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Chapter 1

Overview of the thesis

1.1 Current challenges in order picking

Order picking describes the process of retrieving inventory items from their storage

locations to satisfy customer orders (de Koster et al. 2007). It has long been iden-

ti�ed as the most laborious and costly warehouse operation, accounting for up to

65% of total warehouse operating costs (Petersen and Schmenner 1999, Coyle et al.

2002). Order picking is a crucial factor for the competitiveness of a supply chain

because inadequate order picking performance (e.g., long delivery times) results in

customer dissatisfaction and high costs (e.g., labor cost) for the warehouse (Wäscher

2004).

It is estimated that about 80% of all order picking systems in Western Europe

follow the traditional picker-to-parts setup, in which order pickers walk (or travel)

through the warehouse to retrieve the requested items from their storage locations

(de Koster et al. 2007, Napolitano 2012). While the investment costs for such systems

are rather low, the major drawback is the large fraction of unproductive picker

walking time with 50% and more of total order picking time (de Koster et al. 2007,

Tompkins et al. 2010). Although technologies to automate order picking exist (see,

e.g., Azadeh et al. 2019), warehouse managers rely on human order pickers because

of their inherent �exibility and ability to adapt to changes in real-time in contrast

to automated systems (Grosse et al. 2014).

The steadily increasing global retail sales volumes (Statista 2019), however, force

warehouse managers to improve the performance of their warehouse operations to

ful�ll customer requirements (e.g., responsive order ful�llment) and to gain advan-
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tages over competitors. Here, warehouse managers often face the following chal-

lenges:

• Tight delivery schedules because of (contractually agreed or promised) next or

even same-day deliveries put increasing burden on warehouse operations and

lead to highly time-critical order ful�llment processes (Boysen et al. 2019a).

• E-commerce warehouses receive a large number of customer orders, which only

consist of a few items each (Boysen et al. 2019b). Traditional picker-to-parts

systems are rarely suitable for these requirements. For example, in picker-to-

parts systems in which the pick-by-order strategy is applied, customer orders

are picked individually on a single order picking tour starting from the depot,

proceeding along the storage locations de�ned by the respective customer order,

and ending at the depot. Due to the low pick density per order picking tour in

such scenarios, the part of unproductive work an order picker spends on each

customer order while walking (or traveling) through the warehouse is often

large. The resulting loss of throughput makes it di�cult to meet the customers'

expectations for fast delivery (Boysen et al. 2019a).

• Contrary, in speci�c branches (e.g., in the online grocery sector), customer or-

ders are likely to consist of dozens of items (Valle et al. 2017, Boysen et al.

2019a). Handling large customer orders within tight delivery schedules is di�-

cult for warehouse managers because such customer orders require longer pick-

ing times compared to small customer orders.

Research papers on order picking strategies and algorithms have mostly concen-

trated on traditional picker-to-parts systems (Chabot et al. 2017). Likewise, con-

straints arising in real-world applications have often been neglected. In recent years,

research has started to consider more realistic characteristics of real-world warehouse

operations like item-speci�c characteristics, such as fragility or weight, and also hu-

man factors, such as physical workload (see, e.g., Chackelson et al. 2013, Grosse

et al. 2015, Chabot et al. 2017, Matusiak et al. 2017, Glock et al. 2019). A fre-

quently encountered constraint in real-world applications of order picking concerns

precedence constraints (Matusiak et al. 2014). Such constraints de�ne that certain

items need to be collected before other items, e.g., non-food items have to be placed

underneath food items on a pallet to avoid contamination. Obviously, any of these

practical restrictions further complicates the planning of warehouse operations.
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This dissertation aims at designing new models and algorithms to improve order

picking e�ciency and to support managerial decisions on facing the warehousing

challenges described above. We discuss this in detail in the next section, which is

devoted to our contributions to research and practice.

1.2 Contributions to research and practice

The contributions of this thesis are detailed in the following.

Order batching

To reduce unproductive picker walking and to meet tight delivery schedules, the pick-

by-batch strategy can be applied. Instead of picking customer orders individually on

di�erent order picking tours, customer orders are grouped into a batch of customer

orders jointly picked on a single tour. E�ectively batching customer orders leads

to a higher pick density per tour compared to the pick-by-order strategy and thus

increases order picking performance.

In this context, we study the so-called standard order batching problem (standard

OBP), which can be de�ned as follows: The standard OBP considers a picker-to-

parts system in a rectangular single-block warehouse (see Figure 1.1), from which

the requested items of a given set of customer orders have to be retrieved. In the

warehouse, parallel picking aisles of equal length and width are connected by a

cross aisle at the front and at the rear of the picking aisles. Items are stored in

storage locations arranged along both sides of the picking aisles, and each item is

available from exactly one storage location. In the standard OBP, an order picker

can retrieve items from both sides of a picking aisle without performing additional

movements. The depot may be located anywhere along the front or the rear cross

aisle. Figure 1.1 depicts an example of a rectangular single-block warehouse, in

which 120 di�erent items are stored in six picking aisles. Each picking aisle contains

20 storage locations, 10 on the left and 10 on the right of the picking aisle. The

depot is located below the entry of the leftmost picking aisle in the front cross aisle.

The standard OBP assumes that customer orders may be combined into batches

until the capacity of a picking device (e.g., a picking cart) is exhausted. The picking

device is used to transport the retrieved items of a batch through the warehouse.

In addition, the items of a customer order cannot be distributed among di�erent

batches because splitting may result in unacceptable sorting e�ort. Order picking

3



picking aisles

Legend:

item storage location

central depot

front cross aisle

rear cross aisle

Figure 1.1: An example of a rectangular single-block warehouse layout.

tours start from the depot, proceed along the storage locations de�ned by the re-

spective batch, and end at the depot. A given routing algorithm determines an

order picker's tour through the warehouse and the retrieval sequence of the items

from their storage locations (see Section 2.5.3).

The goal of the standard OBP is to group customer orders into batches such that

the total length of all order picking tours for collecting the items of the batches from

their storage locations is minimized. The standard OBP is NP-hard if the number

of orders per batch is greater than two, and the exact solution methods proposed in

the literature are not able to consistently solve larger instances.

With respect to the standard OBP, the main contributions of this thesis are as

follows:

• First, to solve larger OBP instances within short runtime, we develop a hybrid

of adaptive large neighborhood search (ALNS) and tabu search (TS), denoted

as ALNS×TS. An advantage of the hybridization is that it combines the di-

versi�cation capabilities of ALNS and the intensi�cation capabilities of TS. We

assess the performance of the hybridization in numerical studies and show that

ALNS×TS clearly outperforms ALNS and TS as standalone methods. To the

best of our knowledge, our method is the �rst ALNS and the �rst hybrid meta-

heuristic designed for the standard OBP. The relative simplicity and inherent

�exibility renders our approach interesting for warehouse operators.
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• Second, we investigate the performance of ALNS×TS on the standard OBP

benchmark sets available in the literature and on newly generated large-scale

instances with up to 600 customer orders. We make the complete set of bench-

mark instances available for download, we explain how these instances were

interpreted by previous authors to make results comparable, and we report de-

tailed results of our computational experiments to give comparison values for

future methods investigating the standard OBP. As described in Section 3.3,

this has not been done by previous authors.

• Third, we compare the performance of ALNS×TS to all previously published

methods that have been tested on (any subset of) the standard OBP instances

from the literature. Our ALNS×TS is able to outperform all these methods with

respect to the average solution quality and runtime over all benchmark sets.

For the more practically relevant instances with a larger number of customer

orders and larger capacities of the picking device, ALNS×TS shows the clearest

advantages compared to the existing methods. Furthermore, ALNS×TS is able

to solve newly generated large-scale instances with reasonable runtimes and

convincing scaling behavior and robustness.

Precedence-constrained order picking

The next problem examined in this thesis is inspired by a practical case observed

in a rectangular single-block warehouse of a German manufacturer of household

products. Here, the items to be picked can be roughly distinguished into light

(fragile) and heavy (robust) items. The case company applies a random storage

assignment strategy according to which items are randomly assigned to storage

locations of the warehouse.

To prevent damage to light items, order pickers are not permitted to put heavy

items on top of light items. Currently, an order picking tour is determined by

applying a heuristic picker routing strategy (H-PRS) that does not consider this

precedence constraint. As a result, an order picker collects the items of a customer

order into a plastic box without stacking the items on top of each other. After

having retrieved the requested items of a customer order from the shelves of the

warehouse, the order picker travels back to the central depot, where she1 packs the
1For the sake of readability, we have decided to speak exclusively of female order pickers. Of

course, an order picker can be of any other gender.
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collected items into a cardboard box that is used for shipping the items such that

the precedence constraint is respected. We refer to this picker routing strategy as

H-PRSW/O, where W/O indicates that the precedence constraint is not considered

during the collection of the requested items.

As our literature review on picker routing problems (PRPs) shows, works consider-

ing precedence constraints in picker routing are rare. Likewise, the impact of storage

assignment on the performance of a picker routing strategy is hardly investigated

although the assignment of items to storage locations in�uences the tour length of

an order picker for completing a customer order as well. Often, the performance of

a picker routing strategy is discussed by assuming random storage.

With respect to precedence-constrained order picking, we make the following con-

tributions:

• To avoid that items have to be sorted after the retrieval process, we propose

a picker routing strategy that incorporates the described precedence constraint

and collects heavy items before light items. To shorten travel distances in

the warehouse, we determine an optimal order picking tour, which leads to

the minimum tour length for collecting heavy items before light items on a

single order picking tour. In the following, E-PRSW denotes our exact picker

routing strategy, where W indicates that the precedence constraint is considered

during the collection of the requested items. Furthermore, we suggest di�erent

weight-based storage assignment strategies and investigate their impact on the

performance of the proposed picker routing strategy.

• The performance of E-PRSW is assessed on a dataset provided to us by the case

company. We compare E-PRSW to (i) H-PRSW/O, i.e., the strategy used in the

warehouse of the manufacturer, and to (ii) an exact picker routing approach

that neglects the given precedence constraint (called E-PRSW/O).

The results of the analysis show that the current order picking process of the

case company can be improved in the following aspects: First, E-PRSW enables

the order pickers to place the retrieved items directly in the cardboard boxes

required for shipping the items and thus avoids the use of plastic boxes and the

sorting of items upon return to the depot. Second, we reduce the average travel

tour length of an order picker compared to the picker routing strategy of the

case company. Third, we �nd that the storage assignment strategy signi�cantly

a�ects the performance of E-PRSW. By separating heavy items and light items
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in the warehouse and allocating heavy items to storage locations that are ar-

ranged close to the depot, a strong reduction of the average tour length can be

achieved.

• We generate new problem instances to investigate the in�uence of di�erent prob-

lem parameters (warehouse size, share of heavy and light items per customer

order, and number of requested items per customer order) on the performance

of H-PRSW/O, E-PRSW/O, and E-PRSW.

The results of the numerical studies show that E-PRSW provides a convincing

performance even if we compare our strategy to the exact solution approach that

neglects the precedence constraint (E-PRSW/O). Moreover, E-PRSW shows the

most robust solution quality for the problem instances with di�erent character-

istics.

• Despite the complexity of implementing precedence constraints in order pick-

ing in general, E-PRSW is easy to understand for order pickers as it follows a

straightforward and non-confusing routing scheme and thus reduces the poten-

tial for errors in order picking.

AGV-assisted order picking

The last problem addressed in this thesis is inspired by a warehouse of a German au-

tomotive original equipment manufacturer with a traditional picker-to-parts setup.

A set of customer orders is given, each associated with a due date until which the

items of the customer order are to be collected. Because each customer order con-

sists of only a few items, a batching of customer orders is applied to increase order

picking e�ciency. Moreover, to avoid unnecessary trips from the picking area of

the warehouse back to the central depot, order pickers are supported by a �eet of

automated guided vehicles (AGVs), where an AGV transports the items of a single

batch from the picking area to the depot.

The warehouse is partitioned into disjoint zones, each with one order picker as-

signed to it. An order picker collects those items of a batch that are stored in her

zone and transports them to a handover location, where she passes the items to an

AGV. Note that zone picking can speed up order picking because an order picker

does not travel between the zones, i.e., each order picker only traverses smaller areas

of the warehouse. In parallel, an AGV is equipped with bins at the central depot,

where each bin is associated with the items of a single customer order to avoid order
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consolidation after picking. An AGV autonomously drives to a handover location,

parks, displays its demand, and waits until the order picker passes the items and

con�rms the pick. Then, the order picker returns to her zone to retrieve the items

of the next batch, and the AGV drives to other handover locations or it returns to

the central depot if all items of the batch have been picked. Here, the shipping of

the customer orders is prepared, and the AGV is again equipped with empty bins

so that it can process the next batch.

Our AGV-assisted order picking problem (AOPP) decides on the grouping of

customer orders into batches, the sequence according to which batches should be

processed, and the assignment of batches to AGVs such that the total tardiness of all

customer orders (i.e., the extent to which the due dates are violated) is minimized.

To the best of our knowledge, the AOPP constitutes a novel setting, which has

not been explored in the literature so far but is highly relevant in practice. Our

contributions can be summarized as follows:

• We propose two mixed integer programming formulations for the AOPP: In

the �rst modeling approach (referred to as AOPP-BE model), all batches not

exceeding the picking device capacity (called feasible batches) are generated

explicitly before solving a speci�c test instance. In the second model (referred

to as AOPP-BI model), feasible batches are considered implicitly when solving

a test instance.

• Because our problem setting extends the standard OBP, this problem is NP-

hard. We focus on the development of an e�ective and e�cient solution ap-

proach to provide solutions for large problem instances. To this end, we propose

a two-stage heuristic consisting of an ALNS component for batching customer

orders and an adaption of the well-known Nawaz, Enscore, and Ham heuris-

tic (called NEH heuristic) for sequencing the batches. We denote our solution

approach as ALNS/NEH.

• On newly generated large-sized instances, we analyze the impact of using a sim-

ulated annealing-based (SA-based) acceptance criterion after the ALNS phase

instead of simply accepting improving solutions. The studies performed on these

instances show the positive impact of using the SA-based acceptance criterion

on the solution quality.

• We design a set of small instances to compare the performance of ALNS/NEH

to those of the optimization software IBM ILOG CPLEX Optimizer (CPLEX).
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The results clearly demonstrate the ability of ALNS/NEH to �nd high-quality

solutions within a fraction of a second.

• To provide managerial insights, we conduct several computational experiments

examining the e�ect of increasing the AGV �eet size and varying traveling and

walking speed ratios between AGVs and order pickers on the objective of mini-

mizing the total tardiness of all customer orders. The experiments indicate that

a slight increase in the speed ratio or the �eet size results in large improvements

of the total tardiness.

1.3 Organization

The remainder of this dissertation is structured as follows. In Chapter 2, the concep-

tual and methodological fundamentals that are relevant for the problems addressed

in this work are introduced. First, we give a description of warehouse operations

with a focus on order picking. Second, we present a classi�cation of order pick-

ing systems which di�erentiates these systems according to whether mainly human

order pickers or automated machines are involved in the order picking. Because

order picking systems which mainly employ human order pickers lie at the core of

all problems addressed in this work, we describe their central components. Subse-

quently, we present frequently used planning objectives in order picking. Next, we

detail the central planning problems in picker-to-parts systems, and we review the

related literature on these problems. Last, the metaheuristic paradigms used in this

dissertation are introduced.

Chapter 3 provides a mathematical model formulation of the standard OBP and

describes our ALNS×TS to solve the problem. To investigate the performance of

our metaheuristic hybrid, we generate large-scale instances and perform extensive

numerical studies on these instances and on the standard OBP benchmark sets

available in the literature. The e�ect of the algorithmic components is assessed

by comparing the performance of ALNS and TS as standalone methods with those

of the hybridization of these components on a benchmark set from the literature.

Moreover, we conduct an extensive performance comparison of ALNS×TS to all

previously published methods that have been tested on (any subset of) the standard

OBP instances from the literature.

In Chapter 4, we �rst detail the practical case, which is characterized by a pre-

cedence constraint in the order picking. Then, we introduce our exact solution
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algorithm to evaluate E-PRSW. Next, we present our experimental results, which

are obtained on a dataset provided to us by the case company. Moreover, we ex-

amine the impact of di�erent item storage assignment strategies as well as di�erent

problem parameters on the performance of the picker routing strategies (H-PRSW/O,

E-PRSW/O, and E-PRSW) on newly designed instances. Last, we derive managerial

insights for precedence-constrained order picking.

Chapter 5 presents a mixed integer programming formulation for the AOPP and

details our ALNS/NEH. In extensive computational experiments, (i) we analyze the

in�uence of the SA-based acceptance criterion used by ALNS/NEH on the solution

quality, (ii) we assess the performance of ALNS/NEH compared to CPLEX, and (ii)

we give managerial insights with respect to AGV-assisted order picking.

Finally, we summarize the �ndings of this dissertation and give an outlook on

future research opportunities in Chapter 6.
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Chapter 2

Fundamentals

Some of the contents of this chapter are included in similar form in the following

publications:

• I. �ulj, S. Kramer, and M. Schneider. A hybrid of adaptive large neighborhood

search and tabu search for the order batching problem. European Journal of

Operational Research, 264(2):653�664, 2018.

• I. �ulj, C. H. Glock, E. H. Grosse, and M. Schneider. Picker routing and storage

assignment strategies for precedence-constrained order picking. Computers &

Industrial Engineering, 123:338�347, 2018.

This chapter is devoted to the conceptual and methodological fundamentals that

are relevant for the problems addressed in this dissertation. In Section 2.1, we give

an overview of warehouse operations with a focus on order picking. Section 2.2 clas-

si�es the di�erent order picking systems according to whether human order pickers

or automated machines are mainly involved in the order picking. Because we focus

on picker-to-parts systems, which are prevalent in the literature and in practice,

Section 2.3 describes their central components. Section 2.4 presents frequently used

planning objectives in order picking, and Section 2.5 discusses the central planning

problems in picker-to-parts systems. To this end, we focus on warehouse layout

design, storage assignment methods, picker routing strategies, order batching, zon-

ing, and AGV-assisted order picking. Moreover, we review the scienti�c literature

on these problems. Finally, Section 2.6 provides an overview of the metaheuristic

solution methods applied in this dissertation, namely TS and ALNS.
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2.1 Warehouse operations

Warehouse operations comprise receiving, storing, picking, sorting, packing, and

shipping items (de Koster et al. 2007, Tompkins et al. 2010). Usually, a warehouse

is divided into areas in which these operations are performed. Figure 2.1 illustrates

a schematic representation of a warehouse containing a receiving, a reserve stor-

age, a forward storage, a sorting and packing, and a shipping area. The areas are

symbolized by rectangles, and item �ows through the warehouse are indicated by

arrows.

Receiving area

Reserve storage area

Forward storage area

Sorting and packing
area

Shipping area

�ow of items

Figure 2.1: Overview of typical warehouse areas (based on Tompkins et al. (2010)
and Koch (2014)).

In the following, we brie�y describe these areas and the item �ows through the

warehouse. Activities in the receiving area include the unloading of the received

items from transport carriers, quantity and quality control, updating the inventory
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record, repackaging (e.g., of items received on pallets into storage modules used in

the warehouse), and the transfer either to the storage or directly to the shipping

area via cross docking (de Koster et al. 2007).

The storage area of a warehouse is typically divided into a reserve (or bulk) and a

forward storage area (Strack and Pochet 2010). The reserve storage area stores items

in bulk often in far-distant pallet racks (Walter et al. 2013). It is used for picking

items which are requested in large quantities and which are not assigned to the

forward storage area. The bulk stock stored in the reserve storage area also serves

for replenishing the forward storage area in the case of a stock-out (van den Berg

et al. 1998). The forward storage area stores small quantities of items in a compact

area in easily accessible storage modules (e.g., gravity �ow racks). In contrast to

the reserve storage area, the forward storage area is used to pick small quantities of

highly demanded items (Gu et al. 2007, Strack and Pochet 2010, Park 2012). We

refer the reader to Hackman et al. (1990), van den Berg et al. (1998), and Walter

et al. (2013) for details on assigning items to the reserve and/or forward storage

area.

Order picking is the main operation in most warehouses (de Koster 2015). It

involves the process of retrieving items from their storage locations within the reserve

and/or forward storage area in response to a speci�c customer request. Because bulk

retrievals from the reserve storage area are not considered in this dissertation, order

picking relates to removals from the forward storage area, called picking area in the

following. In order picking, sorting of the items can be necessary, i.e., if several

customer orders are picked together, the items have to be sorted according to the

respective customer orders. Sorting also includes the consolidation of items, for

example, if a customer order is split and its items are picked by multiple order

pickers. A detailed description of an order picking process is given in Section 2.3.2.

Sorting and consolidation are described in Section 2.5.4.

Before the customer orders can be shipped to the customers, they are checked

(e.g., for completeness), packed, and �nally loaded onto transport carriers at the

shipping area (Rouwenhorst et al. 2000, Park 2012).

2.2 Classi�cation of order picking systems

In the literature, various alternatives can be found to classify the wide range of order

picking systems (see, e.g., de Koster et al. 2007, Dallari et al. 2009, Gudehus 2012).

13



Figure 2.2 shows a common classi�cation which di�erentiates order picking systems

according to whether mainly human operators or automated machines are involved

in the order picking (de Koster et al. 2007).

Order picking systems

Mainly employing
human operators

Mainly employing
automated machines

Picker-to-parts Parts-to-picker

Low-level High-level

Figure 2.2: A classi�cation of order picking systems (based on de Koster et al.
(2007)).

Order picking systems which mainly employ human operators can be distinguished

into picker-to-parts systems and parts-to-picker systems. In picker-to-parts systems,

order pickers walk or ride through the warehouse to one or more storage locations

to retrieve the items requested by customers. These systems can be further divided

into low-level picker-to-parts systems and high-level picker-to-parts systems. Low-

level picker-to-parts systems store items in low-level racks, in bins, or on pallets.

High-level picker-to-parts systems employ high storage racks to store items. Con-

trary to low-level picker-to-parts systems, in which items are directly accessible for

an order picker, in high-level picker-to-parts systems, an order picker is often moved

to a storage location by a vehicle with a lifting platform. Throughout the disser-

tation, we concentrate on analyzing low-level picker-to-parts systems because they

are prevalent in practice (see, e.g., de Koster et al. 2007).

Parts-to-picker systems include automated storage and retrieval systems, in which

items are delivered by, e.g., aisle-bound cranes to stationary order pickers (Wäscher

2004, de Koster et al. 2007). Usually, items are provided in unit loads (e.g., pallets

14



or bins), order pickers remove the requested items, and the aisle-bound crane returns

the remaining items to their storage location in the warehouse.

Although there are technologies to automate order picking, order picking systems

which mainly employ automated machines are rarely found in practice (Wäscher

2004). These systems are used in the case of valuable, small, and sensitive items

(de Koster et al. 2007).

2.3 Central components of picker-to-parts systems

2.3.1 Warehouse layout

Rectangular warehouse layouts with parallel picking aisles are common both in the

literature and in practice (see, e.g., Ratli� and Rosenthal 1983, Bozer and Kile 2008,

Henn and Wäscher 2012, Goeke and Schneider 2018). In a rectangular single-block

warehouse, parallel picking aisles are connected by an orthogonal cross aisle at the

front and at the rear of the picking aisles (see Section 1.2, Figure 1.1). The part of

the picking area which is enclosed by these two cross aisles forms a so-called block.

Items are stored in storage locations arranged on the left and on the right of each

picking aisle. Cross aisles do not contain storage locations, but they allow order

pickers to move from one picking aisle to another to retrieve the requested items.

Warehouse layouts with these characteristics and with picking aisles of equal length

and width as well as storage locations of identical size are referred to as single-block

parallel-aisle warehouses in the following.

Single-block parallel-aisle warehouse layouts can be extended by additional cross

aisles to form two-block, three-block, or, generally, multi-block parallel-aisle ware-

house layouts, in which υ cross aisles constitute υ−1 blocks. Single-block and multi-

block parallel-aisle warehouses are often called conventional warehouses in the liter-

ature (see, e.g., Masae et al. 2019a).

Non-conventional warehouses di�er from conventional warehouses with respect to

the arrangement of picking aisles and cross aisles. They are often aimed to facilitate

reaching certain areas of the warehouse and/or to improve space utilization (Masae

et al. 2019a). Examples of non-conventional warehouse layouts include the �shbone

(see, e.g., Gue and Meller 2009, Pohl et al. 2009), U-shaped (see, e.g., Glock and

Grosse 2012, Glock et al. 2019), chevron (see, e.g., Öztürko§lu et al. 2012, Masae

et al. 2019b), and leaf and butter�y layout (see, e.g., Öztürko§lu et al. 2012).
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Warehouses can be further distinguished according to the number of depots, the

number of storage locations assigned to an item type, and the width of picking aisles

as follows:

• Number of depots : A warehouse either contains a single depot (centralized de-

positing) or multiple depots (decentralized depositing). In warehouses with

decentralized depositing, the order pickers can drop o� the retrieved items at

multiple end depots, e.g., at the front and/or rear end of each picking aisle or

at dedicated positions of a conveyor belt. Thus, unnecessary trips back to a

central depot, which are the main disadvantage of traditional picker-to-parts

setups, can be reduced.

• Number of storage locations assigned to an item type: An item type can be

available from exactly one storage location (dedicated storage), or an item type

can be assigned to more than one storage location (scattered storage). With

scattered storage, the probability to have a requested item close-by the order

picker handling the respective customer order can be increased, regardless of

where the order picker is currently positioned in the picking area. In this way,

unproductive walking of order pickers is reduced (Weidinger 2018). Therefore,

it is not surprising that modern e-commerce warehouses of companies like Ama-

zon or Zalando often apply scattered storage (Goeke and Schneider 2018) and

that this setting is receiving increasing attention in the scienti�c literature (see,

e.g., Goeke and Schneider 2018, Weidinger 2018, Boysen et al. 2019a). A dis-

advantage of scattered storage concerns the increase in time required to place

incoming items into stock, which results from the fact that items of the same

item type have to be transported to multiple storage locations (Weidinger and

Boysen 2018).

• Width of picking aisles : Warehouses with standard, narrow, and wide picking

aisles can be found in the literature and in practice. In standard picking aisles,

order pickers can pass each other, and items can be retrieved from both sides of

a picking aisles without performing additional movements (Scholz et al. 2017).

If picking aisles are narrow, order pickers can retrieve items from both sides of

a picking aisle without performing additional movements (Hong et al. 2012).

Note that narrow picking aisles prohibit an order picker to pass another order

picker in the same picking aisle, and congestion has to be considered in terms

of waiting time (see, e.g., Parikh and Meller 2009, Hong et al. 2012). Contrary,
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if picking aisles are wide, additional movements are required to retrieve items

located on di�erent sides of a picking aisle (Goetschalckx and Ratli� 1988).

2.3.2 Order picking process

Order picking results from incoming customer orders that require the retrieval of

the requested items from their storage locations of a warehouse. In low-level picker-

to-parts systems, order pickers use a picking device and a pick list (ten Hompel

et al. 2011). A picking device (e.g., a picking cart or a roll cage) serves to transport

the retrieved items through the warehouse. Pick lists are generated based on the

incoming customer orders. Each pick list speci�es a picking order and contains

a non-empty set of order lines, where each order line indicates a particular item,

the requested quantity of this item as well as its storage location in the picking

area (ten Hompel et al. 2011, Henn and Wäscher 2012). While a customer order is

associated with the requested items of a single customer, a picking order can contain

(i) all requested items of one or more customer orders, (ii) some of the requested

items of one or more customer orders, or (iii) a combination of (i) and (ii). The

order lines of a pick list are sorted in the sequence in which the items are to be

retrieved by an order picker. Pick lists can be provided in paper form or from

the warehouse management system to electronic means of communication, such as

handheld scanners, smartphones, or tablets (Koch 2014).

A typical order picking process in a picker-to-parts system is shown in Figure 2.3

and can be described as follows: An order picker starts at the depot, where she

receives a pick list and a picking device, and walks or rides to the storage location

of the �rst item speci�ed by the pick list. When she arrives at this storage location,

she retrieves the item in the requested quantity and places the item(s) onto the

picking device. Subsequently, she either proceeds to the next storage location if

the picking order is not completed, or she returns to the depot and hands over the

picking device with the retrieved items if there are no further items to be picked.

Consequently, each picking order is associated with an order picking tour that starts

from the depot, proceeds along the storage locations of all items speci�ed by the

picking order, and ends at the depot (Koch 2014). Obviously, if there are further

picking orders to be processed, she receives a new pick list and a picking device, and

the described procedure is repeated.
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Order picker receives a
pick list and a picking
device at the depot.

Order picker moves
to the storage

location of the �rst
item according
to the pick list.

Order picker retrieves
the item in the

requested quantity
and places the
item(s) onto the
picking device.

All items of the
picking order
are collected.

Not all items of
the picking or-
der are collected.

Order picker returns
to the depot and
hands over the

picking device with
the retrieved items.

Order picker moves
to the storage

location of the next
item according
to the pick list.

Figure 2.3: An example of an order picking process in a picker-to-parts system.
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2.4 Common planning objectives in order picking

Common objectives in order picking include the maximization of the customer ser-

vice level and the minimization of the (operational) cost (Goetschalckx and Ashayeri

1989, de Koster et al. 2007). The customer service level depends on delivery lead

times and (contractually) agreed delivery dates. The delivery lead time describes

the time that has elapsed between placing a customer order and the delivery to the

customer. Note that other factors (e.g., completeness and correctness of the deliv-

ery) also a�ect the customer service level, but they are not relevant for the problems

addressed in this dissertation.

A short delivery lead time can be achieved by a reduction of the order picking time,

i.e., the time required for picking the requested items of a customer order, because it

is an essential part of the delivery lead time of a customer order (Henn et al. 2010).

It is therefore appropriate to analyze the integral components of order picking time,

namely setup, travel, search, and pick time (Petersen 1999, Henn et al. 2012). Setup

time is de�ned by the time for administrative and setup tasks (e.g., receipt of the

pick list and picking device). Travel time is the time an order picker requires to travel

from the depot to the �rst picking location, between the picking locations, and from

the last visited picking location to the depot. The time an order picker spends on

identifying the respective storage locations and the requested items is called search

time. Pick time is de�ned by the time required to retrieve the requested items from

their storage locations and to place them onto the picking device.

Figure 2.4 presents a typical distribution of order picking time among the de-

scribed activities. As the �gure shows, traveling is the most time-consuming activ-

ity with 50% of order picking time. According to Tompkins et al. (2010), the other

components can either be considered to be constant (e.g., search and pick time) or

negligible (e.g., setup time).

Consequently, minimizing total travel time, i.e., the time for picking a given set

of customer orders, seems to be an appropriate lever for improving the customer

service level. Moreover, a reduction of the total travel time a�ects the objective

of minimizing the (operational) cost: In the short run, labor costs related to, e.g.,

the regular working time of the order pickers, overtime, or temporary workforce

can be reduced (Wäscher 2004). In the long run, even the permanent workforce

can decrease (Henn et al. 2010). Improving customer service on the one hand and

reducing costs on the other hand, positively a�ect the competitiveness of the overall
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Other: 5%
Setup: 10%

Picking: 15%

Searching: 20%

Traveling: 50%

Figure 2.4: Typical distribution of order picking time (based on Tompkins et al.
(2010)).

supply chain, and it is therefore not surprising that they often serve as primary

objectives for warehouse managers.

Besides minimizing total travel time, the minimization of the total travel length is

often used as planning objective in the order picking literature. Assuming that the

order picker's travel velocity is constant and neglecting the order picker's acceleration

and braking movements, the minimization of the total length of all order picking

tours, which the order picker has to cover to collect the requested items of a given set

of customer orders, is equivalent to the minimization of the total travel time (Jarvis

and McDowell 1991, Henn et al. 2012). However, in order picking systems with high

space utilization in which order picker blocking can occur, this assumption does not

hold. In such systems, narrow picking aisles prohibit an order picker to pass another

order picker in the same picking aisle, and congestion has to be considered in terms

of waiting time (see, e.g., Parikh and Meller 2009, Hong et al. 2012).

As stated above, meeting contractually agreed or promised next or even same-

day deliveries is another central component of the customer service level. Customer

orders often have to be completed until given due dates (i) to avoid delays in the

scheduled departure of trucks delivering the requested items to customers or (ii)

to provide the input to a production system on time and thus to avoid production

delays (Henn and Schmid 2013). In these contexts, tardiness-related objectives, e.g.,

the minimization of the tardiness of all customer orders, are often considered (see,

e.g., Henn and Schmid 2013, Scholz et al. 2017). The tardiness of a customer order

can be generally described as the extent to which the due date of a customer order

is violated. Order picking time is an integral part of the tardiness, so minimizing
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total travel time/length also has a positive e�ect on meeting due dates.

Because we consider di�erent planning problems, di�erent objectives (i.e., mini-

mizing the total tour length and minimizing the tardiness of a given set of customer

orders) are pursued in this dissertation.

2.5 Planning problems in order picking

Due to the large number of research papers dealing with planning problems in order

picking, we cannot provide an exhaustive review of every research contribution.

Instead, we review some outstanding papers related to the problems addressed in

this dissertation.

2.5.1 Warehouse layout design

For the sake of completeness, we brie�y describe the main problems of the warehouse

layout design and mention relevant literature references although no decisions on the

design of the warehouse layout are made in this dissertation.

In the context of order picking, the design of the warehouse layout concerns the

facility layout of the order picking system and the layout within the order picking

system (de Koster 2015). The facility layout deals with the question of where to

locate the various warehouse areas, such as the receiving, storing, picking, sorting,

packing, and shipping area. A common objective is to minimize handling cost, which

is often represented by a linear function of the travel distance. Both Meller and Gau

(1996) and Tompkins et al. (2010) give a review of the literature on the design of

the facility layout.

