
 Eindhoven University of Technology

MASTER

Learning to Be Efficient and Fair for Collaborative Order Picking

Smit, Igor G.

Award date:
2023

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b8f46d42-b838-4f66-a0aa-64c8c9d0c89f

Department of Industrial Engineering and Innovation Sciences
Department of Mathematics and Computer Science

Learning to Be Efficient and Fair for Collaborative

Order Picking

Master Thesis

I.G. (Igor) Smit

In partial fulfillment of the requirements for the degrees of:
Master of Science in Operations Management and Logistics

Master of Science in Data Science in Engineering

Supervisors:
dr. Z.A. (Zaharah) Bukhsh (TU/e)

dr. Y. (Yingqian) Zhang (TU/e)
prof. dr. M. (Mykola) Pechenizkiy (TU/e)

K. (Kostas) Alogariastos, PDEng (Vanderlande)
ir. K. (Kasper) Hendriks (Vanderlande)

Student ID: 1252569

Eindhoven, July 9, 2023

Abstract

Collaborative order picking is a system concept in which human pickers and Autonomous Mo-
bile Robots (AMRs) travel independently through a warehouse. These pickers and vehicles meet
at pick locations so that pickers can load items onto the AMRs. To ensure the efficiency of this
process, a method is needed that allocates the pickers to pick locations. This method must
handle uncertainty and disruptions to make online decisions in dynamic environments. In addi-
tion, the method must ensure a fair workload distribution over the human pickers. Oppositely,
current methods in collaborative order picking literature consider deterministic one-shot solu-
tion approaches that do not consider randomness. Moreover, they do not incorporate workload
fairness. Therefore, in this study, we propose a novel deep reinforcement learning approach to
sequentially allocate pickers to pick locations in a collaborative order picking system with con-
siderations of pick efficiency and workload fairness. In this approach, we model the warehouse
states using a graph. We define a custom network architecture that uses aisle-embeddings to
capture regional information and feature separation to extract information from efficiency and
workload features efficiently. To find sets of policies that outline the potential trade-offs between
efficiency and fairness, we apply a multi-objective deep reinforcement learning approach. We
develop a discrete-event simulation model, which we use to train and evaluate our approach.
Our experiments show substantial efficiency improvements of up to 40% over the benchmark
methods. In addition, we find non-dominated policy sets that outline good trade-offs between
fairness and efficiency. Namely, we can considerably increase workload fairness without sacri-
ficing much performance. As a result, the multi-objective policy sets contain multiple policies
that outperform the benchmarks on fairness and efficiency. For large warehouses, we achieve
policies that improve efficiency by 20% while reducing the workload standard deviation by 90%
compared to the existing company benchmark. Based on these results, we suggest starting the
development toward real-world implementation of our deep reinforcement learning policies.

i

Executive Summary

Research Motivation

In this study, we investigated the problem of optimizing the sequential allocation of human
pickers to orders at pick locations in a collaborative order picking system. We conducted this
study in collaboration with Vanderlande. Vanderlande is a global market leader in future-proof
logistic process automation at airports and a leading supplier of warehouse process automation
solutions. They are currently developing a new collaborative order picking concept. In this
concept, pickers and automated vehicles travel through warehouses independently and meet at
pick locations where pickers grab items from the shelve and place them on the vehicles. This
method can lead to increased pick capacity of the system.

To achieve a higher pick capacity in this system, Vanderlande requires a method to assign pick-
ers to the pick locations. Existing works in collaborative picking literature propose methods that
consider deterministic scenarios without randomness or uncertainty, and they provide complete
solutions in one go. However, in practice, the systems are highly dynamic, random delays can
occur, and congestion can change the timing of picks. Therefore, we required an online opti-
mization method that can deal with randomness and uncertainty and can allocate pickers while
considering the real-time status of the system.

In collaborative order picking systems, human pickers must lift and move many items, which
can be heavy labor. If some pickers must pick much larger workloads than others, this can put
a considerable physical and mental strain on them. This can lead to worse performance and
injuries, eventually. Therefore, ensuring workload fairness is a second important consideration
in our study besides efficiency.

Based on the above considerations, we developed a method that fulfills these needs. Hence, in
this study, we answered the following research question.

How can we solve the problem of sequentially allocating pickers to orders in a collaborative
order picking system with performance considerations in terms of pick efficiency and workload

fairness?

Methodology

We proposed a deep reinforcement learning method to solve this problem. To train and evaluate
this method, we developed a discrete-event simulation. We included uncertainty, disruptions,
congestion, and real product data to mimic the complexity of real-world processes.

In our deep reinforcement learning approach, we modeled warehouses using a graph representa-
tion, with nodes representing the locations in the warehouse and edges indicating how pickers
can travel between these nodes. In this graph representation, nodes contained features that
describe the active system status. We used two feature categories, efficiency features and work-
load fairness features. We trained and evaluated policies for single-objective optimization on
efficiency and used a multi-objective algorithm to learn multi-objective policy sets, which out-

ii

line several trade-offs between fairness and performance. The rewards we defined to learn these
policies were based on the two objectives. First, we defined a penalty for the time that passed.
Second, for fairness, we defined a penalty for increasing standard deviations of the workloads
carried by the pickers. The smaller this standard deviation is, the more equal the workloads are
and the fairer the solution is.

To enable the training of well-performing policies, we defined our own neural network architec-
tures that capture regional information in the warehouse graphs well. Traditional graph neural
networks struggle to capture the long-distance relations in warehouse graphs. Therefore, we
proposed a network architecture based on natural warehouse regions formed by aisles. This
network architecture uses so-called aisle-embeddings that capture aggregated information from
an entire warehouse aisle. By combining this aisle information with the node information, the
network learns to value possible actions based on local and regional features. In addition, for
multi-objective learning, we implemented a feature separation structure in which the fairness
and efficiency representations are only combined after initial high-level representations have
been developed.

We trained policies for multiple warehouse sizes and evaluated their performance. We also
tested how well the learned policies transfer to different warehouse sizes and different numbers
of pickers and vehicles in the warehouses. Good transferability, especially for different pickers
and vehicles, is desired for practical adoption.

Results

In the experiments, we found that our approach could learn good policies that offer substantial
efficiency and workload fairness improvements over the current methods used by Vanderlande.

First, our policies focussing purely on efficiency consistently achieved improved order completion
times over the benchmark policies. For large warehouse instances with 35 aisles and 2800 pick
locations, our method achieved efficiency improvements of up to 40% over the method that
Vanderlande currently considers, while for smaller warehouses, the improvements were generally
over 20%. The learned policies adapted well to changing numbers of pickers and Autonomous
Mobile Robots (AMRs) in the warehouses, as well as warehouses with different sizes and product
locations. Thus, the policies are generally adaptable and do not need to be retrained or changed
for each change in warehouse layouts or product distribution. By visually inspecting several
problem instances, we found that our policies keep a better spread of pickers through the
warehouse than the benchmark methods, preventing congestion and making more efficient use
of the resources. As our policies also handle smaller picker and AMR numbers well, they can
be used to not only increase efficiency but also decrease costs while maintaining efficiency.
We estimate the potential salary cost savings to be roughly e2.5 million per year for a large
warehouse running 16 hours per day, compared to the Vanderlande benchmark.

Aside from efficiency, we showed that our multi-objective method could achieve policies that
balance fairness and efficiency well. We showed that we can create sets of policies that outline
the trade-offs between the two objectives. Through this method, we offer insights to decision-
makers regarding the possible policy options so they can make informed decisions about which
policy they desire to use. These policy sets showed that we could significantly improve workload
fairness while only sacrificing limited efficiency performance. As a result, the policy sets all
contained multiple policies that increased both efficiency and workload fairness compared to the
benchmarks. For instance, on the large warehouses, we found a policy that improved the total
picking times by 23.6% compared to the current method by Vanderlande while simultaneously
reducing the workload standard deviation by 92%. The transferability of these methods to
changing parameters such as picker and AMR numbers and warehouse sizes was also good.

In addition, we evaluated how to create more understandable policies. We found that decision

iii

tree policies with deep trees concede a small efficiency loss and a slightly bigger fairness loss
compared to the reinforcement learning policies. On the other hand, they are interpretable
to some extent and provide insights into a guaranteed, fixed set of rules that are applied.
Shallow decision trees did not perform well. Thus, decision-makers can decide whether the
interpretability of deep decision trees adds sufficient value to compensate for the performance
loss.

Conclusions and Recommendations

We conclude that our method generates picker allocation policies that significantly outperform
the existing methods in efficiency and workload fairness. Using the multi-objective approach,
we can provide policy sets that outline the trade-offs between the two such that decision-makers
can make informed decisions on which policy to use based on their preferences.

Therefore, we recommend that Vanderlande integrates our deep reinforcement learning policies
into their collaborative order picking concept. To do so, the policies should be considered a core
consideration in further developing the collaborative picking concept. We advise starting this
integration as soon as possible such that it gets incorporated into the further development of
the collaborative picking systems. This allows for a thorough exploration of the hardware and
software requirements in the development process, such as selecting which AMRs to use and
how to trace the pickers. By starting the development toward real-world implementation, the
relevant real-world considerations, barriers, and chances can be understood and managed, and
Vanderlande can start its journey toward successfully integrating deep reinforcement learning
approaches in real-time decision-making.

iv

Preface

I am proud to present this master thesis, which has been the culmination of my academic journey
at the TU/e. Six years ago, I started as a 17-year-old boy with little idea of the great interests
that I would develop during my study. Through the past years, I have grown into someone with
a passion for real-world problem-solving, optimization, and AI. I am grateful that I have been
able to combine these topics in this thesis.

I want to express my gratitude to my university supervisors, dr. Zaharah Bukhsh, dr. Yingqian
Zhang, and prof. dr. Mykola Pechenizkiy, for their excellent guidance. I could not have wished
for a better group of supervisors. Dr. Bukhsh, our weekly meetings have been of great help
to me during the past year. Your knowledge of the field, supportive feedback, and ability to
ask the right questions have allowed me to get the best out of this study. Dr. Zhang, I am
grateful for your willingness to supervise me. Your passion for research, collaborative spirit, and
dedication to pushing the limits have helped me tremendously to shape this project into what
it is. Dr. Pechenizkiy, I am thankful for the opportunity to allow me to align this project with
my interests. Your insightful questions and coherent comments during our meetings have helped
me take a step back and evaluate the core aspects of my study.

I am equally thankful to my company supervisors, Kostas Alogariastos and Kasper Hendriks.
You have been of great help in finding my way within Vanderlande. Your expertise, practical
insights, and unwavering support have helped me bridge the gap between theory and practice.
Due to your trust and flexibility, I have been able to freely explore my ideas and follow my
vision for the project.

I also want to express my love and appreciation to my parents, sister, and girlfriend for their
unconditional support. I greatly value your encouragement, interest in my work, and willingness
to listen whenever I wanted to share the highlights or barriers I encountered. I could not be
more grateful.

Furthermore, I want to thank my friends, co-students, and great group partners that I have
had over the years. The dream team from the IE bachelor, the OML boys with whom I have
experienced great times and memorable meetings during the study-from-home period, the dual-
degree friends with whom I have also been able to publish my first scientific article, and my
friends from home. You have all contributed to the amazing time that I have had as a student,
and I will cherish the moments that we shared.

Finally, I want to thank those who will read this thesis. I hope to share with you not only
valuable insights but also an experience of the remarkable journey that this work has been.

Igor Smit

v

Contents

List of Tables ix

List of Figures xi

Acronyms xiii

1 Introduction 1
1.1 Company Background . 2
1.2 Research Motivation . 3
1.3 Research Questions . 4
1.4 Contributions . 5

2 Problem Statement 6
2.1 Mathematical Formulation . 7
2.2 Assumptions and Scope . 9

3 Background 11
3.1 Deep Reinforcement Learning . 11

3.1.1 Agent-Environment Interaction . 11
3.1.2 Markov Decision Process . 11
3.1.3 Finding an Optimal Policy . 12
3.1.4 Deep Reinforcement Learning Approaches 13

3.2 Multi-Objective Reinforcement Learning . 15
3.2.1 Multi-Objective Markov Decision Process 15
3.2.2 Optimal Policies in Multi-Objective Optimization 15

3.3 Learning on Graphs . 16
3.3.1 Graph Fundamentals . 16
3.3.2 Graph Neural Networks . 17

4 Literature Review 19
4.1 Collaborative Picking . 19

4.1.1 Human Factor in Collaborative Picking 21
4.1.2 Workload Measurement . 22

4.2 Multi-Objective Deep Reinforcement Learning Methods 22
4.3 Deep Reinforcement Learning for Related Problems 26

4.3.1 Online Bipartite Matching . 26
4.3.2 Vehicle Routing Problem . 27
4.3.3 Dispatching Problem . 27

4.4 Fairness . 28
4.4.1 Defining Fairness . 28
4.4.2 Fair Deep Reinforcement Learning . 30

vi

CONTENTS

4.4.3 Fairness in Optimization . 31
4.5 Synthesis and Research Gap . 35

5 Methodology 37
5.1 Simulation Model . 37

5.1.1 Warehouse . 37
5.1.2 Picker Process . 39
5.1.3 AMR Process . 40

5.2 Deep Reinforcement Learning Approach . 42
5.2.1 Markov Decision Process . 42
5.2.2 Learning Algorithm . 48
5.2.3 Deep Reinforcement Learning Agent . 50

6 Experiment Setup 54
6.1 Warehouse Settings . 54
6.2 Benchmark Methods . 55
6.3 Efficiency Optimization . 55

6.3.1 Network Architectures . 56
6.3.2 Learning Algorithm . 56
6.3.3 Experiment Description . 56

6.4 Multi-Objective Optimization . 58
6.4.1 Network Architectures . 59
6.4.2 Learning Algorithm . 59
6.4.3 Experiment Description . 60

7 Results 62
7.1 Efficiency Optimization . 62

7.1.1 Performance Evaluation on Fixed Warehouse Sizes 62
7.1.2 Picker/AMR Transferability . 63
7.1.3 Warehouse Size Transferability . 63
7.1.4 Deterministic Instance Evaluation . 65
7.1.5 Architecture Comparison . 66

7.2 Multi-Objective Optimization . 67
7.2.1 Performance Evaluation on Fixed Warehouse Sizes 67
7.2.2 Picker/AMR Transferability . 70
7.2.3 Warehouse Size Transferability . 74
7.2.4 Architecture Comparison . 77

7.3 Synthesis . 79

8 Policy Analysis 81
8.1 Decision Tree Analysis . 81

8.1.1 Decision Tree Training . 82
8.1.2 Decision Tree Interpretation . 82
8.1.3 Decision Tree Policy Analysis . 87

8.2 Inspecting Policy Behavior . 92

9 Conclusions and Recommendations 97
9.1 Main Findings . 97
9.2 Business Recommendations . 98
9.3 Limitations and Future Research . 99

Bibliography 101

vii

CONTENTS

Appendices 112

A Expanded Mathematical Formulation 113

B Simulation Data Distributions 115

C Snapshot of Decision Tree Data 118

D Grid Search Results for Decision Tree Analysis 120

E Decision Tree Figures 144

viii

List of Tables

4.1 An overview of existing multi-objective DRL methods. 23
4.2 Overview of existing methods considering fairness in optimization problems. . . . 33

6.1 Overview of the warehouse types considered in the experiments. 55

7.1 Performance evaluation of DRL, greedy, and VI Benchmark policies on picking
efficiency. 62

7.2 Performance of DRL policies trained for efficiency on warehouse types S, M, and
L, given varying other combinations of the number of pickers and AMRs within
their respective warehouse sizes. 64

7.3 Performance of DRL policies trained on specific warehouse sizes when evaluated
on a variety of warehouse sizes. 65

7.4 Comparison of DRL, greedy, and VI benchmark performance versus the best so-
lutions found by the MILP solver for multiple small warehouse instances without
randomness and uncertainty. 66

7.5 Performance comparison of policies with different network architectures, focused
on picking efficiency. 66

7.6 Inference time of DRL policies with different network architectures. 67
7.7 Performance of the non-dominated set of multi-objective policies learned on dif-

ferent warehouse types. 68
7.8 Performance of multi-objective DRL policies trained on warehouse type S and

L, given varying combinations of the number of pickers and AMRs within their
respective warehouse sizes. 73

7.9 Performance of multi-objective DRL policies when evaluated on various ware-
house sizes. 75

7.10 Comparison of the performance of policies with different network architectures,
trained using a weighted-sum reward between performance and fairness for vari-
ous warehouse sizes and weight combinations for performance and fairness. . . . 78

7.11 Inference time of multi-objective DRL policies with different network architectures. 79

8.1 Overview of the hyperparameters of the best decision tree for each policy and
the R2 scores for the best and the shallow decision trees. 83

8.2 Comparison of performance of DRL policies and their associated best and shallow
decision tree policies on warehouse type S. 87

8.3 Comparison of performance of DRL policies and the associated best decision tree
policies on warehouse type S with varying numbers of pickers and AMRs. 90

8.4 Comparison of performance of DRL policies and the associated best decision tree
policies that were trained on warehouse type S on other warehouse types. 91

C.1 Snapshot of 5 rows of the dataset used to train the decision tree for the pure
performance policy. 119

ix

LIST OF TABLES

D.1 Grid search results for the decision tree analysis of policy 1. 120
D.2 Grid search results for the decision tree analysis of policy 2. 123
D.3 Grid search results for the decision tree analysis of policy 3. 126
D.4 Grid search results for the decision tree analysis of policy 4. 129
D.5 Grid search results for the decision tree analysis of policy 5. 132
D.6 Grid search results for the decision tree analysis of policy 6. 135
D.7 Grid search results for the decision tree analysis of the pure performance policy. . 138
D.8 Grid search results for the decision tree analysis of the pure fairness policy. . . . 141

x

List of Figures

1.1 Snapshot of a warehouse. 4

3.1 The agent–environment interaction in RL. 12

5.1 Illustration of the considered warehouse parameters. 38
5.2 Illustration of the undirected graph representation of a warehouse. 38
5.3 Overview of the picker process in the simulation model. 40
5.4 Overview of the AMR process in the simulation model. 41
5.5 Illustration of the cycle within which the picker optimizer agent must act. 43
5.6 Illustration of the aisle-embedding architecture. 51
5.7 Illustration of the critic network architecture for single-objective learning. 51
5.8 Illustration of the actor for multi-objective learning, combining feature separation

with the aisle-embedding architecture. 52
5.9 Illustration of the critic for multi-objective learning, using feature separation. . . 53

7.1 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type S. 69

7.2 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type M. 69

7.3 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type L. 69

7.4 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type S when evaluated with 7 pickers and 15 AMRs. 71

7.5 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type S when evaluated with 10 pickers and 30 AMRs. 71

7.6 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type S when evaluated with 15 pickers and 35 AMRs. 71

7.7 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type L when evaluated with 25 pickers and 60 AMRs. 72

7.8 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type L when evaluated with 30 pickers and 100 AMRs. 72

7.9 Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type L when evaluated with 40 pickers and 110 AMRs. 72

7.10 Performance of multi-objective DRL policies trained on different warehouse sizes
when evaluated on warehouse size S. 76

7.11 Performance of multi-objective DRL policies trained on different warehouse sizes
when evaluated on warehouse size M. 76

7.12 Performance of multi-objective DRL policies trained on different warehouse sizes
when evaluated on warehouse size L. 76

7.13 Performance of multi-objective DRL policies trained on different warehouse sizes
when evaluated on warehouse size XL. 77

xi

LIST OF FIGURES

8.1 Illustration of decision tree policy. 82
8.2 Shallow decision tree for the pure performance policy. 85
8.3 Shallow decision tree for the pure fairness policy. 85
8.4 Shallow decision tree for multi-objective policy 2. 86
8.5 Performance evaluation of decision tree policies. 87
8.6 Performance evaluation of decision tree policies on warehouses with 7 pickers and

15 AMRs. 89
8.7 Performance evaluation of decision tree policies on warehouses with 10 pickers

and 30 AMRs. 89
8.8 Performance evaluation of decision tree policies on warehouses with 15 pickers

and 35 AMRs. 89
8.9 Performance of decision tree policies trained on warehouse type S when evaluated

on warehouse type M. 92
8.10 Performance of decision tree policies trained on warehouse type S when evaluated

on warehouse type L. 92
8.11 Snapshots of the policy visualization of the greedy policy. 94
8.12 Snapshots of the policy visualization of the VI benchmark policy. 95
8.13 Snapshots of the policy visualization of the DRL policy. 96

B.1 Distribution of the occurrences of pick frequencies used in the simulation model. 115
B.2 Distribution of product masses. 116
B.3 Distribution of product volumes. 116
B.4 Histogram of the expected pick times of 100,000 sampled combinations of prod-

ucts and number of picked items. 117
B.5 Histogram of the expected pick times of combinations of products and number

of picked items from the real order data. 117

E.1 Shallow decision tree for multi-objective policy 1. 145
E.2 Shallow decision tree for multi-objective policy 3. 146
E.3 Shallow decision tree for multi-objective policy 4. 147
E.4 Shallow decision tree for multi-objective policy 5. 148
E.5 Shallow decision tree for multi-objective policy 6. 149

xii

Acronyms

AGV Automated Guided Vehicle. 20

AI Artificial Intelligence. 28

AMR Autonomous Mobile Robot. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 21, 27, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 54, 55, 57, 58, 60, 63, 64, 70, 71, 72, 73, 74, 79, 80, 83, 88, 89, 90, 91,
92, 93, 97, 98, 99, 113, 114

DDPG Deep Deterministic Policy Gradient. 14, 26

DQN Deep Q-Network. 14, 24, 25, 26, 28

DRL Deep Reinforcement Learning. 2, 4, 5, 11, 13, 14, 15, 16, 19, 22, 23, 24, 26, 27, 28, 30,
31, 35, 36, 37, 42, 46, 49, 51, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 67, 70, 73, 75, 76, 77,
79, 80, 81, 82, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100

GCN Graph Convolutional Network. 17, 58, 66, 67

GIN Graph Isomorphism Network. 17, 18, 58, 66, 67

MDP Markov Decision Process. 11, 12, 13, 15, 25

MILP Mixed-Integer Linear Programming. 19, 20, 21, 31, 32, 33, 34, 35, 57, 65, 66, 79

MOMDP Multi-Objective Markov Decision Process. 15, 23, 26, 30, 37, 42, 47, 48

PGMORL Prediction-Guided Multi-Objective Reinforcement Learning. 48, 49, 50, 59, 60, 67,
79, 97

PPO Proximal Policy Optimization. 14, 25, 26, 28, 34, 48, 49, 50, 56, 59, 61, 97

RL Reinforcement Learning. 11, 12, 13, 15, 21, 22, 24, 26, 27, 28, 29, 30, 31, 34, 47, 48, 49

TLO Thresholded Lexicographic Ordering. 24, 25

xiii

Chapter 1

Introduction

Order picking is one of the most fundamental and costly processes in logistics systems. In
conventional warehouses, up to 90% of time can be spent on picking, and 55% of all operating
costs can be attributed to order picking processes (Dukic & Oluic, 2007). Thus, optimizing order
picking processes is crucial to achieving cost savings and increased efficiency. If the efficiency is
poor, this leads to delayed deliveries and, hence, customer dissatisfaction.

Most warehouses use a picker-to-parts picking system, in which pickers retrieve items from racks
and deliver those items to dedicated drop-off locations. These systems, however, are labor-
intensive. Besides, pickers spend a large portion of their time traveling from and to drop-off
locations. With increased scarcity of personnel as well as more demanding delivery expectations,
it is crucial to prevent such waste of valuable human resources. As indicated by Caputo and
Pelagagge (2006), Industry 4.0 technology can be used to improve warehouse operations.

To reduce the dependence on human pickers, Autonomous Mobile Robots (AMRs) can be used.
As Srinivas and Yu (2022) explained, these have several advantages over human pickers. First,
they can navigate freely without needing a predetermined path or operator supervision while
also being safe due to their sensors and onboard computers. Second, they can carry higher loads
and travel faster than humans while not getting fatigued. Third, they can easily be integrated
into existing warehouses and allow for up- or down-scaling. On the downside, the gripping
capabilities of robots are inferior to those of humans, and initial investment costs are high.

Collaborative picking systems have been proposed to combine the advantages of AMRs and
humans. In these systems, human pickers and AMRs all traverse through the warehouse. The
pickers and AMRs must meet at picking locations, where the pickers grab the items and place
them onto the AMRs. Once filled, the AMRs can deliver items to the drop-off location while
the pickers continue picking with other AMRs. This allows pickers to spend more time on their
strength, which is picking, while AMRs perform the traveling in which they have the advantage.

Due to their integration into existing warehouses, collaborative picking systems are promising
for all industries that use picker-to-parts warehouses. For example, e-commerce companies can
use such systems to continue meeting increasing demands. In addition, warehouses with a high
product variety, such as supermarket fulfillment centers, can benefit from collaborative picking
solutions since they cannot depend on robots to grab a wide range of items. Hence, in recent
years, increasing attention has been directed toward collaborative picking in both industry and
research.

Existing works in collaborative picking have focused on several aspects of the problem, ranging
from layout design to order batching and human-robot interaction. Picker routing and allocation
have also been studied by various authors, such as Srinivas and Yu (2022) and Žulj et al.

1

CHAPTER 1. INTRODUCTION

(2022). However, these works all consider deterministic scenarios in which no randomness or
uncertainty is taken into account. Oppositely, in practice, many uncertainty factors exist, and
congestion and delays can influence the process heavily. Additionally, current methods consider
limited warehouse sizes with limited numbers of orders, while in real warehouses, thousands of
orders are picked. Hence, to facilitate adoption in practice, a method is needed that can handle
uncertainty and disruptions and can be used in large warehouse systems.

Another consideration that has not been addressed in current collaborative picking methods,
and has received limited attention in operations management in general, is workload fairness.
While order pickers have to perform heavy labor, little attention has been paid to how this labor
is distributed. Unfair labor distribution can increase the chances of injuries. Besides, it can cause
mental strain. Namely, as noted by Pasparakis et al. (2021), human performance is affected by
the mental state and their co-workers’ work. Hence, unfair workload distribution may not only
lead to some workers having increased physical strain, but it may also have adverse effects
on the workers’ mental state. This, in turn, can negatively impact the workers’ well-being, as
well as their long-term performance. In addition, having unfair workload distribution can cause
some workers to exceed the legally allowed workload limits. Thus, another concern that is not
considered in current methods is workload fairness.

In this study, we propose a Deep Reinforcement Learning (DRL) approach to optimize the
allocation of human order pickers to picking tasks in collaborative order picking to tackle the
mentioned shortcomings of current methods. Previously, DRL has been applied to solve dynamic
decision-making problems with uncertainty in a variety of topics, such as the game of Go (Silver
et al., 2016), robotic learning (Gu et al., 2017), and machine scheduling (Song et al., 2023).
Continuing upon these successes, we show how DRL can be applied to create an online picker
optimizer policy that can handle uncertainty and extend to larger warehouses and long picking
horizons with thousands of picks.

Whereas regular DRL has been applied to many problems, multi-objective DRL methods have
not been adequately tested in practical applications. We extend our solution approach to multi-
objective DRL to address both performance and workload fairness and explore their trade-
offs. We show which trade-offs can be achieved in various warehouse sizes and with varying
picker/AMR-ratios using a discrete-event simulation that we developed. Our study is one of
the first to apply and evaluate a multi-objective DRL method in a practical use case. Besides,
modeling fairness as an explicit objective within multi-objective DRL and exploring its trade-offs
has not been done before.

1.1 Company Background

We conducted this study in collaboration with Vanderlande. Vanderlande is one of the companies
interested in collaborative order picking solutions. They are the global market leader for future-
proof logistic process automation at airports. In addition, the company is a leading supplier of
process automation solutions for warehouses and the parcel market.

The company focuses on optimizing its customers’ business processes and competitive positions.
Through close cooperation, it strives for the improvement of its operational activities and the
expansion of its logistical achievements. Vanderlande’s extensive portfolio of integrated solu-
tions, consisting of innovative systems, intelligent software, and life-cycle services, results in the
realization of fast, reliable, and efficient automation technology. To ensure that Vanderlande
keeps its competitive position in the market, they need to continuously monitor developments
in the field and explore the opportunities of new technological advances. This study is part of
their continuous effort to develop innovative solutions.

2

CHAPTER 1. INTRODUCTION

1.2 Research Motivation

Vanderlande is working on the design and optimization of a novel collaborative picking concept
to improve the order picking capacity in warehouses. A problem the customers of Vanderlande
have experienced in their traditional picker-to-parts warehouses is that pickers spend a large
portion of their time walking from and to drop-off locations. To alleviate this, the process has
been modernized by using an initial collaborative picking solution. In this system, AMRs drive
alongside a picker. These AMRs bring the items to the drop-off location while the picker can
continue picking with a new AMR. Using this method, the picker can spend more time picking
items and less time walking, increasing the overall capacity of the system.

The drawback of this method is that the picker is bound to a single AMR. More specifically, the
picker’s efficiency is bounded by the density of the items in the order the AMR is following. In
low-density areas, walking between items to pick can still be a large portion of the picker’s time.
Therefore, another modernization step is performed where the picker can fill multiple AMRs at
the same time. This results in a higher density of picks and, thus, a higher pick capacity overall.

In this setting, the AMRs are instructed to follow a fixed route depending on the order plan
they have been given. The pickers, on the other hand, are guided by a picker optimizer but
have more freedom to move while reaching the specified locations. The challenge is to optimize
the route (i.e., sequence of locations) for each picker in the warehouse simultaneously such that
a maximum pick capacity is reached. This allows for handling larger demand loads at similar
costs or similar demand loads at lower costs for companies. The picker optimizer should be able
to adapt to the uncertainty caused by random human behavior and other disturbances in the
warehouse, such as congestion.

One seemingly easy way to increase the pick capacity would be to increase the number of AMRs
in the system. However, this has several drawbacks. For example, AMRs are expensive and a
high number of AMRs in the warehouse can lead to a higher congestion level in the system,
resulting in more delays. Therefore, the actual goal is to optimize the pick rate performance per
AMR by allocating the pickers to orders that must be picked efficiently.

To illustrate the scenario, a typical snapshot of the warehouse in operation is shown in Figure 1.1.
This figure shows that the task allocation optimizer currently allocated a picker to the AMR at
the bottom of the figure (A13), whereas there are two unattended AMRs at the top of the figure
(A97 and A40). This shows one of the trade-offs that need to be considered: while a higher pick
density can likely be achieved when picking from A97 and A40, the time walking there could
lower the overall number of picks per hour.

The initial, straightforward objective of a picker optimizer is to have a solution that allocates
pickers such that the pick rate is optimized. However, besides this pick rate, it is vital to ac-
knowledge the human pickers in this scenario. Namely, the human pickers have to perform
physical labor, in terms of walking and carrying items, which puts physical strain on them.
As explained, uneven distribution of this workload over pickers can increase the chances of in-
juries and cause mental strain that reduces workers’ performance. In addition, aligning with
the increasing focus on corporate social responsibility, it is vital for organizations to maintain
employees’ well-being. Therefore, an important additional consideration is the workload distri-
bution. Namely, we want a solution that fairly distributes the picker workload. Hence, in this
study, we investigate the trade-offs between fairness and performance and to what extent we
can get both good performance and good workload fairness using our proposed picker optimizer.

3

CHAPTER 1. INTRODUCTION

TITLE ONLY

A
5
6

A
6
3

A
1
3

A
3
5

A
4
0

A
9
7

A
1
7

A
2
7

A
9
0

Figure 1.1: Snapshot of a warehouse. Pickers are depicted with orange dots and AMRs as white
rectangles.

1.3 Research Questions

The main goal of this study is to develop a method to create a picker optimizer policy for
collaborative picking warehouses. We want to explore the trade-offs that can be achieved between
pick efficiency and workload fairness. Hence, our main research question is:

How can we solve the problem of sequentially allocating pickers to orders in a collaborative
order picking system with performance considerations in terms of pick efficiency and workload

fairness?

To answer this question, we consider the following sub-questions:

1. What existing methods exist in collaborative picking literature?

2. What methods in DRL exist for optimizing multi-objective problems?

3. How can fairness be modeled in optimization problems?

4. How to define workload fairness in this collaborative picking problem?

5. How to represent the collaborative picking system using discrete-event simulation?

6. How to design, implement, and evaluate policies that balance performance and fairness
objectives?

7. How well does our solution perform in different warehouse settings with different ratios of
pickers and AMRs?

8. How to get insights into the behavior and reasoning of the developed solutions?

We will answer the first three sub-questions in our literature review in Chapter 4. In Chapter 5,
we will answer the fourth sub-question based on the literature review findings and stakeholders’
domain knowledge. We will also discuss the fifth question in Chapter 5. Consequently, we will
discuss the design, implementation, and evaluation of the policies in Chapters 5 and 6 to answer

4

CHAPTER 1. INTRODUCTION

the sixth sub-question. In Chapter 7, we will discuss the results, and in Chapter 8, we will
perform further analysis to understand the policies, answering the last two sub-questions. In
Chapter 9, we will synthesize the results to draw conclusions and answer the main research
question.

1.4 Contributions

This study has both practical and scientific contributions. The practical contributions for Van-
derlande are:

• A discrete-event simulation model of the collaborative picking system, which can be used
for further research. This includes a basic visualization method to verify and understand
solution policies.

• A method to develop picker optimizer policies that can optimize the picking performance
while balancing the workload fairly.

• A clear overview of the achievable trade-offs between workload fairness and performance
in collaborative picking systems that decision-makers can use to make informed decisions
about which policy to use.

• An extensive empirical study of the performance of the method compared to baseline
methods under varying conditions.

We add to the existing literature in the following way:

• The first online optimization approach that handles stochastic, interactive systems in
collaborative picking literature.

• The first method that integrates performance and human workload fairness in collabora-
tive picking with both AMRs and human pickers traveling through the warehouse.

• The first machine learning-based solution in the operations management domain that
considers human fairness alongside performance.

• The first study that applies multi-objective DRL to explicitly integrate a fairness objective
next to a performance objective with different underlying metrics to generate a non-
dominated set of policies outlining the trade-offs.

• A novel neural network architecture using aisle-embeddings to efficiently capture spatial
information in warehouses in a less expensive way, and feature separation to effectively
handle multiple feature groups.

• An extensive empirical evaluation of multi-objective DRL in a real-world problem.

• An empirical evaluation of a multi-objective DRL method designed for continuous action
spaces when adapted to handle a discrete action space.

5

Chapter 2

Problem Statement

In this study, we developed a method that allocates human pickers to items that must be picked
at various pick locations in a collaborative picking environment. The policies must optimize
the picking performance while also achieving a fair workload distribution. The method must be
capable of handling uncertainty caused by factors such as human travel speed, item unavailabil-
ity, unexpected picking delays, and aisle congestion. To enhance practical adoption, the desired
method can handle changes in the numbers of AMRs and pickers in the system, as these num-
bers can fluctuate in warehouses. Moreover, to increase applicability in real-life, solutions can
also handle changes in the warehouse layout. Namely, sometimes parts of a warehouse may not
be available due to maintenance or restocking, or some parts of the layout may be changed and
products must be placed in different locations. The practicality of a solution would be limited
if such changes significantly affect the usability of the method.

The process of the collaborative system is as follows. A warehouse management system assigns
pickruns to AMRs. These pickruns are “shopping lists” for the AMRs that indicate what items
must be picked at what locations and in which order. The pickruns are created based on the
placed orders and the transport schedule. Once an AMR receives a pickrun, it moves toward
its first pick destination. At this location, it waits until a human picker arrives and places the
required items on the vehicle. Then, the AMR continues to its next destination, where the
same action must occur. This pick can be done by either the same or any of the other human
pickers. This process repeats until the AMR completes its pickrun. Then, it must go to a drop-
off location where it is unloaded. After unloading, the warehouse management system assigns a
new pickrun to the AMR, and the cycle restarts. This happens for many AMRs simultaneously.

In parallel, human pickers are distributed through the warehouse. These pickers are allocated
by a picker optimizer. The pickers must walk to their assigned destination, where they meet
with the AMRs, collect the items from the shelves, and load them onto the AMRs. Then, they
request and receive a new destination and repeat the process. To ensure the productivity of the
system, there must be more AMRs than human pickers in the system. This allows the creation
of a “swarm” concept in which clusters of AMRs can be fulfilled by pickers. In an ideal system,
pickers and AMRs must wait as little as possible for each other.

The initial target customer group of Vanderlande is supermarket fulfillment centers. In this
study, we used one of their customers as a basis for the warehouse assumptions. This customer
segment has some dissimilarities from other warehouse segments, although many things coincide
and the processes are not fundamentally different. For example, these warehouses generally have
a wide variety of products. Some products weigh just a kilogram, like boxes with crisps, while
others can be ten or fifteen times as heavy, such as large packs with drinks. In addition, the
target warehouse type affects the AMR pickruns. Specifically, in these warehouses, AMRs are

6

CHAPTER 2. PROBLEM STATEMENT

relatively large but can only carry items for one or two unique customer orders. This means that
the AMR pickruns often include a wide variety of products. Therefore, the pickruns generally
cover a larger part of the warehouse, whereas, in other sectors, AMRs could be smaller with
short pickruns. In Chapter 5, we will describe in more detail the simulation model that we used
and the specific assumptions that we considered.

2.1 Mathematical Formulation

To concretize the problem, we define a mathematical program that illustrates the objectives,
constraints, and decisions that can be made. We include the essential characteristics to clarify
the core choices within our study. In our model, we partially borrowed the notation that Srinivas
and Yu (2022) defined and adapted it to fit our use case.

