisle to another.

Since there exists several routing methods for the order picking, it is important to know which
one performs better and in which conditions. Hall [1993] considers a single-block warehouse
where products are randomly placed. He compared the largest gap and the S-shape heuristics
and concludes that the largest gap performs better with a pick density fewer than 3.8 (average
number of picks per aisle). With a greater density the S-shape outperforms the other method.
Petersen [1997] extends this study within the same environment, but compare the six methods
presented in Figure 1.9 (except that the combined heuristic is replaced with the composite one,
since it was developed later). He concludes that the best heuristic solution (no matter which
one is) is on average 5% over the optimal solution and the best overall heuristic procedures are
the composite and largest gap methods, which were 9% to 10% over the optimum. De Koster
and Van der Poort [1998] and De Koster et al. [1998] use simulations to compare the optimal
and S-shape methods for several single-block random storage warehouses. They find that the
S-shape provides routes which are, on average, between 7% and 33% longer than the optimum
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solutions. Le-Duc and De Koster [2005, 2007] compare the S-shape and return methods in
two-block warehouse. They show that the return method gives better results with short pick
lists.

Roodbergen and De Koster [2001a] perform a large comparison of six routing methods (opti-
mal, largest gap, S-shape, aisle-by-aisle, combined and combined+), in 80 warehouse instances
with different numbers of aisles, cross-aisles and pick list size. These authors show that the
combined+ gives the best results in almost all instances. The gaps between the results from
the combined+ and the optimal method are large in the case of many aisles and/or large pick-
list sizes; they vary between 1% and 25%. They conclude that there is no robust heuristic that
is good for all situations. A specific heuristic may be good for one situation but may perform
poorly in other situations. This is clearly illustrated in Chapter 3 in which those methods
are tested on a heavy constrained environment and perform poorly. We can mention that
according to the quality of TSP algorithms, the routing problem is no more really relevant for
such classical warehouses with no operational constraints.

Optimizing order picking problems sequentially may yield a suboptimal overall warehouse
performance [Van Gils et al., 2017b]. Recently, the benefits of solving the order batching
and the routing in a more integrated way were demonstrated in Scholz and Wäscher [2017]
and Valle et al. [2017]. Scholz et al. [2017] and Matusiak et al. [2017] present mathematical
and heuristic approachs for a joint order batching, assignment and routing problem. For
more information about the importance of combining order picking planning problems and its
benefit, see Van Gils et al. [2017b].

1.5 Reassignment of products

As presented in Section 1.4.2, the storage assignment policy has a great impact on the whole
order picking operation. Nevertheless, these policies need to be regularly reviewed to adapt
to changing demand. Most order picking publications consider demand as known in advance.
As warehouses accept late orders, the assumption of a constant given demand is questioned
in Van Gils et al. [2017a]. This is due to seasonality, products replacement or marketing
efforts as presented in Carlo and Giraldo [2012]. As reviewed in Kofler et al. [2014], most
studies in this area have been devoted to re-warehousing, involving extensive rearrangement
of all locations. This is why this technique is rarely applied in practice. For many managers,
finding an optimal products assignment plan is not as important as finding a good one that
requires the reassignment of just few products. This second technique is called healing.

The study of workload to switch between two assignment has been introduced by Christofides
and Colloff [1973]. They propose a two-stage algorithm to minimize the total travel time
required to rearrange products within the picking area. More recently, the problem has been
revisited by Pazour and Carlo [2015], labelled as the reshuffling concept. The reasignment

21



problem has similarities with the pickup and delivery problem, in which the operator has to
collect or drop a product at a location. This is presented by Schrotenboer et al. [2017] in which
the authors incorporate the restocking of returned products in the order-picking routes.

In Chapter 4 we show a new idea and formulation for a faster reassignment of products. It
shows that significant improvements can be achieved in comparison with observable real-life
re-warehousing methods.

1.6 Conclusion

This chapter presented an overview of warehousing operations and functions. More specifically,
it described the order picking problem which is a critical operation of the distribution center.
There was a strong potential for improvement at this stage of order preparation. Several
elements influencing the performance of order picking have been described, such as the layout
design of the warehouse, the storage assignment policy, the order batching strategy and the
routing method. For each, a series of references are provided showing the evolution of research
on the subject. We also observe that, regarding routing methods, current developments in TSP
algorithms make the classical problem of routing and sequencing (Chapter 1.4.4) much less
relevant. However, when realistic characteristics are considered, the problem becomes more
relevant to practise and more complex to solve. These real-life attributes can be related to
weight, capacity or intrinsic characteristics of SKUs imposing new and challenging constraints
on the problem.
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Chapter 2

Mathematical model, heuristics and
exact method for order picking in
narrow aisles

Résumé

Ce chapitre est motivé par une collaboration avec un partenaire industriel oeuvrant dans la
vente et distribution de meubles et électroménagers. Nous avons modélisé leur problème de
préparation de commandes en allées étroites comme une variante du problème de tournées
de véhicules avec diverses adaptations de la matrice de distance. Les problèmes de sécurité
présents en allées étroites imposent un degré supplémentaire de difficulté lors de la détermi-
nation des itinéraires. Nous montrons que négliger les aspects dimensionnels (2D) et résoudre
le problème sur un entrepôt unidimensionnel produit une différence significative. Nous avons
résolu un grand nombre d’instances reproduisant des configurations réalistes en utilisant une
combinaison d’heuristiques et d’un algorithme exact, minimisant la distance totale de prélève-
ment. Grâce aux expérimentations, nous identifions les méthodes les mieux adaptées à chaque
configuration d’allée. Nous comparons nos solutions avec celles obtenues par les procédures
de l’entreprise, montrant que des améliorations peuvent être obtenues.
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Chapter information A paper based on this chapter is published in Journal of the Oper-
ational Research Society : Chabot T., Coelho L.C., Renaud J. and Côté J.-F. Mathematical
model, heuristics and exact method for order picking in narrow aisles. Journal of the Op-
erational Research Society, Dec 2017, Pages 1-12. This research was also the subject of a
presentation at the joint CORS/INFORMS Conference in Montréal, Canada (2015).

Abstract

This chapter is motivated by a collaboration with an industrial partner who delivers furniture
and electronic equipment. We have modeled their narrow aisles order picking problem as
a vehicle routing problem through a series of distance transformations between all pairs of
locations. Security issues arising when working on narrow aisles impose an extra layer of
difficulty when determining the routes. We show that these security measures and the operator
equipment allow us to decompose the problem per aisle. In other words, if one has to pick
orders from three aisles in the warehouse, it is possible to decompose the problem and create
three different instances of the picking problem. Our approach yields an exact representation
of all possible picking sequences. We also show that neglecting 2D aspects and solving the
problem over a 1D warehouse yields significant difference in the solutions, which are then
suboptimal for the real 2D case. We have solved a large set of instances reproducing realistic
configurations using a combination of heuristics and an exact algorithm, minimizing the total
distance traveled for picking all items. Through extensive computational experiments, we
identify which of our methods are better suited for each aisle configuration. We also compare
our solutions with those obtained by the company order picking procedures, showing that
improvements can be achieved by using our approach.
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2.1 Introduction

Distribution centers (DCs) play a central role in modern supply chains which are characterized
by an increasing number of different products, or stock-keeping units (SKUs), and by more
frequent but smaller orders. Considering that order delivery within 24 hours is becoming
a new industry standard, the performance of order picking operations in DCs is of critical
importance. Because order picking is labor intensive for most warehouses, the design and con-
trol of warehouse order picking systems are highly strategic decisions De Koster et al. [2007],
Renaud and Ruiz [2008], Roodbergen and Vis [2006], Roodbergen et al. [2008], Rouwenhorst
et al. [2000]. This chapter is based on a collaboration with a Québec-based (eastern Canada)
company which operates in the furniture and electronics industry. This industry is charac-
terized by a very large number of SKUs since many products can be customized (type and
color of woods and leathers, large variety of furniture fabrics, etc.) and by a large number of
orders, each having few items. To efficiently deal with such an ordering pattern and product
variety, the DC of our partner is organized in warehousing zones. Large electrical appliances
are stacked directly on the floor; expensive electronic devices are stored in controlled access
sections; finally, general furniture products, which represent about 70% of the total number of
SKUs, are stored in narrow aisles with single-depth shelves on both sides. Such mixed-width
aisle configuration is useful to optimize both space utilization and order picking productivity
[Mowrey and Parikh, 2014]. Figure 2.1 shows a sketch of our partner’s furniture storage zone,
where we can see the reception docks (rear), the aisles, the shipping area (front), and the
direction of the flow.

Pallets are unloaded from the incoming vehicles (reception area) with standard lift trucks and
products are placed in front of their corresponding aisle. Then, an operator with a turret
forklift puts the products in place. Narrow aisle lift trucks operate only in the front part of
the DC and thus are imposed to enter and exit the aisles from the front. For the expedition,
when exiting an aisle, order pickers store products in the shipping area before being loaded
in the shipping vehicles. Since each narrow aisle truck must enter and leave each aisle by the
same side, and since a picker cannot go back to another aisle with products, the order picking
process is separable by aisle (a truck can just enter an aisle when it is empty).

Warehouse control presents numerous challenges, namely how to operate receiving, storing,
order picking, replenishment and shipping Bodnar and Lysgaard [2013], De Koster et al. [2007],
Gu et al. [2007]. Storage and order picking are the two most intensively studied operations.
Storage addresses how the warehouse is divided and how space is allocated to products; order
picking is related to how products are picked to fulfill customer orders. Some of the most
important issues in order picking are batching procedures and routing methods De Koster
et al. [2007], Hong et al. [2012], Petersen [1997, 1999], Wruck et al. [2013].

Routing methods have already been used in several variations of the order picking problem.
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Figure 2.1 – General overview of a warehouse with narrow aisles

Goetschalckx and Ratliff [1988] showed that the optimal aisle traversal can be modeled and
solved as a shortest path problem. Single order picking in a general warehouse reduces to a
standard traveling salesman problem (TSP). Ratliff and Rosenthal [1983] showed that order
picking in a rectangular warehouse is a special solvable case of the TSP. Roodbergen and
De Koster [2001b] developed an algorithm to find the shortest picking tour in a parallel aisle
warehouse with a middle aisle. Kim et al. [2003] produced routes for a gantry around a large
warehouse dedicated to cosmetic products. Despite these special cases, most realistic order
picking problems are much more complex as they need to handle complicating constraints
[Chabot et al., 2017b]. Among these real-life constraints is the use of narrow aisles, which
limits lift trucks circulation.

Narrow aisles are useful to maximize floor space utilization, and they facilitate the picking
process as the picker has direct access to the shelves on both sides of the aisle [Gue et al.,
2006]. However, they require the use of special narrow aisle man-up turret lift truck, which
must be driven according to some specific rules enforced for security reasons. In narrow aisles
warehouses, traffic often becomes an important issue [Hong et al., 2012, Parikh and Meller,
2010], but in our case traffic problems are eliminated by the DC practices according to which
replenishments are performed during the daytime while order picking and truck operations
are performed at night. Also, each picker is in charge of a specific number of aisles. These are
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some standard procedures used in this industry which make the problem at hand significantly
different from other industries.

In our problem, individual orders arrive during the day and are accumulated until the evening,
when the order picking process starts. This means that we deal with one big picking list per
aisle, consisting of the aggregation of many smaller orders. Picking routes are then defined to
collect all the products. The subset of products grouped into the same route defines a batch,
for which the picking sequence must be determined. Usually, the order batching problem
(OBP) [De Koster et al., 2007, Henn et al., 2012] uses a heuristic to estimate the distances
traversed for the picking process; we, on the other hand, determine the optimal routing.
When all products are picked they are sorted to rebuild the initial orders. In this process,
one particular order may be split between different routes, as well as a route may consolidate
many orders.

In most situations, the number of orders and products to pick is too high to allow for the
simultaneous optimization of order batching and picking sequence. Thus, it becomes necessary
to determine the batching while estimating the distance of the sequencing problem to be solved,
which is known to be an NP-hard problem [Gademann and Velde, 2005]. There are few studies
addressing exact algorithms for the OBP. Gademann et al. [2001] presents a branch-and-bound
algorithm for the OBP that minimizes the total travelling time for picking all orders. The
performance of an order batching policy is closely related to that of the picking. Öncan [2015]
presents mixed integer linear programming formulations for the order batching under three
different policies: traversal, return and midpoint. He also develops an efficient local search
procedure based on tabu search for these problems. Gademann and Velde [2005] and Muter
and Öncan [2015] show that the OBP can be modeled using a Set Partitioning Problem, for
which it is possible to develop branch-and-price algorithms. The benefits from solving the
order batching and the routing in a more integrated way are demonstrated in Scholz and
Wäscher [2017] and Valle et al. [2017].

In this chapter we describe the Capacitated Narrow Aisle Order Picking Problem (CNA-OPP)
in narrow aisles. A picker can move forward/backward, and up/down. Products are readily
available within reach of the picker on the right and on the left. Since no movement is
associated with this action, we say the problem is defined over 2D. To the best of our knowledge
it is the first time that this problem is considered with the multi-dimensional aspect. Through a
series of computations of the distance matrix between all pairs of products of the 2D warehouse,
and taking new and complex practical constraints into account, we show how to model it as a
well-known vehicle routing problem (VRP) Semet et al. [2014]. By considering the 2D physical
properties of the problem we develop an effective arc reduction procedure which allows us to
solve the model faster and with smaller gaps. We derive a heuristic to reproduce the company
decision-making procedure in order to accurately compute the cost of their current solutions.
In addition, we develop an adaptive large neighborhood search (ALNS) heuristic as well as
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an exact branch-and-cut algorithm to solve realistic instances to optimality within very short
computing times. Our algorithms are specifically tailored to take advantage and exploit the
new structure of the model.

The remainder of the chapter is organized as follows. In Section 2.2 we formally describe the
CNA-OPP. Section 2.3 shows how to model this problem as a VRP taking into consideration
the structure of the warehouse and security rules. Section 2.4 presents the algorithms we
have developed to solve the problem. The results of extensive computational experiments of
our algorithms and that of the company are detailed in Section 2.5, where we also provide a
comparison of different layouts. Our conclusion is presented in Section 2.6.

2.2 Problem description

The CNA-OPP is defined as follows. The warehouse is composed of narrow-aisles arranged
with two single-depth racks having s sections long and t levels high. A set P = {1, . . . , m}
of m SKUs has to be picked up from a given aisle. The location of SKU i in the aisle can be
defined in a Cartesian coordinate system (xi, yi, zi) where xi ∈ {1, . . . , s}, yi ∈ {1, . . . , t}, and
zi ∈ {1, 2}, where zi represents the left or right rack of the aisle. We assume that x1 is the
first section of the aisle and xs is the last one. The input/output (I/O) point of each aisle is
modeled as being the position (0, 0, 0). Note that the (0, 0, 0) is the only location in the section
0. Each SKU i has a weight wi in kilograms and a volume vi in cubic feet. When performing
a picking sequence, the maximum weight and volume that can be put on a pallet are W and
V , respectively. All locations in the rack are identical, the horizontal distance between two
consecutive sections is αh, and the vertical distance between two consecutive levels is αv. The
parallel distance between left and right racks is equal to the aisle width and to that of the
picking vehicle. Thus, the lateral distance is negligible and will be considered as zero. Because
all m SKUs have to be picked up and given that the handling time is identical for all products,
it can be ignored without loss of generality.

In order to ensure picker safety, two security rules must be respected. First, any horizontal
lift truck movements, i.e., change of sections, must be performed at the ground level. This is
a classical safety rule generally used in most warehouses. The second constraint is that after
having performed a pick, other truck movements should be in the forward direction to avoid
products falling on the picker and because he will lose visibility on the rear side as presented
in Figure 2.2. Since section numbers are ordered such that the largest number corresponds to
the farthest section and the picks must be done by getting closer to the (I/O), a movement
from i to j may take place if xi > xj . Note that it is allowed to pick at different levels and on
both sides of the aisle because this does not imply horizontal lift truck movements.
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Figure 2.2 – Illustration of equipment and physical constraints

2.3 Distance matrix and mathematical formulation

In this section we provide the formal mathematical description of the problem. The definition
of the distance matrix is provided in Section 2.3.1. The mathematical formulation is introduced
in Section 2.3.2, and the procedure used to eliminate variables of the problem is presented in
Section 2.3.3.

2.3.1 Computing the distance matrix

We define a distance matrix D = dij , i, j = 0, . . . ,m, over the I/O point and all product
locations. Recall that (0, 0, 0) is the only feasible location at the section 0, i.e., the I/O point.
In order to respect safety constraints, D is defined as:

dij =


αhxj + αvyj if xi = 0 (2.1a)

αv|yi − yj | if xi = xj > 0 (2.1b)

αh(xi − xj) + αv(yi + yj) if 0 < xi > xj (2.1c)

∞ otherwise. (2.1d)

Case (2.1a) computes the distances when starting from the I/O point to section xj and level yj .
This is the only group of distances towards the rear of the warehouse. Case (2.1b) computes
the distance between two locations in the same section as the sum of vertical distances, i.e., the
difference between the levels. Note that this condition imposes a distance equal to zero from
a location to itself. Case (2.1c) is the more general case in which the picker changes sections,
going from section xi to xj , with xi > xj . This distance is composed of two segments: the
distance between the two sections (αh(xi − xj)) and the sum of the two vertical movements
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(αv(yi+yj)). The latter movement is the distance down to the bottom of the rack and then the
distance up to the appropriate location in the next section. Case (2.1d) prohibits movements
from section xi to xj if xj > xi.