The design of the layout within the order picking system, called internal layout

design or aisle con�guration problem, concerns the number of blocks and the number,

length, and width of the picking and cross aisles. The minimization of the travel

distance is again the most common objective. Works investigating the internal lay-

out design are, for example, those of Caron et al. (1998, 2000), Petersen and Aase

(2002), Roodbergen and Vis (2006), de Koster et al. (2007), and Roodbergen et al.

(2008).
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2.5.2 Item storage assignment

The item storage assignment problem belongs to the class of assignment problems

which deal with the matching of two or more sets of elements (e.g., items, storage

locations, machines, tasks) to each other (Pentico 2007). Generally speaking, the

problem models the decision on how to assign items to storage locations of a ware-

house such that a given performance measure (e.g., total tour length for collecting

the items of a given set of customer orders) is optimal (Gu et al. 2007).

Besides a few exact algorithms (see, e.g., Hausman et al. 1976), the literature

proposes various strategies to assign items to storage locations (see Figure 2.5).

Frequently studied strategies of storage assignment are random (or chaotic), dedi-

cated, and class-based storage (Gu et al. 2007, 2010, de Koster et al. 2007).

Item storage
assignment strategies

Random storage Dedicated storage Class-based storage

Turnover-based
storage

Complementarity-
based storage

Contact-based
storage

Figure 2.5: Overview of common item storage assignment strategies.

A random storage strategy arbitrarily assigns items to available, empty storage

locations with equal probability (Petersen 1997). An advantage of this strategy is

that it leads to a high storage space utilization (or a low space requirement) because

storage locations are not reserved for items that are out of stock (see, e.g., de Koster

et al. 2007). On the negative side, random storage results in long travel times if

items jointly requested by customers are stored in storage locations that are far

away from each other.

Contrary to random storage, dedicated storage assigns items to consistent storage

locations for a relatively long period of time (Wäscher 2004). Dedicated storage

has the advantage that order pickers become familiar with the storage locations

22



assigned to the di�erent items over time. This speeds up order picking as compared

to random storage. Dedicated storage is also advantageous if items di�er according

to their weight (de Koster 2015). For instance, to avoid work accidents caused by

the lifting (removal) of heavy items to (from) relatively high rack positions, heavy

items may be dedicated to lower storage locations in a rack. A drawback of dedicated

storage is that it leads to a lower degree of storage space utilization because su�cient

space is reserved for storing the maximum inventory level. Even if an item is out of

stock, dedicated storage locations are not used for storing other items.

Approaches for assigning dedicated storage locations can be divided into three

classes, depending on whether they are turnover-based, complementarity-based, or

contact-based (see, e.g., Wäscher 2004, de Koster et al. 2007). The turnover-based

approach considers the demand frequencies of items when allocating dedicated stor-

age locations. The demand frequency indicates how often an item has been requested

by customers within a certain period of time (Wäscher 2004). While items with high

demand frequencies are located close to the depot, items with low demand frequen-

cies are located farther away from the depot.

The cube-per-order index (COI), a modi�cation of the turnover-based approach,

does not only consider demand frequencies of items but also their space requirement

(Heskett 1963). The COI is de�ned as the ratio of the item's storage space require-

ment (cube) to its demand frequency per period. The idea of the COI is to store

compact, frequently requested items (characterized by low COI values) close to the

depot and to move bulky, rarely requested items (characterized by high COI val-

ues) to storage locations that are located far away from the depot (Wäscher 2004).

A disadvantage of turnover-based storage assignment is that a change in demand

frequencies implies a reassignment of items to storage locations. Moreover, the im-

plementation of the concept of turnover-based storage requires considerably more

information than random storage (de Koster 2015). Applications of the COI-based

rule can be found in Kallina and Lynn (1976) and Malmborg and Bhaskaran (1987).

Contrary to turnover-based storage, complementarity-based and contact-based

approaches do not only take into account the demand frequency of items when

assigning storage locations but also consider whether di�erent items show similarities

in demand. In general, complementarity-based approaches distinguish two phases.

In the �rst phase, items are clustered based on a complementarity measure that

de�nes the strength of joint demand (de Koster 2015). A high complementarity value

between two items indicates that these items are frequently requested together. The
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clustering can be de�ned as a p-median problem (Rosenwein 1994). In the second

phase, items are assigned cluster by cluster to storage locations as close to each

other as possible (Wäscher 2004). To determine the storage locations to which the

items of a cluster should be assigned, Liu (1999) suggests the following procedure:

The item with the highest demand is assigned to the storage location closest to

the depot. All other items of the same cluster are assigned to storage locations

close to this item according to the turnover-based approach. A disadvantage of the

complementarity-based approach is that an order picker does not necessarily travel

directly between the storage locations of two items even if they are requested by the

same customer.

Therefore, contact-based methods assign items to dedicated storage locations

with respect to direct travels (called contacts) between items (Wäscher 2004). For

contact-based approaches, a PRP has to be solved to determine the contacts for a

given set of customer orders, which in turn means that the storage locations of the

items must be known (see Section 2.5.3). Because a simultaneous solution of both

problems is rather not realistic for instances of practically relevant size, van Oud-

heusden et al. (1988) propose a procedure which alternates between both problems.

The concept of class-based storage groups items into several classes, typically

based on their demand frequency or the COI. These classes are then assigned to

dedicated storage areas of the warehouse (see, e.g., Jarvis and McDowell 1991, Pe-

tersen and Schmenner 1999). Items with the highest demand frequency are stored

close to the depot, and items with the lowest demand frequency are assigned to

storage locations that are far away from the depot. Storage assignment within an

area is random. Similar to the complementarity-based approach, it is necessary to

solve a clustering problem.

A common variant of class-based storage is the ABC storage strategy, which is

based on the Pareto principle according to which a few items are responsible for a

large proportion of the total demand (de Koster et al. 2007). ABC storage groups

items into three classes (A, B, and C), with class A representing fast moving items,

class B including items with medium demand, and class C covering the least re-

quested items. Other groupings of items (e.g., into more than three classes) are

possible and may give additional gains with respect to the objective of minimizing

the total tour length for collecting the items of a given set of customer orders (Rood-

bergen 2001, de Koster 2015). An advantage of class-based storage is that it leads

to short travel times because fast moving items are stored close to the depot. Addi-
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tionally, high storage space utilization can be achieved because items are randomly

assigned to storage locations within an area.

Note that random and dedicated storage represent extreme cases of the class-based

storage strategy. In the case that each item belongs to a separate class, the class-

based strategy corresponds to the dedicated storage strategy. In the other extreme

case of a single class, the class-based strategy corresponds to the random strategy.

With respect to item storage assignment strategies, studies mainly focus on ran-

dom storage. Analytical models which can be used for dedicated or class-based

storage are missing (see, e.g., de Koster 2015). Also, item-speci�c characteristics

(e.g., weight, hazardousness, and temperature requirements) are often neglected

in the literature when assigning items to storage locations (Dekker et al. 2004).

Moreover, the impact of storage assignment on the performance of a picker routing

strategy is hardly studied. Instead, when discussing the performance of a picker

routing strategy, random storage is usually assumed (de Koster 2015).

2.5.3 Picker routing

In this section, we �rst describe the standard single picker routing problem (standard

SPRP). We then give an overview of the solution methods for the standard SPRP

and its variants. For an extensive literature review on picker routing, we refer the

reader to Masae et al. (2019a).

2.5.3.1 The standard picker routing problem

In general, PRPs aim at determining a cost-minimal order picking tour along the

storage locations de�ned by a picking order (see, e.g., Ratli� and Rosenthal 1983).

The standard SPRP is the most well-studied PRP in the literature. It can be de�ned

as follows: Given a single-block parallel-aisle warehouse with a central depot and

dedicated storage, the standard SPRP models the decision on how to route a single

order picker through the warehouse (starting from and ending at the depot) such

that a given performance measure (e.g., travel time or travel distance) for collecting

the items de�ned by a picking order from their storage locations is optimal. The

standard SPRP assumes that an order picker can retrieve items from both sides of a

picking aisle without performing additional movements. Furthermore, the capacity

of the picking device used to transport the items through the warehouse is assumed

to be su�cient for carrying all items contained in the picking order.
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PRPs classify as a special case of the traveling salesman problem (TSP), and thus,

TSP approaches can be used to solve a PRP. However, order picking tours that

are performed by order pickers in a single- or multi-block parallel-aisle warehouse

exhibit a speci�c structure, which is not considered by general TSP formulations.

For example, to cross over from one picking aisle to another picking aisle, an order

picker uses one of the cross aisles. Problem-speci�c solution approaches taking

speci�c characteristics into account may therefore outperform TSP approaches with

respect to the size of the instances that can be solved and the runtimes that are

required to solve these instances (see, e.g., Scholz et al. 2016, Goeke and Schneider

2018).

Problem-speci�c solution approaches for the standard SPRP can be distinguished

into exact algorithms, construction heuristics, and metaheuristics.

Exact solution approaches In a seminal work, Ratli� and Rosenthal (1983)

present a graph-based dynamic programming algorithm to solve the standard SPRP

to optimality. The time complexity of their algorithm is linear in the number of

picking aisles. Scholz et al. (2016) propose a graph-based mathematical model for-

mulation that considers speci�c properties of optimal order picking tours of the

standard SPRP. For example, they show that it is su�cient that each picking aisle

is only represented by six picking locations instead of considering all picking loca-

tions. Their approach is compared to three TSP formulations and one Steiner TSP

formulation. The authors demonstrate that their formulation outperforms these

general formulations with respect to the size of instances that can be solved and

the corresponding runtimes. Pansart et al. (2018) introduce an exact dynamic pro-

gramming approach and a mixed integer linear programming formulation, which

is based on a single-commodity �ow formulation of the Steiner TSP. Goeke and

Schneider (2018) propose a compact formulation that directly exploits the property

of an optimal order picking tour in which two consecutive picking aisles can only be

connected using four possible con�gurations as presented in Ratli� and Rosenthal

(1983). Additionally, their formulation is not based on classical subtour elimina-

tion constraints. In numerical studies, Goeke and Schneider (2018) show that using

their formulation, large instances can be solved within short runtimes. On a set of

benchmark instances with up to 30 picking aisles and 45 required picking locations,

their formulation clearly outperforms that of Scholz et al. (2016) and is about six

times faster than the one of Pansart et al. (2018). Although using the formulation
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of Goeke and Schneider (2018) to solve the standard SPRP cannot compete with

the performance of the algorithm proposed by Ratli� and Rosenthal (1983), it is

advantageous because it can be solved with a mathematical programming solver, so

neither knowledge of a higher programming language nor experience in algorithmic

programming are required (Goeke and Schneider 2018).

Construction heuristics In practice, the standard SPRP is often solved by con-

struction heuristics because the resulting order picking tours follow straightforward

and non-confusing patterns compared to an optimal order picking tour (de Koster

et al. 1999). Hence, the risk of not collecting a requested item during order picking

can be reduced (Petersen and Schmenner 1999). The most common heuristic picker

routing strategies include the S-shape (or traversal) strategy by Goetschalckx and

Ratli� (1988), the return, midpoint, and largest gap strategy by Hall (1993), and

the composite strategy by Petersen (1995). In Figure 2.6, we give an example of the

resulting order picking tours (starting from and ending at a central depot) through

a single-block parallel-aisle warehouse of an order picker applying di�erent picker

routing strategies to collect a given picking order. The black rectangles represent

picking locations of the customer order.

The applied heuristic picker routing strategies can be described as follows:

• S-shape: According to the S-shape strategy, the order picker starts at the depot,

proceeds to the leftmost picking aisle that contains at least one picking location

and traverses it completely. Then, the order picker enters all other picking aisles

alternately from the rear cross aisle and the front cross aisle (if they contain at

least one picking location) and traverses them completely. An exception may

occur in the last picking aisle to be visited: if the order picker enters this picking

aisle from the front cross aisle, she travels to the last item to be picked in the

picking aisle, returns to the front cross aisle and from there to the depot (Hall

1993).

• Return: The return strategy proposes that each picking aisle containing an

item to be picked is entered and left from the same cross aisle. This strategy

is often used in warehouses in which closed-end picking aisles occur, i.e., the

order picker can only use the same cross aisle to travel from one picking aisle

to another picking aisle (Roodbergen and de Koster 2001a).

• Midpoint : Following the midpoint strategy, picking aisles are entered as far as
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(a) S-shape picker routing strategy. (b) Return picker routing strategy.

(c) Midpoint picker routing strategy. (d) Largest gap picker routing strategy.

(e) Composite picker routing strategy. (f) Optimal picker routing strategy.

Figure 2.6: Example of the resulting order picking tours for di�erent picker routing
strategies. The �gure illustrates the resulting picking tours (starting from and end-
ing at the depot) through a single-block parallel-aisle warehouse of an order picker
applying di�erent picker routing strategies to collect a given picking order. The
black rectangles represent picking locations of the customer order.
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the midpoint of a picking aisle from the front and rear of a cross aisle (Hall

1993). Thus, the order picker performs either a return route from the front

cross aisle, a return route from the rear cross aisle if the items are above the

midpoint, or return routes from both the front and the rear cross aisle (Petersen

and Schmenner 1999). The leftmost picking aisle (which contains an item to be

picked) is traversed to enter the rear cross aisle and the rightmost picking aisle

(which contains an item to be picked) to enter the front cross aisle.

• Largest gap: In the case of the largest gap strategy, the order picker traverses

the leftmost and the rightmost picking aisle completely if they contain at least

one picking location. Other picking aisles that contain an item to be picked are

entered in such way that the largest gap of a picking aisle is not traversed. A

gap de�nes the distance in a picking aisle between (i) any two adjacent picking

locations, (ii) the closest picking location (to the front cross aisle) and the front

cross aisle, or (iii) the farthest picking location (to the front cross aisle) and the

rear cross aisle. The largest gap is the part of a picking aisle that the order picker

does not traverse. If the largest gap corresponds to (i), the order picker enters

and returns via the same front (rear) cross aisle. If the largest gap corresponds

to (ii) or (iii), the order picker enters and returns either from the rear (ii) or

front cross aisle (iii). With respect to the objective of minimizing the total tour

length for collecting the items given by a picking order, the largest gap strategy

always performs better than or at least equal to that of the midpoint strategy

(Hall 1993).

• Composite: The composite strategy includes a dynamic programming compo-

nent which determines for each picking aisle whether to use an S-shape or a

return strategy, depending on the picking locations in the next picking aisle.

For example, consider a picking aisle for which the shortest travel time could be

achieved if the picking locations are visited using the return strategy. However,

the total travel time could be reduced if the picking aisle is completely traversed

(S-shape strategy) because this could allow a better starting point for the next

picking aisle (Petersen 1995, Roodbergen and de Koster 2001a).

Metaheuristic solution approaches To the best of our knowledge, de Santis

et al. (2018) are the only ones who propose a metaheuristic solution approach for

the (standard) SPRP. The authors develop an adapted ant colony optimization

algorithm for a parallel-aisle warehouse layout with an arbitrary number of blocks.
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In the context of order picking, metaheuristic solution approaches have been used

to solve the standard SPRP or variants of the standard SPRP integrating other

planning problems such as item storage assignment or order batching (see, e.g., Tsai

et al. 2008, Chen et al. 2015). For a review on metaheuristic solution approaches

combining PRPs with other planning problems, the reader is referred to van Gils

et al. (2018).

2.5.3.2 Variants of picker routing problems

Variants of PRPs include di�erent warehouse layouts, decentralized depositing, arbi-

trary start and end locations of an order picking tour, scattered storage, decoupling

of order picker and picking cart, and precedence constraints. Such variants are

brie�y outlined in the following.

Di�erent warehouse layouts Roodbergen and de Koster (2001a) and Masae

et al. (2020) present extensions of the exact algorithm proposed by Ratli� and

Rosenthal (1983) to address a two-block parallel-aisle warehouse layout. The exact

approaches proposed by Scholz et al. (2016) and Pansart et al. (2018) for solving the

standard SPRP can be also applied to deal with multi-block parallel-aisle warehouse

layouts. Çelik and Süral (2014) provide a polynomial-time algorithm for a �shbone

warehouse layout. Masae et al. (2019b) introduce an exact algorithm based on

dynamic programming for the chevron warehouse layout and modify the midpoint

and largest gap picker routing strategies to address their scenario.

Heuristic approaches for multi-block parallel-aisle warehouse layouts can be found

in Vaughan (1999), Roodbergen and de Koster (2001b), Theys et al. (2010), and

Çelik and Süral (2019). Vaughan (1999) propose a so-called aisle-by-aisle heuris-

tic, which is based on dynamic programming. Roodbergen and de Koster (2001b)

adapt existing picker routing strategies (S-shape, largest gap) and introduce a new

picker routing strategy, called combined heuristic. Theys et al. (2010) use the Lin-

Kerninghan-Helsgaun heuristic for routing order pickers. A graph theory-based

heuristic is proposed in Çelik and Süral (2019).

Decentralized depositing The algorithm of Ratli� and Rosenthal (1983) is ex-

tended in de Koster and van der Poort (1998) to the case of multiple end depots

assuming a single-block parallel-aisle warehouse. Items can be dropped o� anywhere

along the front cross aisle. Consequently, the start and end locations of an order
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picking tour can be anywhere along the front cross aisle. Scholz et al. (2016) out-

line how their model formulation for the standard SPRP can be extended to cope

with decentralized depositing of items at the front or the rear end of each picking

aisle. In the mathematical model formulation of Goeke and Schneider (2018), it is

assumed that an order picker can select an arbitrary end depot from a set of possible

candidate depot locations to drop the items.

Arbitrary start and end locations of an order picking tour Lö�er et al.

(2020) extend the algorithm of Ratli� and Rosenthal (1983) by allowing arbitrary

start and end locations of an order picking tour for a single-block parallel-aisle

warehouse layout and Masae et al. (2020) for a two-block parallel-aisle warehouse

layout. Masae et al. (2020) also propose a heuristic picker routing strategy, denoted

as S*-shape, and compare the performance of S*-shape to those of the exact picker

routing strategy.

Scattered storage Daniels et al. (1998) propose a TSP formulation for a PRP

in which any item can be available from multiple storage locations for an arbitrary

warehouse layout and compare several heuristic solution approaches. For a single-

block parallel-aisle warehouse, scattered storage is also investigated in Weidinger

(2018) and Goeke and Schneider (2018), who extend their mathematical model for-

mulation for the SPRP described above. Weidinger (2018) proposes three di�erent

routing heuristics based on the algorithm of Ratli� and Rosenthal (1983) to solve

the SPRP with scattered storage. Additionally, he provides a proof of NP-hardness

in the strong sense. Goeke and Schneider (2018) show that their formulation out-

performs those of Weidinger (2018) with respect to solution quality and runtimes.

Decoupling of order picker and picking cart Goeke and Schneider (2018) are

the �rst to propose a mathematical model formulation to cope with the decoupling

of order picker and picking cart. They assume that order pickers are allowed to park

the picking cart during an order picking tour, retrieve a few items walking on their

own, return to the picking cart and continue the order picking tour with the picking

cart.

Precedence constraints In practice, the routing of order pickers is often sub-

ject to precedence constraints (Chabot et al. 2017). These constraints de�ne that

certain items need to be collected before other items due to fragility, stackability,
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shape and size, and preferred unloading sequence. Variants of PRPs considering

precedence constraints can be found in the following papers. Dekker et al. (2004)

examine combinations of item storage assignment strategies and heuristic picker

routing strategies for a real-world application arising in a warehouse of a wholesaler

of tools and garden equipment. The picking area is characterized by three blocks,

closed-end picking aisles, and two �oors. Arbitrary start and end locations of an

order picking tour are allowed. Furthermore, a guideline requiring that breakable

items have to be picked after unbreakable items to prevent damaging to the break-

able items has to be considered. To address this requirement, the authors propose

to assign breakable items to storage locations in such a way that the requirement is

automatically met. For example, breakable items are stored in the rightmost picking

aisle, and with the start location being at the leftmost picking aisle, the requirement

can be automatically met.

Chabot et al. (2017) introduce the so-called order picking problem under weight,

fragility and category constraints for a single-block parallel-aisle warehouse. These

precedence cosntraints can be de�ned as follows: As soon as the total weight of the

already collected items exceeds a threshold weight value, heavy items can no longer

be picked, and the order picker may only collect light items (weight constraints).

Thus, another order picking tour is necessary if not all heavy items have been col-

lected. To avoid damage to fragile items, heavy items must not be placed on top

of fragile items. The authors refer to this restriction as fragility constraint. The

category constraints de�ne that non-food items have to be placed underneath food

items on the pallet to avoid contamination. The authors propose a capacity-indexed

mathematical model formulation and a two-index vehicle-�ow formulation. To solve

the problem, four heuristics (S-shape, largest gap, mid-point, and ALNS) are pre-

sented. Furthermore, a branch-and-cut algorithm and cutting planes are applied to

solve the two formulations of the problem considering the precedence constraints.

In Table 2.1, we give an overview of the literature described above. The references

are sorted in ascending order of the year of publication and alphabetically by the

surname of the �rst author. The �rst column includes the respective reference. The

next seven columns specify characteristics of the picking area, i.e., the arrangement

of picking and cross aisles (single-block, two-block, three-block, multi-block, or other

warehouse layouts), decentralized depositing (otherwise the reference assumes a cen-

tral depot), and arbitrary start and end points of an order picking tour. Columns

nine and ten indicate whether scattered storage assignment (otherwise the reference
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assumes a dedicated storage assignment) and decoupling of order picker and pick-

ing cart are considered. Column eleven speci�es whether precedence constraints are

taken into account. Finally, the last three columns classify the references according

to the solution approach (exact, construction heuristic, and metaheuristic). When-

ever a reference ful�lls one of the described characteristics, this is indicated by a

bullet point in the corresponding cell of the table.
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Ratli� and Rosenthal (1983) • •
Goetschalckx and Ratli� (1988) • •
Hall (1993) • •
Petersen (1995) • •
Daniels et al. (1998) • • •
De Koster and van der Poort (1998) • • •
Vaughan (1999) • •
Roodbergen and de Koster (2001a) • •
Roodbergen and de Koster (2001b) • •
Dekker et al. (2004) • • •
Theys et al. (2010) • •
Çelik and Süral (2014) • •
Scholz et al. (2016) • • •
Chabot et al. (2017) • • • • •
De Santis et al. (2018) • •
Goeke and Schneider (2018) • • • • •
Lö�er et al. (2020) • • •
Pansart et al. (2018) • •
Weidinger (2018) • • •
Çelik and Süral (2019) • •
Masae et al. (2019b) • •
Masae et al. (2020) • • •

Table 2.1: Overview of single picker routing problems.
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To summarize, our survey of the literature shows that the standard SPRP is the

most well-studied PRP. To solve the standard SPRP, mainly exact solution methods

have been proposed. This can be explained by the fact that the speci�c characteris-

tics of the problem (e.g., rectangular warehouse layout, parallel picking aisles) make

it possible to develop algorithms that obtain optimal solutions for practically rele-

vant instance sizes within shortest runtimes. Variants of the standard SPRP mainly

deal with di�erent warehouse layouts, multiple end depots, arbitrary start and end

locations of an order picking tour, and/or scattered storage. Although precedence

constraints in order picking arise in many real-world applications, works considering

precedence constraints are rather rare.

2.5.4 Order batching

In this section, we �rst outline fundamentals of order batching. Then, we de�ne

the standard OBP and give a comprehensive review of the state-of-the-art solution

methods to address the standard OBP. Furthermore, we detail the literature on

OBP variants.

2.5.4.1 Introduction

If the number of items per customer order is large in relation to the capacity of

the picking device, customer orders are usually picked individually on a single order

picking tour. This way of picking is called single order picking, pick-by-order, or

discrete order picking. However, if the number of items per customer order is small,

the e�ciency of the order picking process can be increased by consolidating a set of

customer orders into a single order picking tour. Obviously, picking multiple cus-

tomer orders on a single order picking tour increases the pick density per tour. This

order picking method is referred to as pick-by-batch or order batching (de Koster

et al. 1999).

In Figure 2.7, we illustrate an example for reducing the total tour length re-

quired to collect the items of two customer orders by order batching in a single-block

parallel-aisle warehouse. The order picker is sequenced by the S-shape routing strat-

egy. The black rectangles represent the picking locations of the requested items, and

the solid line indicates the order picking tour through the warehouse, which starts

from and ends at the central depot. Figures 2.7(a) and 2.7(b) depict the resulting

order picking tours for collecting the items of two customer orders on two separate
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order picking tours. Figure 2.7(c) demonstrates the resulting single order picking

tour if the customer orders are grouped into a batch. The �gures show that the

total tour length can be reduced by simultaneously picking both customer orders on

a single order picking tour because the tour length in Figure 2.7(c) is shorter than

the sum of the tour lengths resulting from the order picking tours in Figure 2.7(a)

and Figure 2.7(b).

(a) Resulting order picking tour if customer
order A is picked individually.

(b) Resulting order picking tour if customer
order B is picked individually.

(c) Resulting order picking tour if customer
orders A and B are picked simultaneously on
a single order picking tour.

Figure 2.7: An example for reducing the total tour length by order batching assuming
the S-shape picker routing strategy in a single-block parallel-aisle warehouse. The
black rectangles represent the picking locations of the requested items, the solid line
indicates the order picking tour through the warehouse, starting from and ending
at the central depot.

A batch can contain (i) all requested items of one or more customer orders, (ii)

some of the requested items of one or more customer orders, or (iii) a combination of

(i) and (ii). The size of a batch is restricted by the capacity of the picking device and

is often de�ned by the number of customer orders (see, e.g., Le-Duc and de Koster

2007) or the number of items (see, e.g., Bozer and Kile 2008).
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There are basically two principles for batching customer orders: proximity batch-

ing and time window batching (Choe and Sharp 1991). Proximity batching groups

customer orders based on the proximity of their storage locations to those of other

customer orders, i.e., customer orders whose item storage locations are close together

in the warehouse are combined. Time window batching can be carried out as �xed

or variable time window batching (van Nieuwenhuyse and de Koster 2009). In �xed

time window batching, customer orders arriving during a predetermined (�xed) time

interval are grouped into a batch. When batching with a variable time window, a

speci�ed number of customer orders is assigned to a batch.

With respect to the availability of information about the customer orders, two sit-

uations can be distinguished: static and dynamic order batching (Yu and de Koster

2009). In static order batching, all customer orders and their composition, i.e., the

requested items and corresponding demand quantities, are known at the beginning

of the planning period. In dynamic order batching, information about the customer

orders becomes available over time (see, e.g., Henn 2012).

A disadvantage of order batching is that the batched customer orders have to be

separated before shipping to the respective customers. Two strategies exist that

de�ne when to separate the customer orders of a batch, namely the pick-and-sort

and the sort-while-pick strategy. In the case of the pick-and-sort strategy, customer

orders are separated at the depot after the order picking process. According to

the sort-while-pick strategy, customer orders are already separated during the order

picking process. Consequently, no or only little sorting e�ort is necessary (see, e.g.,

van Nieuwenhuyse and de Koster 2009). To apply the sort-while-pick strategy, the

picking device has to be equipped with separate bins for the individual customer

orders (Gademann and van de Velde 2005). Note that if the items of a customer

order are assigned to di�erent batches, i.e., the items are collected on di�erent order

picking tours, additional e�ort is required to consolidate the items by customer

orders at the end of the order picking process.

2.5.4.2 The standard order batching problem

Among various OBPs discussed in the literature, the standard OBP (as de�ned in

Chapter 1) is the most well-studied OBP. Solution approaches for the standard OBP

can be distinguished into exact algorithms, construction heuristics, and metaheuris-

tics.
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Exact solution approaches Gademann and van de Velde (2005) de�ne the stan-

dard OBP as a generalized set partitioning problem and propose a branch-and-price

algorithm with column generation for solving the linear programming relaxation of

the problem. They compute the travel time required for collecting the items of

a picking order by applying the exact algorithm of Ratli� and Rosenthal (1983).

Problem instances with up to 32 customer orders, ten items per customer order,

and a picking device capacity of four customer orders are solved to optimality in

approximately six minutes on average. Bozer and Kile (2008) propose a mixed inte-

ger programming approach based on the S-shape picker routing strategy and solve

instances with up to 25 customer orders, ten items per customer order, and a pick-

ing device capacity of 25 items to optimality. Their S-shape strategy is di�erent

from the originally proposed strategy because it does not consider the case in which

the number of traversals is odd. In this case, the order picker enters the rightmost

picking aisle from the front cross aisle, travels the picking aisle to the last item to be

picked, returns to the front cross aisle and from there to the depot. Muter and Öncan

(2015) develop a column generation approach using the S-shape, return, and mid-

point picker routing strategy. They employ upper and lower bounding procedures

that are strengthened by adding subset-row inequalities. With their set partitioning

formulation, a small percentage of problem instances with up to 100 customer orders

and an average number of six items per customer order for a picking device capacity

of 24 items can be solved. Öncan (2015) introduce three mixed integer programming

formulations considering the S-shape, return, and midpoint picker routing strategy.

Optimal solutions are obtained for small-sized instances with 20 customer orders

within a given runtime limit of three hours.

Construction heuristics Simple construction heuristics suggested for the stan-

dard OBP include priority rule-based, seed, and savings algorithms.

• Priority rule-based algorithms : Algorithms based on priority rules assign cus-

tomer orders to batches in the sequence of non-ascending priority values en-

suring that the picking device capacity is not violated. Examples of priority

rules are the �rst-come �rst-serve (FCFS) rule and space-�lling curves (Gibson

and Sharp 1992, Pan and Liu 1995). While respecting the priority values, a

customer order can be assigned to a batch either by the well-known next-�t,

�rst-�t, or best-�t rule (see, e.g., Wäscher 2004).
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• Seed algorithms : Elsayed (1981) and Elsayed and Stern (1983) introduced seed

algorithms, which group customer orders into batches in a two-phase procedure,

namely the seed selection and the order congruency phase. In the seed selec-

tion phase, a customer order (seed) is selected from a set of not yet assigned

customer orders to form a batch. For example, the seed can be (i) a random

customer order, (ii) the customer order with the smallest (largest) number of

items, or (iii) the customer order with the largest number of picking aisles to be

visited. Moreover, the seed can be de�ned in a single or in a cumulative mode.

In the single mode, the �rst customer order assigned to a batch de�nes the

seed. Contrary to this, in the cumulative mode, all customer orders included in

a batch serve as the seed (Henn et al. 2012).

Subsequently, in the order congruency phase, unassigned customer orders are

sequentially added to the batch as long as the picking device capacity is not

exceeded. If the remaining capacity of the batch is not su�cient to add an-

other customer order, a new batch is created, and the described procedure is

repeated. With respect to the assignment of customer orders to a batch, a mea-

sure of proximity to the seed customer order of the batch is used. For instance,

the customer order which has the largest number of identical picking locations

with the seed is added to the batch. An overview of seed selection and order

congruency rules is given in Ho et al. (2008).

• Savings algorithms : The so-called savings algorithms are based on the algo-

rithm of Elsayed and Unal (1989) proposed for the vehicle routing problem.

The classic savings algorithm, referred to as C&W(i) algorithm, computes the

tour length saving that may result by picking two customer orders simulta-

neously on a single order picking tour instead of two separate tours for each

feasible (with respect to the picking device capacity) pair of customer orders.

Then, the pairs of customer orders are sorted in non-ascending order of the

tour length saving. The algorithm starts with the pair of customer orders with

the largest tour length saving. Three di�erent cases may occur while assigning

customer orders to a batch: (i) a new batch is created if neither of the two

customer orders is yet assigned, (ii) if one of the customer orders is already

assigned, the other customer order is assigned to the same batch if the picking

device capacity is su�cient, (iii) the next pair of customer orders is considered

if both of the customer orders are already assigned to batches or if the capacity
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is not su�cient (Henn and Wäscher 2012).

Compared to C&W(i), tour length savings are recalculated after each assign-

ment of customer orders to a batch in an extended variant of C&W(i), called

C&W(ii) algorithm (Elsayed and Unal 1989).

Other construction heuristics are based on cluster analysis (see, e.g., Hwang and

Kim 2005) and data mining approaches (see, e.g., Chen and Wu 2005).

Metaheuristic solution approaches Gademann and van de Velde (2005) present

an iterated descent algorithm, in which the initial solution is generated by the FCFS

rule. Neighbor solutions are obtained by interchanging two customer orders from

two batches. The authors follow a �rst improvement strategy according to which

the �rst improving neighboring solution is accepted as the current solution. In nu-

merical studies, iterated descent is compared to their branch-and-price algorithm

described above. For small-sized instances, iterated descent is able to provide op-

timal solutions. For larger instances with up to 32 customer orders, near-optimal

solutions are found.

Albareda-Sambola et al. (2009) batch customer orders applying a variable neigh-

borhood search algorithm with six local exchange schemes and three kinds of neigh-

borhoods with di�erent size. They compare their algorithm to FCFS, C&W(i),

C&W(ii), and several seed algorithms using the S-shape, largest gap, and composite

picker routing strategy. Problem instances with up to 250 customer orders and 36

items per customer order are considered. Contrary to many other publications in

which the capacity of the picking device is limited by the number of items or the

number of customer orders, Albareda-Sambola et al. (2009) de�ne a total weight

value that must not be exceeded when batching customer orders. They assume that

an item has a weight of one, two, or three weight units. The authors show that their

algorithm consistently �nds better solutions compared to the construction heuristics.