The model that we consider has two objectives. For our study, we define one fairness objective
and one performance objective. We define the fairness objective F (W1,W2, . . . ,W|K|) where F is
a fairness function that measures the fairness over the workloadsWk of pickers k. The workloads
Wk measure the total mass of the lifted products by the pickers, as we will describe in Chapter
5. As our performance measure, we use the delivery completion time of the last fulfilled order C,
which indicates the overall pick efficiency. In this formulation, we assume that we have several
AMRs that all have to fulfill one pickrun. In practice, this is a repeating cycle in which AMRs
are assigned to a new pickrun after finishing the previous one. However, this assignment is not
within our scope, so we ignore this in the problem formulation for illustratory purposes. For a
more general model, which includes AMRs fulfilling multiple pickruns, we refer to Appendix A.

Below, we will introduce the relevant sets, parameters, and variables. Then, we will define the
mathematical model in Equations 2.1-2.21, after which we will explain the model.

Indices and Sets

i ∈ N Set of all items that must be picked. Note that multiple items can have the same
location.

r ∈ R Set of AMRs.
k ∈ K Set of human pickers.

Parameters

M Sufficiently large positive number.
τKi,i′ Travel time from location of item i to location of item i′ by human pickers.

τRi,i′ Travel time from location of item i to location of item i′ by AMRs.

τ o,Rr,i Travel time from starting location of AMR r to location i.

τ o,Kk,i Travel time from starting location of picker k to location i.

ηLi Time to place item i on an AMR.
uRi,i′ 1 if AMR r collects item i before item i′ in the same trip but not necessarily exactly

before item i (i.e., relative precedence), 0 otherwise.
aRi,r 1 if AMR r must transport item i, 0 otherwise.

wi The workload value of item i.

Variables

Decision Variables
Ai,k 1 if human picker k is assigned to pick item i, 0 otherwise.
Ui,i′ 1 if item i must be retrieved before item i′ by the same picker, 0 otherwise.
Other Variables
BK

i,k Time at which picker k arrives at item i.

7

CHAPTER 2. PROBLEM STATEMENT

FK
i,k Time at which picker k is ready to leave the location of item i.

BR
i,r Time at which item i can be placed on AMR r.

FR
i,r Time at which item i has been placed on AMR r and the AMR can leave the location.

CR
r Completion time of the pickrun of AMR r.

C Completion time of the last pickrun.
Wk The total workload of picker k.

Model Formulation

minC (2.1)

maxF (W1,W2, . . . ,W|K|) (2.2)

subject to∑
k∈K

Ai,k = 1 ∀i ∈ N (2.3)

Ai,k −Ai′,k ≤ 1− (Ui,i′ + Ui′,i) ∀i, i′ ∈ N , i ̸= i′, k ∈ K (2.4)

Ai,k +Ai′,k ≤ 1 + (Ui,i′ + Ui′,i) ∀i, i′ ∈ N , i ̸= i′, k ∈ K (2.5)

BK
i.k ≥ τo,K

k,i −M · (1−Ai,k) ∀i ∈ N , k ∈ K (2.6)∑
k∈K

BK
i.k ≥

∑
k∈K

FK
i′,k + τK

i′,i · Ui′,i −M · (1− Ui′,i) ∀i, i′ ∈ N , i ̸= i′ (2.7)

FK
i,k ≥ FR

i,r −M ·
(
2−Ai,k − aR

i,r

)
∀i ∈ N , k ∈ K, r ∈ R (2.8)

∑
r∈R

BR
i,r ≥

(∑
r∈R

FR
i′,r + τR

i′,i

)
· uR

i′,i ∀i, i′ ∈ N , i ̸= i′ (2.9)

BR
i,r ≥ τo,R

r,i · aR
i,r ∀i ∈ N , r ∈ R (2.10)

BR
i,r ≥ BK

i,k −M · (2−Ai,k − aR
i,r) ∀i ∈ N , r ∈ R, k ∈ K (2.11)

FR
i,r = BR

i,r + ηL
i · aR

i,r ∀i ∈ N , r ∈ R, (2.12)

CR
r ≥ FR

i,r ∀i ∈ N , r ∈ R (2.13)

C ≥ CR
r ∀r ∈ R (2.14)

Wk =
∑
i∈N

wi ·Ai,k ∀k ∈ K (2.15)

BK
i,k ≤ M ·Ai,k ∀i ∈ N , k ∈ K (2.16)

FK
i,k ≤ M ·Ai,k ∀i ∈ N , k ∈ K (2.17)

BR
i,r ≤ M · aR

i,r ∀i ∈ N , r ∈ R (2.18)

FR
i,r ≤ M · aR

i,r ∀i ∈ N , r ∈ R (2.19)

Ai,k, Ui,i′ ∈ {0, 1} ∀i, i′ ∈ N , k ∈ K, r ∈ R (2.20)

BK
i,k, F

K
i,k, F

R
i,r, B

R
i,r, C

R
r , C ≥ 0 ∀i ∈ N , k ∈ K, r ∈ R (2.21)

Constraint 2.3 ensures that each item is picked by just one picker. Constraints 2.4 and 2.5 define
the relative order of two items that are picked by the same picker. They ensure that one item
is ordered before the other if the same picker picks both items. Constraints 2.6 and 2.7 indicate
that the time at which a picker can start to retrieve an item from a shelf is the maximum of
the travel time from its starting position to the location or the time at which the picker left
the previous location plus the travel time. In turn, a picker can only leave a pick location once
the item has been placed on the associated AMR, as indicated by Constraint 2.8. Constraints
2.9, 2.10, and 2.11 describe the constraints on the time at which an AMR is ready for an item
to be placed on it. Concretely, Constraint 2.9 describes that an AMR is only available after it
has traveled from the previous pick location to the current one. Constraint 2.10 describes the
start of the system, indicating that an AMR can only be ready to perform a pick after its initial
travel time from its starting position to the pick location has passed. Constraint 2.11 relates the

8

CHAPTER 2. PROBLEM STATEMENT

AMR beginning time to the picker availability. Specifically, an AMR can only be loaded once a
picker is at the pick location to pick the item. Then, an AMR has been loaded and can leave
the location after the associated pick time has passed, which is indicated in Constraint 2.12.

Following these constraints that describe the system logic, Equations 2.13, 2.14, and 2.15 relate
the system to the objectives. In Equation 2.13, we bound the completion time of an AMR
pickrun to the time at which the AMR has finished its last pick. Then, in Equation 2.14, we
define the efficiency objective value, being the completion time of the last fulfilled order. In
Equation 2.15, we set the total workload of a picker equal to the sum of the workloads of each
pick. Using a specific fairness measure F , these are combined into a fairness objective value in
Equation 2.2.

Lastly, Equations 2.16-2.21 enforce proper functioning of the mathematical formulation while
not describing system characteristics. Equations 2.16 and 2.17 ensure that the beginning and
finishing times of picker actions related to an item are only set when the picker is assigned
to pick this item. Similarly, Equations 2.18 and 2.19 enforce this for AMRs. Lastly, Equations
2.20 and 2.21 describe that the decision variables Ai,k and Ui,i′ are binary and the time-related
variables must be non-negative.

To highlight the task of our picker optimizer, we distinguished the decision variables from the
other variables. These indicate that our picker optimizer solution will directly influence the
picker variables. Concretely, in our solution, we will learn a policy that assigns the pickers to
pick locations at each step. By doing so, the policy determines the assignment variables Ai,k

and Ui,i′ . Based on these decisions and the occurrences in the environment, the other variables
regarding start and finish times, completion times, and workload can be computed.

2.2 Assumptions and Scope

In this study, we focused on the allocation of pickers to orders that must be picked. Hence, we
assumed that the batching and releasing strategies of the orders are fixed. Besides, the routes
that AMRs follow through the warehouse are fixed. We will outline the assumed strategies in
Section 5.1. We focused on one performance objective regarding the picking capacity and one
fairness objective considering workload. Our performance objective was to minimize the total
time to fulfill a predetermined set of picks. The fairness objective was to balance the lifting
workload of the human pickers. We required a solution that ideally handles varying picker and
AMR numbers. Besides, we explored how the optimizer adapts to different warehouse sizes.

In the above model formulation, a deterministic environment is defined. However, it is important
to remember that we assumed a stochastic environment in our use case. The parameters such as
travel times and item retrieval and placement times are stochastic. In turn, this also makes the
other variables uncertain, and therefore, deterministic optimization methods are not preferred.
Moreover, in our use case, we considered a scenario where many pickruns must be completed
over the course of several hours. These pickruns are known in advance and assigned to AMRs
online, as we will describe in Section 5.1. The goal is to complete all orders in the pre-specified
set of pickruns as quickly as possible. Thus, the completion time of the last fulfilled pickrun
indicates the performance.

Another relevant performance objective in order picking systems is tardiness (i.e., the num-
ber of picks that are too late). However, tardiness is primarily affected by the order batching
and releasing strategies. In addition, tardiness is a less stringent requirement in our wholesale
warehouse segment than in, for example, e-commerce. Hence, we did not consider this. An al-
ternative workload specification that we could consider is walking distance. However, walking
puts less strain on workers, is harder to notice physically by pickers, and is not subject to strict
ergonomic regulations like lifting workloads. Therefore, we did not consider walking distances
in fairness.

9

CHAPTER 2. PROBLEM STATEMENT

Besides picker allocation, batching, and sequencing, many factors influence the warehouse pick-
ing capacity. Factors such as the types of AMRs, the aisle layout, the product distribution,
and having uni- or bi-directional aisle traffic can all influence performance. We did not aim to
address these strategic choices.

10

Chapter 3

Background

This chapter outlines the fundamentals of DRL, multi-objective DRL, and learning on graphs.
These are relevant concepts that are fundamental to the solution methodology that we propose in
this study. We will first introduce the standard framework of Reinforcement Learning (RL) and
how optimal policies are found in Section 3.1. Then, in Section 3.2, we will extend this framework
to incorporate multi-objective decision-making. Lastly, we will explain the fundamentals of
graph theory and graph neural networks in Section 3.3. For a more elaborate background, we
refer to the cited literature.

3.1 Deep Reinforcement Learning

As mentioned in Chapter 2, DRL, which is a technique that combines RL with deep learning,
offers solution techniques that can solve sequential decision-making problems in uncertain, in-
teractive environments. In recent years, DRL has been used to solve many complex interactive
problems, such as playing the game of Go (Silver et al., 2016), robotic learning (Gu et al., 2017),
or machine scheduling (Song et al., 2023). In this section, we will first introduce the basic con-
cepts of RL that are fundamental to any RL problem, based on the work by Sutton and Barto
(2018). We will explain how agent-environment interaction works and how good solutions are
defined. Then, we will provide a basic description of the general streams of DRL algorithms.

3.1.1 Agent-Environment Interaction

The core idea underlying RL, as opposed to supervised or unsupervised learning, is that no
straightforward dataset with features and target values is used to train a model. Instead, an
agent learns through agent-environment interaction. This interaction is illustrated in Figure 3.1.
In this process, at time t, an agent is in a so-called state St, resembling the current situation,
and takes an action At. Based on this action, the agent receives a reward Rt+1 and continues
toward a new state St+1. Then, this process can be repeated for time t + 1, and so on. Based
on these interactions, the agent should learn which actions to take.

3.1.2 Markov Decision Process

The Markov Decision Process (MDP) provides a formalized framework to model the illustrated
interaction process. It captures the information regarding states, actions, rewards, and transi-
tions. Based on the definition by Silver (2015), an MDP can be defined as follows.

Definition 3.1. An MDP is defined as a tuple ⟨S,A, T,R, γ⟩

• S is a set of states s

• A is a set of actions a

• T : S × S × A → [0, 1] is the transition function, indicating the transition probability

11

CHAPTER 3. BACKGROUND

Figure 3.1: The agent–environment interaction in RL (Sutton & Barto, 2018, p. 48).

P(St+1 = s′|St = s,At = a)

• R : S ×A → R is the reward function

• γ ∈ [0, 1] is a discount factor, indicating how much future rewards should be discounted

In this definition, we use a fundamental assumption. Namely, we assume the Markov Property.
This property implies that the future of the process does not depend on any past state but only
on the current one.

Definition 3.2. A state St satisfies the Markov property iff:

P(St+1|St) = P(St+1|St, St−1, . . . , S1)

Thus, when defining an MDP, it should be ensured that all necessary information regarding the
past is captured in the current state.

3.1.3 Finding an Optimal Policy

As explained, an agent should learn which actions to take from its interaction in the MDP.
To do so, we define its objective to maximize the expected cumulative future reward Gt. The
most straightforward approach to finding the cumulative future reward is summing all obtained
rewards.

Gt := Rt+1 +Rt+2 +Rt+3 + · · ·+RT

This can be suitable when a task is episodic, which means it naturally breaks into independent
sub-sequences of a finite length having the last timestep T . However, when a task is not episodic
or has many timesteps with high uncertainty of long-term rewards, it may be better to use the
discounted cumulative future reward.

Gt := Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 · · · =
∞∑
k=0

γkRt+k+1

Here, γ is the discount factor in Definition 3.1 of the MDP. When γ approaches 1, the agent
will focus more on the long-term rewards, whereas with a low γ it will focus more on immediate
rewards.

Based on this definition of cumulative future rewards, we can formally describe what we consider
an optimal policy. To do so, define the state-value function vπ(s) of a state s while following a
policy π.

vπ(s) := Eπ[Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1|St = s

]
This function indicates the expected accumulated return when following a policy π after starting
in state s. An essential property of this value function, which is frequently used in RL approaches,

12

CHAPTER 3. BACKGROUND

is that it can be decomposed into the expected immediate reward and the expected value
function of the next time step. This is shown via a recursive equation called the Bellman
equation.

vπ(s) :=Eπ[Gt|St = s]

=Eπ[Rt+1 + γGt+1|St = s]

=Eπ[Rt+1 + γvπ(St+1)|St = s]

Similar to the state-value function, we can define an action-value function qπ(s, a). This function
defines the expected cumulative return after starting in state s, executing action a, and following
a policy π afterward.

qπ(s, a) := Eπ[Gt|St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1|St = s,At = a

]

Using these value functions, we can define what we consider an optimal policy. Namely, an
optimal policy is a policy that has an expected cumulative return that is greater than or equal
to the expected cumulative return of all other policies for all states. Formally, this can be defined
as follows.

Definition 3.3. Consider the partial ordering:

π ≥ π′ if vπ(s) ≥ vπ′
(s),∀s ∈ S

Then, an optimal policy π∗ exists such that:

π∗ ≥ π,∀π

Such optimal policy achieves the optimal state-value function and action-value function. In
high-dimensional, stochastic environments, achieving an optimal policy may be challenging. In
such cases, the goal is to achieve a policy that is as good as possible.

3.1.4 Deep Reinforcement Learning Approaches

To find optimal policies in an MDP, a variety of RL algorithms have been developed. The
algorithm that has been fundamental in both RL and as a basis for DRL is the so-called Q-
learning algorithm (Watkins & Dayan, 1992). In Q-learning, an estimate Q̂(s, a) of the optimal
action-value function is learned for each state-action pair. This is done by storing a so-called
Q-table of |S| rows and |A| columns (with | · | indicating the cardinality of the sets) and using
the following iterative update rule based on the latest experience tuple ⟨s, a, r, s′⟩ containing
the state s, selected action a, obtained reward r and new state s′.

Q̂(s, a)← Q̂(s, a) + α(r + γmax
a′

Q̂(s′, a′)− Q̂(s, a))

Based on the Q-table, a policy, such as the epsilon-greedy policy, can be applied to select actions.
This method works well on relatively small problem instances. However, it requires the storage
of a value for each state-action pair. For problem instances with a large or unbounded state
space, this table cannot be stored, and an enormous amount of interactions is needed to estimate
the values accurately.

To overcome this, DRL, in which deep learning and RL are combined, has been proposed. We
will give a short overview of the existing DRL methods as a background for the next chapter.
For more details regarding the individual algorithms and their pros and cons, we refer to the
amplitude of existing literature (e.g. Silver (2015) and cited papers).

13

CHAPTER 3. BACKGROUND

The first DRL algorithm, which is the Deep Q-Network (DQN) algorithm (Mnih et al., 2015),
uses a neural network that acts as a function approximator for the Q-table. Following this work,
several algorithms have extended the DQN structure, like the dueling DQN (Z. Wang et al.,
2015) and double DQN (Hasselt et al., 2016). These methods, in which the value function is
approximated, are called value-based methods.

Aside from value-based methods, there are also policy-based and actor-critic methods. In policy-
based methods, a policy is directly learned instead of learning a value function. Thus, a policy
network outputs which action should be taken. It does so without estimating the action-value
function and does not require a selection policy like the epsilon-greedy policy. Actor-critic meth-
ods also use a policy network for action selection but utilize a value network in the learning
algorithm to combine the advantages of action-based and pure value-based methods. The most
important methods that use a policy network are Proximal Policy Optimization (PPO) (Schul-
man et al., 2017) and Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015).

To directly update a policy network πθ with parameters θ, PPO uses a loss function based on
the action probabilities of the network. To do so, the algorithm alternates between collecting
samples and updating the policy using the empirical estimates from these samples. The loss
function LCLIP used to update the network is as follows.

LCLIP (θ) = Êt

[
min

(
πθ(at|st)
πθold(at|st)

Ât, clip

(
πθ(at|st)
πθold(at|st)

, 1− ϵ, 1 + ϵ

)
Ât

)]

Here, Êt indicates the empirical expectation based on the collected sample batch, πθ(at|st)
πθold

(at|st)
describes the ratio between the probabilities of the old and new policy of selecting an action
at in state st at time t, and Ât is an estimator of the advantage function at time t, indicating
how good the action taken at time t was. Thus, the loss tries to maximize the probability of
taking good actions and minimize the probability of taking bad actions. To ensure the policy
does not change too drastically and forgets what it has learned, the ratio is clipped using the
hyperparameter ϵ, limiting the loss. In actor-critic variants of PPO, the advantage function Ât

is also estimated by a neural network that is updated during the learning process. To handle
the exploration-exploitation trade-off within the PPO algorithm, the loss function includes an
entropy term. This term measures the spread of the probabilities. This is incorporated as follows.

L(θ) = Êt

[
LCLIP (θ) + cent · S[πθ](st)

]
Here, cent is the entropy coefficient, which determines the weight of the entropy within the loss
function, and S[πθ](st) represents the entropy measure. By setting cent to a small value, the
algorithm will focus more on exploitation instead of exploration when the clipping loss has been
reduced.

Whereas value-based methods can only be applied in discrete action spaces, DDPG can be
applied for continuous action spaces and PPO for both. A discrete action space indicates a
finite set of actions, like going left and right. In contrast, a continuous action space indicates
real-valued actions, such as the angle in a coordinate space that is any number between 0 and
360.

Lastly, next to value- and policy-based algorithms, there exist so-called model-based DRL algo-
rithms. These learn a model of the environment using methods like Monte-Carlo Tree Search,
while the previous model-free algorithms directly learn a value or policy network. An example
of a model-based approach is AlphaGo (Silver et al., 2016). Model-based methods are generally
more sample efficient, as they know a model of the process. However, they have to learn a model
of the system that is often large, which can be very demanding and computationally complex
for complicated tasks. In general, less research has been conducted on model-based DRL, and
the model-free techniques are better developed for generic use.

14

CHAPTER 3. BACKGROUND

3.2 Multi-Objective Reinforcement Learning

In regular RL and DRL methods, a single objective is optimized. However, in many real-life
applications, like ours, multiple objectives must simultaneously be considered in optimization.
Different approaches are used to handle these often conflicting objectives. This section will
introduce the relevant background regarding multi-objective optimization in RL.

3.2.1 Multi-Objective Markov Decision Process

To handle multiple objectives in RL, we need a framework like the MDP that can handle
multiple rewards. This multi-objective sequential decision-making problem can be formalized as
the Multi-Objective Markov Decision Process (MOMDP), as defined by, amongst others, Hayes
et al. (2022).

Definition 3.4. An MOMDP is defined as a tuple ⟨S,A, T,R, γ⟩

• S is a set of states s

• A is a set of actions a

• T : S × S × A → [0, 1] is the transition function, indicating the transition probability
P(St+1 = s′|St = s,At = a)

• R : S ×A → Rd is the reward function, with d ≥ 2 the number of objectives

• γ ∈ [0, 1] is a discount factor, indicating how much future rewards should be discounted

Thus, an MOMDP is equivalent to an MDP, except for the reward function. In an MOMDP,
instead of a single scalar reward, a vectorized reward is obtained, with one element for each
objective. Using this formulation, the multi-objective state-value function vπ(s) follows directly
from the single-objective version vπ(s).

vπ(s) := Eπ

[∞∑
k=0

γkRt+k+1|St = s

]

Using this multi-objective value function, one would ideally define an optimal policy similar to
Definition 3.3. However, it is not possible to establish a complete ordering when having multiple
objectives since one policy may be better for one objective while the other is better for another
objective.

3.2.2 Optimal Policies in Multi-Objective Optimization

The most straightforward method for handling multiple objectives is to transform them into a
single objective that captures the relative importance of each objective. This single objective
depends on the utility function u : Rd → R of the user, which translates the rewards into a single
reward. This function can be linear (i.e., a weighted sum of the two rewards) or non-linear. In
this manner, the problem can be solved using traditional single-objective methods. However,
this requires a known utility function. This may be possible when, for example, rewards relate
directly to monetary costs. On the other hand, Hayes et al. (2022) and Roijers et al. (2013)
show six distinct scenarios in which it is undesirable, impossible, or infeasible to use a single-
objective approach. A single-objective approach is a good option only if a utility function is
known, certain, and cannot change.

When not using a single-objective method, another way of determining which solutions are good
is necessary. To this end, the Pareto Front has been crucial in multi-objective optimization. The
Pareto Front is the set of non-dominated solutions. This means that for each solution (policy
in an RL problem) on the Pareto Front, no other solution has a better value for all objectives.
We adopt a similar formal definition as given by Hayes et al. (2022).

15

CHAPTER 3. BACKGROUND

Definition 3.5. Given a monotonically increasing utility function u, a set of policies Π, and
the expected state-value function vπ := ESt [v

π(St)] over the distribution of states, we define the
Pareto Front PF as:

PF (Π) := {π ∈ Π|∄π′ ∈ Π : vπ′ ≻p v
π}

Here, ≻p indicates the Pareto dominance:

vπ ≻p v
π′ ⇔ (∀i : vπ

i ≥ vπ′
i) ∧ (∃i : vπ

i > vπ′
i)

In general, multi-objective optimization methods should aim to find the Pareto Front. This
allows end-users to gain a clear view of the trade-offs of each policy, enabling informed decision-
making. Since multiple policies can lead to the same value functions, we can reduce our search to
finding the Pareto Coverage Set, which is a subset of the policies in the Pareto Front, such that
they cover all value functions from the Pareto Front. Hence, the final goal of multi-objective
optimization methods is to find a non-dominated set of solutions (policies) that represents the
Pareto Coverage Set as well as possible.

3.3 Learning on Graphs

Graphs are a fundamental part of our DRL modeling approach. Therefore, this section intro-
duces the fundamentals of graph theory and graph neural networks. We largely adapted this
background from Bacciu et al. (2020).

3.3.1 Graph Fundamentals

We formally define a graph in Definition 3.6.

Definition 3.6. A graph G is defined as a tuple ⟨VG, EG,XG,AG⟩

• VG is a set of nodes

• EG = {(u, v)|u, v ∈ VG} is a set of edges

• XG ⊆ Rd is a set of node features, with d ∈ N

• AG ⊆ Rd′ is a set of edge features, with d′ ∈ N

Thus, a graph G = (VG, EG,XG,AG) is formed by a set of nodes VG, edges EG, the node
information XG, and edge information AG. The nodes in a graph can represent people, locations,
or any other entities. The edges represent the relations between the nodes. In an undirected
graph, these edges are unordered, meaning EG = {{u, v}|u, v ∈ VG}. In a directed graph, the
edges have an orientation from one node to the other, meaning EG = {(u, v)|u, v ∈ VG}. An
undirected graph can also be considered a directed graph in which each edge {u, v} is replaced
by the directed edges (u, v) and (v, u). An efficient method of representing the edges is an
adjacency matrix. This is a binary square matrix A ∈ {0, 1}|VG|×|VG| in which 1 indicates that
nodes are connected and 0 that there is no edge between the nodes. In the case of an undirected
graph, this adjacency matrix is symmetric.

To increase the practical applicability of graphs, they are often enriched with node information
XG and edge information AG. For each node, the node feature vector xv ∈ XG describes the
information of the node. In a social network graph, for example, this can be information such as
the age or gender of a person. Similarly, an edge feature vector au,v ∈ AG describes additional
information regarding the relations between the nodes. In the social network graph example,
this can be information such as how long people have known each other. One can choose to
omit node or edge information in the graph. Intuitively, this means that all nodes or edges are
considered equivalent.

The neighborhood of a node v describes the nodes connected to the node via a directed edge.
Thus, the neighborhood is defined as Nv = {u ∈ VG|(u, v) ∈ EG}. This can be expanded to a

16

CHAPTER 3. BACKGROUND

k-hop neighborhood, the set of nodes that can be reached within k edges from the node. This
is an important principle that is used in graph neural networks.

3.3.2 Graph Neural Networks

The goal of graph neural networks is to learn so-called node-embeddings for all nodes in a graph.
The node-embeddings represent the state of a node from which value can be extracted. They
can be used for further operations, such as passing them through feed-forward neural networks
to create node values or aggregating them to find graph-embeddings.

The node-embeddings are generally calculated in an iterative way, using consecutive graph
neural network layers. Thus, the node-embedding hl

v at iteration l is used as input to compute
the embedding hl+1

v of iteration l + 1. The initial state h0
v is given by the node feature vector

xv. Using K iterations, the final embedding hK
v is used for further processing.

The core requirements of graph neural networks are that they can handle different topologies
(i.e., different sizes and shapes) and that they are, depending on the goal, permutation invariant
(i.e., when input is permuted, the output stays the same) or permutation equivariant (i.e.,
when input is permuted the output is permuted in the same way). This is achieved by locally
computing at the node level. The most straightforward method is to use an invariant feed-
forward network in which each node is passed through a simple multilayer perceptron without
considering the other nodes. However, various layers have also been developed to incorporate the
node neighborhoods. These methods apply permutation invariant functions to the nodes and
their neighborhoods. These permutation invariant functions ensure that node representations
can be learned regardless of the ordering of the nodes and the number of nodes.

All major graph neural networks use the concept of message passing to fulfill the previously
mentioned requirements. In this concept, in each layer, information is passed between connected
nodes and aggregated. The core formula for message passing layers is as follows.

hl+1
v = ϕl+1

(
[hl

v,Ψ({ψl+1(hl
u)|u ∈ Nv})

)
Here, ψl+1 is a function that is applied to the node-embeddings of each of the neighbors of
a node. This constructs a “message” from each of these nodes. Ψ is a permutation invariant
function, which can be a sum, mean, product, or any other function that does not depend on
the ordering of the input. This combines the messages from the neighbors into an aggregated
“message vector”. Lastly, ϕl+1 is a function that takes the current node-embedding and the
message vector and combines them into a new node representation. Thus, each node in the
neighborhood sends a message to the considered node. These messages are combined into an
aggregated message and then processed with the current node-embedding to create a new node-
embedding. The functions ϕl+1 and ψl+1 can be any function, but in graph neural networks, often
one or both functions are learned using multilayer perceptrons or a learnable weight matrix.
By stacking k message passing layers, information from the k-hop neighborhood of a node can
be captured. However, with more layers, more parameters must be learned, and information
gets more diffused. Hence, the number of message passing layers that can be effectively used is
limited.

Two examples of implementations of message passing networks are the Graph Convolutional
Network (GCN) (Kipf & Welling, 2016) and Graph Isomorphism Network (GIN) (K. Xu et al.,
2018). GCN implements a relatively simple message passing layer. The formula is as follows.

hl+1
v = σ

(
Wl+1

∑
u∈Nv

Lu,vh
l
u

)

Here σ represents a non-linear activation function, L is a normalized graph Laplacian, which

17

CHAPTER 3. BACKGROUND

normalizes the node features by the degrees of the nodes, and W is a weight matrix that is
learned in training.

GIN offers a more flexible message passing layer at the cost of more learnable parameters.
Namely, a multilayer perceptron combines the neighborhood messages with the local node-
embedding. The formula is as follows.

hl+1
v =MLP l+1

(
(1 + ϵl+1)hl

v +
∑
u∈Nv

hl
u

)

In this formula, MLP indicates the multilayer perceptron and ϵ is a trainable parameter spec-
ifying the weight of the current node-embedding in relation to the neighborhood message.

As explained, using the outcome embeddings of graph neural networks, either node information
or a graph-embedding can be retrieved. To generate a graph-embedding, a final permutation
invariant operation is required. Concretely, the following formula can be applied to generate a
graph-embedding from the node-embeddings in layer l.

hl
G = Ψ

(
{f(hl

v)|v ∈ VG}
)

Again, Ψ is a permutation invariant operator such as the sum, mean, or product. f can be a func-
tion that transforms the node-embeddings, but generally, the node-embeddings are aggregated
without applying another function to them (i.e., f is the identity function).

18

Chapter 4

Literature Review

This chapter outlines the current work related to our study. To do so, we performed a semi-
systematic literature review, as characterized by Snyder (2019). As Snyder (2019) explained,
a semi-systematic literature review is a good option when literature from different streams of
research must be combined to synthesize all information related to a research problem. This
fits well with our problem, in which we must synthesize information from collaborative picking,
DRL, and fairness.

In this chapter, we will first present the current works in collaborative picking. We will give an
overview of the optimization techniques used and also show to what extent the human factor
is considered and how workload has been defined. Then, we will discuss the current methods
in multi-objective DRL. Consequently, we will show how DRL has been applied in problems
related to collaborative picking. Lastly, we will discuss how fairness is defined and outline how
fairness is currently incorporated in DRL and optimization.

4.1 Collaborative Picking

In this section, we will first discuss the existing collaborative picking methods on both opti-
mization and the incorporation of the human factor. Then, we will shortly touch upon existing
techniques to measure workload.

Collaborative order picking is a relatively new concept introduced only a few years ago. In their
review of robotized warehousing, Azadeh et al. (2019) were the first to introduce collabora-
tive order picking in operations management literature. Since then, various works have been
published regarding optimizing collaborative order picking and human interactions in these
scenarios.

In one of the first papers related to collaborative order picking, Lee and Murray (2019) evaluated
warehouse layouts. In this paper, they considered a pick, place, and transport routing problem
in which picker robots and transport robots collaboratively pick orders. This setting is similar
to our problem if we replace the picker robots with human pickers. Another difference is that
transport robots can carry items from many customers simultaneously, which is not the case in
our project. This paper introduced a Mixed-Integer Linear Programming (MILP) model for this
scenario. Then, they explored which designs are best by solving the program on small problem
instances for different warehouse layouts. They did not assume any randomness. Additionally,
no approach was proposed for guiding the robots in practice, and no heuristics were proposed
to solve larger problem instances. Hence, the MILP formulation of the problem is valuable, but
for order picking implementations, new methods are needed.

Zou et al. (2019) were the first to propose an optimization approach for collaborative order
picking. In their paper, they considered a zone-based collaborative order picking problem. In

19

CHAPTER 4. LITERATURE REVIEW

their considered warehouse, each picker is assigned to a specific zone and handles orders within
those zones, while Automated Guided Vehicles (AGVs) can traverse through zones. The paper
proposed an approach to simultaneously optimize order batching, picker zone scheduling, and
AGV routing. They defined an MILP model. To solve this, they proposed a two-stage heuristic.
This heuristic first determines the order batching, after which the zone scheduling and AGV
routing problems are solved using a heuristic rule with neighborhood search.

While Zou et al. (2019) assumed a zone-based picking strategy, they did not explore whether
this is better than a non-zoned idea. To test this, Azadeh et al. (2020) performed a comparative
study on zoning strategies in collaborative order picking. They focused on two main strategies,
being no zoning and progressive zoning. They developed a queuing model to estimate the effect
of different zoning strategies on the performance of their order picking system. Then, they
suggested a Markov decision model to investigate how higher pick performance can be achieved
by dynamically switching between strategies. They found that progressive zoning is helpful in
e-commerce warehouses with small order sizes, and no zoning is suitable for store replenishment
warehouses with large order sizes. A dynamic strategy can be used for heterogeneous order sizes.
This aligns with the strategy of Vanderlande to use a concept without zoning in the supermarket
fulfillment warehouses.

Ghelichi and Kilaru (2021) targeted decision-making regarding the creation of collaborative
order picking warehouses. They developed an analytical model that helps determine which
collaborative order picking solution in e-commerce should be applied in which case, based on the
required number of pickers and AMRs. Here, they considered Last-Mile-Delivery and Meet-in-
Aisle solutions. In addition to the theoretical analysis, they performed an experimental analysis
based on a simulation environment. In general, collaborative solutions outperformed manual
picking in facilities with high throughput rates. Meet-in-Aisle solutions generally performed
better when the facility is big and the cluster size is relatively small. On the other hand, the
Last-Mile-Delivery solution fits better for facilities that need to process high throughput rates.
The Vanderlande use case considers the first scenario and, hence, the used collaborative picking
approach with pickers and AMRs both moving through the warehouse fits well.

Following these initial works, several works have recently aimed at optimizing the performance
in collaborative order picking problems. These works are the most related to our study. First,
Löffler et al. (2022) studied picker routing in AGV-assisted picker-to-parts order picking in
single-block (i.e., without cross-aisles), parallel-aisle warehouses. They developed an exact poly-
nomial time algorithm to minimize the total traveled distance for cases with fixed picking
sequences. This dynamic programming approach extends the work by Ratliff and Rosenthal
(1983). In addition, they showed that the scenario in which sequences must be decided is NP-
hard and offered a greedy heuristic. They proposed several MILP formulations and showed how
they can be transformed into traveling salesman problem instances. They performed an exper-
imental study and showed good performance of their methods, as opposed to traditional order
picking.

Žulj et al. (2022) were the first in collaborative order picking to minimize tardiness. This paper
formalized what they call the AMR-assisted order picking problem. In this setting, human
pickers pick items within a specified region in a single-block warehouse and drop them off at
handover locations. There, AMRs collect the items and transfer them to the central warehouse
depot. They also formulated an MILP model. This model decides on the grouping of customer
orders into batches, the assignment of these batches to AMRs, and the processing sequence
in which these batches are handled by the order pickers and the AMRs. The objective is to
minimize the total tardiness of all customer orders. To solve this problem, they developed a
heuristic method using adaptive large neighborhood search (Ropke & Pisinger, 2006) and an
adaptation of the NEH heuristic (Nawaz et al., 1983). This heuristic method performed well in

20

CHAPTER 4. LITERATURE REVIEW

experimental settings compared to exact solver benchmarks.

Srinivas and Yu (2022) also focused on minimizing tardiness. They considered a problem in which
both pickers and AMRs can freely move through the warehouse. This collaborative human-robot
order picking system is most similar to our use case. They integrated order batching, sequencing,
and picker-robot routing in their method. Again, their method used an MILP model. They
proposed a restarted simulated annealing meta-heuristic with adaptive neighborhood search
to improve exploration and exploitation. This method showed near-optimal results for several
problem instances.

The latest paper by Xie et al. (2022) regarding optimization in collaborative order picking
extends the scope to warehouses with a mixed-shelf storing policy. For this approach, they con-
sidered collaborative order picking with picking zones for human pickers. They proposed two
MILP formulations, using the three-index formulation and two-commodity network flow formu-
lation known from the capacitated vehicle routing problem. Then, they suggested a variable
neighborhood search heuristic to solve the problem.

In short, all these optimization approaches are offline methods. They declare a deterministic
problem through an MILP formulation and use a heuristic to solve larger instances. They do
not consider uncertainty, unexpected delays, or other sources of stochasticity. These omitted
factors are precisely the elements that we require for the solution to be functional.

4.1.1 Human Factor in Collaborative Picking

Aside from these optimization approaches, some works have explored the human factor within
several scenarios related to collaborative picking.

First, Pasparakis et al. (2021) noted that human workers are often impacted by their coworkers
and their performance. Hence, they investigated how human pickers are influenced by collabo-
rative picking robots. They tested the effect of two strategies where humans continuously walk
alongside the robot. These two approaches are the human leading and human following way.
The paper found that a human-leading approach allows superior collaborative order picking
productivity compared to human following. In contrast, a human-following method allows for
greater collaborative order picking accuracy than a human-leading setup.

Second, M. Zhang et al. (2021) developed a simulation model to inspect the human energy
expenditure, as well as the cost per pick and average throughput in a hybrid order picking
system. To measure the energy expenditure, the work by Garg et al. (1978) was used. This
system, however, was not a collaborative order picking system. Instead, in this hybrid system,
human and robot pickers independently pick orders in the warehouse.

Lorson et al. (2022) explored the interactions between humans and robots in warehousing. The
article aims at helping operations management researchers to identify the potential effects of
human behavior. To this end, they developed a theoretical framework of the types of interac-
tions and their implications. They advocate for better integration of human factors in operations
management research and human-robot systems, as this is underrepresented in current litera-
ture.

In collaborative picking solutions, only one method has been proposed that explicitly aims at
the human factor. This method, proposed by Niu et al. (2021), uses a multi-agent RL approach
in a robotic mobile fulfillment system. In this system, robots perform all picking tasks in the
warehouse and drop items off at working stations where humans handle the items. The work
aims to assign the robots to one of the working stations such that the performance is good,
but human discomfort is not too high. All other decisions, such as choosing which item to pick,
were excluded, and they considered deterministic behavior. To this end, a reward function was
specified based on a discomfort function defined by Larco et al. (2017). Then, an assignment

21

CHAPTER 4. LITERATURE REVIEW

policy was learned using single-objective RL. The same approach was used by Niu and Schulte
(2021), but using an objective of having sufficient breaks instead of discomfort. Thus, this is
one of the few methods that handle a human factor simultaneously with an objective. How-
ever, the setting is different, and a rather simplistic single-objective method in a deterministic
environment was used. Besides, only two human workstations were considered.