For example, consider a simple order with only two SKUs. The first pick i is at section xi = 5,
level yi = 4 and on the left aisle, i.e., zi=1, so at (5, 4, 1), and the second pick j is at section
xj = 2, level yj = 3 and right side, thus at (2, 3, 2). Starting from the I/O point, the picker
must first perform the pick of section 5 and level 4, go to the floor level, move to section 2, and
then go up to level 3. The first movement from the I/O point to product i incurs a distance
of (5αh + 4αv). Traveling from product i to product j incurs a distance (5− 2)αh + (4 + 3)αv.
Returning from j to I/O point requires a distance of (2αh + 3αv), for a total distance of
(10αh + 14αv). Note that if the picker decides to pick the second item first, he will not be
able to move backward to pick the first one in the same trip. In this case, two trips from I/O
point are required with a total distance of (14αh + 14αv).

2.3.2 Mathematical model

The CNA–OPP consists of determining the order picker routes, starting and ending at the
I/O point, such that all products are picked and the traveled distance is minimized while
respecting capacities and safety constraints. It is modelled over a graph G = (V,A) where V
= {0, 1, . . . ,m} is the set of vertices in the aisle with a picking demand, composed of the m
location nodes V ′= {1, 2, . . . ,m} assigned to specific requests with weight wj and a volume
vj . We define the arc set A = {(i, j) : i, j ∈ V, i 6= j, i = 0, . . . ,m, j = 1, . . .m} and distance
dij associated with arc (i, j).

In order to define a transportation plan that respects the practical constraints of this problem
and minimizes the total work of the picker, we define the following decision variables. Let uij
be a binary variable equal to 1 if arc (i, j) is used, and k be an integer variable indicating the
number of routes (picking tours) needed. The CNA-OPP can then be modelled as follows:

minimize
∑

(i,j)∈A

dijuij (2.2)

subject to

∑
j∈V

u0j = k (2.3)

∑
i∈V

ui0 = k (2.4)

∑
j∈V\{i}

uij = 1 ∀i ∈ V (2.5)
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∑
i∈V\{j}

uji = 1 ∀j ∈ V (2.6)

∑
i∈S

∑
j∈S

uij ≤ |S| − r(S) S ⊆ V ′, |S| ≥ 2 (2.7)

k ≥ r(V ′) and integer (2.8)

uij ∈ {0, 1}. (2.9)

The objective function (2.2) minimizes the total distance traveled. Constraints (2.3) and (2.4)
ensure that the same number of routes will leave and return to the I/O point. Constraints
(2.5) and (2.6) are degree constraints and ensure that all products will be picked up exactly
once, while (2.7) simultaneously forbids subtours and ensures that the volume capacity is

respected. Here, r(S) = max

{⌈∑
j∈S vj
V

⌉
,

⌈∑
j∈S wj

W

⌉}
. Movement restrictions do not need to

be imposed through constraints as they will be avoided due to the values from the distance
matrix. Constraints (2.8) indicates the lower bound of the variable k as the minimal number
of vehicles needed to serve the total demand. Constraints (2.9) define the nature of variables.

2.3.3 Arc reductions

We now present three procedures to remove several arcs from the graph and significantly
decrease its size. The first one is due to the restriction of the picker to move from lower to
higher sections. For security reasons, all arcs from a lower section to a higher section can be
removed as these paths are not feasible.

The second procedure considers products located in the same section and at the same level,
but on different sides. Since the picker can pick the two items in any order, this creates
symmetric solutions. We can thus remove all arcs (i, j) with zi < zj .

The last procedure considers products from the same section but at different levels. Recall
that the picker always starts and ends a section at ground level. This structure enables the
removal of arcs between products in the same section. Let S be a set of products located on
different levels of the same section. Among all paths visiting all the products of S only two are
of minimal distance. The first path collects products from the lowest level to the highest level.
The second one does the opposite, collecting products from the highest level to the lowest one.
For example, if three products are located on levels 3, 7 and 11 then paths (3, 7, 11) and (11,
7, 3) are clearly the least costly. Other paths such as (7, 3, 11) will require additional vertical
movements. To remove all more expensive paths, and at the same time subtours within the
same section, all arcs from a product located in a lower level to a higher level in the same
section can be removed.
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To summarize our three rules, arc (i, j) with i ∈ V \ {0} is removed if any of the following
applies:

1. xi < xj ;

2. xi = xj , yi = yj and zi < zj ;

3. xi = xj and yi < yj .

Proposition 1. The use of all these procedures eliminates all cycles in the graph that do not
contain the I/O point and thus prevents subtours.

Proof By contradiction, suppose all procedures were applied and at least one cycle is present.
It means there exists a path from a product i located in a lower section, or at a lower level, or
having a lower index than another product j. However, because all procedures were applied,
no arcs exist from i to k where k is in a farther section, or at a higher level or having a higher
index. Consequently, the graph does not contain any cycles. 2

These reductions substantially simplify the complexities of this new type of VRP, hereinafter
referred to as acyclic VRP (Ac-VRP). However, the Ac-VRP remains an NP-hard problem.
To prove this, we show that any instance of the bin-packing problem (BPP) can be polynomially
transformed into an instance of the Ac-VRP.

Definition 1. Bin Packing Problem. Given a set of identical bins of capacity W̄ , and a set
of n̄ items each having weight w̄j ≤ W̄ (j = 1, 2, ..., n̄), the problem is to assign all items to
bins using a minimal number of bins while ensuring that the sum of the weights of the items
assigned to a bin does not exceed its capacity W̄ .

Proposition 2. The Ac-VRP is NP-hard.

Proof Consider an instance of the BPP with bins of capacity W̄ and n̄ items of weight
w̄j ≤ W̄ (j = 1, 2, ..., n̄). A node is created in the Ac-VRP for each item of the BPP instance.
The node associated with the item j = 1 is located in the farthest section, the second item
in the second farthest section and so on. There is an arc of cost zero that is created for each
pair of nodes (i, j) in which i > j.

For each node, two arcs are created: one of cost 1 from the depot to the node and one of cost
0 from the node to the depot. This graph yields an Ac-VRP because it does not contain any
cycles. Since the BPP is NP-hard, the Ac-VRP is also NP-hard. 2

2.3.4 Reason to consider 3D aspects

The previous section presented some techniques to remove a large set of arcs. Since a number
of 2D-related arcs have been eliminated, one may be tempted to solve the problem in 1D.
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Solving this problem using a 1D plan corresponds to putting all products at the ground level
and ignoring the vertical distance between the levels. In other words, one may argue that
there is no need to consider the problem in 2D and simply solve it in 1D assuming its optimal
solution is also an optimal solution for the original 2D problem. Figure 2.3 shows a counter-
example where the optimal 1D solution does not lead to an optimal 2D one. Here, consider a
small warehouse with only three sections and three levels. The starting point of each picking
route is on the left. For simplicity, let all vertical and horizontal distances be equal to one.
The distance between each side of the aisle remains zero. The distance between the I/O point
and the first section is one unit. The vertical distance with the first level remains zero. In the
figure, we split the aisle down along its sections.
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Figure 2.3 – Example of 2D optimal solution projected on a 3D plan

The first part of the figure represents the optimal 2D solution. In its first route (solid line),
product 6 is picked up first, traversing 3 units horizontally and 2 units vertically, following
to products 5 and then 1, for a total of 10 units of distance. The second route (dashed line),
picks products 4, 3 and 2, in that order, for a total distance of 8 units, totalling an optimal
solution for the 2D case with a cost of 18 units of distance. The middle part of the figure
shows an optimal 1D solution containing the same products placed at the ground level, thus
ignoring the vertical distance that represents the 2D aspect of the problem. This solution
costs 10 units of distance in 1D. However, projecting its routes on the 2D space, as is shown
in the third part of the figure, yields a suboptimal solution: route 6-5-3 has a cost of 12 and
route 4-1-2 has a cost of 8, for a total of 20 units of distance, which is larger than the optimal
solution depicted in the first part of the figure. It is easy to observe that the more empty
vertical shelves the warehouse contains, the worse the impact of neglecting its 2D aspect is.
This clearly motivates the work on the distance matrix that considers the multidimensional
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property of this problem.

2.4 Solution methods

Since the CNA-OPP can be modelled as a CVRP over an asymmetric graph, we have imple-
mented three different algorithms for its resolution. In Section 2.4.1 we describe the order
picking method used by our industrial partner. Section 2.4.2 presents an adaptive large neigh-
borhood search heuristic, and in Section 2.4.3 we present a branch-and-cut algorithm.

2.4.1 Actual picking method used by the company

In order to compare our results with those obtained by our industrial partner, we have im-
plemented a greedy heuristic that reproduces their current picking method. For each picking
route, they start with the product in the farthest section at the highest level. Then, they add
the next feasible product from the next highest level in the same section. If no more products
can be feasibly picked in the same section, they go back to the farthest next section where a
product can be picked. In this way they always choose the product in the farthest section at
the highest level, which respects the security movement constraints. The pseudocode for this
set of rules is presented in Algorithm 1.

Algorithm 1 Picking method used by the company
1: Sort the set of requests L such that the following two conditions hold for all i, j ∈ L

xL[i] ≥ xL[j] and if xL[i] = xL[j] then yL[i] ≥ yL[j]
2: while L is not empty do
3: Create a new picking route R with a total volume D = 0 and total weight P = 0
4: Initialize route with L[1]
5: D = D + vL[1] and P = P + wL[1] and L = L \ L[1]
6: for request i in the sorted L do
7: if D + vL[i] ≤ V and P + wL[i] ≤W then
8: Add request L[i] to the route R
9: D = D + vL[i] and P = P + wL[1] and L = L \ L[i]

10: end if
11: end for
12: end while

First, we use a list L of products which is ordered by sections, and for the same section it is
sorted by levels. For a same level, ties between left and right aisle are broken arbitrarily (line
1). Then, we create a new route R, and start by picking the farthest product L[1], i.e., the one
at the farthest section at the higher level (lines 3 and 4). The route is completed by picking
the next closest item or until the capacity constraints are reached, always respecting the safety
movement restrictions (lines 6 to 10). When an item is added to a route, it is removed from
the list L and all following items in L are moved up once. When the route is full, another
route is created and initialized again with the farthest item from the remaining items from L.
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This approach is optimal if the total volume and weight of all the products to be picked up is
less or equal to the capacity V and W of the picking vehicle.

2.4.2 Adaptive large neighborhood search

We present an implementation of an ALNS heuristic for our problem, widely based on Ropke
and Pisinger [2006]. The ALNS is composed of a set of simple destruction and reconstruction
heuristics in order to find better solutions at each iteration. One of the general strengths of
ALNS comes from the hybridization between the simulated annealing and a variable neigh-
borhood search that provides a great diversity in the local search. From the order picker
perspective, this method provides fast picking routes minimizing the travel time and increase
the picked order rates.

The ALNS selects one of many destroy and repair operators at each iteration. We have
implemented three destroy and two repair operators. Our destroy operators include the Shaw
removal [Shaw, 1997], the worst removal, and a random removal. Our repair operators include
a greedy parallel insertion and a k-regret heuristic [Potvin and Rousseau, 1993]. Each operator
is selected with a probability that depends on its past performance and a simulated annealing
acceptance criterion is used. The idea of the Shaw removal operator is to select a set of
somewhat similar items (relatedness). In our case, the relatedness of two nodes is based on
the distance between them. Products in the same section are more related to each other.
The worst removal operator compares the cost of the solution with and without an item.
It removes items with a higher impact on the value. The greedy insertion operator is a
construction heuristic inserting unplaced items at their minimum cost position over all routes.
The regret heuristic operator finds items that maximize a regret value. The regret value is
the cost of inserting the item in its best route and its second-best route.

The regret heuristic is used to build the initial solution. The ALNS is ran for 50 000 iter-
ations of destroy-repair operators. After every 100 iterations, the weight of each operator is
updated according to its past performance. Initially, all the operators have the same weight.
A sketch of our ALNS is provided in Algorithm 2 and for further details about operators and
parameterization, we refer to Ropke and Pisinger [2006].

2.4.3 Branch-and-cut algorithm

We have implemented a branch-and-cut algorithm in which valid linear inequalities are used
as cutting planes to strengthen a linear programming relaxation at each node of a branch-and-
bound tree. Constraints (2.7) are initially relaxed and only added to the branch-and-bound
tree if they are found to be violated. The structure of our formulation is based on the vehicles
routing problems. That is why we opt for this resolution method which is highly recognized
to be effective for this type of problem structure.
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Algorithm 2 Adaptive large neighborhood search
1: Create an initial solution S;
2: S∗ ← S;
3: Initiate probability ρd for destroy operators and ρi for repair operators;
4: while stop criterion is not met do
5: Select a number of picks 1 ≤ q ≤ n;
6: Select a removal and insertion operators using ρd and ρi;
7: Apply operators on S to obtain S′;
8: if f(S′) < f(S) then
9: S ← S′;

10: If f(S′) < f(S∗) then S∗ ← S′;
11: end if
12: if f(S′) ≥ f(S) then
13: S ← S′ according to simulated annealing criterion;
14: end if
15: Update ρd and ρi;
16: end while
17: return S∗.

The whole model can be solved by feeding it directly into an integer linear programming solver
to be solved by branch-and-bound if the number of rounded capacity inequalities (7) is not
excessive. However, for instances of realistic size, e.g., 30 or 40 nodes, as is the case of our
partner, the number of rounded capacity constraints (7) is too large to allow full enumeration
and these must be dynamically generated throughout the search process. The exact algorithm
we present is a branch-and-cut scheme in which the rounded capacity inequality constraints
are generated and added into the program whenever they are found to be violated. It works
as follows. At a generic node of the search tree, a linear program containing the model with
a subset of the subtour elimination constraints and relaxed integrality constraints is solved,
a search for violated inequalities is performed, and some of these are added to the current
program which is then reoptimized. This process is reiterated until a feasible or dominated
solution is reached, or until there are no more cuts to be added. At this point, branching on a
fractional variable occurs. We provide a sketch of the branch-and-cut scheme in Algorithm 3.

2.5 Computational results

The algorithms described in Section 2.4 were implemented in C++. The branch-and-cut uses
the CVRPSEP library Lysgaard [2003] and IBM CPLEX Concert Technology 12.7 as the
branch-and-bound solver. All computations were executed on machines equipped with two
Intel Westmere EP X5650 six-core processors running at 2.667 GHz, and with up to 48 GB of
RAM installed per node running the Scientific Linux 6.3. We have first solved each instance
using the ALNS algorithm. This solution was then used to start the branch-and-cut, to which
a time limit of 7200 seconds was imposed.
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Algorithm 3 Branch-and-cut algorithm
1: Subproblem solution: Solve the LP relaxation of the current node
2: Termination check
3: if there are no more nodes to evaluate then
4: Stop
5: else
6: Get the proposed node from CPLEX branch-and-bound
7: end if
8: while solution of the current LP relaxation contains subtours do
9: Identify connected components with CVRPSEP Lysgaard [2003]

10: Add violated subtour elimination constraints
11: end while
12: if the solution of the current LP relaxation is integer then
13: Go to the termination check
14: else
15: Branching: branch on one of the fractional variables
16: Go to the termination check
17: end if

In order to evaluate the performance of our algorithms and that of the company, we have
generated instances inspired by real warehouse configurations. First we have generated five
types of aisle configurations as presented in Table 1. The second and the third columns show
respectively the number of sections and levels present in an aisle. The fourth column shows
the total number of locations according to this configuration. Finally, we indicate the ratio of
the layout between sections and levels. These configurations will allow us to assess the impact
of different aisle configurations. For each type of configuration, 10 sets of instances having
each 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 requests were generated. For each of the five
aisle configurations and for each of the 10 number of requests, we generated five instances.
Thus, 50 instances were generated for each aisle configuration for a total of 250 instances. The
typical operation of our industrial partner consists of orders containing fewer than 30 requests.
We have generated instances with more requests to assess the performance of our methods.

The products are chosen randomly from the database obtained from our partner along with
their volume and weight and placed randomly on the aisle. Our instances can contain more
products to pick than the total number of locations, meaning that products can be picked
more than once.

We provide in Table 2.2 the average results for the method used by the company and for our
algorithms on all 250 instances. The results are organized by the number of requests, thus
each row presents the average of 25 instances for all five aisle configurations. The first column
shows the number of picks, followed by the solution value yielded by the company heuristic,
then the solution of our ALNS algorithm, its running time in seconds, the best known solution
yielded by CPLEX for both formulations, its lower bound, percentage gap and running time
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Table 2.1 – Types of aisle configuration

Type Sections Levels Locations by side Total locations Ratio

1 12 4 48 96 3
2 24 4 96 192 6
3 36 4 144 288 9
4 48 4 192 384 12
5 60 4 240 480 15

in seconds. To validate our graph reduction method, we provide the results of the cyclic and
the acyclic models.

It is clear that the ALNS algorithm is very effective and run in a few seconds even for the
largest instances. Moreover, CPLEX using ALNS solution as initial start value is able to
marginally improve the solution obtained by this algorithm. We observe an improvement for
instances starting from 30 requests for both formulations. Finally, as is known from other
VRP problems, a branch-and-cut algorithm is capable of proving optimality or yielding tight
optimality gaps for instances containing fewer than 100 nodes, as is corroborated by our
experiments.

As it can be observed in the Company column of Table 2.2, which represents their current
picking method, this heuristic rarely yields the optimal solution or yields solutions as good as
those of the ALNS algorithm. The company heuristic yielded only 33 optimal solutions (out
of 250), 31 of them being for the smallest instances with 20 or fewer picks. The global average
of the company method is 4.58% worse than the solutions obtained with the ALNS algorithm.
In a large warehouse being operated daily over a long period, this represents a large reduction
in the workload. Using the ALNS solution as a starting point for the CPLEX algorithm seems
to be a good approach to help the solver in reaching optimality. The Time (s) column shows
how ALNS is a fast heuristic given the large number of iterations we have allowed. We see
that on average, the acyclic version is faster and obtains better lower bounds and has reduced
the overall average gap from 0.51% to 0.28%.