Henn et al. (2010) propose an iterated local search and an ant colony optimization

algorithm to solve the standard OBP. The S-shape picker routing strategy and the

largest gap picker routing strategy are used for routing the order picker. Problem

instances with up to 60 customer orders, 25 items per customer order, and a picking

device capacity of 75 items are considered. With respect to solution quality, the

authors demonstrate that both approaches provide improved solutions compared to

several construction heuristics and to the iterated descent of Gademann and van de

Velde (2005).
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Henn and Wäscher (2012) design an attribute-based hill climber (ABHC) and a

TS algorithm. Initial solutions are generated either with FCFS or C&W(ii). Their

ABHC applies a set of attributes to overcome local minima and a set of moves to

guide the search towards new solutions, where an attribute characterizes a solution

feature. The �rst attribute set describes each solution of the problem by pairs of

customer orders that are assigned to the same batch. The second attribute set

refers to the assignment of customer orders to batches. Consider an example where

customer orders o1 and o2 are assigned to batch b1, and customer orders o3 and

o4 are assigned to batch b2. According to the second attribute set, this solution

can be described by the attributes (b1, o1), (b1, o2), (b2, o3), and (b2, o4). For both

algorithms, the neighborhood of a current solution is examined by applying a shift

operator, a swap operator, and a combination of both. The shift operator generates

a neighborhood by shifting a customer order from one batch to another batch and

the swap operator by swapping two customer orders between two batches. The TS

uses two variants for the exploration of the neighborhood. First, a best improvement

(BI) strategy which explores the entire neighborhood and selects the best non-tabu

solution with shortest tour length as next solution. Second, to reduce computation

time, they implement an aspiration plus (AP) criterion that explores only a limited

subset of the neighborhood of the current solution. The algorithm generates neigh-

boring solutions until a solution is found that has a total tour length that is at most

5% longer than that of the current solution. Then, between 3·n and 5·n additional

non-tabu solutions are generated, where n is the number of customer orders. Fi-

nally, the algorithm selects the solution with shortest tour length as next solution.

The computation of the total tour length is based on the S-shape and largest gap

picker routing strategy. Performance is evaluated in several computational studies

benchmarking the ABHC and TS to C&W(ii) and to three local search algorithms

proposed by Henn et al. (2010). Problem instances with up to 100 customer or-

ders, 25 items per customer order, and a picking device capacity of 75 items are

considered.

Chirici and Wang (2014) present two population-based methods, namely an item-

oriented genetic algorithm (IGA) and a group-oriented genetic algorithm (GGA).

Order pickers are routed according to the S-shape strategy. Their algorithms are

tested on problem instances with up to 60 customer orders, 25 items per customer

order, and a picking device capacity of 75 items. They demonstrate that both

algorithms improve the objective function value compared to C&W(ii). In terms of
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solution quality, GGA performs better than IGA at a similar runtime.

Öncan (2015) introduce an iterated local search with tabu thresholding (ILST)

as intensi�cation procedure. They use the same neighborhood structures as de�ned

in Henn et al. (2010) and Henn and Wäscher (2012). The authors consider test

instances with up to 100 customer orders, 25 items per customer order, and a picking

device capacity of 75 items.

Koch (2014) and Koch and Wäscher (2016) suggest di�erent genetic algorithms

and assess their performance on problem instances with up to 80 customer orders,

25 items per customer order, and a picking device capacity of 75 items.

Hong and Kim (2017) propose a mixed integer programming approach based on

the S-shape picker routing strategy and solve randomly generated instances with up

to 500 customer orders. The authors compare their method to several lower bounds

and construction heuristics. Problem instances with up to 500 customer orders,

2.02 items per customer order (de�ned by a density function), and a picking device

capacity of 20 items are considered. For the largest-sized instances, their solutions

are approximately equal to those obtained by C&W(ii).

Detailed results on the performance of the algorithms of Henn andWäscher (2012),

Öncan (2015), Koch (2014), and Koch and Wäscher (2016) are given in Chapter 3

because we compare our ALNS×TS to these algorithms. To the best of our know-

ledge, Henn and Wäscher (2012) and Öncan (2015) present the best performing

metaheuristics for the standard OBP.

In Table 2.2, we summarize the exact and metaheuristic solution approaches to

the standard OBP described above. The references are sorted in ascending order

of the year of publication and alphabetically by the surname of the �rst author.

The �rst column includes the respective reference. The second column speci�es the

solution approach(es), and the third column details the size of the problem instances

used in the respective reference. The problem instance size is given by three values,

where the �rst value describes the maximum number of customer orders, the second

value denotes the maximum number of items per customer order, and the third

value represents the maximum picking device capacity indicated by the number of

customer orders, item units, or weight units.

In the following, we brie�y summarize the main �ndings of our literature review

on the standard OBP:

• Only a few exact solution approaches have been proposed in the literature to
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address the standard OBP. Although the exact solution methods are able to

cope with small-sized instances, they have shortcomings to consistently solve

larger instances.

• Because the standard OBP is NP-hard if the number of customer orders per

batch is greater than two, many studies focus on developing heuristic and meta-

heuristic solution methods to solve the problem.

• Most of the solution approaches to the standard OBP have not been tested

on problem instances of practically relevant size. Those that have been tested

on larger instances do not exhibit an outstanding performance with respect to

solution quality and/or the runtime required to solve the respective instances.

• It is surprising that an ALNS has not been proposed to address the stan-

dard OBP yet despite its convincing performance on combinatorial optimization

problems related to the standard OBP.

2.5.4.3 Variants of order batching problems

The e�ciency of the order picking process does not only depend on the grouping of

customer orders into batches but also on the routing of order pickers through the

warehouse, on how the batches are assigned to order pickers (in warehouses in which

multiple order pickers operate), and on the sequence in which the batches are pro-

cessed by the order pickers (Henn and Schmid 2013). Therefore, approaches which

focus on the simultaneous solution of (some of) these planning problems are also

considered in the OBP literature. Most variants of OBPs consider other objective

functions, multiple end depots, and/or additional constraints such as precedence

constraints. Although the joint consideration of order batching and other planning

problems such as item storage assignment (see, e.g., Xiang et al. 2018) or zoning

(see, e.g., Yu and de Koster 2009) further in�uences the e�ciency of the order pick-

ing process, such publications are not discussed in the following because no decisions

are made in this respect within this dissertation.

OBP integrating the sequencing of batches A variant of an OBP integrating

the sequencing of batches is presented in Henn and Schmid (2013). The authors

present an iterated local search and ABHC algorithm to solve the problem with the

objective of minimizing the total tardiness for a set of customer orders.
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OBPs integrating a PRP Variants of OBPs integrating a PRP are discussed in

Kulak et al. (2012), Grosse et al. (2014), Matusiak et al. (2014), Cheng et al. (2015),

Scholz and Wäscher (2017), Valle et al. (2017), and Valle and Beasley (2020). The

problem considered in Kulak et al. (2012) aims at minimizing the total tour length

for collecting the items of all batches in an arbitrary warehouse layout. To solve

their OBP, a TS is proposed. Several heuristics, originally applied to the well-known

traveling salesman problem, are used for addressing the PRP. Grosse et al. (2014)

consider a joint OBP and PRP for a single-block parallel-aisle warehouse layout.

Splitting of customer orders is allowed. The OBP is solved by an SA algorithm

and the PRP by a savings heuristic as well as the return, midpoint, and largest gap

picker routing strategy. Matusiak et al. (2014) consider an order picking system

with a single-block parallel-aisle warehouse with three bidirectional cross aisles and

multiple end depots and precedence-constrained picker routing. An SA algorithm

is developed for their OBP and the exact A*-algorithm, proposed by Hart et al.

(1968), is used to address precedence constraints in their PRP. Cheng et al. (2015)

study a joint OBP and PRP for an arbitrary warehouse layout with the objective

of minimizing total tour length. The authors propose a hybrid approach based on

particle swarm optimization to solve their OBP and ant colony optimization to solve

their PRP. Scholz and Wäscher (2017) investigate an OBP and PRP for a two-block

parallel-aisle warehouse. The authors integrate several routing algorithms into an

iterated local search approach for the OBP. Valle et al. (2017) study a joint OBP

and PRP for a multi-block parallel-aisle warehouse layout with the objective of min-

imizing the total tour length. They propose a mathematical model formulation with

several valid inequalities based on a sparse graph representation of the warehouse

to prevent solutions that violate subtour breaking constraints. Briant et al. (2020)

present an exponential linear programming formulation for a joint OBP and PRP

for a multi-block parallel-aisle warehouse layout. Valle and Beasley (2020) propose

a mathematical model which decides on the batching of customer orders with the

objective of minimizing an approximation of the picker routing distance traveled.

Once the order batching decision has been made, order picker routes are optimally

determined.

OBPs integrating the sequencing of batches and the assignment of batches

to order pickers Variants of OBPs integrating the sequencing of batches and the

assignment of batches to order pickers are studied in Hong et al. (2012), Henn
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(2015), and Matusiak et al. (2017). Hong et al. (2012) consider an integrated order

batching, batch sequencing and batch assignment problem. Their problem assumes

multiple order pickers operating in narrow picking aisles, in which congestion in the

form of picker blocking may occur. The objective of their problem is to minimize

the total retrieval time, which consists of travel time, pick time, and congestion

delays caused by picker blocking. The authors develop a mixed integer program-

ming approach, which is shown to be able to cope with small-sized instances and an

SA-based approach for solving larger instances. Henn (2015) present an integrated

order batching, batch assignment and sequencing problem, in which customer orders

have to grouped to batches, batches assigned to a limited number of order pickers,

and batches scheduled such that the total tardiness is minimized. The problem is

solved by means of a variable neighborhood descent and a variable neighborhood

search approach. Matusiak et al. (2017) study an order batching, batch sequencing

and batch assignment problem for an arbitrary warehouse layout with multiple end

depots integrating individual di�erences in picking skills of order pickers. The ob-

jective of their problem is the minimization of total order pickers' batch execution

times. The combined problem is solved by an ALNS.

OBPs integrating the sequencing of batches and a PRP Variants of OBPs

integrating the sequencing of batches and a PRP are addressed in Won and Olafsson

(2005), Tsai et al. (2008), and Chen et al. (2015). Won and Olafsson (2005) study an

integrated order batching, batch sequencing, and PRP for an arbitrary warehouse

layout. The objective is to minimize the total tour length and throughput time

of all batches. The authors propose a simple construction heuristic, which �rst

groups the customer orders into batches and then sequences the batches. A 2-

opt heuristic is used to address the PRP. Tsai et al. (2008) investigate an OBP

integrating batch sequencing and picker routing. In their problem, the total costs

(depending on the total travel time) are minimized and both earliness and tardiness

are penalized. Contrary to many problems described in the literature, splitting of

customer orders is allowed. Thus, items of a single customer order can be collected

on di�erent order picking tours. To solve the problem, the authors propose a multiple

genetic algorithm, which consists of a genetic algorithm for order batching and batch

sequencing as well as a genetic algorithm for the PRP. Chen et al. (2015) propose

a non-linear mixed integer programming approach to model the decisions on order

batching, batch sequencing, and routing of a single order picker with the objective of
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minimizing the total tardiness of all customer orders. A genetic algorithm is applied

to the order batching and batch sequencing problem, and ant colony optimization

is applied to solve their PRP. In numerical studies, problem instances with up to

eight customer orders are considered.

OBP integrating the assignment of batches to order pickers, the sequenc-

ing of batches, and a PRP Finally, Scholz et al. (2017) introduce a mathemat-

ical model and a variable neighborhood descent algorithm for their order batching,

batch assignment and sequencing problem integrating a PRP. Because the size of

their model increases polynomially with the number of customer orders, small-sized

instances can be solved to optimality within a reasonable amount of runtime.

Table 2.3 and Table 2.4 summarize the OBPs described above. In both tables,

the references are sorted in ascending order of the year of publication and alpha-

betically by the surname of the �rst (and second) author. The �rst column of both

tables includes the respective reference. Table 2.3 outlines OBPs integrating the

sequencing of batches, the assignment of batches to order pickers, and/or a PRP.

Columns two to four of Table 2.3 indicate the planning problems considered by the

respective reference. The �fth column speci�es the objective function, and the sixth

column details further problem characteristics. Whenever a reference integrates the

sequencing of batches, the assignment of batches to order pickers, and/or the PRP

into the OBP, this is indicated by a bullet point in the corresponding cell of the

table. Table 2.4 provides an overview of the solution approaches to OBPs integrat-

ing the sequencing of batches, the assignment of batches to order pickers, and/or a

PRP. Columns two to �ve specify the solution approach(es) for the planning problem

considered by the respective reference.

The main �ndings of our literature review on OBP variants are as follows:

• Variants of OBPs primarily di�er with respect to the warehouse layout (e.g.,

number of blocks and width of picking aisles), the underlying objective func-

tion (e.g., tardiness-related), and characteristics of the order picking process

(e.g. consideration of individual order picker skills, precedence-constrained or-

der picking, or order picker blocking).

• Although in many real-world applications customers expect to receive their

requested items within a certain time period, customer order due dates and due

date-related objectives are only studied in a few papers.
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• Recently, research focuses on the simultaneous consideration of order batching

and other planning problems. As order batching simultaneously arises with

the routing of an order picker, their joint consideration has received the most

attention so far.

• Solution approaches for integrated problems are in general based on a single

metaheuristic paradigm to address the OBP (and batch sequencing and/or

batch assignment) and on an exact or construction algorithm for routing an

order picker.

2.5.5 Zone picking

In zone picking (or zoning), the picking area of a warehouse is divided into (smaller)

picking areas, called zones, each with one or few order pickers assigned to it (Yu

and de Koster 2009). In a zone picking system, each order picker is responsible for

retrieving the items of a picking order that are stored in her zone.

Depending on whether the items of a picking order are collected successively or

simultaneously in the zones, progressive zoning and parallel zoning can be distin-

guished (de Koster et al. 2012). With progressive zoning, also called pick-and-pass

zoning, the items of a customer order are sequentially picked zone by zone as de-

scribed in the following: An order picker retrieves the items of a picking order stored

in her zone. Once she has collected all the items from her zone, she places the items

into a bin, which is transferred by a conveyor to the next order picker, who collects

the items of the picking order stored in her zone. A picking order is completed after

having collected all the requested items from the relevant zones and after having

transferred them to the depot, where they are prepared for shipment. In parallel

zoning, also called synchronized zoning, the requested items of a picking order are

simultaneously retrieved by multiple order pickers in multiple zones. Consequently,

the items need to be consolidated before they can be packed and shipped to a cus-

tomer.

Advantages of zone picking include a reduction of an order picker's travel time

because she does not travel between the zones or between the depot and the picking

area. Moreover, an order picker's travel time can be reduced because of a reduction

of congestion within a picking aisle. If items are not randomly assigned to the storage

locations in the zones, performance gains with respect to the time to search for and

to identify the items can be achieved because of an increase in familiarity with the
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item storage locations (de Koster et al. 2012). Although progressive zone picking

may result in a low pick rate (items picked per time unit), it does not require that

customer orders have to be consolidated after the order picking process. Contrary

to this, in parallel zone picking, an order picker's pick rate may be high, but the

consolidation of customer orders before shipment is required (Parikh and Meller

2008).

Compared to other planning problems in order picking, zone picking has been

only rarely considered in the literature (de Koster 2015, van der Gaast 2016). For

a generic discussion on zoning, we refer the reader to Speaker (1975). Gray et al.

(1992) propose a hierarchical approach of mathematical models to evaluate the eco-

nomic trade-o�s of equipment and technology selection, item storage assignment,

number of zones, picker routing, and order batching when designing a zoning sys-

tem. Malmborg (1996) investigates the trade-o�s in space requirements and order

picking e�ciency in a zoning system with dedicated and randomized storage. Jane

(2000) proposes a heuristic method for assigning items to storage zones with the

objective of balancing workloads among all order pickers. Petersen (2002) exam-

ines the e�ect of single customer order picking, order batching, and di�erent item

storage assignment and picker routing strategies on the traveling of order pickers

within a simulation study. The author shows that the number of picking aisles

per zone, the length of picking aisles, the number of items contained in a picking

order, and the item storage assignment strategy signi�cantly in�uence the average

travel distance of an order picker within a zone. Ho and Chien (2006) compare

two sequencing strategies according to which an order picker visits zones in a dis-

tribution center. Di�erent technology requirements and item storage assignment

strategies are examined in Eisenstein (2008). Parikh and Meller (2008) investigate

the problem of selecting between a batch picking and a zone picking strategy. A

cost model is proposed to estimate the cost for both picking strategies. Yu and

de Koster (2008) model a progressive zoning system as a Jackson queuing network

for estimating throughput times of customer orders and average work in process.

The resulting estimates can be used for determining the number of zones. Pan and

Wu (2009) develop an analytical model for a progressive zoning system in which the

operation of an order picker is described as a Markov Chain to estimate the expected

travel distance of an order picker. Based on the model, three exact algorithms are

proposed to assign items to storage locations for the cases of a warehouse with a

single picking zone, a warehouse with unequal-sized zones, and a warehouse with
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equal-sized zones. Yu and de Koster (2009) propose an approximation model based

on queuing network theory to analyze the impact of order batching and picking area

zoning on the average throughput time of customer orders in a synchronized order

picking system. Melacini et al. (2011) model a progressive zoning system by a net-

work of queues to estimate the mean order throughput and use analytical models

to estimate the travel distance. De Koster et al. (2012) formulate a mathematical

model to determine the optimal number of zones in a parallel zoning system such

that the total order picking time is minimized. A comprehensive study of zone pick-

ing systems considering single-segment and multi-segment routing, and congestion

and blocking at conveyors is provided in van der Gaast (2016). Moreover, di�erent

item storage assignment strategies are compared for the case of a real-world zoning

system.

2.5.6 AGV-assisted order picking

Another alternative to reduce the travel times of order pickers in picker-to-parts sys-

tems without extensive organizational overhead is to transport the retrieved items

(e.g., in bins, on pallets, in containers, or in roll cages if large-sized items are col-

lected) using AGVs (Boysen et al. 2019a, de Koster 2018, Azadeh et al. 2019). An

AGV is a computer-controlled and wheel-based load carrier, which is automatically

guided by a combination of software and sensor-based system along a prescribed path

(Material Handling Institute 2020). Figure 2.8 depicts an AGV handling multiple

customer order bins.

AGVs can support an order picking process as follows: For instance, the AGV-

PickTM developed by Swisslog, or the Pick-n-GoTM developed by Kollmorgen, au-

tomatically follows an order picker closely through the warehouse so that the order

picker can place the retrieved items onto the AGV. Once all items of a picking or-

der have been collected, the AGV autonomously transports the items to the depot.

Here, the retrieved items are prepared for shipment to the respective customers,

and the AGV is equipped (e.g., with empty bins) for collecting the items of the next

picking order. The order picker remains in the picking area, and if available, an-

other AGV is requested in time to meet the order picker at the �rst picking location

de�ned by the successive picking order.

In another variant developed by Locus Robotics, the so-called LocusBotsTM does

not accompany an order picker. Instead, the AGV autonomously drives to a picking
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Figure 2.8: SSI Schäfer's FTS 2PICKTM. The �gure depicts SSI Schäfer's FTS
2PICKTM handling multiple customer order bins (SSI Schäfer 2016).

location and waits there for an order picker to load the requested item, which the

AGV announces on its display. Once an order picker has placed the requested

item onto the AGV, the AGV proceeds to the next picking location, at which an

order picker has to execute the necessary pick (see, e.g., Azadeh et al. 2019, Boysen

et al. 2019a). When the picking order is complete, the AGV returns to the depot.

A variant of this kind of AGV-supported order picking system is considered in

Chapter 5.

The concept of AGV-assisted order picking has the following advantages: Com-

pared to the order picking process described in Section 2.3.2, AGV-assistance allows

order pickers to continuously retrieve items because they remain in the picking area

without returning to the depot each time a picking order is completed or the capac-

ity of the picking device is exhausted. Thus, the throughput of completed customer

orders can be increased. Moreover, integrating AGVs into an existing picker-to-

part system hardly changes the basic order ful�llment process (Lö�er et al. 2020).

Therefore, AGV-assisted order picking can easily be implemented without exten-

sively redesigning the system or installing further technologies. Compared to other

concepts based on �xed hardware (e.g., conveyors or automated storage and re-

trieval systems), AGV-assisted order picking enables a quicker adaption to varying
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workloads by temporarily adding (or removing) AGVs, e.g., when the number of

customer orders increases due to season sales.

Disadvantages of AGV-assisted order picking systems concern the investment costs

and regular operating costs for the AGV �eet. However, Lö�er et al. (2020) state

that the additional investments for AGVs are quickly amortized by the reduction

of unnecessary trips from the picking area back to the depot. A challenge of AGV-

assisted order picking concerns the synchronization of human order pickers and

AGVs, which makes the modeling, analysis and optimization of AGV-assisted or-

der picking systems completely di�erent from traditional picker-to-parts systems

(Azadeh et al. 2019). It is one of the main intentions of this dissertation to address

this challenge.

In the literature, AGV-assisted order picking has only been studied by Lö�er

et al. (2020) yet. In the considered setting, an order picker is closely accompanied

by an AGV during the order picking process as described above. The authors

address the routing of AGV-assisted order pickers with both a given and a facultative

processing sequence of incoming customer orders. The objective of their problems is

the minimization of the travel length for collecting the items of a customer order. To

solve the problem with given processing sequence of customer orders, the algorithm

of Ratli� and Rosenthal (1983) is extended and repeatedly solved as an integrated

part of a dynamic programming approach. To address the problem with facultative

processing sequence of customer orders and to evaluate alternative sequences, this

procedure is integrated into several heuristic approaches. Lö�er et al. (2020) show

that compared to an order picking system without the support of AGVs, in which an

order picker returns to the depot after each order picking tour, a reduction of travel

distance of approximately 20% can be achieved by AGV-assisted order picking.

2.6 Metaheuristics used in this dissertation

2.6.1 Classi�cation of metaheuristics

Metaheuristics are solution methods that use higher-level strategies that guide un-

derlying heuristics to explore a solution space e�ciently and e�ectively (Talbi 2009).

Contrary to exact solution methods, metaheuristics do not guarantee to �nd an op-

timal solution to the problem considered (Sörensen 2015). Rather, they aim to

achieve a good trade-o� between the solution quality and the computational e�ort
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required to solve the problem (see, e.g., Talbi 2009).

Metaheuristics can be classi�ed according to the number of solutions considered at

any time of the search process into single solution (or also called trajectory methods)

and population-based methods (see, e.g., Blum and Roli 2003, Gendreau and Potvin

2005, Talbi 2009). Single solution metaheuristics are algorithms considering a single

solution at any time during the search process. Examples of single solution methods

are methods based on local search like large neighborhood search (LNS), ALNS,

SA, and TS. Population-based metaheuristics, on the contrary, work on a set of

solutions at any time during the search process. Examples of population-based

methods are evolutionary computation and ant colony optimization. All solution

methods developed in this dissertation are based on single solution metaheuristics.

2.6.2 Tabu search

TS is a metaheuristic based on local search that was originally proposed by Glover

(1986). It has been applied to various combinatorial optimization problems provid-

ing near-optimal solutions in moderate runtimes. For a detailed description of TS

and its extensions, we refer to Gendreau and Potvin (2019). In Figure 2.9, we give

a pseudocode overview of a TS.

s ← generateInitialSolution()
tabuList ← ∅
repeat
s ← chooseBestOf(N (s) \ tabuList)
update(tabuList)

until stop criterion is met

Figure 2.9: TS in pseudocode.

At each iteration, TS examines the neighborhood N (s) of a current solution s.

The current solution s is modi�ed by a set of neighborhood operators, called moves.

To escape from low-quality local optima, TS selects the best neighbor of the current

solution as the new current solution, even if the best neighbor is of lower quality

than the current solution (Blum and Roli 2003). To avoid short-term cycling of the

search process, moves towards recently visited solutions are prohibited, and these

solutions or attributes of these solutions are inserted and are stored in a tabu list

for a given number of iterations, called tabu tenure. Thus, the neighborhood of the

current solution contains only those solutions that are not stored in the tabu list.
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After the new current solution has been added to the tabu list, one of the solutions

that were already in the tabu list is removed, usually in a �rst-in �rst-out order

(Blum and Roli 2003).

The tabu tenure controls the memory of the search process and has a signi�cant

impact on the performance of a TS (Talbi 2009). In the case of small tabu tenures,

the search process will focus on small areas of the solution space, and the probability

of cycling increases. In the case of large tabu tenures, larger parts of the solution

space are explored because revisiting a higher number of solutions is forbidden.

The tabu tenure can be static or dynamic. In the static form, a static value is

given for the tabu tenure. In the dynamic form, the tabu tenure is varied during

the search process (Blum and Roli 2003). For example, Battiti and Tecchiolli (1994)

implement a dynamic tabu tenure, which is increased if solutions are repetitive (thus

a higher diversi�cation is required). If the objective function value is not improved

(thus intensi�cation is required), the tabu tenure is decreased.

Another way to explicitly use historical information about the search process are

medium-term and long-term memories (Talbi 2009). The medium-term memory

stores information about the elite (e.g., best) solutions found during the search

process to guide the search process in promising regions of the solution space. The

idea is to extract the (common) features of the elite solutions and then to intensify

the search process around solutions providing those characteristics (Talbi 2009).

Thus, priority is given to attributes of the set of elite solutions. A possible approach

is to restart the search process with the best solution and then to �x in this solution

the most promising components extracted from the elite solutions (Talbi 2009).

In the long-term memory, information about the visited solutions during the search

process is stored (Talbi 2009). The idea is to encourage the search process towards

unvisited areas of the solution space. For example, to diversify the search, attributes

of elite solutions can be discouraged.

Whether intensi�cation or diversi�cation of the search process is useful, depends

on the landscape of the underlying optimization problem. For instance, if promising

solutions are located distant to each other in the search space, intensifying the search

will probably not guide the search towards high-quality solutions (Talbi 2009).

Because a tabu list may be sometimes too restrictive (Talbi 2009), e.g., tabus

may lead to a stagnation of the search process, Glover (1989) introduce aspiration

criteria which can override the tabu status of a move. For instance, an aspiration
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criterion could select a tabu move if a better solution than the current best known

solution is found.

Several stop criteria are possible, but typically the algorithm stops after a given

number of iterations, a �xed amount of computational time, if the best found so-

lution has not improved for a given number of iterations, as soon as the objective

function value reaches are given threshold value, or if all solutions in the neighbor-

hood N (s) are forbidden by the tabu list.

2.6.3 Large neighborhood search

LNS was introduced by Shaw (1997) and belongs to the class of very large neigh-

borhood search algorithms as presented in Ahuja et al. (2002). The idea of these

algorithms is that the exploration of a large neighborhood can lead to local optima

of high quality. Thus, a more promising search path can be followed, and better

solutions can be found (Pisinger and Ropke 2019). However, exploring a large neigh-

borhood is time-consuming. For this reason, �ltering techniques are applied, which

aim at focusing the search on an optimal or a near-optimal neighboring solution.

In LNS, the neighborhood is implicitly de�ned by a destroy and a repair operator.

A destroy operator destructs a part of the current solution, and a repair operator

rebuilds the destroyed solution (Pisinger and Ropke 2019). Schrimpf et al. (2000)

proposed a similar approach as ruin and recreate. An overview of a pseudocode for

a LNS is given in Figure 2.10. In the pseudocode, we use the following notation:

s denotes the current solution, s′ is a temporary solution that can be rejected or

de�ned as the current solution, and s∗ represents the best found solution during the

search process. Function h− (·) describes the destroy operator, and function h+ (·)
speci�es the repair operator. The objective function is denoted by f (·).

Starting with the current solution s, LNS �rst applies the destroy operator h−(s)

to destroy a part of the current solution s. Then, the repair operator h+(s) rebuilds

the destroyed solution. Subsequently, LNS returns a new feasible solution s′. In the

next step, the acceptance function accept(s ′) is used to decide whether s′ becomes

the current solution or not. Afterwards, we check whether s′ is better than the best

known solution s∗. If f (s ′) < f (s∗), the best known solution s∗ is replaced by s′.

The described procedure is repeated until the stop criterion is satis�ed. Then, the

best found solution during the search process is returned.

Several acceptance and stop criteria are possible: An acceptance criterion could
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s ← generateInitialSolution()
s∗ ← s
repeat

s′ ← h+(h−(s))
if accept(s′) then
s← s′

end if

if f(s′) < f(s∗) then

s∗ ← s′

end if

until stop criterion is met
return s∗

Figure 2.10: LNS in pseudocode.

be to accept only improving solutions. Another acceptance criterion is based on

SA. Here, the temporary solution s′ is always accepted if f(s′) ≤ f(s). In the

case of f (s ′) > f (s), s′ is accepted with the Metropolis probability e−(f (s′)−f (s))/ti ,

where ti > 0 is a temperature parameter (Metropolis et al. 1953). A solution s′ is

more likely to be accepted if the temperature is high and the increase in the objective

function value is low. The starting temperature t0 > 0 is set to a relatively high value

to allow deteriorating solutions to be accepted at the beginning of the search process.

As the search process progresses, the temperature is gradually decreased according

to a prede�ned cooling schedule. Thus, the probability of allowing deteriorating

solutions to be accepted decreases, and the algorithm stops in a local optimum

(Pisinger and Ropke 2019). Typical stop criteria are de�ned by a �xed number of

iterations or by a �xed computational time.

When designing a destroy operator, it should be considered that the entire solu-

tion space or at least the promising part of the solution space, in which the global

optimum is expected, can be reached. Typically, a destroy operator contains a

stochastic component to destroy di�erent parts of the current solution. Besides, the

degree of destruction is a crucial issue for the performance of the LNS: On the one

hand, if the degree of destruction is relatively small (with respect to the problem

size), only a small part of the solution is destroyed. On the other hand, the higher

the degree of destruction is, the more the problem is resolved from scratch, and the

more computational time is required (Ropke and Pisinger 2006a). To control the

size of the neighborhood, Shaw (1998) propose to gradually increase the degree of

destruction. Ropke and Pisinger (2006a) randomly choose the degree of destruction
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at each iteration from a given interval depending on the instance size.

When designing a repair operator, it has to be decided whether an exact or a

heuristic solution method should be used. An exact repair operator can lead to

high-quality solutions but often at the expense of a longer computational time.

Moreover, if only a small part of the solution is destroyed in each iteration, applying

an exact repair operator may be disadvantageous from a diversi�cation point of view:

Because exact solution methods guarantee to �nd optimal solutions, only improving

solutions or solutions with identical objective function value are generated. Thus,

the exploration of the solution space is rather limited to �nd local optima (Pisinger

and Ropke 2019). Even if heuristic repair operators seem to generate less promising

solutions at �rst, they may diversify the search and therefore may allow to reach

promising areas of the solution space (Ropke and Pisinger 2006a).

2.6.4 Adaptive large neighborhood search

ALNS, originally proposed by Ropke and Pisinger (2006a), is an extension of LNS.

Because it may depend on the speci�c instance which destroy (or repair) operator

is appropriate to apply at a certain time, ALNS uses multiple destroy and repair

operators throughout the search process. An advantage of alternating between dif-

ferent destroy and repair operators is that the algorithm can be guided towards a

more robust search of the solution space. Because repair operators often tend to

perform moves that seem to be locally best, Ropke and Pisinger (2006a) propose

to add a noise term to the objective function to randomize the repair operators.

Moreover, an adaptive mechanism for the selection of these operators is used. At

each iteration, a destroy and a repair operator are chosen based on a probability

distribution that depends on the performance of the destroy and repair operators in

past iterations. An overview of a pseudocode for an ALNS is given in Figure 2.11.

In the pseudocode, we use the following notation: s denotes the current solution,

s′ is a temporary solution that can be rejected or de�ned as the current solution,

and s∗ represents the best solution found during the search process. The objective

function is de�ned by f (·). Compared to the pseudocode of a LNS, in ALNS,

several destroy and repair operators are considered and are de�ned by the functions

h−i (·) and h+
i (·), where i∈X denotes the respective operator. Moreover, ALNS uses

variables π−i and π+
i , which describe the probability value for selecting a destroy and

repair operator i∈X . To avoid repetition, we describe only those components of
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s ← generateInitialSolution()
s∗ ← s
repeat

choose destroy and repair operators (h−i , h
+
i ) according to probabilities (π−i , π

+
i )

s′ ← h+
i (h−i (s))

if accept(s′) then
s← s′

end if

if f(s′) < f(s∗) then

s∗ ← s′

end if

adjust the weights wi and probabilities πi of the destroy and repair operators
until stop criterion is met
return s∗

Figure 2.11: ALNS in pseudocode.

the pseudocode that di�er from the pseudocode of the LNS presented above.

An adaptive weight adjustment procedure dynamically evaluates the importance

of each operator during the search process. In this context, the selection probability

πi of operator i∈X is modi�ed based on the performance of the operator in previous

iterations according to a roulette wheel selection procedure as proposed in Ropke

and Pisinger (2006a). At each iteration, the selection probability of operator i∈X
is calculated as πi = wi /

∑
i∈X

wi, where wi corresponds to the weight of operator

i∈X . Initially, all operators are assigned the same weight ω.

The performance of an operator i∈X is measured in terms of a scoring system.

Let oi denote the score value of operator i∈X . If a previous destroy-repair operation
resulted in a new global best solution, the current scores of the respective operators

are increased by obest, if a previous destroy-repair operation led to a better solu-

tion that has not been found before by oimp, and if a new deteriorating solution is

found but accepted according to a given acceptance criterion by oacc. Note that the

scores for both operators are increased by the same value because the destroy-repair

operation to be rewarded cannot be clearly attributed to one of the two operators.

The search process of an ALNS is divided into a number of segments of γ iterations.

After γ iterations, weights are updated and the new weight wi+1 is determined as

wi+1 = (1 − r) ·wi + r · oi
βi
. The parameter r∈ [0, 1] controls the reaction speed of

the weight adjustment and takes the success of an operator in previous segments

into account. For example, if r is zero, the initial weight values are maintained.

The number of times that an operator i∈X was chosen in the previous segment is
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denoted by βi. The values of oi and βi are set to zero after each adjustment of the

weights.

With respect to possible acceptance and stop criteria, we refer to those described

above (see LNS).
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Chapter 3

A metaheuristic hybrid of adaptive

large neighborhood search and tabu

search for the standard order

batching problem

The contents of this chapter are included in similar form in the following publica-

tion: I. �ulj, S. Kramer, and M. Schneider. A hybrid of adaptive large neighborhood

search and tabu search for the order batching problem. European Journal of Oper-

ational Research, 264(2):653�664, 2018.