To summarize this section, existing work in collaborative order picking has focused on several
aspects. The current optimization solutions use mathematical programming formulations and
solve those using heuristic algorithms. These methods are offline and handle deterministic sce-
narios. They cannot efficiently adapt to unexpected, random behavior, as a complete solution
is created in one go. In addition, the human factor has barely been considered. One method
was proposed to handle human discomfort simultaneously with a performance objective. This,
however, was a significantly different setup than the setup in other papers and our use case.
Besides, a simple single-objective approach was used, which allows no insights into trade-offs.
Hence, a gap exists for methods that use an online approach that handles stochasticity and
environment interactions. Besides, including human aspects next to the performance must be
explored more elaborately.

4.1.2 Workload Measurement

To achieve a fair workload distribution, we need a measure of workload. The most trivial measure
would be the summed or average weight of the items a picker carries. However, other measures
exist.

Gaǰsek et al. (2021) created an overview of the ergonomics measures used in order picking
literature. The most frequently used measure is the OWAS measure (Karhu et al., 1977). This
measure identifies the most common back postures, arm postures, leg postures, and load mass
categories. It requires an observer to identify these postures. Hence, it is mainly useful when real-
world experiments can be performed. In addition, the frequently used REBA measure (Hignett
& McAtamney, 2000) also relies on observations in real-world experiments. Similarly, the RULA
(McAtamney & Corlett, 1993) measure is used in order picking. This method relies on posture
observations combined with weight information about the items. The last measure named by
Gaǰsek et al. (2021) is the NIOSH lifting index (Waters et al., 1993). This measure does not
rely on many observations. Instead, it uses a formula based on, amongst others, the vertical
and horizontal distance of a lift and the weight of the item. This allows for better application
in scenarios without frequent observations.

Larco et al. (2017) developed a measure of discomfort during order picking. Using Borg’s CR-10
scale (Borg, 1982), they collected discomfort experiences from order pickers in two warehouses.
Then, they used a linear regression model to determine the relation between several categories of
pick quantity, mass, and volume. The resulting function can be used to determine the discomfort
of picks. They applied this technique to two warehouses to develop two scales with concrete
coefficients. However, both of these warehouses contained very small and light items compared
to the warehouses of the customers of Vanderlande. Namely, the largest item category had a
volume of at least 5 dm3 and a mass of 3 kg, while these are considered small items in our
considered warehouses.

4.2 Multi-Objective Deep Reinforcement Learning Methods

Since the introduction of DRL, several authors have developed methods for multi-objective
DRL. These methods follow different streams. In this section, we provide an overview of the
existing approaches. Table 4.1 summarizes the methods.

First, some methods use a single-policy approach. These approaches transform the multi-
objective problem into a single-objective problem. One way to do so when having an unknown

22

CHAPTER 4. LITERATURE REVIEW

Table 4.1: An overview of existing multi-objective DRL methods.

Paper Approach DRL Type Short Description

Beeks et al. (2022) Single PPO Bayesian optimization for reward
shaping.

Abdolmaleki et al. (2020) Single Actor-Critic Method that enables bounding the in-
fluence of an objective.

T. T. Nguyen et al. (2020) Multi DQN Use TLO for non-linear utility. Multi-
threading for multi-policy efficiency.

Mossalam et al. (2016) Multi DQN Outer-loop with Optimistic Linear
Support to determine which weights
to pick.

K. Li et al. (2021) Multi Actor-Critic Outer-loop with parameter copying.
Combinatorial optimization focus.

Reymond and Nowe (2019) Multi DQN Inner-loop. Poor performance in com-
plex tasks.

F. Yang et al. (2022) Single DQN Actions sampled from Pareto front.
For multi-objectivization of single-
objective problems.

Tajmajer (2018) Multi Dueling DQN Modular structure, with Q-values ag-
gregated using weighted sum.

Abels et al. (2019) Meta DQN Conditioned network with Diverse
Experience Replay in training.

R. Yang et al. (2019) Meta Double DQN Conditioned network, using envelope
updates and homotopy optimization

Hu et al. (2022) Meta Dueling DQN Extend work by R. Yang et al. (2019)
using dueling network, Noisynet, and
soft target update.

Dornheim (2022) Meta DQN Uses TLO in meta-policy approach.
Nian et al. (2020) Meta Actor-Critic Adapts Abels et al. (2019) for par-

tially observable MOMDP.
X. Chen et al. (2019) Meta PPO Three-phased approach with adapta-

tion, meta-policy training, and fine-
tuning phase.

J. Xu et al. (2020) Multi PPO Use evolutionary strategy to guide
learning in promising directions.

F. Y. Liu and Qian (2021) Meta PPO Combined three-phased meta-policy
by X. Chen et al. (2019) with guided
learning by J. Xu et al. (2020)

Abdelfattah et al. (2021) Multi DDPG Two-Stage approach for learning
in non-stationary environments with
continuous action space.

utility function is to use reward shaping. In this approach, used by Beeks et al. (2022), a sur-
rogate function was used to find the weights that should be applied in a weighted sum of the
objectives. By doing so, weights can be found such that good results are achieved for both ob-
jectives. The disadvantage of this method is that only one point in the solution space is found.
Hence, the Pareto Front is not explored, and no insights into the trade-off between objectives
can be obtained to make an informed decision. Thus, in many scenarios, this method might
not suffice. Another single-policy method was suggested by Abdolmaleki et al. (2020). They
proposed a method that enables setting objective preferences for objectives of different scales
more easily. In their actor-critic approach, they set a bound on the expected influence of each
objective on the policy adjustment. This enables faster and easier exploration of suitable policy
weights.

23

CHAPTER 4. LITERATURE REVIEW

The second group of methods comprises the multi-policy approaches. These multi-policy ap-
proaches can be addressed in several ways. First, a naive method is to learn a policy from
scratch for each utility function using single-policy methods. T. T. Nguyen et al. (2020) of-
fer a framework for this, which can handle both linear and non-linear utility functions. To
improve execution times, they offer multi-threading. Non-linear utility functions are handled
using Thresholded Lexicographic Ordering (TLO). This is a method that allows the optimiza-
tion of one objective while thresholding the other objectives. TLO enables finding different
solutions than linear scalarization. However, it requires knowledge of how to specify the thresh-
olds. Besides, Issabekov and Vamplew (2012) and T. T. Nguyen et al. (2020) showed that TLO
outperforms linear scalarization when there is a single intrinsic objective, but with multiple
intrinsic objectives, it generally performs worse.

Another multi-policy approach is the outer-loop approach, in which different policies are trained
by looping over different weight combinations. Mossalam et al. (2016) were first to apply this
in a DRL method, to train multiple DQNs that together form a coverage set. Instead of naively
looping through linear scalarization weights, they used Optimistic Linear Support to determine
which weights to use. In Optimistic Linear Support, weights are picked using the concept of
corner weights. These weights are at the corner of the convex upper surface formed by the in-
termediate coverage set. The corner weight with the highest optimistic bound for improvement
is selected at each iteration. Their experiments tested the impact of copying the DQN of the
closest weight vector in the intermediate coverage set. They found that partially copying gives
the best result, as it includes existing information but still allows sufficient freedom for explo-
ration. K. Li et al. (2021) also used an outer-loop approach. They used an actor-critic algorithm
with simple looping and partial weight copying. Their method was focused on solving a multi-
objective traveling salesman problem. They constructed complete solutions in one forward pass,
which is possible since there is no stochasticity or interaction in the problem. This deviates from
most RL problems and is likely less suitable for the collaborative picking problem.

Opposed to outer-loop methods, in classical multi-objective RL techniques, there has also been
a stream of inner-loop methods. These methods modify the internal workings of single-objective
algorithms to use set operators and directly identify and save multiple policies in parallel (Roijers
et al., 2013). Only one DRL paper (Reymond & Nowe, 2019) has proposed an inner-loop method.
They proposed a Pareto-DQN algorithm that directly estimates the Pareto Front. However, the
method did not work well for a high-dimensional, complex environment. F. Yang et al. (2022)
proposed a method related to the inner-loop and single-policy categories. They adapted Q-
learning to Q-learning based on the Pareto Front set. The Q-network estimates the rewards for
each objective for each action. Then, instead of an epsilon-greedy policy, the “greedy” action
consists of picking a random action on the Pareto Front that can be estimated by the Q-values.
Besides, they adjusted the Q-learning update rule to use the expectation of Q in the Pareto front
set for every objective. This method is aimed at scenarios where a single-objective problem is
changed to a multi-objective problem to construct an easier new task. Due to the random policy
over the entire Pareto Front, it does not seem suitable for tasks with competing objectives.

Besides the looping techniques based on popular classical RL techniques, different ideas have
been proposed in DRL. Tajmajer (2018) proposed a modular learning technique. They aim
to learn in parallel multiple DQNs, one for each objective. Then, to select an action, a scalar
Q-value is calculated using a weighted sum based on the input weights of a user. This allows
decomposing the problem into sub-problems and offers a method for changing utility preferences
after training. To improve the scalarization, they proposed the addition of learning decision
values in the networks. These decision values dynamically indicate which objective value is more
important for the decision based on the input state. Including these decision values improved
the robustness of the method to different preferences. However, due to the additional noise, the
baseline performance is worse. A limiting factor of this method is that the Q-values are learned

24

CHAPTER 4. LITERATURE REVIEW

assuming a specific policy, but this policy can be different when new weights are used. This is
not captured in the networks, leading to biased Q-value estimates.

Then, a new stream of techniques using “meta-policies” has gained attention in recent years.
These techniques learn a single neural network, which can easily adapt to policies for different
utility functions. Abels et al. (2019) were the first to introduce such a method, focusing on
a dynamic weight setting. They proposed to condition the (dueling) DQN on the weights by
adding these weights as input alongside the state. Then, training is performed using episodes
with different weights. To ensure that the model does not only adjust to the most recently
used weights, they proposed Diverse Experience Replay, which ensures that experiences of a
variety of weight vectors are stored. Their experiments showed good performance for various
weight settings, both with frequently and infrequently changing weights. R. Yang et al. (2019)
proposed a successive meta-policy method. They used the concept of envelope updates instead
of Diverse Experience Replay. This means that for each experience tuple, a vectorized reward is
stored. Then, using a similar training scheme as Hindsight Experience Replay (Andrychowicz
et al., 2017), one can sample multiple weights and optimize based on this variety of weights
simultaneously. They theoretically showed that this leads to faster convergence. Additionally,
they used so-called “homotopy optimization,” shifting between two loss functions during the
learning phase. An empirical evaluation showed that their method performed better than Abels
et al. (2019) and Mossalam et al. (2016) on four problem sets. This method has been improved
further by Hu et al. (2022). They empirically showed improved learning stability and perfor-
mance. They achieved this using a dueling DQN, a Noisynet method, and a soft target function
update. The Noisynet method adds random perturbations to parameters, enabling persistent
and complex permutations to agent strategies. This should improve the exploration-exploitation
abilities compared to the epsilon-greedy policy. The generalized meta-policy approach has also
been adapted for non-linear functions. Dornheim (2022) used a TLO-based approach. Using
a multi-headed DQN that is conditioned on the thresholds and TLO action selection, they
achieved policies that extend those on the Convex Coverage Set. The method contains fewer
optimization tricks but shows a working concept. Lastly, Nian et al. (2020) adopted the ideas
by Abels et al. (2019) and adjusted them to handle partially observable MDPs. They developed
a recurrent conditioned actor-critic network, in which the actor-critic training is inspired by
Heess et al. (2015). This concept is combined with the Diverse Experience Replay by Abels
et al. (2019).

All the above multi-policy methods are value-based methods using a DQN or one of its vari-
ants. To handle continuous action spaces, some authors have proposed approaches using policy
networks. X. Chen et al. (2019) proposed a meta-policy approach using PPO. This approach
consists of three phases. First, in an adaptation phase, several policies for different preference
vectors are updated based on the meta-policy. Then, in the meta-policy training phase, the
meta-policy is updated using the aggregated data generated in the adaptation phase. Lastly,
after the meta-policy has been trained, in the fine-tuning phase, the meta-policy is updated for
a few iterations for each desired weight preference. They empirically showed improved perfor-
mance over training separate policies from scratch. J. Xu et al. (2020) adopted a PPO-based
method incorporating an evolutionary method to guide learning in the most promising direction.
In each generation of evolution, stored data from previous iterations are used to fit a predic-
tion model that helps to find the pairs of policies and scalarization weights that will improve
the solution the most. Each selected policy-weight pair is then improved to produce offspring
policies. These are used to create a new generation of policies. The final generation is divided
into policy families by clustering, and policy parameters within each family are interpolated to
produce a continuous approximation of the Pareto front.

F. Y. Liu and Qian (2021) combined the strengths of X. Chen et al. (2019) and J. Xu et al.
(2020). They trained a meta-policy using the general three-phased approach by X. Chen et

25

CHAPTER 4. LITERATURE REVIEW

al. (2019). However, instead of randomly picking the preference vectors in each task, they use
a prediction model for the expected improvement based on the idea by J. Xu et al. (2020).
Their results show a better approximated Pareto set as well as faster and better adjustments
to new preferences, compared to some benchmarks, including the method proposed by X. Chen
et al. (2019). Compared to J. Xu et al. (2020), their performance is only better in terms of
adaptability, which is the inherent strength of the meta-policy approach. If this adaptability is
not required, the multi-policy approach by J. Xu et al. (2020) may be better as it could be more
robust for complicated problems. However, this has not been elaborately tested.

Lastly, Abdelfattah et al. (2021) proposed a method that deals with continuous action spaces
in non-stationary environments. They used a two-stage approach, utilizing DDPG. In the first
stage, a set of generic skills (e.g., in a robot setting, Move Forward, Turn Left, and Turn Around)
are learned. In the second stage, the learned skills are used in a hierarchical version of DDPG
to produce a policy coverage set for the MOMDP. An intrinsically motivated RL algorithm is
used to select which objective preferences to explore, and a policy bootstrapping mechanism is
used to adapt to changes in the dynamics of the environment. The policy-based and DQN-based
methods have not been compared since one group focuses on discrete action space while the
other focuses on continuous action space. However, since PPO can also be used for discrete
action spaces, it can still be considered in such scenarios.

In short, works on multi-objective DRL have spread along several categories. First, single-policy
approaches transform the objectives into a single objective. This is a good option in some cases
but provides no insights into any trade-offs and does not allow for any adaptation of preferences
afterward. Then, multi-policy approaches establish a Pareto Coverage Set by training multiple
policies. To aid this training, they use techniques such as weight copying and Optimistic Linear
Support. Lastly, meta-policy approaches use a single network, adaptable to weight preferences
given as input next to the state information. These works have been developed for both value-
based and policy-based solutions. For value-based learning, these meta-policy approaches are
state-of-the-art. For policy-based learning, the multi-policy method by J. Xu et al. (2020) and
the meta-policy method by F. Y. Liu and Qian (2021) appear to be state-of-the-art. The methods
using DQN and PPO have not been compared to each other as the PPO-based methods have
only been applied to problems with continuous action space, while the DQN-based method can
only be applied to problems with discrete action space. In general, the multi-objective DRL
methods have been tested on typical benchmark DRL problems. However, they have not been
elaborately used in applied DRL studies.

4.3 Deep Reinforcement Learning for Related Problems

This section outlines the usage of DRL in several related problems to provide insights into the
feasibility of DRL for our collaborative picking problem and to explore potential methodologies.
These related problems are online bipartite matching, vehicle routing, and vehicle dispatching
problems.

4.3.1 Online Bipartite Matching

Online bipartite matching is a sequential resource allocation problem introduced by Karp et al.
(1990). In this problem, a fixed set U of entities must be matched with at most one entity in
an unknown incoming stream V upon arrival of the entities in V . These matches all have a cost
or reward, and the goal is to establish a matching such that the final result after all arrivals is
optimal.

Alomrani et al. (2021) proposed a DRL approach to solve the online bipartite matching problem.
In their work, they modeled the state as a bipartite graph. They then tested several graph
neural network architectures and features to investigate the best-performing structure. They
found that the best performance was achieved using an encoder-decoder graph neural network

26

CHAPTER 4. LITERATURE REVIEW

with message passing. Adding historical information regarding the arrival history improved
performance further. In addition, they found that using a node-wise invariant feed-forward
structure also performed well when supplied with additional history information, suggesting
that we can still achieve good performance without message passing as long as we use descriptive
features of the system.

Our use case can also be seen as a matching problem, with possible picks being matched with
human pickers that become available online. Hence, lessons can be taken from this method. On
the other hand, some significant differences are not included in the modeling for the bipartite
matching problem. Firstly, the bipartite matching problem does not consider any spatial rela-
tions between nodes, while in a collaborative picking system, many entities interact with each
other at different distances. Secondly, in the bipartite matching problem, there is an unknown
node arrival based on a hidden pattern. Oppositely, in our use case, arrivals of AMRs and pickers
are interdependent. Besides, orders become available through pickruns that are known in the
system. Hence, there are more interactions and patterns that may be taken into account. Lastly,
in our use case, both sets U and V can be considered streams since both orders and pickers
become available over time. Overall, we can take general lessons from this approach, such as the
suitability of an invariant feed-forward network and incorporating an allocation-type modeling
technique. However, this method does not cover all aspects of our problem.

4.3.2 Vehicle Routing Problem

The vehicle routing problem, first introduced by Dantzig and Ramser (1959), is an optimization
problem that aims to find the optimal routing of a set of vehicles to serve a given set of customer
locations. This relates to the collaborative picking problem, as we want to optimally allocate
a set of pickers to a set of picking locations that must be visited sequentially. In recent years,
several DRL solutions have been developed to solve the vehicle routing problem.

Raza et al. (2022) reviewed the recent advances of DRL solutions for the vehicle routing problem.
These works generally use attention networks or encoder-decoder structures. Here, many models
construct entire tours to solve the complete optimization instance. This limits the possibilities
of these methods to be used in online settings. Yu et al. (2019) did propose an online method.
However, they do not consider any constraints regarding time windows or condition-based avail-
ability of locations. These availability restrictions are crucial parts of our collaborative picking
system.

Hence, current work in DRL for the vehicle routing problem is not developed sufficiently to
handle online optimization with similar constraints as the collaborative picking problem. Be-
sides, the problem characteristics are quite different, despite seeming similar at first glance. For
example, constructing entire tours is nearly impossible in the collaborative picking problem due
to the high interdependency of available picks. Additionally, collaborative picking systems run
for much longer, and human pickers do not need to form a tour with begin and end. Therefore,
DRL methods for vehicle routing problems cannot be directly transferred for this use case.

4.3.3 Dispatching Problem

Vehicle dispatching problems deal with the movement of a fleet of vehicles over a specific region.
The goal is to dispatch vehicles geographically so incoming demand can be fulfilled efficiently
(Y. Liu, Wu, et al., 2022). In recent years, it has gained importance due to the rise of online
ride-hailing platforms and can also be applied to “classical” taxi networks. Like our use case,
interdependent actors are allocated to handle online incoming demand patterns. Hence, several
DRL methods have been proposed recently.

Both model-based and model-free methods exist. For example, Jin et al. (2019) combined a
parallel ranking problem with a multi-agent RL formulation to solve a dispatching problem
in a model-based way. In contrast, Jiao et al. (2020) learned value functions using dual policy

27

CHAPTER 4. LITERATURE REVIEW

evaluation. Model-free methods can be split into multi-agent and single-agent approaches. Works
by Guo et al. (2020) and Wen et al. (2017) treat the problem as a multi-agent problem in which
each vehicle is considered an agent and a DQN-network was trained to find the optimal policy.
Oppositely, Holler et al. (2019) and Mao et al. (2020) used DQN and PPO to train a centralized
fleet controller. This strategy aims at optimizing the dispatching policy at a system level. Y.
Liu, Wu, et al. (2022) extended the latest model-free, single-agent works and were the first to
offer a methodology that scales to complicated-real world scenarios. In their work, they made
a split between the dispatching decision and the order-matching decision. Thus, they learned
a policy using DRL that dispatches vehicles to regions. Then, within a region, vehicles are
matched to incoming orders using a predefined method. The dispatcher policy receives requests
from vehicles to be dispatched and assigns those vehicles to new locations. They modeled the
state space as a grid, with each node representing a region, with its current number of vehicles,
orders, and the potential income generated from those orders. Then, vehicles are assigned using
a convolutional neural network and a pruned action space.

Although the pruning method and specific features of the method are case-specific and hard to
transfer, we can take some lessons from this. For example, a single-agent dispatching policy that
assigns incoming requests could be applied to our use case. Additionally, ensuring a restricted
action space with potential options can aid learning. Oppositely, the general regional dispatching
with a local prespecified matching method may not be optimal in our case. Instead, with the
smaller, more specific area formed by a warehouse, it seems better to incorporate more exact
decision-making within the DRL policy.

4.4 Fairness

With the rising use of Artificial Intelligence (AI) in decision-making, it has become increasingly
important that decisions are made fairly. To this end, fair machine learning and fair RL have
received increasing attention in recent years. In this chapter, we will first outline how fairness
can be defined. Then, we will provide an overview of the current works in DRL that address
fairness. This allows us to scope our work within the existing literature. Besides, it helps to
define our fairness criteria and to identify potentially suitable methods for our work. Lastly, we
will show how fairness is incorporated into optimization in general.

4.4.1 Defining Fairness

In fair AI research, most attention has been directed toward supervised machine learning. Several
extensive surveys have been published on this topic by, amongst others, Barocas et al. (2019),
Corbett-Davies and Goel (2018), Gajane and Pechenizkiy (2017), and Mehrabi et al. (2019). The
main goal of fair machine learning is to prevent bias caused by so-called protected attributes.
Protected attributes are attributes that can not be used for decision-making, such as race,
gender, and religion. As Gajane and Pechenizkiy (2017) outlined, various notions of fairness
exist in literature, and various measures and subcategories can be distinguished for each fairness
notion. The most trivial notion is fairness through unawareness, which states that an algorithm
is fair if protected attributes are not explicitly used in the prediction process. However, this is
shown to have limited bias-mitigation ability because proxies for the protected attributes may be
implicitly encoded in other attributes (Pedreshi et al., 2008). As a result, more explicit notions
are used. The main concepts are individual fairness (i.e., similar individuals receive similar
outputs), group fairness (i.e., approximately equal probability of an outcome for individuals
across groups), and counterfactual fairness (i.e., output remains the same when the protected
attribute is switched). As can be seen, fair machine learning mainly focuses on societal fairness
in the sense of protected attributes. In our case, these protected attributes are not explicitly
present and relevant. Hence, we consider other fairness measures.

Aside from fairness in supervised machine learning, Gajane et al. (2022) provide a survey on

28

CHAPTER 4. LITERATURE REVIEW

fairness in RL. In this survey, they denote two streams. The first stream is what they call societal
fairness. This stream naturally follows from fair machine learning and focuses on preventing
societal bias based on protected attributes. The other stream relates to non-societal fairness.
These works mainly frame fairness as a way of adhering to defined constraints in allocation tasks
or sequential decision-making problems. Example problems are resource allocation in computer
networks or traffic flow control. This latter stream, however, is not investigated as expansively
as the former.

For our study, we need a fairness measure between the two notions. Namely, we are dealing with
humans that need to experience a fair distribution of rewards among all workers. However, we do
not have protected attributes that influence our decision-making. This idea of having a “socially
fair” algorithm has recently been studied in RL by Mandal and Gan (2022), who focused on
three frequently occurring socially fair measures. The most straightforward fairness measure
adopts the minimum welfare principle, also called max-min fairness or egalitarian fairness. This
measure assumes that the fairest solution is the one in which the worst value by any actor is
maximized.

Definition 4.1. Given the values xi,∀i ∈ {1, . . . , n} of n actors, the best minimum welfare
value MW is given by:

MW := max
π

min
i∈{1,...,n}

xi

An extension of this measure is the generalized Gini function. This function can be adapted
to different fairness notions using its parameters. Other fairness notions that can be achieved
using this function are regularized max-min fairness, utilitarian fairness (i.e., maximize aggregate
welfare), and leximin fairness (i.e., first maximize minimum value, then second lowest and so
on) (Siddique et al., 2020). This fairness function is defined as follows.

Definition 4.2. Given the values xi, ∀i ∈ {1, . . . , n} of n actors such that x1 ≤ x2 ≤ · · · ≤ xn
and a weight vector w = ⟨w1, w2, . . . , wn⟩ such that wi ≥ 0 for all i and

∑n
i=1wi = 1, the

generalized Gini function GGFw is given by:

GGFw :=
n∑

i=1

wixi

Another fairness measure is the Nash social welfare measure, as defined in Definition 4.3. Since
this is a multiplicative measure, any low rewards cause a punishment of the measurement value.
It is similar to the leximin fairness principle, but a few values can influence the measure relatively
heavily.

Definition 4.3. Given the values xi,∀i ∈ {1, . . . , n} of n actors, the Nash social welfare NSW
is given by:

NSW :=

(
n∏

i=1

xi

)1/n

An additional fairness measure that was not used by Mandal and Gan (2022) but is very
frequently used in literature is Jain’s fairness index (Jain et al., 1984). This metric describes the
throughput fairness over different users and is frequently used in resource allocation problems.
As Jain et al. (1984) described, it has several desirable properties. Namely, it is applicable to any
number of users, scale-independent, bounded, and continuous. Additionally, it directly relates to
fairness and has an intuitive link to the human perspective on fairness. It is defined as follows.

29

CHAPTER 4. LITERATURE REVIEW

Definition 4.4. Given the values xi,∀i ∈ {1, . . . , n} of n actors, the Jain’s fairness index JFI
is given by:

JFI :=
(
∑n

i=1 xi)
2

n ·
∑n

i=1 xi
2
=

1

1 + ĉv
2

where ĉv is the sample coefficient of variation.

In addition to these measures, many other fairness criteria exist, of which some extend the named
measures, and some are based on other principles. However, these are targeted at specific use
cases with unique characteristics. For example, Quality of Experience measures can be used for
variables with an interval scale instead of a ratio scale (Hoßfeld et al., 2017). Hence, we do not
discuss those measures.

In short, fair machine learning, and RL specifically, has focused on various fairness notions.
The most prevalent notion in fair machine learning is societal fairness that prevents unjustified
bias. Conversely, we have non-societal fairness, which focuses on adhering to certain constraints
in allocation tasks, mainly regarding computer networks or traffic flow. In our work, we must
touch upon a notion of social fairness that forms a middle ground. There are several fairness
measures based on different principles. Measures like the generalized Gini function, Nash social
welfare measure, and Jain’s fairness measure all have a solid theoretical and practical foundation
and can be suitable for our use case. No measures explicitly incorporate the performance on an
additional performance objective.

4.4.2 Fair Deep Reinforcement Learning

As mentioned in the previous section, Gajane et al. (2022) outlined the existing work in fair RL.
What is immediately evident is that most works focus on traditional reinforcement learning.
This allows for proofs of bounds on the performance and fairness level. However, there are also
some DRL works that consider fairness. These studies focus on several fairness considerations.

C. Li et al. (2020) and Raeis and Leon-Garcia (2021) applied DRL for fair traffic light control.
C. Li et al. (2020) used a single-objective approach to optimize a weighted reward function
of the average and maximum waiting times. Raeis and Leon-Garcia (2021) proposed a simi-
lar approach, but they used two custom fairness functions based on throughput and waiting
time instead of the maximum waiting time. Another relatively frequently studied topic is fair
communication coverage in UAV control. These studies generally use complex, often non-linear,
custom reward functions that combine fairness and performance, solving them using single-
objective DRL. Authors like D. Chen et al. (2021), C. H. Liu et al. (2018), Qi et al. (2020), and
Qin et al. (2021) incorporated Jain’s fairness index into their functions, while others such as
Ding et al. (2020) and Nemer et al. (2022) crafted their own fairness criteria. Generally, the fair-
ness criteria are based on the same underlying measure (e.g., throughput) as the performance
criteria. Tong et al. (2021) studied a use case of dynamic spectrum allocation. They also used a
single-objective DRL approach to balancing the Quality of Experience mean and fairness using
a custom reward function. Zhu and Oh (2018) proposed a method for fairness in multi-type
resource allocation. They incorporated the Gini coefficient, a specific version of the generalized
Gini index, with their custom reward function alongside the performance objective.

Aside from these papers that focus on specific problems, Siddique et al. (2020) proposed a generic
method to learn fair policies in DRL. They proposed to use the generalized Gini function to
determine a fair policy over multiple objectives. They modeled the problem as an MOMDP.
In this model, each reward should have the same scale, and the goal of the algorithm is to
distribute those rewards according to the generalized Gini function fairly. Thus, one could say
that, although a multi-objective model is used, the problem has one objective. This objective
is to achieve a fair distribution of rewards among individuals according to the generalized Gini
function.

30

CHAPTER 4. LITERATURE REVIEW

Concluding, fair DRL has received limited attention in the literature. The main works focus on
non-societal fairness. Several methods have used social fairness measures, such as Jain’s fairness
measure or the Gini function. The methods all use single-policy DRL approaches, solving a
specific reward function that integrates the fairness aspect. Additionally, in these works, the
underlying measures for fairness and performance criteria are generally the same or similar.
Oppositely, in our use case, we have a fairness metric based on an inherently different measure
than our performance metric. Besides, we want to explore the trade-off between the objectives
and allow for adaptation to different preferences. For this setting, a gap in current fair DRL
exists. Lastly, no studies use fair DRL in the operations management domain.

4.4.3 Fairness in Optimization

To gain insights into the current state of fairness considerations in optimization problems and
how fairness and optimization are combined, we reviewed existing works in this intersection. In
Table 4.2, we provide an overview of the existing literature. This overview lets us understand
which fairness measures are prevalent in the intersection between fairness and optimization.
Besides, we analyzed which type of solution approaches are used, whether they use a single-
solution approach, or whether they aim to find multiple (non-dominated) solutions for different
trade-offs. In addition, we gathered insights into the application domains and whether the
methods offer general solution strategies or problem-specific approaches.

Our overview shows that max-min fairness is the most commonly used fairness measure in
optimization problems. This is related to several factors. Firstly, it is a relatively straightforward
measure that is easy to understand and interpret. Secondly, due to its easy computation, it can
be embedded in mathematical techniques such as MILP in a relatively straightforward way.
Thirdly, the measure fits the considered problem domains well. Many studies considering max-
min fairness consider resource allocation or scheduling problems where machines or devices are
used, and the algorithm does not influence the total workload. Hence, by optimizing max-min
fairness, the entire distribution can be brought to a stable level without needing to consider the
overall load of the system.

Aside from max-min fairness, we find a relatively even spread over the used fairness measures.
Jain’s fairness index, the Nash social welfare measure, and the generalized Gini index are all
used in several problems. Besides, α-fairness, which is a measure related to max-min fairness,
and quality of service fairness are considered in some studies. Lastly, several studies consider
a custom fairness measure or a variance-based metric. In general, there does not seem to be
a clear pattern for which measures are used in which problem domains. The choice is often
arbitrary and based on what is considered relevant by the authors or what fits the optimization
method best.

Considering the problem domains that are investigated, we find that many of the problem do-
mains are similar. Namely, most methods aim at variants of resource allocation, load balancing,
and network optimization problems. This is as expected since these are prevalent problems in
combinatorial optimization literature and they inherently consider workload distribution over
resources. Other considered domains are recommender systems, supply chain optimization, and
the vehicle routing problem. All in all, there are few use cases in which fairness for humans is
considered. In addition, most studies consider specific problem instances and do not consider
generalizable methods. Some exceptions are the works by J. Jiang and Lu (2019) on fairness in
multi-agent RL, Busa-Fekete et al. (2017) on multi-objective bandits, and Alabi et al. (2018),
Escoffier et al. (2013), and V. H. Nguyen and Weng (2017) on combinatorial optimization prob-
lems.

Lastly, in terms of solution approaches, we find two main observations. First, most methods focus
on deterministic optimization. Second, most methods use a single-solution approach, although

31

CHAPTER 4. LITERATURE REVIEW

in recent works solving problems in a multi-objective way is becoming more prevalent. Many
problems are modeled using an MILP formulation. Especially in the older studies, the problems
are mostly solved using more classical optimization methods such as using an MILP solver,
approximation algorithms, or lagrangian optimization. More recently, evolutionary algorithms
and meta-heuristics such as the genetic algorithm or ant colony optimization have been used.
Using these evolutionary approaches, more focus has been put on finding a non-dominated set of
solutions to explore the trade-off between fairness and another objective. This increased interest
reflects the increasing attention paid to fairness by decision-makers, as it is not just considered
a nice-to-have extra, but its effects and relation with performance must be understood.

In short, fairness is getting increased attention in optimization literature. Many methods still
focus on relatively standard combinatorial optimization problems, but some different applica-
tions have also been studied. Max-min fairness is a prevalent measure that fits many of these
problems well. However, different measures are used in various applications based on the prob-
lem characteristics. In recent years, more focus has been put on incorporating fairness in a
multi-objective way, such that a solution set reflecting the trade-offs can be explored. With the
increasing importance of fairness in decision-making, this seems to be the way forward. For
future research, many opportunities exist in developing general guidelines and methodologies to
incorporate fairness in optimization. Besides, a more comprehensive range of problem domains
must be tackled. Lastly, most current methods focus on scenarios wherein fairness and perfor-
mance have the same underlying measure, such as throughput. Methods in which the underlying
fairness criterion differs from the performance criterion are still scarce. Here, our use case differs
from the current methods and can help expand the literature on these problems.

32

C
H
A
P
T
E
R

4
.

L
IT

E
R
A
T
U
R
E

R
E
V
IE

W

Table 4.2: Overview of existing methods considering fairness in optimization problems. The table contains the considered fairness measure, applied
solution approach, whether the method generates a single or multiple (non-dominated) solutions, and the application domain.

Paper Measure Approach Solution Domain

Kleinberg et al. (2001) Max-min fairness Approximation algorithm Single Load balancing

Harks (2005) Proportional and max-min fairness Lagrangian optimization Single Bandwidth allocation

Pioro (2007) Max-min fairness Seq. lexicographic optimization Single Bandwidth allocation

Ishida et al. (2006) Variance Nonlinear program Single Multipath network flow

Pishdad et al. (2010) Quality of service fairness Polynomial time approximation scheme Single Job scheduling

Koppen et al. (2010) Max-min fairness Multi-objective evolutionary algorithms Multi Network congestion control

Meng and Khoo (2010) Custom fairness measure Genetic algorithm Multi Ramp metering

Devarajan et al. (2012) Jain’s fairness index Custom algorithm Single Power allocation

Tangpattanakul et al.

(2012)

Maximum difference Genetic algorithm Multi Satellite Scheduling

Stolletz and Brunner

(2012)

Custom fairness constraints MILP Single Workforce scheduling

Escoffier et al. (2013) α-fairness Polynomial time approximation algorithm Single Multi-agent combinatorial optimiza-

tion

Amaldi et al. (2013) Max-min fairness MILP Single Network optimization

Bertin et al. (2014) Custom fairness measure Lagrangian optimization Single Job scheduling

Yue and You (2014) Nash bargaining fairness Nonlinear program Single Supply chain optimzation

Yaacoub and Dawy (2014) Max-min and quality of service

fairness

Custom algorithm Single Radio resource management

Dely et al. (2015) Max-min fairness MILP Single Bandwidth allocation

Partov et al. (2015) Custom fairness measure Primal-dual algorithm Single Network optimization

Sawik (2015) Custom fairness measure Stochastic MILP Single Supply chain optimization

L. Xu et al. (2015) Jain’s fairness index Hybrid ant colony optimization Single Resource allocation

Z. Li et al. (2016) Max-min fairness ϵ-constraint method Multi Network traffic offloading

Busa-Fekete et al. (2017) Generalized Gini Index Online gradient descent Single Multi-objective bandits

X. Liu et al. (2017) Max-min fairness Evolutionary algorithms Single Load balancing

V. H. Nguyen and Weng

(2017)

Generalized Gini Index Primal-dual algorithm Single Classic combinatorial optimization

Ye et al. (2017) Max-min fairness Two-stage algorithm Single Task allocation in transportation

Alabi et al. (2018) Multiple convex group-fairness

measures

Polynomial-time reduction method Single General multi-objective optimization

Doi et al. (2018) Custom and max-min fairness Decomposition-based metaheuristic Single Crew scheduling

33

C
H
A
P
T
E
R

4
.

L
IT

E
R
A
T
U
R
E

R
E
V
IE

W

Limmer and Dietrich

(2018)

Custom fairness measure Genetic Algorithm Multi Dynamic pricing

Arribas et al. (2019) α-fairness Heuristic non-convex optimizer Single Network optimization

Diao et al. (2019) Max-min fairness Iterative algorithm Single Data allocation and trajectory opti-

mization

J. Jiang and Lu (2019) Custom variance-based measure Hierarchical multi-agent RL Single Multi-agent RL

Zhao (2019) Max-min and quality of service

fairness

Alternating optimization algorithm Single Wireless network design

Clausen et al. (2020) Max-min and leximin fairness, and

variance

Genetic algorithm Single Resource allocation

Jagtenberg and Mason

(2020)

Nash social welfare MILP and local search Single Ambulance facility location problem

Kermany et al. (2020) Custom fairness metric Genetic algorithm Multi Recommender System

Z. Zhang et al. (2020) Max-min fairness Multi-objective local search Multi Vehicle routing problem

Z. Li et al. (2021) Max-min fairness MILP Single Emergency resource location problem

Lu and Wang (2021) Max-min fairness Alternating optimization algorithm Single Network optimization

Malencia et al. (2021) Max-min fairness Supermodular algorithm Single Multi-agent task allocation

Mungúıa-López and

Ponce-Ortega (2021)

Nash social welfare and max-min

fairness

MILP Single Vaccine allocation

Purushothaman and Na-

garajan (2021)

Jain’s fairness index Evolutionary algorithm with neural network Single Resource allocation

Rahmattalabi et al. (2021) Multiple group-fairness measures MILP Single Influence maximization

Tang et al. (2021) Gini coefficient Genetic algorithm Multi Water resource allocation

S.-Z. Zhou et al. (2021) Variance Ant colony system algorithm Multi Crew scheduling

Zimmer et al. (2021) Max-min and proportional fairness

and Generalized Gini Index

multi-agent RL algorithm Single General multi-agent RL

Arribas et al. (2022) α-fairness Extremal optimization Single Network Optimization

Fan et al. (2022) Nash social welfare Q-learning adaptation Single Multi-objective classic RL

F. Li et al. (2022) Custom fairness measure Genetic algorithm Multi Multi-workflow scheduling

Y. Liu, Huangfu, et al.

(2022)

Quality of service fairness Proximal stochastic gradient descent Single UAV placement

Kuai et al. (2022) Max-min fairness Offline PPO Single Virtual network scheduling

Sadiq et al. (2022) Custom fairness measure Non-linear marine predator algorithm Single Power allocation

Y. Wang et al. (2022) Maximum difference Genetic algorithm adaptation Multi Virtual power plant profit allocation

Gong and Guo (2023) Gini coefficient adaptation Custom genetic approach Multi Influence maximization

Y. Jiang et al. (2023) Custom fairness measure Genetic algorithm with large neighborhood search Multi Airport gate assignment

Wu et al. (2023) Custom fairness measure Multiple gradient descent Multi Recommender System

34

CHAPTER 4. LITERATURE REVIEW

4.5 Synthesis and Research Gap

In this literature review, we first outlined the existing works in collaborative picking. Several
aspects of collaborative picking have been studied, like picking optimization and the impact
of human-robot interaction. Existing works use deterministic methods, like MILP formulation
with heuristic solution approaches, to optimize picking and batching. However, in real-life,
disturbances may take place. Thus, we identify a gap for an online solution approach that
can handle stochastic environments in collaborative picking while also extending to long time
horizons. In addition, we found that little to no attention is paid to handling the human workload
during optimization, despite human workers having a crucial role in the system.