In Table 2.3 we show the gap between the heuristic methods and the lower bound (LB). These
lower bounds are given by CPLEX after two hours of running time and correspond to the
best LB obtained by either models for each instance. With the branch-and-cut algorithm,
we observe that it was able to solve to optimality instances with up to 100 requests. We see
that all instances with 50 or fewer requests were solved to optimality with the acyclic graph,
and that the number of optimal solutions decreases when the number of requests increases.
In total, our cyclic model solved 169 instances and the acyclic model solved 192 instances to
optimality from our set of 250 instances.

For the company heuristic, the gap with the best lower bound ranges between 0.28% and
6.47% with an average of 4.07%. This shows that ALNS is able to yield better solutions, even
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for small instances. With respect to the best lower bound obtained by CPLEX, the ALNS
provides an average gap of 0.26%. We note that these solutions were hardly improved by the
exact method.

Since the CNA-OPP is subject to movement restrictions, we must analyze the impact of
the layouts configuration and the performance of the algorithms. With these constraints on
section movements, we observe that different configurations can have a significant impact on
the computation performance. The bigger it is, the more it can contain different products
and have a longer distance for picking. In the same way, an instance with many requests in a
small aisle, will contain the same products appearing multiple times. Therefore, it is difficult
to compare the layout based only on the total distance. However, it is possible to measure the
performance of methods for each type of aisle configuration based on the ratio between the
number of sections and levels.

In Table 2.4 we present the average gap over five instances yielded by the solver after two hours,
for each type of layout and all numbers of picks, according to the aisle configuration presented
in Table 2.1. When all instances are solved to optimality, we indicate it by a zero in bold. We
can observe that the average gap (over 50 instance for each column) is well correlated to the
ratio sections/levels outlined in Table 1. This means that for the same number of requests,
optimal solutions are easier to obtain with aisles having more sections.

Both versions are still influenced by the number of sections in the aisle. Based on our algo-
rithms, the easier aisle configuration is that with 60 sections (Layout 5). With the acyclic
model on layout 5, we have obtained an average CPLEX gap of 0.19% and with the cyclic
model and the layout 5, this average gap is 0.17%.

For the acyclic version of the model, we notice that layouts 4 and 5 are the best in terms of
performance. Layout 4 combined with an acyclic graph solves instances up to 80 requests to
optimality. All other configurations are not able to solve to optimality all instances of the
sample with more than 80 requests. Based on our set of instances, it is easier for CPLEX
to solve problems in an aisle with more sections. The worst configuration for this group of
instances is the first one, with only 12 sections. According to the movement restrictions, it
seems difficult to create high quality tours in a short aisle. Obviously, a longer aisle will yield
solutions with longer routes, but for which our methods can obtain solutions of better quality.

Table 2.5 presents computational details of both models in terms of CPU times, optimality
gap, number of cuts, number of branch-and-bound nodes and number of variables. As seen in
Table 2.2, the acyclic formulation is able to close the gap faster than the cyclic formulation on
average. We see in Table 2.5 that the average number of visited node for the cyclic formulation
is 8669.04 versus 2298.66 for the acyclic, around 3.77 times fewer nodes. It also shows that
the we only remove a very small number of variables to pass from the cyclic with an average
of 2081.22 variables, to the acyclic formulation with 2007.99. It represents only 4% of arcs
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reduction. Even if the reduction yields better results, we see that the number of added cuts
are larger for the acyclic formulation.

Table 2.5 – Models analysis

# of picks Cyclic formulation Acyclic formulation
CPU (sec) Gap (%) Cuts Nodes Variables CPU (sec) Gap (%) Cuts Nodes Variables

10 0.00 0.00 2.64 0.00 67.72 0.04 0.00 1.24 0.00 65.96
20 0.08 0.00 45.40 18.04 237.72 0.04 0.00 33.80 3.04 230.92
30 29.12 0.00 752.24 7696.96 512.32 0.76 0.00 411.80 140.88 495.88
40 308.60 0.00 1768.32 6433.04 888.68 6.64 0.00 693.68 205.32 860.72
50 1215.20 0.06 3998.88 16537.12 1372.00 138.92 0.00 2164.28 1267.28 1325.76
60 2527.20 0.44 7722.12 12820.60 1959.48 1465.48 0.19 7642.92 4349.16 1890.36
70 4736.40 0.62 9684.52 19469.44 2650.28 2858.00 0.28 10923.36 7464.88 2555.24
80 4553.40 0.76 7494.96 11644.92 3444.80 2780.36 0.48 6755.88 2107.96 3320.36
90 6315.92 1.59 9276.92 6930.12 4340.08 5691.72 0.87 15545.44 4125.32 4185.20
100 5826.40 1.65 8752.96 5140.12 5339.12 5253.32 1.00 12896.80 3322.76 5149.52

Average 2551.23 0.51 4949.90 8669.04 2081.22 1819.53 0.28 5706.92 2298.66 2007.99

2.6 Conclusion

In this chapter we have proposed a formulation for the CNA-OPP that yields a well-known
CVRP. We have then been able to use CVRP algorithms to solve this difficult problem arising
in warehousing operations. Based on the problem structure, we have shown that the number
of arcs can be reduced leading to an acyclic model which is easier to solve, despite still being
NP-Hard. We have also shown that one must consider the 2D aspect of the problem in the
solution algorithm, as neglecting this feature and solving the problem with a projection of the
products on the floor level will significantly decrease solution quality once the cost is evaluated
over the 2D distance. With a collaboration from an industrial partner, we have generated a
large dataset of benchmark instances for the order picking problem based on real data. We
have proposed five configurations of an aisle and tested one heuristic and one exact algorithm
against the picking method used by the company. We have shown that improvements of up
to 4.07% can be obtained by using our methods.
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Chapter 3

Order Picking Problems under Weight,
Fragility, and Category Constraints

Résumé

Dans ce chapitre, nous modélisons et résolvons un problème complexe de prélèvement de
commandes motivé par nos observations dans le secteur de la distribution alimentaire. Ce
problème combine des décisions complexes de prélèvement et de routage dans le but de min-
imiser la distance parcourue. Nous fournissons une description de l’entrepôt qui nous permet
de calculer algébriquement les distances entre toutes les paires de produits. Nous proposons
ensuite deux modèles mathématiques distincts pour formuler le problème. Nous développons et
adaptons cinq méthodes heuristiques, dont une implémentation d’une métaheuristique. Nous
implémentons ensuite un algorithme exact pour résoudre les formulations. La performance
des méthodes proposées est évaluée sur nouvelle banque d’instances. Des expérimentations
approfondies confirment l’efficacité de la métaheuristique. Nous confirmons l’hypothèse selon
laquelle les heuristiques classiques ont du mal à trouver une solution efficace dans un environ-
nement hautement contraint.
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Chapter information A paper based on this chapter is published in International Journal
of Production Research: Chabot T., Lahyani R., Coelho L. C. and Renaud J. Order picking
problems under weight, fragility and category constraints. International Journal of Production
Research, June 2016, Pages 6361-6379. This research was the subject of two presentations: at
the 58th CORS conference in Banff, Canada (2016) and at the 17th ROADED Conference in
Compiègne, France (2016).

Abstract

Many practical constraints arising in real-life have often been neglected in the order picking
routing literature as presented in Chapter 1. In this chapter, we model and solve a rich order
picking problem under weight, fragility, and category constraints, motivated by our observa-
tion of a real-life application arising in the grocery retail industry. This difficult warehousing
problem combines complex picking and routing decisions under the objective of minimizing the
distance traveled. We first provide a full description of the warehouse design which enables
us to algebraically compute the distances between all pairs of products. We then propose
two distinct mathematical models to formulate the routing problem. We develop five routing
heuristic methods, including extensions of the classical largest gap, mid-point, S-shape, and
combined heuristics. The fifth one is an implementation of the powerful adaptive large neigh-
borhood search algorithm specifically designed for the problem at hand. We then implement
a branch-and-cut algorithm and cutting planes to solve two formulations. The performance
of the proposed solution methods is assessed on a newly generated test bed containing up to
100 pickups and seven aisles. Extensive computational experiments confirm the efficiency of
the ALNS metaheuristic and derive some important insights for the order picking in this kind
of warehouse. We hence confirm one of the thesis hypothesis saying that classical heuristics
struggle to find an effective solution within highly constrained environment, since they were
not tailored for this. Then, we need a new approach reaching better order picking distances.
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3.1 Introduction

Order picking represents an important part of warehouse and inventory management activities
[Gu et al., 2010a]. It consists of retrieving goods from specific storage locations to fulfill
customers orders. It is considered as the most labor-intensive and costly warehousing activity
[De Koster et al., 2007, Tompkins et al., 2010], and it may account for up to 55% of all
warehouse operating expenses [Chiang et al., 2011]. Therefore, warehouse productivity is
highly affected by order picking activities [De Koster et al., 2007]. Research in this area has
rapidly expanded over the past decades. These studies can be categorized into books [Hompel
and Schmidt, 2006, Ackerman, 2013, Manzini, 2012], survey papers [Wäscher, 2004, De Koster
et al., 2007, Henn, 2012], and theoretical papers providing mathematical formulations and
exact or approximate solution methods [Bortolini et al., 2015, Lu et al., 2016].

Order picking strategies and algorithms have often been studied for classical warehouses [Pe-
tersen, 1997, Petersen and Aase, 2004]. The role of picker personality in predicting picking
performance with different picking technologies has been studied by De Vries et al. [2016].
Recently, some attention has been devoted to researches oriented towards more realistic pick-
ing contexts [Chackelson et al., 2013, Matusiak et al., 2014a, Chabot et al., 2017a]. These
cases are either motivated by the complex characteristics of real-life warehousing activities,
legal regulations, or the introduction of on-line shopping requiring faster and more customized
services.

This chapter is motivated by the situation prevailing in the grocery retail industry. In this
industry, each company owns one or several distribution centers (DCs) to store its products.
Almost all DCs are designed with reserve storage and fast pick areas. In the fast pick area,
each stock keeping unit (SKU) is stored in a specific and dedicated location. However, in
the reserve storage area, SKUs are placed at random available locations, but close to the
picking and sorting area. Order pickers only have access to the pick area, which is replenished
continually by employees from the reserve area. Each order is picked in a sequential way and
transported to the sorting area by hand-lift trucks. Each picker deals with a list of products,
i.e., a pick-list, to be collected from the storage aisles.

In general, when orders are small compared to the picking vehicle capacity, order batching
occurs. Order batching consists of combining orders to reduce the distance traveled by the
picker [De Koster et al., 2007, Petersen, 1997, 1999]. Batched orders must later be sorted.
In our case, each individual order may consist of several hundreds of different SKUs, often
resulting in thousands of units picked on many pallets.

The sequences followed by the pickers to retrieve all the SKUs of a given order are called
routes. A fixed routing plan may perform well for some pick-lists, but poorly for others as
decisions are made sequentially. Thus, the primary and most common objective in manual
order-picking systems is to find the set of picking routes that minimizes the total traveled
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distance [De Koster and Van der Poort, 1998, De Koster et al., 1998, Petersen et al., 2004].

In this chapter we develop order picking routes in a warehouse under practical restrictions
observed in the grocery retail industry. Each product characteristic considered adds an extra
layer of difficulty to the problem. These product-specific properties are described next.

We introduce the order picking problem under weight, fragility, and category constraints
(OPP-WFCC). Regarding the weight, as soon as the total weight of all the products trans-
ported on the hand-lift truck exceeds a threshold value, heavy items can no longer be collected,
and the picker is only allowed to pick light SKUs. Thus, another tour is required to pick (some
of) the remaining heavy items. This requirement, referred to as weight constraint, has two
motivations. It helps avoid work accidents and back problems caused by lifting heavy charges
to relatively high positions, and it ensures the vertical and horizontal stability of the pallet.
Besides the weight, other constraints arise in practice regarding the fragility of the items. A
product can support a certain weight without being crushed. Therefore, fragile products must
not be placed underneath heavy products, i.e., heavy products must be on the bottom of the
pallet and light products on the top. We refer to this restriction as fragility constraint and
the maximum weight a product can support is referred to hereinafter as self-capacity. Finally,
we consider two types of commodities: food and non-food products. Non-food products en-
compass household items. Food products should not be carried under non-food on the pallet
in order to avoid contamination. Thus, one has to pick the non-food products separately or
before any food products. This constraint is referred to as category constraint.

Order picking problems dealing with the physical properties of the products have not been
widely studied in the literature, but similar constraints appear in other contexts. Matusiak
et al. [2014a] refer to these constraints as precedence constraints since they impose that some
products must be picked before some others due to weight restrictions, fragility, shape, size,
stackability, and preferred unloading sequence. They propose a heuristic method to solve the
joint order batching and picker routing problem without any specific assumption regarding
the layout and without any pre-determined sequencing constraints. Junqueira et al. [2012]
introduce the problem of loading rectangular boxes into containers while considering cargo
stability and load bearing constraints. Their mathematical model ensures the vertical and
horizontal cargo stability and limits the maximum number of boxes that can be loaded above
each other. Dekker et al. [2004] solved a real-world application arising in a warehouse storing
tools and garden equipment. The authors considered different assumptions arising in this
particular real-life application such as the design of the warehouse with non-coinciding start
and end points, dead-end aisles, and two floors. For the sake of efficiency improvement, the
authors examined the storage and the pickup policies of these products while ensuring that
heavy products are picked first to prevent damaging fragile products. They proposed storage
heuristics and routing heuristics to consider the application restrictions.
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Routing problems with precedence constraints, in which one request must be served and/or
loaded before another, have been widely studied in the VRP literature and may arise in several
real-life contexts. Some practical applications include the dial-a-ride problem [Cordeau and
Laporte, 2007], airline scheduling [Medard and Sawhney, 2007], and bus routing [Park and
Kim, 2010]. If one introduces capacity constraints to the VRP, depending on the precedence
constraints, the resulting problem is a pickup and delivery [Zachariadis et al., 2016]. For
more details on the VRP with precedence constraints, see Lahyani et al. [2014]. The multi-
constrained OPP studied in this paper is similar but quite different from the VRP with
precedence constraints. Indeed, considering the self-capacity and the fragility constraints
adds an extra layer of difficulty to the problem since it has a significant impact on the storage
and routing strategies.

The contributions of this chapter are threefold. First, we introduce a rich variation of the order
picking problem under weight, fragility, and category constraints inspired from the grocery
retail industry. Part of the complexity of the problem is due to the new practical constraints
arising from the separation of the products, their fragility, the stability, and weight limit of the
pallet. The second contribution is the development of two distinct formulations to model the
problem, which include a precise computation of the distance matrix between all pairs of items
within the warehouse and the development of original valid inequalities. Our third contribution
is to develop heuristic algorithms and different exact methods to support warehouse picking
operations in choosing the most suitable routing sequences to satisfy orders. Specifically, we
propose branch-and-cut as well as an adaptive large neighborhood search (ALNS), and an
extension of four classical order picking algorithms to solve the OPP-WFCC. We then solve
large sets of instances reproducing realistic configurations using our algorithms, which aim at
minimizing the total distance traveled for picking all items. We show that the classical order
picking heuristics in the literature do not perform well for constrained order picking problems.

The remainder of the chapter is organized as follows. In Section 3.2 we formally describe the
problem and define its particularities. Section 3.3 presents two mathematical models along
with a set of new valid inequalities. The details of the five heuristic algorithms and of the
branch-and-cut procedures are provided in Section 3.4. The results of extensive computational
experiments are presented in Section 3.5, and our conclusions follow in Section 3.6.

3.2 Problem description and distance modeling

In order to properly model the problem, which aims to minimize the total distance traveled by
the pickers, one needs to know precisely the distances between all pairs of positions within the
warehouse under study. We have modeled a warehouse constituted of several parallel aisles on
a plane. There are complete racks in the middle of the warehouse and two half-racks on either
side. These aisles are perpendicular to two corridors, one in the front and one in the rear.
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This configuration is commonly used and is generic enough for the purpose of this chapter.
Besides, the location of a product is fixed and each product takes just one location. In other
words, each product exists in only one location within the warehouse. Finally, we suppose
that the distance between the two sides of an aisle is large, such that the picker cannot pick
items from both sides at the same time. We also suppose the one-dimensional stacking. The
warehouse has one input/output (I/O) point which is considered as the departure and the
arrival point for all the pickers. In addition, the warehouse is symmetric with respect to the
I/O, with the same number of aisles on either side.

The distance between different locations is computed by solving a shortest path problem.
Observe that in order to change aisles, the picker can move through the rear or the front
corridor, and these two paths usually yield different distances. Let xi represent the aisle
number of SKU i, and yi its section number, where yi ∈ {1, . . . , S}. The total number of
sections S represents the number of in-depth locations of the aisle. A warehouse with one
aisle and 20 sections per aisle contains 40 locations, by considering both sides. Note that
aisles with vertical picking are modeled as well, but it is not a common layout in the grocery
industry. The higher rack levels contain bulk stock, which is used to replenish the ground
level, which contains the pick stock of the items. The side of product i within an aisle is zi,
with zi ∈ {1, 2}. Using this notation, one can fully represent the location of product i as its
coordinates (xi, yi, zi) [Chabot et al., 2017a]. The width of an aisle is γ units of distance, the
depth of a location is α units of distance, and its width is β. Since there are S sections in an
aisle, the total length of the aisle is βS. The minimal distance between two aisles is given by
2α. In order to consider the complex characteristics of the real-world application under study,
we consider a turning radius, denoted Ω. These features are visualized in Figure 3.1.