Among all order picking activities in picker-to-parts systems (see Section 2.4), it

is estimated that picker traveling is the most time-consuming activity with a share

of 50% and more of total order picking time. Consequently, reducing unproductive

picker traveling time is critical for any order picking system that relies on human

order pickers. Travel time (or travel distance) mainly depends on the assignment

of items to storage locations, the grouping of customer orders into batches, and

the routing of order pickers through the warehouse. This chapter focuses on order

batching, which has a strong in�uence on the e�ciency of warehouse operations.

The remainder of this chapter is structured as follows. In Section 3.1, we provide a

mathematical description of the standard OBP. To solve the problem, we develop a

metaheuristic hybrid that combines an ALNS with a TS (see Section 3.2). The per-

formance of ALNS×TS is investigated in extensive numerical studies in Section 3.3.

To this end, we �rst perform tests on a set of newly generated large-scale instances
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with up to 600 customer orders. Subsequently, we assess the performance of the

hybridization in comparison to ALNS and TS as standalone methods. Finally, we

conduct an extensive comparison of ALNS×TS to all previously published OBP

methods that have been tested on (any subset of) the standard OBP instances from

the literature to investigate their performance. In Section 3.4, we conclude this

chapter with a summary.

3.1 Problem description

In this section, we describe the integer programming model for the standard OBP,

originally proposed by Gademann and van de Velde (2005). In their model formu-

lation, the set of all feasible batches I not exceeding the capacity of the picking

device is determined before solving an OBP instance. The picking device capacity is

indicated by parameter C and is expressed in item units. Let J = {1, ..., n} denote
the set of customer orders, and let parameters cj represent the capacity needed for

customer order j ∈ J . It is assumed that cj ≤C for all j ∈ J to guarantee the feasi-

bility of the problem. The vector ai = (ai1, ..., ain) represents feasible batches, where

aij = 1 if customer order j ∈ J is included in batch i∈ I, otherwise aij = 0. To ensure

that only feasible batches are considered, we de�ne constraints (3.1) as follows:∑
j∈J

cj ·aij ≤ C ∀ i ∈ I (3.1)

The tour length for collecting the items of batch i∈ I is denoted by parameters

li and is determined according to the underlying picker routing strategy (e.g., S-

shape). Binary decision variables xi indicate whether batch i is chosen from the set

of all feasible batches I (xi = 1) or not (xi = 0). A batch i∈ I to which xi = 1 applies

is referred to as selected batch in the following. Then, the standard OBP can be

formulated as follows:

minimize
∑
i∈I

li ·xi (3.2)

subject to∑
i∈I

aij ·xi = 1 ∀j ∈ J (3.3)

xi ∈ {0, 1} ∀i ∈ I (3.4)
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Objective function (3.2) minimizes the total tour length for collecting the items of

all selected batches. Constraints (3.3) assign each customer order to exactly one of

the selected batches. In constraints (3.4), we de�ne the decision variables as binary.

3.2 Solution method

In this section, we describe our hybrid solution approach of ALNS and TS to ad-

dress the standard OBP. In Figure 3.1, we give a pseudocode overview of ALNS×TS.
First, we generate an initial solution using the C&W(ii) algorithm (see Section 3.2.1).

Subsequently, the solution is improved by several ALNS iterations, in which neigh-

boring solutions are accepted according to an SA-based decision criterion (see Sec-

tion 3.2.2). A TS is run (Section 3.2.3) after a certain number of ALNS iterations.

generate initial solution s using the C&W(ii) algorithm
s∗ ← s
repeat

randomly draw q− customer orders to be removed
choose destroy and repair operators (h−i , h

+
i ) according to probabilities (π−i , π

+
i )

s′ ← h+
i (h−i (s))

if certain number of ALNS iterations has passed then

s′ ← TS(s)
end if

if acceptSA(s′) then
s← s′

end if

if f(s′) < f(s∗) then

s∗ ← s′

end if

adjust the weights wi and probabilities πi of the destroy and repair operators
until stop criterion is met
return s∗

Figure 3.1: Overview of the ALNS×TS algorithm.

3.2.1 Initial solution

To generate an initial solution for the standard OBP, we use the C&W(ii) algorithm

as described in Section 2.5.4. In preliminary tests, we compared the solution quality

of ALNS×TS using C&W(i) and C&W(ii) on a benchmark set that is described

in Section 3.3.2. Table 3.1 presents an aggregate overview of the test results and
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reports averages for groups of instances de�ned by the number of customer orders

(column #orders) and the carrying capacity of the picking device (column C). For

ALNS×TS using C&W(i) and ALNS×TS using C&W(ii), we give the following

information:

• fs denotes the initial solution as the average of the objective function values

obtained by C&W(i) or C&W(ii) over each of the individual instances.

• fe indicates the �nal solution as the average of the best objective function values

obtained by ALNS×TS using C&W(i) or ALNS×TS using C&W(ii) over each

of the individual instances.

• ∆f (%) reports the percentage gap between fs and fe. The percentage gap is

computed as ∆f = 100 · (fs − fe)/fs.

The experiment shows that there is a signi�cant di�erence with respect to solution

quality of the constructed solution, however, the �nal solution of ALNS×TS does

not di�er much: while C&W(ii) generates initial solutions that are by 1.3% better

than those of C&W(i), the �nal solution is approximately the same (di�erence of

about 0.0027%).

3.2.2 Adaptive large neighborhood search component

The motivation for designing an ALNS for the standard OBP is the convincing

performance of this method on related combinatorial optimization problems like

vehicle routing and scheduling problems. Furthermore, ALNS is known to provide

robust solution quality for problem instances with di�erent characteristics due to

the integrated adaptive weight adjustment.

Our ALNS uses three destroy and two repair operators within the same search pro-

cess (see paragraph Destroy and repair operators). Moreover, we apply an adaptive

mechanism for the selection of these operators (see paragraph Adaptive mechanism).

At each iteration, a destroy and a repair operator are chosen based on a probability

distribution that depends on the performance of the destroy and repair operators in

past iterations. To overcome local optima, we implement an SA-based acceptance

criterion and add a noise term to the objective function (see paragraph Acceptance

criterion).
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# orders C ALNS×TS using C&W(i) ALNS×TS using C&W(ii)

fs fe ∆f (%) fs fe ∆f (%)

40 30 10844 10465 3.6 10799 10465 3.1

40 45 7396 6864 7.8 7284 6864 5.8

40 60 5718 5278 8.3 5601 5278 5.8

40 75 4645 4273 8.7 4518 4273 5.4

60 30 16003 15493 3.3 15964 15493 2.9

60 45 10684 10032 6.5 10578 10032 5.2

60 60 8340 7705 8.2 8179 7705 5.8

60 75 6824 6294 8.4 6627 6294 5.0

80 30 21334 20671 3.2 21324 20671 3.1

80 45 14155 13328 6.2 13990 13328 4.7

80 60 10960 10173 7.7 10734 10173 5.2

80 75 9007 8233 9.4 8672 8233 5.1

100 30 26370 25578 3.1 26370 25578 3.0

100 45 17369 16357 6.2 17116 16357 4.4

100 60 13476 12472 8.0 13086 12472 4.7

100 75 11041 10151 8.8 10690 10151 5.0

Average 12135 11460 6.7 11971 11460 4.6

Table 3.1: Comparison of ALNS×TS results using C&W(i) and C&W(ii) on the
benchmark set UDD/S-shape. The �rst two columns specify the respective groups
of instances de�ned by the number of customer orders (column # orders) and the
carrying capacity of the picking device (column C). For ALNS×TS using C&W(i)
and ALNS×TS using C&W(ii), we report the initial solution as the average of the
objective function values obtained by C&W(i) or C&W(ii) over each of the individual
instances (column fs). We also report the �nal solution as the average of the best
objective function values obtained by ALNS×TS using C&W(i) or ALNS×TS using
C&W(ii) over each of the individual instances (column fe). The percentage gap
between fs and fe is given in columns ∆f (%).

Destroy and repair operators Our ALNS uses the following destroy operators.

Random removal randomly removes q− customer orders from the current

solution in order to diversify the search.

Worst removal was introduced by Ropke and Pisinger (2006b) and removes

customer orders that are unfavorably assigned to batches in the current solution

in order to intensify the search. A number of q− customer orders with long travel

length in the current solution is removed. First, we compute for each customer

order f(j, s), which describes the change in total travel length if customer order

j is removed from the current solution s. Then, we sort all customer orders in a

list in descending order of f(j, s). Let L denote the size of this list. We choose
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the customer order at position bL·upc in this list, where u denotes a uniformly

distributed number in [0, 1] and p a randomization parameter in order to avoid

repeatedly removing the same customer orders.

Shaw removal proposed by Shaw (1997) removes customer orders that are

similar to each other according to several criteria. First, we de�ne the relatedness

between customer order i and j according to the tour length saving that may result

when picking both customer orders simultaneously on a single order picking tour

instead of two separate order picking tours. Then, we compute the normalized

savings savnormij as

savnormij =
di + dj − dij
min(di, dj)

, (3.5)

where di and dj denote the tour length for picking customer order i and customer

order j on separate order picking tours, and dij represents the tour length when

picking both customer orders simultaneously on a single order picking tour.

Furthermore, the relatedness is measured by considering the current assignment

structure of customer orders to batches. Customer orders that are assigned to

the same batch are likely to be exchangeable and thus considered more related to

each other. We de�ne binary coe�cients bij to indicate whether customer order

i and customer order j are assigned to the same batch (bij = 1) or not (bij = 0).

Then, the relatedness measure rij between customer order i and customer order j

is computed as follows (lower values correspond to more related customer orders):

rij =
1

savnormij + bij
(3.6)

The �rst customer order i to be removed is randomly chosen. Non-removed cus-

tomer orders j are sorted in a list in descending order of relatedness measure rij.

We choose the customer order at position bL·upc in a list of size L, where again u

denotes a uniformly distributed number in [0, 1] and p a randomization parameter.

Our ALNS uses the following repair operators.

Greedy insertion iteratively assigns customer orders to the batch with min-

imal travel length increase.
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Regret insertion was proposed by Ropke and Pisinger (2006b) and improves

the greedy insertion by anticipating the future e�ect of an insertion operation. The

k-regret value describes the change in total travel length of inserting customer

order j in its best and its k-best batch. We implement the 2-regret and 3-regret

heuristic.

Adaptive mechanism The adaptive weight adjustment procedure described in

Section 2.6.4 is used to evaluate the importance of each operator during the search

process. The adaptive mechanism modi�es the probability with which an operator

is chosen based on the performance of the operator in past iterations. Initially, all

operators are set to the same weight ω. We use score value oi to measure the per-

formance of an operator i∈X . If an operator �nds a new best solution, the score is

increased by obest, if a better solution is found by oimp, and if a new deteriorating so-

lution is found and accepted according to the SA-based criterion by oacc. The search

process of the ALNS is divided into a number of segments of γ iterations. After γ

iterations, the new weight of operator i∈X is calculated as wi+1 = (1−r) ·wi + r · oi
βi
,

where wi corresponds to the weight of operator i∈X . The speed of the weight ad-

justment is controlled by reaction parameter r∈ [0, 1], which takes the success of an

operator in previous segments into account. The number of times that an opera-

tor i∈X was chosen in the previous segment is denoted by βi. Subsequently, we

calculate the probability πi to choose an operator i∈X according to πi =wi /
∑
i∈X

wi.

Acceptance criterion We use an acceptance criterion based on SA in order to

overcome local optima. An improving solution is always accepted. A new deteri-

orating solution s′ is accepted with probability e−(f(s′)−f(s))/ti , where ti > 0 is the

current temperature. The starting temperature t0 is determined such that a solu-

tion that deteriorates the current solution by a% is accepted with a probability of

50%. We decrease the temperature by a constant factor c each time a deteriorating

solution is accepted such that in the last 20% of iterations the temperature is below

0.0001.

Finally, we add a noise term η to the objective function according to Ropke and

Pisinger (2006a) in order to further diversify the search.
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3.2.3 Tabu search component

TS is a local search-based metaheuristic that was originally proposed by Glover

(1986). At each iteration, TS examines the neighborhood N (s) of a current solution

s. The solution s is modi�ed by a set of neighborhood operators, called moves. Our

TS uses the neighborhood structures Nshift and Nswap as described in Section 2.5.4.2

and selects the best neighbor of the current solution in the composite neighborhood

N (s) =Nswap(s)∪Nshift(s), even if the best neighbor is of lower quality than the cur-

rent solution. Recall that the shift operator generates a neighborhood by shifting a

customer order from one batch to another batch and the swap operator by swapping

two customer orders between two batches. To avoid short term cycling of the search

process, recently visited solutions are prohibited and inserted in a tabu list for ϑ

iterations, called tabu tenure. ϑ is randomly drawn from the interval [ϑmin, ϑmax].

Finding a new best overall solution is used as aspiration criterion.

3.3 Computational studies

This section is devoted to assess the design and performance of ALNS×TS. Sec-

tion 3.3.1 details the parameter setting of ALNS×TS. In Section 3.3.2, we introduce
the benchmark sets adopted from Henn and Wäscher (2012) and the newly gener-

ated large-scale instances. Section 3.3.3 investigates the scaling behavior of our

algorithm. The in�uence of combining ALNS and TS on both solution quality and

runtime is studied in Section 3.3.4. Finally, Section 3.3.5 evaluates the performance

of ALNS×TS in comparison to the best-performing OBP methods from the litera-

ture.

3.3.1 Parameter setting

For tuning the parameters of ALNS×TS, we adopt the procedure described in Ropke
and Pisinger (2006a). Starting with a good parameter setting that we obtained dur-

ing the testing phase of our algorithm, we re�ne the value of a single parameter while

keeping the rest of the parameters �xed and perform �ve runs on the benchmark

instances. We choose the parameter setting with the best average result as the �nal

setting for the respective parameter, and we repeat this procedure with the next

parameter. Note that we randomly determine the order in which the tuning of the

parameters is performed. We found the following parameter setting, which is used
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for all computational studies.

In preliminary studies, we observed that the increase of scores in the adaptive

weight adjustment should be merit-based. Finding a new overall best solution should

receive a stronger reward than �nding an arbitrary improving solution. Moreover,

we found that the scores should be close to each other. Finally, our preliminary

studies show that it is advantageous if the initial weights of the operators i∈X are

low in comparison to the scores oi. For these reasons, we decided for the following

parameter setting: We set the scores used in the adaptive weight adjustment to

obest = 120, oimp = 100, and oacc = 80. The initial weight of all heuristics amounts

to ω= 10. Furthermore, we set the number of iterations after which the weights

of ALNS are adjusted to γ= 100, the reaction factor to ε= 0.4, the noise term to

η= 0.05, the randomization parameter to p= 3, and the percentage of deterioration

to a= 25%. For TS, we set the tabu tenure to a random value in the interval

[ϑmin = 1
5
·n, ϑmax = 2 ·n] for each move inserted into the tabu list. In preliminary

studies, we found that the number of customer orders removed from the current

solution q− strongly in�uences the performance of the ALNS and should depend

on the number of customer orders n. Therefore, we randomly choose q− from the

interval [q−min = 0.175·n, q−max = 0.35·n].

In order to achieve a good trade-o� between the solution quality and the runtime

of our algorithm, we set the number of ALNS iterations to 10 ·n. Higher numbers

of iterations slightly improve the average solution quality but lead to signi�cantly

higher runtimes. TS is run for 30·n iterations after 0.3·n iterations of ALNS. Ta-

ble 3.2 summarizes the parameter setting of ALNS×TS.

All experiments are conducted on a desktop computer with an Intel Core i7-

3770 Processor at 3.5 GHz, 16 GB of memory, running Windows 7 Professional.

ALNS×TS is implemented in Java.

3.3.2 Benchmark instances

The performance of our method is assessed on the instances proposed by Henn and

Wäscher (2012), which are described in the following. The benchmark instances

assume a single-block parallel-aisle warehouse, in which 900 di�erent items are stored

in ten parallel picking aisles with 90 storage locations, 45 on the left and 45 on the

right of each picking aisle. The depot is located below the entry of the leftmost

picking aisle in the front cross aisle.
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Parameter Parameter value

ALNS component:

γ 100

q−min , q
−
max 0.175·n, 0.35·n

ε 0.4

η 0.05

obest, oimp, oacc 120, 100, 80

ω 10

p 3

a 25%

TS component:

ϑmin, ϑmax
1
5 ·n, 2·n

Table 3.2: Overview of the parameter setting of ALNS×TS used in the computa-
tional studies.

The physical dimensions of the warehouse are de�ned as follows: The distance

between the depot and the �rst storage location in the �rst (i.e., leftmost) picking

aisle amounts to 1.5 length units (LUs). Order picking is assumed in the middle

of each storage location. A storage location has a length of 1 LU. When leaving

a picking aisle, the order picker moves 1 LU in vertical direction. The distance

between two picking aisles amounts to 5 LUs. The total length an order picker

needs to travel in order to entirely traverse a picking aisle is 47 LUs. The tour of an

order picker through the warehouse is determined according to the S-shape or the

largest gap picker routing strategy.

The benchmark instances assume two di�erent demand scenarios, uniformly dis-

tributed demand (UDD) and class-based demand (CBD). For CBD, three classes

with high (A), medium (B), and low (C) demand frequencies are de�ned. In class

A, 10% of the items account for 52% of the demand, in class B, 30% of the items

account for 36% of the demand, and in class C, 60% of the items account for 12% of

the demand. Items are assigned to storage locations according to demand frequen-

cies. Items of class A are stored in the leftmost picking aisle, items of class B in

picking aisles #2 to #4, and items of class C in picking aisles #5 to #10.

The instances consider di�erent numbers of customer orders n ∈ {40, 60, 80, 100},
di�erent capacities (de�ned in item units) of the picking device c ∈ {30, 45, 60, 75},
and a uniformly distributed number of items per customer order, which is randomly
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drawn from the interval [5, 25]. Four di�erent benchmark sets are de�ned: UDD/S-

shape, UDD/largest gap, CBD/S-shape, and CBD/largest gap. Each benchmark

set is grouped into 16 di�erent classes that are identi�ed by the number of customer

orders and the capacity of the picking device. Each class contains 40 instances.

This leads to 16 ·40 = 640 instances per benchmark set and thus 2560 benchmark

instances in total.

In addition, we generate a set of large-scale OBP instances. These instances are

based on the structure of the benchmark instances proposed by Henn and Wäscher

(2012). The set contains instances with n ∈ {200, 300, 400, 500, 600} customer or-
ders, di�erent capacities of the picking device c ∈ {6, 9, 12, 15}, and a uniformly

distributed number of items per customer order, which is randomly drawn from the

interval [1, 5]. The following instance classes (n, c) de�ned by the number of cus-

tomer orders n and the capacity of the picking device c are considered: (200, 6), (200,

9), (200, 12), (200, 15), (300, 6), (400, 6), (500, 6), (600, 6). Each instance class con-

tains 10 instances. We make all instances available for download at https://www.

dropbox.com/sh/89ishzp9o4a9jcf/AABM9m5qOHUUC35OatPMrpMFa?dl=0.

3.3.3 Scaling behavior of the metaheuristic hybrid

In order to evaluate the performance of our algorithm on large-scale instances, we

investigate di�erent parameter con�gurations of ALNS×TS to achieve a good trade-
o� between runtime and solution quality. During preliminary tests, we observed

that the number of TS iterations has the strongest impact on solution quality and

runtimes. Therefore, we study the following three con�gurations. The parameters

of ALNS×TS 1, ALNS×TS 2, and ALNS×TS 3 are all equal to those of ALNS×TS
except for the number of TS iterations. Here, we set the number of iterations as

follows: In ALNS×TS 1, TS is run for 20 ·n iterations, in ALNS×TS 2, TS is run

for 25·n iterations, and in ALNS×TS 3, TS is run for 30·n iterations.

Table 3.3 presents an aggregate view on the performance of the di�erent ALNS×TS
con�gurations on the large-scale instances described above and reports averages for

groups of instances de�ned by the number of customer orders (column #orders)

and the carrying capacity of the picking device (column C). All reported results

are based on �ve runs. In column BKS, we provide the best known solution (BKS)

as the average of the best objective function values obtained by one of the tested

ALNS×TS con�gurations for each of the individual instances in the instance group
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over the �ve runs. For each of the ALNS×TS con�gurations, we give the following

information:

• ∆b
f (%) denotes the average of the percentage gaps of the best objective func-

tion value achieved with the respective ALNS×TS con�guration to the best

objective function value of any of the ALNS×TS con�gurations over the �ve

runs. For each instance group, the smallest gap found by any of the ALNS×TS
con�gurations is indicated in bold.

• ∆a
f (%) denotes the average of the percentage gaps of the average objective

function value achieved with the respective ALNS×TS con�guration to the

best objective function value of any of the ALNS×TS con�gurations over the

�ve runs.

• t (s) reports the average runtime in seconds over the �ve runs.

We observe that the solution quality improves from ALNS×TS 1 to ALNS×TS 2

to ALNS×TS 3. On average, ALNS×TS 3 deviates by 0.1% from the best solutions

obtained with the tested con�gurations. Furthermore, ALNS×TS 3 is very robust,

which can be seen from the small di�erence between average and best solution

quality. With respect to scaling behavior, we �nd that for n ≥ 300 adding 100

customer orders approximately doubles the average computation time. Although

ALNS×TS 3 uses more time than the other two con�gurations, we believe that the

average runtimes of about 1.5 hours for 600 customer orders are reasonable. In our

opinion, ALNS×TS 3 shows the best trade-o� between solution quality and runtime

and will be used for all further studies.

3.3.4 E�ect of algorithmic components

In Table 3.4, we present the performance of ALNS and TS as standalone methods in

comparison to ALNS×TS on the benchmark set UDD/S-shape and report averages

for groups of instances de�ned by the number of customer orders (column #orders)

and the carrying capacity of the picking device (column C). In column BKS, we

provide the BKS as the average of the best objective function values obtained by

one of the methods for each of the individual instances in the group. The BKS

is indicated by an asterisk if it refers to the optimal solution obtained with com-

mercial solver Gurobi. Otherwise, the BKS refers to the best solution obtained by

ALNS×TS. For all methods, we give the following information:
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# orders C BKS ALNS×TS 1 ALNS×TS 2 ALNS×TS 3

∆b
f (%) ∆a

f (%) t (s) ∆b
f (%) ∆a

f (%) t (s) ∆b
f (%) ∆a

f (%) t (s)

200 6 18376 0.3 0.5 153 0.0 0.3 194 0.1 0.3 224

200 9 12851 0.7 1.4 172 0.4 0.9 222 0.1 0.6 254

200 12 10622 1.2 1.8 197 0.3 1.1 259 0.2 0.7 299

200 15 9007 1.4 2.0 222 0.6 1.4 282 0.1 0.5 325

300 6 28411 0.2 0.4 520 0.1 0.3 653 0.1 0.3 764

400 6 37400 0.1 0.4 1187 0.1 0.3 1522 0.1 0.3 1763

500 6 46604 0.2 0.3 2335 0.0 0.2 2982 0.1 0.3 3423

600 6 55789 0.1 0.3 4166 0.1 0.3 4910 0.1 0.3 5661

Average 0.5 0.9 1119 0.2 0.6 1378 0.1 0.4 1589

Minimum 0.1 0.3 153 0.0 0.2 194 0.1 0.3 224

Maximum 1.4 2.0 4166 0.6 1.4 4910 0.2 0.7 5661

Table 3.3: Results of di�erent ALNS×TS con�gurations. In the �rst two columns,
we specify the groups of instances de�ned by the number of customer orders (column
#orders) and the carrying capacity of the picking device (column C). In column
BKS, we provide the BKS as the average of the best objective function values
obtained by one of the tested ALNS×TS con�gurations for each of the individual
instances in the instance group over the �ve runs. For each of the ALNS×TS
con�gurations, the table reports the average of the percentage gaps of the best
objective function value achieved with the respective ALNS×TS con�guration to
the best objective function value of any of the ALNS×TS con�gurations (column
∆b
f (%)), the same measure based on the average solution quality of the respective

con�guration (column ∆a
f (%)), and the average runtime in seconds (column t (s)).

For each instance group, the smallest gap (∆b
f (%)) found by any of the ALNS×TS

con�gurations is indicated in bold.

• ∆f (%) denotes the percentage gap between the best solution found by the

respective method and the BKS. For each group of instances, the smallest gap

found by any of the methods is indicated in bold.

• t (s) reports the average runtime in seconds.

It can be observed that pure ALNS and pure TS perform signi�cantly worse in

comparison to ALNS×TS. On average, pure ALNS deviates by 2.5%, and pure

TS by 1.0% from the solutions of the hybrid. This can be explained by the fact

that ALNS has very good diversi�cation capabilities but lacks with respect to in-

tensi�cation, whereas the diversi�cation possibilities of TS seem to be insu�cient to

address the standard OBP. The results show that achieving good solution quality on

the standard OBP requires both intensi�cation and diversi�cation during the search
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process.

# orders C BKS ALNS×TS ALNS TS

∆f (%) t (s) ∆f (%) t (s) ∆f (%) t (s)

40 30 10462* 0.0 2 0.4 1 0.1 4

40 45 6865 0.0 2 1.3 1 0.9 3

40 60 5277 0.0 2 1.7 2 1.2 5

40 75 4274 0.0 3 1.8 2 1.3 5

60 30 15482* 0.1 5 0.8 4 0.2 10

60 45 10035 0.0 6 2.7 5 1.1 11

60 60 7710 0.0 7 2.7 5 1.3 13

60 75 6306 0.0 8 2.6 6 1.1 15

80 30 20645* 0.1 12 1.3 10 0.3 24

80 45 13334 0.0 13 3.6 10 1.6 26

80 60 10175 0.0 16 3.7 13 1.1 32

80 75 8245 0.0 17 3.5 14 1.1 34

100 30 25540* 0.2 23 1.8 18 0.3 45

100 45 16353 0.0 23 4.0 19 1.4 46

100 60 12477 0.0 28 4.5 23 1.2 57

100 75 10154 0.0 33 4.3 26 1.3 65

Average 0.0 12 2.5 10 1.0 25

Minimum 0.0 2 0.4 1 0.1 3

Maximum 0.2 33 4.5 26 1.6 65

Table 3.4: Performance of ALNS and TS as standalone methods in comparison to
ALNS×TS on the benchmark set UDD/S-shape. In the �rst two columns, we detail
the groups of instances de�ned by the number of customer orders (column #orders)
and the carrying capacity of the picking device (column C). In column BKS, we
provide the BKS as the average of the best objective function values obtained by
one of the methods for each of the individual instances in the instance group. The
BKS is indicated by an asterisk if it refers to the optimal solution obtained with
Gurobi. Otherwise, the BKS refers to the best solution obtained by ALNS×TS. For
all methods, the table reports the percentage gap between the best solution found
by the respective method and the BKS (column ∆f (%)) and the average runtime
in seconds (column t (s)). For each instance group, the smallest gap found by any
of the methods is indicated in bold.

3.3.5 Comparison to the state-of-the-art

In this section, we compare the solution quality and runtime of ALNS×TS to the

best-performing OBP methods from the literature on the benchmark sets described

in Section 3.3.2. For all instance classes with a picking device capacity of 30, we

solved the model presented in Section 3.1 using Gurobi.
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Performance on UDD/S-shape On the benchmark set UDD/S-shape, the per-

formance of ALNS×TS is compared to the methods of Henn et al. (2010) and Henn

and Wäscher (2012): local search (LS), ILS-1, ILS-2, TSAP, TSBI, ABHCo,o and

ABHCb,o. Henn et al. (2010) and Henn and Wäscher (2012) do not give informa-

tion about the number of test runs conducted to achieve their results. To make the

comparison as fair as possible, we conduct only a single ALNS×TS run per instance.

In Table 3.5, we compare the performance of ALNS×TS to all comparison meth-

ods on the benchmark set UDD/S-shape and report averages for groups of instances

de�ned by the number of customer orders (column #orders) and the carrying ca-

pacity of the picking device (column C). In column BKS, we provide the BKS as

the average of the best objective function values obtained by one of the methods for

each of the individual instances in the group. The BKS is indicated by an asterisk if

it refers to the optimal solution obtained with Gurobi. Otherwise, the BKS refers to

the best solution obtained by one of the comparison methods. For ALNS×TS and

all comparison methods, we report the percentage gap to the BKS (column ∆f (%)).

For each instance group, the smallest gap found by any of the methods is indicated

in bold. Moreover, the table reports the average runtimes in seconds (column t (s))

and the corrected average runtimes in seconds in brackets. The corrected average

runtimes take into account that di�erent computers were used to conduct the tests.

To make the times comparable, we use the Passmark (PM, see www.passmark.com)

score of a single core of the used processors (PM score of AMD Athlon 3500+, 2.21

GHz: 667; PM score of our Intel Core i7, 3.5 GHz: 1853). Note that an entirely

fair comparison of runtimes is never possible because programming languages and

operating systems may di�er.

ALNS×TS beats the solution quality of the best comparison method ABHCo,o on

all tested instance classes. Compared to ABHCo,o, ALNS×TS reduces the runtime

by approximately 55% on average.

Besides solution quality and runtime, scalability and robustness are important

criteria for the evaluation of an algorithm. ALNS×TS achieves the strongest speed-

up compared to ABHCo,o for the largest instance classes with n = 80, 100 and

c = 30, 45, 60, 75. This indicates a superior scaling behavior of our algorithm, which

may be quite signi�cant in practice. Moreover, ALNS×TS shows a more robust per-
formance with a maximum gap to the BKS of 0.14%, whereas the gaps of ABHCo,o

�uctuate between 0.14% and 1.03%.
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Performance on CBD/S-shape We contacted the authors of Henn andWäscher

(2012) regarding the objective function values of their methods on the individual

instance classes of the benchmark set CBD/S-shape, which were used in the papers

of Henn et al. (2010) and Henn and Wäscher (2012). Unfortunately, these results are

no longer available from the authors. As an alternative, we compare ALNS×TS to

IGA and GGA proposed by Koch and Wäscher (2016). Here, again no information

is given about the number of test runs conducted to achieve the results, and we use

the results of a single ALNS×TS run for comparison.

Table 3.6 reports the performance of ALNS×TS in comparison to the di�erent

GA variants on the benchmark set CBD/S-shape. With respect to solution quality,

ALNS×TS provides near-optimal solutions for picking device capacities of 30 items;

the average gap to the exact solutions stays below 0.1%. Moreover, ALNS×TS
outperforms all GA variants on all instance classes. On average, ALNS×TS improves
the solution quality of GGA by 1.7% and that of IGA by 2.4%, while reducing the

runtime by nearly 90%. On the largest instances reported (n = 60 and c = 75), the

improvement of solution quality obtained by ALNS×TS is strongest (gap of 5.8% to

IGA and of 5.1% to GGA). This again indicates a better suitability of ALNS×TS
to address larger problem instances. It is quite likely that the superiority of our

method would increase with instance size, however, Koch and Wäscher (2016) do

not report results for the larger instances with n = 80, 100.

Performance on UDD/largest gap and CBD/largest gap We found that

our computation of the distance according to the largest gap picker routing strategy

di�ers from the computation of Henn et al. (2010) and Henn and Wäscher (2012).

For instances with a picking device capacity of 30 items, we �nd optimal solutions

that are superior to the optimal solutions found by Henn et al. (2010) and Henn

and Wäscher (2012), which proves a di�erent interpretation of the largest gap picker

routing strategy.

Therefore, in Table 3.7, the performance of ALNS×TS is compared to the results

of C&W(ii) on the benchmark sets UDD/largest gap and CBD/largest gap. The

BKS refers to the optimal solution obtained with Gurobi for the instances with a

picking device capacity of 30 items, for all other instances to the best result obtained

with ALNS×TS.

Again, it can be observed that ALNS×TS provides near-optimal solutions for

the classes with small capacity of the picking device. Compared to C&W(ii),
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# orders C BKS IGA GGA ALNS×TS

∆f (%) t (s) ∆f (%) t (s) ∆f (%) t (s)

20 30 4192* 0.3 3 (1) 0.1 7 (3) 0.0 0

20 45 2688 2.1 4 (2) 0.4 8 (3) 0.0 0

20 60 2155 1.4 5 (2) 0.6 9 (3) 0.0 0

20 75 1742 1.5 5 (2) 0.8 10 (4) 0.0 0

30 30 6188* 0.6 9 (3) 0.1 17 (6) 0.0 1

30 45 4080 1.8 15 (5) 1.0 21 (7) 0.0 1

30 60 3079 2.3 17 (6) 1.5 25 (9) 0.0 1

30 75 2530 2.9 17 (6) 2.1 27 (10) 0.0 1

40 30 7907* 0.5 23 (8) 0.2 35 (12) 0.0 2

40 45 5183 2.4 40 (14) 1.7 45 (16) 0.0 2

40 60 3986 3.2 49 (18) 2.6 54 (19) 0.0 2

40 75 3243 4.1 50 (18) 3.2 60 (22) 0.0 3

50 30 10098* 0.9 47 (17) 0.3 61 (22) 0.0 4

50 45 6462 2.3 87 (31) 1.8 86 (31) 0.0 4

50 60 4988 3.3 117 (42) 2.7 109 (39) 0.0 5

50 75 4077 4.3 109 (39) 3.5 117 (42) 0.0 6

60 30 11609* 1.0 95 (34) 0.6 100 (36) 0.1 5

60 45 7550 3.3 175 (63) 2.7 150 (54) 0.0 5

60 60 5819 4.6 230 (83) 3.7 187 (67) 0.0 7

60 75 4724 5.8 242 (87) 5.1 208 (75) 0.0 8

Average 2.4 67 (24) 1.7 67 (24) 0.0 3

Minimum 0.3 3 (1) 0.1 7 (3) 0.0 0

Maximum 5.8 242 (87) 5.1 208 (75) 0.1 8

Table 3.6: Performance of ALNS×TS on the benchmark set CBD/S-shape. In
the �rst two columns, we detail the groups of instances de�ned by the number of
customer orders (column #orders) and the carrying capacity of the picking device
(column C). In column BKS, we provide the BKS as the average of the best
objective function values obtained by one of the methods for each of the individual
instances in the group. The BKS is indicated by an asterisk if it refers to the optimal
solution obtained with Gurobi. Otherwise, the BKS refers to the best solution
obtained by one of the comparison methods. For ALNS×TS and all comparison
methods, we report the percentage gap between the best solution found by the
respective method and the BKS (column ∆f (%)), the average runtime in seconds
(column t (s)), and the corrected average runtime in seconds in brackets. For each
instance group, the smallest gap found by any of the methods is indicated in bold.
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ALNS×TS improves the total tour length by 5.1% (UDD/largest gap) and by

4.8% (CBD/largest gap) on average. On both benchmark sets, ALNS×TS pro-

vides stronger improvements for large capacities of the picking device. With respect

to runtime, the table shows that the largest gap routing requires more runtime than

the S-shape routing. This can be explained by the fact that for each picking aisle

the gaps between all picking locations have to be computed.