DRL offers a framework that can meet this requirement. Regular DRL techniques, however,
can only optimize based on a single reward function. Oppositely, in our problem, we aim to
optimize the picking performance while maintaining a fair workload distribution and exploring
the trade-offs. To do so, we aim to use a multi-objective DRL approach. Therefore, we need
multi-objective DRL techniques. Exploring the existing multi-objective DRL literature showed
several solution categories, being single-policy, multi-policy, and meta-policy strategies. The
meta-policy approaches seem to be state-of-the-art for value-based learning, while a multi-policy
(J. Xu et al., 2020) or meta-policy (F. Y. Liu & Qian, 2021) method is best for policy-based
learning.

To establish the feasibility of DRL, we found several similar problems to collaborative picking
in which DRL has been applied. These problems, being online bipartite graph matching, vehicle
routing problems, and dispatching problems, showed that DRL has the potential to be valuable
for collaborative picking. Besides, they offered some potential modeling concepts. On the other
hand, the problems all have different properties that prevent us from applying the methods
directly.

To define our fair workload objective, we need two measurements. First, we need a workload
measurement. We found that the NIOSH lifting index (Waters et al., 1993) and a discomfort
measure (Larco et al., 2017) are most suitable for our use case. However, both have their
deficiencies that limit the direct application. Secondly, we must define fairness. In Section 4.4,
we discussed several measures, the generalized Gini function, Nash social welfare measure, and
Jain’s fairness measure, that all offer valid metrics for our use case. We found no measures that
explicitly include an additional performance objective.

Continuing, we explored the existing fair DRL methods. The existing works mainly use single-
policy approaches with handcrafted reward functions. No works use a multi- or meta-policy
strategy to explore the trade-offs between a fairness objective and a performance objective
based on different underlying properties. Thus, a gap exists to incorporate multi-objective DRL
with fair DRL. Besides, the underlying subject of fairness in these methods is mostly the same
as the subject of performance, while in our case, these differ from each other.

Lastly, we outlined the current works that consider fairness in optimization. We found that,
similar to the DRL approaches, single-solution methods are most frequently used. However,
more focus has been put on multi-objective considerations and exploring trade-offs in recent
years. Most works focus on specific use cases, and the selected fairness measures are mostly
arbitrarily picked based on the specific problem characteristics. The studied problem domains
are relatively common combinatorial optimization problems. There is still much work to be done
in expanding the application domains besides further exploring the trade-offs between fairness
and performance.

Concluding, existing collaborative picking works do not consider stochastic, interactive scenarios
and lack consideration of human workload. To handle this, multi-objective DRL offers a promis-
ing framework in which an interactive picker allocation policy can be learned, and a fairness

35

CHAPTER 4. LITERATURE REVIEW

objective can be included next to a performance objective. We identified the state-of-the-art
multi-objective DRL techniques, several fairness measures that can be used, and how fairness
is currently considered in optimization studies. There exists a gap in the current collaborative
picking literature for online solution approaches that handle stochastic, interactive systems. In
addition, current collaborative picking methods insufficiently consider the human workload and
fairness. In DRL research, fairness has also received limited attention, and there are no exist-
ing works that combine multi-objective DRL and fair DRL to explore the trade-offs between
performance and fairness. We position our work within these interdisciplinary gaps. We aim to
stimulate these research tracks further to enable the adoption of multi-objective DRL, as well
as the integration of fair and multi-objective optimization techniques and the consideration of
the human factor in operations management.

36

Chapter 5

Methodology

In this chapter, we focus on the methods that we used to solve the problem of allocating pickers
to orders in collaborative order picking. This methodology consists of two parts. First, in Section
5.1, we will describe our developed simulation model. This simulation model is vital for both
developing and evaluating solutions. Second, in Section 5.2, we will outline our DRL approach.
Specifically, in Section 5.2.1, we will define the MOMDP. Consequently, in Section 5.2.2, we will
explain the learning algorithms we used. Lastly, we will introduce the architecture of our DRL
agent in Section 5.2.3.

5.1 Simulation Model

To represent the collaborative picking system, we used discrete-event simulation. Discrete-event
simulation models the evolution of a system over time using instantaneous changes at separate
times, called events (Law, 2015). Between these events, a specific amount of time can take
place. This method abstracts away from the exact real-life processes, which increases speed and
reduces unnecessary complexity but allows for a detailed simulation by including all the critical
events.

To implement the simulation, we used Python 3.9 with the discrete-event simulation package
SimPy (Matloff, 2008). To facilitate DRL, we wrapped the simulation model within the OpenAI
Gym interface (Brockman et al., 2016). We had product data and order picking data from a few
days of one of the customers of Vanderlande. As the order picking data was limited, we relied
mainly on stakeholder information to verify the suitability and assumptions of the simulation
model. The simulation model is split into three main entities: the warehouse, pickers, and AMRs.
In Section 5.1.1, we will outline the warehouse specifications and assumptions. Then, in Sections
5.1.2 and 5.1.3, we will discuss the picker and AMR processes, respectively.

5.1.1 Warehouse

In this study, we considered a traditional warehouse layout. Namely, we assumed warehouses
with vertical, parallel aisles with storage racks on both sides of the aisles. At the top and the
bottom, two horizontal cross-aisles connect the vertical aisles. For AMRs, the vertical aisles are
unidirectional, with the travel direction alternating between consecutive aisles. On the other
hand, pickers can move in both directions in each aisle. Additionally, in the horizontal cross-
aisles, pickers and AMRs can both move in each direction. The distance between adjacent pick
locations within an aisle is 1.4 meters, while the distance to move to the other side of the aisle is
1 meter. The travel distance between two aisles is 6 meters. Figure 5.1 clarifies these warehouse
parameters.

To enable efficient calculations and to model the warehouse layout, we used a graph structure.
Here, the nodes represent locations at which entities can be. The edges represent how entities

37

CHAPTER 5. METHODOLOGY

6m1m

1.4m

Figure 5.1: Illustration of the considered warehouse parameters. The image represents a top view
from a small section of a warehouse. The dotted arrows represent the allowed AMR movement
directions, and the grey areas represent storage racks between the aisles.

Figure 5.2: Illustration of the undirected graph representation of a warehouse. The circles indi-
cate nodes and the connections between the circles are edges.

can move within the warehouse and what the distances between these locations are. We illustrate
this graph representation in Figure 5.2. The resulting adjacency and distance matrices can be
used to calculate distances and routes within any warehouse layout efficiently. In our use case, we
used a directed graph to represent the AMR travel possibilities, while an undirected graph was
used for the pickers, which can move in any direction within the warehouse. Different warehouse
structures and travel direction rules can be implemented by switching the graph structure and,
therefore, the adjacency and distance matrices.

A pre-generated set of pickruns must be collected by the pickers and AMRs to fulfill an episode.
Thus, simulation episodes start with the pickrun generation and end when all items from all
pickruns have been picked. These pickruns contain the list of locations that must be visited,
with the number of items that must be picked at each location. The pickrun optimization is a
problem on its own. As this is outside our scope, we used a basic approach. Namely, to generate
these pickruns, for each episode, we randomly selected a set of pick locations. We determined the
pickrun lengths using uniform sampling between 15 and 25 locations. We selected these lengths
based on stakeholder knowledge and the pickrun lengths we found in the available data. These
pickruns must be collected by the AMRs via an S-shaped/traversal routing policy (i.e., from the
left to right side of the warehouse via aisles with alternating directions; Petersen, 1997), which
is the policy that Vanderlande intends to use within their collaborative picking concept. Hence,
we sorted the locations by aisle and then by how early the locations are within their respective

38

CHAPTER 5. METHODOLOGY

aisle, with the aisle entries being on the opposite end of the aisle for consecutive aisles. The
picking frequencies at the locations were randomly sampled using the empirical distribution of
pick frequencies from the available data (see Appendix B). For the pickrun-AMR assignment,
we used a trivial method, with the first pickrun in the queue being assigned to an AMR that
becomes available.

To start a simulation run, we used a diverse starting method. In diverse starting, all AMRs are
assigned to a pickrun. These pickruns are cut off using a random uniform selection. In this way,
the system starts with the AMRs randomly spread through the warehouse. Similarly, the pickers
are randomly allocated to destinations spread throughout the warehouse during instantiation.
We did so based on expert knowledge, as initialization procedures to create distributed initial
states are common.

To generate a product distribution through the warehouse, we randomly instantiated product
locations based on the actual products and product categories in the warehouse of the Vander-
lande customer. To do so, for each product category, we gathered the distribution of how many
items of the category are clustered together. Then, to fill a warehouse with product locations,
we randomly sampled a product category based on the relative frequencies of the categories.
Consequently, we sampled how many products must be grouped for this product category based
on the empirical distribution. Finally, real-world products of these categories were assigned to
these locations. This was done repeatedly until each location contained a specific product with
its weight and volume. The distributions of the products and weights can be found in Appendix
B.

We determined the expected pick time of an order line on a pickrun based on the product
characteristics and the number of items that must be picked. To do so, we used an internal
method from Vanderlande that was developed using the empirical product and pick time data.
We do not fully disclose this method due to confidentiality reasons. This method combines the
product volume and weight with the number of item pairs and single items that must be picked.
Using several empirically tested linear functions that use these two product characteristics and
the number of items that must be collected, the expected pick time tpick can be calculated for
each pick. To create the actual pick times, we sampled a value from a Gaussian distribution
with µ = tpick and σ = 0.1 · tpick.

Since sampling the product characteristics and the number of items that must be picked occurs
independently, we verified whether the resulting expected pick times are similar to those calcu-
lated from the real order distribution, which contained 100,833 order lines. The histograms of
100,000 sampled picking times through our method and those from the data show a sufficiently
similar distribution for our purpose. The histograms can be found in Appendix B. Besides, the
means and standard deviations of the sampled pick times (µ = 11.3, σ = 10.3) and of the actual
order pick times (µ = 12.3, σ = 10.8) are also satisfactory similar.

5.1.2 Picker Process

The picker process describes the picker’s logic and how it interacts with the optimizer and
AMRs. Figure 5.3 shows an overview of this picker process.

In the simulation, we modeled each transition of one location to the other location by a picker
or AMR in the warehouse as an event. This allows us to maintain a detailed overview of the
current state of the system with regard to the locations of all pickers and AMRs at any time.
The picker process starts with a picker being allocated to a destination. Once the picker receives
its destination, it follows the shortest path to the destination. We set the average picker speed
to 1.25 m/s. At the start of each path to a new destination of a picker, we randomly set the
speed using a Gaussian distribution with µ = 1.25 and σ = 0.15. This mimics the uncertainty
in real-world picker speeds. After a timeout of distance/picker speed seconds, the movement

39

CHAPTER 5. METHODOLOGY

Walk to next location
on path

Request destination
from optimizer

Yes

No

At destination?

No

Yes
Any AMRs at location?

Wait for AMR arrivalPick items for AMR

No

Yes

More AMRs waiting?

No

Yes

Unexpected delay?

Delay time

Start

Figure 5.3: Overview of the picker process in the simulation model.

event toward the following location takes place. This is repeated until the picker reaches its
destination.

When a picker reaches the destination, it checks if any AMR is waiting there. If no AMR is
waiting at the location, the picker waits until any AMR arrives there. When an AMR is waiting
at the location or an AMR arrives, the picking takes place. This picking is represented using
a timeout event. The picking time is sampled from a Gaussian distribution as explained in
Subsection 5.1.1. However, in real-world warehouses, picking does not always happen perfectly.
Therefore, in consultation with business stakeholders, we included a random picking interrup-
tion. Namely, a picking delay is included every once in a while to mimic any uncertainty caused
by pickers. This delay can represent pickers having a short break or having to reshuffle items
on the AMR, items being hard to retrieve from the shelve, and so on. We set the frequency of
this unexpected delay occurring for each picker using a Poisson random variable with λ = 50,
indicating that, on average, a picker has an unexpected delay once per 50 picks. We used a
Poisson distribution as it has been frequently used to model event occurrences, like accidents
(Nicholson & Wong, 1993) or power failures (Y. Zhou et al., 2006). The distribution fits well
when events are independent, which we can assume since a disruption, stock-out, or error at one
location generally does not affect those at the next locations. The disruption time is sampled
from a Gaussian distribution with µ = 60 and σ = 7.5 seconds.

When a picker has finished picking the items for an AMR, it checks if any other AMR is waiting
at the location. If so, it picks the items for this AMR. Then, if no AMRs are left to be served at
the location, the picker must request a new location from the optimizer, and the cycle repeats.

5.1.3 AMR Process

The AMR process establishes the behavior of the AMRs within the system and how they interact
with each other and the human pickers. Figure 5.4 outlines the process logic of the AMRs in
the simulation.

The AMR process starts with an AMR being assigned to fulfill a pickrun. Then, like for pickers,

40

CHAPTER 5. METHODOLOGY

Request new pickrun Get new destination
from pickrun

Drive to next location
on path

No

Yes
Picker at location?

Wait for picker to
arrive

Yes

No
AMR blocking location?

Overtaking delay

No

Yes

At destination?

Item picking by picker

No

Yes
Pickrun finished?Drive to next location

on path to base

Yes

No

At base?

Start

Figure 5.4: Overview of the AMR process in the simulation model.

an event is used for each transition to the following location on the AMR path toward the first
destination in the pickrun. For AMRs, these events occur after a timeout of distance/AMR speed
seconds. We set the average AMR speed to 1.5 m/s. Similar to the picker speed, at each tour
toward a new destination, a random speed is selected from a Gaussian distribution with µ = 1.5
and σ = 0.15 m/s. Like the pickers, the AMR continues its movement until it has reached its
destination.

However, whereas pickers can walk easily through the warehouse, the AMRs can encounter
congestion. Namely, when another AMR is standing in the path of the vehicle, it has to do an
overtaking maneuver. We model this by adding an overtaking timeout whenever an AMR has
to overtake another AMR. Since overtaking is a slow procedure for AMRs, this time penalty is
relatively large. We used a random Gaussian sampling method with µ = 15 and σ = 2.5 seconds
for the overtaking penalty. This penalty indicates the importance of preventing congestion.

When an AMR reaches its destination, it waits for the human picker to arrive if it is not yet
there. When the human picker arrives, a picking timeout occurs, representing the picker picking

41

CHAPTER 5. METHODOLOGY

the items for the AMR. This is modeled as discussed in Subsections 5.1.1 and 5.1.2.

Once an AMR has been loaded at a pick location, the process is repeated, and the AMRmoves to
the next location on its pickrun. This occurs until all locations in the pickrun have been visited.
Then, in a real-world warehouse, the AMR moves to a drop-off location outside the picking area
to unload its items. As we do not consider this unloading, we do not include it in our simulation.
Instead, the AMR must return to the base location at the bottom left of the warehouse, where
it can start a new pickrun. As the AMRs at the drop-off location are simply out of the system,
not including this process in the simulation does not affect the picking efficiency results. By
up- or down-scaling the number of AMRs, we can still capture the number of AMRs that are
actually in the picking system.

In summary, the simulation model represents multiple interactive processes between pickers,
AMRs, and the picker allocation optimizer. There are several sources of uncertainty. Specifically,
the picker and AMR speeds are stochastic, as well as the picking times at the pick locations.
In addition, random disruptions can occur during item picking, creating relatively long delays.
Lastly, congestion causes additional travel delays for the AMRs related to overtaking procedures.

5.2 Deep Reinforcement Learning Approach

To develop a DRL approach, two steps are needed. First, in Section 5.2.1, we will describe how
we defined the MOMDP. Then, Sections 5.2.2 and 5.2.3 will outline the used learning algorithms
and agent architectures.

5.2.1 Markov Decision Process

To model the agent-environment interface, the first decision is to determine the general role of
the DRL agent. We defined our agent as the general picker allocation optimizer. This allows us
to learn a single policy that optimizes the combined allocation of all human pickers and the sys-
tem as a whole. Another option would be to model the solution as a multi-agent system where
pickers are agents. However, these methods can suffer from problems such as non-stationarity
and difficulty in obtaining global optimum solutions due to independent actors with partial
information (Canese et al., 2021). In our case, we have full information on the entire system.
With such full information, a centralized policy works better for optimizing system-level perfor-
mance than a distributed solution, as shown in, for example, the related dispatching problem
as described in Subsection 4.3.3.

The agent must act within a continuous cycle in which it receives requests and allocates pickers
to new destinations. The cycle is illustrated in Figure 5.5. In this cycle, the pickers and AMRs
fulfill their respective order picking processes. Whenever a human picker finishes its task at its
destination, it places a request for a new destination. The picker optimizer receives the system
state and allocates the picker to a new destination. Then, the cycle continues until any picker
places a new request. Note that, as the process is stochastic, multiple pickers will never place
a request at the exact same moment. Therefore, the picker optimizer uses the natural order of
incoming requests to allocate pickers one by one.

Within this framework, we define the MOMDP below. Specifically, we define the state space,
action space, and reward function. The transition function is formed by the warehouse system
in which the agent interacts. One transition step is formed by the picking process between
two consecutive allocation requests for the optimizer agent. In our case, this picking process is
represented by the simulation model that we defined. An episode in our system is one warehouse
simulation in which a pre-generated set of pickruns is wholly picked.

State Space

To model the state space, we need a representation that can capture spatial information, handle
different numbers of human pickers and AMRs, and adjust to different warehouse layouts.

42

CHAPTER 5. METHODOLOGY

TEXT

Pickers and AMRs
travel to pick

locations

Any picker finishes
a pick

New destination
request

Picker optimizer
agent

Picker receives new
destination

Figure 5.5: Illustration of the cycle within which the picker optimizer agent must act.

Therefore, we used a graph representation for the state space. In this graph, the node set VG
consists of all possible locations within the warehouse. All adjacent locations between which
pickers can move without passing through another location are connected with edges. We used
an undirected graph, so the edge set EG consists of unordered edges. This graph structure
coincides with the undirected graph we used internally in the simulation model, as shown in
Figure 5.2. We captured all relevant information in the node features XG and did not use any
edge features AG, as the connections between warehouse locations are generally homogeneous.

The node features we used can be split into two categories: efficiency-related features and
workload fairness features. Below we first describe the efficiency-related and then the fairness-
related features.

Efficiency Features The efficiency features that we used consist of several subcategories.
These subcategories are current picker information, AMR information, other picker information,
node location information, and node neighborhood information.

The current picker information describes the positioning of the nodes in relation to the controlled
picker for which an allocation decision must be made. We used the following two node features
to capture this:

• Current picker location indicator: Binary value that is 1 if the controlled picker is currently
at this node and 0 otherwise.

• Distance from picker: The distance in meters of the picker to this node by following the
warehouse paths. The distance can be retrieved from the pre-computed distance matrix.

The AMR information describes the positioning and next destinations of the AMRs with respect
to the nodes. To do so, we used seven node features:

• AMR location indicator: Binary value that is 1 if an AMR is currently at this node and
0 otherwise.

• Number of AMRs to node: The number of AMRs that are currently going toward this
node for picking.

• AMR destination distance: If any AMR has this node as destination, the distance in
meters that this AMR must still travel. If no AMR goes to this node, the value is -10.

43

CHAPTER 5. METHODOLOGY

If multiple AMRs, the minimum of the distances. We used values of -10 as it is hard to
define a general maximum. On the other hand, the distance values will never be below
0, so -10 always works and adds a margin to differentiate from 0, which is the minimum
possible distance.

• Expected time until next AMR destination: Similar to the previous feature, but considers
if an AMR is going to the node for the next destination in its pickrun. This feature
includes the expected travel time until the current destination, the expected pick time at
the destination, and the expected travel time until the next destination. If no AMR is
going to this node for the next pick in the pickrun, the value is -10. If multiple AMRs,
the minimum is selected.

• Expected time until two-step ahead AMR destination: Similar to the previous feature,
but considers if an AMR is going to the node for the two-step ahead destination in its
pickrun. This feature includes the expected travel time until the current destination, the
expected pick time at the destination, the expected travel time until the next destination,
the expected pick time at the next destination, and the expected travel time between the
next and two-step ahead destination. If no AMR goes to this node for its two-step ahead
destination, the value is -10. If multiple AMRs, the minimum is selected.

• Number of AMRs to aisle: The total number of AMRs going to a destination within the
same aisle as the considered node.

• Number of waiting AMRs in the aisle: The total number of AMRs currently stopped at
their destination in the same aisle as the considered node.

We used the expected times until the one- and two-step ahead AMR destinations instead of
the distance because the picking times can greatly influence the process flows. For example, if
the expected time of a pick is 10 seconds, this is equivalent to the time in which an AMR can
move 15 meters. Oppositely, if the expected time of a pick is 30 seconds, this is equivalent to
the time of moving 45 meters. With the expected times, this effect is considered in the feature
representation, although we must remember it is no perfect prediction due to randomness,
congestion, and picker availability.

Similar to the AMR information, we also included picker information in the state space. We
used five related node features to capture the positioning of the pickers within the system:

• Picker location indicator: Binary value that is 1 if any picker other than the picker being
allocated is currently at this node and 0 otherwise.

• Picker destination distance: If any picker has this node as destination, the distance in
meters that this picker must still travel. If no picker is going to this node, the value is -10.
If multiple pickers, the minimum distance is used.

• Number of pickers to aisle: The total number of pickers going to a destination within the
same aisle as the considered node.

• Minimum distance of other pickers: The minimum distance of any other picker to this
location. Here, the distance is the distance of the picker to its current destination plus the
distance from its current destination to the considered node.

• Minimum expected time of other pickers: Similar to the feature above, but considers not
only the distance but also the expected pick time. Here the expected time is the expected
travel time of the picker to its destination plus the expected travel time from the current
destination to the considered node and the expected pick time at the current destination.

44

CHAPTER 5. METHODOLOGY

The node location information describes the regions in which the nodes are located within the
warehouse. We used two features to describe these locations:

• Aisle distance from origin: Describes how far toward the end of the warehouse the aisle is
in which the node is located, scaled by the warehouse size. Thus, it is calculated using the
aisle distance from the start of the warehouse divided by the total width of the warehouse.

• Node depth within aisle: Describes how far toward the beginning or end of the aisle a
node is located. It is calculated by taking the depth in meters within an aisle and dividing
it by the total aisle length. Here the depth indicates the distance from the AMR entrance
of the aisle.

These node location features are mainly included as they may be useful for policies to consider
the routing of AMRs. Namely, if two nodes are within the same aisle, it may be beneficial to
first pick the one at the aisle entry since the AMRs will afterward continue its route toward the
other node at the aisle end. Similarly, if two nodes are in consecutive aisles, picking the node
in the aisle closer to the start could be beneficial.

Lastly, the node neighborhood features are selected to capture the picking process occurring
around the nodes. These may help capture high- or low-density pick areas. For this subcategory,
we used the following features:

• Minimum distance next AMR destination: If any AMRs are going to this node, take the
minimum of the distances in meters to the following destinations of these AMRs. If no
AMR is going to this node or this was the last node on the AMR pickrun, the value is 0.

• Second smallest distance next AMR destination: If multiple AMRs are going to this node,
take the second smallest value of the distances in meters to the next destinations of these
AMRs. If less than two AMRs are going to this node or this was the last node on the
AMR pickrun, the value is 0.

• Minimum distance two-step ahead AMR destination: If any AMRs are going to this node,
take the minimum of the distances in meters to the two-step ahead destinations of these
AMRs. If no AMR is going to this node or no two destinations are left in the AMR pickrun
of at least one of the AMRs, the value is 0.

• Second smallest distance two-step ahead AMR destination: If multiple AMRs are going
to this node, take the second smallest value of the distances in meters to the two-step
ahead destinations of these AMRs. If less than two AMRs are going to this node or no
two destinations are left on the AMR pickrun of at least two of the AMRs, the value is 0.

• Distance of closest other picker destination: The minimum of the distances from this node
to the other nodes that are currently the destination of any of the pickers.

• Distance of closest unserved AMR destination: The distance in meters between this node
and the closest other node that is the destination of an AMR and where no picker is
already going.

• Distance of second closest unserved AMR destination: The distance in meters between
this node and the second closest other node that is the destination of an AMR and where
no picker is already going.

Workload Fairness Features The workload fairness features we used can also be split into
two types. First, the node-specific features describe the workload characteristics at the nodes.
Second, we included several “distributional” features that describe the current distribution of
picker workloads. Although the distributional features are general and not node-specific, we

45

CHAPTER 5. METHODOLOGY

included them as node features to facilitate the node-wise computations used in graph learning.
Thus, these features contain the same value for each node.

We modeled the following node-specific features:

• Workload of picker at node: The total workload mass in kilograms that the picker at this
node has handled so far subtracted by the mean workload of all pickers. If multiple pickers
are at the node, which is rare, one is picked at random.

• Workload of picker going to node: The total workload mass in kilograms that the picker
with this node as destination has handled so far subtracted by the mean workload of all
pickers. If multiple pickers go to the node, which is rare, one is picked at random.

• Item workload at node: The mass in kilograms of a single item stored at this node.

• Waiting AMR workload: The total mass in kilograms that must be picked at this node to
fulfill the picks of all AMRs that are currently waiting there.

• Destination AMR workload: The total mass in kilograms that must be picked at this node
to fulfill the picks of all AMRs that are currently going toward this node but are not yet
waiting there.

• Closest picker workload: The current total experienced workload of the closest picker to
this node in terms of expected arrival time, subtracted by the mean picker workload.

• Second closest picker workload: The current total experienced workload of the second
closest picker to this node in terms of expected arrival time, subtracted by the mean
picker workload.

The distributional features are as follows:

• Current picker workload: The total experienced workload in kilograms of the picker cur-
rently being allocated, subtracted by the mean experienced picker workloads.

• Minimum workload: The minimum experienced workload in kilograms by any of the pick-
ers, subtracted by the mean experienced picker workloads.

• 25th percentile workload: The 25th percentile workload in kilograms of all the picker work-
loads, subtracted by the mean experienced picker workloads.

• 75th percentile workload: The 75th percentile workload in kilograms of all the picker work-
loads, subtracted by the mean experienced picker workloads.

• Maximum workload: The maximum experienced workload in kilograms by any of the
pickers, subtracted by the mean experienced picker workloads.

In the features related to experienced picker workloads, we corrected the picker workloads by
subtracting the mean experienced workload. This helped to maintain stable features representing
the distribution of workloads. Without correction, all workload values would continue to increase
for the entire episode. This reduces learning stability and, hence, the potential performance of
DRL agents.

In short, the state space consists of a graph representation, with nodes representing the ware-
house locations and undirected edges representing how entities can move between these loca-
tions. For each node, we included 35 node features, split into 23 efficiency features and 12
fairness features. We did not include edge features.

Action Space

The action space of the problem is a discrete action space that consists of the nodes in the
graph. Namely, a policy should assign a picker that places an allocation request to a single node,

46

CHAPTER 5. METHODOLOGY

representing the new destination of the human picker. However, many locations are unsuitable
options since many locations do not have AMRs going toward them. Therefore, we used a
truncated action space. The truncated action space at any timestep consists of all locations
that are the current or the next destination in the pickrun of any AMR and where no other
human picker is already going. In the rare case that all other pickers are assigned to a future
AMR destination, the action space is limited to only current AMR destinations to ensure that
the system continues to fulfill picks. We did not allow locations that are two or more steps
further in the AMR pickruns as they are far into the future, and the fulfillment of earlier picks
and unexpected occurrences heavily influence the performance of these actions. Thus, the size
of the action space is variable. However, the maximum size is achieved when all the AMR
destinations and next destinations are unique locations. Then, the action space has a size of
2× nr. of AMRs− (nr. of pickers− 1).

Reward Function

The reward function is crucial for effective learning and must reflect the eventual objectives
of the policy well. In our MOMDP, we propose one reward signal for efficiency and one for
workload fairness.

The efficiency objective of our solution is to maximize the number of picks by the system in
a certain amount of time. Hence, a policy must minimize the total time to perform a specific
number of picks. To stimulate this, we used a penalty on the passed time. More specifically, at
each RL step, the penalty is the difference between the total elapsed time in seconds until the
current step and the total elapsed time until the previous step. As explained before, a transition
constitutes the period between the previous picker allocation and the current picker allocation
request. Thus, two consecutive steps are two consecutive picker allocation actions of the agent.
Formally, the reward at step t is as follows, with τt indicating the system time at step t.

Refficiency
t = τt−1 − τt

By summing all rewards, the total efficiency reward of a full episode indicates the negative of
the time that has passed between the first allocation and the fulfillment of the last pick. This
directly maps to the objective of minimizing the total time.

The workload fairness reward must aim to maximize the fairness of the workload distribution
over pickers. As explained in Section 4.1.2, several workload measures exist in the literature.
However, these cannot be applied in our study. The traditional ergonomics measures used in
order picking literature all require very detailed measurements and observations to estimate
ergonomic strain. The measure by Larco et al. (2017) offers a good option for collaborative
picking as they focus on product volume and mass. However, the estimated coefficients do not
apply to our case. Therefore, in consultation with business stakeholders, we decided on using
the total lifted product mass in kilograms as the workload measure.

To measure the fairness of the workloads, we outlined several options in Section 4.4. Since the
policy cannot influence the total workload of the system, we did not opt for measures such
as the generalized Gini function or Nash social welfare. Namely, these measures incorporate a
balance between total workload and individual workloads, while the former is not affected by our
decisions. Besides, we did not opt for the max-min fairness as this does not sufficiently consider
the full distribution of the workloads. In consultation with business stakeholders, we selected the
standard deviation of the workloads as our objective measure. The standard deviation is a widely
known measure considering the full spread of all workloads. Besides, as noted in Section 4.4, it
is not uncommon in optimization literature to use variance-based metrics, and the commonly
used Jain’s fairness index is also based on the standard deviation.

To transform the objective of minimizing the workload standard deviation, we used a similar
approach as for the efficiency reward. Namely, the reward at each step is based on the increase

47

CHAPTER 5. METHODOLOGY

or decrease of the standard deviation of the total carried product masses between the previous
and current steps. So, at step t, the fairness reward is as follows, with σ indicating the standard
deviation, Wk,t indicating the total lifted mass by picker k until step t, and |K| the number of
human pickers in the system.

Rfairness
t = σ(W1,t−1, . . . ,W|K|,t−1)− σ(W1,t, . . . ,W|K|,t)

Hence, by summing the fairness rewards, the total fairness reward at the end of an episode
amounts to the negative standard deviation of the picker workloads. Again, this relates directly
to our objective of minimizing this standard deviation.

To combine the two rewards, the output vector of the reward function in the MOMDP at each
step t is as follows.

Rt =

(
Refficiency

t

Rfairness
t

)
5.2.2 Learning Algorithm

In our study, we considered both single-objective learning for efficiency and multi-objective
learning for balancing efficiency and workload fairness.

For single-objective learning, we used PPO with the clipped loss function described in Chapter
3. As discussed in Chapter 3, PPO is a policy-based method in which the policy network
directly outputs the actions that should be taken. We used PPO for two main reasons. First,
it is a state-of-the-art algorithm frequently shown to achieve good policies for various problems
compared to other learning algorithms. Second, PPO can utilize parallel environments to collect
experiences and use GPUs to efficiently make parallel decisions. This significantly reduces the
training time needed to gather many experiences. Since we need many experience samples to
gather the relatively long-term relations between picker allocation actions, this greatly increases
the runtime.

Since we consider long episodes representing real-world picking processes, we used the actor-
critic version of PPO. Actor-critic variants allow for updating the agent using the estimates of
the critic without having to wait for full episode completions. This allows for faster learning
using fewer samples and reduces the variance of the policy gradient (Silver, 2015). Thus, we used
an actor network to take actions and a critic network that estimates the advantage function.
Algorithm 5.1 gives an overview of the PPO algorithm we used. For the details of each step, we
refer to the original paper by Schulman et al. (2017).

Algorithm 5.1 Pseudo-code for the PPO learning algorithm.

Input: Number of iterations N , initial actor parameters θ0, initial critic parameters ϕ0.
i← 0
while i < N do

Collect trajectories by running policy πi = π(θi) in parallel environments.
Compute advantage estimates Ât using critic network Vi = V (ϕi).
Update policy θk to θk+1 via gradient descent on PPO loss L(θk).
Update critic ϕk to ϕk+1 via gradient descent on mean-squared error loss.

end while

For multi-objective learning, we built on top of the PPO algorithm. That is, we used the
Prediction-Guided Multi-Objective Reinforcement Learning (PGMORL) algorithm that was
proposed by J. Xu et al. (2020). This is one of the two state-of-the-art policy-based multi-
objective RL algorithms. PGMORL is a multi-policy algorithm that produces a non-dominated
set of policies. Hence, it allows us to explore the trade-offs between performance and fairness.

48

CHAPTER 5. METHODOLOGY

We did not opt for the meta-policy approach by F. Y. Liu and Qian (2021) as we do not
desire to manually change the specific reward weights to any given value. PGMORL allows
us to present a non-dominated set that showcases the trade-offs while not having the added
difficulty of meta-learning. Due to the reliance of PGMORL on policy-based algorithms, we
can transfer the PPO algorithm with the learning parameters and modeling approach from the
single-objective method almost directly to the multi-objective algorithm. In the original paper,
policies with continuous actions were tested. However, we apply our learning policies with the
modeled discrete action space.

To understand the relevant aspects of the PGMORL algorithm, we outline the key steps below.
For the detailed procedures, we refer to the paper by J. Xu et al. (2020). Algorithm 5.2 shows
an overview of the method.

Algorithm 5.2 PGMORL algorithm.

Input: Number of parallel tasks n, number of warm-up iterationsmw, number of task iterations
mt, number of generations M .
Initialize population P, Pareto archive EP , and RL history R.
▷ Warm-up Phase
Generate initial task set T = {πj ,ωj}nj=1 using random policies πj and evenly distributed
weight vectors ωj .
for task (πj ,ωj) ∈ T do

Run PPO for mw iterations.
Collect result policy π′j and intermediate policies in P ′

Store eval. rewards of old, new, and intermediate policies with weights ωj in R
end for
Update P and EP with P ′.
▷ Evolutionary Phase
for generation← 1, 2, . . . ,M do

Fit improvement prediction models for each policy in P using data in R
Select new task set T = {πj ,ωj}nj=1 based on improvement predictions.
for task (πj ,ωj) ∈ T do

Run PPO for mw iterations.
Collect result policy π′j in P ′

Store eval. rewards of old, new, and intermediate policies with weights ωj in R
end for
Update P and EP with P ′.

end for

In PGMORL, the core concept is to learn DRL policies using PPO training with a weighted-
sum reward function Rt = ωTRt, with ω a weight vector and Rt the reward vector at time
t. The algorithm must steer learning toward the weight vectors expected to stimulate policies
that improve the current non-dominated set of solutions.

To do so, the algorithm starts with a warm-up phase. In this phase, n tasks are initialized. A task
j consists of a policy πj and a weight vector ωj . The initial tasks consist of randomly initialized
policy networks and evenly distributed weight vectors. For example, with six tasks and a two-
dimensional reward function, the initial weight vectors are (0, 1), (0.2, 0.8), . . . , (0.8, 0.2), (1, 0).
These initial tasks are trained using PPO for mw warm-up iterations. The trained policies,
intermediate policies, and their evaluation rewards are stored in a population. The population
consists of both non-dominated and dominated policies. Based on the evaluation rewards, the
intermediate Pareto archive is also updated to contain the non-dominated solutions. Thus, the
warm-up phase outputs several baseline policies for different objective preferences.

49

CHAPTER 5. METHODOLOGY

Then, in the evolutionary phase, PGMORL uses improvement predictions to define new tasks
that find better policies and improve the non-dominated set. To do so, at each generation, for
each policy in the population P, a prediction model is made to predict the rewards that can be
achieved if the policy is trained using a specific weight vector. This four-parameter hyperbolic
model for each policy and objective function is trained based on the data stored in history
R. Only data samples in the neighborhood of the policy are used to fit the model. Using this
prediction model, tasks (i.e., policies combined with a weight vector) are selected such that the
predicted new non-dominated set improves the most, based on the hypervolume and sparsity.

Once these tasks have been selected, PPO training is done for mw iterations, and the results
are stored. Then, the evolutionary cycle repeats. To enable PPO learning without having to
retrain a critic policy for each new weight combination for each policy, the critic is adapted to
estimate a separate value for each of the objectives. In regular training, a single estimate of the
weighted-sum reward would be used.