Figure 3.1 – Overview of the warehouse layout in the grocery retail industry
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We define the distance matrix D = dij where i < j and i ∈ {0, . . . ,m − 1}, j ∈ {1, . . . ,m},
over the I/O point and all m product locations. Several scenarios must be considered when
defining D as follows.

(i) Assume that i and j refer to two distinct products, then two cases may arise. The first one
appears when both products are in the same aisle. The distance dij between i and j is then:

dij
i<j

= |yi − yj |β + |zi − zj | γ if xi = xj . (3.1)

The first term computes the distance between the two sections, and the second term accounts
for the aisle width γ if the products are on different sides of the aisle.

The second case arises when the two products are in different aisles. With the aim of easing
the notation, we separate the equations into two segments: the length-wise distance, denoted
υ, and the width-wise described next. The length proportion is expressed by υ = min(β(2S−
yi − yj), β(yi + yj)) + 2Ω. The total distance can then be computed as:

dij
i<j

=


|xi − xj | (2α+ γ) + υ if zi = zj (3.2a)

(xj − xi)(2α+ γ) + γ + υ if zi = 1, zj = 2 (3.2b)

(xj − xi)(2α) + (xj − (xi + 1)) + υ if zi = 2, zj = 1. (3.2c)

The first case appears when products are on same side, but in different aisles. In the second
case, the items are in two different sides, such that the picker has to cross the aisle width at
the departure and at the arrival aisles. In the third case, products i and j are placed such
that the start and arrival aisles are not crossed.

(ii) Now, assume that i refers to a product and j refers to the I/O point. The distances
between a product and the I/O point are symmetric and must be computed by taking into
account three cases. The first and easiest one is when section xi of item i coincides with
section x0 of the I/O point. The second appears if xi < x0, and the third if xi > x0. These
distances are then computed as:

di0 =


yiβ +

1

2
γ if xi = x0 (3.3a)

(x0 − xi)2α+ (x0 − xi − zi + 1)γ +
1

2
γ + Ω + yiβ if xi < x0 (3.3b)

(xi − x0)2α+ (xi − x0 + zi − 2)γ +
1

2
γ + Ω + yiβ if xi > x0. (3.3c)

In the first case, in which xi = x0, the distance is the total of the number of sections plus
half of the width of an aisle. The second case appears when the product is located on the
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left of the I/O point, and the third case if the product is on the right. These two cases are
symmetrical and are composed of the width of the cells to be traversed, the width of the aisles
to be crossed, the turning radius distance, and the length of the sections needed to traverse
to reach the product. The different scenarios defining the distance matrix D are illustrated in
Figure 3.2.

Figure 3.2 – Illustration of the distance matrix and the corresponding equations
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The OPP-WFCC is formally defined on a directed graph G = (V,A) where V is the vertex set
and A is the arc set. The set V = {0, . . . ,m} contains the location of the I/O point and the
m products locations constituting the set V ′ = {1, . . . ,m}. The set A = {(i, j) : i ∈ V, j ∈
V ′ , i 6= j} is the arc set. Each product i ∈ V ′ has a weight qi. In the OPP-WFCC products
have three important characteristics. First, a product is said to be light if its weight is under
B units, otherwise it is considered as a heavy item. Second, a product can also be fragile
or non-fragile. A weight limit wi, i.e., a self-capacity, is associated with each fragile item i.
If a given item i is considered as non-fragile, then wi is assumed to be Q which corresponds
to the total weight that can be loaded on a pallet. Finally, products are also categorized
as food or non-food items. Non-food items cannot be loaded on top of food items. With
this requirement, we observe that arcs (i, j) with i being a food item and j being a non-food
item can be removed from A. Finally, when the total weight of all picked items on the pallet
reaches a limit L, no more heavy products can be picked in the same tour. The objective
of OPP-WFCC is to find the set of tours minimizing the total distance while respecting the
weight, fragility, and category constraints.

To better describe the particularities of this problem, in Figure 3.3 we sketch a solution for
the OPP-WFCC in which precedence constraints may interfere. The output of the example
solution includes two routes where each route begins and ends at the I/O node. The picking
points are visited in a specific order respecting the weight, fragility, capacity, and category
constraints. Items 1 and 2 are non-food products while items 3, 4, and 5 are food products.

51



Besides, products 2 and 3 are considered fragile. The first route, presented in Figure 3.3a,
starts by picking product 1 then product 2. Since these are non-food products, the picker can
load food-products on the top of the stack while respecting the category constraints. However,
the total weight of the pallet reaches the threshold L = 100 so the picker can no longer load
any heavy products. Since the self-capacity of product 2 equals to 20, product 3 (q3 = 50)
or product 4 (q4 = 45) cannot be loaded on top of it. Finally route 1 picks product 5 before
going back to the I/O node. The products left in the warehouse are 3 and 4. Since product
4 is heavier than the self-capacity of product 3, route 2 first picks product 4, then product
3, and then goes back to the I/O (Figure 3.3b). The set of constraints requires the picker to
do two tours, both going around the warehouse and the two aisles. Without constraints, the
picker could only make one tour to pick everything. In such a case, the distance to pick all
products is almost the double.

Figure 3.3 – Example of a solution for the OPP-WFCC
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3.3 Mathematical formulations

We now provide two different formulations for the OPP-WFCC. In Section 3.3.1 we present
a capacity-indexed formulation which makes explicit the remaining capacity of the pallet
traversing each arc. In Section 3.3.2 we present a two-index vehicle flow formulation.

Recall that dij denotes the distance between two nodes i and j defining arc (i, j) computed
as described in Section 3.2. Let V ′h be the set of nodes associated with heavy products.
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3.3.1 Capacity indexed formulation

In this section, we propose a new formulation to model the OPP-WFCC, referred to as
capacity-indexed formulation. This type of formulation has only appeared a few times for
basic and rich variants of VRPs [Picard and Queyranne, 1978, Pessoa et al., 2009, Poggi de
Aragão and Uchoa, 2014, Lahyani et al., 2015]. This formulation is compact enough to enu-
merate all variables and constraints for small and medium instances of the problem. We later
incorporate new procedures to further reduce the number of variables. Let binary variables
xqij indicate that arc (i, j) is used with a remaining capacity of q units. Let C ⊂ Q be the
subset of possible values of q from 1 to Q. The formulation is defined by:

(F1) minimize
∑

(i,j)∈A

dij
∑
q∈C

xqij (3.4)

subject to ∑
j∈V

∑
q∈C

xqij = 1 i ∈ V (3.5)

∑
i∈V

∑
q∈C

xqij = 1 j ∈ V (3.6)

∑
i∈V

xqij −
∑
k∈V

x
q−qj
jk = 0 j ∈ V ′ , q > qi ∈ C (3.7)

∑
i∈V ′

xqi0 = 0 q > 1 ∈ C (3.8)

∑
j∈V ′

x00j = 0 (3.9)

xqij ∈ {0, 1} i, j ∈ V, q ∈ C. (3.10)

The traveled distance is minimized in (3.4). Equations (3.5) and (3.6) are the in and out degree
constraints. They ensure that each node is visited exactly once. Equations (3.7) guarantee
that if the picker visits a node j with a remaining capacity q, then he must leave this node after
picking load qj with a remaining capacity of q−qj . These constraints ensure the connectivity of
the solution and the capacity requirements. Infeasible and unnecessary variables are removed
with equalities (3.8) and (3.9). Equations (3.8) forbid arcs to return to the I/O point with a
remaining capacity different from zero. Similarly, equations (3.9) state that all arcs visiting a
node i must carry a load with available space for item i. Constraints (3.10) define the domain
of the variables.

The main advantage of formulation F1 is that it enables to preprocess the model to decrease its
size and to remove infeasible variables by adding appropriate constraints in the preprocessing
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of the variables. Indeed, because of the physical characteristics of the products, precedence
constraints should be considered when defining picking route to avoid putting non-food prod-
ucts above food products on the pallet. One can identify arcs going from non-food to food
products beforehand. Moreover, one can ensure that the safety requirements for fragile prod-
ucts are always respected by removing infeasible variables. Because the index q carries the
information about the remaining weight capacity, all arcs with q greater than the self-capacity
wj and the weight qj of the destination product j, i.e., q > wj + qj , cannot exist. Thus,
all the arcs generated respect the weights that fragile products can support. We can also
eliminate variables xqij traversing arcs (i, j) with infeasible remaining capacity, i.e., with a
capacity q < Q−qi. In what concerns the weight constraint, the picker cannot load any heavy
product if the total weight of the pallet reaches the threshold L. We model this restriction
with inequalities (3.11):

∑
i,j∈S

xqij + xqlh ≤ |S| − 1 S ⊆ V ′ : qs ≥ L, l ∈ S, h ∈ V
′
h\S. (3.11)

Recall that a heavy product is a product whose weight exceeds the limit B. Consider a subset
of nodes S associated with products whose total weight is greater than or equal to L. We
check if the potential item to be picked in the same route is a heavy product and we impose
that the picker can only pick light items. The arc (l, h) links the last node l of the subset S
and the node corresponding to the heavy product h. Constraints (3.11) can be improved by
considering all the potential heavy products that cannot be picked on the same route. We lift
the second term of the left-hand side over the nodes related to heavy products, i.e., the nodes
in the subset V ′h. Constraints (3.11) can thus be replaced by:

∑
i,j∈S

xqij +
∑

h∈V ′h\S

xqlh ≤ |S| − 1 S ⊆ V ′ : qs ≥ L, l ∈ S. (3.12)

Constraints (3.12) can be further generalized by removing the restriction to leave the subset
S from the last node visited in this subset. We then replace constraints (3.12) by:

∑
i,j∈S

xqij +
∑
l∈S

∑
h∈V ′h\S

xqlh ≤ |S| − 1 S ⊆ V ′ : qs ≥ L. (3.13)

Since the number of constraints (3.13) is exponential (in the order of O(2m)), they cannot be
generated a priori. We propose a branch-and-cut algorithm to add them dynamically. Details
about this algorithm are provided in Section 3.4.

It is possible to strengthen the formulation by adding some valid inequalities. Taking into
account the physical characteristics of the products and their structural capacity, we can
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identify general situations in which a solution is not feasible. We already use several of
these characteristics in the variables creation, and we could derive the following new cuts.
In constraints (3.14), we consider an arc between product i and j, and its self-capacity wi.
If a route follows the path from i to j, and from j to k, then one can impose the following
constraints:

xqij +
∑
k∈V ′

wi<qj+qk

x
q−qj
jk ≤ 1 i, j ∈ V ′ , q ≥ qj ∈ C. (3.14)

We can also use the self-capacity to derive a new family of valid inequalities. Let S1 represent
a set of fragile products and its complement denoted S2, and all arcs going from i ∈ S1 to any
product j. We know that all arcs going out of j to a product k with the sum of weights qk +qj

is larger than the maximum self-capacity of the products in S1 will not be permitted. So
all other self-capacity of any products in S1 are also violated. Thus, valid inequalities (3.15)
forbid this situation:

∑
i∈S1

xqij +
∑
k∈S2

maxi∈S1{wi}<qk+qj

x
q−qj
jk ≤ 1 j ∈ V ′ ,S1 ⊆ V

′
: wi < Q,S2 ⊆ V

′
, q ≥ qj ∈ C. (3.15)

3.3.2 Two-index flow formulation

Formulation F1 has the drawback that the number of variables is dependent on the number
of q values that can be obtained by different picking routes. We now provide a two-index flow
formulation to determine the best picker routes, based on the model described in [Laporte,
1986, Toth and Vigo, 2014] for the asymmetric VRP. We define new binary variables xij equal
to one if arc (i, j) is used, and an integer variable K indicating the number of picking tours
required to satisfy all the orders. This model can be stated as follows:

(F2) minimize
∑

(i.j)∈A

dijxij (3.16)

subject to ∑
j∈V ′

x0j = K (3.17)

∑
i∈V ′

xi0 = K (3.18)

∑
i∈V

xij = 1 j ∈ V ′ (3.19)
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∑
j∈V

xij = 1 i ∈ V ′ (3.20)

∑
i,j∈S

xij ≤ |S| − r(s) S ⊆ V ′, |S| ≥ 2 (3.21)

K ∈ N+ (3.22)

xij ∈ {0, 1} i, j ∈ V (3.23)

The objective function (3.16) minimizes the total traveled distance. Constraints (3.17) and
(3.18) impose the degree requirements for the I/O point. Equations (3.19) and (3.20) are
in-degree and out-degree constraints. They state that each product i must be picked exactly
once. Constraints (3.21) correspond to generalized subtour elimination constraints. They

simultaneously forbid subtours and ensure the capacity requirements with r(s) =

⌈∑
j∈S qj
Q

⌉
.

Constraints (3.22) and (3.23) impose integrality and binary conditions on the variables.

Similarly to the capacity-indexed formulation, one can add beforehand the category constraints
when creating the variables. We also remove irrelevant arcs going from non-food to food prod-
ucts. However, unlike formulation F1, formulation F2 cannot handle the fragility constraints
in a preprocessing phase by eliminating infeasible variables. Thus, we propose a branch-and-
cut routine that dynamically adds the fragility constraints defined by (3.24). For a subset of
nodes S, we check whether the products related to the potential nodes that may follow node i
respect the maximum weight supported by i, wi. If this condition is not met, we then impose
the fragility constraints:

∑
j∈S

xij +
∑
j,k∈S

xjk ≤ |S| − 1 S ⊆ V ′ : qs > wi, i ∈ V
′\S. (3.24)

The weight constraints (3.13) proposed for formulation F1 can be adapted for F2 by removing
the capacity index, which results in inequalities (3.25):

∑
i,j∈S

xij +
∑
l∈S

∑
h∈V ′h\S

xlh ≤ |S| − 1 S ⊆ V ′ : qs ≥ L. (3.25)

We have also adapted the two sets of valid inequalities (3.14) and (3.15) from model F1 to
model F2. The new valid inequalities (3.26) and (3.27) may be written as follows:

xij +
∑
k∈V ′

wi<qj+qk

xjk ≤ 1 i, j ∈ V ′ (3.26)

56



∑
i∈S1

xij +
∑
k∈S2

maxi∈S1{wi}<qk+qj

xjk ≤ 1 j ∈ V ′S1,S2 ⊆ V
′
. (3.27)

3.4 Solution algorithms

We now describe the proposed heuristics and exact algorithms to solve the OPP-WFCC in-
troduced in this chapter. We describe four classical heuristic algorithms and the ALNS meta-
heuristic in Section 3.4.1. Then, we present the branch-and-cut algorithm and the cutting
planes in Section 3.4.2.

3.4.1 Heuristic algorithms

In this section we describe five heuristic algorithms to solve the OPP-WFCC. The first four
are extensions of classical and well-known heuristics that we have adapted to solve the OPP-
WFCC, and the last one is a metaheuristic designed specifically for our problem. In Section
3.4.1 we describe how we have adapted the S-shape, mid point, and largest gap heuristics of
Hall [1993] along with the combined heuristic of Roodbergen and De Koster [2001b] for our
problem. These solution methods are modified to handle the precedence constraints considered
in the OPP-WFCC. Section 3.4.1 presents the main procedures of the ALNS metaheuristic.

Classical heuristics

Under the S-shape heuristic, the picker will completely traverse any aisle containing at least
one item to be picked. Thus, the warehouse is completely traversed, by leaving an aisle and
entering the adjacent one, picking products as the picker advances.

In the mid point heuristic we divide the warehouse into two halves. There are picks on the
front side, reached by the front aisle, and picks on the back side reached from the back side.
The picker only crosses through the first and last aisles of the picking tour. Intermediate aisles
are never crossed completely. According to Hall [1993], this method performs better than the
S-shape when the number of picks per aisle is small.

In the largest gap heuristic, the picker follows the same idea of the S-shape by visiting all
adjacent aisles, but instead of traversing the aisle completely, he enters the aisle up to the
item that will leave the largest gap for the next item in that aisle. This heuristic tries to
maximize the parts of the aisles that are not traversed. When the largest gap is identified,
the picker returns and leaves the aisle from the same side (back or front) used to enter it. We
proceed by making the first pick as in the original heuristic and by traversing the warehouse
following the original rules.

57



In the combined heuristic, picking routes visit every aisle that contains at least one item. We
have adapted the dynamic programming algorithm of Roodbergen and De Koster [2001b] to
determine whether it is better to traverse the current aisle in full or to go back, then entering
the next aisle from the front or from the rear side. In general, this method is best suited for
pickings that follow a TSP-like tour.

The following modifications are required to these four heuristics in order to handle weight,
fragility, and category constraints. We start by picking the first available product in the left
most aisle as in the original version of the heuristics. Any subsequent product is picked if it
respects all the constraints of the problem, and skipped otherwise. We continue following the
heuristic rules traversing the warehousing, and skipping any infeasible pick until the pallet is
full or the last item is reached. At this point, the picker returns to the I/O point and starts a
new route going back to the first skipped item, which will be picked and the same procedure
is repeated as long as there are products to be picked.

Adaptive large neighborhood search heuristic

We present an implementation of an Adaptive large neighborhood search heuristic (ALNS)
metaheuristic, widely based on Ropke and Pisinger [2006]. The ALNS is composed of a set
of simple destruction and reconstruction heuristics in order to find better solutions at each
iteration using an adaptive layer to keep track of the performance of the invoked heuristics. An
initial solution can be considered to speed up the search and the convergence of the algorithm.
We have implemented a fast sequential insertion heuristic, which performs a greedy search for
the best insertion for one product at a time.