Performance in comparison to Öncan (2015) In the following, we compare

our ALNS×TS to the ILST proposed by Öncan (2015). Note that Öncan (2015)

calculate the length for entering a picking aisle to 0.5 LUs, and the distance between

the depot and the front cross aisle is included. Contrary to this, in Henn et al. (2010),

Henn and Wäscher (2012), Koch and Wäscher (2016), and in our dissertation, the

length is set to 1 LU, and the distance between the depot and the front cross aisle is

neglected. To make results comparable, we have adapted our calculation to match

the one of Öncan (2015).

Table 3.8 reports the performance of ALNS×TS in comparison to ILST on the

benchmark set UDD/S-shape. Here, ALNS×TS beats the solution quality of ILST

on 17 out of 20 instance classes and matches it on two instance classes. Only on

one instance class, ALNS×TS is slightly outperformed by ILST. The average im-

provement of ALNS×TS is 1.2%. At the same time, ALNS×TS is able to reduce

the runtime by approximately 80%. We note that for the instances with a larger

number of customer orders (n = 80, 100) and larger capacities of the picking de-

vice (c = 45, 60, 75), ALNS×TS provides clearly superior solution quality (with

improvements of up to 4.3% for the individual instance classes). This indicates a

better suitability of ALNS×TS to address larger problem instances.

On the benchmark set CBD/S-shape (see Table 3.9), ALNS×TS beats ILST on

10 out of 20 instance classes and matches it on 8 instance classes. While ILST

deviates by 1.3% from the BKS on average, ALNS×TS shows only a small gap

of 0.1% to the BKS and again, the results of ALNS×TS for the larger instances

are signi�cantly superior (improvements of up to 5.3% for the individual instance

classes). ALNS×TS is again able to reduce runtimes by approximately 80%.
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# orders C BKS ILST ALNS×TS

∆f (%) t (s) ∆f (%) t (s)

20 30 5565* 0.0 2 (1) 0.0 0

20 45 3487 0.2 1 (1) 0.0 0

20 60 2739 0.2 2 (1) 0.0 0

20 75 2227 0.1 1 (1) 0.0 1

40 30 10294* 0.1 9 (6) 0.0 2

40 45 6744 0.9 10 (7) 0.0 2

40 60 5187 0.3 12 (8) 0.0 2

40 75 4200 0.1 10 (7) 0.0 2

60 30 15234* 0.0 17 (12) 0.0 5

60 45 9877 0.8 21 (15) 0.0 6

60 60 7584 1.2 18 (13) 0.0 7

60 75 6196 1.0 19 (14) 0.0 8

80 30 20316* 0.0 75 (54) 0.1 12

80 45 13139 2.1 74 (54) 0.0 13

80 60 10013 2.9 63 (46) 0.0 16

80 75 8114 3.2 51 (37) 0.0 17

100 30 25132* 0.2 332 (240) 0.1 22

100 45 16101 2.5 316 (229) 0.0 24

100 60 12277 3.6 323 (234) 0.0 28

100 75 10002 4.3 279 (202) 0.0 33

Average 1.2 82 (59) 0.0 10

Minimum 0.0 1 (1) 0.0 0

Maximum 4.3 332 (240) 0.1 33

Table 3.8: Performance of ALNS×TS in comparison to ILST on the benchmark set
UDD/S-shape. In the �rst two columns, we detail the groups of instances de�ned
by the number of customer orders (column #orders) and the carrying capacity of
the picking device (column C). In column BKS, we provide the BKS as the average
of the best objective function values obtained by one of the methods for each of the
individual instances in the group. The BKS is indicated by an asterisk if it refers to
the optimal solution obtained with Gurobi. Otherwise, the BKS refers to the best
solution obtained by one of the comparison methods. For ALNS×TS and ILST, we
report the percentage gap between the best solution found by the respective method
and the BKS (column ∆f (%)), the average runtime in seconds (column t (s)), and
the corrected average runtime in seconds in brackets. For each instance group, the
smallest gap found by any of the methods is indicated in bold.
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# orders C BKS ILST ALNS×TS

∆f (%) t (s) ∆f (%) t (s)

20 30 4134* 0.0 1 (1) 0.0 0

20 45 2650 0.0 1 (1) 0.0 0

20 60 2123 0.0 1 (1) 0.0 0

20 75 1717 0.0 1 (1) 0.0 0

40 30 7797* 0.0 9 (7) 0.0 2

40 45 5101 0.0 9 (6) 0.0 2

40 60 3908 0.0 8 (6) 0.4 2

40 75 3173 0.0 8 (6) 0.5 3

60 30 11448* 0.0 19 (13) 0.0 5

60 45 7465 0.6 17 (12) 0.0 6

60 60 5747 0.7 21 (15) 0.0 7

60 75 4667 1.2 19 (14) 0.0 8

80 30 15395* 0.1 52 (38) 0.1 12

80 45 9912 2.1 67 (49) 0.0 13

80 60 7544 3.6 58 (42) 0.0 14

80 75 6130 4.5 70 (51) 0.0 18

100 30 18851* 0.3 287 (208) 0.1 21

100 45 12106 2.8 279 (202) 0.0 23

100 60 9285 4.2 270 (195) 0.0 27

100 75 7557 5.3 295 (214) 0.0 28

Average 1.3 75 (54) 0.1 10

Minimum 0.0 1 (1) 0.0 0

Maximum 5.3 295 (214) 0.5 28

Table 3.9: Performance of ALNS×TS in comparison to ILST on the benchmark set
CBD/S-shape. In the �rst two columns, we detail the groups of instances de�ned by
the number of customer orders (column #orders) and the carrying capacity of the
picking device (column C). In column BKS, we provide the BKS as the average of
the best objective function values obtained by one of the methods for each of the
individual instances in the group. The BKS is indicated by an asterisk if it refers to
the optimal solution obtained with Gurobi. Otherwise, the BKS refers to the best
solution obtained by one of the comparison methods. For ALNS×TS and ILST, we
report the percentage gap between the best solution found by the respective method
and the BKS (column ∆f (%)), the average runtime in seconds (column t (s)), and
the corrected average runtime in seconds in brackets. For each instance group, the
smallest gap found by any of the methods is indicated in bold.
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3.4 Summary and conclusion

This chapter addresses the standard OBP to optimize the grouping of customer

orders to picking orders (batches) with the objective of reducing the total length of

order picking tours. To solve larger instances within short runtime, we propose a

metaheuristic hybrid based on ALNS and TS.

In numerical studies, we conduct an extensive comparison of ALNS×TS to all

previously published methods that test the performance of their method on the

standard OBP benchmark sets from the literature. ALNS×TS is able to beat any

previously proposed method for the standard OBP concerning the average solution

quality and runtime over all benchmark sets. For settings with a larger number

of customer orders and larger capacities of the picking device, ALNS×TS shows

the clearest advantages compared to the state-of-the-art methods with respect to

solution quality.

Furthermore, our approach is able to solve newly generated large instances with up

to 600 customer orders and six items per customer order with reasonable runtimes

and with good scaling behavior and robustness.
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Chapter 4

Picker routing and storage

assignment strategies for

precedence-constrained order picking

The contents of this chapter are included in similar form in the following publication:

I. �ulj, C. H. Glock, E. H. Grosse, and M. Schneider. Picker routing and storage

assignment strategies for precedence-constrained order picking. Computers & In-

dustrial Engineering, 123:338�347, 2018.

As described before, precedence constraints de�ne that certain items need to be

collected before other items. Although many real-world warehouses face such con-

straints in order picking, they are hardly considered in the warehousing literature.

This chapter is devoted to address a precedence-constrained PRP, which is inspired

by a practical case observed in a warehouse of a German manufacturer of household

products. In this warehouse, order pickers are not permitted to put heavy items on

top of light items during picking to prevent damage to the light items.

The remainder of this chapter is organized as follows. In Section 4.1, we give a

detailed problem description. To address the problem, we propose a picker routing

strategy (E-PRSW) that incorporates the precedence constraint by picking heavy

items before light items in an optimal fashion. Section 4.2 describes our exact algo-

rithm used to evaluate E-PRSW. In Section 4.3, we present a practical case study

that is based on a dataset provided to us by the case company to test E-PRSW.

In the case study, (i) we compare the performance of E-PRSW to those of other

picker routing strategies (H-PRSW/O and E-PRSW/O), (ii) we introduce di�erent
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item storage assignment strategies that consider the weight of the items when as-

signing items to storage locations, and (iii) we examine the impact of these item

storage assignment strategies on the three picker routing strategies. Subsequently,

Section 4.4 investigates the in�uence of di�erent problem parameters on the perfor-

mance of E-PRSW, namely the warehouse size, the share of heavy and light items

per customer order, and the number of requested items per customer order. More-

over, we derive insights for warehouse managers dealing with the given precedence

constraint in order picking. The chapter concludes with a summary in Section 4.5.

4.1 Problem description

We consider a single-block parallel-aisle warehouse with a central depot located

below the entry of the leftmost picking aisle in the front cross aisle (as described

in Section 2.3.1). At the depot, an order picker receives a pick list and a picking

device. A pick list speci�es a single customer order and contains a non-empty set

of order lines, where each order line indicates a particular item and its weight, the

requested quantity of this item as well as its storage location in the picking area.

To prevent damage to light items, an order picker is not allowed to put heavy

items on top of light items. Thus, heavy items can only be placed above other

heavy items, while light items can be placed above heavy items or other light items.

We assume that all items of a customer order are collected on a single order picking

tour, which starts from the depot, proceeds along the storage locations de�ned by

the respective customer order, and ends at the depot.

To route an order picker through the warehouse while respecting the given prece-

dence constraint, we consider the following three picker routing strategies:

• H-PRSW/O: In the case company under study, an order picker's tour through

the warehouse (and thus the retrieval sequence of the requested items from their

storage locations) is determined by applying a simple S-shape routing strategy

that does not consider the precedence constraint. As a result, an order picker

collects the items of a customer order in a plastic box without stacking them

on top of each other. Upon return to the depot, the collected items are sorted

and packed into a cardboard box that is used for shipping the items to the

respective customer such that the precedence constraint is respected.

• E-PRSW/O: According to E-PRSW/O, the items of a customer order are collected
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and placed (next to each other) into a plastic box without considering the

precedence constraint. Contrary to H-PRSW/O, order picking is carried out in

an optimal fashion with respect to the routing of an order picker. At the end

of the order picking process, the collected items are sorted and packed in a

cardboard box respecting the precedence constraint.

• E-PRSW: To avoid the sorting of the collected items after the retrieval process,

we propose a new picker routing strategy (E-PRSW) that incorporates the pre-

cedence constraint and collects heavy items before light items. Obviously, the

collected items can be directly placed in the cardboard box associated with the

respective customer. We assume that an order picker follows a one-dimensional

stacking procedure when placing the items in the cardboard box.

These picker routing strategies are evaluated with respect to the objective of min-

imizing the travel distance of an order picker for collecting the items of a customer

order and the sorting e�ort, which arises for H-PRSW/O and E-PRSW/O.

Of course, it would be possible to consider a hybrid picker routing strategy that

combines E-PRSW/O and E-PRSW, i.e., a picker routing strategy that determines the

optimal retrieval sequence when sorting is carried out while picking. However, such

a solution approach is likely to be less useful for practical applications due to the

complexity of the resulting order picking process and the high potential for errors:

The order picker would have to implement a prede�ned sorting scheme (due to the

one-dimensional stacking system) in addition to traveling on a given route through

the warehouse. Furthermore, Elbert et al. (2017) �nd that order pickers deviate from

complex routes (e.g., due to confusion) and thus recommend more straightforward

and non-confusing picker routing strategies. In light of these limitations, we refrain

from studying such a hybrid picker routing strategy.

4.2 Solution algorithm

In this section, we present an exact algorithm to evaluate E-PRSW. To this end, the

algorithm determines the optimal tour of minimum travel length of an order picker

for collecting heavy items before light items of a given customer order on a single

order picking tour. Our solution approach is based on the algorithm of Lö�er et al.

(2020), which is an extension of the algorithm introduced by Ratli� and Rosenthal

(1983). Because we do not modify the algorithm of Lö�er et al. (2020), we do not
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give a description of their algorithm and instead refer the reader to the original

work.

Our algorithm can be described as follows: We de�ne two types of subtours,

namely heavy subtours and light subtours. A heavy subtour theavyi de�nes an optimal

route through the warehouse for collecting all heavy items i= 1, ..., H of a customer

order, starting from the depot and ending at a predetermined heavy item storage

location i. A light subtour tlighti de�nes an optimal route through the warehouse

for collecting all light items j= 1, ..., L of a customer order, starting from the end

location i of heavy subtour theavyi and ending at the depot.

Note that each location that contains a heavy item to be picked may be the end

location of a heavy subtour and the start location of a light subtour that leads to the

minimum tour length for collecting heavy and light items in sequence. To illustrate

this, Figure 4.1 depicts the resulting order picking tours for di�erent end locations

of a heavy subtour and start locations of a light subtour, respectively. We assume

that a customer order consists of two heavy items (h1 and h2) and a light item

(l1). There are two possible end (start) locations for the heavy (light) subtour. In

Figure 4.1(a), heavy item location h1 is the end location of heavy subtour theavyh1
and

the start location of light subtour tlighth1
. In Figure 4.1(b), heavy item location h2 is

the end location of heavy subtour theavyh2
and the start location of light subtour tlighth2

.

The minimum total tour length is realized in Figure 4.1(a) by retrieval sequence

h2, h1, l1.

Because the algorithm of Lö�er et al. (2020) allows arbitrary start and end lo-

cations of an order picking tour, we use their algorithm to determine the heavy

and light subtours. Then, the optimal sequence for retrieving the required items

G=H +L from their storage locations is determined by �nding a combination of a

heavy subtour theavyi and a light subtour tlighti that leads to a minimum total tour

length f(t∗). Note that the optimality of the picking sequence is guaranteed by

evaluating all possible combinations of heavy and light subtours as follows:

f(t∗) = min
i

{
f(theavyi ) + f(tlighti )

}
(4.1)

f(theavyi ) denotes the travel distance for collecting all heavy items of a customer

order on heavy subtour theavyi , and f(tlighti ) for collecting all light items of a customer

order on light subtour tlighti .

For a single-block parallel-aisle warehouse, our precedence-constrained PRP can
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Heavy item h1

Heavy item h2

Light item l1

(a) Order picking tour for
the case in which h1 is the
end location of the heavy
subtour (solid line) and the
start location of the light
subtour (dashed line).

Heavy item h1

Heavy item h2

Light item l1

(b) Order picking tour for
the case in which h2 is the
end location of the heavy
subtour (solid line) and the
start location of the light
subtour (dashed line).

Figure 4.1: Order picking tours for di�erent end locations of a heavy subtour and
start locations of a light subtour, respectively.

be solved in polynomial time. The algorithm calls the method of Lö�er et al. (2020)

for all H ·L possible combinations of linking a heavy subtour with a light subtour.

Thus, our algorithm has the following runtime complexity:

O((G3 +P ·G2) ·H ·L)≈O((G3 +P ·G2) ·G2)≈O(G5),

where P denotes the number of picking aisles.

4.3 Practical case study

This section is devoted to assess the performance of the three picker routing strate-

gies within a practical case study. Section 4.3.1 introduces the practical case that

motivated the study at hand. Section 4.3.2 evaluates the picker routing strategies,

proposes di�erent weight-based storage assignment strategies (W-SASs), and inves-

tigates their in�uence on the performance of the strategies.
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4.3.1 Case description

The newly proposed picker routing strategy (E-PRSW) was applied to a scenario

motivated by a practical case to investigate the in�uence of di�erent item weight

classes and di�erent storage assignment strategies on the routing of order pickers

through a warehouse.

The case company considered here produces household products (e.g., �uid bath

additives and natural cosmetics) and operates a distribution warehouse that stores

a large variety of items. In the following, we describe the warehouse layout, the

physical dimensions of the warehouse, the item weight classes, the generation of

pick lists, and the order picking process.

• Warehouse layout : For the case study, a simpli�ed model of the real case ware-

house was built that consists of a rectangular single-block picking area composed

of 10 picking aisles with 100 storage locations per picking aisle (50 storage lo-

cations on each side), a cross aisle at the front end of each picking aisle, a cross

aisle at the rear end of each picking aisle, and a central depot located below

the entry of the leftmost picking aisle in the front cross aisle. The case com-

pany does not use a speci�c dedicated storage assignment strategy but instead

assigns items randomly to the storage locations in the warehouse. Each item is

available from exactly one storage location.

• Physical dimensions of the warehouse: The distance between the depot and the

�rst storage location of the �rst (i.e., leftmost) picking aisle amounts to 1 LU.

A storage location has a length of 1 LU. Picking aisles are narrow enough such

that an order picker positioned in the middle of a picking aisle can retrieve items

from both sides of the picking aisle without performing additional movements.

The distance between two picking aisles is 5 LUs. The total distance an order

picker has to cover to entirely traverse a picking aisle is 50 LUs.

• Item weight classes : Items stored in the warehouse range from very small glass

phials weighing 50 grams up to big wreaths of plastic vessels weighing up to 10

kilograms. Because the items signi�cantly di�er in size, weight, and physical

features, it is necessary to pack light items on top of heavy items to avoid

damage during shipping. An item is categorized as �light� if its weight does

not exceed 0.75 kilograms, otherwise as �heavy�. Light and heavy items each

account for about 50% of the total number of items in the warehouse.
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• Generation of pick lists : Based on a dataset provided to us by the case company,

a case study instance was generated that consists of 2089 customer orders with

40365 items requested in total, of which 20184 are heavy items and 20181 are

light items. A customer requests approximately 19 items on average. Each

customer order is given by a single pick list containing a non-empty set of

order lines, where each order line speci�es a particular item and its weight, the

requested quantity of this item as well as its storage location in the warehouse.

Order picking in the warehouse is completely manual, and technical equipment

for supporting the order picking process, such as pick-by-light or pick-by-vision, is

not available. The order picking process in the case company can be described as

follows: At the depot, an order picker receives a paper-based pick list and a standard

hand trolley for transporting the requested items through the warehouse. The hand

trolley's capacity is su�cient to carry all items contained in a single customer order

on a single order picking tour. The S-shape strategy is applied to determine the

order picker's tour through the warehouse and thus the sequence for collecting the

items of a customer order. The order picker starts from the depot and walks to the

storage location of the �rst item speci�ed by the pick list to retrieve the item in the

requested quantity. After having placed the items on the hand trolley (recall that

items are placed next to each other), the order picker either proceeds to the next

picking location if the pick list contains further items to be collected, or she returns

to the depot if there are no further items to be collected. Upon arrival at the depot,

the items are sorted and packed in a cardboard box required for shipping to the

respective customer such that the precedence constraint is respected. Afterwards,

the order picker receives a new pick list and a hand trolley if there are further

customer orders to be processed, and the described procedure is repeated.

Note that the sorting and packing of items at the end of the order picking process

is very time-consuming in the considered warehouse. During on-site visits, the ware-

house manager informed us that the company has tested a sort-while-pick strategy

in the past according to which the order pickers already sort items during picking.

However, due to the frequent (re-)handling of items, this process proved to be too

error-prone in the warehouse at hand.
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4.3.2 Results of the case study

The aim of the case study is to compare the current order picking performance in

the case company (which induces a high sorting e�ort) to the performance obtained

using the proposed picker routing strategy that integrates the precedence constraint

and enables the order picker to pack items directly after retrieving them without

additional sorting e�ort.

For a fair comparison, sorting e�ort has to be considered by means of penalties

when comparing the picker routing strategies. Recall that according to H-PRSW/O

and E-PRSW/O, sorting takes place at the end of the order picking process, i.e., all

items need to be sorted into cardboard boxes used for shipping the items to the

respective customers.

We de�ne di�erent sorting penalty scenarios based on experimental tests that were

conducted in the case company. Here, we observed that resorting of items ranges

approximately between 3 seconds and 4 seconds per item. This resorting time also

includes the time for searching an item in a plastic box and the time for identifying

an item as �light� or �heavy� in order to determine the stacking sequence.

Assuming that an order picker's travel velocity is constant, the travel time is

equivalent to the travel distance of all order picking tours (Jarvis and McDowell

1991). Therefore, the resorting time can be added as a sorting penalty measured in

LUs to the objective of minimizing the travel distance of an order picker for collecting

the items of a customer order. We assume the travel velocity of an order picker to

be 1.45 meters per second and de�ne the following scenarios for the sorting e�ort

per item to be resorted: 3 LUs (approximately 1 second), 6 LUs (approximately 2

seconds), 9 LUs (approximately 3 seconds), and 12 LUs (approximately 4 seconds).

Comparison of the picker routing strategies The performance of the picker

routing strategies is assessed on the dataset provided to us by the case company as

described above. As performance measure for comparing the picker routing strate-

gies, we use the average tour length for collecting the items of all customer orders

including the sorting penalty. In Table 4.1, we compare the performance of the

picker routing strategies assuming random storage. For all comparison strategies,

we report the percentage gap between the best solution found by the respective

picker routing strategy and the BKS (column ∆f (%)) for di�erent sorting e�orts

(column SE (LUs)). The BKS corresponds to the average of the best objective func-
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tion values obtained for each of the single customer orders by one of the tested picker

routing strategies. We compute the percentage gap as ∆f = 100 · (fk −BKS )/BKS ,

where fk denotes the average of the objective function values over the individual in-

stances for picker routing strategy k∈K. The smallest average gap found by any of

the strategies is indicated in bold. The BKS for each individual instance is available

for download at http://www.dpo.rwth-aachen.de/global/show_document.asp?id=

aaaaaaaaabajivj. Since the runtime of the proposed algorithm is below one second

on all tested instances, we do not explicitly report it.

H-PRSW/O E-PRSW/O E-PRSW

SE (LUs) ∆f (%) ∆f (%) ∆f (%)

0 34.2 0.0 18.8

3 31.1 0.0 8.0

6 29.8 1.0 0.0

9 38.3 9.5 0.0

12 46.7 17.9 0.0

Table 4.1: Performance of the picker routing strategies assuming random storage.
For all comparison strategies, we report the percentage gap between the best solution
found by the respective picker routing strategy and the BKS (column ∆f (%)) for
di�erent sorting e�ort scenarios (column SE (LUs)). The BKS corresponds to the
average of the best objective function values obtained for each of the single customer
orders by one of the tested picker routing strategies. For each sorting e�ort scenario,
the smallest gap found by any of the picker routing strategies is indicated in bold.

The table shows that E-PRSW/O and E-PRSW outperform H-PRSW/O for all sort-

ing e�ort scenarios with respect to the average total tour length. H-PRSW/O deviates

by 29.8% to 46.7% from the BKS for di�erent sorting e�ort scenarios. Even if no

sorting e�ort is considered (SE= 0), E-PRSW shows a signi�cantly smaller devia-

tion from the BKS compared to H-PRSW/O. If the sorting e�ort is 6 LUs or higher,

E-PRSW outperforms E-PRSW/O.

E�ect of di�erent weight-based storage assignment strategies Besides the

routing of order pickers, the allocation of items to storage locations in the warehouse

in�uences the resulting tour length of order pickers through the warehouse when

collecting the requested items of a customer order.

Obviously, separating heavy items and light items in the warehouse and allocating
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heavy items close to the depot is in favour of E-PRSW because heavy items are col-

lected before light items. Therefore, di�erent W-SASs are proposed in the following,

and their performance in combination with the presented picker routing strategies

is evaluated.

Figure 4.2 depicts four di�erent W-SASs that can be described as follows: W-

SASA assigns heavy items to the �rst half of the warehouse, and light items are

stored in the second half of the warehouse. In W-SASB, heavy and light items

are alternately assigned to picking aisles starting with heavy items in the leftmost

picking aisle. In W-SASC, heavy items are stored at the respective entrances of the

picking aisles, whereas light items are stored within picking aisles. W-SASD stores

heavy items below the midpoint of the picking aisle, and light items are stored above.

Table 4.2 shows the performance of H-PRSW/O, E-PRSW/O, and E-PRSW for

di�erent W-SASs and sorting e�ort scenarios. Figure 4.3 depicts the average tour

lengths of the investigated picker routing strategies for di�erent sorting e�orts and

di�erent W-SASs.

Comparison of the picker routing strategies without sorting e�ort If sort-

ing e�ort is neglected, E-PRSW/O and E-PRSW clearly outperform H-PRSW/O in the

case company on all tested instances with respect to the average total tour length.

The average percentage gap to the BKS of H-PRSW/O is approximately 35%. The

comparison of E-PRSW/O and E-PRSW shows that E-PRSW deviates between 3.4%

and 20.9% from the optimal solutions that are obtained with E-PRSW/O.

Obviously, E-PRSW/O is the best performing picker routing strategy. This can

be explained by the fact that the sorting of the items takes place after the order

picking process and is not considered in the objective function value for SE= 0.

Interestingly, for W-SASA, E-PRSW is able to �nd a near-optimal solution with

a deviation of only 3.4% from E-PRSW/O although for E-PRSW/O sorting is not

considered yet.

Comparison of the picker routing strategies with increasing sorting e�ort

Again, E-PRSW/O and E-PRSW beat the solution quality of H-PRSW/O on all in-

stances. When comparing the performance of E-PRSW/O and E-PRSW, we observe

that the superiority of E-PRSW in comparison to E-PRSW/O increases with the sort-

ing e�ort. For SE= 3 and W-SASA, W-SASB, and W-SASD, E-PRSW outperforms

E-PRSW/O. Recall that a sorting e�ort of 3 LUs corresponds to 1 second and in-
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A heavy item A light item

(a) W-SASA: Heavy items are stored in
the �rst half of the warehouse, light items
are assigned to the second half of the
warehouse.

A heavy item A light item

(b) W-SASB: Heavy and light items are
alternately stored in the picking aisles,
starting with heavy items in the leftmost
picking aisle.

A heavy item A light item

(c) W-SASC: Heavy items are stored at
the entrances of the picking aisles, light
items are stored within the picking aisles.

A heavy item A light item

(d) W-SASD: Heavy items are stored be-
low the midpoint of the picking aisle, light
items are stored above.

Figure 4.2: Weight-based storage assignment strategies.
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H-PRSW/O E-PRSW/O E-PRSW

W-SAS SE (LUs) ∆f (%) ∆f (%) ∆f (%)

W-SASA 0 34.6 0.0 3.4

W-SASA 3 39.9 6.4 0.0

W-SASA 6 49.6 16.1 0.0

W-SASA 9 59.3 25.8 0.0

W-SASA 12 69.0 35.5 0.0

W-SASB 0 34.7 0.0 9.6

W-SASB 3 32.0 0.4 0.0

W-SASB 6 41.1 9.5 0.0

W-SASB 9 50.3 18.6 0.0

W-SASB 12 59.4 27.8 0.0

W-SASC 0 34.4 0.0 20.9

W-SASC 3 31.3 0.0 9.8

W-SASC 6 28.7 0.0 0.7

W-SASC 9 36.1 7.6 0.0

W-SASC 12 44.4 15.9 0.0

W-SASD 0 34.3 0.0 5.7

W-SASD 3 36.4 4.0 0.0

W-SASD 6 45.9 13.5 0.0

W-SASD 9 55.4 23.0 0.0

W-SASD 12 64.8 32.4 0.0

Table 4.2: Performance of the picker routing strategies for di�erent W-SASs. For all
comparison strategies, we report the percentage gap between the best solution found
by the respective picker routing strategy and the BKS (column ∆f (%)) for di�erent
sorting e�ort scenarios (column SE (LUs)). The BKS corresponds to the average of
the best objective function values obtained for each of the single customer orders
by one of the tested picker routing strategies. For each combination of W-SAS and
sorting e�ort scenario, the smallest gap found by any of the picker routing strategies
is indicated in bold.
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(a) No sorting e�ort.
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(b) Sorting e�ort of 3 LUs/requested item.
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(c) Sorting e�ort of 6 LUs/requested item.
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(d) Sorting e�ort of 9 LUs/requested item.
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(e) Sorting e�ort of 12 LUs/requested item.

Figure 4.3: Performance of H-PRSW/O, E-PRSW/O, and E-PRSW for di�erent stor-
age assignments and sorting e�ort scenarios.
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cludes the time for searching an item in a plastic box and the time for identifying an

item as �light� or �heavy�. For the practically more realistic sorting e�ort scenarios

(SE= 9, 12), E-PRSW/O deviates between 7.6% and 35.5% from the BKS that is

obtained by E-PRSW. This indicates a convincing performance of our E-PRSW.

E�ect of di�erent weight-based storage assignment strategies The results

that are reported in Table 4.1 and Table 4.2 show that the storage assignment

strategies signi�cantly a�ect the performance of E-PRSW. In particular, a strong

reduction of the average tour length can be achieved by assigning heavy items to

the �rst half of the warehouse and light items to the second half of the warehouse

(W-SASA). Comparing the results that assume a random storage to those obtained

for W-SASA and SE= 0, the deviation of E-PRSW from the BKS is signi�cantly

smaller (18.8% versus 3.4%). W-SASC seems not to be appropriate for the given

setting because E-PRSW deviates by 20.9% from the BKS. E-PRSW bene�ts from

a storage assignment strategy according to which heavy items are clearly separated

from light items in the warehouse.

To summarize, both the picker routing strategy and the storage assignment strat-

egy have a signi�cant in�uence on the resulting tour length when addressing the

routing of order pickers with the studied precedence constraint. As can be seen

from the numerical example, the combination of E-PRSW and W-SASA is recom-

mendable for warehouse managers dealing with similar problem settings. Note that

it is quite likely that the superiority of E-PRSW would increase with further item

categories because of the increasing complexity of the sorting process.

4.4 In�uence of di�erent problem parameters

In this section, we present numerical studies to analyze the in�uence of di�erent

problem parameters. Because the dataset provided to us by the case company is

rather small, we have generated new problem instances to evaluate the in�uence of

di�erent problem parameters on the performance of the picker routing strategies.

The newly designed test instances are introduced in Section 4.4.1. Subsequently, we

describe the various problem parameters and then examine the in�uence of these

problem parameters on the performance of the picker routing strategies (see Sec-

tion 4.4.2).
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4.4.1 Test instances

Based on the warehouse layout presented in the practical case study, we add more

picking aisles to the warehouse to investigate di�erent warehouse sizes, namely 10,

25, and 50 picking aisles. We assign items to storage locations according to W-SASA
because of its superior performance in the case study.

The instances assume 40 customer orders and a uniformly distributed number of

items per customer order, which is randomly drawn from all of the three intervals

[5, 35], [36, 70], and [71, 100]. Customer orders vary with respect to the share of

heavy and light items: we consider three di�erent mixes with approximately (i)

75% heavy items/25% light items, (ii) 50% heavy items/50% light items, and (iii)

25% heavy items/75% light items per customer order. The carrying capacity of the

picking device is su�cient to transport the items of a single customer order on a

single order picking tour.

The combination of the described parameter values results in 27 instance classes

that are identi�ed by the size of the warehouse, the mix of heavy and light items

per customer order, and the number of items per customer order. For each instance

class, we generate 20 instances. This leads to 27 · 20= 540 instances in total.

4.4.2 Results of the numerical study

In Tables 4.3, 4.4, and 4.5, we aggregate the results of the numerical study. Ta-

ble 4.3 reports average results for groups of instances de�ned by the ratio of mixed

items (column Ratio of mixed items (%)) and the number of items (column # items)

assuming a warehouse with 10 picking aisles, Table 4.4 for 25 picking aisles, and

Table 4.5 for 50 picking aisles. Again, we use the average tour length that includes

the sorting penalty as a performance measure for comparing the picker routing

strategies. For all comparison strategies, we report the percentage gap between the

best solution found by the respective picker routing strategy and the BKS (column

∆f (%)) for di�erent sorting e�ort scenarios (column SE (LUs)). The BKS corre-

sponds to the average of the best objective function values obtained for each of the

individual instances by one of the tested picker routing strategies. The smallest gap

found by any of the picker routing strategies is indicated in bold.