The final output of PGMORL is a set of non-dominated policies. These policies outline which
trade-offs can be achieved between the objectives. This allows decision-makers to make an
informed choice between several policies based on their preferences.

5.2.3 Deep Reinforcement Learning Agent

To learn the policies, PPO and PGMORL need an actor and critic network. The actor network
interacts with the environment and performs the actual allocation decisions. The critic network
is only used during training to evaluate the quality of selected actions. To do so, the actor
must output the probabilities of each action. The critic network typically outputs one value
to estimate the performance based on the whole input. For PGMORL, one value per objective
is needed. In this section, we outline the network architectures used for our actor and critic
network for single-objective and multi-objective learning.

Aisle-Embedding

As explained in Section 3.3, graph neural networks typically use a message passing principle
to aggregate neighborhood information over nodes. However, capturing a large neighborhood
is difficult as this requires many message passing steps and, hence, network layers. This leads
to very deep networks with many parameters that are difficult and slow to learn. Oppositely,
when smaller networks are chosen, smaller neighborhoods can be captured. In the warehouse
scenario, we consider that nodes related to each other can be far apart. Namely, aisles can be
30 or 40 nodes deep, while nodes within an aisle are still frequently related to each other. To
capture regional node dependencies and circumvent the limitations of message passing networks,
we used a custom network architecture.

We refer to this architecture as an aisle-embedding network. The aisle-embedding network
combines the idea of permutation invariant aggregation from graph networks with our knowledge
of warehouse structures. Namely, we know that aisles form natural regions of nodes that are
related within a warehouse. By aggregating the embeddings of the nodes within an aisle, we
create an aisle-embedding that captures the regional information. Then, we combine the node-
embedding with the aisle-embedding to calculate the final node values the actor uses to output
the action probabilities. Formally, the aisle-embedding of an aisle A is calculated as follows,
with hl

v indicating the node embeddings at layer l and VA the set of nodes within an aisle A.

hl
A = Ψ

(
{hl

v|v ∈ VA}
)

Here, we used the mean as the permutation invariant function Ψ. Figure 5.6 illustrates the
overall aisle-embedding network architecture. In the architecture, nodes are passed through
an invariant feed-forward encoder, which applies a multilayer perceptron to each individual
node without message passing. Then, the aisle-embedding is calculated for each aisle. This is

50

CHAPTER 5. METHODOLOGY

Input Graph Node-Embeddings

Aisle-Embeddings

In
va

ria
nt

 F
ee

d-
Fo

rw
ar

dCombined Node Values

In
va

ria
nt

 F
ee

d-
Fo

rw
ar

d

Figure 5.6: Illustration of the aisle-embedding architecture.

done using the node sets of the aisles, which are disjoint subsets of the total set of nodes VG.
Afterward, the node-embedding and associated aisle-embedding of each node are stacked. This
is then passed into a last set of invariant feed-forward layers to calculate the final node values.
Thus, the final node value is calculated using the following function, with ψactor and ϕactor two
feed-forward neural networks and Vaisle(v) the set of nodes within the aisle of node v.

Actor(v) = ϕactor
([
ψactor(xv),AVG({ψactor

(
xu)|u ∈ Vaisle(v)}

)])
To create the final action probabilities, the nodes are masked based on the truncated action
space requirements by setting the values of invalid nodes to negative infinity. Lastly, the softmax
function transforms the node values into action probabilities.

For the critic network, we used a simpler architecture, which we show in Figure 5.7. We used
this simpler architecture as we found in preliminary tests that this network can approximate the
value function well. As all node information is aggregated in the network, the aisle-embeddings
are not needed to represent the value of the full graph accurately. The critic network applies
an invariant feed-forward encoder. Then, the graph-embedding is calculated by summing the
node-embeddings. Lastly, a final layer reduces the graph embedding to a single output value.
Hence, the critic value for a graph G is calculated as follows, with ϕcritic and ψcritic two trainable
networks.

Critic(G) = ϕcritic

(∑
({ψcritic(xv)|v ∈ VG})

)
Input Graph Node-Embeddings

Fe
ed

-F
or

w
ar

d

In
va

ria
nt

 F
ee

d-
Fo

rw
ar

d Graph-Embedding Graph Value

Figure 5.7: Illustration of the critic network architecture for single-objective learning.

Feature Separation

Existing works in multi-objective DRL focus on the learning algorithms. They use simple feed-
forward neural networks in which all features are combined with fully-connected layers. They
evaluate their methods on benchmark problems to test the algorithm performance without
consideration of the network architecture. In our case, we have two distinct sets of features that
relate to two different objectives. When combining these features in fully-connected layers, the

51

CHAPTER 5. METHODOLOGY

Input Graph

In
va

ria
nt

 F
ee

d-
Fo

rw
ar

d

Workload Fairness Features

Efficiency Features

Efficiency Embeddings

Workload Fairness Embeddings

Combined

Node Values

Aisle-Embedding Architecture

In
va

ria
nt

 F
ee

d-
Fo

rw
ar

d
In

va
ria

nt
 F

ee
d-

Fo
rw

ar
d

In
va

ria
nt

 F
ee

d-
Fo

rw
ar

d

In
va

ria
nt

 F
ee

d-
Fo

rw
ar

d

Figure 5.8: Illustration of the actor for multi-objective learning, combining feature separation
with the aisle-embedding architecture.

parameter space becomes larger, while the features of the different categories do not have a clear
connection. This can cause the network to learn noisy relations and create unstable learning.

To alleviate this, for multi-objective learning, we used a network architecture in which two fea-
ture categories are separated and treated independently for several layers before their high-level
embeddings are combined into shared layers. This enables learning embeddings related to both
feature categories without noise while the shared final layers capture the interactions between
the fairness and efficiency objectives. Figure 5.8 outlines the feature separation architecture
for the actor network. Combining the aisle-embedding structure with feature separation, the
multi-objective actor network we used can be formulated as follows.

ActorMO(v) = γactor ([EmbMO,fair(v), EmbMO,effic(v)])

Here, γactor is the feed-forward neural network that combines the embeddings of the feature
categories, and EmbcatMO represents the aisle-embedding network for a certain feature category
and xcat

v the feature vector of a category for node v.

EmbcatMO(v) = ϕcatactor

([
ψcat
actor(x

cat
v),AVG({ψcat

actor

(
xcat
u)|u ∈ Vaisle(v)}

)])
Thus, using the aisle-embedding structure, the network creates a high-level embedding for both
the fairness and efficiency features. Then, these are combined into a final set of node-wise
feed-forward layers to create the final node value.

For the multi-objective critic, which is outlined in Figure 5.9, we combined the feature separation
principle with the invariant feed-forward architecture. In this structure, the feature categories
are first passed through separate feed-forward architectures. Then, the embeddings are combined
into a final layer before being aggregated. Like in the single-objective network, the final graph-
embedding is reduced to the output by a last network layer. The multi-objective critic outputs
two values, one per reward. The multi-objective critic can be formalized as follows.

CriticMO(G) = γcritic

(∑({
ϕcritic

([
ψeffic
critic(x

effic
v), ψfair

critic(x
fair
v)
])
|v ∈ VG

}))

52

CHAPTER 5. METHODOLOGY

Input Graph

Workload Fairness Features

Efficiency Features

Efficiency Embeddings
In

va
ria

nt
 F

ee
d-

Fo
rw

ar
d

Fe
ed

-F
or

w
ar

d

In
va

ria
nt

 F
ee

d-
Fo

rw
ar

d
In

va
ria

nt
 F

ee
d-

Fo
rw

ar
d

Fairness Embeddings

Combined

Graph-Embedding 2 Graph ValuesNode-Embeddings

Figure 5.9: Illustration of the critic for multi-objective learning, using feature separation.

53

Chapter 6

Experiment Setup

This chapter outlines our setup to train and evaluate our solution. In Sections 6.1 and 6.2, we
will introduce the warehouse instances that we used in the experiments and the benchmark
methods, respectively. Consequently, in Section 6.3, we will discuss the details of the single-
objective efficiency optimization experiments. We tested the single-objective optimization as
this offers us insights into the most efficient achievable policies. These results can be used as
a reference to compare with the multi-objective solutions. This allows us to find the “price of
fairness”. Lastly, in Section 6.4, we will present the specifics of the multi-objective optimization
experiments.

6.1 Warehouse Settings

To train and test our methods, we used various warehouse setups. We picked a wide range of
sizes, numbers of pickers, and numbers of AMRs in consultation with business stakeholders.
These different warehouses were used to evaluate learning performance on problems of different
scales as well as how the learned policies scale to different environments. Table 6.1 gives an
overview of the warehouses.

The smallest warehouse we considered (XS) was only used for evaluation in a deterministic
setting, as we will discuss in Section 6.3.3. This system only contained 4 pickers and 7 AMRs
while having 7 aisles with 7 pick locations per side. Our study’s smallest stochastic warehouse
type (S) had 10 aisles, with 10 pick locations on both sides. Thus, it had a total of 200 pick
locations. We used 10 human pickers and 25 AMRs. The medium warehouse type (M) contained
15 aisles of 15 pick locations on each side, totaling 450 pick locations. With 20 human pickers and
50 AMRs, this warehouse system was about twice as large as type S. The large warehouse type
(L) consisted of 25 aisles with 25 pick locations per side, which is a total of 1250 pick locations.
The default number of pickers and AMRs we used for this warehouse type was 30 human pickers
and 90 AMRs. Finally, the largest warehouse system (XL) that we considered, consisted of 35
aisles with 40 pick locations per side. In this system, we used 60 pickers and 180 AMRs. Unless
stated otherwise, we refer to these warehouse settings for each type in the remainder of this
report. The simulation model with the mentioned settings explained in Section 5.1 was used for
all experiments. For each warehouse type, to complete one episode, we set a predefined number
of picks that had to be completed. These picks, distributed over many pickruns, had to be
completely fulfilled to end an episode. We set these numbers such that an episode simulated a
few hours of the warehouse process, which is roughly equivalent to the length of a typical work
shift. For warehouse S this number is 5000 picks; for warehouse types M and L 7500; and for
warehouse XL 15000. As XS was only used for deterministic evaluation of small instances, we
did not set such a large number. We will explain these episode lengths in Section 6.3.3.

54

CHAPTER 6. EXPERIMENT SETUP

Table 6.1: Overview of the warehouse types considered in the experiments.

Warehouse Type Aisles Aisle Depth Locations Pickers AMRs Picks

XS 7 7 98 4 7 ≤ 100
S 10 10 200 10 25 5000
M 15 15 450 20 50 7500
L 25 25 1250 30 90 7500
XL 35 40 2800 60 180 15000

6.2 Benchmark Methods

To compare the quality of our policies, we used two benchmark methods. First, the greedy
baseline considers a trivial strategy. In this method, we always assign a picker to the closest
available location where an AMR is going, and no other picker is already going. This relies on
the assumption that assigning a picker to the closest possible option allows this picker to fulfill
a new pick the fastest. However, the method ignores the overall system efficiency.

The second benchmark that we used is the method that is currently being used by Vanderlande
to evaluate collaborative picking systems and was developed based on simulation tests. We will
refer to this as the VI Benchmark. This rule-based method considers the distance of potential
picks and also tries to spread the pickers across aisles. It uses a slightly different interface than
our proposed picker optimizer. Namely, within aisles, pickers act more independently while they
are assigned to a new aisle once they reach the end of an aisle. More concretely, each picker
is located within an aisle. Within this aisle, a picker checks 10 locations ahead or backward
whether any AMRs are waiting for a human picker to perform a pick. If so, the picker moves
to the closest waiting AMR. If, during this walk, a picker encounters another AMR that is
waiting, it will first pick the items for this encountered AMR. If there are no AMRs within the
checked zone, the picker moves a step toward the end of the aisle (i.e., in the allowed AMR
travel direction). Here, the picker checks its zone again, and so on. Once a picker reaches the
end of an aisle, he needs to be assigned to a new aisle. This occurs by assigning a cost to each
aisle. This cost is as follows.

Aisle Cost = Nr. of aisles difference−Nr. waiting AMRs

The aisle with the lowest cost is selected. Consequently, the picker moves to this aisle, where it
repeats its process of checking for waiting AMRs and picking items for these AMRs.

As there are no current online optimization methods in collaborative picking or related prob-
lems that we can apply, we do not consider other benchmark methods. In addition, we do not
use specific multi-objective benchmarks. Other popular multi-objective optimization methods,
such as evolutionary methods, construct full episode solutions in one go based on complete in-
formation. Hence, these do not satisfy our solution requirements and, therefore, do not provide
valid benchmarks. In Section 6.4.3, we will explain how we evaluated the multi-objective DRL
solutions based on the picking time and workload standard deviation objectives.

6.3 Efficiency Optimization

The first part of our experiments considered single-objective optimization of the picking effi-
ciency. In these experiments, we tested the possible performance we can achieve without focusing
on workload fairness. Besides, we tested how well the learned policies scale to different warehouse
environments and different amounts of pickers and AMRs in the systems. For these experiments,
we only included the efficiency features in the state representations and only used the efficiency
reward function. We evaluated all policies on the total time to complete an episode in seconds.

55

CHAPTER 6. EXPERIMENT SETUP

6.3.1 Network Architectures

To learn the single-objective efficiency policies, we used the actor network with the aisle-
embedding structure and the critic network with invariant feed-forward encoder as outlined
in Section 5.2.3. We implemented all networks in our study using Pytorch (Paszke et al., 2019)
and Pytorch Geometric (Fey & Lenssen, 2019).

In the actor network architecture, to generate the node-embeddings, we used two fully-connected
layers with 64 neurons and the Leaky ReLU activation function, followed by a fully-connected
layer with 16 neurons. We used α = 0.01 for all Leaky ReLU activation functions in our models.
The output was used to create the aisle-embeddings, and the node- and aisle-embeddings were
stacked to get node representation vectors of length 32. To create the final node values from the
vectors, we used two fully-connected layers with Leaky ReLU activation and 64 and 16 neurons,
respectively, followed by a last fully-connected layer with one neuron. Then, the invalid nodes
were masked by setting their values to negative infinity, and the softmax function was used to
generate the action probabilities.

In our critic networks, we used three fully-connected layers with the Leaky ReLU activation
function to create the node-embeddings. For the first two layers, we used 64 neurons, while the
third layer had 16 neurons. Then, after aggregating the node-embeddings to form the graph-
embedding, we used one fully-connected layer with one neuron to get the value estimate.

6.3.2 Learning Algorithm

As explained in Section 5.2.2, we used PPO for single-objective learning. We adopted the Tian-
shou package (Weng et al., 2022) for our PPO implementation.

We used 64 parallel environments to collect samples. Per PPO iteration, we set the number of
collected experience tuples per environment to 400. Thus, full environment episodes span across
multiple iterations. This number is relatively large as the experiences must capture sufficiently
long sequences from various warehouse environments to reliably derive long-term rewards. For
the loss function, we used a clipping parameter ϵ of 0.2 and set the entropy coefficient cent to
0.01 after some preliminary tests. To update the network, we used the Adam optimizer (Kingma
& Ba, 2014) with a learning rate of 5×10−4. Per PPO iteration, we performed three epochs with
a batch size of 128. We set the discount factor γ to 0.995. Per training run, we trained for 150
epochs for warehouse types XS and S, 200 epochs for types M and L, and 400 epochs for type
XL which showed convergence. Lastly, during training, we sampled the actions of the policies
based on the output probabilities. This facilitates exploration as opposed to greedily selecting
the action with the highest value. Oppositely, we always picked the actions with the highest
action probability for evaluation, as these are considered the best actions by the agent, and,
in evaluation, we want to maximize performance. In some DRL use cases, multiple solutions
can be generated using sampling, after which the best is selected. However, in our use case,
the picker allocation policy must immediately decide upon an allocation and cannot evaluate
multiple options. We used this selection strategy for both single-objective and multi-objective
evaluations in all experiments. All single-objective PPO training runs were performed on a
computing instance with an Intel Xeon Platinum 8360Y processor using 16 CPU cores and an
NVIDIA A100 GPU.

6.3.3 Experiment Description

Performance Evaluation on Fixed Warehouse Sizes

In our first main experiment, we tested the performance of our DRL methods on stochastic
warehouses with uncertainty and congestion, as explained in the simulation description in Sec-
tion 5.1. This experiment aims to test how much efficiency improvement we can achieve in
warehouses with the same system parameters as our training instances. To do so, we trained
one policy for each of the warehouse types S, M, L, and XL, using the previously described

56

CHAPTER 6. EXPERIMENT SETUP

settings. We trained these policies using randomly initiated warehouse instances within the de-
fined parameters. Thus, each training warehouse has a unique set of pickruns and a randomly
initiated product spread. In all remaining experiments, we also used warehouses with randomly
initiated pickruns and product allocations

For evaluation, we tested each policy on 100 random instances of its associated warehouse type.
Thus, we tested the policy trained on type S on 100 warehouses of type S, and likewise for the
other warehouse types. We used 100 evaluation instances for this experiment and all further
experiments. Again, all evaluation instances in this and further experiments have a unique set
of pickruns and allocation of products through the warehouse. We compared the performance
of these policies with the benchmark methods.

Picker/AMR Transferability

For practical applicability, the developed policies must be capable of handling various amounts
of pickers and AMRs in the system. To test how well the policies can adapt, we tested each
policy on a variety of picker and AMR numbers. For these numbers, we changed the amounts
of pickers and AMRs, as well as the ratio between them. We used the policies we trained in
the previous experiment with the settings from Table 6.1. Thus, these policies were trained on
a fixed amount of pickers and AMRs. Again, we compared the performance with the greedy
and VI Benchmark solutions over 100 evaluation episodes. We tested the following picker/AMR
combinations.

• Warehouse type S: 7/15, 10/20, 10/30, 15/25, 15/30, 15/35.

• Warehouse type M: 15/35, 20/40, 20/60, 30/50, 30/60, 30/70.

• Warehouse type L: 25/60, 30/70, 30/100, 40/90, 40/100, 40/110.

• Warehouse type XL: 50/120, 60/140, 60/200, 80/180, 80/200, 80/220.

Warehouse Size Transferability

Aside from evaluating the transferability to picker and AMR numbers, we also evaluated how
well policies adapt to different warehouse sizes. If policies adapt well to different warehouse
sizes, this allows easier distribution of policies to new warehouses or when warehouse envi-
ronments are downsized or expanded. To do so, we again used the trained policies from the
performance evaluation experiment. Then, we tested the performance of each policy on 100
evaluation episodes for each warehouse type S, M, L, and XL. We compared how well the policy
performance transferred compared to the policies that were trained for each specific warehouse
size.

Deterministic Instance Evaluation

The fourth experiment we performed was comparing our DRL agent with the optimal solution
that can be found with complete information in a deterministic environment. This allows us to
understand how close the policies can get to optimal solutions. In this experiment, we tested
several instances of warehouse type XS with fully deterministic settings. We used fixed picking
times of 7.5 seconds, fixed picker and AMR speeds of 1.25 m/s and 1.5 m/s, respectively, no
overtaking penalties, and no random disruptions.

We solved these instances by implementing the MILP model from Equations 2.1-2.21, without
the workload fairness considerations (i.e., without Equations 2.2 and 2.15). We implemented
and solved the MILP instances using the Gurobi solver (Gurobi Optimization, LLC, 2023). We
used their indicator constraints option to solve the constraints with big-M notation as efficiently
as possible. For each instance, we ran the Gurobi solver for 20 hours on a computer with an
AMD Rome 7H12 CPU instance with 64 CPU cores.

The instances we used all contained one pickrun per AMR that had to be completed. For

57

CHAPTER 6. EXPERIMENT SETUP

each instance, we sampled random pickruns of lengths between 9 and 14 items. We tested two
different instance types. First, we tested instances with diverse starting positions. For diverse
starting position instances, we cut off the sampled pickruns using random uniform selection
to ensure that AMRs are spread through the warehouse. Second, we tested instances without
diverse starting positions. In these instances, all AMRs start a full pickrun, meaning they are
initialized closer to each other at the beginning of the warehouse.

We trained one DRL agent for the diverse starting scenarios and one for the non-diverse starting
scenarios. In training, we used random warehouse instantiations with the same overall warehouse
parameters. Thus, the DRL policies were not explicitly trained for the specific testing instances
but for generalizable performance in warehouse instances with the same settings. We evaluated
the DRL policies on each evaluation instance. In addition, we evaluated the greedy and VI
Benchmark methods on these instances.

Architecture Comparison

To further show the quality of our proposed methodology, we compared our method with three
other neural network architectures, being an invariant feed-forward neural network with node-
wise forward passing of information and no information exchange, a GCN network, and a GIN
network.

For the invariant feed-forward actor network, we used two fully-connected layers with Leaky
ReLU activation and 64 neurons, followed by a fully-connected layer with 16 neurons and Leaky
ReLU and a last layer with one neuron that represents the node value, which is masked and
passed through the softmax function with all nodes. We used the same critic as described in
Section 6.3.1.

For the GCN actor, we used four consecutive GCN layers with 64 output channels and Leaky
ReLU activation function, followed by two fully-connected feed-forward layers of 64 and 16
neurons with Leaky ReLU, and a last fully-connected layer with one neuron. The GCN critic
also had four consecutive GCN layers with 64 output channels and Leaky ReLU activation
function, followed by two fully-connected feed-forward layers of 64 and 16 neurons with Leaky
ReLU. These were followed by the summation aggregation and one final linear layer with one
neuron to output the graph value.

The GIN networks had the same structure as the GCN networks with GIN layers instead of GCN
layers. For each GIN layer, we used a multilayer perceptron with two fully-connected layers of
64 neurons with Leaky ReLU activation. All policies were trained with the learning parameters
from Section 6.3.2. We performed the training and evaluation procedure as described for the
performance evaluation experiment for warehouse sizes S, M, and L for each of the architectures
to compare their performance.

Aside from the performance, we also tested the inference time of each architecture. Namely, the
picker optimizer must be deployed in real-time with potentially several allocation requests per
second at busy moments. Therefore, inference time must not be too long for the DRL agents to
be applied. For each architecture, we measured the inference time of a thousand actions on each
warehouse type. We did so on a laptop with an Intel Core i7-9850H processor and an NVIDIA
Quadro T2000 GPU, as we ideally want the picker optimizer to be capable of running without
extreme hardware requirements.

6.4 Multi-Objective Optimization

After evaluating the performance of DRL on the single-objective problem of optimizing effi-
ciency, we evaluated the performance of the multi-objective algorithms. For these experiments,
we used both the efficiency and workload fairness features in our state representation and incor-
porated both reward functions. The following sections outline the architecture specifics, learning

58

CHAPTER 6. EXPERIMENT SETUP

algorithm settings, and experiments we used to train and evaluate our multi-objective solutions.

6.4.1 Network Architectures

For multi-objective learning, we implemented the architectures described in Section 5.2.3. In the
actor network, to create the efficiency and fairness embeddings, we used two aisle-embedding
architectures with the same structure, with one handling the efficiency features and the other
handling the fairness features. This architecture is the same as we used in the single-objective
critic, except for the last fully-connected layer with one neuron. Instead, we stacked the effi-
ciency and fairness embeddings of 16 dimensions to create the combined node-embeddings of
32 dimensions. These node-embeddings were transformed to node values by a fully-connected
layer with 16 channels and Leaky ReLU activation followed by a final layer with one neuron.
Again, these final node values were masked, and the softmax function was applied to get the
action probabilities.

In the critic network, we used the same principle of applying the single-objective architecture to
both the efficiency and workload fairness features. Thus, we use the same three fully-connected
layers. Then, the resulting embeddings with 16 layers were stacked to form a 32-dimensional
embedding. These 32-dimensional embeddings were passed through a 16-neuron fully-connected
layer having Leaky ReLU activation and aggregated using summation to get the aisle embedding.
Then, we used one final linear layer of 2 neurons to get the value estimate for the two reward
functions.

6.4.2 Learning Algorithm

For our PGMORL implementation, we adapted the original code from J. Xu et al. (2020) to
handle graph states and a discrete action space and enable integration with our simulation
interface. Besides, we integrated Dask (Dask Development Team, 2016) into the code to enable
nested multiprocessing for the PPO tasks and the parallel simulation environments within the
PPO instances, allowing more efficient training and, therefore, reduced training times. We ran
PGMORL for warehouse types S, M, and L. We did not include warehouse type XL due to the
high computational costs.

For the PPO tasks, we used the hyperparameters described in Section 6.3.2. As explained by
J. Xu et al. (2020), having more parallel tasks is likely to increase the quality of the found
non-dominated set. However, it also increases computational costs. Therefore, we used 6 tasks,
similar to the default value in the original paper. For warehouse type S, we set the number of
warm-up iterations mw to 80 and the number of task iterations between evolutionary steps mt

to 12. The number of warm-up iterations must be sufficiently high such that distinguishable
policies with appropriate performance can be used as a base for the further evolution of different
policies. For warehouse types M and L, we set mw and mt to 128 and 16, respectively, as the
larger warehouses generally require more learning iterations to update. For warehouse S, we
collected 7 million steps per task before termination, while for warehouse types M and L, we
used 7.5 million steps per task before termination. We determined these numbers of steps by
inspecting the generally required number of update iterations for convergence. We performed
20 evaluation episodes once every 6 PPO iterations for type S and once every 8 iterations for
types M and L. These evaluation results are used by PGMORL to determine the non-dominated
set and perform the evolutionary prediction. Lastly, for multi-objective training, we scaled the
efficiency rewards down to get both reward functions to similar scales. Although not strictly
necessary, this aids in finding better weight vectors oppositely to when rewards are of different
magnitudes. Namely, the initial policy set will have a better spread in behavior, leading to
quicker identification of valuable weight combinations. For all other algorithm settings, we used
the default values from the original implementation by J. Xu et al. (2020).

We ran the PGMORL implementations on a machine with a 32-core Intel Xeon Platinum 8360Y

59

CHAPTER 6. EXPERIMENT SETUP

processor and an NVIDIA A100 GPU.

6.4.3 Experiment Description

For the multi-objective evaluation, we followed a similar structure as the single-objective exper-
iments. Namely, we first tested the performance on similar warehouses, followed by an analysis
of the transferability to different warehouse sizes and numbers of pickers and AMRs. Lastly, we
also performed an architecture comparison.

Performance Evaluation on Fixed Warehouse Sizes

For performance evaluation, we ran the PGMORL algorithm for the warehouse types S, M,
and L. This resulted in a set of non-dominated policies for each warehouse type. We gathered
these policies and ran 100 evaluation episodes for each of these policies on the same warehouse
type as they were trained on. These policies each form a front that shows the achievable trade-
offs between fairness and performance. We assessed the quality of this front by inspecting the
performance of the policies in terms of total picking time and the standard deviation of the
workloads. We compared these with the greedy method, VI baseline, the pure efficiency policies
from the single-objective optimization, and pure fairness policies.

The pure fairness policies were trained using the network architecture and learning parameters
of the single-objective optimization setup with just the workload fairness features and reward
function. One slight difference in the training setup is that we used a learning rate of 5× 10−5,
and for warehouse type S we replaced the layers of 64 neurons with layers of 32 neurons.

Picker/AMR Transferability

To test transferability for picker/AMR numbers of multi-objective policies, we applied a similar
procedure as for the single-objective optimization. Namely, we used the policies trained in
the performance evaluation experiment. We evaluated each of these policies on 100 evaluation
episodes for different numbers of pickers and AMRs than they were trained on within the
same warehouse size and compared the results with the performances of the greedy method, VI
benchmark, pure efficiency policy, and pure fairness policy. Because there are many policies to
be evaluated, we only tested warehouse sizes S and L and the more extreme pick/AMR ratios
for these experiments. If these sizes and more extreme picker/AMR numbers perform well, in
combination with the single-objective results, we still have sufficient proof that the less extreme
numbers are also handled well. Accordingly, we used the following picker/AMR numbers.

• Warehouse type S: 7/15, 10/30, 15/35.

• Warehouse type L: 25/60, 30/100, 40/110.

Warehouse Size Transferability

We also evaluated the warehouse size transferability similarly to the single-objective problem.
Namely, we evaluated the trained multi-objective policies for warehouse types S, M, and L on all
warehouse types S, M, L, and XL. Like in the other multi-objective experiments, we compared
the formed front with the pure efficiency and fairness policies, as well the greedy baseline and
VI Benchmark.

Architecture Comparison

To outline the value of our proposed network architectures for multi-objective DRL, we also
compared different multi-objective architectures. Due to the large computational requirements
of PGMORL, we did not perform the architecture comparison on full PGMORL training. In-
stead, we trained and evaluated the architectures on varying weight vectors. Since PGMORL
internally uses weighted sums for learning, having good performance when training for pre-
specified weighted sums indicates the performance level that can be achieved by PGMORL.

We compared our multi-objective architecture with three other architectures. First, we compared

60

CHAPTER 6. EXPERIMENT SETUP

the performance with the single-objective aisle-embedding architecture from the single-objective
experiments. Second, we used the invariant feed-forward architecture that we also used as a
comparison for the single-objective performance. Third, we tested an invariant feed-forward
architecture with feature separation. This network applies the structure of our multi-objective
architecture, but instead of aisle-embeddings, we used an invariant feed-forward structure to
create the efficiency and workload fairness embeddings. This invariant feed-forward structure
consisted of two fully-connected layers with 64 neurons and a Leaky ReLU activation function
followed by one fully-connected layer with 16 neurons.

We trained these networks using the PPO settings described in Section 6.3.2. We trained and
evaluated these networks for three different weight vectors to create a weighted-sum reward of
the scaled-down efficiency reward and the workload fairness reward. These weight vector settings
were (0.1, 0.9), (0.5, 0.5), and (0.9, 0.1). The warehouse types that we used for this experiment
were types S and M.

Similar to the single-objective architectures, we also tested the inference time of the multi-
objective architectures. We used the same approach as explained in Section 6.3.3 for the single-
objective experiment.

61

Chapter 7

Results

In this chapter, we outline the results and implications of our experiments. In Section 7.1, we will
explain the results of the single-objective experiments for efficiency optimization. Consequently,
in Section 7.2, we will consider the results of the multi-objective optimization experiments.

7.1 Efficiency Optimization

7.1.1 Performance Evaluation on Fixed Warehouse Sizes

We present the performance evaluation results in Table 7.1. Note that the values in this and
all other tables indicate the total picking time to complete an episode in seconds, and thus, the
lower the values, the better. This table shows that the DRL policies outperformed the greedy
and VI benchmark policies by a clear margin for all warehouse sizes. For the smallest warehouse
size, the performance improvement over the VI benchmark was 14.9% percent, while for the
larger warehouse sizes DRL achieved over 30% faster completion times, with improvements of
31.7% and 33.6% for warehouses L and XL, respectively. The greedy baseline performed slightly
worse than the VI Benchmark, although the differences were just a few percent.

Table 7.1: Performance evaluation of DRL, greedy, and VI Benchmark policies on picking ef-
ficiency. The values indicate the average picking time in seconds over 100 evaluation episodes,
with ± indicating the width of the 95%-confidence intervals. The % indicates the percentage
improvement over the VI Benchmark, with a positive percentage indicating an improvement
and, thus, lower picking times. The bold markings indicate the best performance values per
warehouse size.

DRL Greedy VI Benchmark

Warehouse Picking Time % Picking Time % Picking Time

S 8586± 62 14.9 10619± 59 −5.3 10087± 58
M 8425± 46 21.0 11023± 58 −3.3 10669± 41
L 6540± 37 31.7 9823± 33 −2.7 9569± 61
XL 9010± 21 33.6 13972± 44 −3.0 13570± 72

These findings demonstrate that the DRL policies perform well as picker optimizer agents in
collaborative order picking warehouses. The outcomes of this experiment show that the DRL
policies can achieve good efficiency in realistically-sized warehouse instances with randomness,
congestion, and unexpected interruptions.

62

CHAPTER 7. RESULTS

7.1.2 Picker/AMR Transferability

The previous results showed that DRL policies could improve the system efficiency by a clear
margin. For these DRL policies to be helpful in practice, they must continue this efficiency
improvement when the numbers of pickers and AMRs in the system change, as real-world
warehouses do not always have the same amounts of workers in the system. Table 7.2 shows
the results of the transferability analysis of the DRL policies to the different picker and AMRs
numbers.

In these numbers, a similar result is visible that the DRL approach outperformed both greedy
and the VI Benchmark for each combination of pickers and AMRs in each warehouse size. Again,
the performance improvement over the VI Benchmark was the largest for the larger warehouses.
Namely, for warehouse type S we found improvements between 13.0% and 24.7%, for warehouse
type M between 16.0% and 26.2%, and for warehouses L and XL between 32.5% and 41.5%
over the VI benchmark. Remarkably, the relative improvement of the picking times was better
for most picker/AMR ratios than the improvements in Table 7.1 on the ratios we trained on.
On warehouse types S and M, the advantage was only smaller for the ratios 10/30 and 20/60,
respectively. These are ratios with a relatively low number of pickers and, in comparison, many
AMRs. For all other combinations, the percentage improvement over the VI Benchmark was
roughly equal or better. This shows that, whereas the VI Benchmark efficiency deteriorates
when the crowdedness levels in the warehouse become either small or larger, the DRL policy
continues to achieve good results. Thus, the DRL policy can adapt to extremer warehouse
occupation levels more efficiently.

These results can be used in two ways. First, the completion times can be improved using
the DRL policies to handle larger capacities. Second, one can achieve equal performance while
reducing the number of used resources to save costs. For example, the results of warehouse type
XL show that the DRL policy could achieve roughly similar picking efficiency with 50 pickers
and 120 AMRs as the VI Benchmark achieved with 80 pickers and 220 AMRs.

In several cases, the greedy baseline performed slightly better than the VI Benchmark, with the
best of the two alternating for different settings. Especially for the larger warehouse size with
extremer picker/AMR numbers, the greedy policy seemed more suitable. However, the greedy
baseline, like the VI benchmark, did not get close to the DRL performance for any problem
instance.

7.1.3 Warehouse Size Transferability

We saw that policies adapt well to different numbers of pickers and AMRs. This section discusses
how well they transferred to other warehouse sizes. These results are outlined in Table 7.3.

The results in this table reveal that the policies adapted well to different warehouse sizes. We see
that the policy trained on warehouse type S achieved an average total pick time of 6877 seconds
on type L compared to the 6540 seconds reached by the policy trained on warehouse L. Thus,
while being developed for a warehouse with over 6 times fewer pick locations and roughly 3
times as little pickers and AMRs, it only performed about 5% worse. Similarly, the policies also
scaled down well to smaller warehouses. The policy of warehouse type L achieved an average
completion time of 8875 seconds compared to the 8586 seconds of policy S. This is a performance
difference of just over 3%. Remarkably, policy L (8567 seconds) outperformed policy XL (9010)
on all instance sizes. Policy L achieved an improvement of 36.9% over the VI benchmark,
compared to the 33.6% improvement of policy XL. This indicates that training for increasingly
larger warehouse sizes is not necessary to get good performance on those warehouse sizes. In
larger warehouse sizes, the action space is bigger, and therefore, learning can be slower and
harder to fine-tune to get the last percentage improvements. Learning for many more iterations
might eventually bring better results, but this is not guaranteed and the learning is substantially

63

CHAPTER 7. RESULTS

Table 7.2: Performance of DRL policies trained for efficiency on warehouse types S, M, and L,
given varying other combinations of the number of pickers and AMRs within their respective
warehouse sizes. The values indicate the picking time in seconds. The ± indicates the 95%-
confidence interval. The % indicates the percentage improvement over the VI Benchmark, with
a positive percentage indicating an improvement and, thus, lower times. The bold markings
indicate the best performance values per warehouse setting.

(a) Warehouse type S.

DRL Greedy VI Benchmark

Pickers/AMRs Picking Time % Picking Time % Picking Time

7/15 12825± 83 17.1 15166± 74 2.0 15472± 87
10/20 9206± 51 19.4 11274± 69 1.3 11420± 56
10/30 8221± 54 13.0 10283± 60 −8.8 9447± 52
15/25 6737± 42 21.5 7994± 40 6.9 8583± 36
15/30 5930± 34 24.7 7804± 55 1.0 7879± 46
15/35 5938± 35 16.6 7550± 44 −6.0 7121± 38

(b) Warehouse type M.

DRL Greedy VI Benchmark

Pickers/AMRs Picking Time % Picking Time % Picking Time

15/35 11263± 50 21.2 14240± 66 0.4 14297± 72
20/40 9139± 46 23.5 11331± 56 5.2 11952± 41
20/60 7965± 48 16.0 10569± 51 −11.4 9489± 53
30/50 6795± 34 26.2 8189± 46 11.0 9206± 34
30/60 6293± 38 22.7 7789± 31 4.3 8136± 50
30/70 5944± 37 20.6 7620± 29 −1.7 7490± 41

(c) Warehouse type L.

DRL Greedy VI Benchmark

Pickers/AMRs Picking Time % Picking Time % Picking Time

25/60 8566± 34 36.6 11852± 31 12.3 13512± 65
30/70 7209± 26 37.7 10120± 35 12.5 11563± 58
30/100 6354± 65 32.5 9980± 44 −6.0 9410± 62
40/90 5659± 29 36.1 7962± 29 10.1 8859± 68
40/100 5279± 50 34.6 8141± 44 3.4 8424± 52
40/110 5059± 18 37.3 7605± 27 5.8 8076± 45

(d) Warehouse type XL.

DRL Greedy VI Benchmark

Pickers/AMRs Picking Time % Picking Time % Picking Time

50/120 12028± 23 40.2 16816± 32 16.5 20142± 112
60/140 10150± 20 40.7 14312± 27 16.4 17118± 101
60/200 9009± 44 35.6 14293± 88 −2.2 13979± 87
80/180 8106± 77 38.9 11343± 30 14.6 13275± 83
80/200 8011± 59 36.8 11765± 52 6.4 12571± 91
80/220 6947± 19 41.5 10799± 40 9.1 11877± 84

64

CHAPTER 7. RESULTS

Table 7.3: Performance of DRL policies trained on specific warehouse sizes when evaluated on
a variety of warehouse sizes. The values indicate the picking time in seconds. The ± indicates
the 95%-confidence interval. Policy X indicates the DRL policy trained on warehouse type X.
The bold markings indicate the best performance values per warehouse size.