The ALNS selects one of many destroy and repair operators at each iteration. We have
implemented three destroy and two repair operators. Destroy operators include the Shaw
removal [Shaw, 1997], the worst removal, and a random removal. Repair operators include a
greedy parallel insertion and a k-regret heuristic [Potvin and Rousseau, 1993]. Each operator
is selected with a probability that depends on its past performance, and a simulated annealing
acceptance criterion is used. Each procedure of the ALNS is adapted to deal with the weight,
fragility, and category constraints.

The ALNS is run for 50,000 iterations of destroy-repair operations. After every 100 iterations
the weight of each operator is updated according to its past performance. Initially, all the op-
erators have the same weight. A sketch of our ALNS implementation is provided in Algorithm
4 (for further details see Ropke and Pisinger [2006]).

3.4.2 Exact algorithms

In this section we present the various algorithms used to solve exactly the mathematical
models from Section 3.3. We present in Section 3.4.2 a subset sum algorithm that enables
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Algorithm 4 Adaptive large neighborhood search metaheuristic
1: Create an initial solution s using sequential insertion operators : s′ = s
2: D : set of removal operators, I : set of repair operators
3: Initiate probability ρd for each destroy operator d ∈ D and probability ρi for each repair

operator i ∈ I
4: while stopping criterion is not met do
5: Select remove (d ∈ D) and insert (i ∈ I) operators using ρd and ρi

6: Apply operators and create st

7: if st, is accepted by the simulated annealing criterion then
8: s = st

9: end if
10: if cost(s) < cost(s′) then
11: s′ = s
12: end if
13: Update ρd and ρi

14: end while
15: return s′

us to drastically reduce the number of required variables for model F1. This is followed
in Section 3.4.2 by an overview of the branch-and-cut algorithm we have used as well as the
detailed description of the procedures used to dynamically identify and generate violated valid
inequalities.

Subset sum algorithm to reduce the number of variables of model F1

The variables of formulation F1 presented in Section 3.3.1 can only be fully enumerated for
small and medium size instances. However, it is easy to observe that some variables are
never used in the model, e.g., the ones for which some values of q cannot be obtained by
any combination of the weights of the products. These variables can be generated and fed
into the solver, which will set them to zero in any feasible solution. If one can identify these
variables beforehand, it is possible to set them to zero and remove them from the model at
a preprocessing phase. Thus, one can (substantially) decrease the size of the model and the
memory footprint by preprocessing the model and the instance a priori, identifying the subset
of variables that should not be generated.

We use a subset sum algorithm to identify all possible values of q from 1 to Q that can be
achieved by any combination of weights qi. The ones that are found not to be feasible are not
generated.

From a theoretical point of view, its performance is directly related to the distribution of the
weights of the items in the instance. For example, an instance for which all products have a
weight of five units will have five time less variables than the model with all the values of q.
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Branch-and-cut algorithms

Models F1 and F2 can be fed straightforwardly into a general purpose solver and solutions are
obtained by branch-and-bound if the number of constraints (3.13), (3.21), (3.24) and (3.25)
is not excessive. However, for instances of realistic size, the number of these constraints is
too large to allow a full enumeration and they must be dynamically generated throughout
the search process. Indeed, polynomial constraints may be added a priori to the model while
other constraints cannot be generated a priori since their number is exponential.

The exact algorithm we present is a branch-and-cut scheme in which inequalities (3.13), (3.21),
(3.24), and (3.25) are generated and added into the program whenever they are found to be
violated. It works as follows. At a generic node of the search tree, a linear program containing
the model with a subset of the subtour elimination constraints and relaxed integrality con-
straints is solved, a search for violated inequalities is performed, and some of these are added
to the current program which is then reoptimized. This process is reiterated until a feasible
or dominated solution is reached, or until there are no more cuts to be added. At this point,
branching on a fractional variable occurs. We provide a sketch of the branch-and-cut scheme
in Algorithm 5. Note that for formulation F1, we apply Algorithm 5 but we skip the process
to identify violated subtour elimination constraints (lines 8−12) as connectivity requirements
are ensured by constraints (3.7).

Algorithm 5 Branch-and-cut algorithm
1: Subproblem solution: Solve the LP relaxation of the current node
2: Termination check:
3: if there are no more nodes to evaluate then
4: Stop
5: else
6: Select one node from the branch-and-cut tree
7: end if
8: while the solution of the current LP relaxation contains subtours do
9: Identify connected components as in Padberg and Rinaldi [1991]

10: Add violated subtour elimination constraints
11: Subproblem solution. Solve the LP relaxation of the current node
12: end while
13: if the solution contains no disconnected components then
14: Apply Algorithms 6 and 7, and add violated cuts
15: end if
16: if the solution of the current LP relaxation is integer then
17: Go to the termination check
18: else
19: Branching: branch on one of the fractional variables
20: Go to the termination check
21: end if

In this branch-and-cut algorithm, weight, and fragility inequalities are used as cutting planes
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to strengthen the linear programming relaxation at each node of the branch-and-bound tree.
Constraints (3.13), (3.24), and (3.25) cannot be generated a priori since their number is
exponential. These are initially relaxed and dynamically generated as cuts as they are found
to be violated.

When model F1 without weight constraints (3.13) (similarly with (3.25) for F2) is solved, two
situations can occur. The first one consists of finding an integer solution. Then one can easily
verify if the picking tour exceeds the weight limit L or the self-capacity wi by calculating the
cumulative weight of a set S. In the second case, when the solution is fractional, one can
identify connected components by means of the maximum flow algorithm as in Padberg and
Rinaldi [1991]. This procedure, sketched in Algorithm 6, consists of constructing an auxiliary
graph as follows. First, a node i is selected. Then the node j associated with the maximum
flow value leaving i is identified and added to the set S. We check whether the sum of weights of
the products included in S, referred to by qS , respects the threshold L. If it exceeds this limit,
we add cuts to forbid such solution. This is achieved by adding the appropriate constraints
(3.13) for the capacity indexed formulation, and (3.25) for the two-index flow formulation
associated with the nodes in S.

Similarly, in Algorithm 7, we describe the procedure used to dynamically generate constraints
(3.24). We identify a subset S such that it respects the fragility constraints. Otherwise, we
add the violated constraints associated with the nodes in S.

Algorithm 6 Weight constraints algorithm
1: for i = 1 to m do
2: S = {i}
3: j∗ = argmaxk∈V ′\S{xik}
4: S = S ∪ {j∗}
5: if qS > L and qS ≤ Q then
6: for l ∈ S do
7: if the solution violates (3.13) (or (3.25)) then
8: Add weight constraints (3.13) (or (3.25))
9: end if

10: end for
11: end if
12: if qS > Q then
13: Continue to next i from step 1
14: else
15: Go to Step 3
16: end if
17: end for
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Algorithm 7 Fragility constraints algorithm
1: for i = 1 to m do
2: if i is a fragile product then
3: S = {i}, best = i
4: while stop criterion is not met do
5: j∗ = argmaxk∈V ′\S{xbest,k)}
6: if xbest,k < 0.5 then
7: Stop
8: end if
9: S = S ∪ {j∗}, Best=j

10: if qS ≤ Q and qS > wi then
11: if the solution violates (3.24) then
12: Add fragility constraints (3.24)
13: end if
14: end if
15: if qS > Q then
16: Stop
17: end if
18: end while
19: end if
20: end for

3.5 Computational experiments

In this section, we provide details on the implementation, benchmark instances, and describe
the results of extensive computational experiments. Implementation and hardware information
is provided in Section 3.5.1. The description of the benchmark instances is presented in Section
3.5.2, followed by the results of our computational experiments. Heuristic results are presented
in Section 3.5.3 and the results of experiments carried out in order to assess the performance
of the proposed exact methods are presented in Section 3.5.4.

3.5.1 Implementation details

All the formulations described in Section 3.3 and the algorithms described in Section 3.4 were
implemented in C++. The branch-and-cut algorithm uses the CVRPSEP library [Lysgaard,
2003] for the sub-tours elimination constraints, the newly proposed cutting methods, and
IBM CPLEX Concert Technology 12.6 as the branch-and-bound solver. All computations
were executed on machines equipped with two Intel Westmere EP X5650 six-core processors
running at 2.667 GHz, and with up to 8 GB of RAM installed per node running the Scientific
Linux 6.3. All algorithms were provided a time limit of 7200 seconds.
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3.5.2 Data sets generation

Since no data sets are available for the OPP-WFCC, we have created three groups of instances
to represent different configurations and combinations of the new features introduced in this
chapter. To reflect common practice, non-food items are grouped in the same aisle(s). In the
first group of instances, called G1, only one side of the first aisle is dedicated to non-food items,
whereas all fragile and non-fragile products are randomly placed throughout the warehouse.
In the second group of instances (G2), we split the picking area in two symmetric zones. This
allows non-food items to be placed in the lateral extremities of the warehouse. All remaining
items are placed randomly elsewhere. In the third group (G3), non-food items are placed in
the extremities like in G2, but solid products (SP), i.e., non-fragile, with large self-capacity
are grouped together in the sections close to the I/O point. These three types of layouts are
illustrated in Figure 3.4.
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Figure 3.4 – Schematic representation of the three groups of instances

In each group of instances, we have kept the same proportion of food and non-food products,
and ranges of weight and self-capacity. The generator has a 50% probability to create a fragile
product. Each fragile product has a 2/3 probability to be a food product and 1/3 to be
non-food. A non-fragile product, food or otherwise, has a weight between five and 50 kg, and
infinite self-capacity. A fragile product has a weight between one and 10 kg, and a self-capacity
between five and 50 kg.

The general characteristics of this large test bed are summarized in Table 3.1. An instance
is characterized by the number of picks, the number of aisles, and the capacity of the picking
vehicles. The number of SKU to be picked is between 20 and 100, by steps of 10. The
number of aisles is equal to 3, 4, 5, 6 or 7, with the I/O point located in the middle of the
warehouse. The capacity of the pallet may take the value 150 or 250. In total, there are 270
different parameter combinations represented in Table 3.1. For each combination, we have
generated randomly three instances, for test bed of 810 distinct instances. Recall that each
aisle side contains 20 storage locations and the number of SKU per warehouse depends on
the number of aisles. Regarding the parameters values, we have used the following physical
distance parameters: α = 10, β = 5, γ = 15, and Ω = 5.
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Table 3.1 – General characteristics of the generated test bed

Parameter Variations Values

group 3 G1, G2, G3
# of picks 9 20, 30, 40, 50, 60, 70, 80, 90, 100
# of aisles 5 3, 4, 5, 6, 7
capacity of the pallet 2 150, 250

3.5.3 Heuristic results

This section presents the results of extensive computational experiments of the five heuristic
algorithms presented in Section 3.4.1 for the test bed containing 810 instances. Table 3.2
presents the solutions of the heuristic algorithms for all the three groups of instances. Specifi-
cally, for each heuristic, group, and pallet capacity, and for each number of pickups we provide
the total distance which is the average over 15 instances, i.e., three instances for each scenario.
We also provide the average distance over each group.

The best average results of classical heuristics are underlined for each capacity and each group.
In terms of computational times required by the different heuristic algorithms, the CPU time
needed is less than one second for instances with 100 pickups and seven aisles. The classical
heuristics results presented in Table 3.2 highlight that their performance slightly differ over
the three instances groups. The mid-point heuristic is most likely less effective than the other
heuristics. For the first group, the combined heuristic outperforms the other three. For G2,
the S-shape heuristic is the best one. Finally, for G3, the largest gap heuristic yields the
best results. These results hold for both capacity scenarios. More generally, the four classical
heuristics yielded very similar solutions, whereas these may be significantly enhanced by the
ALNS metaheuristic.

A richer and more intricate metaheuristic, such as the ALNS, significantly improves the solu-
tion, as shown in Table 3.2. The average solution is reduced by almost 50% for all groups. This
may be explained by the fact that the ALNS metaheuristic provides more compact solutions
with fewer picking tours and much shorter distances, thanks to its intensification and diversifi-
cation procedures. Regarding the running time, the ALNS improves the solution quality with
no significant time increase. The average running time is around 60 seconds for the largest
instances with 100 pickups and 7 aisles. As expected, increasing the capacity of the pallet
(as done in the second scenario) reduces the distance traversed, and this for all heuristics.
Moreover, being the most advanced one, the ALNS better exploits this extra capacity and
reduces distances significantly.
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3.5.4 Exact algorithms results

Tables 3.3 and 3.4 present the results of the best heuristic proposed (ALNS) compared to
the results obtained by solving the two mathematical models, F1 and F2, when applying the
branch-and-cut algorithms with the proposed cutting planes.

For each instance group and for each number of pickups, we provide the average results over
all the instances and over all the number of aisles, with Q = 150 in Table 3.3 and Q = 250 in
Table 3.4. We report the upper bound (UB) and the lower bound (LB) for models F1 and F2.
We provide the average percentage gaps, given by the ratio (UB−LB

LB · 100). We also provide
the average running time in seconds.

From Tables 3.3 and 3.4, we observe that the results provided by the ALNS metaheuristic
are close to the best UBs yielded by both models. For instance, when Q = 150, ALNS gives
an overall average distance of 2496.83 compared to 2482.68 and 2479.07 for F1 and F2. This
remark also holds when Q = 250. Moreover, the ALNS algorithm provides near-optimal
solutions within very short computing times (few seconds) compared to the time spent by
both models to prove optimality or to provide better UBs. However, deriving better results
at the expense of longer run times was one of our goals to provide the best possible results for
the newly proposed testbed and serve the warehousing research community.

A deeper analysis of the formulations shows that the solutions are tight, and the optimality
gap is in average 9.35% when Q = 150 for F1, and 6.91% for F2. Model F2 proves optimality
over all instances with 20 pickups and almost all instances with 30 pickups within very short
computing times. Both models had problems closing the gap and proving optimality for
instances with more than 30 pickups.

Note that the time limit of 7200 seconds is often exceeded by F1. This is due to the fact that
the time spent to instantiate model F1 is also considered in the total time, and the size of
model F1 may become an issue when the instance size increases. For example, for instances
including 100 pickups, almost two hours are needed only to create the model.

Finally, it is important to notice that the subset sum algorithm presented in Section 3.4.2
was able to reduce an average of 12.55% variables compared to a complete enumeration of all
possible variables for model F1. In our test bed, we have observed a reduction of up to 23.56%
in the number of variables, and a minimum reduction of 5.87%.

Regarding the three groups of instances, we observe that the gap between the upper and lower
bounds is slightly lower for group G1 for both models. There are no major differences among
groups in terms of the traveled distance except for very small variations. Indeed, it seems
more difficult to solve instances where the products are placed in groups, in such a way as to
facilitate the picking work.
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Table 3.3 – Average results of the exact algorithms per group of instances and number of
pickups on instances with Q = 150

Group Pickups ALNS Time (s) Capacity indexed formulation (F1) Two-index formulation (F2)
UB LB %Gap Time (s) UB LB %Gap Time (s)

G1 20 1251.00 1.53 1232.00 1232.00 0.00 118.27 1232.00 1232.00 0.00 8.00
30 1568.00 3.33 1542.67 1521.86 1.37 1577.60 1542.67 1540.30 0.15 541.60
40 1928.00 5.53 1892.67 1798.71 5.22 7278.67 1888.67 1873.72 0.80 1656.40
50 2127.33 9.60 2120.67 1937.19 9.47 7604.07 2104.33 2031.58 3.58 5321.40
60 2530.33 16.40 2529.33 2319.77 9.03 8678.60 2525.67 2380.87 6.08 7200.67
70 2734.00 24.47 2733.33 2491.91 9.69 9527.27 2732.33 2595.60 5.27 7201.00
80 3040.67 31.20 3038.33 2790.07 8.90 10031.27 3035.00 2854.34 6.33 7201.20
90 3403.33 50.33 3402.67 3083.69 10.34 16523.53 3403.33 3153.14 7.93 7202.67
100 3722.67 65.60 3722.67 3373.26 10.36 19710.80 3722.67 3426.66 8.64 7202.93

Average 2478.37 23.11 2468.26 2283.16 8.11 9005.56 2465.19 2343.13 5.21 4837.32

G2 20 1300.33 1.07 1287.67 1252.50 2.81 188.53 1287.67 1287.67 0.00 99.73
30 1661.67 3.20 1627.67 1601.29 1.65 3185.60 1627.00 1626.52 0.03 1066.07
40 2012.33 6.13 1962.67 1820.88 7.79 7140.73 1955.67 1890.01 3.47 4403.53
50 2230.00 9.40 2221.33 1993.66 11.42 7946.80 2193.00 2079.29 5.47 6028.47
60 2565.33 17.13 2557.00 2301.68 11.09 8804.27 2546.00 2371.23 7.37 6923.13
70 2803.33 24.80 2797.33 2519.51 11.03 9967.53 2798.00 2574.98 8.66 7201.13
80 3129.67 33.73 3129.33 2805.88 11.53 11105.93 3113.00 2848.36 9.29 7201.60
90 3453.67 51.00 3453.67 3116.54 10.82 14786.20 3453.67 3165.65 9.10 7202.33
100 3783.00 67.53 3781.00 3392.42 11.45 17634.47 3783.00 3420.28 10.60 7202.93

Average 2548.81 23.78 2535.30 2311.60 9.68 8973.34 2528.56 2362.66 7.02 5258.77

G3 20 1275.33 1.67 1253.00 1140.00 9.91 211.47 1253.00 1253.00 0.00 7.67
30 1614.67 3.13 1592.33 1592.33 0.00 1559.87 1592.33 1586.33 0.38 850.07
40 1958.33 5.60 1871.67 1781.19 5.08 6868.73 1879.33 1816.53 3.46 3475.00
50 2139.67 8.87 2119.00 1939.38 9.26 7849.73 2109.33 1995.65 5.70 6013.20
60 2490.67 16.27 2474.00 2206.25 12.14 8744.40 2473.00 2254.63 9.69 6729.33
70 2706.67 20.80 2706.67 2431.64 11.31 9096.13 2702.67 2448.13 10.40 7201.00
80 3042.33 31.00 3041.67 2678.45 13.56 11614.67 3041.67 2679.62 13.51 7201.80
90 3360.67 43.13 3360.67 2991.94 12.32 12734.93 3358.67 3029.84 10.85 7201.80
100 3581.33 66.87 3581.33 3188.99 12.30 16577.47 3581.33 3195.08 12.09 7202.13

Average 2463.30 21.93 2444.48 2216.69 10.28 8361.93 2443.48 2250.98 8.55 5098.00

Overall average 2496.83 22.94 2482.68 2270.48 9.35 8780.28 2479.07 2318.93 6.91 5064.70

Table 3.5 presents the number of optimal solutions obtained by both models over the 810
instances. These results are separated in groups of instances, number of aisles, and by the
value of the capacity Q. This helps highlight the effect of each of these characteristics. In
the first and second lines we present the capacity indexed formulation F1 and the two-index
formulation F2 with the two capacities, Q = 150 and Q = 250. We then present the results
for each group of instances and each number of aisles. The number of optimal solutions is
slightly higher with F2. This corroborates the results already observed from the gaps and
running time of these models. A transversal analysis of Tables 3.3, 3.4, and 3.5 points out
again the difficulty of the problem. We observe that the best exact algorithm is able to prove
optimality for only 27% of the instances.