Overall comparison of the picker routing strategies The results reported

in Tables 4.3, 4.4, and 4.5 show that for all problem parameters, E-PRSW/O and
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H-PRSW/O E-PRSW/O E-PRSW

Ratio of mixed items (%) # items SE (LUs) ∆f (%) ∆f (%) ∆f (%)

75/25 5-35 0 31.1 0.0 3.9

75/25 5-35 3 36.7 6.7 0.0

75/25 5-35 6 47.2 17.2 0.0

75/25 5-35 9 57.6 27.7 0.0

75/25 5-35 12 68.1 38.2 0.0

75/25 36-70 0 19.9 0.0 1.6

75/25 36-70 3 36.1 16.5 0.0

75/25 36-70 6 54.2 34.6 0.0

75/25 36-70 9 72.2 52.6 0.0

75/25 36-70 12 90.3 70.7 0.0

75/25 71-100 0 13.0 0.0 0.6

75/25 71-100 3 37.5 24.6 0.0

75/25 71-100 6 62.7 49.8 0.0

75/25 71-100 9 87.9 75.0 0.0

75/25 71-100 12 113.1 100.2 0.0

50/50 5-35 0 35.4 0.0 3.5

50/50 5-35 3 40.6 6.3 0.0

50/50 5-35 6 50.3 16.0 0.0

50/50 5-35 9 60.0 25.7 0.0

50/50 5-35 12 69.6 35.4 0.0

50/50 36-70 0 20.4 0.0 2.1

50/50 36-70 3 34.4 14.5 0.0

50/50 36-70 6 50.9 31.0 0.0

50/50 36-70 9 67.4 47.5 0.0

50/50 36-70 12 83.6 64.0 0.0

50/50 71-100 0 9.2 0.0 1.1

50/50 71-100 3 31.3 22.2 0.0

50/50 71-100 6 54.7 45.6 0.0

50/50 71-100 9 78.1 69.0 0.0

50/50 71-100 12 101.4 92.4 0.0

25/75 5-35 0 32.5 0.0 2.6

25/75 5-35 3 39.2 7.5 0.0

25/75 5-35 6 49.3 17.6 0.0

25/75 5-35 9 59.3 27.6 0.0

25/75 5-35 12 69.3 37.6 0.0

25/75 36-70 0 21.3 0.0 2.5

25/75 36-70 3 35.8 15.0 0.0

25/75 36-70 6 53.2 32.4 0.0

25/75 36-70 9 70.7 49.9 0.0

25/75 36-70 12 88.1 67.3 0.0

25/75 71-100 0 13.4 0.0 2.0

25/75 71-100 3 35.9 22.7 0.0

25/75 71-100 6 60.6 47.5 0.0

25/75 71-100 9 85.4 72.2 0.0

25/75 71-100 12 110.1 97.0 0.0

Table 4.3: Performance of the strategies for di�erent problem parameters in a ware-
house with 10 picking aisles. The groups of instances are de�ned by the ratio of
mixed items (column Ratio of mixed items (%)) and the number of items (column
# items). For all strategies, we report the percentage gap between the best solution
found by the respective strategy and the BKS (column ∆f (%)) for di�erent sorting
e�orts (column SE (LUs)). The BKS corresponds to the average of the best objec-
tive function values obtained for each of the individual instances by one of the tested
picker routing strategies. For each instance group and sorting e�ort, the smallest
gap found by any of the strategies is indicated in bold.
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H-PRSW/O E-PRSW/O E-PRSW

Ratio of mixed items (%) # items SE (LUs) ∆f (%) ∆f (%) ∆f (%)

75/25 5-35 0 33.2 0.0 5.5

75/25 5-35 3 32.4 1.0 0.0

75/25 5-35 6 38.7 7.3 0.0

75/25 5-35 9 45.0 13.5 0.0

75/25 5-35 12 51.2 19.8 0.0

75/25 36-70 0 34.0 0.0 3.9

75/25 36-70 3 39.2 6.6 0.0

75/25 36-70 6 49.6 16.9 0.0

75/25 36-70 9 60.0 27.3 0.0

75/25 36-70 12 70.3 37.7 0.0

75/25 71-100 0 28.2 0.0 2.8

75/25 71-100 3 38.2 10.8 0.0

75/25 71-100 6 51.7 24.3 0.0

75/25 71-100 9 65.1 37.7 0.0

75/25 71-100 12 78.6 51.2 0.0

50/50 5-35 0 35.2 0.0 4.3

50/50 5-35 3 35.6 1.9 0.0

50/50 5-35 6 41.6 7.9 0.0

50/50 5-35 9 47.6 13.9 0.0

50/50 5-35 12 53.7 19.9 0.0

50/50 36-70 0 38.3 0.0 3.9

50/50 36-70 3 43.1 6.2 0.0

50/50 36-70 6 53.1 16.2 0.0

50/50 36-70 9 63.1 26.3 0.0

50/50 36-70 12 73.2 36.3 0.0

50/50 71-100 0 30.4 0.0 3.0

50/50 71-100 3 39.4 9.9 0.0

50/50 71-100 6 52.2 22.6 0.0

50/50 71-100 9 64.9 35.3 0.0

50/50 71-100 12 77.7 48.1 0.0

25/75 5-35 0 32.8 0.0 2.4

25/75 5-35 3 35.8 3.8 0.0

25/75 5-35 6 42.0 10.0 0.0

25/75 5-35 9 48.2 16.2 0.0

25/75 5-35 12 54.4 22.4 0.0

25/75 36-70 0 34.2 0.0 3.3

25/75 36-70 3 40.2 7.1 0.0

25/75 36-70 6 50.4 17.3 0.0

25/75 36-70 9 60.6 27.5 0.0

25/75 36-70 12 70.9 37.7 0.0

25/75 71-100 0 28.0 0.0 3.1

25/75 71-100 3 37.5 10.3 0.0

25/75 71-100 6 50.8 23.7 0.0

25/75 71-100 9 64.2 37.0 0.0

25/75 71-100 12 77.5 50.4 0.0

Table 4.4: Performance of the strategies for di�erent problem parameters in a ware-
house with 25 picking aisles. The groups of instances are de�ned by the ratio of
mixed items (column Ratio of mixed items (%)) and the number of items (column
# items). For all strategies, we report the percentage gap between the best solution
found by the respective strategy and the BKS (column ∆f (%)) for di�erent sorting
e�orts (column SE (LUs)). The BKS corresponds to the average of the best objec-
tive function values obtained for each of the individual instances by one of the tested
picker routing strategies. For each instance group and sorting e�ort, the smallest
gap found by any of the strategies is indicated in bold.
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H-PRSW/O E-PRSW/O E-PRSW

Ratio of mixed items (%) # items SE (LUs) ∆f (%) ∆f (%) ∆f (%)

75/25 5-35 0 27.4 0.0 5.4

75/25 5-35 3 26.3 0.0 1.0

75/25 5-35 6 29.2 3.1 0.0

75/25 5-35 9 33.3 7.3 0.0

75/25 5-35 12 37.5 11.4 0.0

75/25 36-70 0 37.2 0.0 5.6

75/25 36-70 3 37.0 1.8 0.0

75/25 36-70 6 44.1 8.8 0.0

75/25 36-70 9 51.2 15.9 0.0

75/25 36-70 12 58.3 23.0 0.0

75/25 71-100 0 36.5 0.0 4.7

75/25 71-100 3 39.6 4.7 0.0

75/25 71-100 6 48.8 13.9 0.0

75/25 71-100 9 58.0 23.1 0.0

75/25 71-100 12 67.2 32.3 0.0

50/50 5-35 0 27.4 0.0 3.9

50/50 5-35 3 26.7 0.3 0.0

50/50 5-35 6 30.7 4.3 0.0

50/50 5-35 9 34.7 8.4 0.0

50/50 5-35 12 38.8 12.4 0.0

50/50 36-70 0 40.1 0.0 4.7

50/50 36-70 3 40.8 2.5 0.0

50/50 36-70 6 47.8 9.5 0.0

50/50 36-70 9 54.8 16.5 0.0

50/50 36-70 12 61.8 23.5 0.0

50/50 71-100 0 40.3 0.0 4.4

50/50 71-100 3 43.3 4.7 0.0

50/50 71-100 6 52.2 13.6 0.0

50/50 71-100 9 61.1 22.5 0.0

50/50 71-100 12 70.1 31.5 0.0

25/75 5-35 0 25.3 0.0 1.9

25/75 5-35 3 26.9 2.1 0.0

25/75 5-35 6 30.9 6.0 0.0

25/75 5-35 9 34.8 10.0 0.0

25/75 5-35 12 38.8 14.0 0.0

25/75 36-70 0 37.2 0.0 3.2

25/75 36-70 3 40.2 4.2 0.0

25/75 36-70 6 47.5 11.4 0.0

25/75 36-70 9 54.7 18.6 0.0

25/75 36-70 12 61.9 25.9 0.0

25/75 71-100 0 36.9 0.0 3.4

25/75 71-100 3 41.6 6.0 0.0

25/75 71-100 6 50.8 15.2 0.0

25/75 71-100 9 60.1 24.4 0.0

25/75 71-100 12 69.3 33.6 0.0

Table 4.5: Performance of the strategies for di�erent problem parameters in a ware-
house with 50 picking aisles. The groups of instances are de�ned by the ratio of
mixed items (column Ratio of mixed items (%)) and the number of items (column
# items). For all strategies, we report the percentage gap between the best solution
found by the respective strategy and the BKS (column ∆f (%)) for di�erent sorting
e�orts (column SE (LUs)). The BKS corresponds to the average of the best objec-
tive function values obtained for each of the individual instances by one of the tested
picker routing strategies. For each instance group and sorting e�ort, the smallest
gap found by any of the strategies is indicated in bold.
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E-PRSW clearly outperform H-PRSW/O. If no sorting e�ort is assumed, H-PRSW/O

deviates between 9.2% and 40.3% from E-PRSW/O. For increasing sorting e�orts,

H-PRSW/O has gaps of up to 113.1% from the BKS that is obtained with E-PRSW.

When comparing the performance of E-PRSW/O and E-PRSW, we observe that

E-PRSW/O slightly outperforms E-PRSW with respect to the average tour length

if sorting e�ort is not considered. Similar to the results of the case study, E-PRSW
is able to �nd near-optimal solutions with a deviation of between 0.6% and 5.6%

from E-PRSW/O although for E-PRSW/O sorting is not considered yet. Interestingly,

already for a sorting e�ort of 3 LUs, E-PRSW/O has a deviation of up to 24.6% from

E-PRSW. When assuming a sorting e�ort of 12 LUs, this gap rises to 100.2%.

In the following, we examine how the various problem parameters a�ect the per-

formance of E-PRSW/O and E-PRSW.

E�ect of the warehouse size When comparing the performance of E-PRSW/O

and E-PRSW, we observe that E-PRSW/O performs slightly better with increasing

warehouse size. Nevertheless, E-PRSW shows a more robust performance with a

maximum gap to the BKS of 5.6%, whereas the gaps of E-PRSW/O �uctuate between

0.0% and 100.2%.

E�ect of di�erent ratios of mixed items With a higher percentage of light

items, the average tour length for the picker routing strategies increases. This is

due to the fact that light items are stored in the second half of the warehouse and

the order picker therefore has to cover longer travel distances to collect all items of

a customer order.

E�ect of the number of items per customer order The results reported show

that the number of items per customer order signi�cantly a�ects the performance of

all picker routing strategies. E-PRSW performs signi�cantly better if larger customer

orders are assumed. For example, E-PRSW shows a gap of only 0.6% to the BKS for

the problem setting in which 10 picking aisles, 75% heavy items, 25% light items,

[71-100] items per customer orders, and no sorting e�ort are considered.
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4.5 Summary and conclusion

This chapter is inspired by a practical case of a warehouse, in which the item weight

in�uences the sorting sequence of items into cardboard boxes used for shipping the

items to the respective customers. The warehouse stores household items, which can

be roughly distinguished into heavy (robust) and light (fragile) items. To prevent

damage to light items, order pickers collect items of customer orders in plastic boxes

without stacking heavy items on top of light items. The route of an order picker

through the warehouse for collecting the items of a customer order is determined

by a simple S-shape strategy. At the end of the order picking process, the collected

items have to sorted such that the precedence constraint is respected. To avoid the

sorting of the collected items after the retrieval process, we propose a picker routing

strategy that integrates the precedence constraint by collecting heavy items before

light items in an optimal fashion (E-PRSW).

In a case study, we compare E-PRSW to the picker routing strategy applied in

the case company (H-PRSW/O) and to an exact solution approach that neglects the

precedence constraint (E-PRSW/O). The results show that we improve the current

order picking process in the following aspects: Using E-PRSW, warehouse managers

are able to completely avoid the sorting of items at the end of the order picking

process. Compared to H-PRSW/O, E-PRSW signi�cantly reduces the average travel

tour length of an order picker for completing customer orders. With respect to

E-PRSW/O, we show that our approach outperforms this strategy if the sorting of

an item accounts for two seconds or more.

We also propose di�erent storage assignment strategies considering the weight of

items and �nd that storage assignment signi�cantly a�ects the performance of the

picker routing strategies. The strongest reduction of the average tour length can be

achieved by separating heavy and light items in the warehouse and allocating heavy

items to storage locations arranged close to the depot. Despite the complexity of the

order picking process when order picking is precedence-constrained, our approach is

easy to understand for order pickers because it follows a straightforward and non-

confusing routing scheme and thus reduces the potential for errors in order picking.

Because the dataset provided to us by the case company is rather small, we gen-

erate new problem instances to examine the impact of di�erent problem parameters

(warehouse size, share of heavy and light items per customer order, and number

of requested items per customer order) on the performance of the picker routing
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strategies. We �nd that E-PRSW provides near-optimal solutions (even if we com-

pare E-PRSW to E-PRSW/O that does not consider the precedence constraint) and

the most robust solution quality for problem instances with di�erent characteristics.

The intention of our picker routing strategy was to develop an approach that is

easy to understand and that can easily be implemented in practice. For handling

warehouse operations e�ciently, information systems such as warehouse manage-

ment systems (WMSs) are often used in real-world warehouses. The implementa-

tion of our algorithm within a WMS can be easily done. The WMS can deliver all

necessary order picking information directly to the order pickers' portable device,

such as a radio frequency handheld scanner, a smartphone, or a tablet. Moreover,

it is possible to extend the software to feature a graphical user interface visualizing

the warehouse layout, the picking locations associated with a customer order, and

the route of an order picker through the warehouse.
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Chapter 5

Order batching and batch sequencing

in an AGV-assisted picker-to-parts

system

The contents of this chapter are included in similar form in the following working pa-

per: I. �ulj, H. Salewski, D. Goeke, and M. Schneider. Order batching and batch se-

quencing in an AGV-assisted picker-to-parts system. Working paper, Deutsche Post

Chair �Optimization of Distribution Networks, RWTH Aachen University, 2020.

E�cient order ful�llment processes in warehouses are a key success factor in times

of increasing global retail sales volumes and (contractually agreed or promised) next

or even same-day deliveries. As described before, reducing the large fraction of

unproductive picker walking time of total order picking time is essential for increas-

ing the performance of a traditional picker-to-parts system. To streamline order

ful�llment processes, warehouse managers more and more frequently rely on AGV-

assisted order picking. By supporting human order pickers with AGVs, the pick

density per order picking tour can be increased and unproductive picker walking

time can be reduced. For these reasons, this chapter studies the AOPP, which is

inspired by a warehouse of a German automotive original equipment manufacturer.

The remainder of this chapter is structured as follows. In Section 5.1, we intro-

duce our AOPP and present a mixed integer program. To solve the problem, we

propose a heuristic that combines an ALNS with an adaption of the NEH heuristic

in Section 5.2. Section 5.3 is devoted to extensive computational experiments (i) to

investigate the e�ect of the SA-based acceptance criterion used by ALNS/NEH on
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the solution quality, (ii) to assess the performance of ALNS/NEH in comparison to

CPLEX, and (iii) to derive managerial insights with respect to AGV-assisted order

picking. Section 5.4 concludes this chapter with a summary.

5.1 Problem description

In this section, we describe the AOPP and present the mathematical model formu-

lation (AOPP-BE) in which all batches not exceeding the picking device capacity

are generated explicitly before solving a given test instance.

Our AOPP considers a rectangular single-block warehouse with parallel closed-end

picking aisles of equal length and width that are connected by one orthogonal cross

aisle at the front of the picking aisles (see Figure 5.1). Items are stored in storage

locations of equal size that are arranged on the left and right side of each picking

aisle. Each item is available from exactly one storage location, and each storage

location stores exactly one item type. There is a handover location in the cross aisle

below the entry of each picking aisle. Let V = {1, ..., n} denote the set of picking

aisles. Each handover location is identi�ed through the associated picking aisle i∈V .
Handover locations and picking aisles, respectively, are numbered in ascending order

from the leftmost handover location, represented by 1, to the rightmost handover

location, represented by n. The depot is located in the cross aisle below the leftmost

handover location. Two instances of the same physical depot are given by 0 and

n+ 1. To indicate that V contains the respective instance of the depot, V is sub-

scripted with 0 or n+ 1, i.e., V0 =V ∪{0} and Vn+1 =V ∪{n+ 1}.
In our problem, the items of a set of customer orders O have to be collected from

the picking area of the warehouse. A customer order o∈O is speci�ed by a non-

empty set of order lines, where each order line indicates a particular item and the

requested quantity of this item. Moreover, each customer order o∈O is associated

with a due date do until which the items contained in the customer order must be

collected. Customer orders can be grouped into batches, for which we make the

following assumptions:

• No splitting of customer orders : The items of a customer order cannot be

distributed among di�erent batches because splitting may result in unacceptable

sorting e�ort. Note that by de�ning the subsets into which customer orders can

be split (this may also be single items) as the new customer orders, our AOPP-
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cross aisle

closed-end picking aisles

Legend:

item storage location

handover location

central depot

Figure 5.1: Warehouse layout assumed for our AOPP.

BE model could still address the scenario in which splitting of customer orders

is allowed.

• Batch size: The number of customer orders that may be contained in a batch

is restricted by the carrying capacity of the picking device. The capacity is

expressed by the number of items which can be carried by the picking device.

This has been assumed in other publications as well (see, e.g., Bozer and Kile

2008, Scholz et al. 2017).

• Generation of batches : The set of all feasible batches B not exceeding the

picking device capacity is generated before solving a test instance. We use

binary coe�cients vbo to indicate whether customer order o∈O is included in

batch b∈B (vbo = 1) or not (vbo = 0). Because all feasible batches are explicitly

de�ned in the AOPP-BE model, we introduce binary decision variables yb to

specify whether batch b is selected from the set of all feasible batches B (yb = 1)

or not (yb = 0). A batch b∈B to which yb = 1 applies is referred to as selected

batch in the following.

With respect to the retrieval of the requested items from their storage locations,

we make the following decisions and modeling assumptions:

• Synchronized zone picking : We consider a synchronized zone picking system

(see Section 2.5.5) in which each zone is assigned a single order picker, who is
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responsible for retrieving those items of a batch which are stored in the picking

aisle of her zone. A zone comprises a single picking aisle and the associated

handover location. Obviously, if the items of a batch are stored in di�erent

picking aisles, di�erent order pickers are involved in picking these items.

• Equipment of order pickers : Each order picker is initially positioned at her

handover location and equipped with a picking cart with one or multiple bins as

well as a pick list. The bins are used for temporarily storing the retrieved items

of a batch, where each bin is dedicated to a single customer order contained

in the batch. To illustrate this, consider a batch which consists of customer

orders o= 1 and o= 2. The requested items of each of these customer orders

are stored in picking aisles i= 1 and i= 2. Both the picking cart of the order

picker assigned to picking aisle i= 1 and the one assigned to picking aisle i= 2

is equipped with one bin for the items of customer order o= 1 and another bin

for those of customer order o= 2.

The pick list of an order picker speci�es the selected batches to be processed

in her zone and their processing sequence. Moreover, for each of these batches,

the pick list indicates (i) the items to be retrieved, (ii) the requested quantities

of these items, (iii) the order picker's tour starting from her handover location,

proceeding along the storage locations de�ned by the respective batch, and

ending at her handover location, and (iv) the assignment of each of these items

to its corresponding bin on the picking cart. In the following, we detail the

modeling of the batch processing sequence and the routing of order pickers.

• Batch processing sequence by order pickers : The batch processing sequence is

described by precedence relationships for all pairs of batches b, d∈B. To model
the batch processing sequence, we introduce binary decision variables zbd, which

denote whether the order pickers process batch b∈B before batch d∈B (zbd = 1)

or not (zbd = 0).

• Routing of order pickers : The order picker is guided by the following routing

scheme when picking the batch items stored in her picking aisle: Starting from

the handover location, she enters the picking aisle and walks to the farthest

storage location in which a requested item is stored. Here, she retrieves the

requested number of items and places them in the associated bins. All other

picking locations in this picking aisle are successively visited on the way back to

the handover location. Given the above described setting of the order picking
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system with closed-end picking aisles and a single cross aisle, an order picker

is optimally routed (concerning the objective of minimizing travel time) in this

way.

To model the retrieval sequence, we introduce the sets V b, V b
0 , V

b
n+1, and V

b
0, n+1,

the continuous decision variables sbi, and the parameters pbi. V b denotes the

picking aisles from which the items of batch b∈B have to be retrieved (called

relevant picking aisles of batch b∈B). We subscript V b with 0 and/or n+ 1, i.e.,

V b
0 =V b ∪{0}, V b

n+1 =V b ∪{n+ 1}, and V b
0, n+1 =V b ∪{0}∪ {n+ 1} to indicate

that V b contains the respective instance of the depot. Variables sbi describe

the order picker's start time at handover location i∈V b for picking the batch

items stored in picking aisle i∈V b. Parameters pbi denote the picking time

comprising (i) the time the order picker spends on walking from her handover

location i∈V b to the farthest picking location and from the last visited picking

location back to handover location i∈V b, (ii) the time she requires to walk

between the picking locations of batch b∈B in picking aisle i∈V b, and (iii) the

time for retrieving the requested items from their storage locations and placing

them into the appropriate bins on the picking cart.

Upon collection of the batch items stored in picking aisle i∈V b, the order

picker returns to her handover location. Contrary to standard order picking

approaches in which an order picker transports the picked items to a depot,

we assume that the order picker remains at her handover location, where she

passes the items to an AGV.

The AGV-assistance in the considered order picking system is based on the fol-

lowing decisions and modeling assumptions:

• AGV �eet : A �eet of m identical AGVs is initially located at the depot.

• Equipment of AGVs : Recall that exactly one AGV collects the picked items of

a single batch from the relevant handover locations (i.e., those from which the

items of a batch are to be collected) on a single tour through the warehouse. To

this end, an AGV is equipped with one or multiple bins for temporarily storing

the batch items, where each of the bins is intended for the items of a single

customer order contained in a batch. We assume that (i) all requested items of

a customer order �t into a single bin, and (ii) the AGV capacity is su�cient to

carry all items of a single batch.
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• AGV tours : An AGV tour starts from the depot, proceeds along the cross aisle

to the relevant handover locations, and ends at the depot. On an AGV tour,

each of the handover locations of a batch is visited exactly once. Because of

safety reasons, an AGVmay only change the travel direction along the cross aisle

at the rightmost handover location from which batch items are to be collected,

and all other relevant handover locations have to be visited on the way to this

handover location. Passing of other AGVs is allowed.

To model an AGV tour, we use the following notation. Binary decision variables

xbij indicate whether an AGV collecting the items of batch b∈B drives from

depot/handover location i∈V b
0 to handover location/depot j ∈V b

n+1 (xbij = 1)

or not (xbij = 0). Parameters tij denote the travel time from depot/handover

location i∈V0 to handover location/depot j ∈Vn+1, and we assume that the

triangle inequality applies, i.e., tij ≤ tik + tkj, where k∈V . Moreover, travel

times are assumed to be deterministic and symmetric, i.e., tij = tji. Continuous

decision variables abi denote the arrival time of the AGV collecting the items of

batch b∈B at handover location i∈V b.

• Assignment of batches to AGVs and batch processing sequence by AGVs : In the

AOPP-BE, we also decide on the assignment of batches to AGVs and the se-

quence according to which the batches assigned to an AGV are to be processed

by the AGV. Both decisions are implicitly modeled by de�ning precedence rela-

tionships for all pairs of batches b, d∈B. To this end, we de�ne that a batch has
either a direct predecessor batch or no direct predecessor batch if it is the �rst

batch processed by a certain AGV. To model the batch processing sequence,

we introduce binary decision variables ζbd and αb. Variables ζbd denote whether

the items of batch b∈B are collected directly before those of batch d∈B by a

certain AGV (ζbd = 1) or not (ζbd = 0). Variables αb state whether batch b∈B
is processed �rst by a certain AGV (αb = 1) or not (αb = 0).

As described above, an order picker returns to her handover location i∈V b after

picking the batch items stored in picking aisle i∈V b. Here, she immediately places

the picked items into the appropriate bins of the AGV handling batch b∈B (called

associated AGV) if the AGV has already arrived at her handover location i∈V b,

or she waits until it arrives. To model handovers, we use the following notation.

Continuous decision variables hbi denote the start time of handing over the items

of batch b∈B at handover location i∈V b to the associated AGV. The associated
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times for the handovers are given by parameters lbi.

After an order picker has handed over the items to the AGV, she equips the picking

cart with (new) bins, and she returns to her picking aisle to process the next batch

according to the pick list. The time she spends on equipping the picking cart with

(new) bins is assumed to be negligible.

The AGV moves either towards other relevant handover locations, or it returns

to the depot if all items of the batch that is currently handled by the AGV are

collected. Upon arrival at the depot, it takes ub time units to unload the items of

batch b∈B. The batch is then considered as completed, and the AGV is equipped

with (new) bins for collecting the items of the next batch. Continuous decision

variables fb describe the completion time of batch b∈B.

We measure the quality of a solution to the AOPP-BE in terms of the total

tardiness of all customer orders because customer orders often have to be completed

until given due dates to avoid delays in shipments to customers or in production.

The total tardiness is computed as τ =
∑
o∈O

τo, where continuous decision variables τo

de�ne the tardiness of customer order o∈O as the positive di�erence between the

time the customer order is completed and its due date. Note that the completion

time of a customer order corresponds to the completion time of the batch in which

the customer order is contained.

To summarize, our AOPP-BE models the following decisions such that the total

tardiness of all customer orders is minimized:

• Which customer orders are to be grouped together to form a batch?

• Which of the selected batches should be processed by which AGV?

• In which sequence should the selected batches be processed by the order pickers

and by the AGVs?

To provide a compact overview of the AGV-assisted order picking process de-

scribed above, Figure 5.2 summarizes the process from the perspective of an order

picker and Figure 5.3 from the perspective of an AGV.

Finally, Figure 5.4 demonstrates precedence relationships between two order pick-

ers and a single AGV when processing a single batch in the considered system.

Consider a batch which consists of items that are stored in both picking aisles of

the given warehouse. The order picker assigned to the left picking aisle starts from

her handover location at time 0 and returns with the picked items from her picking
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aisle at time 10. The other order picker starts at time 0 and returns at time 4.

The associated AGV starts from the depot at time 0 and �rst proceeds along the

cross aisle to the left handover location, which it reaches at time 2. As soon as

the respective order picker arrives at her handover location, she immediately starts

handing over the picked items to the AGV already waiting at the handover location.

After the handover is completed at time 12, the AGV drives to the right handover

location, which it reaches at time 14. The order picker assigned to the right picking

aisle arrives at her handover location before the AGV and waits 10 time units for

the AGV. Upon arrival of the AGV, she hands over the picked items to the AGV.

Finally, the AGV returns to the depot and reaches it at time 19. Here, the unloading

of the collected items immediately starts and �nishes at time 22.
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Picker receives a
picking cart equipped
with one or multiple
bins and a pick list at
her handover location.

Picker enters her
picking aisle and

walks to the storage
location of the
�rst item of the

currently processed
batch according
to her pick list.

Picker retrieves the
item in the requested
quantity and places
the item(s) into the
associated bin(s)

on the picking cart.

All batch items stored
in the picker's picking
aisle are collected.

Not all batch
items stored in

the picker's picking
aisle are collected.

Picker returns to her
handover location.

The associated
AGV is at the

handover location.

The associated
AGV is not at the
handover location.

Picker places the
retrieved item(s)
into the associated
bin(s) on the AGV.

Picker waits until
the AGV arrives.

Picker walks to the
storage location
of the next batch
item according
to her pick list.

Figure 5.2: Order picking process from the perspective of an order picker in the
AGV-assisted order picking system.

113



AGV receives a
picking order and
is equipped with
one or multiple

bins at the depot.

AGV drives to
the �rst handover
location according
to the picking order.

AGV drives to
the next handover
location according
to the picking order.

The picker has
returned with the
retrieved item(s) to

the handover location.

The picker has not
returned with the
retrieved item(s) to

the handover location.

AGV waits until the
picker places the

retrieved item(s) into
the appropriate bin(s).

AGV waits until
the picker arrives.

All relevant han-
dover locations are
visited by the AGV.

Not all relevant
handover locations are
visited by the AGV.

AGV returns to the
depot and hands
over the item(s) of
the picking order.

Figure 5.3: Order picking process from the perspective of an AGV in the AGV-
assisted order picking system.
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Legend:

AGV departure

AGV arrival

picker starts picking

picker �nishes picking

start loading the AGV

end loading the AGV

start unloading the AGV

end unloading the AGV

precedence relationship

AGV route

picker route0 19 19 22

0 10

2 10 12 12

0 4

14 14 15 15

Figure 5.4: An example illustrating precedence relationships between two order
pickers and a single AGV when processing a single batch. The black rectangles
represent picking locations de�ned by the batch.

In the following, we present the mathematical model formulation of our AOPP-

BE. Note that M denotes a su�ciently large positive number, which must be at

least as large as the maximum completion time over all batches. However, because

the completion time of a batch is not known before solving a speci�c test instance,

we calculate M based on the worst case scenario according to which a batching of

customer orders is not allowed, and customer orders are sequentially picked, i.e., it

is not possible to process several customer orders simultaneously. Then, M can be

calculated as follows:

M =
∑
o∈O

(
max
i∈V
{p′oi}+

∑
i∈V

l′oi + u′o + 2· max
i, j∈V0, n+1

{tij}

)
(5.1)

Parameters p′oi denote the time the order picker requires to pick those items of

customer order o∈O which are stored in her picking aisle i∈V , parameters l′oi
indicate the time the order picker requires to pass the items of customer order o∈O
at handover location i∈V to the associated AGV, and parameters u′o specify the

time required to unload the items of customer order o∈O from the associated AGV.

As introduced above, parameters tij represent the travel time from depot/handover
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location i∈V0 to handover location/depot j ∈Vn+1.

Using the notation summarized in Table 5.1, our AOPP-BE can be formulated as

a mixed integer problem consisting of objective function (5.2) and constraints (5.3)

to (5.18).

0, n+1 depot instances

Sets

B set of feasible batches (indices: b, d)
O set of customer orders (index: o)
V b set of relevant picking aisles of batch b∈B, where each relevant handover location i∈V b is identi�ed

through the associated picking aisle i∈V b (indices: i, j)
V b

0 set of depot instance 0 and relevant picking aisles of batch b∈B, where V b
0 =V b ∪{0} (indices: i, j)

V b
n+1 set of depot instance n+ 1 and relevant picking aisles of batch b∈B, where V b

n+1 =V b ∪{n+1}
(indices: i, j)

V b
0,n+1 set of depot instances and relevant picking aisles of batch b∈B, where V b

0,n+1 =V b ∪{0}∪ {n+1}
(indices: i, j)

Parameters

do due date of customer order o∈O
lbi time the order picker requires to pass the items of batch b∈B at handover location i∈V b to the

associated AGV
m number of AGVs
M a su�ciently large positive number
pbi time the order picker requires to pick the items of batch b∈B which are stored in picking aisle i∈V b

tij time an AGV requires to travel from depot/handover location i∈V0 to depot/handover location
j ∈Vn+1

ub time required to unload the items of batch b∈B from the associated AGV
vbo 1, if customer order o∈O is included in batch b∈B; 0, otherwise

Continuous decision variables

abi arrival time of the AGV handling batch b∈B at handover location i∈V b

fb completion time of batch b∈B
hbi order picker's start time of passing the items of batch b∈B to the associated AGV at handover

location i∈V b

sbi order picker's start time of picking the items of batch b∈B at handover location i∈V b

τo tardiness of customer order o∈O

Binary decision variables

αb 1, if batch b∈B is the �rst batch handled by a certain AGV; 0, otherwise
xbij 1, if the AGV handling batch b∈B travels from depot/handover location i∈V b

0 to depot/handover
location j ∈V b

n+1; 0, otherwise
yb 1, if batch b∈B is selected from the set of feasible batches B; 0, otherwise
zbd 1, if batch b∈B is handled before batch d∈B by the order pickers; 0, otherwise
ζbd 1, if batch b∈B is handled directly before batch d∈B by a certain AGV; 0, otherwise

Table 5.1: Overview of the notation used in the AOPP-BE model.
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minimize
∑
o∈O

τo (5.2)

subject to∑
b∈B

yb ·vbo = 1 ∀o∈O (5.3)∑
j∈V b

n+1

j>i

xbij = yb ∀i∈V b
0 ; b∈B (5.4)

∑
i∈V b

0

i<j

xbij = yb ∀j∈V b
n+1; b∈B (5.5)

zbd + zdb ≥ 1−M ·(2− yb − yd) ∀b, d∈B; b 6=d (5.6)

αd +
∑
b∈B
b 6= d

ζbd ≥ yd ∀d∈B (5.7)

∑
d∈B
d6= b

ζbd ≤ yb ∀b∈B (5.8)

∑
b∈B

αb ≤ m (5.9)

hbi + lbi −M ·(1− zbd) ≤ sdi ∀b, d∈B; b 6=d; i∈V b∪V d (5.10)

sbi + pbi ≤ hbi ∀b∈B; i∈V b (5.11)

abi ≤ hbi ∀b∈B; i∈V b (5.12)

hbi + lbi + tij −M ·(1− xbij) ≤ abj ∀b∈B; i∈V b
0 ; j∈V b; i 6=j (5.13)

fb + t0, i −M ·(2− xd, 0, i − ζbd) ≤ adi ∀b, d∈B; b 6=d; i∈V d (5.14)

hbi + lbi + ti, n+1 + ub −M ·(1− xb, i, n+1) ≤ fb ∀b∈B; i∈V b (5.15)

fb − do −M ·(1− vbo ·yb) ≤ τo ∀b∈B; o∈O (5.16)

abi, fb, hbi, sbi, τo ≥ 0 ∀b∈B; i∈V b
0, n+1; o∈O (5.17)

αb, xbij, yb, zbd, ζbd ∈ {0, 1} ∀b, d∈B; i, j∈V b
0, n+1 (5.18)

The objective of minimizing the total tardiness of all customer orders is de�ned

in (5.2). Constraints (5.3) guarantee that each customer order is included in exactly

one of the selected batches. Constraints (5.4) and (5.5) state that an AGV collecting

the items of a batch starts from the depot, drives to the relevant handover locations

from the leftmost to the rightmost, and then returns to the depot. It is also assured
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that the relevant handover locations are visited exactly once on each AGV tour.