Warehouse Policy S Policy M Policy L Policy XL Greedy VI Benchmark

S 8586± 62 9190± 53 8875± 58 8986± 51 10619± 59 10087± 58
M 7931± 42 8425± 46 8064± 41 8220± 37 11023± 58 10669± 41
L 6877± 31 7190± 42 6540± 37 6877± 23 9823± 33 9569± 61
XL 9478± 20 11275± 33 8567± 24 9010± 21 13972± 44 13570± 72

slower, as we already trained the XL policy for twice as many steps as those for types M and L.
The XL policy did transfer well to other warehouse sizes though, which again indicates the good
transferability of policies. In addition to the comparative performances between each other, all
DRL policies maintained a clear advantage over the greedy and VI benchmark results.

Thus, overall, the policies adapted well to different warehouse sizes. This enables easier de-
ployment of policies to varying warehouses. Also, when a warehouse layout is (temporarily)
changed, the policies can maintain good performance without needing to retrain and redeploy
new policies. In addition, it is advantageous for the training process itself since one can train
and evaluate different settings quicker on smaller warehouse instances and then scale the learned
policies to larger warehouses.

In general, the experiments showed that, using our DRL method, we can achieve picker optimizer
policies that increase the efficiency of collaborative picking systems compared to the greedy
baseline and VI benchmark. For larger warehouses, we can achieve improvements in pick time of
over 35%. The policies can also adapt to varying warehouse sizes while losing little performance.

7.1.4 Deterministic Instance Evaluation

Table 7.4 shows an overview of the results of the deterministic instance evaluation. The first
thing that stands out is that the solver could not prove optimality within 20 hours. This can
be seen by the MILP gap, which indicates the gap between a lower bound on the best possible
time and the best solution that was found, not being 0%. This indicates the complexity of the
problem, even in these minimalistic, deterministic instances.

In these results, we also find that the DRL solution got very close to the best found MILP solu-
tion in all cases. It even achieved better results for 5 instances. The most significant deviation in
total picking time from the best MILP solution was just 21 seconds (227 vs. 206), indicating that
DRL policies can consistently achieve good results. In addition, the DRL agents outperformed
the greedy and VI benchmark methods for each instance. Compared to the greedy baseline,
the improvement was generally not large. However, with such small instances, no congestion,
and the results being so close to the MILP results, we did not expect a large deviation from
the greedy method. That is, the greedy method optimizes in the short run without much con-
sideration of other pickers, leading to fast initial picks for the pickers. In such short episodes,
the long-term consequences cannot be affected too much as episodes end relatively quickly.
This limits the extent to which the greedy solution can get into poor states. In addition, the
greedy method experiences the converse effects of congestion less due to the lack of overtaking
penalties. The VI benchmark results were worse than greedy and DRL. This makes sense as
this method was developed to spread the pickers more evenly through the warehouse, while this
may be less beneficial in short episodes without congestion effects. All in all, the deterministic
instance results show that we can achieve good, near-optimal solutions using DRL that match
the performance of the best solutions that were found using a solver with complete information

65

CHAPTER 7. RESULTS

Table 7.4: Comparison of DRL, greedy, and VI Benchmark performance versus the best solutions
found by the MILP solver for multiple small warehouse instances without randomness and
uncertainty. The values indicate the total picking time in seconds for the specific problem
instance. The MILP gap indicates the percentage gap between the lower bound estimate of the
solver and the best solution that was found. The bold markings indicate the best performance
values per problem instance.

(a) Instances of type XS with diverse starting.

Instance DRL Greedy VI Benchmark MILP MILP gap (%)

1 154 154 355 149 17.8
2 187 190 397 187 6.0
3 155 167 299 149 12.2
4 206 248 269 212 17.5
5 227 236 277 206 15.9

(b) Instances of type XS without diverse starting.

Instance DRL Greedy VI Benchmark MILP MILP gap (%)

1 244 262 355 244 28.2
2 249 253 297 271 28.1
3 265 272 299 267 29.3
4 240 257 269 245 22.8
5 251 255 277 260 30.9

of the problem instances. Therefore, these findings provide additional proof of the value of DRL
in collaborative picking.

7.1.5 Architecture Comparison

Having established the main single-objective results of our method, in this section, we will
present the architecture comparison.

Performance Comparison

Table 7.5 shows the performance of the different agent architectures we evaluated. These results
demonstrate that our proposed aisle-embedding (AISLE-EMB) actor performed best on all
warehouse sizes. Oppositely, the GIN and GCN structures both performed poorly compared
to the aisle-embedding and invariant feed-forward (INV-FF) networks. Especially for the two
larger warehouses, the performance difference is clear. For these scenarios, GIN and GCN did
not outperform the VI Benchmark and greedy baseline scores shown in Table 7.1. Thus, the
message passing networks cannot sufficiently extract useful regional information. Instead, the
extra parameters introduced noise into the learning process, limiting their performance.

Table 7.5: Performance comparison of policies with different network architectures, focused on
picking efficiency. The values indicate the average picking time in seconds over 100 evaluation
episodes, with ± indicating the width of the 95%-confidence intervals. The bold markings indi-
cate the best performance values per warehouse size.

Warehouse INV-FF AISLE-EMB GIN GCN

S 8689± 58 8586± 62 8869± 55 11677± 67
M 8628± 40 8425± 46 14151± 75 13851± 65
L 6602± 29 6540± 37 11723± 76 14419± 88

66

CHAPTER 7. RESULTS

The difference with the invariant feed-forward network is smaller. Even though the aisle-
embedding actor outperformed it on each warehouse type, the difference was within a few
percent. This difference may be so slight because we used multiple node features that already
describe regional information. Still, the aisle-embedding architecture increases performance for
single-objective optimization over all other network structures.

Inference Time Comparison

We present the inference times of each of the architectures in Table 7.6. We find that the
invariant feed-forward network achieved the quickest inference times, followed by the aisle-
embedding structure. The GIN was about twice as slow as the invariant feed-forward network,
and, in turn, the GCN was about twice as slow as the GIN actor. With all inference times
being just a few milliseconds, all networks are suitable for deployment in real-life as performing
multiple actions per second is no problem. We also find that the inference times scale slowly
with increasing warehouse sizes, so it should not be an issue even for much larger warehouses.

Table 7.6: Inference time of DRL policies with different network architectures. The numbers
represent the average inference time per action in milliseconds over 1000 collected actions, with
± indicating the 95%-confidence intervals. The bold markings indicate the best inference times
per warehouse size.

Warehouse INV-FF AISLE-EMB GIN GCN

S 1.44± 0.03 2.16± 0.03 3.10± 0.03 6.02± 0.05
M 1.53± 0.03 2.22± 0.03 3.25± 0.03 6.28± 0.05
L 1.53± 0.03 2.41± 0.03 3.41± 0.04 6.65± 0.05
XL 1.73± 0.03 2.57± 0.04 3.77± 0.04 7.19± 0.06

7.2 Multi-Objective Optimization

In the previous section, we showed that DRL could achieve excellent results in terms of pick
efficiency when performing single-objective learning for this objective. In this section, we will
outline the results of the multi-objective learning experiments. We will discuss the quality and
transferability of the policies that balance pick performance with workload fairness and which
trade-offs can be achieved. We will consider the total order completion times in seconds and the
workload standard deviation over pickers in kg.

7.2.1 Performance Evaluation on Fixed Warehouse Sizes

Table 7.7 and Figures 7.1, 7.2 and 7.3 show an overview of the results of the multi-objective
learning experiments for warehouse sizes S, M, and L. Here, for both the picking times and
workload standard deviations, lower values are better. For sizes S and L, PGMORL found a set
of 6 non-dominated policies, whereas, for size M, 8 non-dominated policies were found. Note that
the non-domination criterion was tested in the algorithm using 20 evaluation episodes. Hence,
with the elaborate evaluation, it may be that in some cases a policy was slightly dominated by
another policy that was very close in terms of performance.

In Figure 7.1, the non-dominated set of multi-objective policies forms a clear front toward the
bottom left. The policies show a trade-off with a relatively sharp “angle.” This shows that
we can decrease the workload standard deviation a lot before we sacrifice much pick efficiency
or decrease the picking time by a lot before the workload fairness deteriorates. A policy that
stands out is policy S3, which is represented by the dot in the bottom left of the front. This
policy achieved both good completion times and good workload fairness. Namely, the average
time to complete an episode was 9164 seconds, and the workload standard deviation was 66
kilograms, compared to 8586 seconds and 308 kilograms of the pure performance policy. Thus,
by sacrificing just 6.7% of efficiency, this policy decreased the workload standard deviation

67

CHAPTER 7. RESULTS

Table 7.7: Performance of the non-dominated set of multi-objective policies learned on different
warehouse types. The picking time is the average number of seconds to complete an episode,
and the workload fairness is the average standard deviation of the picker workloads in kilograms
over 100 evaluation episodes. The ± indicates the 95%-confidence interval.

(a) Warehouse type S.

Policy Picking Time Workload Fairness

S1 15555± 125 41± 4
S2 12431± 86 43± 4
S3 9164± 60 66± 4
S4 9188± 55 114± 8
S5 9074± 60 118± 7
S6 9149± 68 167± 9
Pure Performance 8586± 62 308± 17
Pure Fairness 19962± 86 61± 9
Greedy 10619± 59 278± 15
VI Benchmark 10087± 58 442± 23

(b) Warehouse type M.

Policy Picking Time Workload Fairness

M1 22180± 65 86± 10
M2 18695± 174 100± 10
M3 14854± 74 103± 6
M4 14897± 153 140± 9
M5 9809± 169 154± 8
M6 9323± 136 223± 11
M7 8919± 51 266± 19
M8 8733± 52 460± 32
Pure Performance 8425± 46 302± 13
Pure Fairness 21793± 73 73± 4
Greedy 11023± 58 288± 9
VI Benchmark 10669± 41 548± 17

(c) Warehouse type L.

Policy Picking Time Workload Fairness

L1 25562± 92 70± 7
L2 15474± 62 65± 3
L3 8463± 32 72± 5
L4 8296± 78 76± 4
L5 8116± 62 139± 6
L6 7400± 220 226± 9
Pure Performance 6540± 37 228± 7
Pure Fairness 21525± 73 51± 3
Greedy 9823± 33 253± 7
VI Benchmark 9569± 61 472± 14

68

CHAPTER 7. RESULTS

0 2500 5000 7500 10000 12500 15000 17500 20000
Picking Time (s)

0

50

100

150

200

250

300

350

400

450

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.1: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type S.

0 5000 10000 15000 20000
Picking Time (s)

0

100

200

300

400

500

600

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.2: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type M.

0 5000 10000 15000 20000 25000
Picking Time (s)

0

100

200

300

400

500

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.3: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type L.

69

CHAPTER 7. RESULTS

by 78.6%. Compared to the VI Benchmark, which achieved an average time of 10619 and
workload standard deviation of 442, several policies achieved both better picking times and
fairer workload distributions. For example, policy S3 managed a 9.2% pick time improvement
while also having an 85.1% better workload spread. Overall, the front pushes the boundaries of
the pure performance and fairness policies, indicating that better trade-offs are hard to achieve.
For this warehouse type, the fairest multi-objective policies even achieved better fairness than
the single-objective policy on fairness. This may be due to several reasons. The fairness policy
might be unstable, leading to problems to capture the final improvements. Alternatively, the
multi-objective structure might help to capture some extra policy aspects within these small
warehouses. As this was not the case for the larger warehouses, it is not a finding that can be
generalized. Besides, the main focus of our study is not to create fairness policies while ignoring
efficiency, so we did not try to optimize this pure fairness policy further.

For warehouse type M, the non-dominated policies form a smoother front, as illustrated in
Figure 7.2. This indicates that no policy was found that pushes both the picking time and
workload distribution values to the lowest possible values. Instead, more of a trade-off is shown.
Again, multiple policies (M5, M6, and M7) showed excellent efficiency and better workload
fairness compared to the greedy and VI benchmark solutions.

The policies for type L form a front that is more similar to the front for type S, as shown in
Figure 7.3. Multiple policies provide a good trade-off between fairness and efficiency depending
on the decision-maker’s preferences. Again, the shape of the results plot indicates that we can
improve one objective value by a large margin without deteriorating the performance of the other
objective. For example, policies L3 and L4 achieved 11.6% and 13.3% efficiency improvements
with 84.7% and 83.9% lower workload standard deviations than the VI benchmark.

All in all, our multi-objective DRL approach found non-dominated sets of policies that outline
the trade-offs between efficiency and fairness using a well-shaped front. Efficiency and fair-
ness can be balanced to a good extent and several policies for each warehouse type performed
better than the greedy approach and VI benchmark on both efficiency and workload fairness.
These results can provide decision-makers with several potential policies to use based on their
preferences.

7.2.2 Picker/AMR Transferability

Having established that multi-objective DRL can provide a good set of non-dominated policies to
outline the possible trade-offs between fairness and efficiency, we will discuss the transferability
of these multi-objective policies to scenarios with different amounts of pickers and AMRs in the
system. Table 7.8 and Figures 7.4-7.9 outline the outcomes of the transferability analysis.

For warehouse type S, we find a broadly similar shape of the fronts formed by the multi-objective
policies for each of the picker/AMR ratios, shown in Figures 7.4-7.6. One thing that stands out
is that for larger numbers of pickers and AMRs, the multi-objective policies achieved better
transferability than the pure fairness policy. Whereas the workload standard deviation of the
pure fairness policy increased from roughly 50 kg for 7 pickers and 15 AMRs to over 100 kg for 15
pickers and 35 AMRs, the multi-objective policies all maintained approximately the same levels
of fairness. Compared to the pure performance policy, the multi-objective policies transferred
in a similar way to the different picker/AMR combinations. For example, policy S3 achieved
picking times with workload standard deviation values of 13402 with 65, 8654 with 66, and 6569
with 70 for 7 pickers and 15 AMRs, 10 pickers and 30 AMRs, and 15 and 35 AMRs, respectively.
These are improvements of, in order, 13.4%, 7.2%, and 9.2% in efficiency while also reducing the
workload standard deviations by 89.0%, 83.7%, and 81.5%. In addition, the relative difference
between the multi-objective and pure efficiency policies remained roughly equivalent. However,
for the higher picker and AMR numbers, the performance loss is slightly larger. This is a sensible

70

CHAPTER 7. RESULTS

0 5000 10000 15000 20000 25000 30000
Picking Time (s)

0

100

200

300

400

500

600

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.4: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type S when evaluated with 7 pickers and 15 AMRs.

0 2500 5000 7500 10000 12500 15000 17500 20000
Picking Time (s)

0

50

100

150

200

250

300

350

400

450

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.5: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type S when evaluated with 10 pickers and 30 AMRs.

0 2000 4000 6000 8000 10000 12000 14000
Picking Time (s)

0

50

100

150

200

250

300

350

400

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.6: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type S when evaluated with 15 pickers and 35 AMRs.

71

CHAPTER 7. RESULTS

0 5000 10000 15000 20000 25000 30000
Picking Time (s)

0

100

200

300

400

500

600

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.7: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type L when evaluated with 25 pickers and 60 AMRs.

0 5000 10000 15000 20000 25000
Picking Time (s)

0

100

200

300

400

500

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.8: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type L when evaluated with 30 pickers and 100 AMRs.

0 2500 5000 7500 10000 12500 15000 17500 20000
Picking Time (s)

0

50

100

150

200

250

300

350

400

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy
Greedy
VI Benchmark

Figure 7.9: Performance evaluation of the non-dominated set of multi-objective policies learned
on warehouse type L when evaluated with 40 pickers and 110 AMRs.

72

CHAPTER 7. RESULTS

Table 7.8: Performance of multi-objective DRL policies trained on warehouse type S and L, given
varying combinations of the number of pickers and AMRs within their respective warehouse
sizes. PT is the picking time in seconds and WF is the standard deviation of the workloads in
kilograms. The ± indicates the 95%-confidence interval.

(a) Warehouse type S.

7 Pickers/15 AMRs 10 Pickers/30 AMRs 15 Pickers/35 AMRs

Policy PT WF PT WF PT WF

S1 22659± 213 33± 4 15117± 133 42± 4 10369± 96 41± 3
S2 17921± 134 39± 4 12191± 85 40± 3 8603± 56 45± 3
S3 13402± 87 65± 4 8765± 64 66± 5 6469± 52 70± 4
S4 13443± 87 109± 8 8850± 66 110± 7 6482± 48 110± 6
S5 13281± 107 119± 10 8684± 70 118± 8 6394± 65 125± 6
S6 13345± 113 162± 12 8795± 95 174± 13 6474± 72 163± 11
Pure Performance 12825± 83 347± 23 8221± 54 308± 20 5938± 35 282± 15
Pure Fairness 27812± 115 51± 5 19916± 104 92± 12 13736± 73 106± 12
Greedy 15166± 74 304± 21 10283± 60 281± 15 7550± 44 265± 11
VI Benchmark 15472± 87 591± 40 9447± 52 406± 22 7121± 38 378± 15

(b) Warehouse type L.

25 Pickers/60 AMRs 30 Pickers/100 AMRs 40 Pickers/110 AMRs

Policy PT WF PT WF PT WF

L1 29109± 82 71± 6 25928± 93 75± 7 19885± 75 68± 4
L2 18050± 62 66± 3 15608± 53 66± 3 11904± 48 65± 2
L3 10647± 78 74± 6 8332± 64 78± 6 6647± 63 69± 5
L4 10545± 81 79± 4 8177± 76 87± 5 6491± 68 76± 5
L5 10095± 91 135± 6 8059± 73 145± 6 6432± 62 129± 5
L6 9407± 42 227± 10 7365± 61 253± 11 5826± 56 189± 7
Pure Performance 8566± 34 236± 7 6354± 65 232± 7 5059± 18 206± 5
Pure Fairness 25731± 71 54± 5 21554± 72 52± 3 16518± 64 51± 3
Greedy 11852± 31 254± 8 9980± 44 257± 7 7605± 27 221± 6
VI Benchmark 13512± 65 603± 15 9410± 62 456± 13 8076± 45 373± 9

pattern since denser systems enable more close picks with short travel distances. Therefore, if a
picker must be relocated to a location further away to balance the workload, the potential loss
of pick efficiency is more considerable as more nearby picks are missed. Overall, on warehouse
size S, the multi-objective policies transferred well to the different picker and AMR numbers.

For warehouse type L, the multi-objective policies also performed well in the different evalu-
ation settings. Namely, in all scenarios, the multi-objective policy front reached similar levels
compared to the pure efficiency and fairness policies, as shown in Figures 7.7-7.9. The relative
comparison between the policies looks like the front in Figure 7.3. In this case, equivalent to
type S, the fairness levels stayed consistent for the different picker/AMR combinations. Op-
positely to warehouse S, the pure fairness policy also maintained its fairness level with larger
numbers of entities. In accordance with the previous results, for each combination of pickers
and AMRs, several policies achieved better efficiency and fairness than the VI benchmark and
greedy baseline. One of these policies is policy L4. For the picker/AMR ratios of 25/60, 30/100,
and 40/110, this policy achieved order completion times and workload standard deviations of
10545 and 79, 8177 and 87, and 6491 and 76, respectively. These results are 22.0%, 13.1%, and

73

CHAPTER 7. RESULTS

19.6% better in terms of picking time and 86.9%, 80.9%, and 79.6% better in terms of workload
distribution than the VI benchmark. Similar to the type S policies, the relative cost of fairness
in terms of performance decay becomes slightly larger with more entities in the system. Overall,
though, the picker/AMR transferability of the multi-objective policies is also adequate for large
warehouses.

7.2.3 Warehouse Size Transferability

Having established the performance of the multi-objective policies and their transferability to
scenarios with different numbers of pickers and AMRs, we outline the transferability to different
warehouse sizes. Table 7.9 and Figures 7.10-7.13 show the warehouse transferability results.

From Figure 7.10 and Table 7.9a, we can see that the multi-objective policies trained on ware-
house types M and L were outperformed by the non-dominated policy set that was trained on
warehouse size S when evaluated on this smaller warehouse type. There were a few type M
policies that still improved both picking time and workload fairness over the benchmarks. In
contrast, the type L policies did not manage to do so. Hence, the multi-objective policies of
type L do not downscale as well as the pure performance policy did.

For warehouse type M, the type S policies transferred remarkably well, as shown in Figure
7.11 and Table 7.9b. Namely, we find that all type M policies were dominated by the type S
policies while evaluating for type M. Using the type S policies, better combinations of fairness
and efficiency were achieved than using the type M policies. For example, policy S3 achieved
an average completion time of 8578 seconds and a workload standard deviation of 69 kg. These
results are 19.6% and 87.4% better than the VI benchmark. In comparison, the best picking
time of the type M policies was 8733 seconds, and the best workload standard deviation was
86 kg. The type L policies transferred reasonably to warehouse size M. We see in Figure 7.11
that the fronts pass through each other, with more type M policies having low picking times.
All three fronts have several policies that improved upon the greedy method and VI benchmark
for both efficiency and workload fairness.

In the larger warehouses of type L, the policy sets that were trained on the three different
warehouse types formed similar result fronts, as Figure 7.12 and Table 7.9c show. All three
policy sets showed a relatively sharp trade-off angle in the plot, indicating that one objective
can be improved a lot without sacrificing much on the other. All sets contained policies that
outperformed the benchmarks. The policies of warehouse S achieved slightly better efficiency
scores, while the type M and L policies reached marginally better fairness values, but in general,
the results were similar. Thus, these findings show that the multi-objective policies trained on
warehouse types S and M can scale well to the larger warehouses instances of type L.

The evaluation on the XL warehouses showed a slightly different pattern, which can be seen in
Figure 7.13 and Table 7.9d. Namely, what stands out is that the policies that focused more on
fairness deteriorated in terms of fairness compared to the more efficient policies, especially for
policy set L. Namely, policies L1 and L2 achieved a higher workload standard deviation while
having much worse picking times than policies L3 and L4. In contrast, the fairness scores were
similar or slightly better for the smaller sizes. Thus, policies with a significant focus on fairness
may scale less well to larger warehouses in some cases. However, in practice, these policies will
not often be selected as they achieved just a marginal fairness improvement while having much
worse performance. On the other hand, the policies with better efficiency scaled relatively well
to the largest warehouse sizes, with policy L achieving the best trade-offs. Namely, all policy
sets could achieve similar efficiency, but the type L policy set managed to reach better workload
distributions for these efficiency levels. For example, policy L3 scored an average picking time
of 10357 with a workload standard deviation of 45 kg, constituting improvements of 23.6% and
91.9% over the VI benchmark scores of 13570 seconds and 558 kg, respectively. In general, the

74

CHAPTER 7. RESULTS

Table 7.9: Performance of multi-objective DRL policies when evaluated on various warehouse
sizes. PT is the picking time in seconds and the workload fairness WF is the standard deviation
of the workloads in kg. The ± indicates the 95%-confidence intervals. S, M, and L in the columns
indicate the training warehouse types of the policies.

(a) Evaluation results on warehouse type S.

S M L

Policy nr. PT WF PT WF PT WF

1 15555± 125 41± 4 20876± 129 95± 19 21182± 107 96± 14
2 12431± 86 43± 4 18938± 146 98± 10 19888± 95 82± 86
3 9164± 60 66± 4 14666± 96 74± 5 13516± 140 112± 12
4 9188± 55 114± 8 14879± 134 106± 11 12163± 144 81± 89
5 9074± 60 118± 7 11193± 147 155± 11 11621± 147 200± 15
6 9149± 68 167± 9 10302± 168 226± 15 10303± 113 355± 28
7 - - 9577± 53 206± 18 - -
8 - - 9464± 57 441± 51 - -

(b) Evaluation results on warehouse type M.

S M L

Policy nr. PT WF PT WF PT WF

1 15404± 100 51± 4 22180± 65 86± 10 22770± 102 114± 10
2 13267± 63 54± 5 18695± 174 100± 10 19117± 77 75± 3
3 8578± 69 69± 4 14854± 74 103± 6 12596± 177 154± 9
4 8646± 49 114± 5 14897± 153 140± 9 10424± 96 102± 9
5 8405± 50 122± 6 9809± 169 154± 8 10956± 185 201± 10
6 8485± 63 182± 9 9323± 136 223± 11 8960± 71 335± 22
7 - - 8919± 51 266± 19 - -
8 - - 8733± 52 460± 32 - -

(c) Evaluation results on warehouse type L.

S M L

Policy nr. PT WF PT WF PT WF

1 15913± 90 68± 7 26728± 159 60± 5 25562± 92 70± 7
2 15146± 67 68± 7 21520± 97 72± 6 15474± 62 65± 3
3 7302± 62 85± 6 14645± 70 128± 7 8463± 32 72± 5
4 7340± 53 131± 6 12939± 81 101± 5 8296± 78 76± 4
5 7249± 137 137± 6 7678± 71 92± 6 8116± 62 139± 6
6 7087± 64 199± 8 7307± 80 186± 8 7400± 220 226± 9
7 - - 7442± 42 220± 12 - -
8 - - 7343± 43 351± 18 - -

(d) Evaluation results on warehouse type XL.

S M L

Policy nr. PT WF PT WF PT WF

1 25380± 81 115± 9 46473± 337 94± 5 40897± 125 92± 5
2 25039± 72 100± 10 37004± 231 116± 5 21019± 67 72± 2
3 10013± 108 130± 6 23413± 65 160± 5 10357± 94 45± 4
4 9964± 87 183± 8 22389± 267 111± 4 10229± 112 66± 4
5 10208± 83 204± 8 10730± 151 101± 5 10411± 91 123± 4
6 9528± 42 229± 6 9524± 96 230± 7 9653± 30 211± 7
7 - - 9932± 92 312± 3 - -
8 - - 10173± 113 444± 17 - -

75

CHAPTER 7. RESULTS

0 2500 5000 7500 10000 12500 15000 17500 20000
Picking Time (s)

0

100

200

300

400

500

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies S
Multi-Objective Policies M
Multi-Objective Policies L
Greedy
VI Benchmark

Figure 7.10: Performance of multi-objective DRL policies trained on different warehouse sizes
when evaluated on warehouse size S.

0 5000 10000 15000 20000
Picking Time (s)

0

100

200

300

400

500

600

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies S
Multi-Objective Policies M
Multi-Objective Policies L
Greedy
VI Benchmark

Figure 7.11: Performance of multi-objective DRL policies trained on different warehouse sizes
when evaluated on warehouse size M.

0 5000 10000 15000 20000 25000
Picking Time (s)

0

100

200

300

400

500

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies S
Multi-Objective Policies M
Multi-Objective Policies L
Greedy
VI Benchmark

Figure 7.12: Performance of multi-objective DRL policies trained on different warehouse sizes
when evaluated on warehouse size L.

76

CHAPTER 7. RESULTS

0 10000 20000 30000 40000
Picking Time (s)

0

100

200

300

400

500

600

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Multi-Objective Policies S
Multi-Objective Policies M
Multi-Objective Policies L
Greedy
VI Benchmark

Figure 7.13: Performance of multi-objective DRL policies trained on different warehouse sizes
when evaluated on warehouse size XL.

multi-objective policies scaled well to the XL warehouse size, with all policy sets having multiple
policies that improved upon both the VI benchmark and greedy baseline.

Summarizing, the multi-objective policies transferred to a satisfactory degree to different ware-
house sizes. For the smaller warehouses, the policy set of warehouse S outperformed the policies
trained for larger warehouses. Oppositely, toward the large warehouses, the different policy sets
performed similarly, and all sets contained policies that performed better than both the greedy
baseline and VI benchmark on both objectives.

7.2.4 Architecture Comparison

From the previous results, we established that our proposed multi-objective DRL method could
achieve policies that are both efficient and fair with regard to the workload distribution over
pickers. In this part, we will compare our used network architecture with other network archi-
tectures to show its value.

Performance Comparison

Table 7.10 shows the performance comparison of our aisle-embedding architecture with fea-
ture separation (AISLE-EMB-SEP) compared to the aisle-embedding structure without feature
separation (AISLE-EMB), invariant feed-forward with feature separation (INV-FF-SEP), and
invariant feed-forward network without feature separation (INV-FF). The first thing that stands
out is the performance difference between the aisle-embedding architectures and the invariant
feed-forward architectures. On 5 of the 6 settings, the aisle-embedding instances achieved better
rewards than the invariant feed-forward policies by a clear margin. Thus, whereas with single-
objective optimization, the differences between aisle-embedding and invariant feed-forward ac-
tors were small, the differences are more prominent when both fairness and performance must
be optimized. A possible explanation is that the node features can capture less regional infor-
mation regarding fairness. Hence, the aisle-embedding architecture has more possibilities to aid
in extracting relevant regional information from the graph.

Between the aisle-embedding networks with and without feature separation, we can also observe
a difference. The results show that the aisle-embedding without feature separation reached
slightly better rewards than the actor with feature separation in three instances. However, the
improvements were only marginal. Namely, for the weight vector (0.1, 0.9), the final rewards of
the two structures were very close and within each other’s 95%-confidence interval, indicating
that we cannot conclude a statistically significant difference. In addition, the reward difference

77

C
H
A
P
T
E
R

7
.

R
E
S
U
L
T
S

Table 7.10: Comparison of the performance of policies with different network architectures, trained using a weighted-sum reward between performance
and fairness for various warehouse sizes and weight combinations for performance (wperf) and fairness (wfair). The table shows the obtained reward,
the picking time to complete a full episode in seconds (PT), and the standard deviation of the picker workloads in kg (WF). The ± indicates the
95%-confidence interval. The bold markings indicate the policies with the best rewards per scenario

AISLE-EMB-SEP AISLE-EMB INV-FF-SEP INV-FF

Warehouse wperf wfair Reward PT WF Reward PT WF Reward PT WF Reward PT WF

S 0.5 0.5 −264± 7 17017± 180 100± 11 −231± 6 14693± 209 91± 11 −372± 5 24400± 83 129± 9 −543± 12 22410± 112 506± 26
S 0.9 0.1 −236± 4 10210± 182 72± 10 −379± 3 16366± 148 110± 9 −288± 2 12055± 74 166± 10 −536± 3 21507± 118 502± 25
S 0.1 0.9 −149± 11 21265± 113 102± 11 −138± 9 22106± 102 89± 9 −187± 13 21808± 126 142± 14 −179± 11 21937± 88 133± 12
M 0.5 0.5 −339± 5 20340± 141 166± 10 −384± 5 23555± 100 175± 10 −255± 7 17023± 90 230± 8 −381± 6 20989± 110 232± 11
M 0.9 0.1 −361± 3 15305± 139 163± 8 −463± 2 20154± 80 100± 6 −463± 3 19324± 100 282± 12 −358± 3 15102± 74 186± 9
M 0.1 0.9 −202± 9 25250± 84 151± 9 −197± 7 23302± 86 151± 8 −253± 7 27338± 95 200± 8 −256± 7 16946± 93 232± 6

78

CHAPTER 7. RESULTS

was relatively small for weight vector (0.5, 0.5) on warehouse S. Oppositely, in the cases in
which the actor with feature separation performed better, the difference in rewards was much
larger, being −236 versus −379 and −361 versus −463. Moreover, we observe that in these
instances, with these weight vectors, the best overall policies for the warehouse types were
found. Namely, both policies dominated all other policies for all weight vectors on both picking
time and workload fairness. Thus, this weight vector region in which the aisle-embedding with
feature separation outperforms the other architectures is also the region where the best policies
are achievable. Hence, the aisle-embedding structure with feature separation is the best network
architecture for the multi-objective learning task.

What is also noteworthy in these results is that it is hard to judge which weight vectors lead
to which trade-offs between efficiency and fairness. For example, we saw that the policies for
weights wperf = 0.9 and wfair = 0.1 scored very well on both efficiency and fairness and even
achieved better fairness than the policies with wperf = 0.1 and wfair = 0.9. In addition, the
outcome of different weight settings varies between warehouse sizes. For example, for the aisle-
embedding without feature separation, the best efficiency and fairness scores in warehouse type
S were achieved for weight vector (0.5, 0.5), whereas for type M the policy for weight vector
(0.9, 0.1) outperformed the other policies. These findings highlight the value of using PGMORL
to find the weights that form a high-quality non-dominated set of policies. Otherwise, trying to
hand-tune the weights for each problem instance would cost a vast amount of computational
resources and effort to find clear trade-off fronts.

Inference Time Comparison

Table 7.11 shows the inference times of the different actor policies. We find that the inference
times were similar to those of the single-objective policies. Our aisle-embedding architecture
with feature separation was the slowest and the invariant feed-forward the quickest. However, all
inference times stayed within a few milliseconds for small and large warehouses. Thus, inference
time is no issue for the practical deployment of the multi-objective policies.

Table 7.11: Inference time of multi-objective DRL policies with different network architectures.
The numbers represent the average inference time per action in milliseconds over 1000 collected
actions, with ± indicating the 95%-confidence intervals. The bold markings indicate the best
inference times per warehouse size.

Warehouse AISLE-EMB-SEP AISLE-EMB INV-FF-SEP INV-FF

S 2.92± 0.03 2.13± 0.03 1.68± 0.03 1.51± 0.03
M 3.10± 0.04 2.22± 0.03 1.73± 0.03 1.57± 0.03
L 3.32± 0.06 2.39± 0.03 1.89± 0.04 1.63± 0.03
XL 3.50± 0.04 2.60± 0.04 1.97± 0.03 1.79± 0.03

7.3 Synthesis

In this chapter, we discussed the performance of our single-objective and multi-objective DRL
approaches to optimizing the picker allocation task in collaborative picking. In Section 7.1,
we showed that DRL could learn policies that outperform the benchmark methods by a clear
margin. For large warehouses, we found consistent efficiency improvements of roughly 30% to
40% over the VI benchmark for a variety of warehouse instances with different numbers of human
pickers and AMRs in the system. We also showed that DRL could reach near-optimal solutions
in small deterministic instances compared to their MILP solutions. The DRL policies we trained
for different warehouse sizes maintained good performance when transferred to warehouses of
different scales. For instance, a DRL policy trained on warehouses with just 200 pick locations,
10 pickers, and 25 AMRs only performed roughly 5% worse on warehouses with 1250 pick
locations, 30 pickers, and 90 AMRs than a policy trained explicitly for that warehouse type.

79

CHAPTER 7. RESULTS

In Section 7.2, we outlined the results of the multi-objective experiments. These experiments
highlighted that we could find a good set of non-dominated policies for various warehouses
that show the trade-off between efficiency and fairness. Decision-makers can use these policy
sets to make informed decisions on which efficiency and fairness levels they want to achieve. In
general, the standard deviation of these workloads can be greatly decreased while requiring a
limited sacrifice in efficiency. For each warehouse size, multiple policies performed better than
the greedy heuristic and VI benchmark on both efficiency and workload fairness. On the largest
warehouse size, our approach achieved policies that could improve efficiency by over 20% while
simultaneously decreasing the standard deviation of the picker workload by roughly 90% over
the VI benchmark. In general, the policies transferred well to varying numbers of pickers and
AMRs in the system. In addition, the transferability to larger and smaller warehouses was
satisfactory. Overall, the multi-objective DRL approach achieved valuable results by offering
multiple trade-off options between efficiency and fairness and generating policies that perform
well in both aspects.

80

Chapter 8

Policy Analysis

The results in the previous chapter showed that DRL policies can achieve excellent efficiency and
workload fairness. They significantly improved over the VI benchmark and greedy baseline. On
the downside, these DRL policies are so-called “black boxes” that do not have transparent rules
that can directly be extracted. To gain insights into the logic and behavior of these policies, we
performed two analyses. First, we performed a decision tree analysis to extract rules from the
behavior of the policies. Second, we created videos of the collaborative order picking simulation
for different policies to visually inspect what happens in the warehouses.

8.1 Decision Tree Analysis

To extract meaning from DRL policies, several methods have been developed, as highlighted
in a review by Vouros (2023). These methods detect relevant agent trajectories or distinguish
when essential actions are taken. However, these methods are generally not applicable to our
policy. Namely, a single “trajectory” of the DRL policy does not highlight much as it allocates
many pickers in turns. Besides, extracting valuable moments for each action is not possible.
Namely, we do not have clear actions such as “left” or “right”. Instead, our action space is
highly variable, with nodes that are often masked and can be permuted.

Therefore, we applied a more traditional method, decision tree analysis. However, our actor
outputs action probabilities for many nodes, each with many node features. It is not feasible to
input a full graph into a decision tree model. Instead, we focussed on the specific nodes. But we
cannot apply a decision tree to a specific node to find the action probability. Namely, the action
probability is not only dependent on the quality of this specific node but also on the quality of
all other nodes. To alleviate this, in our analysis, we trained decision trees that take the node
features as input and estimate the node value outputted by the actor network before passing
all node values into the softmax functions. These node values indicate the quality of the node,
regardless of the quality of other nodes.

We utilized these decision trees in various ways. First, we extracted the learned decision rules of
shallow trees. We inspected the rules to understand the internal considerations that the policies
use to value nodes. This analysis helps us understand the logic within the “black box” policies.
Second, we used these trees to create policies and tested the performance of these policies. In
these policies, we used the decision trees to create a node value for each node within the available
action space, as outlined in Figure 8.1. Then, the policies selected the node with the highest
estimated value. If such policies work well, this offers several advantages over the true DRL
actors. Firstly, people can inspect and know the exact rules used within the policy and these
rules always stay the same, which stimulates trust in the model. With the rules always being
the same, one can be more confident in the robustness of the method when untested scenarios
are encountered. Secondly, the trees can be used to explain why specific actions are selected.

81

CHAPTER 8. POLICY ANALYSIS

Thirdly, decision trees are generally computationally cheap and can be easily implemented.