Table 3.6 presents a deeper statistical comparison between the proposed formulations. For
each model, we provide averages for the percentage optimality gap, the computation time in
seconds, the number of variables, and constraints generated along with the number of cuts
added to fractional and integer solutions, and finally the number of nodes explored in the
branch-and-bound tree. The last column of the table shows the relative difference of F1 with
respect to F2.

The first outstanding result from Table 3.6 is related to the huge number of variables and
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Table 3.4 – Average results of the exact algorithms per group of instances and number of
pickups on instances with Q = 250

Group Pickups ALNS Time (s) Capacity indexed formulation (F1) Two-index formulation (F2)
UB LB %Gap Time (s) UB LB %Gap Time (s)

G1 20 1093.67 1.73 1064.33 1048.65 1.50 1644.87 1063.33 1063.33 0.00 1.07
30 1388.00 4.40 1360.33 1314.20 3.51 4645.33 1355.67 1355.67 0.00 45.80
40 1568.67 6.87 1559.33 1422.70 9.60 7523.00 1530.33 1517.27 0.86 2241.00
50 1859.33 12.07 1858.67 1584.14 17.33 8551.40 1836.00 1701.57 7.90 7081.73
60 2057.67 20.33 2057.00 1746.16 17.80 12133.93 2016.33 1847.55 9.14 7065.67
70 2236.67 31.80 2236.67 1911.78 16.99 14281.20 2228.00 1987.49 12.10 7200.93
80 2387.00 46.07 2387.00 1999.96 19.35 17920.47 2377.33 2043.08 16.36 7201.13
90 2568.00 73.67 2568.00 2157.94 19.00 35708.87 2567.33 2214.82 15.92 7202.07
100 2716.67 86.27 2716.67 2283.53 18.97 41148.93 2716.00 2323.99 16.87 7201.73

Average 1986.19 31.47 1978.67 1718.78 15.12 15950.89 1965.59 1783.86 10.19 5026.79

G2 20 1209.33 1.67 1164.67 1149.44 1.32 2309.47 1164.67 1164.67 0.00 0.33
30 1499.67 3.87 1470.33 1357.62 8.30 5233.27 1448.00 1444.69 0.23 529.07
40 1728.67 7.40 1714.67 1526.73 12.31 8008.13 1699.00 1641.20 3.52 4543.80
50 1935.67 12.07 1935.67 1613.44 19.97 9346.67 1891.33 1673.86 12.99 6787.13
60 2179.67 22.80 2179.67 1810.35 20.40 12049.20 2141.67 1876.63 14.12 6893.53
70 2379.67 31.20 2377.67 1973.70 20.47 15551.13 2354.00 2005.31 17.39 7201.27
80 2473.00 46.27 2473.00 2037.14 21.40 21498.93 2473.00 2072.88 19.30 7201.53
90 2694.67 65.47 2694.67 2230.08 20.83 33595.00 2694.00 2266.36 18.87 7202.27
100 2825.33 80.07 2825.33 2351.37 20.16 40648.80 2823.33 2356.54 19.81 7202.47

Average 2102.85 30.09 2092.85 1783.32 17.36 16471.18 2076.56 1833.57 13.25 5284.60

G3 20 1235.33 1.53 1193.33 1177.85 1.31 2571.73 1193.00 1193.00 0.00 0.60
30 1481.00 4.00 1452.00 1357.24 6.98 4982.13 1441.00 1441.00 0.00 178.53
40 1730.00 6.87 1720.00 1508.52 14.02 7646.07 1676.00 1633.55 2.60 3854.47
50 1876.00 13.27 1876.00 1602.06 17.10 8903.73 1856.67 1680.63 10.47 6233.33
60 2149.00 20.27 2149.00 1795.72 19.67 11513.80 2106.33 1817.12 15.92 7200.73
70 2321.67 28.13 2321.67 1938.48 19.77 14725.33 2304.33 1962.90 17.39 7201.07
80 2384.67 44.53 2384.67 2008.36 18.74 22755.27 2383.33 2007.33 18.73 7201.67
90 2641.00 55.67 2641.00 2179.95 21.15 28728.27 2640.33 2202.66 19.87 7201.73
100 2780.67 80.00 2780.00 2311.15 20.29 35836.53 2778.67 2291.00 21.29 7201.60

Average 2066.59 28.25 2057.52 1764.37 16.61 15295.87 2042.19 1803.24 13.25 5141.53

Overall average 2051.88 29.94 2043.01 1755.49 16.38 15905.98 2028.11 1806.89 12.24 5150.97

Table 3.5 – Number of optimal solutions per group of instances and capacity of the truck

G1 G2 G3
Capacity 3 4 5 6 7 Total 3 4 5 6 7 Total 3 4 5 6 7 Total Total

Q=150 F1 6 7 5 6 6 30 4 5 4 6 6 25 8 7 6 7 5 33 88
F2 8 9 10 11 8 46 8 7 9 8 9 41 8 8 9 9 7 41 128

Q=250 F1 5 4 4 4 6 23 4 4 4 3 5 20 4 4 3 4 5 20 63
F2 9 9 8 9 9 44 6 7 6 8 10 37 7 8 7 9 10 41 122

constraints generated in F1. These two figures are more than 100 times higher than the
number of variables and constraints generated in F2. Although the subset sum algorithm
helps decreasing the size of F1 by removing irrelevant variables, the size of formulation F1
remains huge compared to F2 and requires much more time to load the instance and create
the model.

However, F1 uses almost no cuts during the search process to limit the size of the solution
while F2 invokes a huge number of cuts for both fractional and integer solutions. Indeed,
over all instances, F2 uses on average 316.2 cuts on fractional solutions and 9703.5 on integer
ones. This is due to the fact that F1 does not need to add sub-tours elimination constraints
or self-capacity constraints during the search process. Moreover, for both models and on
instances with more than 40 pickups, the number of visited nodes gradually decreases while
the instances size increases. This is due to the increasing number of cuts generated while the
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instances size increases and then a smaller tree size is explored. This shows that the average
number of visited nodes in F1 is less than the number of visited nodes in F2 by 33%. These
results clearly show that formulation F1 is again outperformed by formulation F2.

Table 3.6 – Statistical comparison of models F1 and F2 over all instances per number of
pickups

Pickups 20 30 40 50 60 70 80 90 100 Average vs. F2

F1

% Gap 3.2 4.1 9.2 14.5 15.5 15.0 15.7 15.8 15.6 12.0 42%
Time (s) 1174.1 3530.6 7410.9 8367.1 10320.7 12191.4 15821.1 23679.5 28592.8 12343.1 142%

# Variables 37479.6 72740.4 130246.9 203011.6 280638.7 384998.3 497471.6 665514.9 793555.8 340628.6 10528%
# Constraintes 12962.8 23821.5 37205.6 57058.8 75440.1 98905.7 130409.9 159564.4 194357.4 87747.3 11308%
Fractional cuts 0.6 1.1 1.4 0.2 0.1 0.2 0.1 0.0 0.0 0.4 -100%

Integer cuts 12.6 17.2 23.2 10.9 7.3 5.5 6.7 2.3 3.3 9.9 -100%
# Nodes 12998.2 32487.2 31799.1 13686.6 4279.6 2436.6 1504.5 373.6 320.4 11098.4 -33%

F2

% Gap 0.0 0.2 2.7 8.0 10.9 12.0 14.1 13.8 14.9 8.5
Time (s) 19.6 535.2 3362.4 6244.2 7002.2 7201.1 7201.5 7202.1 7202.3 5107.8

# Variables 330.9 703.7 1218.8 1895.9 2698.1 3691.6 4748.4 6121.6 7435.2 3204.9
# Constraintes 101.5 198.8 312.9 486.3 671.4 880.7 1163.6 1378.6 1728.5 769.2
Fractional cuts 96.7 277.4 455.4 581.3 476.9 283.7 273.4 206.9 193.9 316.2

Integer cuts 128.5 1144.2 5485.5 10890.1 14157.9 14544.8 14606.4 13246.6 13127.8 9703.5
# Nodes 1838.3 19307.3 35759.4 34536.0 19465.7 14024.2 10649.1 6882.4 5773.8 16470,7

3.6 Conclusions

We have tackled a real-world-based and rich order picking problem arising in the grocery
retail industry which, to our knowledge, was studied here for the first time. This practical
problem extended classical warehousing problems by incorporating more challenges regarding
the physical characteristics of the products to be picked. Specifically, products can support
a maximum weight when being transported on a lift-truck used for warehouse picking, some
products are more fragile than others, and products belonging to food and non-food categories
must be picked in a given order such as to avoid contamination. We have adapted four classical
order picking heuristics from the warehousing literature to handle these new features. Notably,
we have shown how the S-shape, the largest gap, the mid point, and the combined heuristics
can yield feasible solutions within very short computation times. Moreover, we have also
proposed a more powerful metaheuristic, ALNS, which outperforms the best results obtained
by the four heuristics. We have presented two mathematical models including known and
new valid inequalities for this challenging picking problem. The first one is the capacity-
indexed formulation, which is a based compact single commodity flow using binary variables
to indicate the flow on each arc. The second formulation is a two-index flow formulation,
in which individual hand-lift trucks are not explicitly identified. We have proposed exact
algorithms for their resolution.

We have tested the proposed heuristics, metaheuristic, and the two formulations on large sets
of newly generated and realistic instances. The results show the effectiveness of the proposed
heuristics in finding high-quality solutions within a negligible computation time. Solutions
provided by the ALNS metaheuristic dominated those from the other heuristics, as it tra-
versed smaller distances due to fewer tours. Moreover, we have been able to prove optimality
for several instances and to obtain better solutions and tight gaps with two mathematical
models that were solved with classical and ad-hoc valid inequalities and cutting planes. Ex-
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tensive tests have shown that the proposed exact algorithms outperformed the solutions of the
heuristic algorithms. Moreover, we have shown that the two-index formulation outperforms
the capacity-indexed formulation for this problem. The most remarkable conclusion for this
work is that the running times of the heuristics are very low, and those of the exact algorithms
are still acceptable, allowing for their usage in practical applications.

Our future works aim to show how the proposed solution methods can be adapted to cover
a variety of other warehousing applications, in other industries and under different assump-
tions. In addition, there might be a strong correlation between the instances characteristics,
e.g., warehouse design, number of aisles, capacity of the truck, and the results obtained. Conse-
quently, more research is needed to demonstrate such interactions through design experiments,
as they are supposed to significantly help find the best warehouse design with respect to the
routing policy under different conditions. Similar work has been already performed in Chack-
elson et al. [2013]. Future research that supports this study may include more computational
experiments to assess the impact of each precedence constraint on the performance of the
heuristic and exact algorithms. Previous studies evaluating the impact of different operating
conditions on the route distance exist, e.g., Petersen [1997], Petersen [1999].
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Chapter 4

The warehouse products reassignment
problem

Résumé

Depuis plusieurs décennies, les chercheurs ont développé des techniques d’optimisation pour
les opérations d’entreposage. Ces techniques sont liées aux stratégies de manutention, de pré-
paration de commandes et de stockage pour une myriade de configurations d’entrepôt. On
néglige souvent la mise à jour de ces stratégies afin de s’adapter aux changements des of-
fres de produits. La plupart des recherches sur le positionnement des produits fournissent
des méthodes pour déterminer où les produits doivent être localisés. Cependant, la partie
manutention du problème est souvent mise de côté. Changer la configuration nécessite beau-
coup de travail et perturbe les opérations régulières de prélèvements. Ce chapitre présente le
problème de réaffectation afin de minimiser la charge de travail. Nous démontrons comment
on peut passer d’une affectation de stockage périmée à une meilleure, dans un minimum de
temps. Nous présentons trois formulations mathématiques différentes et les comparons à l’aide
d’expérimentations approfondies afin d’identifier la meilleure.
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Chapter information A research paper based on this chapter, named Mathematical models
for the warehouse reassignment problem, has been submitted to the journal Computers &
Operations Research by Chabot T., Coelho L. C. and Renaud J. in February 2018.

Abstract

The last part of this thesis considers another type of material handling within the picking
area: how to move products to new locations. For several decades, researchers have developed
optimization techniques for warehouse operations. These techniques are related in particular
to the material handling, the order picking and storage assignment strategies for a myriad of
warehouse configurations. It is often neglected that these strategies need to be regularly ad-
justed in order to adapt to changes in the demand and/or product offers. For example, results
from Chapter 3 could be quite different with an updated assignment of products, correspond-
ing to the order previsions. Most research on storage assignment provide excellent methods
to determine where products should be located. However, the handling part of the problem
is often set aside. Moving from one setup to another requires a large amount of work and
disturbs regular order-picking operations. This chapter presents the warehouse reassignment
problem in order to minimize the total workload to reassign the products to their new loca-
tions. We demonstrate how one can move from an out-of-date storage assignment to a better
one, in a minimum of working time. We introduce three different mathematical formulations
and compare them through extensive computational experiments in order to identify the best
one.
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4.1 Introduction

Warehouse operations are critical for the performance of distribution centers (DCs) and to
the efficiency of supply chains. Placing products in the warehouse and picking them later are
some of the most time and cost-consuming activities [De Koster et al., 2007, Gu et al., 2007,
Chiang et al., 2011]. A good product location is crucial given the ever-increasing number of
products and the pressure for shorter lead times [De Koster et al., 2007, Hong et al., 2012,
Tompkins et al., 2010]. Determining the best assignment of items to locations is known in
the literature as the storage location assignment problem [Hausman et al., 1976]. A storage
assignment strategy is a set of rules which can be used to determine the best place to store
each stock keeping unit (SKU) in a warehouse according to a variety of factors [Kofler et al.,
2011].

Naturally, products are not always required at a uniform rate, and their demand often happens
in waves. This is due to seasonality, product replacement, or marketing efforts as prensented
in Carlo and Giraldo [2012]. The frequency of products reassignment varies from a company
to another, depending on the type of industry. Thus, today’s best product locations may be
no longer optimal in a near future. In this case, it may be easy to compute the new desired
situation, and identify which products should be moved to another location. However, one
should still determine how to move products from the old to the new assignment. This is what
we call the warehouse reassignment problem.

The storage strategy must be selected according to the picking method. Some policies do not
consider product usage information, such as the random storage, while others, like class-based
and full-turnover policies use the sales rate to determine the best location. For a review of
classical assignment policies, the reader is directed to Gu et al. [2007] and De Koster et al.
[2007]. It is important to understand these policies in order to assess the trade-off between
a better assignment and the additional work generated by the movement of products. As
reviewed in [Kofler et al., 2014], most studies in this area have been devoted to re-warehousing,
which involves extensive rearrangements of all locations, such as the multi-period storage
location assignment problem. In these tactical strategies [Rouwenhorst et al., 2000], it can
be a better tradeoff to move just a subset of products, in a strategy known as healing [Kofler
et al., 2011] in which we try to maximize the gain with a limited number of reassignments.

Chen et al. [2011] present a tabu search heuristic to relocate items in a warehouse by simul-
taneously deciding which ones are to be relocated and their destination in order to satisfy the
required throughput during peak periods. They do not consider cycles and assume that the
items to be relocated to destinations are decision variables. Carlo and Giraldo [2012] propose
the rearrange-while-working strategy for unit-load storage. To do this, an AS/RS move the
complete unit-load from a location to a workstation. When the picker has finished picking
products, the remaining products of the unit-load is reassigned to a new empty location.
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In this chapter we are concerned with determining the best way to reassign products to new
locations in a classical warehouse. To the best of our knowledge, very few studies discuss the
time workload part of the process. The reassignment theory was first proposed by Christofides
and Colloff [1973]. They propose a two-stage algorithm to minimize the travel costs required
to rearrange the products. The first stage identifies how each of the cycles can be repositioned.
A cycle is composed of two or more products that exchange their positions. The second stage
uses dynamic programming to determine the sequence in which the cycles are performed.
Pazour and Carlo [2015] study the same problem (which they label the reshuffling concept)
but relax the assumptions regarding having only cycles that must be executed separately.
By this, they need to consider that open locations will change throughout the reasignment
process. They propose a mathematical formulation for the reassignment problem in cycles.