Constraints (5.6) de�ne the sequence according to which the batches are to be

processed by the order pickers. The sequence in which the batches are handled by

the AGVs is modeled in constraints (5.7), (5.8), and (5.9). Constraints (5.7) enforce

that each selected batch is either the �rst batch or direct predecessor batch of another

batch (or multiple batches) handled by the same AGV. Constraints (5.8) assure that

each selected batch has at most one direct successor batch. Constraints (5.9) state

that at most one batch can be the �rst batch handled by a single AGV.

Constraints (5.10) de�ne the order picker's start time of picking the batch items

stored in her picking aisle. If a batch d∈B is not the �rst batch processed by the

order picker, we link the order picker's start time of picking the items of batch d∈B
to the time at which the order picker has handed over the items of the direct prede-

cessor batch b∈B to the associated AGV. Constraints (5.11) and (5.12) guarantee

that the order picker cannot pass the picked items to the associated AGV until (i)

she has returned to the handover location with these items (see constraints (5.11)),

and (ii) the AGV has arrived at her handover location (see constraints (5.12)). Con-

straints (5.13) determine the arrival time of the AGV handling batch b∈B at each

relevant handover location i∈V b. Constraints (5.14) link the arrival time of the

AGV handling batch d∈B at relevant handover location i∈V d to the completion

time of batch b∈B (plus the time the AGV requires to travel from the depot to

relevant handover location i∈V d) if the following holds: (i) batch b∈B is handled

by the same AGV as batch d∈B, and (ii) batch b∈B is handled before batch d∈B
by the AGV. Constraints (5.15) compute the completion time for each batch b∈B,
and constraints (5.16) calculate the tardiness for each customer order o∈O. Fi-

nally, the continuous decision variables and the binary decision variables are de�ned

in constraints (5.17) and (5.18), respectively.

An advantage of the mathematical model presented above is that it is easy to un-

derstand. However, it requires that all feasible batches are generated before solving

a speci�c test instance. Consequently, the number of variables and constraints in

the model depends on the number of feasible batches, which increases exponentially

with the number of customer orders. In Appendix A, we present our AOPP-BI

model, in which the batches are not generated in advance.
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5.2 Solution approach

In this section, we present our two-stage solution approach consisting of an ALNS

component and an adaption of the well-known NEH algorithm to solve our AOPP.

Section 5.2.1 details di�erent metrics used to e�ciently evaluate changes to a (par-

tial) solution of our problem. In Section 5.2.2, we introduce the ALNS component

for grouping customer orders into batches. Subsequently, the generated batches are

sequenced by using an NEH-based heuristic (see Section 5.2.3). Note that an opti-

mal (i.e., minimum total tardiness) assignment of batches to AGVs is achieved by

assigning the batches to the next available AGV while respecting the given batch

processing sequence.

5.2.1 Metrics used in the solution approach

The evaluation of the true objective function of our problem is time-consuming.

To illustrate this, we use the example presented in Figure 5.4 (see Section 5.1).

We assume that the batch consists of two customer orders, namely o= 1 and o= 2.

The items of customer order o= 1 are stored in the left picking aisle and those of

customer order o= 2 in both picking aisles. Let us consider a destroy operator which

removes customer order o= 1 from the given batch and thus causes the following

changes: The time the order picker spends on retrieving the items from the left

picking aisle is reduced by two time units, and the time to hand over these items

to the associated AGV decreases by one time unit (compared to the scenario given

in Figure 5.4). The order picker reaches the handover location at time 8, and she

immediately starts handing over the items. After the handover is completed, the

AGV drives to the right handover location and arrives there at time 11. Accordingly,

the start and end time of the subsequent order picking activities change (except the

retrieval of the items from the right picking aisle). Even this small example shows

that a slight modi�cation of the solution requires many recalculations to evaluate

the true objective function. Obviously, such recalculations would increase in the

case of, e.g., multiple batches a�ected by the modi�cation.

In the testing phase of our algorithm, we identi�ed di�erent metrics, which are

correlated to the true objective function but are less time-consuming to evaluate.

The following metrics are used to evaluate the moves performed by, e.g., the repair

and destroy operators in the ALNS:
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• ξb denotes the surrogate completion time of batch b, which is computed in

the same way as the completion time fb (see Section 5.1), except that for the

computation of ξb, b is considered to be the only batch that has to be processed

by the the order pickers and the associated AGV.

• ϕb corresponds to the surrogate tardiness of batch b. We compute ϕb as follows:

ϕb =
∑
o∈Ob

max {0; ξb − do} (5.19)

Ob denotes the set of customer orders contained in batch b (recall that the due

date of customer order o is given by do).

• ηs speci�es the surrogate total tardiness of all batches b∈Bs in batching solution

s, which is computed as follows:

ηs =
∑
b∈Bs

ϕb (5.20)

5.2.2 Adaptive large neighborhood search for batching cus-

tomer orders

This section details our ALNS component for grouping customer orders into batches.

In Figure 5.5, a pseudocode overview of the ALNS component is given. First, we

generate an initial batching solution s by using an adaption of the C&W(ii) algo-

rithm (see Section 5.2.2.1). Next, s is improved by several ALNS iterations, in which

neighboring batching solutions are accepted according to an SA-based acceptance

criterion (see Section 5.2.2.2).

5.2.2.1 Initial solution

We generate an initial batching solution by implementing an adaption of the C&W(ii)

algorithm. To minimize the total tardiness of all customer orders, in problem settings

with loose due dates, it may be reasonable to sort customer orders in descending

order of their due date and then group them until the capacity of an AGV is no

longer su�cient (see, e.g., Scholz et al. 2017). However, in problem settings with

tight due dates, not only the due dates of the customer orders should be considered

when generating batches. In particular, generating batches with short completion

times positively a�ects the minimization of the total tardiness of all customer orders
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generate an initial batching solution s using an adaption of the C&W(ii) algorithm
s∗ ← s
repeat

randomly draw q− customer orders to be removed
choose destroy and repair operators (h−i , h

+
i ) according to probabilities (π−i , π

+
i )

s′ ← h+
i (h−i (s))

if acceptSA(s′) then
s← s′

end if

if ηs′ < ηs∗ then
s∗ ← s′

end if

adjust the weights wi and probabilities πi of the destroy and repair operators
until stop criterion is met
return s∗

Figure 5.5: Overview of the ALNS algorithm.

(see Section 2.4).

Therefore, we group customer orders into batches dependent on (i) the similarity

of their due date and (ii) the saving in terms of the surrogate completion time

reduction, which results from processing customer orders simultaneously instead

of separately. Our procedure for generating an initial batching solution can be

described as follows:

• Each customer order in the considered problem instance is initially assigned to

a single batch.

• We compute relatedness measure φbd for each pair of batches b and d for which

the AGV carrying capacity is su�cient as follows:

φbd =
ξb + ξd − ξbd

max{ε; max
b∈B
{ξb} −min

b∈B
{ξb}}

· min {δb; δd}
max {ε; max {δb; δd}}

, (5.21)

where ξbd denotes the surrogate completion time when processing batches b and

d simultaneously, parameters δb (δd) represent the minimum due date among

all customer orders which are contained in batch b (d), and ε speci�es a small

positive number. Consequently, the term ξb + ξd − ξbd describes the surrogate
completion time saving that results from picking both batches b and d simulta-

neously instead of separately.

We normalize the surrogate completion time saving using the extreme values
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of the surrogate completion times across the set of all batches, which are given

by the problem instance, and we weight them with the quotient of min {δb; δd}
and max {ε; max {δb; δd}} to stimulate the grouping of batches with similar due
dates.

• Subsequently, the pairs of batches are sorted in non-ascending order of φbd. Our

algorithm starts with the pair of batches with the largest surrogate completion

time saving. The following three cases may occur while grouping a pair of

batches (b, d) to a larger batch: (i) a new batch is generated if neither of the

two batches b and d is yet assigned, (ii) if one of the batches b and d is already

assigned, the other batch is assigned to the same batch, provided that the

AGV carrying capacity is su�cient, (iii) the next pair of batches is considered

if both of the batches b and d are already assigned to larger batches or if the

AGV carrying capacity is not su�cient. Note that we recalculate the surrogate

completion time savings φbd after each grouping of batches to larger batches.

Subsequently, we aim at improving the resulting initial batching solution by means

of an ALNS (see Section 5.2.2.2).

5.2.2.2 Adaptive large neighborhood search component

LNS iteratively destroys and subsequently repairs solutions by removing and rein-

serting a relatively large number of customer orders. As described in Section 2.6.4,

ALNS is an extension of LNS using multiple destroy and repair operators within

the same search process, which are chosen based on the performance of the destroy

and repair operators in past iterations. The probability with which an operator is

chosen is dynamically modi�ed during the search process.

Destroy and repair operators As input, our three destroy operators take a

batching solution s and an integer q−, where q− denotes the number of customer

orders to be removed. The output of the operators is a partial solution in which q−

customer orders have been removed. To remove customer orders from the current

batching solution, ALNS uses the following destroy operators:

Random removal randomly removes customer orders from the current batch-

ing solution until q− customer orders are removed.

122



Worst removal aims at removing customer orders which appear to be unfa-

vorably assigned to batches in the current batching solution s with respect to the

surrogate total tardiness ηs of batching solution s.

To this end, we compute for each customer order the reduction of the surrogate

total tardiness ηs when removing customer order o from the current batching so-

lution s. Then, we sort all customer orders in a list of size L in descending order

of the surrogate total tardiness reduction. At each iteration, we choose the cus-

tomer order at position bL·upc in this list, where u denotes a uniformly distributed
number in [0, 1) and p a randomization parameter in order to avoid repeatedly

removing the same customer orders. We repeat this procedure until q− customer

orders are removed.

Relatedness removal proposed by Shaw (1997) removes customer orders

that are related to each other according to several criteria and thus likely to

be easily interchangeable. If related customer orders are removed, there are more

possibilities for reinsertion and thus new, potentially better batching solutions

can be found. Otherwise, if customer orders are removed that are very di�erent

from each other, they will probably be reinserted into their original batches due

to unattractive reinsertion possibilities.

To de�ne the relatedness between two customer orders, we use the relatedness

measure introduced in Section 5.2.2.1. Recall that a high relatedness measure

value indicates that two customer orders are highly related to each other. The

�rst customer order to be removed is randomly chosen. All remaining customer

orders are sorted in a list in descending order of their relatedness to the selected

customer order. Then, we choose the customer order at position bL·upc in this list
of size L, where again u denotes a uniformly distributed number in [0, 1) and p ≥ 1

a randomization parameter, which allows to balance the in�uence of randomness

and relatedness on the selection of the customer orders to be removed. In the case

of p= 1, customer orders are removed at random, and if p=∞, customer orders

are selected based on their respective relatedness measure value. Afterwards, we

randomly choose a customer order from those already removed from the batch-

ing solution, and we repeat the described procedure until q− customer orders are

removed.

To reinsert the previously removed customer orders into the current batching

solution, ALNS uses one of the following three repair operators:
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Random insertion aims at solution diversi�cation. To this end, random

insertion randomly selects a batch and inserts the customer order into it.

Greedy insertion iteratively assigns customer orders to the batch with min-

imal increase in surrogate total tardiness ηs of batching solution s.

Regret insertion Note that in the last iterations of the ALNS, greedy inser-

tion tends to insert those customer orders whose insertion leads to a large increase

in the surrogate total tardiness ηs of batching solution s. A drawback of a later

insertion is that there are not many (attractive) possibilities to insert the customer

orders because a relatively large number of customer orders is already contained in

the batches (recall that the batch size is limited). Regret insertion was proposed

by Ropke and Pisinger (2006b) and improves the greedy insertion by anticipating

the future e�ect of an insertion operation.

The k-regret value of each customer order o describes the change in the value of

the surrogate total tardiness ηs of inserting the customer order in its k-best batch

and its best batch. Obviously, k describes the extent to which the future is antici-

pated. The customer order with the largest absolute k-regret value is selected for

insertion, and the procedure is repeated until all customer orders are inserted. We

implement the 2-regret and 3-regret heuristic. In preliminary studies, we found

that larger values of k did not improve the solution quality.

Adaptive mechanism For the sake of convenience, we brie�y repeat the proce-

dure of adaptive mechanism introduced in Section 2.6.4. Adaptive weight adjust-

ment evaluates the importance of each destroy and repair operator by modifying the

probability with which an operator is chosen based on the performance of the opera-

tor in past iterations. All operators are set to the same initial weight ω. Performance

of an operator i∈X is measured by the score value oi. If an operator �nds a new

best batching solution, we increase the score by obest, if a better batching solution is

found by oimp, and if a new deteriorating batching solution is found and accepted ac-

cording to the SA-based acceptance criterion by oacc. We divide the search process of

the ALNS component into a number of segments of γ iterations. After γ iterations,

the new weight of operator i∈X is calculated as wi+1 = (1 − r) ·wi + r · oi
βi
, where

wi corresponds to the weight of operator i∈X . The reaction parameter r∈ [0, 1]

controls the speed of the weight adjustment and takes the success of an operator in

previous segments into account. The number of times that an operator i∈X was
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chosen in the previous segment is denoted by βi. Afterwards, the probability πi to

choose an operator i∈X is calculated according to πi =wi /
∑
i∈X

wi.

Acceptance criterion We use an acceptance criterion based on SA in order to

overcome local optima. An improving solution is always accepted, and a new de-

teriorating solution s′ is accepted with probability e−(ηs′−ηs)/ti , where ti > 0 is the

current temperature. The starting temperature t0 is determined such that a solu-

tion that deteriorates the current solution by a% is accepted with a probability of

50%. We decrease the temperature by a constant factor c each time a deteriorating

solution is accepted such that in the last 20% of iterations the temperature is below

0.0001.

5.2.3 Construction heuristic for deciding the batch process-

ing sequence

To determine the batch processing sequence, we propose an adaption of the NEH

algorithm introduced by Nawaz et al. (1983). The idea of our batch sequencing

algorithm is that a batch b which has a larger surrogate tardiness ϕb should be given

higher priority to be processed before another batch d with less surrogate tardiness

ϕd. In Figure 5.6, we give an overview of the proposed algorithm, which is described

in the following:

• First, we calculate surrogate tardiness ϕb for each batch b∈Bs contained in the

batching solution s.

• Second, we determine sequence λ := (λ1, ..., λκ), in which the batches are ar-

ranged by decreasing surrogate tardiness ϕb, e.g., λ1 denotes the batch with

largest surrogate tardiness, and λ2 indicates the batch with the second largest

surrogate tardiness.

• Third, we select the batch with the largest surrogate tardiness, i.e., λ1, and we

insert it in the partial batch processing sequence π∗, i.e., π∗ := (λ1).

• Last, for i= 2 to κ, we do the following: we insert batch λi in the position of

π∗ (among the i possible ones) which minimizes the (partial) total tardiness τ .

The partial batch processing sequence with the smallest (partial) total tardiness

τ de�nes the relative positions of these i batches with respect to each other.
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for each batch b∈Bs contained in the batching solution s, calculate its surrogate tardi-
ness ϕb
generate sequence λ := (λ1, ..., λκ) by sorting the batches in non-ascending order of their
surrogate tardiness ϕb
π∗ := (λ1)
for i← 2 to κ do

insert batch λi in the position of π∗ which minimizes the (partial) total tardiness τ
end for

return π∗

Figure 5.6: Overview of the NEH-based algorithm.

5.3 Numerical studies

This section describes the numerical studies (i) to investigate the in�uence of the

SA-based acceptance criterion used by ALNS/NEH on the solution quality, (ii) to

assess the performance of ALNS/NEH in comparison to CPLEX, and (iii) to give

managerial insights with respect to AGV-assisted order picking. Because no estab-

lished testbed is available for our problem, we generate three new sets of instances,

which we describe in Section 5.3.1. Subsequently, the parameter setting of our ALNS

(see Section 5.3.2) and the results of our experiments are presented in Section 5.3.3,

Section 5.3.4, and Section 5.3.5.

5.3.1 Instance generation

We generate test instances of two di�erent sizes. The set of small instances is denoted

by S, and sets M and L comprise large-sized instances. The instance generation

process is described in the following:

• Warehouse layout : We consider three di�erent sizes of single-block warehouses

with parallel closed-end picking aisles (see Section 5.1), namely n= 10, n= 15,

and n= 20 picking aisles. The warehouse which comprises 10 picking aisles

contains 20 storage locations in each picking aisle, 10 on the left and 10 on

the right. The warehouse containing 15 picking aisles consists of 30 storage

locations per picking aisle (15 on each side of the picking aisle), and in the

warehouse with 20 picking aisles, 40 storage locations are arranged in each

picking aisle (20 on each side of the picking aisle). Thus, 200 di�erent items

are stored in the warehouse with n= 10 picking aisles, 450 in the warehouse

with n= 15 picking aisles, and 800 in the warehouse with n= 20 picking aisles.
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The warehouses apply a random storage assignment strategy according to which

items are randomly assigned to storage locations. The depot is located below the

leftmost handover location. The instances in set S are based on the warehouse

with n= 10 picking aisles, those in set M , on n= 10, n= 15, or n= 20 picking

aisles, and those in set L, on n= 15 or n= 20 picking aisles.

• Physical dimensions of the warehouses : An order picker has to cover 1.5 LUs

to get from her handover location to the �rst storage location in the associated

picking aisle. The distance between two adjacent storage locations amounts to

1 LU. An AGV moves 1 LU from the depot to the leftmost handover location.

The travel distance between two neighboring handover locations is 5 LUs.

• Time parameters for order picking activities : The time an order picker requires

to retrieve an item from its storage location is 8 seconds, and the time an order

picker spends on handing over an item to an AGV amounts to 4 seconds. It

takes 4 seconds to unload an item from an AGV at the depot. Due to safety

reasons, the traveling speed of AGVs is restricted to the walking speed of order

pickers: both move 1 LU in 3 seconds.

• Number and capacity of picking devices : The number of AGVs is �xed to m= 1

and m= 2 in set S, to m= 4 in set M , and to m= 6 in set L. The carrying

capacity C of both AGV and picking cart is C = 6 or C = 8 items in set S and

C = 60 items in sets M and L.

• Generation of pick lists : The number of customer orders is |O|= 5, 6, 7 in set S,

|O|= 40, 60, 80, 100 in set M , and |O|= 40, 50, 60, 70, 80, 90, 100 in set L. In the

small-sized instances, the number of items contained in a customer order is uni-

formly distributed over the interval [2, 4]. Note that in e-commerce warehouses,

the average number of requested items per customer order is approximately

two items (see Boysen et al. (2019b)) so that this setting is realistic for such

warehouses. In sets M and L, the number of items is randomly drawn from the

uniformly distributed interval [5, 25].

• Generation of due dates : To generate due dates, we assign to each customer

order contained in a problem instance a due date of 0 and solve the resulting

AOPP-BI model using ALNS/NEH. The minimum and maximum completion

time over the resulting batches de�ne the extreme values of the uniformly dis-

tributed interval of due dates, from which we randomly choose a due date for

each customer order in the respective problem instance.
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Combining the above described parameter values leads to 12 instance groups for

set S, to 12 instance groups for set M , and to 14 instance groups for set L. The

instance groups associated with set S are identi�ed by the number of customer orders

|O|, the number of AGVsm, and the capacity C. The groups of large-sized instances

are identi�ed by the number of picking aisles n and the number of customer orders

|O|. For each instance group, we generate 10 instances, i.e., 12·10 = 120 small-sized

instances, 12 · 10 = 120 instances for set M , and 14·10 = 140 instances for set L.

5.3.2 Parameter setting for the adaptive large neighborhood

search component

For tuning the parameters of our ALNS component, we follow the approach de-

scribed in Ropke and Pisinger (2006a). We start with the parameter setting used

for the ALNS component of ALNS×TS for the standard OBP. Then, we change the

value of a single parameter while keeping the rest of the parameters �xed and per-

form �ve runs on randomly selected instances from the sets of instances described

in Section 5.3.1. We choose the parameter setting with the best average result as

the �nal setting for the respective parameter, and we repeat this procedure with

the next parameter. We randomly determine the order in which the tuning of the

parameters is performed. The ALNS component seems relatively insensitive to the

variation of parameters because none of the tested parameter settings results in sig-

ni�cant deterioration of solution quality. We found the following parameter setting,

which is used for all computational studies.

The scores used in the adaptive weight adjustment are set to obest = 120, oimp = 100,

and oacc = 80. The initial weight of all operators amounts to ω= 10. We �x the num-

ber of iterations after which the weights of the ALNS component are adjusted to

γ= 100, the reaction factor to ε= 0.4, the randomization parameter to p= 3, and

the percentage of deterioration to a= 25%. The number of customer orders removed

from the current solution q− is randomly drawn from the interval [qmin = 0.175 · |O|,
qmax = 0.35·|O|], where again |O| denotes the number of customer orders.

To achieve a good trade-o� between the solution quality and the runtime of our

algorithm, we set the number of ALNS iterations to |O|. Table 5.2 summarizes the

parameter setting of the ALNS component.

All experiments are executed on a desktop computer with an Intel Core i7-3770

Processor at 3.5 GHz, 16 GB of memory, and Windows 7 Professional. The solution
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method is implemented using Java, and the IBM ILOG CPLEX solver (version 12.9)

is applied to solve the mixed integer program presented in Appendix A.

Parameter Parameter value

γ 100

qmin , qmax 0.175·|O|, 0.35·|O|
ε 0.4

obest, oimp, oacc 120, 100, 80

ω 10

p 3

a 25%

Table 5.2: Overview of the parameter setting of the ALNS component used to
generate a batching solution.

5.3.3 E�ect of the simulated annealing-based acceptance cri-

terion

This section analyzes the e�ect of using an SA-based acceptance criterion after the

ALNS phase instead of an ALNS/NEH heuristic accepting only improving solutions

(ALNS/NEH w/o SA). In Table 5.3, we give an overview of the results obtained

on the large-sized instances in set L and present averages for groups of instances

de�ned by the number of picking aisles (column n) and the number of customer

orders (column |O|). The reported results are based on �ve runs. In column BKS,

we provide the BKS as the average of the best objective function values obtained

by one of the tested methods for each of the individual instances in the group over

the �ve runs. For ALNS/NEH and ALNS/NEH w/o SA, we give the following

information:

• ∆f (%) denotes the percentage gap between the best solution found by the

respective variant and the BKS over the �ve runs. The percentage gap is com-

puted as 100 · (fk − BKS)/fk, where fk denotes the best solution achieved by

variant k∈K. The smallest gap found by any of the variants is indicated in

bold.

• t (s) reports the average runtime over the �ve runs in seconds.
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The results show that ALNS/NEH outperforms ALNS/NEH w/o SA with an

average gap of the total tardiness of 0.5% to the BKS compared to an average gap

of 1.04% obtained by ALNS/NEH w/o SA. Thus, using the SA-based acceptance

criterion instead of simply accepting improving solutions leads to a larger reduction

of the average total tardiness of all customer orders. With respect to runtimes, the

table shows that both variants require similar runtimes on average.

n |O| BKS ALNS/NEH ALNS/NEH w/o SA

∆f (%) t (s) ∆f (%) t (s)

15 40 5572 0.76 1.6 0.89 1.5

15 50 8594 0.26 3.3 0.81 3.0

15 60 10214 0.53 6.3 1.77 6.9

15 70 13649 0.33 13.8 0.85 12.3

15 80 20442 0.48 21.2 1.58 23.6

15 90 22819 0.85 35.0 1.13 25.3

15 100 27502 0.70 47.9 1.28 46.9

20 40 5648 0.40 1.7 0.85 1.7

20 50 7607 0.40 3.4 0.98 3.7

20 60 9571 0.17 6.5 1.34 6.7

20 70 15430 0.47 13.2 0.90 13.9

20 80 20655 0.35 28.4 0.75 24.5

20 90 29111 0.63 37.4 0.64 33.7

20 100 27658 0.68 52.8 0.73 51.4

Average 0.50 19.5 1.04 18.2

Table 5.3: E�ect of using an SA-based acceptance criterion on the large-sized in-
stances in set L. In the �rst two columns, we specify the group of instances de�ned
by the number of picking aisles (column n) and the number of customer orders (col-
umn |O|). In column BKS, we provide the BKS as the average of the best objective
function values obtained by one of the tested methods for each of the individual
instances in the group. For ALNS/NEH and ALNS/NEH w/o SA, the table reports
the percentage gap between the best solution found by the respective variant and
the BKS over the �ve runs (column ∆f (%)) and the average runtime over the �ve
runs in seconds (column t (s)). The smallest gap found by any of the variants is
indicated in bold.

5.3.4 Comparison of the solution method to a commercial

solver

This section assesses the performance of ALNS/NEH on the small-sized instances.

We compare the performance of CPLEX solving AOPP-BI (see Appendix A) and

ALNS/NEH. We perform �ve runs of ALNS/NEH on each instance, and we restrict

130



the solution time limit of CPLEX solving AOPP-BI to 1800 seconds.

Table 5.4 presents aggregate results on the small-sized instances and reports av-

erages for groups of instances de�ned by the number of customer orders (column

|O|), the number of AGVs (column m), and the carrying capacity of the picking

device (column C). In column BKS, we provide the BKS as the average of the best

objective function values obtained with the respective method for each of the indi-

vidual instances in the group. For CPLEX and ALNS/NEH, we give the following

information:

• #opt indicates the number of instances solved to optimality. The optimality of

a solution is proven by CPLEX.

• ∆f (%) denotes the percentage gap between the best solution found by the

respective method and the BKS. The percentage gap is computed as 100 · (fk−
BKS)/fk, where fk denotes the best solution achieved by method k∈K.

• t (s) reports the average runtime in seconds.

In Appendix B, we provide detailed computational results of the comparison meth-

ods for each of the small-sized instances.

Although the number of customer orders ranges only between 5 and 7 customer

orders, each consisting of 2, 3, or 4 items to be picked, CPLEX is not able to con-

sistently solve the instances to optimality within the given runtime limit. The table

shows that CPLEX guarantees an optimal solution for 61 of the 120 instances. On all

tested instances, ALNS/NEH is able to match the solution quality of CPLEX in �ve

of �ve runs per instance. Concerning runtime, CPLEX requires signi�cantly more

runtime (975.4 seconds on average) than ALNS/NEH (0.019 seconds on average).

The results of ALNS/NEH clearly demonstrate its ability to address our problem

on small-sized instances.

5.3.5 Experiments on the AGV �eet size and speed

This section describes the design of our experiments and presents their results. In

the experiments, we investigate the e�ect of increasing (i) the number of AGVs and

(ii) the AGV speed on the average total tardiness. We focus on these two problem

parameters because they can be easily adjusted by warehouse managers without

extensively redesigning the order picking system. All experiments are based on the

instances of set M (see Section 5.3.1).
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CPLEX ALNS/NEH

|O| m C BKS #opt ∆f (%) t (s) #opt ∆f (%) t (s)

5 1 6 196 10 0.0 61.9 10 0.0 0.027

5 1 8 175 10 0.0 56.9 10 0.0 0.016

5 2 6 137 10 0.0 14.0 10 0.0 0.009

5 2 8 144 10 0.0 17.7 10 0.0 0.010

6 1 6 788 0 0.0 1800.0 0 0.0 0.021

6 1 8 229 1 0.0 1620.9 1 0.0 0.014

6 2 6 133 8 0.0 982.9 8 0.0 0.014

6 2 8 121 8 0.0 669.6 8 0.0 0.024

7 1 6 287 1 0.0 1620.3 1 0.0 0.029

7 1 8 295 0 0.0 1800.0 0 0.0 0.014

7 2 6 268 3 0.0 1261.2 3 0.0 0.019

7 2 8 314 0 0.0 1800.0 0 0.0 0.027

Average 0.0 975.4 0.0 0.019

Minimum 0.0 14.0 0.0 0.009

Maximum 0.0 1800.0 0.0 0.029

Table 5.4: Performance of ALNS/NEH in comparison to CPLEX on small-sized
instances in set S. In the �rst three columns, we specify the group of instances
de�ned by the number of customer orders (column |O|), the number of AGVs (col-
umn m), and the carrying capacity of the picking device (column C). In column
BKS, we provide the BKS as the average of the best objective function values ob-
tained with the respective method for each of the individual instances in the group.
For CPLEX and ALNS/NEH, the table reports the number of instances solved to
optimality (column #opt), the percentage gap between the best solution found by
the respective method and the BKS (column ∆f (%)) and the average runtime in
seconds (column t (s)).

We consider three di�erent sizes of the AGV �eet, i.e., m= 4, m= 8, and m= 12

AGVs, and we vary the speed ratio σ from 1.0 to 3.0 in steps of 0.5, where σ

de�nes the quotient of traveling speed of AGVs and walking speed of order pickers.

For each combination of m and σ, we compute the average of the best objective

function values obtained by ALNS/NEH for each of the individual instances in the

respective instance group over �ve runs. Recall that each instance group is de�ned

by the warehouse size n and the number of customer orders |O|. The resulting values
are compared to the scenario (called reference case) with the same warehouse size

n and the same number of customer orders |O| but with the AGV �eet size �xed

to m= 4 and the AGV speed restricted to the walking speed of order pickers, i.e.,

σ= 1.0.

For each instance group and pair of m and σ, Table 5.5 reports the change in
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average total tardiness in percent compared to the average total tardiness of the re-

spective reference case. Column m denotes the number of AGVs, and the remaining

columns are divided into three blocks, where each block reports the results for one

of the three warehouse sizes for di�erent speed ratios (columns σ). Additionally, in

Figures 5.7, 5.8, and 5.9, we illustrate the average total tardiness for all combina-

tions of di�erent numbers of AGVs and speed ratios for the three warehouse sizes.

Figure 5.7 shows the results for n= 10 picking aisles, Figure 5.8 for n= 15 picking

aisles, and Figure 5.9 for n= 20 picking aisles.

In the following, we discuss the results of our experiments:

E�ect of the AGV speed The results show that the AGV speed signi�cantly

in�uences the average total tardiness. For example, for n= 10 picking aisles and

m= 4 AGVs, a marginal increase in the speed ratio from σ= 1.0 to σ= 1.5 reduces

the average total tardiness over the di�erent numbers of customer orders by 49.5%.

This indicates that the AGV travel times account for a substantial share of the time

required to complete the customer orders (i.e., order picking time).

As can be expected, the strongest reductions are achieved at the largest speed

ratio of σ= 3.0: for example, for n= 15 picking aisles, m= 4 AGVs, and a speed

ratio of σ= 1.5, the average total tardiness over the di�erent numbers of customer

orders decreases by 63.4%, while at σ= 3.0, the reduction amounts to 88.2%.

However, the results show that with increasing speed ratio, the additional reduc-

tion of the average total tardiness tends to decline. For example, for n= 20 picking

aisles and m= 4 AGVs, an increase in the speed ratio from σ= 1.0 to σ= 1.5 reduces

the average total tardiness over the di�erent numbers of customer orders by 76.4%,

from σ= 1.0 to σ= 2.0 by 90.5%, from σ= 1.0 to σ= 2.5 by 93.8%, and from σ= 1.0

to σ= 3.0 by 95.1%. Obviously, even at low speed ratios, e.g., σ= 1.5, a large num-

ber of customer orders is completed until the respective due date. Consequently,

there is not much room left for reducing the average total tardiness. So, by further

increasing the AGV speed, the additional reductions obtained are not that large.

We make the following observations when comparing the results obtained for dif-

ferent warehouse sizes and numbers of customer orders:

• Warehouse size: The larger the warehouse, the more distances may have to be

covered by both the order pickers and the AGVs to complete a given set of

customer orders. Therefore, an increase in the speed ratio has the strongest
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e�ect in the case of the largest warehouse. For example, on the instances with

n= 10 picking aisles andm= 4 AGVs, an increase in the speed ratio from σ= 1.0

to σ= 1.5 reduces the average total tardiness over the di�erent numbers of

customer orders by 49.5%, while on the instances which assume n= 20 picking

aisles, the reduction amounts to 76.4%.

• Number of customer orders : When comparing the results obtained for a small

number of customer orders to those for a large number of customer orders, we

observe that a slight increase in the AGV speed tends to have a larger impact

on the average total tardiness assuming a small number of customer orders. For

example, for n= 15 picking aisles, |O|= 40 customer orders, and m= 4 AGVs,

an increase in the speed ratio from σ= 1.0 to σ= 1.5 reduces the average total

tardiness by 68.3%, while for |O|= 100 customer orders, a reduction of 55.3%

is achieved. To understand this rather non-intuitive result, we examined the

solutions obtained on the respective instances in more detail and found the

following: On the instances with a small number of customer orders, the share

of the AGV travel times of the order picking time (and thus the impact on the

average total tardiness) is signi�cantly larger compared to other components

of the order picking time (e.g., waiting time of AGVs at handover locations).

As a result, increasing the AGV speed leads to a relatively large reduction of

the average total tardiness. However, with an increasing number of customer

orders, the impact of AGV travel times weakens, while the impact of the other

components increases. Thus, in the case of a large number of customer orders,

an increase in the AGV speed has only a smaller e�ect on reducing the average

total tardiness.

E�ect of the number of AGVs The larger the number of AGVs, the larger the

reduction of the average total tardiness. However, the reported values show that

expanding the AGV �eet from m= 4 to m= 8 AGVs leads to larger reductions than

from m= 8 to m= 12 AGVs: for example, for the largest warehouse and a speed

ratio of σ= 1.0, Table 5.5 reports that a doubling of the AGV �eet size from m= 4

to m= 8 reduces the average total tardiness over the di�erent numbers of customer

orders by 84.6%, while by further increasing the AGV �eet size (from m= 8 to

m= 12), an additional reduction of only 0.6 percentage points is achieved.