Input Graph Available Nodes

s a m p le s = 2 2 3 8 0
va lu e = -0 .0 6

s a m p le s = 4 0 2 5 5
va lu e = -0 .2 5

s a m p le s = 2 2 1 1 9
va lu e = 0 .2 7

s a m p le s = 4 0 2 6 4
va lu e = -0 .0 3

s a m p le s = 7 5 7 7 3
va lu e = -0 .2 7

s a m p le s = 1 7 5 0 9
va lu e = -0 .5 7

s a m p le s = 2 4 3 3 4
va lu e = -0 .6 1

s a m p le s = 7 1 1 1
va lu e = -1 .1 5

s a m p le s = 1 7 1 1 9
va lu e = -0 .4

s a m p le s = 3 9 8 0 1
va lu e = -0 .5 5

s a m p le s = 2 1 2 6 6
va lu e = -0 .6 2

s a m p le s = 9 8 2 6
va lu e = -0 .7 5

s a m p le s = 4 2 7 5 6
va lu e = -0 .7 4

s a m p le s = 1 3 5 1 7
va lu e = -0 .9 2

s a m p le s = 4 6 9 5
va lu e = -1 .2 1

s a m p le s = 1 2 7 5
va lu e = -0 .8 7

Cu rre n t p icke r workloa d < = -1 1 .3 5
va lu e = -0 .1 8

Cu rre n t p icke r workloa d < = -1 0 .8 9
va lu e = 0 .0 7

Cu rre n t p icke r workloa d < = 3 0 .7 9
va lu e = -0 .3 3

Cu rre n t p icke r workloa d < = 2 4 .5 9
va lu e = -0 .7 3

Cu rre n t p icke r workloa d < = -4 .9 1
va lu e = -0 .5 1

Min im u m d is ta n ce
 o f o th e r p icke rs < = 3 4 .8

va lu e = -0 .6 6

Dis ta n ce of c los e s t o th e r
 p icke r d e s t in a t ion < = 3 7 .1

va lu e = -0 .7 8

Cu rre n t p icke r workloa d < = 1 2 .8 9
va lu e = -1 .1 4

Nu m b e r o f p icke rs to a is le < = 1 .5
va lu e = -0 .0 6

Wa it in g AMR workloa d < = 1 1 .5 5
va lu e = -0 .4 3

Dis ta n ce of c los e s t o th e r
 p icke r d e s t in a t ion < = 2 0 .8

va lu e = -0 .5 6

AMR d e s t in a t ion d is ta n ce < = 3 9 .4
va lu e = -0 .8 2

Cu rre n t p icke r workloa d < = 0 .9 4
va lu e = -0 .2 4

Dis ta n ce from p icke r < = 4 8 .8
va lu e = -0 .6 7

Dis ta n ce from p icke r < = 2 7 .8
va lu e = -0 .4

s a m p le s = 2 2 3 8 0
va lu e = -0 .0 6

s a m p le s = 4 0 2 5 5
va lu e = -0 .2 5

s a m p le s = 2 2 1 1 9
va lu e = 0 .2 7

s a m p le s = 4 0 2 6 4
va lu e = -0 .0 3

s a m p le s = 7 5 7 7 3
va lu e = -0 .2 7

s a m p le s = 1 7 5 0 9
va lu e = -0 .5 7

s a m p le s = 2 4 3 3 4
va lu e = -0 .6 1

s a m p le s = 7 1 1 1
va lu e = -1 .1 5

s a m p le s = 1 7 1 1 9
va lu e = -0 .4

s a m p le s = 3 9 8 0 1
va lu e = -0 .5 5

s a m p le s = 2 1 2 6 6
va lu e = -0 .6 2

s a m p le s = 9 8 2 6
va lu e = -0 .7 5

s a m p le s = 4 2 7 5 6
va lu e = -0 .7 4

s a m p le s = 1 3 5 1 7
va lu e = -0 .9 2

s a m p le s = 4 6 9 5
va lu e = -1 .2 1

s a m p le s = 1 2 7 5
va lu e = -0 .8 7

Cu rre n t p icke r workloa d < = -1 1 .3 5
va lu e = -0 .1 8

Cu rre n t p icke r workloa d < = -1 0 .8 9
va lu e = 0 .0 7

Cu rre n t p icke r workloa d < = 3 0 .7 9
va lu e = -0 .3 3

Cu rre n t p icke r workloa d < = 2 4 .5 9
va lu e = -0 .7 3

Cu rre n t p icke r workloa d < = -4 .9 1
va lu e = -0 .5 1

Min im u m d is ta n ce
 o f o th e r p icke rs < = 3 4 .8

va lu e = -0 .6 6

Dis ta n ce of c los e s t o th e r
 p icke r d e s t in a t ion < = 3 7 .1

va lu e = -0 .7 8

Cu rre n t p icke r workloa d < = 1 2 .8 9
va lu e = -1 .1 4

Nu m b e r o f p icke rs to a is le < = 1 .5
va lu e = -0 .0 6

Wa it in g AMR workloa d < = 1 1 .5 5
va lu e = -0 .4 3

Dis ta n ce of c los e s t o th e r
 p icke r d e s t in a t ion < = 2 0 .8

va lu e = -0 .5 6

AMR d e s t in a t ion d is ta n ce < = 3 9 .4
va lu e = -0 .8 2

Cu rre n t p icke r workloa d < = 0 .9 4
va lu e = -0 .2 4

Dis ta n ce from p icke r < = 4 8 .8
va lu e = -0 .6 7

Dis ta n ce from p icke r < = 2 7 .8
va lu e = -0 .4

Node Features Node Values

Figure 8.1: Illustration of decision tree policy.

8.1.1 Decision Tree Training

To train the decision trees, we ran the DRL policies for 100 episodes. In these episodes, we
collected pairs of node features with the outputted node value calculated right before the softmax
function. We only collected these pairs for nodes that were available as action. Then, we sampled
500,000 collected pairs for our training. We performed this procedure for pure efficiency, pure
fairness, and multi-objective policies trained on warehouse type S. We also collected the data
from runs on warehouse type S. In Appendix C, we show several data rows to illustrate the
collected samples.

For each policy, we repeated the following training procedure using the Scikit-learn package
(Buitinck et al., 2013). We created an 80%/20% train-test split. Then, on the training set,
we performed a hyperparameter search for the maximum tree depth, the maximum number
of features, and the minimum number of samples in the leaves. We did so using 5-fold cross-
validation. Then, we retrained the decision trees with the optimal hyperparameters on the
complete training sets and evaluated them on the independent test sets using the R2 metric. This
R2 metric measures the percentage of variance in the data explained by the model, with 1 being
the highest possible value. In addition, for each policy, we trained shallow decision trees with a
maximum depth of 4 using the best other hyperparameters, which were to allow all features and
have a minimum number of samples per leaf of 5. Table 8.1 shows the optimal hyperparameters
and evaluation scores of the trees for each policy. The full grid search results can be found in
Appendix D. We find that the best decision trees achieved high R2 scores between 0.85 and
0.96, while the shallow decision trees, despite their small sizes, still achieved reasonably good
R2 scores. Thus, the rules from the shallow decision trees can provide reasonable explanations
of the most important considerations in policy behavior. From the R2 values, we see that the
estimations of the node values for the fairness policy are worse than for the other policies, and,
oppositely, the R2 is best for the pure efficiency policy. This may be explained by the finding
that the aisle-embedding structure improved considerably over the feed-forward architecture
when fairness was involved compared to a small improvement for pure efficiency. Namely, the
decision trees can only consider the node values and cannot take into account any other nodes,
similar to the invariant feed-forward structure. Thus, they cannot capture the behavior based on
the aisle-embedding well. The fairness policies and multi-objective policies may utilize the aisle-
embedding structure more within their architecture, leading to worse decision tree estimations.

8.1.2 Decision Tree Interpretation

We will highlight a few shallow decision trees to indicate the insights that can be obtained.
First, Figure 8.2 shows the shallow decision tree of the pure performance policy. In this tree, we
find that this policy considers the distance of the controlled picker to the node very important,
as it is used in the first split, and, in general, rules higher in the tree are more important. We
find that nodes with a distance of less than 9.6 m, which is roughly two-thirds of an aisle in this
warehouse size, generally receive a higher value, as can be seen by comparing the values after

82

CHAPTER 8. POLICY ANALYSIS

Table 8.1: Overview of the hyperparameters of the best decision tree for each policy and the R2

scores for the best and the shallow decision trees.

Max. Nr. of Min. Samples R2 R2

Policy Max. Depth Features Leaf Nodes Tree-Best Tree-Shallow

1 25 All 25 0.85 0.56
2 25 All 25 0.87 0.69
3 50 All 50 0.84 0.70
4 50 All 25 0.87 0.71
5 50 All 25 0.88 0.68
6 25 All 10 0.92 0.69
Pure Performance 40 All 10 0.96 0.76
Pure Fairness 15 All 100 0.65 0.58

this split. However, distance is not the only consideration. Namely, we observe that other splits
in the tree use features such as the AMR destination distance, the distance of other pickers, and
the number of AMRs in the aisle. For example, the decision path toward the highest node value
considers multiple features. First, it considers if the distance from the picker is less than 9.6 m,
then it considers if the AMR destination distance is less than -5. This may seem strange, but we
must remember that this feature was set to -10 if no AMR is already going to the location. The
higher node values are given when the value is more than -5. So, if an AMR is currently going
to or is already at the location, the value is higher. Then, in the next step, the node value gets
better if the AMR that is going is closer than 6.8 m. In the last step, a check is done whether
the closest other picker is within 6.8 m, with the node value being better if the closest other
picker is further away. Thus, the best node values are given to nodes close to the picker with
an AMR that is going there and is already nearby the location, and with other pickers being
further away. These are sensible, understandable considerations that provide insights and trust
into the policy logic. Similarly, the lowest node values can be found in the path toward the
white box at the bottom left of the tree. This path considers nodes where no AMR is already
going, the closest other picker is nearby, and the number of pickers going to the aisle is high.
Again, these are sensible considerations that take into account multiple factors.

Figure 8.3 depicts the decision tree of the pure fairness policy. For this tree, similar analyses
can be made. We find that the main considered features in this tree are the total workload
for the picks of the AMRs that are waiting at a location, the maximum workload compared to
the mean, and the workload of the picker being allocated. On the right side of the tree, where
the workloads of the items to be picked for the waiting AMRs are higher, toward the bottom
of the tree, value splits are done based on the current picker workloads. We observe that in
these cases, when the picker workloads are lower, the node values are higher. This is sensible as
one wants pickers with a low experienced workload so far to perform heavy tasks to spare the
pickers with a high current workload. In general, the rules in this tree are less diverse and less
subjectively sensible than those for the pure performance policy. This could be related to the
lower estimation performance of the decision tree for fair policies we discussed.

We show the decision tree of multi-objective policy 2, one of the multi-objective policies steered
more toward fairness, in Figure 8.4. In this tree, the picker and AMR distances are still prevalent
over workload features such as the current picker workload. This is sensible since further pick
locations are less optimal when any degree of efficiency is desired. The right side of the decision
tree considers nodes that are further away from the picker. Here, we observe that if the picker
workloads are above a certain threshold, these further nodes get a higher node value. This can
indicate that the policy steers pickers to further away nodes when the current picker workload

83

CHAPTER 8. POLICY ANALYSIS

is high to get out of the current region of heavy products. However, the decision tree is not
sufficiently deep to verify this logic via additional features that consider the product workloads
at the nodes. This indicates one of the trade-offs of decision trees. On the one hand, shallow
trees are easier to understand and can help detect the most important patterns, while on the
other hand, they lack detailed information. The other shallow decision trees are available in
Appendix E. These showed a similar pattern in which the distance features are essential, as
they are present in the first few value splits.

84

C
H
A
P
T
E
R

8
.

P
O
L
IC

Y
A
N
A
L
Y
S
ISsamples = 9764

value = 2.19
samples = 10
value = -30.89

samples = 2986
value = 5.86

samples = 2225
value = 8.49

samples = 19004
value = 16.37

samples = 15707
value = 26.81

samples = 8579
value = 10.82

samples = 4942
value = 1.71

samples = 35194
value = 1.05

samples = 56374
value = 5.18

samples = 20141
value = 7.12

samples = 6241
value = 15.12

samples = 72247
value = -0.06

samples = 79982
value = 1.37

samples = 33556
value = 4.78

samples = 33048
value = 1.48

Number of pickers to aisle <= 5.5
value = 2.16

Distance of closest other
 picker destination <= 11.0

value = 6.98

Distance of closest other
 picker destination <= 6.8

value = 21.1
AMR destination distance <= 16.6

value = 7.49
Number of AMRs to aisle <= 0.5

value = 3.59
AMR location indicator <= 0.5

value = 9.01
Minimum distance two-step

 ahead AMR destination <= 1.2
value = 0.69

Distance from picker <= 39.0
value = 3.14

Distance of closest other
 picker destination <= 6.8

value = 3.84
AMR destination distance <= 6.8

value = 17.28
Distance of closest other
 picker destination <= 6.8

value = 4.8

Distance of closest other
 picker destination <= 5.8

value = 1.44

AMR destination distance <= -5.0
value = 14.09

Distance from picker <= 22.2
value = 2.62

Distance from picker <= 9.6
value = 4.43

Figure 8.2: Shallow decision tree for the pure performance policy. Decision paths must be read from top to bottom, with the left side indicating
that the condition is satisfied and the right side that it is not. Darker colors indicate high node values and lighter colors represent low node values.

samples = 262180
value = -0.45

samples = 94395
value = -0.87

samples = 8265
value = -1.45

samples = 4116
value = -2.24

samples = 8176
value = -1.29

samples = 6835
value = -1.62

samples = 4798
value = -2.47

samples = 399
value = -0.62

samples = 3065
value = -2.45

samples = 1579
value = -3.5

samples = 2306
value = -3.65

samples = 679
value = -5.09

samples = 1110
value = -4.81

samples = 339
value = -6.3

samples = 1357
value = -6.47

samples = 401
value = -8.34

Current picker workload <= 15.47
value = -0.56

Current picker workload <= 9.26
value = -1.71

Maximum workload <= 358.9
value = -1.44

Current picker workload <= 522.05
value = -2.33

Current picker workload <= 8.78
value = -2.81

Current picker workload <= 19.55
value = -3.97

Current picker workload <= 20.13
value = -5.16

Current picker workload <= 25.81
value = -6.89

Waiting AMR workload <= 98.5
value = -0.6

Maximum workload <= 505.85
value = -1.67

Waiting AMR workload <= 321.45
value = -3.27

Waiting AMR workload <= 582.75
value = -6.11

Maximum workload <= 264.52
value = -0.65

Waiting AMR workload <= 458.0
value = -4.11

Waiting AMR workload <= 218.65
value = -0.75

Figure 8.3: Shallow decision tree for the pure fairness policy. Decision paths must be read from top to bottom, with the left side indicating that
the condition is satisfied and the right side that it is not. Darker colors indicate high node values and lighter colors represent low node values.

85

C
H
A
P
T
E
R

8
.

P
O
L
IC

Y
A
N
A
L
Y
S
IS

samples = 49805
value = -0.24

samples = 67145
value = -0.15

samples = 75049
value = -0.3

samples = 3073
value = -0.67

samples = 65446
value = -0.36

samples = 5793
value = -0.47

samples = 38516
value = -0.44

samples = 4253
value = -0.55

samples = 25084
value = -0.53

samples = 3426
value = -0.65

samples = 20203
value = -0.66

samples = 1013
value = -0.41

samples = 31805
value = -0.81

samples = 1175
value = -0.43

samples = 7219
value = -1.04

samples = 995
value = -0.75

Minimum distance
 next AMR destination <= 0.5

value = -0.19
Current picker workload <= 67.87

value = -0.31
Second smallest distance

 next AMR destination <= 14.7
value = -0.37

Second smallest distance
 next AMR destination <= 14.7

value = -0.45

Second smallest distance
 next AMR destination <= 15.6

value = -0.55
Current picker workload <= 45.2

value = -0.65
Current picker workload <= 51.5

value = -0.79
Current picker workload <= 25.09

value = -1.01

Current picker workload <= 8.44
value = -0.24

Distance from picker <= 25.9
value = -0.4

Distance from picker <= 42.2
value = -0.59

AMR destination distance <= 31.5
value = -0.84

Distance from picker <= 18.9
value = -0.3

Distance from picker <= 52.5
value = -0.7

Distance from picker <= 33.4
value = -0.39

Figure 8.4: Shallow decision tree for multi-objective policy 2. Decision paths must be read from top to bottom, with the left side indicating that
the condition is satisfied and the right side that it is not. Darker colors indicate high node values and lighter colors represent low node values.

86

CHAPTER 8. POLICY ANALYSIS

8.1.3 Decision Tree Policy Analysis

Having trained the decision trees and shown how these can be used to extract the logic under-
lying the DRL policies, we evaluated the performance of the decision tree policies. To do so, we
ran each policy for 100 episodes on warehouse type S and collected the order completion times
and workload distributions. We did so for the shallow and best decision tree of each policy. We
compared these performances with those of the DRL policies.

Performance Evaluation

Table 8.2 and Figure 8.5 show the results of this experiment. In the figure, two patterns stand
out. First, the policies of the best trees perform very similarly to the DRL policies. Second,
the shallow trees have a significant drop in performance compared to the best trees and DRL
solutions. For the performance policy, we see that using the best decision tree policy only
increased the average total picking times from 8586 to 8785 seconds, a mere 2.3% performance
loss. Oppositely, the shallow decision tree achieved an average time of 10539 seconds, which is a
more significant loss. This performance is comparable with the VI benchmark and greedy policy
times of 10087 and 10619 seconds, respectively. Thus, this rough performance level seems to be
the approximate limit of relatively simple rule-based methods.

Table 8.2: Comparison of performance of DRL policies and their associated best and shallow
decision tree policies on warehouse type S. The picking time is the number of seconds to complete
an episode and the workload fairness is the standard deviation of the picker workloads. The ±
indicates the 95%-confidence interval.

Tree-Best Tree-Shallow DRL

Policy PT WF PT WF PT WF

1 16373± 139 41± 5 14409± 88 80± 6 15555± 125 41± 4
2 12347± 83 41± 4 12803± 76 60± 4 12431± 86 43± 4
3 9350± 65 81± 5 11378± 60 283± 17 9164± 60 66± 4
4 9505± 62 161± 10 10783± 51 276± 15 9188± 55 114± 8
5 9561± 77 197± 14 10781± 69 268± 13 9074± 60 118± 7
6 9480± 79 225± 12 10957± 69 320± 14 9149± 68 167± 9
Pure Performance 8785± 57 304± 21 10539± 68 284± 16 8586± 62 308± 17
Pure Fairness 19141± 110 173± 20 18873± 114 300± 14 19962± 86 61± 9

0 2500 5000 7500 10000 12500 15000 17500 20000
Picking Time (s)

0

100

200

300

400

500

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Best Tree
Shallow Tree
DRL
Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy

Figure 8.5: Performance evaluation of decision tree policies.

87

CHAPTER 8. POLICY ANALYSIS

For the multi-objective policies, we also find that the efficiency decreased by just a small margin.
Oppositely, for the multi-objective policies that lean toward good performance, the loss in
workload fairness is more considerable. We observe that, in the figure, the efficiency values are
very close, but the workload standard deviations are larger compared to the DRL policies that
the trees belong to. For example, the standard deviation of policy 5 increases from 118 to 197
kg and of policy 6 from 167 to 225 kg. This more significant decrease in fairness may be caused
by the trees not sufficiently capturing regional information to mimic the fairness considerations
of the DRL policies. For the multi-objective shallow tree policies, we see that the policy set
does not form a well-shaped trade-off front anymore. None of these policies achieved both good
efficiency and good fairness.

For pure fairness policies, the decrease in performance for the decision trees is greater than for
the multi-objective and pure efficiency-focused policies. We observed that the best decision tree
policy nearly tripled the workload standard deviation from 61 to 173 kg compared to DRL. The
shallow tree policy lost its fairness and did not achieve a better workload standard deviation
than the efficiency-focused policies.

In general, the multi-objective and pure performance policies of the best decision trees per-
formed well compared to the DRL policies. The efficiency was just slightly lower, and the
fairness decrease was reasonably low. Thus, they can provide an alternative for the DRL poli-
cies. Decision-makers can decide whether the increased transparency and having a fixed rule set
instead of the black box network outweigh this performance decrease.

Picker/AMR Transferability

The decision trees were trained using experiences sampled from small warehouse instances with
10 pickers and 25 AMRs. Therefore, their policies could mainly work well in those settings
and not when the instance parameters change. For the decision tree policies to form a suitable
alternative to the black box DRL policies, they must also transfer well to other settings. Hence,
we evaluated the picker/AMR transferability. To do so, we tested the performance of the policies
of the best decision trees on warehouse instances with picker/AMR numbers of 7/15, 10/30,
and 15/35.

Table 8.3 and Figures 8.6-8.8 present the outcomes of these runs. The figures show that the
shapes of the formed fronts by the policies are similar for all picker/AMR combinations. In
addition, the differences between the tree policies and DRL policies are similar. The tree policies
all showed just a small decrease in efficiency compared to the DRL policies. For each of the
scenarios, we find that the decision trees lack more in terms of fairness. For the larger numbers
of pickers and AMRs, these decays seem a bit more intense, as shown by the steeper deviation
between the fronts. However, the differences are not drastic. Therefore, we conclude that the
decision tree policies also transferred well to different crowdedness levels within the warehouses,
despite being learned from behavior in warehouses with fixed numbers of pickers and AMRs.

Warehouse Size Transferability

As the decision trees were only sampled from experiences in small warehouses, one can expect
the performance to decay when the decision tree policies are applied in larger warehouses.
Namely, the used rules were based on certain specific values for, for example, the distances,
while in larger warehouses, distances may have different scales and become larger. To validate
whether this is the case or whether the decision tree policies also scale well despite this training
procedure, we evaluated the policies on warehouse types M and L.

We present these results in Table 8.4 and Figures 8.9 and 8.10. Remarkably, the decision tree
policies transferred well to the larger warehouse types. Namely, the general shapes of the fronts
for these larger warehouses are on par with the fronts for the smaller warehouse size. What stands
out is the performance of the policies on the large warehouses of size L. For this warehouse size,

88

CHAPTER 8. POLICY ANALYSIS

0 5000 10000 15000 20000 25000
Picking Time (s)

0

50

100

150

200

250

300

350

400

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Best Tree
DRL
Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy

Figure 8.6: Performance evaluation of decision tree policies on warehouses with 7 pickers and
15 AMRs.

0 2500 5000 7500 10000 12500 15000 17500 20000
Picking Time (s)

0

50

100

150

200

250

300

350

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Best Tree
DRL
Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy

Figure 8.7: Performance evaluation of decision tree policies on warehouses with 10 pickers and
30 AMRs.

0 2000 4000 6000 8000 10000 12000 14000
Picking Time (s)

0

50

100

150

200

250

300

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Best Tree
DRL
Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy

Figure 8.8: Performance evaluation of decision tree policies on warehouses with 15 pickers and
35 AMRs.

89

CHAPTER 8. POLICY ANALYSIS

Table 8.3: Comparison of performance of DRL policies and the associated best decision tree
policies on warehouse type S with varying numbers of pickers and AMRs. The picking time
is the number of seconds to complete an episode and the workload fairness is the standard
deviation of the picker workloads. The ± indicates the 95%-confidence interval.

(a) 7 pickers and 15 AMRs.

Tree-Best DRL

Policy PT WF PT WF

1 23454± 219 36± 5 22659± 213 33± 4
2 17778± 122 37± 4 17921± 134 39± 4
3 13706± 87 85± 7 13402± 87 65± 4
4 13742± 85 167± 13 13443± 87 109± 8
5 13704± 93 195± 15 13281± 107 119± 10
6 13826± 83 213± 15 13345± 113 162± 12
Pure Performance 13087± 62 346± 24 12825± 83 347± 23
Pure Fairness 26551± 158 122± 18 27812± 115 51± 5

(b) 10 pickers and 30 AMRs.

Tree-Best DRL

Policy PT WF PT WF

1 16236± 135 44± 6 15117± 133 42± 4
2 12110± 82 38± 3 12191± 85 40± 3
3 9077± 69 91± 7 8765± 64 66± 5
4 9190± 65 165± 12 8850± 66 110± 7
5 9192± 81 193± 14 8684± 70 118± 8
6 9228± 78 228± 15 8795± 95 174± 13
Pure Performance 8367± 66 310± 20 8221± 54 308± 20
Pure Fairness 19103± 122 195± 17 19916± 104 92± 12

(c) 15 pickers and 35 AMRs.

Tree-Best DRL

Policy PT WF PT WF

1 10949± 95 45± 44 10369± 96 41± 3
2 8504± 62 41± 3 8603± 56 45± 3
3 6551± 46 100± 6 6469± 52 70± 4
4 6658± 45 177± 10 6482± 48 110± 6
5 6629± 53 200± 10 6394± 65 125± 6
6 6680± 46 217± 11 6474± 72 163± 11
Pure Performance 6032± 42 264± 17 5938± 35 282± 15
Pure Fairness 13305± 81 166± 15 13736± 73 106± 12

the decision tree approaches of multi-objective policies 1 and 2, which lean toward fairness,
and the pure fairness policy outperformed the equivalent DRL policies on both efficiency and
fairness. Thus, the fairness-focussed tree policies actually transferred better than the fairness-
focussed DRL policies. It may be that the aisle-embedding strength of the network weakens
slightly when the scale size of the aisle changes drastically. Then, the tree policies which used
node-wise information solely might start to do relatively well as they do not depend on the aisle

90

CHAPTER 8. POLICY ANALYSIS

aggregation. Oppositely, for the more efficiency-focused multi-objective policies, we find that
fairness is still clearly better for the DRL policies while achieving similar efficiency levels.

In general, the decision tree policies transferred well to changing warehouse sizes. Thus, the deci-
sion tree policies can achieve efficiency levels close to the DRL policies while reaching reasonable
fairness levels. They can be applied to varying warehouse sizes with different numbers of pickers
and AMRs. Hence, they offer a usable alternative to black box DRL policies. Decision makers
should decide whether the advantages of using a decision tree policy, such as interpretability,
simplicity, and robustness of the rules, outweigh the performance decrease. In any case, the
decision trees can gather insights into the internal considerations made by the DRL policies.

Table 8.4: Comparison of performance of DRL policies and the associated best decision tree
policies that were trained on warehouse type S on other warehouse types. The picking time
is the number of seconds to complete an episode and the workload fairness is the standard
deviation of the picker workloads. The ± indicates the 95%-confidence interval.

(a) Warehouse type M.

Tree-Best DRL

Policy PT WF PT WF

1 15432± 50 50± 4 15404± 100 51± 4
2 12997± 65 46± 3 13267± 63 54± 5
3 8629± 54 114± 8 8578± 69 69± 4
4 8868± 54 189± 10 8646± 49 114± 5
5 8718± 67 224± 10 8405± 50 122± 6
6 8820± 61 238± 12 8485± 63 182± 9
Pure Performance 8015± 41 309± 13 7931± 42 301± 12
Pure Fairness 20752± 116 138± 57 21565± 112 112± 11

(b) Warehouse type L.

Tree-Best DRL

Policy PT WF PT WF

1 13106± 82 50± 4 15913± 90 68± 7
2 12509± 59 49± 3 15146± 67 68± 7
3 6761± 44 155± 6 7302± 62 85± 6
4 7159± 195 195± 7 7340± 53 131± 6
5 7192± 51 216± 7 7249± 137 137± 6
6 7270± 44 230± 6 7087± 64 199± 8
Pure Performance 6986± 39 268± 18 6877± 31 248± 9
Pure Fairness 21382± 122 74± 5 22329± 56 80± 6

91

CHAPTER 8. POLICY ANALYSIS

0 5000 10000 15000 20000
Picking Time (s)

0

50

100

150

200

250

300

350

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Best Tree
DRL
Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy

Figure 8.9: Performance of decision tree policies trained on warehouse type S when evaluated
on warehouse type M.

0 5000 10000 15000 20000
Picking Time (s)

0

50

100

150

200

250

300

W
or

kl
oa

d
St

an
da

rd
 D

ev
ia

tio
n

(k
g)

Best Tree
DRL
Multi-Objective Policies
Pure Performance Policy
Pure Fairness Policy

Figure 8.10: Performance of decision tree policies trained on warehouse type S when evaluated
on warehouse type L.

8.2 Inspecting Policy Behavior

In addition to the decision tree analysis, we explored the behavior of the DRL policies compared
to the greedy method and the VI benchmark. To do so, we ran the pure performance policy of
size S, the greedy method, and the VI benchmark on the same problem instance of a warehouse
of type S with 15 pickers and 30 AMRs. Then, we created videos1 of the simulation for each of
these runs to visualize the behavior of the system. We used these visualizations to inspect how
the behavior in the warehouse differs and how this can be related to the performance difference.

The main observed difference between the policies in these videos is how the pickers and AMRs
are being spread through the warehouse. We find that the DRL policy managed to keep all pick-
ers and AMRs distributed over many aisles. Oppositely, the greedy controller and VI benchmark
method struggled to do so. In their runs, eventually, the entities got accumulated together into
a few aisles. These processes can be clearly illustrated by considering several timestamps within
the simulations. Figures 8.11, 8.12, and 8.13 illustrate these timestamps.

1cf. the following video links: https://youtu.be/LqF-8DEkXsg, https://youtu.be/wyIyajqqfjU, https://youtu.
be/HctW6a69XN8.

92

https://youtu.be/LqF-8DEkXsg
https://youtu.be/wyIyajqqfjU
https://youtu.be/HctW6a69XN8
https://youtu.be/HctW6a69XN8

CHAPTER 8. POLICY ANALYSIS

The first timestamp that we consider is after roughly 1000 seconds. At this moment, we observe
that the greedy solution has already accumulated all pickers and AMRs in just three aisles.
The VI benchmark keeps a better spread through the system. Most aisles still contain pickers
and AMRs. Thus, the VI benchmark managed to keep the entities in the warehouse distributed
longer. Similarly, the DRL optimizer maintained an even spread through the warehouse. After
2500 seconds, the distribution of agents over the aisles was still very balanced for the DRL
agent. The greedy policy, on the other hand, did not manage to escape the accumulation of
pickers and AMRs, and all were still close to each other. In addition, the VI benchmark also
started accumulating the process within a few aisles, although the distribution was spread more
than for the greedy policy. Lastly, after 5500 seconds, both the greedy policy and VI benchmark
accumulated all pickers and AMRs within a few aisles. Oppositely, the DRL policy, which is
near completion, still distributed all activity over many aisles.

Thus, the DRL policy managed to maintain a consistent spread of pickers and AMRs through
the warehouse, whereas the benchmark methods accumulated all activity within a few aisles,
after which they could not escape this accumulation. This explains the performance difference
for two main reasons. First, having a more even spread over the warehouse prevents congestion.
With many AMRs in the same aisle, many overtaking maneuvers must be performed, which
can significantly slow down the movement process. Second, with many pickers and AMRs close
to each other, pickers pick items for AMRs that other pickers can easily and efficiently pick.
Thus, each picker is used less efficiently than when each picker takes care of an independent set
of AMRs in a more spread-out system.

Lastly, when inspecting the simulations for a more extended time, we can also observe that in
the VI benchmark run, the pickers seem to be staying within the same region for longer than
in the other runs. This may cause the relatively high workload standard deviation of the VI
benchmark. Namely, pickers continue to pick in regions with the same products for longer, and
thus, when one region contains multiple light products and the other many heavy products, the
workloads are not balanced well, and the fairness decreases.

93

CHAPTER 8. POLICY ANALYSIS

(a) 0 seconds.

(b) 1000 seconds.

(c) 2500 seconds.

(d) 5500 seconds.

Figure 8.11: Snapshots of the policy visualization of the greedy policy.

94

CHAPTER 8. POLICY ANALYSIS

(a) 0 seconds.

(b) 1000 seconds.

(c) 2500 seconds.

(d) 5500 seconds.

Figure 8.12: Snapshots of the policy visualization of the VI benchmark policy.

95

CHAPTER 8. POLICY ANALYSIS

(a) 0 seconds.

(b) 1000 seconds.

(c) 2500 seconds.

(d) 5500 seconds.

Figure 8.13: Snapshots of the policy visualization of the DRL policy.

96

Chapter 9

Conclusions and Recommendations

In this study, we answered how to solve the problem of sequentially allocating pickers to orders in
a collaborative order picking system with performance considerations in terms of pick efficiency
and workload fairness.

We proposed a novel DRL approach to create a picker allocation optimizer. We used multi-
objective learning to include efficiency and workload fairness objectives. To this end, we outlined
the state-of-the-art multi-objective DRL methods. In addition, we explored how fairness is
incorporated into optimization problems and which workload metrics are feasible. Based on
these results and in consultation with business stakeholders, we used the total completion time
of a series of pickruns as the efficiency objective and the standard deviation of lifted masses by
the human pickers as the workload fairness metric.

To create our DRL approach, we use a graph structure that represents warehouses with node
features to describe the current state of the system. The DRL policy receives requests from
pickers to be allocated and assigns pickers to new destinations to fulfill a pick. We defined our
actor architectures by combining neural networks with warehouse domain knowledge. Namely,
we introduced the principles of aisle-embeddings and feature separation in our architecture. To
train our agents, we adopted the PPO and PGMORL learning algorithms.

For training and evaluation of our approach, we developed a discrete-event simulation model of
the collaborative picking process. We included uncertainty, congestion, and real product data
to mimic the complexity of real-world processes. Consequently, we performed elaborate exper-
iments. First, we tested which efficiency levels our approach could reach without considering
fairness, and then we evaluated how efficiency and workload fairness can be balanced. Our
method provided multiple policies that outline the potential trade-offs between efficiency and
fairness. Lastly, we analyzed the designed policies using a decision tree analysis and visualizing
the system behavior.

9.1 Main Findings

Our study showed that our DRL approach could learn good policies to allocate pickers to new
orders in a collaborative picking system. We found significant efficiency and workload fairness
improvements over the benchmark methods Vanderlande currently uses.

First, DRL policies focussing purely on efficiency consistently achieved improved order comple-
tion times over the benchmark policies. For large warehouse instances with 35 aisles and 2800
pick locations, our method achieved efficiency improvements of up to 40% over the method that
Vanderlande currently considers, while for smaller warehouses, the improvements were generally
over 20%. The learned policies adapted well to changing numbers of pickers and AMRs in the
warehouses, as well as warehouses with different sizes and product locations. Thus, the policies

97

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

can be generally applied and do not need to be retrained or adjusted for each change in ware-
house layouts or product distribution, greatly improving the practical value. Our approach can
be applied not only to increase the pick capacities of warehouses but also to reduce costs. For
example, for the large warehouse instances, our DRL approach could achieve similar efficiency
using 50 pickers and 120 AMRs as the current Vanderlande method did with 80 pickers and
220 AMRs. This is an almost 40% decrease in human pickers and 45% in AMRs. Considering
just the saved human pickers in a single warehouse, which runs for 16 hours a day at an hourly
tariff of e15, would mean cost savings of e7200 per day. If this warehouse operates 350 days
a year, this would already amount to e2,520,000 of savings. These calculations are crude, but
they highlight the potential benefits of our method. From visual inspection, we found that our
methods keep a better spread of pickers through the warehouse than the benchmark methods,
preventing congestion and making more efficient use of the resources.

Aside from efficiency, we showed that our multi-objective DRL method could achieve policies
that balance fairness and efficiency well. We showed that we can find sets of policies that out-
line the trade-offs between the two considerations. Through this method, we provide insights to
decision-makers regarding the possibilities such that they can make informed decisions about
which policy they desire to use. These policy sets showed that we could significantly improve
workload fairness while only sacrificing limited efficiency performance. Thus, although the ob-
jectives seem highly conflicting at first glance, the DRL solutions successfully mitigate the
conflicts between the objectives. The policies can achieve efficient allocations for pickers while
correcting the behavior when picker workloads become more variable. As a result, the policy
sets all contained multiple policies that increased both efficiency and workload fairness com-
pared to the benchmark methods. For instance, on the large warehouses, we found a policy that
improved the total picking times by 23.6% compared to the current method by Vanderlande
while simultaneously reducing the workload standard deviation by 92%. The multi-objective
policies also transferred well to warehouses with different pickers and AMR numbers. Similarly,
in general, the policies adapted sufficiently well to varying warehouse sizes, although for large
differences in scale, the policies scaled less easily than the single-objective policies. Overall, the
multi-objective policies offer suitable methods that can be applied in practice.

Lastly, we evaluated how to create more understandable policies using decision trees extracted
from the DRL policies. We found that deeper decision tree policies concede a small efficiency
loss and a slightly bigger fairness loss compared to the DRL policies. On the other hand, they
are more interpretable and provide insights into a guaranteed, fixed set of rules that are applied.
Thus, they offer a suitable alternative if black box policies are undesired.

In short, our DRL method can generate picker allocation policies to allocate pickers to pick
locations in a collaborative order picking system. These policies can be applied in warehouses
with uncertainty and disturbances. In addition, they can handle changing warehouse sizes and
numbers of pickers and AMRs well. We can generate policies that significantly outperform the
benchmark methods in efficiency and fairness. Moreover, using our multi-objective approach,
we can provide policy sets that outline the trade-offs between the two such that decision-makers
can make informed decisions on which policy to use based on their preferences.

9.2 Business Recommendations

We recommend that Vanderlande integrates DRL policies in their collaborative order picking
concept. To do so, the DRL picker allocation policies should be considered as one of the core
considerations of the collaborative picking concept. As Vanderlande is in the process of further
developing the collaborative order picking solutions, they should consider incorporating our
method sooner rather than later.

Namely, during the concept development phase that they are in, they still have many oppor-

98

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

tunities to integrate our policies into their pilot tests. This allows them to consider the setup
of the hardware and software requirements of the DRL policies as an integral part of the con-
cept development. The main barrier to implementing DRL policies is often transferring the
simulation-based policies to real-world systems and evaluating the performance within those
systems. By integrating the DRL solution from scratch, Vanderlande can manage this process
well. We advise them to consider a pilot test of the collaborative picking system, which includes
our method.