There are a major differences between our problem settings and that of Christofides and Colloff
[1973] and of Pazour and Carlo [2015]. The most important difference is that they only allow
to drop a product at an empty shelf, whereas we allow a product switch incurring a time
penalty.

Definition 1. Products switch. Let product A be an occupied location, and product B
already on the vehicle to be dropped at the position currently occupied A. The product switch
is defined as dropping B on the floor (near the new location), removing A and also setting it
aside on the floor, picking up and placing B inside the now empty location, and picking up A
to ove it towards its destination.

By relaxing this assumption we create a more complex problem. Nonetheless, we propose
a simpler and more flexible solution which can be used with or without the assumption of
dropping at empty locations.

The main contributions of this chapter are the development of exact methods for solving the
warehouse reassignment problem that is still not widely studied in the literature. We present
a new and original graph definition that allows great performance and flexibility. As will be
demonstrated by our extensive computational experiments, our methods are very efficient and
provide results close to optimality.

The remaining of this chapter is organized as follows. Section 4.2 presents the problem formula-
tion and an illustrative example of the reassignment problem. Section 4.3 presents the mathe-
matical models and a set of inequalities to strengthen the formulations in Section 4.4. Section
4.5 describes the computational details of our experiments, such as the software/hardware
material, the instances generation, all the results from exact formulation methods and a simu-
lation for a unit-load order picking system to showcase the benefits of the reassignment. Based
on our observations, we also present an estimation of the working time of a reassignment cor-
responding to our instances with a current real-life technique. Finally, Section 4.6 concludes
the chapter and presents some research perspectives.
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4.2 Problem formulation

Following the formulation of Christofides and Colloff [1973] of the reassignment problem, let
A = [an], n ∈ {1, . . . , N} be the initial assignment of products to N locations, and let B = [bn],
the desired final assignment. Thus, an and bn are respectively the starting product and desired
product at location n. We denote the I/O point as node 0.

Our problem applies to storage warehouse in which a product can be assigned to only one
location at the time. If we have more than one pallet of a given product, we create as many
dummy pallets required and equally divide the demand between them. Some locations are
not occupied, and it is possible to move a product to an occupied location and operate a
products switch. When this happens, it creates an additional handling time and forces to
leave this location with the product that was previously there. All reassignment routes must
begin and end at the I/O point (depot). The handling vehicle has a capacity of one pallet,
and we assume that a product occupies an entire pallet and location. Then the warehouse
reassignement problem can be formally define as follows. Given a unit-load warehouse with
an initial assignment A, a desired assignment B and a maximum number of operators, the
objective is to determine the set of routes followed be the pickers in such a way to minimize
the total working time (traveling time, pick, drop and switch time).

Figure 4.1 shows an example of reassignment of products inside a warehouse. In the left part,
we see the initial assignment A. The locations are colored according to the picking frequency
of their products. From white, the less frequent, to black, the more frequently picked. Suppose
that according to the fluctuation of demand and products availability, the new best assignment
should be setup B, on the right side. We have to compute the material handling effort required
to move from setup A to B.

Final setup [B] Initial setup [A] I/O I/O

Figure 4.1 – Reorganization of products inside the picking area, colored by picking frequency

We consider that we always pick a product from its previous location and drop it directly to
its desired location. In other words, there is not an intermediate movement that temporarily
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places a product in a location that is not its final destination. The main difference with the
problem solved by Christofides and Colloff [1973] is the fact that we accept to move a product
to an occupied location. Obviously, this is not always the best alternative because the operator
will need to switch the two products, which is costly in terms of handling time. To model this
tradeoff, we add a penalty α to a drop at an occupied location that corresponds to dropping
the new product on the floor (near the new location), removing the old one, placing the new
product inside the location, and retake the old one.

We now present the following reduced example of a picking zone with only eight locations in
order to understand all involved product movements. Each picking location is indexed by a
number. The product index inside the location is indicated by a letter. The initial assignment
is A = [a, b, c, ∅, d, e, f, g] where ∅ represents an empty location. The desired final assignment
is B = [e, b, d, a, f, c, g, ∅]. Note that only product b in location 2 stays in the same position.
In Table 4.1, we show a quick route construction (not necessarily optimal) to move from an
initial assignment A to a final assignment B.

The left part of the table shows step by step the six modifications done to the assignment
until we reach the final one. In the right part, we show the evolution of the route with the
location numbers. A single arrow (→) means that we move empty between two locations. A
double arrow (⇒) means that we move with a product. A left-right arrow (⇔) means that
a product is dropped in an occupied location and we do a product switch. The first line of
Table 4.1 shows the initial setup A, and each line corresponds to an intermediate assignment.
The last line designates the desired assignment B. At each step, the moved product is in a
gray cell.

Steps Locations
1 2 3 4 5 6 7 8 RouteA a b c ∅ d e f g

S1 ∅ b c a d e f g I/O → 1 ⇒ 4
S2 e b c a d ∅ f g I/O → 1 ⇒ 4 → 6 ⇒ 1
S3 e b ∅ a d c f g I/O → 1 ⇒ 4 → 6 ⇒ 1 → 3 ⇒ 6
S4 e b d a ∅ c f g I/O → 1 ⇒ 4 → 6 ⇒ 1 → 3 ⇒ 6 → 5 ⇒ 3
S5 e b d a ∅ c g ∅ I/O → 1 ⇒ 4 → 6 ⇒ 1 → 3 ⇒ 6 → 5 ⇒ 3 → 8 ⇔ 7
S6 e b d a f c g ∅ I/O → 1 ⇒ 4 → 6 ⇒ 1 → 3 ⇒ 6 → 5 ⇒ 3 → 8 ⇔ 7 ⇒ 5 → I/O
B e b d a f c g ∅

Table 4.1 – Example of reassignment route construction

In the step S1, we move from the I/O point to location 1, picking product a and moving it to
the empty location 4, letting location 1 temporarily empty (→ 1 ⇒ 4).

Since location 4 was not occupied before the move, we leave this location empty and we choose
to move towards location 6. In the step S2, we pick product e and move it to its final location
1 (→ 6 ⇒ 1).

In step S3, we restart from location 1 and travel empty to location 3, picking c towards location
6, letting location 3 empty and filling location 6 (→ 3 ⇒ 6).
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In step S4, we move empty from location 6 and pick product d at location 5, now temporarily
empty, and bring it to the empty location 3 (→ 5 ⇒ 3).

In step S5 we go towards location 8, picking g and dropping it at location 7 which is occupied
by product f . We hence have to take product f from the location, drop it on the floor, pickup
product g that was already on the floor, drop it at location 8 and finally pick up product f
again. We assume the penalty α associated with this move (→ 8 ⇔ 7).

In step S6, we move f to its final location 5 that we previously let empty and finish the route
at the I/O (⇒ 5 → I/O). We have achieved the final positioning B.

4.3 Mathematical model

This section presents different mathematical formulations for the warehouse reassignment
problem.

Let Pi be a unit-load pick to perform at location i ∈ N\{ai = ∅}. We define the set of all
picks P = ∪i∈N\{ai=∅}Pi. Let Di be the drop to perform at location i ∈ N\{bi = ∅}. We
also define the set of all drops D = ∪i∈N\{bi=∅}Di. We define Ri as the destination (drop)
associated with pick Pi. Table 4.2 presents an example of components of set R = ∪i∈NRi.
In this table, the product from location 1 has to be moved to location 2. Thus, location 2
corresponds to R1. R2 corresponds to location 1 as it is the destination of pick on location 2,
thus P2.

Table 4.2 – Reassignment requests

N 1 2 3 4 5
1 R1

2 R2

3 R3

4 R4

5 R5

In order to formulate the problem, let ui be the time at which the vehicle leaves location i.
Other variables are model-specific and are presented with ech of the following three models.
Let the time limit of a route be L.

4.3.1 Three-nodes formulation (M1)

In this section we develop a graph definition especially designed for this problem. It will allow
us to track information on the status of a location over time. We consider three types of
actions that can be performed for each location, each represented by one node. The first two
are related to dropping a product at the location or picking the product, represented by the
sets D and P. The third type of action is related to what happen after a drop in a empty
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location. This means that we are leaving the location empty, without any product on the
vehicle and without doing a product switch. For representing this action at each location,
let Ei represent an empty node at location i ∈ N\{bi = ∅}. We define the set of all possible
empty locations E = ∪i∈N\{bi=∅}Ei.

Definition 2. Empty node. For a location i ∈ N\{bi = ∅}, let an empty node Ei be the
immediate successor of the drop node Di if Pi = ∅ or if uPi < uDi , meaning that the picker
has previously placed a product at location i and left it without a product.

These three types of nodes per location are illustrated in Figure 4.2. This allows us to easily
determine if a picker reachs a location with or without a product and if he leaves it with or
without a product.

a) Possible arcs

d) Case 3c) Case 2

b) Case 1

d2

pj or 
I/O

d1

ei or 
I/O

ei or 
I/O d2

pj or 
I/O

d1 d2 d3
ei or 
I/O

pj or 
I/O

d1

p1

e1 e2

p1 p2

e1 e2

1 2

1 2 1 2 3

p1 p2

e1 e2 e3

di

pi

ei

I/O

ej≠i

pj≠i

tpi

pj≠i

I/O

drop

pick

empty

Location 

Figure 4.2 – The three possible cases of sequences of nodes

Figure 4.2 presents three possible sequences of nodes. A sequence starts and finishes without
product and continues as long as the picker moves with a product.

In Figure 4.2a), we reach pick P1 in location 1, completing the reassignment request R1 by
dropping it at its destination at location 2, corresponding to node D2. Since the destination
was initially empty (a2 = ∅), we just move to the empty node E2, completing the sequence for
only one request.

In Figure 4.2b), the sequence starts and ends at the same location, creating a cycle. From pick
P1, we go towards location 2 and node D2. Since there is already a product at this location,
we have to go directly to P2. The destination of P2 is location 1, where we made P1 at the
first step. Since we have emptied location 1, the path continues to the empty node E1, exiting
location 1 without a product on the vehicle and ending the sequence. Two requests have been

78



satisfied in this example.

In Figure 4.2c), we have an extension of case 1. This is a cascade of requests within occupied
locations. We start with P1. Its destination is drop D2 at the already occupied location 2. We
hence need to pick P2 and so on, until we reach the drop node D3 in the empty location 3 that
will end the sequence. This case shows how a starting pick node can generate a potentially
long sequence of multiple requests.

Finally, let G = (V,E) be the full graph, where V = D ∪ E ∪ P ∪ 0 is the set of all nodes and
E is the set of all arcs xij , where i 6= j, developed as follows:

xij ∈ E if


i = 0 and j ∈ P (4.1a)

i = En and j ∈ Pm ∪ 0 ∀ n,m ∈ N : n 6= m (4.1b)

i = Dn and j = Pn ∀ n ∈ N (4.1c)

i = Dn and j = En ∀ n ∈ N. (4.1d)

In equation (4.1a) we have all arcs between the I/O point (node 0) and all picks. In (4.1b),
we have arcs from empty nodes in E to pick nodes of different locations or returning to the
I/O point. Equation (4.1c) sets the arc between the drop node and the pick node of the same
location n (if a pick exists in this location). In the same way, equation (4.1d) sets the arc
between the drop node and the empty node of the same location n.

The cost (time) to move from node i to another node j is cij , according to their respective
location and such that (i, j) ∈ E. We consider a constant movement speed. When arc (i, j)

corresponds to a product switch (arcs from equation (4.1c)), a penalty α is added to cij . For
node j ∈ P ∪ D we define a service time sj corresponding to the time to drop or pick the
product. For the sake on simplicity, we also add sj directly in cij .

We define the integer decision variable k as the number of pickers used in the solution. We
define wi as a continuous variable indicating the idle time at location i. Let V ′ = V\{0}.
Table 4.3 presents a summary of the parameters, sets and variables used in our formulation.
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Table 4.3 – Summary of parameters, sets and variables

N set of locations
cij travel time for arc (i, j) ∈ E
L time limit of a route
Pn pick node of location n ∈ N
Dn drop node of location n ∈ N
En empty node of location n ∈ N
Rn destination of Pn, n ∈ N
V set of all nodes, V = D ∪ E ∪ P ∪ 0
E set of arcs
xij binary variable equal to 1 if the arc (i, j) is selected, 0 otherwise
ui departure time at node i, i ∈ V ′

wi idle time at node i, i ∈ V ′

k number of routes in the solution

The mathematical formulation is the following:

Min Z =
∑

(i,j)∈E

cij xij +
∑
i∈V ′

wi (4.2)

subject to:∑
i∈E

xi0 = k, (4.3)∑
j∈P

x0j = k, (4.4)

∑
i∈V \{P}

xij = 1 ∀j ∈ P, (4.5)

∑
i∈V
|(i,j)∈E

xij =
∑
k∈V
|(j,k)∈E

xjk ∀j ∈ V ′ , (4.6)

ui − uj + Lxij ≤ L− cij ∀(i, j) ∈ E, (4.7)

uPn ≤ uDn + (1− xDn,En)L ∀n ∈ N : Pn /∈ ∅, (4.8)

uj ≤ ui + wj + cij + (1− xij)L ∀(i, j) ∈ E, (4.9)

xPn,Rn = 1 ∀n ∈ N, (4.10)

xij ∈ {0, 1} ∀(i, j) ∈ E (4.11)

0 ≤ ui ≤ L ∀i ∈ V, (4.12)

0 ≤ wi ≤ L ∀i ∈ V, (4.13)

k ∈ N. (4.14)
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The objective (4.2) minimizes the total workload corresponding to the sum of the traveling
time (including penalties), the service time, and the idle time. Constraints (4.3) and (4.4)
fix the number of routes that respectively exit and enter the I/O point. Constraints (4.5)
ensure that all pick nodes will be visited and in the same way, performing all reassignment
requests. Constraints (4.6) ensure the flow equilibrium at each node. Constraints (4.7) allow
the chronometer increment of variable ui considering the travel distance between i and j and
the service time when applicable. This also removes all the possibilities of sub-tour within a
solution. Constraints (4.8) ensure the pick node to be visited before the empty node of the
same location. This constraint is valid if and only if the arc between the drop and empty of
the same location (Dn, En) is used. Constraints (4.9) are used to fix the idle time variable wj

if an arc xij is used. Constraints (4.10) impose that the arc between a pick in Pn towards
its destination Rn must be used since we have a unit-load system. Constraints (4.11) set the
nature of variable xij . Constraints (4.12) and (4.13) bound the variable ui and wi, respectively,
to a maximal value L. Constraint (4.14) indicates that variable k is a positive integer.

4.3.2 Vehicle-indexed formulation (M2)

In this section we present a vehicle-indexed adaptation of the previous formulation. We use
a set of M pickers and for each k ∈ M we set a starting node k+ and an ending node k−,
all corresponding to the I/O point. We then define M+ and M− as the set of I/O nodes.
Finally, let W = M+ ∪M−. We hence define variables xkij equal to one if vehicle k ∈ M
travels between i and j, zero otherwise. Let redefine the set of nodes V = D∪E ∪P ∪W and
V
′

= V \{W}. Since we can now create a variable uk+ and uk− for all k ∈M, we do not need
idle time variables wi to compute the total workload. Restrictions (4.1a) and (4.1b) for three
index variables xkij on set E are updated as follows:

xkij ∈ E if

{
i ∈M+, j ∈ P ∪M− ∀ k ∈M (4.15a)

i = En, j ∈ Pm ∪M− ∀ n,m ∈ N : n 6= m, k ∈M (4.15b)

The model is the following:

Min Z =
∑
k∈M

(uk− − uk+) (4.16)

subject to:∑
i∈E∪{k+}

xkik− = 1, ∀k ∈M, (4.17)

∑
j∈P∪{k−}

xkk+j = 1, ∀k ∈M, (4.18)
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∑
k∈M

∑
i∈V ′∪M+\{P}

xkij = 1 ∀j ∈ P, (4.19)

∑
i∈V ′∪M+

|(i,j)∈E

xkij =
∑

l∈V ′∪M−
|(j,l)∈E

xkjl ∀j ∈ V ′ , k ∈M, (4.20)

ui − uj + Lxkij ≤ L− cij ∀(i, j, k) ∈ E, (4.21)

uPn ≤ uDn + (1−
∑
k∈M

xkDn,En)L ∀n ∈ N : Pn /∈ ∅, (4.22)

xkij ∈ {0, 1} ∀(i, j, k) ∈ E, (4.23)

0 ≤ ui ≤ L ∀i ∈ V. (4.24)

The objective (4.16) minimizes the total workload by taking the difference between the ending
and starting time for all vehicles. Constraints (4.17) and (4.18) make sure that each vehicle
starts and ends at the I/O point. Constraints (4.19) ensure that each pick node will be visited
only once. Constraints (4.20) ensure the flow equilibrium at a node. Constraints (4.21) allow
the chronometer increment of variable ui. Constraints (4.22) ensure the pick to be visited
before the empty node of the same location when applicable. Constraints (4.23) and (4.24)
define the nature of variables xkij and ui respectively.