We observe the following when comparing the results over the di�erent warehouse

sizes and numbers of customer orders:
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• Warehouse size: In the largest warehouse, an increase in the AGV �eet size has

a stronger e�ect on the average total tardiness compared to the results which are

obtained in the case of the smallest warehouse. Again, this might be due to the

large distances that have to be covered by the AGVs in the largest warehouse.

For example, in the smallest warehouse and for a speed ratio of σ= 1.0, an

increase in the AGV �eet size from m= 4 to m= 8 reduces the average total

tardiness over the di�erent numbers of customer orders by 53.3%. In the largest

warehouse, the reduction amounts to 84.6%.

• Number of customer orders : In the case of a small number of customer orders,

an expansion of the AGV �eet from m= 4 to m= 8 o�ers less potential for

reduction in comparison to the results obtained on the instances with a large

number of customer orders. For example, on the instances with n= 10 picking

aisles, |O|= 40 customer orders, and a speed ratio of σ= 1.0, a doubling of the

number of AGVs from m= 4 to m= 8 reduces the average total tardiness by

49.6%, while on those with |O|= 100 customer orders, a reduction of 60.1%

is realized. We have examined this in more detail and found that for smaller

numbers of customer orders, there are already enough AGVs to achieve a good

solution quality so that expanding the AGV �eet size hardly a�ects the average

total tardiness.

Overall managerial insights An interesting result is observed on the instances

assuming |O|= 40 customer orders: In all warehouses, a marginal increase in the

speed ratio of 0.5 is more advantageous than doubling the number of AGVs from

m= 4 to m= 8. For example, for n= 10 picking aisles (and |O|= 40 customer or-

ders), an increase in the speed ratio from σ= 1.0 to σ= 1.5 leads to a reduction

of 55.5% of the average total tardiness, while expanding the AGV �eet from m= 4

to m= 8 (and �xing the speed ratio to σ= 1.0) reduces the average total tardiness

by 49.6%. In the case of m= 8 AGVs, this observation does not only hold true for

|O|= 40 customer orders. Here, in almost all cases, an increase in the speed ratio of

0.5 results in a larger reduction of the average total tardiness compared to increasing

the number of AGVs from m= 8 to m= 12 AGVs. For example, in the warehouse

with n= 15 picking aisles, increasing the speed ratio from σ= 1.0 to σ= 1.5 (as-

suming m= 8 AGVs) reduces the average total tardiness over all customer orders

by 84.0%, while an expansion of the AGV �eet from m= 8 to m= 12 results in a

reduction of 73.8%.
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The results suggest that a �eet size of m= 8 AGVs and a speed ratio of σ= 1.5

seem to be a reasonable combination in our computational experiments. In real-

world warehouses, the traveling speed of AGVs is restricted to or is only slightly

faster than the walking speed of order pickers due to safety reasons (see, e.g., Lö�er

et al. 2020). Thus, speed ratios of σ= 1.0 and σ= 1.5 are the norm. The fact that

speed ratios of σ≥ 2.0 only contribute to minor additional reductions compared to

a speed ratio of σ= 1.5 is therefore also a managerial reason to aim for a speed ratio

of σ= 1.5 (when dealing with similar problem settings).
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Figure 5.7: Average total tardiness that results on the instances assuming a ware-
house with 10 picking aisles. We depict the average total tardiness for all combina-
tions of di�erent speed ratios and numbers of AGVs.

5.4 Summary and conclusion

In this chapter, we investigate a novel warehousing concept using AGVs to support

human order pickers of the traditional picker-to-parts setup. Our AOPP decides on

the grouping of customer orders into batches, the assignment of these batches to

AGVs, and the sequence according to which these batches are to be processed by

the order pickers and the AGVs such that the total tardiness of all customer orders

is minimized.
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Figure 5.8: Average total tardiness that results on the instances assuming a ware-
house with 15 picking aisles. We depict the average total tardiness for all combina-
tions of di�erent speed ratios and numbers of AGVs.

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

m = 4 m = 8 m = 12
Combinations of di�erent speed ratios and di�erent numbers of AGVs m

A
ve
ra
ge

to
ta
l
ta
rd
in
es
s

Figure 5.9: Average total tardiness that results on the instances assuming a ware-
house with 20 picking aisles. We depict the average total tardiness for all combina-
tions of di�erent speed ratios and numbers of AGVs.
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To solve the NP-hard problem, we develop a two-stage heuristic solution approach

consisting of an ALNS and an adaption of the well-known NEH heuristic. We use

the ALNS component for generating batches, and we implement the NEH-based

heuristic to determine the sequence according to which these batches are to be

processed.

In numerical studies performed on newly designed instances, we �rst show the

positive e�ect of our SA-based acceptance criterion after the ALNS phase compared

to an ALNS/NEH heuristic that accepts only improving solutions. Subsequently, we

demonstrate the strong performance of ALNS/NEH to solve small-sized instances.

More precisely, ALNS/NEH is able to match the solution quality of CPLEX on

small-sized instances within a fraction of a second.

Finally, we give managerial insights into the bene�ts of increasing (i) the number

of AGVs and (ii) the AGV travel speed on the average total tardiness. In our exper-

iments, we �nd that by adding (or removing) AGVs or by increasing (or decreasing)

the AGV speed to adapt to di�erent workloads, a large number of customer orders

can be completed until the respective due date. Moreover, in most of the tested

cases, a slight increase in the speed ratio leads to a larger reduction of the average

total tardiness compared to an expansion of the AGV �eet. Finally, the results sug-

gest a speed ratio of σ= 1.5. This �nding might be also interesting for warehouse

managers: for safety reasons, the AGV speed is only allowed to be slightly faster

than the walking speed of order pickers in real-world warehouses.
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Chapter 6

Summary, conclusion, and future

research

Order picking has been identi�ed as a crucial factor for the competitiveness of a

supply chain because inadequate order picking performance causes customer dis-

satisfaction and high costs. This dissertation aims at designing new models and

algorithms to improve order picking performance and to support managerial deci-

sions on facing current challenges in order picking (e.g., completing a large number

of customer orders within tight delivery schedules). In Section 6.1, we summarize

the contents and main contributions to research and practice of this dissertation.

Section 6.2 provides directions for future research opportunities.

6.1 Summary and conclusion

This section summarizes the contents of the thesis and lists its main contributions.

Conceptual and methodological fundamentals

In Chapter 2, we give a description of the conceptual and methodological fundamen-

tals that are relevant for the problems addressed in this work. We �rst outline basic

warehouse operations with a focus on order picking. To give an overview of the wide

range of order picking systems, we use a classi�cation that di�erentiates between

picker-to-parts systems (mainly involving human order pickers in the order picking)

and parts-to-picker systems (mainly involving automated machines). We focus on

picker-to-parts systems due to their prevalence in the literature and in practice, and

therefore, we detail their central components (i.e., the warehouse layout and the
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basic order picking process). Next, we present frequently used planning objectives

in order picking and the central planning problems in picker-to-parts setups (i.e.,

warehouse layout design, storage assignment methods, picker routing strategies, or-

der batching, zoning, and AGV-assisted order picking). We review the literature on

these problems and conclude the following with respect to the problems (standard

OBP, precedence-constrained order picking, and AOPP) addressed in this work:

• Item storage assignment : Studies on storage assignment focus on random stor-

age. Item-speci�c characteristics such as weight, hazardousness, and tempera-

ture requirements, are often neglected when assigning items to storage locations.

Likewise, the impact of storage assignment on picker routing is hardly investi-

gated.

• Picker routing : Our survey of the literature on picker routing shows that the

standard SPRP is the most well-studied PRP, for which mostly exact solution

methods have been proposed. Although plenty of research deals with variants of

the standard SPRP, precedence-constrained order picking is rather unexplored.

• Order batching : With respect to the standard OBP, research focuses on devel-

oping heuristic and metaheuristic solution methods to solve the problem. The

performance of the OBP methods is often assessed on small-sized instances, and

practically relevant instances are either not addressed, or the proposed methods

lack in solution quality and/or runtime required to solve such instances. Al-

though ALNS is known to provide a convincing performance on combinatorial

optimization problems related to the standard OBP, it has not been developed

to address the problem so far.

• Zone picking : The few research papers on zoning focus on determining the num-

ber of zones and on investigating di�erent item storage assignment strategies in

zone picking systems.

• AGV-assisted order picking : There is currently only one publication that deals

with AGV-assisted order picking. However, the synchronization of human order

pickers and AGVs has not been studied.

Finally, Chapter 2 details TS and ALNS as the main components of our solution

methods.
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Order batching

In Chapter 3, we study the standard OBP to optimize the batching of customer

orders with the objective of minimizing the total length of order picking tours. We

present a mathematical model formulation of the problem and develop a hybrid

solution approach that combines the diversi�cation capabilities of an ALNS and

the intensi�cation capabilities of a TS method. Our ALNS×TS uses an SA-based

acceptance criterion to further diversify the search.

In numerical studies, we conduct an extensive comparison of ALNS×TS to all

previously published OBP methods that used standard benchmark sets to investigate

their performance. ALNS×TS outperforms all comparison methods with respect to

average solution quality and runtime. Compared to the state-of-the-art, ALNS×TS
shows the clearest advantages on the larger instances of the existing benchmark

sets, which assume a larger number of customer orders and larger capacities of

the picking device. Finally, ALNS×TS is able to solve newly generated large-scale

instances with up to 600 customer orders and six items per customer order with

reasonable runtimes and convincing scaling behavior and robustness.

Precedence-constrained order picking

Chapter 4 addresses a problem based on a practical case, which is inspired by a

warehouse of a German manufacturer of household products. In this warehouse,

heavy items are not allowed to be placed on top of light items during picking to

prevent damage to the light items. Currently, the case company determines the

sequence for retrieving the items from their storage locations by applying a simple

S-shape strategy that neglects this precedence constraint. As a result, order pickers

place the collected items next to each other in plastic boxes and sort the items

respecting the precedence constraint.

To avoid this sorting at the end of the order picking process, we propose a picker

routing strategy that incorporates the precedence constraint by picking heavy items

before light items (E-PRSW). To evaluate E-PRSW, we develop an exact solution

method. The algorithm determines the optimal tour of minimum travel length of an

order picker for collecting heavy items before light items of a given customer order

on a single order picking tour.

We assess the performance of E-PRSW on a dataset provided to us by the manu-

facturer. We compare E-PRSW to the strategy used in the warehouse of the case

company, and to an exact picker routing approach that does not consider the given
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precedence constraint. The results clearly demonstrate the convincing performance

of E-PRSW even if we compare our strategy to the exact solution method that

neglects the precedence constraint.

Furthermore, our experiments show that we improve the order picking process of

the case company in the following aspects:

• The case company can avoid the use of plastic boxes by placing the retrieved

items directly in the cardboard boxes used for shipping the items to the respec-

tive customers.

• The immense sorting e�ort after the retrieval process is avoided by collecting

heavy items before light items.

• The average tour length of an order picker for completing customer orders is sig-

ni�cantly reduced in comparison to the results obtained with the picker routing

strategy applied in the case company.

Last, we examine the in�uence of di�erent problem parameters on E-PRSW, and

we derive managerial insights for dealing with the given precedence constraint in

order picking. An interesting �nding from practitioner's perspective is that by sepa-

rating heavy and light items in the warehouse and assigning heavy items to storage

locations that are arranged close to the depot, a strong reduction of the average

tour length is achieved.

AGV-assisted order picking

In Chapter 5, we investigate a new order picking problem, in which human order

pickers of the traditional picker-to-parts setup are supported by AGVs. We introduce

two mathematical model formulations of the problem, and we develop a two-stage

heuristic (ALNS/NEH) to solve the NP-hard problem.

In numerical studies, we �rst examine the e�ect of the SA-based acceptance crite-

rion used by ALNS/NEH after the ALNS phase instead of an ALNS/NEH heuristic

which only accepts improving solutions. The studies show the positive impact of

using the SA-based acceptance criterion instead of simply accepting only improv-

ing solutions. Next, we assess the solution quality of ALNS/NEH in comparison

to CPLEX solutions. The results demonstrate the ability of ALNS/NEH in �nding

high-quality solutions within a negligible computation time. ALNS/NEH always

provides the optimal solution if CPLEX �nds an optimum within the given solu-

tion time limit. On all instances on which CPLEX is not able to �nd the optimal
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solution within the runtime limit, ALNS/NEH �nds a solution equal to the upper

bound obtained by CPLEX. Last, we conduct several computational experiments

to investigate the e�ect of di�erent numbers of AGVs and di�erent traveling and

walking speed ratios between AGVs and order pickers on the average total tardiness.

From the perspective of warehouse managers, the most interesting �ndings might

be the following:

• The results of our experiments indicate that by adding (or removing) AGVs or

by increasing (or decreasing) the AGV speed to adapt to di�erent workloads,

a large number of customer orders can be completed until the respective due

date.

• One of the most interesting �ndings is that (in most cases) a slight increase

in the speed ratio leads to a larger reduction of the average total tardiness

compared to an expansion of the AGV �eet.

• Speed ratios of σ≥ 2.0 only contribute to minor additional reductions of the

average total tardiness compared to a speed ratio of σ= 1.5. This �nding might

be interesting for warehouse managers: for safety reasons, speed ratios of σ= 1.0

or σ= 1.5 are the norm in real-world warehouses.

6.2 Outlook on future research

This section presents future research opportunities related to the problems addressed

in this thesis.

Order batching

An interesting topic for future research related to our ALNS×TS could be granular

neighborhoods used within the TS component. By using sparsi�cation methods,

only elements that are likely to be part of high quality solutions remain in the

neighborhood. Thus, the runtime may be further reduced without compromising

solution quality.

From a practical perspective, it is probably desirable to carry out research on

dynamic order batching. Here, information about the incoming customer orders

(e.g., requested items and demand quantities) is not known at the beginning of the

planning period but becomes available over time.
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Moreover, precedence constraints could be incorporated into the standard OBP

and our solution method. Item-speci�c characteristics (e.g., fragility and weight)

may in�uence the retrieval sequence, however, they are generally neglected when

dealing with the standard OBP so far.

Precedence-constrained order picking

With respect to our precedence-constrained PRP, we assume only two item weight

classes. Considering more weight categories could provide further insights into the

performance of the proposed picker routing strategy.

To address our precedence-constrained PRP, other picker routing strategies could

be studied. For instance, a heuristic picker routing strategy that determines the

retrieval sequence when sorting is carried out while picking but is still easy for order

pickers to implement.

Moreover, our problem assumes a one-dimensional stacking system when placing

items in a cardboard box required for shipping the items to the respective cus-

tomer. Because this assumption is only applicable to a few cases in practice, a

three-dimensional stacking system could be considered by future research.

AGV-assisted order picking

Human order picking in cooperation with AGVs is one of the latest warehousing

technologies that is becoming increasingly popular. However, AGV-assistance in

traditional picker-to-parts systems has not yet been su�ciently studied. As men-

tioned earlier, there is currently one publication on AGV-assistance in traditional

picker-to-parts systems. Obviously, there is plenty of room for further scienti�c con-

sideration. For instance, our AOPP could be extended to address other warehouse

layouts (e.g., multi-block parallel-aisle warehouse layouts and chevron warehouse

layouts).

Another extension could concern the routing of AGVs: allowing AGVs to arbi-

trarily travel along the cross aisle instead of a prescribed route (as assumed in this

dissertation) could further increase order picking e�ciency.

Existing item storage assignment strategies such as turnover-based storage and

complementarity-based storage aim at storing frequently requested items in storage

locations that are arranged close to the depot. However, in our AGV-assisted picker-

to-parts system, also the workload of order pickers, which may vary with di�erent
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items storage assignment strategies, could be taken into account. Thus, adapting ex-

isting or developing new item storage assignment strategies for our AOPP is another

interesting �eld for future research.
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Appendix A

Alternative mathematical model for

the AGV-assisted order picking

problem

In the following, we present an alternative mathematical model formulation (AOPP-

BI) for our AOPP. Contrary to the AOPP-BE model presented in Section 5.1,

batches are not generated before solving a test instance in the AOPP-BI. For con-

venience, we reintroduce all necessary notation to make this section self-contained.

Note that M denotes a su�ciently large positive number, which must be at least

as large as the maximum completion time over all batches. However, because the

completion time of a batch is not known before solving a speci�c test instance,

we calculate M based on the worst case scenario according to which a batching of

customer orders is not allowed, and customer orders are sequentially picked, i.e., it

is not possible to process several customer orders simultaneously. Then, M can be

calculated as follows:

M =
∑
o∈O

(
max
i∈V
{roi + woi}+

∑
i∈V

loi + uo + 2· max
i, j∈V0, n+1

{tij}

)
(A.1)

Parameters roi denote the time the order picker requires to pick those items of

customer order o∈O which are stored in her picking aisle i∈V , parameters woi
indicate the time the order picker spends on walking to retrieve the items of customer

order o∈O which are stored in her picking aisle i∈V , parameters loi specify the

time the order picker requires to pass the items of customer order o∈O at handover

xii



location i∈V to the associated AGV, and parameters uo represent the time required

to unload the items of customer order o∈O from the associated AGV. As introduced

above, parameters tij denote the travel time from depot/handover location i∈V0 to

handover location/depot j ∈Vn+1.

Using the notation given in Table A.1, the AOPP-BI can be formulated as a

mixed integer problem consisting of objective function (A.2) and constraints (A.3)

to (A.22) as follows.

0, n+1 depot instances

Sets

B set of (initially) empty batches, where |B|= |O| because there are at most |O| elements in B if each
customer order is de�ned as a single batch (indices: b, d)

O set of customer orders (indices: o, o′)
V set of picking aisles, where each handover location i∈V is identi�ed through the associated picking

aisle i∈V (indices: i, j)
V0 set of depot instance 0 and picking aisles, where V0 =V ∪{0} (indices: i, j)
Vn+1 set of depot instance n+ 1 and picking aisles, where Vn+1 =V ∪{n+1} (indices: i, j)
V0, n+1 set of depot instances and picking aisles, where V0, n+1 =V ∪{0}∪ {n+1} (indices: i, j)

Parameters

co number of items contained in customer order o∈O
C capacity of an AGV
do due date of customer order o∈O
loi time the order picker requires to pass the items of customer order o∈O at handover location i∈V

to the associated AGV
m number of AGVs
M a su�ciently large positive number
roi time the order picker requires to retrieve the items of customer order o∈O which are stored in

picking aisle i∈V
tij time an AGV requires to travel from depot/handover location i∈V0 to depot/handover location

j ∈Vn+1

uo time required to unload the items of customer order o∈O from the associated AGV
woi time the order picker spends on walking to retrieve the items of customer order o∈O which are

stored in picking aisle i∈V
ηoi 1, if depot/handover location i∈V0, n+1 has to be visited by the AGV handling customer order

o∈O; 0, otherwise

Continuous decision variables

abi arrival time of the AGV handling batch b∈B at handover location i∈V
fb completion time of batch b∈B
hbi order picker's start time of passing the items of batch b∈B to the associated AGV at handover

location i∈V
sbi order picker's start time of picking the items of batch b∈B at handover location i∈V
τo tardiness of customer order o∈O

Binary decision variables

αb 1, if batch b∈B is the �rst batch handled by a certain AGV; 0, otherwise
γbi 1, if the depot/handover location i∈V0, n+1 has to be visited by the AGV handling batch b∈B; 0,

otherwise
υbo 1, if customer order o∈O is included in batch b∈B; 0, otherwise
xbij 1, if the AGV handling batch b∈B travels from depot/handover location i∈V0 to depot/handover

location j ∈Vn+1; 0, otherwise
zbd 1, if batch b∈B is handled before batch d∈B by the order pickers; 0, otherwise
ζbd 1, if batch b∈B is handled directly before batch d∈B by a certain AGV; 0, otherwise

Table A.1: Overview of the notation used in the AOPP-BI model.
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minimize
∑
o∈O

τo (A.2)

subject to∑
b∈B

υbo = 1 ∀o∈O (A.3)∑
o∈O

υbo ·co ≤ C ∀b∈B (A.4)∑
o∈O

υbo ·ηoi ≥ γbi ∀b∈B; i∈V0, n+1 (A.5)∑
o∈O

υbo ·ηoi ≤M ·γbi ∀b∈B; i∈V0, n+1 (A.6)∑
j∈Vn+1

j>i

xbij = γbi ∀b∈B; i∈V0 (A.7)

∑
i∈V0

i<j

xbij = γbj ∀b∈B; j∈Vn+1 (A.8)

xb, 0, n+1 ≤ 0 ∀b∈B (A.9)

zbd + zdb = 1 ∀b, d∈B; b 6=d (A.10)

αd +
∑
b∈B
b 6= d

ζbd ≥ γd, 0 ∀d∈B (A.11)

∑
d∈B
d 6= b

ζbd ≤ γb, 0 ∀b∈B (A.12)

∑
b∈B

αb ≤ m (A.13)

hbi +
∑
o∈O

υbo ·loi −M ·(1− zbd) ≤ sdi ∀b, d∈B; b 6=d; i∈V (A.14)

sbi +
∑
o∈O

υbo ·roi + υbo′ ·wo′i ≤ hbi ∀b∈B; o′∈O; i∈V (A.15)

abi ≤ hbi ∀b∈B; i∈V (A.16)

hbi +
∑
o∈O

υbo ·loi + tij −M ·(1− xbij) ≤ abj ∀b∈B; i∈V0; j∈V ; i 6=j (A.17)

fb + t0, i −M ·(2− xd, 0, i − ζbd) ≤ adi ∀b, d∈B; b 6=d; i∈V (A.18)

hbi +
∑
o∈O

υbo ·(loi + uo) + ti, n+1 −M ·(1− xb, i, n+1) ≤ fb ∀b∈B; i∈V (A.19)

fb − do −M ·(1− υbo) ≤ τo ∀b∈B; o∈O (A.20)

abi, fb, hbi, sbi, τo ≥ 0 ∀b∈B; o∈O; i∈V0, n+1 (A.21)

xbij , zbd, αb, γbi, ζbd, υbo ∈ {0, 1} ∀b, d∈B; o∈O; i, j∈V0, n+1 (A.22)

The objective of minimizing the total tardiness of all customer orders is de�ned in
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(A.2). Constraints (A.3) guarantee that each customer order is assigned to exactly

one batch. The capacity of an AGV is considered by satisfying constraints (A.4).

Constraints (A.5) and (A.6) in combination with constraints (A.7) and (A.8) state

that an AGV collecting the items of a batch starts from the depot, drives to the

relevant handover locations from the leftmost to the rightmost, and then returns to

the depot. It is also assured that the relevant handover locations are visited exactly

once on each AGV tour. Constraints (A.9) exclude direct AGV trips between the

depot instances.

Constraints (A.10) de�ne the sequence according to which the batches are to be

processed by the order pickers. The sequence in which the batches are processed by

AGVs is modeled in constraints (A.11), (A.12), and (A.13). Constraints (A.11) en-

force that each selected batch is either the �rst batch or direct predecessor batch of

another batch (or multiple batches) handled by the same AGV. Constraints (A.12)

assure that each selected batch has at most one direct successor batch. Con-

straints (A.13) state that at most one batch can be the �rst batch handled by a

single AGV.

Constraints (A.14) de�ne the order picker's start time of picking the batch items

stored in her picking aisle. If a batch d∈B is not the �rst batch processed by the or-

der picker, we link the order picker's start time of picking the items of batch d∈B to

the time at which the order picker has handed over the items of the direct predecessor

batch b∈B to the associated AGV. Constraints (A.15) and (A.16) guarantee that

the order picker cannot hand over the picked items to the appropriate AGV until (i)

she has returned to the handover location with these items (see constraints (A.15)),

and (ii) the AGV has arrived at her handover location (see constraints (A.16)).

Constraints (A.17) determine the arrival time of the AGV handling batch b∈B at

each handover location j ∈V . Constraints (A.18) link the arrival time of the AGV

handling batch d∈B at handover location i∈V to the completion time of batch

b∈B (plus the time the AGV requires to travel from the depot to handover location

i∈V ) if the following holds: (i) batch b∈B is handled by the same AGV as batch

d∈B, and (ii) batch b∈B is processed before batch d∈B by the AGV. Constraints

(A.19) compute the completion time for each batch b∈B, and constraints (A.20)

calculate the tardiness for each customer order o∈O. Finally, the continuous de-

cision variables and the binary decision variables are de�ned in constraints (A.21)

and (A.22), respectively.
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Appendix B

Detailed computational results of the

comparison methods on small

instances of our AGV-assisted order

picking problem

In the following, we provide detailed computational results for each of the small-

sized instances. Results are aggregated by the number of customer orders (5, 6, and

7) in Tables B.1�B.3. In the �rst column, we give the instance name. For CPLEX

and ALNS/NEH, the table reports the total tardiness of all customer orders (column

τ) and the average runtime in seconds (column t (s)). Note that CPLEX is given a

solution time limit of 1800 seconds, so optimality of the reported solutions is proven

by CPLEX whenever t< 1800 holds.
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Instance CPLEX ALNS/NEH

τ t (s) τ t (s)

5orders1agv6capacity-1 70 72.3 70 0.085

5orders1agv6capacity-2 103 52.3 103 0.028

5orders1agv6capacity-3 92 47.0 92 0.011

5orders1agv6capacity-4 220 52.3 220 0.011

5orders1agv6capacity-5 232 43.0 232 0.006

5orders1agv6capacity-6 61 63.4 61 0.082

5orders1agv6capacity-7 226 39.2 226 0.022

5orders1agv6capacity-8 210 118.0 210 0.013

5orders1agv6capacity-9 629 104.3 629 0.008

5orders1agv6capacity-10 112 27.0 112 0.007

5orders1agv8capacity-1 136 130.7 136 0.071

5orders1agv8capacity-2 191 42.1 191 0.018

5orders1agv8capacity-3 53 19.1 53 0.005

5orders1agv8capacity-4 319 66.9 319 0.005

5orders1agv8capacity-5 42 84.6 42 0.006

5orders1agv8capacity-6 41 46.3 41 0.005

5orders1agv8capacity-7 514 47.0 514 0.013

5orders1agv8capacity-8 146 42.6 146 0.020

5orders1agv8capacity-9 297 45.7 297 0.015

5orders1agv8capacity-10 10 43.7 10 0.006

5orders2agvs6capacity-1 237 11.5 237 0.009

5orders2agvs6capacity-2 0 1.7 0 0.006

5orders2agvs6capacity-3 58 15.8 58 0.007

5orders2agvs6capacity-4 216 13.8 216 0.004

5orders2agvs6capacity-5 61 15.6 61 0.006

5orders2agvs6capacity-6 404 23.4 404 0.005

5orders2agvs6capacity-7 137 30.8 137 0.011

5orders2agvs6capacity-8 196 11.1 196 0.014

5orders2agvs6capacity-9 62 14.4 62 0.008

5orders2agvs6capacity-10 0 2.1 0 0.016

5orders2agvs8capacity-1 34 14.7 34 0.020

5orders2agvs8capacity-2 184 12.6 184 0.006

5orders2agvs8capacity-3 15 11.8 15 0.014

5orders2agvs8capacity-4 4 32.9 4 0.005

5orders2agvs8capacity-5 87 10.2 87 0.005

5orders2agvs8capacity-6 51 12.3 51 0.005

5orders2agvs8capacity-7 203 5.7 203 0.018

5orders2agvs8capacity-8 239 24.9 239 0.007

5orders2agvs8capacity-9 313 28.6 313 0.009

5orders2agvs8capacity-10 312 23.1 312 0.007

Table B.1: Comparison of the results obtained with CPLEX and ALNS/NEH on the
small-sized instances assuming �ve customer orders. The table reports the name of
the instance (column Instance), the total tardiness of all customer orders (column
τ), and the average runtime in seconds (column t (s)). CPLEX is given a solution
time limit of 1800 seconds, so optimality is not guaranteed for the results which
consumed the full time.
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Instance CPLEX ALNS/NEH

τ t (s) τ t (s)

6orders1agv6capacity-1 497 1800.0 497 0.089

6orders1agv6capacity-2 647 1800.0 647 0.037

6orders1agv6capacity-3 1057 1800.0 1057 0.007

6orders1agv6capacity-4 1170 1800.0 1170 0.008

6orders1agv6capacity-5 607 1800.0 607 0.004

6orders1agv6capacity-6 293 1800.0 293 0.010

6orders1agv6capacity-7 849 1800.0 849 0.011

6orders1agv6capacity-8 845 1800.0 845 0.018

6orders1agv6capacity-9 1123 1800.0 1123 0.015

6orders1agv6capacity-10 794 1800.0 794 0.011

6orders1agv8capacity-1 267 1800.0 267 0.040

6orders1agv8capacity-2 102 1800.0 102 0.007

6orders1agv8capacity-3 403 1800.0 403 0.015

6orders1agv8capacity-4 92 1800.0 92 0.008

6orders1agv8capacity-5 224 1800.0 224 0.015

6orders1agv8capacity-6 168 1800.0 168 0.006

6orders1agv8capacity-7 186 1800.0 186 0.005

6orders1agv8capacity-8 527 1800.0 527 0.008

6orders1agv8capacity-9 319 1800.0 319 0.022

6orders1agv8capacity-10 0 8.8 0 0.017

6orders2agvs6capacity-1 217 949.5 217 0.032

6orders2agvs6capacity-2 4 313.8 4 0.010

6orders2agvs6capacity-3 5 485.6 5 0.007

6orders2agvs6capacity-4 303 1746.8 303 0.009

6orders2agvs6capacity-5 137 1800.0 137 0.007

6orders2agvs6capacity-6 357 1800.0 357 0.013

6orders2agvs6capacity-7 247 1125.2 247 0.013

6orders2agvs6capacity-8 0 4.6 0 0.017

6orders2agvs6capacity-9 0 3.5 0 0.020

6orders2agvs6capacity-10 58 1600.3 58 0.011

6orders2agvs8capacity-1 0 3.6 0 0.089

6orders2agvs8capacity-2 173 540.5 173 0.040

6orders2agvs8capacity-3 152 1800.0 152 0.008

6orders2agvs8capacity-4 53 789.3 53 0.007

6orders2agvs8capacity-5 25 116.4 25 0.027

6orders2agvs8capacity-6 98 384.4 98 0.012

6orders2agvs8capacity-7 292 1800.0 292 0.019

6orders2agvs8capacity-8 304 684.2 304 0.016

6orders2agvs8capacity-9 18 181.8 18 0.007

6orders2agvs8capacity-10 94 395.7 94 0.015

Table B.2: Comparison of the results obtained with CPLEX and ALNS/NEH on
the small-sized instances assuming six customer orders. The table reports the name
of the instance (column Instance), the total tardiness of all customer orders (column
τ), and the average runtime in seconds (column t (s)). CPLEX is given a solution
time limit of 1800 seconds, so optimality is not guaranteed for the results which
consumed the full time.
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Instance CPLEX ALNS/NEH

τ t (s) τ t (s)

7orders1agv6capacity-1 860 1800.0 860 0.135

7orders1agv6capacity-2 10 1800.0 10 0.028

7orders1agv6capacity-3 222 1800.0 222 0.009

7orders1agv6capacity-4 42 1800.0 42 0.014

7orders1agv6capacity-5 709 1800.0 709 0.023

7orders1agv6capacity-6 200 1800.0 200 0.019

7orders1agv6capacity-7 503 1800.0 503 0.010

7orders1agv6capacity-8 0 2.6 0 0.009

7orders1agv6capacity-9 63 1800.0 63 0.019

7orders1agv6capacity-10 264 1800.0 264 0.025

7orders1agv8capacity-1 633 1800.0 633 0.033

7orders1agv8capacity-2 310 1800.0 310 0.018

7orders1agv8capacity-3 565 1800.0 565 0.012

7orders1agv8capacity-4 37 1800.0 37 0.005

7orders1agv8capacity-5 272 1800.0 272 0.013

7orders1agv8capacity-6 216 1800.0 216 0.009

7orders1agv8capacity-7 536 1800.0 536 0.020

7orders1agv8capacity-8 188 1800.0 188 0.013

7orders1agv8capacity-9 103 1800.0 103 0.010

7orders1agv8capacity-10 94 1800.0 94 0.008

7orders2agvs6capacity-1 597 1800.0 597 0.047

7orders2agvs6capacity-2 304 1800.0 304 0.010

7orders2agvs6capacity-3 920 1800.0 920 0.016

7orders2agvs6capacity-4 147 1800.0 147 0.014

7orders2agvs6capacity-5 0 2.7 0 0.015

7orders2agvs6capacity-6 250 1800.0 250 0.022

7orders2agvs6capacity-7 133 1800.0 133 0.015

7orders2agvs6capacity-8 328 1800.0 328 0.019

7orders2agvs6capacity-9 0 7.3 0 0.022

7orders2agvs6capacity-10 0 2.1 0 0.010

7orders2agvs8capacity-1 95 1800.0 95 0.105

7orders2agvs8capacity-2 456 1800.0 456 0.010

7orders2agvs8capacity-3 281 1800.0 281 0.015

7orders2agvs8capacity-4 285 1800.0 285 0.010

7orders2agvs8capacity-5 76 1800.0 76 0.013

7orders2agvs8capacity-6 65 1800.0 65 0.017

7orders2agvs8capacity-7 879 1800.0 879 0.027

7orders2agvs8capacity-8 176 1800.0 176 0.014

7orders2agvs8capacity-9 658 1800.0 658 0.014

7orders2agvs8capacity-10 170 1800.0 170 0.048

Table B.3: Comparison of the results obtained with CPLEX and ALNS/NEH on
the small-sized instances assuming seven customer orders. The table reports the
name of the instance (column Instance), the total tardiness of all customer orders
(column τ), and the average runtime in seconds (column t (s)). CPLEX is given a
solution time limit of 1800 seconds, so optimality is not guaranteed for the results
which consumed the full time.
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