4.3.3 Pickup and delivery formulation (M3)

This section presents how a general pickup delivery formulation [Savelsbergh and Sol, 1995]
can be adapted to solve the reassignment problem. We use four types of variables. Variables
zki for each i ∈ P, k ∈ M equal to 1 if pick i is assigned to vehicle k, 0 otherwise. Variables
xkij such that (i, j) ∈ (V ′×V ′)∪{(k+, j|j ∈ P)}∪{(j, k−)|j ∈ D}, k ∈M equal to 1 if vehicle
k travels from location i to location j, 0 otherwise. We still use variables ui as the departure
time from node i ∈ V ∪W . Let yi be the load of vehicle at node i ∈ V ∪W . The mathematical
formulation is as follows:

Min Z =
∑
k∈M

(uk− − uk+) (4.25)

subject to:∑
k∈M

zki = 1 ∀i ∈ R, (4.26)∑
j∈V

xklj =
∑
j∈V

xkjl = zki ∀n ∈ N, l ∈ Pn ∪Rn, k ∈M, (4.27)

∑
j∈V ′∪{k−}

xkk+j = 1 ∀k ∈M, (4.28)
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∑
j∈V ′∪{k+}

xkik− = 1 ∀k ∈M, (4.29)

up ≤ ud ∀n ∈ N , p ∈ Pn, d ∈ Rn, (4.30)

ui − uj + Lxkij ≤ L− cij ∀(i, j) ∈ E, k ∈M, (4.31)

yk+ = 0 ∀k ∈M, (4.32)

yi ≤
∑
k∈M

zki ∀i ∈ P, (4.33)

yi − yj + xkij ≤ 0 ∀i, j ∈ V, k ∈M, (4.34)

uDn − uPn − (1−
∑
k∈M

xkDnPn
)L ≤ cDnPn ∀n ∈ N : pn 6= ∅, (4.35)

uDn − uPn +
∑
k∈M

xkDnPn
L ≥ cDnPn ∀n ∈ N : pn 6= ∅, (4.36)

xkij ∈ {0, 1} ∀i, j ∈ V ∪W,k ∈M, (4.37)

zki ∈ {0, 1} ∀i ∈ P, k ∈M, (4.38)

ui ≥ 0 ∀i ∈ V ∪W, (4.39)

yi ≥ 0 ∀i ∈ V ∪W. (4.40)

The objective function (4.25) minimizes the total workload for all vehicles. Constraints (4.26)
ensure that all pick requests will be served only once. With constraints (4.27), a vehicle enters
or leaves a location l if it is a pick or a drop of a transportation request assigned to that
vehicle. By constraints (4.28) and (4.29), we make sure that each vehicle starts and ends
at the I/O point. Constraints (4.30) ensure that the pick is made before the drop of the
same request. Constraints (4.31) ensure the correct increment of the departure time variables
when an arc is used. Constraints (4.32) and (4.33) impose the initial and maximum load
of the vehicle respectively. Constraints (4.34) make the correct increment of the load when
applicable. Together, constraints (4.35) and (4.36) ensure that product switch at the same
location will be done if a drop is made at a still occupied location. Constraints (4.37) to (4.40)
define the nature of all involved variables.

4.4 Models lifting

In this section, we present how it is possible to strengthen the bound of timing variables for
all models M1, M2 and M3. We also show how it is possible to remove the symmetry of the
vehicle-indexed formulations, M2 and M3.

Between the starting point and the arrival point, a minimum path corresponds to a single
reassignment request. We can tight the bound of ui variables for all pick P. Inequalities
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(4.41) and (4.42) are valid for all locations n ∈ N such that p = Pn, d = Rn.

c0p ≤ up ≤ L− cpd − cd0 (4.41)

c0p + cpd ≤ ud ≤ L− cd0. (4.42)

The Miller-Tucker-Zemlin constraints (4.7) can be lifted as presented by Kara et al. [2004] by
reducing the maximal value of L. This can be done as follows, by considering the minimal
travel time to the node i:

ui − uj + (L −mink{cki})xij ≤ L−mink{cki} − cij ∀(i, j) ∈ E. (4.43)

It is also possible to determine an initial valid lower bound considering that each reassignment
request must be made. The lower bound is the following:

Z ≥ +
∑
n∈N

cPnDn + a

(
min
p∈P
{c0p}+ min

d∈D∪E
{cd0}

)
(4.44)

a =

⌈∑
n∈N cPnDn

L

⌉
. (4.45)

Equation (4.45) states the minimum number of vehicles needed to cover the total travel times
between a pick and its destination, including all the service time. Knowing this number, we
know that solution will at least perform this amount of work to cover the minimal distance
between the I/O and first (and last) nodes. Inequalities (4.41) – (4.44) are valid for all three
formulations.

An important weakness of a homogeneous vehicle-indexed formulation (M2 and M3 ) is the
presence of solutions symmetry. We tighten these formulations by imposing the following
symmetry breaking constraints:∑

j∈P∪{k−}

xk0j ≤
∑

j∈P∪{k−}

xk−10j ∀k ∈M\{1} (4.46)

∑
l∈V
|(l,i)∈E

xkli ≤
∑
c∈V
|(c,j)∈E

∑
j<i

xk−1cj ∀i ∈ V ′, k ∈M\{1}. (4.47)

Constraints (4.46) ensure that vehicle k cannot leave the depot if the vehicle k−1 is not used.
This symmetry breaking rule is then extended to the locations by constraints (4.47) which
states that if a request i is assigned to vehicle k, then vehicle k − 1 must perform a request
with an index smaller than i [Coelho and Laporte, 2013].
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4.5 Computational experiments

In this section, we provide details on the implementation, benchmark instances, and describe
the results of extensive computational experiments. The description of the benchmark in-
stances is presented in Section 4.5.1. In Section 4.5.2 we describe how we have evaluated
and estimated the current solution of an industrial partner. This is followed by the results of
our computational experiments in Section 4.5.3. Finally, Section 4.5.4 presents a return over
the investment analysis, in terms of working time, of the reassignment process on a unit-load
picking warehouse.

We use IBM CPLEX Concert Technology 12.6 as the branch-and-bound solver. All computa-
tions were executed on machines equipped with Intel Westmere EP X5650 six-core processors
running at 2.667 GHz, and with up to 16 GB of RAM running the Scientific Linux 6.3. All
algorithms were given a time limit of 3600 seconds.

4.5.1 Instances generation

An instance is a set of positions inside the warehouse, represented by an aisle number (a) and a
section number (s). There is a number of empty locations (e) randomly positioned within the
warehouse. A unique product is located at each non-empty location, representing the initial
setup of the warehouse. Finally, each product is assigned to a new location. The number of
aisles is a = {1, 2, 3}, the number of sections is s = {2, 3, 4, 5} and the number of empty loca-
tions is e = {d0.1(2as)e, d0.2(2as)e, d0.3(2as)e}. That makes a total of 30 different instances,
corresponding to one instance per configuration. Note that if two or more configurations with
one aisle and the same number of sections lead to the same number of empty locations (e),
we only create one instance. For example, one aisle and two section, the rounded up number
of empty locations is always one for all proportion.

We also vary the experiments via a time limit (L) of a reassignment route. This limit, in
seconds, will be in L = {∞, 1000}. We set the time penalty (α) to 30 seconds. The lift trucks
have a constant speed of 1 m/s. We assume a service time (si) of 10 seconds for all pick and
drop nodes.

4.5.2 Real-case solution estimation

In order to validate the potential gain of the reassignment technique, it is appropriate to
compare it against a real reassignment method. We will compare our method with that
observed from a partner working in the industry of large volume food distribution. They have
recently relocated all the products in their picking area. To do this, they removed all involved
products from each aisle and put them in the consolidation zone, between the aisles and the
docks. Afterwards, they positioned each product in its new location from this buffer storage
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space using one lift truck operator per aisle. We can easily compute the cumulative time of
this operation using or travel time matrix cij , including the service time.

It is assumed that products, once removed from their original location, are positioned just in
front of their respective initial aisle. We will neglect the movements and distances around the
buffer zone. It is assumed that all products must be removed before starting the reassignment.
To calculate the total work time, we compute four movements per product. The first one is
between the buffer zone of the front of the aisle and the product. The second is the same
distance, but in the opposite direction. The third (and fourth) between the buffer zone of
the initial aisle and the new location (and way back in opposite direction). This is done for
each request to obtain an estimate of the total time to relocate all products. We will call this
method the Case Study Heuristic (CSH).

4.5.3 Results

This section presents the computational experiments of all three mathematical models over the
benchmark instances and a comparison in terms of performance and characteristics. Table 4.4
presents these first results. The first three columns indicate the number of aisles, sections and
empty locations, respectively. The fourth column shows the number of reassignment requests.
The CSH column presents the results of the case study heuristic. As computing times are
negligible, they are not reported. For each mathematical formulation (M1, M2 and M3), the
table reports the upper bound (UB), the lower bound (LB), the optimality gap (Gap (%)) and
the CPU time in seconds (Time (s)). All models are reported with all their respective valid
inequalities

We see that optimal solutions have been found for all instances with only one aisle (a = 1) for
all three formulations. For instances with two aisles, formulation M2 and M3 begin to have
difficulties to close the gap within the allotted time. Formulation M1 performs a lot better
and finds optimal solutions for instances with up to three aisles. The total average optimality
gap for M1 is only 2.9%. The gaps are a lot larger for M2 and M3 with 18.2% and 18.1%
respectively. The best overall upper bound comes from M1 with 753.7. It corresponds to an
improvement of 56% from the solutions of the case study heuristic. Formulation M1 finds the
best lower bound for all instances. This formulation obtained 29 out of 30 best upper bounds.
We see that formulations M2 and M3 have almost the same performance in terms of upper
and lower bounds, gap and CPU times.

Table 4.5 presents the upper bound and lower bound of all three models without any timing
valid inequalities (4.41) and (4.42), initial lower bound (4.44) and symmetry breaking inequal-
ities (4.46) and (4.47). We see that M1 still found 20 out of 30 optimal solutions and gives
very similar bounds. For both models M2 and M3, we see that after 9 requests, they are
unable to find any valid lower bounds. That confirms the importance of inequalities proposed
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in Section 4.4.

The graph of Figure 4.3 presents the number of variables used for each formulation as a function
of the number of reassignment requests given in the fourth column of Table 4.4. Instances
with less than 7 requests has a restriction of only one vehicle. Since M2 and M3 are both
vehicle indexed formulation, it is normal to see that the number of variables is very similar
with M1 under 7 requests. For instances with 8 to 13 requests, two vehicles are allowed and
three vehicles from 14 requests. The graph shows a rapid increase in the number of variables
for M2 and M3.

 Requests

M1
M2
M3

3 5 6 6 7 7 7 8 9 9 9 10 10 11 11 12 13 13 14 15 15 16 17 17 18 20 21 22 24 27
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Figure 4.3 – Number of variables

Figure 4.4 presents the number of constraints for each formulation. For instances with 9
requests and more, the constraints number of M3 is rapidly increasing. For formulations with
nodes per location (M1 and M2), the number of constraints increases less rapidly.

Figure 4.5 shows the time in milliseconds (ms) spent on average per branch-and-bound node
for solving each relaxed problem. Again, from 9 requests the performance of formulation M1
is better than the other ones for almost all instances. This means that M1 is able to explore
more nodes in the process and available time.

These results clearly demonstrate how the introduced formulation outperforms the other two,
in particular the pickup and delivery formulation. With M1, we are able to solve to optimality
instances with up to 17 reassignment requests in a reasonable amount of time. Formula-
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tions M2 and M3 have not been able to solve instances with more than 9 requests and their
performance declines quickly after this threshold.

Recall that we allow two vehicles for instances with two aisles and three vehicles for instances
with three aisles. For most instances, the solution tends to use all available vehicles. The main
reason is because there will be fewer product switch involving a time penalty. For example, a
second vehicle leaving the depot will directly pick a product at a location, enabling the first
one to drop without a penalty. Coordinating several vehicles in the reassignment process thus
presents a real advantage. We tested to reduce the time available for the vehicles for instances
with two and more aisles. When a feasible solution is found, it leads to a similar distance to
the solution without time capacity.

4.5.4 Simulation on a unit-load picking system

The reassignment process implies an important decision, since picking operations must be
delayed (or strongly disturbed) while products are repositioned. For this reason, sometimes
companies might hesitate to state the reassignment. However, one must consider that a bad
assignment incurs higher picking cost/time. Thus, the reassignment should be seen as an
investment whose value can be determined. To do this we simulate scenarios on the most
basic picking system: a unit-load. We compute the total distance to pick all products from
the pick list by making a round trip from the I/O point and the location of the product. The
total distance before and after the reassignment can therefore be easily computed.

We generate picks list from 1 to 150 picks on the instance with 27 requests, such as the one
on the last row of Table 4.4. Figure 4.6 presents the results of our simulation. It shows the
total distance of the unit-load picking with and without the reassignment. Table 4.4 gives us
the CSH total distance to reassign products and the distance from the best model (M1) that
are not impacted by the long size of the picks list. It also shows the distance saved as the
difference with the picking distance without and with the reassignment.

This allows us to delimit the gray area on the graph corresponding to the gain between
our method and the CSH. Moreover, it shows that the distance saving is greater than the
reassignment distance of our method at around 45 picks to do. In comparison, the saving
distance because greater than the CSH distance after 110 picks. Since it is a very small
warehouse example, this difference is important.

4.6 Conclusion

In this chapter we have suggested a new formulation for the warehouse reassignment problem.
We have then been able to solve instances in which we have to relocate a large set of products
within the picking zone. Our new directed graph definition and model minimize the workload
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Figure 4.6 – Simulation of picking scenarios

of relocating all the products in their new position. We have seen that the model is very
efficient and allows to solve instances of realistic size with handling movement penalties. We
have generated a dataset of benchmark instances for the reassignment problem. As shown,
companies may opt for simpler methods, but which dramatically requires more operation time
and material handling. In comparison with a technique already used by an industrial partner,
we can reduce on average by three times the workload of reassignment. We have been able
to obtain a tight gap in most instances and for all given time capacity. Moreover, we have
shown that on unit-load warehouse, the reassignment cost quickly pays off as the picking
process becomes much more efficient. As future research and practice opportunities, we see
that combining picking with reassignment operations can yield even higher savings.
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Conclusion

Warehouse management has become an intensive field of research with the expansion of e-
commerce. DCs have to continuously improve their operation to face a constant growth of
demand. Several DCs activities can be optimized in order to improve the productivity which
is often calculated in terms of order lead time. Many warehouse design decisions have a
direct impact on order picking activities. We have shown that the order picking is influenced
by, among others, the facility layout, the storage assignment policy, the routing strategy, etc.
With today’s computational capacity, it remains hard to integrate all these choices in the order
picking optimization. This is why most of research continues to focus on one or two aspects
of this large spectrum. Following the rich literature on material handling, we have introduced
rich order picking problems and a new and efficient product reassignment formulation.

In Chapter 2, we have modeled an order picking problem with several layout and equipment
constraints based on the warehouse of an industrial partner. The problem takes place in
a narrow-aisle layout environment. We have shown the value of considering the high-level
picking aspect in the resolution process. The narrow-aisle configuration of the warehouse
allows us to decompose the picking problem per aisle. Even with this decomposition, the
movements and capacity constraints make this problem hard to solve to optimality. We have
proposed heuristic methods and exact formulations to solve large instances. An exact method
based on an adapted formulation of the vehicle routing problem determines the items batching
and routing. This is done because we can use the picking area configuration to improve the
formulation of the model. With movement constraints, we strengthen the exact formulation
into an acyclic one.

Chapter 3 presents another order picking problem motivated by a situation prevailing in
the grocery industry. Several product families are present and the characteristics of each
product have to be considered. We have included three main practical constraints from real-
life observations. The first one is the weight constraint in which, after a certain threshold,
it becomes impossible to add products with a weight over the acceptable limit. The second
constraint is the fragility one that limits the weight that can be put over a product on the
pallet to its self-capacity. The last one is the category constraint in which we separated
products into two main families: food and non-food. We forbid placing a non-food product
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over a food one. Each product characteristic considered in the problem adds an extra layer
of difficulty. We have solved this problem as a rich routing problem and we have presented
several classical order picking methods, a metaheuristic and two exact formulations. We have
shown that most constraints generated by product characteristics can be dynamically added
to models with a solid branch-and-cut scheme. As expected, our computational experiments
showed that classical heuristics are not well adapted for this family of routing problem and
can give very poor results. In return, a richer heuristic with local searches outperforms these
classical ones. Our exact models are very good to yield near-optimal solutions in a reasonable
time.

In Chapters 2 and 3 we have considered fixed product assignments within a DC. It has been
proved that updating and improving product assignments offer significant benefits. Many
reasons exist on why we should update the product locations: product lifetime, promotion
campaigns, seasonality, etc. Changing product locations is a very labor intensive activity and
can block the order picking operation for a long period of time. Chapter 4 presents an original
formulation of the reassignment problem based on the possible operations to be performed
at each location. The problem takes place over a planning horizon, represented by the time
allotted to the operator to perform a reassignment route. Precedence constraints and the
timing perspective make this problem very hard to solve. We have created a benchmark of
reassignment instances that we solve with our methods. In addition, we have compared our
new formulation against a modified one and a pickup and delivery vehicle routing formulation.
Our computational analysis have demonstrated that our new formulation almost dominates
the other ones in terms of results, and also in terms of the number of variables, constraints
and time spent at each branch-and-bound node.

This thesis contributes to the literature in a number of ways. We have narrowed the gap
between a part of the theoretical approaches existing in the literature about material handling
and a more real-life based methodology which takes into account several realistic constraints.
As an example, Chapter 3 has been published in a special issue in warehouses design and man-
agement which shows new trends in the DC management [De Koster et al., 2017]. Through out
this thesis, we highlight the importance of practical constraints within the resolution meth-
ods and we show how to use them to strengthen formulations. These constraints come from
the layout configuration (narrow-aisles and picker safety), products characteristics (weight,
fragility and category) to the operational nature of the operator movements which inspired
the new proposed reassignment formulation.

The ever changing world of distribution and new technologies offer new challenges. On the
future, we believe that more research will be needed on practical and dynamic applications.
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