In addition, we suggest collaborating with customers to further clarify their needs and expand
the alignment of the DRL policies with those needs. For instance, we suggest collaborating with
customers to define relevant workload metrics. We showed the capabilities of our method using
a relatively generic workload measure. By incorporating metrics that consider multiple factors,
picker welfare can be improved more and more. In addition, using extensive product and order
data, as well as warehouse information, can help to fine-tune the DRL policies to get the best
possible results

Our overarching message to Vanderlande is to start working toward the practical implementation
of our concept in a timely manner. In this study, we showed that the approach has much
potential to provide significant efficiency and fairness improvements over existing approaches.
The relevant real-world considerations, barriers, and chances can be understood and managed
only by starting the development toward real-world implementation. In addition, it allows them
to set up a workflow to bring DRL solutions into practice. By doing so, Vanderlande can start its
journey toward successful integration of DRL approaches in real-time decision-making, paving
the way for many more applications to follow.

9.3 Limitations and Future Research

One of the main limitations of our method is the dependence on the used simulation model.
As we did not have extensive data for many days in various warehouses, we could not incor-
porate real-world problem instances. In addition, it was challenging to incorporate real-world
disturbance scenarios as data for this was unavailable. We did use real-world product data and
assumptions from domain experts to increase trust in the results as much as possible. However,
it remains an estimation. As policies were trained and evaluated on the simulation instances,
the exact performance improvement numbers may vary in real warehouses. However, with the
large performance improvements we found, we can still be confident that the policies can achieve
good results in real-life warehouses.

In addition, some of the features that we used incorporate estimated times. If these estimated
times are too far from the real-world warehouse parameters, this may skew the results. However,
these features can be adapted with relative ease to either newly sampled estimates or more
robust values, such as distances instead of expected travel times. Hence, we do not expect this
to affect the applicability in practice a lot.

We identified several lines of future research to expand on our study. Firstly, related to the above
limitations, we suggest applied research into transferring DRL policies to real-world applications.
There is a lack of established frameworks to steer such processes. Researchers and companies
like Vanderlande can collaborate on implementing DRL methods to understand the chances and
obstacles in these transitions. By establishing general principles or frameworks for such studies,
the adoption of DRL in practice can be considerably improved.

Secondly, future studies can extend the scope of DRL methods in collaborative picking. Besides
picker allocation, many other factors influence the performance, such as order batching and
the release process of AMR pickruns. Future works could focus on integrating these decisions
into the solution methodology. For example, cooperative multi-agent DRL could be used, with
one agent being the picker optimizer and the other handling the releasing strategy. In addition,

99

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

more objectives, such as minimizing order tardiness, can be incorporated into the multi-objective
framework.

Thirdly, additional research can be done into modeling warehouses using different graph struc-
tures. As we saw, message passing networks did not work well on the graph structure that we
used. We overcame this by proposing a new neural network architecture. Instead, other research
streams could focus on developing warehouse graph structures that fit better with message pass-
ing networks. In addition, more neural network architectures that may be capable of capturing
long-range dependencies can be explored. This is an active research field in which, for exam-
ple, the hierarchical graph neural network (Rampasek & Wolf, 2021) has been shown to better
capture long-term dependencies in graphs with few node features. Further developments in this
field may be valuable for large warehouse graphs.

Fourthly, different learning algorithms may be explored. With further advancement of the multi-
objective DRL research fields, better and more efficient algorithms may become available. In-
stead of model-free methods, model-based DRL algorithms can be studied and applied to col-
laborative picking problems. If model-based algorithms perform well, integrating model-based
DRL with multi-objective DRL offers possibilities for future works.

As a final remark, we hope our study stimulates research into the integration between fair-
ness and performance in the optimization domain. In operations management, there are many
systems in which humans are crucial for performance. This should not be disregarded when op-
timizing these systems. Applying methods such as multi-objective DRL or other multi-objective
optimization techniques to actively balance performance and fairness, and to outline their trade-
offs has received little attention. This research stream provides a vast range of opportunities,
and we hope that future research will be done to not only make operations more efficient but
also improve the human experiences within these systems.

100

Bibliography

Abdelfattah, S., Merrick, K., & Hu, J. (2021). Intrinsically motivated hierarchical policy learn-
ing in multiobjective markov decision processes. IEEE Transactions on Cognitive and
Developmental Systems, 13, 262–273. https://doi.org/10.1109/TCDS.2019.2948025

Abdolmaleki, A., Huang, S., Hasenclever, L., Neunert, M., Song, F., Zambelli, M., Martins, M.,
Heess, N., Hadsell, R., & Riedmiller, M. (2020). A distributional view on multi-objective
policy optimization. In H. D. III & A. Singh (Eds.). PMLR. https://proceedings.mlr.
press/v119/abdolmaleki20a.html

Abels, A., Roijers, D., Lenaerts, T., Nowé, A., & Steckelmacher, D. (2019). Dynamic weights
in multi-objective deep reinforcement learning. In K. Chaudhuri & R. Salakhutdinov
(Eds.). PMLR. https://proceedings.mlr.press/v97/abels19a.html

Alabi, D., Immorlica, N., & Kalai, A. (2018). Unleashing linear optimizers for group-fair learning
and optimization. In S. Bubeck, V. Perchet, & P. Rigollet (Eds.). PMLR. https : //
proceedings.mlr.press/v75/alabi18a.html

Alomrani, M. A., Moravej, R., & Khalil, E. B. (2021). Deep policies for online bipartite matching:
A reinforcement learning approach. https://doi.org/10.48550/arxiv.2109.10380

Amaldi, E., Capone, A., Coniglio, S., & Gianoli, L. G. (2013). Network optimization problems
subject to max-min fair flow allocation. IEEE Communications Letters, 17, 1463–1466.
https://doi.org/10.1109/LCOMM.2013.060513.130351

Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin,
J., Abbeel, P., & Zaremba, W. (2017). Hindsight experience replay. NIPS, 5055–5065.
http://papers.nips.cc/paper/7090-hindsight-experience-replay

Arribas, E., Mancuso, V., & Cholvi, V. (2019). Fair cellular throughput optimization with the
aid of coordinated drones. IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 295–300. https : //doi . org/10 .
1109/INFCOMW.2019.8845248

Arribas, E., Mancuso, V., & Cholvi, V. (2022). Fair throughput optimization with a dynamic
network of drone relays. http://arxiv.org/abs/2207.04955

Azadeh, K., Koster, R. D., & Roy, D. (2019). Robotized and automated warehouse systems:
Review and recent developments. Transportation Science, 53, 917–945. https://doi.org/
10.1287/trsc.2018.0873

Azadeh, K., Roy, D., & Koster, M. B. M. D. (2020). Dynamic human-robot collaborative picking
strategies. Available at SSRN 3585396.

Bacciu, D., Errica, F., Micheli, A., & Podda, M. (2020). A gentle introduction to deep learning
for graphs. Neural Networks, 129, 203–221. https://doi.org/10.1016/j.neunet.2020.06.
006

Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness and machine learning. fairmlbook.org.
http://www.fairmlbook.org

Beeks, M., Afshar, R. R., Zhang, Y., Dijkman, R., Dorst, C. V., & Looijer, S. D. (2022). Deep
reinforcement learning for a multi-objective online order batching problem. Proceedings

101

https://doi.org/10.1109/TCDS.2019.2948025
https://proceedings.mlr.press/v119/abdolmaleki20a.html
https://proceedings.mlr.press/v119/abdolmaleki20a.html
https://proceedings.mlr.press/v97/abels19a.html
https://proceedings.mlr.press/v75/alabi18a.html
https://proceedings.mlr.press/v75/alabi18a.html
https://doi.org/10.48550/arxiv.2109.10380
https://doi.org/10.1109/LCOMM.2013.060513.130351
http://papers.nips.cc/paper/7090-hindsight-experience-replay
https://doi.org/10.1109/INFCOMW.2019.8845248
https://doi.org/10.1109/INFCOMW.2019.8845248
http://arxiv.org/abs/2207.04955
https://doi.org/10.1287/trsc.2018.0873
https://doi.org/10.1287/trsc.2018.0873
https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neunet.2020.06.006
http://www.fairmlbook.org

BIBLIOGRAPHY

of the International Conference on Automated Planning and Scheduling, 32, 435–443.
https://doi.org/10.1609/icaps.v32i1.19829

Bertin, R., Hunold, S., Legrand, A., & Touati, C. (2014). Fair scheduling of bag-of-tasks appli-
cations using distributed lagrangian optimization. Journal of Parallel and Distributed
Computing, 74, 1914–1929. https://doi.org/10.1016/j.jpdc.2013.08.011

Borg, G. (1982). A category scale with ratio properties for intermodal and interindividual com-
parisons. Psychophysical judgment and the process of perception, 25–34.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba,
W. (2016). Openai gym. http://arxiv.org/abs/1606.01540

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V.,
Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt,
B., & Varoquaux, G. (2013). API design for machine learning software: Experiences
from the scikit-learn project. ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, 108–122.

Busa-Fekete, R., Szörényi, B., Weng, P., & Mannor, S. (2017). Multi-objective bandits: Opti-
mizing the generalized gini index. In D. Precup & Y. W. Teh (Eds.). PMLR. https:
//proceedings.mlr.press/v70/busa-fekete17a.html

Canese, L., Cardarilli, G. C., Nunzio, L. D., Fazzolari, R., Giardino, D., Re, M., & Spanò,
S. (2021). Multi-agent reinforcement learning: A review of challenges and applications.
Applied Sciences, 11, 4948. https://doi.org/10.3390/app11114948

Caputo, A. C., & Pelagagge, P. M. (2006). Management criteria of automated order picking
systems in high-rotation high-volume distribution centers. Industrial Management &
Data Systems, 106, 1359–1383. https://doi.org/10.1108/02635570610712627

Chen, D., Qi, Q., Zhuang, Z., Wang, J., Liao, J., & Han, Z. (2021). Mean field deep reinforcement
learning for fair and efficient uav control. IEEE Internet of Things Journal, 8, 813–828.
https://doi.org/10.1109/JIOT.2020.3008299

Chen, X., Ghadirzadeh, A., Bjorkman, M., & Jensfelt, P. (2019). Meta-learning for multi-
objective reinforcement learning. 2019 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 977–983. https://doi.org/10.1109/IROS40897.2019.
8968092

Clausen, A., Umair, A., Demazeau, Y., & Jørgensen, B. N. (2020). Impact of social welfare
metrics on energy allocation in multi-objective optimization. Energies, 13, 2961. https:
//doi.org/10.3390/en13112961

Corbett-Davies, S., & Goel, S. (2018). The measure and mismeasure of fairness: A critical review
of fair machine learning. https://doi.org/10.48550/arxiv.1808.00023

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science,
6, 80–91. https://doi.org/10.1287/mnsc.6.1.80

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. https://dask.org
Dely, P., D’Andreagiovanni, F., & Kassler, A. (2015). Fair optimization of mesh-connected

wlan hotspots. Wireless Communications and Mobile Computing, 15, 924–946. https:
//doi.org/10.1002/wcm.2393

Devarajan, R., Jha, S. C., Phuyal, U., & Bhargava, V. K. (2012). Energy-aware resource al-
location for cooperative cellular network using multi-objective optimization approach.
IEEE Transactions on Wireless Communications, 11, 1797–1807. https://doi.org/10.
1109/TWC.2012.030512.110895

Diao, X., Zheng, J., Cai, Y., Wu, Y., & Anpalagan, A. (2019). Fair data allocation and trajectory
optimization for uav-assisted mobile edge computing. IEEE Communications Letters, 23,
2357–2361. https://doi.org/10.1109/LCOMM.2019.2943461

Ding, R., Gao, F., & Shen, X. S. (2020). 3d uav trajectory design and frequency band allocation
for energy-efficient and fair communication: A deep reinforcement learning approach.

102

https://doi.org/10.1609/icaps.v32i1.19829
https://doi.org/10.1016/j.jpdc.2013.08.011
http://arxiv.org/abs/1606.01540
https://proceedings.mlr.press/v70/busa-fekete17a.html
https://proceedings.mlr.press/v70/busa-fekete17a.html
https://doi.org/10.3390/app11114948
https://doi.org/10.1108/02635570610712627
https://doi.org/10.1109/JIOT.2020.3008299
https://doi.org/10.1109/IROS40897.2019.8968092
https://doi.org/10.1109/IROS40897.2019.8968092
https://doi.org/10.3390/en13112961
https://doi.org/10.3390/en13112961
https://doi.org/10.48550/arxiv.1808.00023
https://doi.org/10.1287/mnsc.6.1.80
https://dask.org
https://doi.org/10.1002/wcm.2393
https://doi.org/10.1002/wcm.2393
https://doi.org/10.1109/TWC.2012.030512.110895
https://doi.org/10.1109/TWC.2012.030512.110895
https://doi.org/10.1109/LCOMM.2019.2943461

BIBLIOGRAPHY

IEEE Transactions on Wireless Communications, 19, 7796–7809. https://doi.org/10.
1109/TWC.2020.3016024

Doi, T., Nishi, T., & Voß, S. (2018). Two-level decomposition-based matheuristic for airline crew
rostering problems with fair working time. European Journal of Operational Research,
267, 428–438. https://doi.org/10.1016/j.ejor.2017.11.046

Dornheim, J. (2022). Gtlo: A generalized and non-linear multi-objective deep reinforcement
learning approach. https://doi.org/10.48550/arxiv.2204.04988

Dukic, G., & Oluic, C. (2007). Order-picking methods: Improving order-picking efficiency. In-
ternational Journal of Logistics Systems and Management, 3, 451. https://doi.org/10.
1504/IJLSM.2007.013214

Escoffier, B., Gourvès, L., & Monnot, J. (2013). Fair solutions for some multiagent optimization
problems. Autonomous Agents and Multi-Agent Systems, 26, 184–201. https://doi.org/
10.1007/s10458-011-9188-z

Fan, Z., Peng, N., Tian, M., & Fain, B. (2022). Welfare and fairness in multi-objective rein-
forcement learning. http://arxiv.org/abs/2212.01382

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with pytorch geometric.
http://arxiv.org/abs/1903.02428

Gajane, P., & Pechenizkiy, M. (2017). On formalizing fairness in prediction with machine learn-
ing. https://doi.org/10.48550/arxiv.1710.03184

Gajane, P., Saxena, A., Tavakol, M., Fletcher, G., & Pechenizkiy, M. (2022). Survey on fair
reinforcement learning: Theory and practice. https://doi.org/10.48550/arxiv.2205.10032

Gaǰsek, B., Šinko, S., Kramberger, T., Butlewski, M., Özceylan, E., & Dukić, G. (2021). Towards
productive and ergonomic order picking: Multi-objective modeling approach. Applied
Sciences, 11, 4179. https://doi.org/10.3390/app11094179

Garg, A., Chaffin, D. B., & Herrin, G. D. (1978). Prediction of metabolic rates for manual
materials handling jobs. American Industrial Hygiene Association Journal, 39, 661–674.
https://doi.org/10.1080/0002889778507831

Ghelichi, Z., & Kilaru, S. (2021). Analytical models for collaborative autonomous mobile robot
solutions in fulfillment centers. Applied Mathematical Modelling, 91, 438–457. https :
//doi.org/10.1016/j.apm.2020.09.059

Gong, H., & Guo, C. (2023). Influence maximization considering fairness: A multi-objective
optimization approach with prior knowledge. Expert Systems with Applications, 214,
119138. https://doi.org/10.1016/j.eswa.2022.119138

Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for robotic ma-
nipulation with asynchronous off-policy updates. 2017 IEEE International Conference
on Robotics and Automation (ICRA), 3389–3396. https://doi.org/10.1109/ICRA.2017.
7989385

Guo, X., Xu, Z., Zhang, J., Lu, J., & Zhang, H. (2020). An od flow clustering method based on
vector constraints: A case study for beijing taxi origin-destination data. ISPRS Inter-
national Journal of Geo-Information, 9, 128. https://doi.org/10.3390/ijgi9020128

Gurobi Optimization, LLC. (2023). Gurobi Optimizer Reference Manual. https://www.gurobi.
com

Harks, T. (2005). Utility proportional fair bandwidth allocation: An optimization oriented ap-
proach. In M. A. Marsan, G. Bianchi, M. Listanti, & M. Meo (Eds.). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-540-30573-6 5

Hasselt, H. V., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double q-
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30. https://doi.
org/10.1609/aaai.v30i1.10295

Hayes, C. F., Rădulescu, R., Bargiacchi, E., Källström, J., Macfarlane, M., Reymond, M., Ver-
straeten, T., Zintgraf, L. M., Dazeley, R., Heintz, F., Howley, E., Irissappane, A. A.,
Mannion, P., Nowé, A., Ramos, G., Restelli, M., Vamplew, P., & Roijers, D. M. (2022).

103

https://doi.org/10.1109/TWC.2020.3016024
https://doi.org/10.1109/TWC.2020.3016024
https://doi.org/10.1016/j.ejor.2017.11.046
https://doi.org/10.48550/arxiv.2204.04988
https://doi.org/10.1504/IJLSM.2007.013214
https://doi.org/10.1504/IJLSM.2007.013214
https://doi.org/10.1007/s10458-011-9188-z
https://doi.org/10.1007/s10458-011-9188-z
http://arxiv.org/abs/2212.01382
http://arxiv.org/abs/1903.02428
https://doi.org/10.48550/arxiv.1710.03184
https://doi.org/10.48550/arxiv.2205.10032
https://doi.org/10.3390/app11094179
https://doi.org/10.1080/0002889778507831
https://doi.org/10.1016/j.apm.2020.09.059
https://doi.org/10.1016/j.apm.2020.09.059
https://doi.org/10.1016/j.eswa.2022.119138
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.3390/ijgi9020128
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1007/978-3-540-30573-6_5
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1609/aaai.v30i1.10295

BIBLIOGRAPHY

A practical guide to multi-objective reinforcement learning and planning. Autonomous
Agents and Multi-Agent Systems, 36, 26. https://doi.org/10.1007/s10458-022-09552-y

Heess, N., Hunt, J. J., Lillicrap, T. P., & Silver, D. (2015). Memory-based control with recurrent
neural networks. https://doi.org/10.48550/arxiv.1512.04455

Hignett, S., & McAtamney, L. (2000). Rapid entire body assessment (reba). Applied Ergonomics,
31, 201–205. https://doi.org/10.1016/S0003-6870(99)00039-3

Holler, J., Vuorio, R., Qin, Z., Tang, X., Jiao, Y., Jin, T., Singh, S., Wang, C., & Ye, J. (2019).
Deep reinforcement learning for multi-driver vehicle dispatching and repositioning prob-
lem. http://arxiv.org/abs/1911.11260

Hoßfeld, T., Skorin-Kapov, L., Heegaard, P. E., & Varela, M. (2017). Definition of qoe fairness
in shared systems. IEEE Communications Letters, 21, 184–187. https://doi.org/10.
1109/LCOMM.2016.2616342

Hu, C., Zhu, Z., Wang, L., Zhu, C., & Yang, Y. (2022). An improved multi-objective deep
reinforcement learning algorithm based on envelope update. Electronics, 11, 2479. https:
//doi.org/10.3390/electronics11162479

Ishida, T., Ueda, K., & Yakoh, T. (2006). Fairness and utilization in multipath network flow op-
timization. 2006 IEEE International Conference on Industrial Informatics, 1096–1101.
https://doi.org/10.1109/INDIN.2006.275770

Issabekov, R., & Vamplew, P. (2012). An empirical comparison of two common multiobjective
reinforcement learning algorithms. In M. Thielscher & D. Zhang (Eds.). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-35101-3 53

Jagtenberg, C., & Mason, A. (2020). Improving fairness in ambulance planning by time sharing.
European Journal of Operational Research, 280, 1095–1107. https://doi.org/10.1016/j.
ejor.2019.08.003

Jain, R. K., Chiu, D.-M. W., Hawe, W. R., et al. (1984). A quantitative measure of fairness and
discrimination. Eastern Research Laboratory, Digital Equipment Corporation, Hudson,
MA, 21.

Jiang, J., & Lu, Z. (2019). Learning fairness in multi-agent systems. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d Alché-Buc, E. Fox, & R. Garnett (Eds.). Curran Associates, Inc.
https://dl.acm.org/doi/10.5555/3454287.3455528

Jiang, Y., Hu, Z., Liu, Z., & Zhang, H. (2023). Optimization of multi-objective airport gate as-
signment problem: Considering fairness between airlines. Transportmetrica B: Transport
Dynamics, 11, 196–210. https://doi.org/10.1080/21680566.2022.2056542

Jiao, Y., Tang, X., Qin, Z. T., Li, S., Zhang, F., Zhu, H., & Ye, J. (2020). A deep value-
based policy search approach for real-world vehicle repositioning on mobility-on-demand
platforms. NeurIPS 2020 Deep Reinforcement Learning Workshop.

Jin, J., Zhou, M., Zhang, W., Li, M., Guo, Z., Qin, Z., Jiao, Y., Tang, X., Wang, C., Wang, J.,
Wu, G., & Ye, J. (2019). Coride: Joint order dispatching and fleet management for multi-
scale ride-hailing platforms. Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, 1983–1992. https://doi.org/10.1145/3357384.
3357978

Karhu, O., Kansi, P., & Kuorinka, I. (1977). Correcting working postures in industry: A practical
method for analysis. Applied Ergonomics, 8, 199–201. https://doi.org/10.1016/0003-
6870(77)90164-8

Karp, R. M., Vazirani, U. V., & Vazirani, V. V. (1990). An optimal algorithm for on-line
bipartite matching. Proceedings of the twenty-second annual ACM symposium on Theory
of computing - STOC ’90, 352–358. https://doi.org/10.1145/100216.100262

Kermany, N. R., Zhao, W., Yang, J., Wu, J., & Pizzato, L. (2020). An ethical multi-stakeholder
recommender system based on evolutionary multi-objective optimization. 2020 IEEE
International Conference on Services Computing (SCC), 478–480. https://doi.org/10.
1109/SCC49832.2020.00074

104

https://doi.org/10.1007/s10458-022-09552-y
https://doi.org/10.48550/arxiv.1512.04455
https://doi.org/10.1016/S0003-6870(99)00039-3
http://arxiv.org/abs/1911.11260
https://doi.org/10.1109/LCOMM.2016.2616342
https://doi.org/10.1109/LCOMM.2016.2616342
https://doi.org/10.3390/electronics11162479
https://doi.org/10.3390/electronics11162479
https://doi.org/10.1109/INDIN.2006.275770
https://doi.org/10.1007/978-3-642-35101-3_53
https://doi.org/10.1016/j.ejor.2019.08.003
https://doi.org/10.1016/j.ejor.2019.08.003
https://dl.acm.org/doi/10.5555/3454287.3455528
https://doi.org/10.1080/21680566.2022.2056542
https://doi.org/10.1145/3357384.3357978
https://doi.org/10.1145/3357384.3357978
https://doi.org/10.1016/0003-6870(77)90164-8
https://doi.org/10.1016/0003-6870(77)90164-8
https://doi.org/10.1145/100216.100262
https://doi.org/10.1109/SCC49832.2020.00074
https://doi.org/10.1109/SCC49832.2020.00074

BIBLIOGRAPHY

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. http://arxiv.
org/abs/1412.6980

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. http://arxiv.org/abs/1609.02907

Kleinberg, J., Rabani, Y., & Tardos, É. (2001). Fairness in routing and load balancing. Journal
of Computer and System Sciences, 63, 2–20. https://doi.org/10.1006/jcss.2001.1752

Koppen, M., Verschae, R., Yoshida, K., & Tsuru, M. (2010). Comparison of evolutionary multi-
objective optimization algorithms for the utilization of fairness in network control. 2010
IEEE International Conference on Systems, Man and Cybernetics, 2647–2655. https:
//doi.org/10.1109/ICSMC.2010.5641898

Kuai, Z., Wang, T., & Wang, S. (2022). Fair virtual network function mapping and scheduling
using proximal policy optimization. IEEE Transactions on Communications, 70, 7434–
7445. https://doi.org/10.1109/TCOMM.2022.3211071

Larco, J. A., de Koster, R., Roodbergen, K. J., & Dul, J. (2017). Managing warehouse efficiency
and worker discomfort through enhanced storage assignment decisions. International
Journal of Production Research, 55, 6407–6422. https://doi.org/10.1080/00207543.
2016.1165880

Law, A. M. (2015). Simulation modeling and analysis (5th International ed). Mcgraw-Hill.
Lee, H.-Y., & Murray, C. C. (2019). Robotics in order picking: Evaluating warehouse layouts for

pick, place, and transport vehicle routing systems. International Journal of Production
Research, 57, 5821–5841. https://doi.org/10.1080/00207543.2018.1552031

Li, C., Ma, X., Xia, L., Zhao, Q., & Yang, J. (2020). Fairness control of traffic light via deep re-
inforcement learning. 2020 IEEE 16th International Conference on Automation Science
and Engineering (CASE), 652–658. https://doi.org/10.1109/CASE48305.2020.9216899

Li, F., Jun, W., Tan, Wentong, & Cai. (2022). Multi-objective optimization of clustering-based
scheduling for multi-workflow on clouds considering fairness. http://arxiv.org/abs/2205.
11173

Li, K., Zhang, T., & Wang, R. (2021). Deep reinforcement learning for multiobjective opti-
mization. IEEE Transactions on Cybernetics, 51, 3103–3114. https://doi.org/10.1109/
TCYB.2020.2977661

Li, Z., Dong, C., Li, A., & Wang, H. (2016). Traffic offloading from lte-u to wifi: A multi-
objective optimization approach. 2016 IEEE International Conference on Communica-
tion Systems (ICCS), 1–5. https://doi.org/10.1109/ICCS.2016.7833622

Li, Z., Xie, C., Peng, P., Gao, X., & Wan, Q. (2021). Multi-objective location-scale optimization
model and solution methods for large-scale emergency rescue resources. Environmental
Science and Pollution Research. https://doi.org/10.1007/s11356-021-12753-9

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D.
(2015). Continuous control with deep reinforcement learning. https://doi.org/10.48550/
arxiv.1509.02971

Limmer, S., & Dietrich, M. (2018). Optimization of dynamic prices for electric vehicle charg-
ing considering fairness. 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), 2304–2311. https://doi.org/10.1109/SSCI.2018.8628756

Liu, C. H., Chen, Z., Tang, J., Xu, J., & Piao, C. (2018). Energy-efficient uav control for
effective and fair communication coverage: A deep reinforcement learning approach.
IEEE Journal on Selected Areas in Communications, 36, 2059–2070. https://doi.org/
10.1109/JSAC.2018.2864373

Liu, F. Y., & Qian, C. (2021). Prediction guided meta-learning for multi-objective reinforcement
learning. 2021 IEEE Congress on Evolutionary Computation (CEC), 2171–2178. https:
//doi.org/10.1109/CEC45853.2021.9504972

105

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907
https://doi.org/10.1006/jcss.2001.1752
https://doi.org/10.1109/ICSMC.2010.5641898
https://doi.org/10.1109/ICSMC.2010.5641898
https://doi.org/10.1109/TCOMM.2022.3211071
https://doi.org/10.1080/00207543.2016.1165880
https://doi.org/10.1080/00207543.2016.1165880
https://doi.org/10.1080/00207543.2018.1552031
https://doi.org/10.1109/CASE48305.2020.9216899
http://arxiv.org/abs/2205.11173
http://arxiv.org/abs/2205.11173
https://doi.org/10.1109/TCYB.2020.2977661
https://doi.org/10.1109/TCYB.2020.2977661
https://doi.org/10.1109/ICCS.2016.7833622
https://doi.org/10.1007/s11356-021-12753-9
https://doi.org/10.48550/arxiv.1509.02971
https://doi.org/10.48550/arxiv.1509.02971
https://doi.org/10.1109/SSCI.2018.8628756
https://doi.org/10.1109/JSAC.2018.2864373
https://doi.org/10.1109/JSAC.2018.2864373
https://doi.org/10.1109/CEC45853.2021.9504972
https://doi.org/10.1109/CEC45853.2021.9504972

BIBLIOGRAPHY

Liu, X., Zhang, X., Li, W., & Zhang, X. (2017). Swarm optimization algorithms applied to
multi-resource fair allocation in heterogeneous cloud computing systems. Computing,
99, 1231–1255. https://doi.org/10.1007/s00607-017-0561-x

Liu, Y., Wu, F., Lyu, C., Li, S., Ye, J., & Qu, X. (2022). Deep dispatching: A deep reinforcement
learning approach for vehicle dispatching on online ride-hailing platform. Transportation
Research Part E: Logistics and Transportation Review, 161, 102694. https://doi.org/10.
1016/j.tre.2022.102694

Liu, Y., Huangfu, W., Zhou, H., Zhang, H., Liu, J., & Long, K. (2022). Fair and energy-
efficient coverage optimization for uav placement problem in the cellular network. IEEE
Transactions on Communications, 70, 4222–4235. https://doi.org/10.1109/TCOMM.
2022.3170615

Löffler, M., Boysen, N., & Schneider, M. (2022). Picker routing in agv-assisted order picking
systems. INFORMS Journal on Computing, 34, 440–462. https://doi.org/10.1287/ijoc.
2021.1060

Lorson, F., Fügener, A., & Hübner, A. (2022). New team mates in the warehouse: Human
interactions with automated and robotized systems. IISE Transactions, 1–18. https :
//doi.org/10.1080/24725854.2022.2072545

Lu, R., & Wang, K. (2021). Max-min energy-efficiency fair optimization in star-ris assisted
system. http://arxiv.org/abs/2112.06495

Malencia, M., Kumar, V., Pappas, G., & Prorok, A. (2021). Fair robust assignment using re-
dundancy. IEEE Robotics and Automation Letters, 6, 4217–4224. https://doi.org/10.
1109/LRA.2021.3067283

Mandal, D., & Gan, J. (2022). Socially fair reinforcement learning. https://doi.org/10.48550/
arxiv.2208.12584

Mao, C., Liu, Y., & Shen, Z.-J. ((2020). Dispatch of autonomous vehicles for taxi services:
A deep reinforcement learning approach. Transportation Research Part C: Emerging
Technologies, 115, 102626. https://doi.org/10.1016/j.trc.2020.102626

Matloff, N. (2008). Introduction to discrete-event simulation and the simpy language. Davis,
CA. Dept of Computer Science. University of California at Davis. Retrieved on August,
2 (2009), 1–33.

McAtamney, L., & Corlett, E. N. (1993). Rula: A survey method for the investigation of work-
related upper limb disorders. Applied Ergonomics, 24, 91–99. https://doi.org/10.1016/
0003-6870(93)90080-S

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2019). A survey on bias
and fairness in machine learning. https://doi.org/10.48550/arxiv.1908.09635

Meng, Q., & Khoo, H. L. (2010). A pareto-optimization approach for a fair ramp metering.
Transportation Research Part C: Emerging Technologies, 18, 489–506. https://doi.org/
10.1016/j.trc.2009.10.001

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518, 529–533. https:
//doi.org/10.1038/nature14236

Mossalam, H., Assael, Y. M., Roijers, D. M., & Whiteson, S. (2016). Multi-objective deep
reinforcement learning. https://doi.org/10.48550/arXiv.1610.02707

Mungúıa-López, A., & Ponce-Ortega, J. M. (2021). Fair allocation of potential covid-19 vac-
cines using an optimization-based strategy. Process Integration and Optimization for
Sustainability, 5, 3–12. https://doi.org/10.1007/s41660-020-00141-8

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-
job flow-shop sequencing problem. Omega, 11, 91–95. https://doi.org/10.1016/0305-
0483(83)90088-9

106

https://doi.org/10.1007/s00607-017-0561-x
https://doi.org/10.1016/j.tre.2022.102694
https://doi.org/10.1016/j.tre.2022.102694
https://doi.org/10.1109/TCOMM.2022.3170615
https://doi.org/10.1109/TCOMM.2022.3170615
https://doi.org/10.1287/ijoc.2021.1060
https://doi.org/10.1287/ijoc.2021.1060
https://doi.org/10.1080/24725854.2022.2072545
https://doi.org/10.1080/24725854.2022.2072545
http://arxiv.org/abs/2112.06495
https://doi.org/10.1109/LRA.2021.3067283
https://doi.org/10.1109/LRA.2021.3067283
https://doi.org/10.48550/arxiv.2208.12584
https://doi.org/10.48550/arxiv.2208.12584
https://doi.org/10.1016/j.trc.2020.102626
https://doi.org/10.1016/0003-6870(93)90080-S
https://doi.org/10.1016/0003-6870(93)90080-S
https://doi.org/10.48550/arxiv.1908.09635
https://doi.org/10.1016/j.trc.2009.10.001
https://doi.org/10.1016/j.trc.2009.10.001
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/arXiv.1610.02707
https://doi.org/10.1007/s41660-020-00141-8
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0305-0483(83)90088-9

BIBLIOGRAPHY

Nemer, I. A., Sheltami, T. R., Belhaiza, S., & Mahmoud, A. S. (2022). Energy-efficient uav
movement control for fair communication coverage: A deep reinforcement learning ap-
proach. Sensors, 22, 1919. https://doi.org/10.3390/s22051919

Nguyen, T. T., Nguyen, N. D., Vamplew, P., Nahavandi, S., Dazeley, R., & Lim, C. P. (2020).
A multi-objective deep reinforcement learning framework. Engineering Applications of
Artificial Intelligence, 96, 103915. https://doi.org/10.1016/j.engappai.2020.103915

Nguyen, V. H., & Weng, P. (2017). An efficient primal-dual algorithm for fair combinatorial
optimization problems. In X. Gao, H. Du, & M. Han (Eds.). Springer International
Publishing. https://doi.org/10.1007/978-3-319-71150-8 28

Nian, X., Irissappane, A. A., & Roijers, D. (2020). Dcrac: Deep conditioned recurrent actor-critic
for multi-objective partially observable environments. Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and Multiagent Systems, 931–938.

Nicholson, A., & Wong, Y.-D. (1993). Are accidents poisson distributed? a statistical test.
Accident Analysis & Prevention, 25, 91–97. https://doi.org/10.1016/0001-4575(93)
90100-B

Niu, Y., & Schulte, F. (2021). Human aspects in collaborative order picking – what if robots
learned how to give humans a break? In A. Dolgui, A. Bernard, D. Lemoine, G. von
Cieminski, & D. Romero (Eds.). Springer International Publishing.

Niu, Y., Schulte, F., & Negenborn, R. R. (2021). Human aspects in collaborative order picking
– letting robotic agents learn about human discomfort. Procedia Computer Science, 180,
877–886. https://doi.org/10.1016/j.procs.2021.01.338

Partov, B., Leith, D. J., & Razavi, R. (2015). Utility fair optimization of antenna tilt angles in
lte networks. IEEE/ACM Transactions on Networking, 23, 175–185. https://doi.org/
10.1109/TNET.2013.2294965

Pasparakis, A., de Vries, J., & de Koster, M. R. (2021). In control or under control? human-
robot collaboration in warehouse order picking. SSRN Electronic Journal. https://doi.
org/10.2139/ssrn.3816533

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning library. http://arxiv.org/abs/1912.
01703

Pedreshi, D., Ruggieri, S., & Turini, F. (2008). Discrimination-aware data mining. Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 560–568. https://doi.org/10.1145/1401890.1401959

Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal
of Operations & Production Management, 17, 1098–1111. https://doi .org/10.1108/
01443579710177860

Pioro, M. (2007). Fair routing and related optimization problems. 15th International Conference
on Advanced Computing and Communications (ADCOM 2007), 229–235. https://doi.
org/10.1109/ADCOM.2007.121

Pishdad, L., Rabiee, H. R., & Mirarmandehi, N. (2010). A fair optimization scheduling scheme
for ieee 802.16 networks in multimedia applications. Journal of Visual Communication
and Image Representation, 21, 167–174. https://doi.org/10.1016/j.jvcir.2009.05.004

Purushothaman, K. E., & Nagarajan, V. (2021). Evolutionary multi-objective optimization
algorithm for resource allocation using deep neural network in 5g multi-user massive
mimo. International Journal of Electronics, 108, 1214–1233. https://doi.org/10.1080/
00207217.2020.1843715

Qi, H., Hu, Z., Huang, H., Wen, X., & Lu, Z. (2020). Energy efficient 3-d uav control for
persistent communication service and fairness: A deep reinforcement learning approach.
IEEE Access, 8, 53172–53184. https://doi.org/10.1109/ACCESS.2020.2981403

107

https://doi.org/10.3390/s22051919
https://doi.org/10.1016/j.engappai.2020.103915
https://doi.org/10.1007/978-3-319-71150-8_28
https://doi.org/10.1016/0001-4575(93)90100-B
https://doi.org/10.1016/0001-4575(93)90100-B
https://doi.org/10.1016/j.procs.2021.01.338
https://doi.org/10.1109/TNET.2013.2294965
https://doi.org/10.1109/TNET.2013.2294965
https://doi.org/10.2139/ssrn.3816533
https://doi.org/10.2139/ssrn.3816533
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1145/1401890.1401959
https://doi.org/10.1108/01443579710177860
https://doi.org/10.1108/01443579710177860
https://doi.org/10.1109/ADCOM.2007.121
https://doi.org/10.1109/ADCOM.2007.121
https://doi.org/10.1016/j.jvcir.2009.05.004
https://doi.org/10.1080/00207217.2020.1843715
https://doi.org/10.1080/00207217.2020.1843715
https://doi.org/10.1109/ACCESS.2020.2981403

BIBLIOGRAPHY

Qin, Z., Liu, Z., Han, G., Lin, C., Guo, L., & Xie, L. (2021). Distributed uav-bss trajectory
optimization for user-level fair communication service with multi-agent deep reinforce-
ment learning. IEEE Transactions on Vehicular Technology, 70, 12290–12301. https :
//doi.org/10.1109/TVT.2021.3117792

Raeis, M., & Leon-Garcia, A. (2021). A deep reinforcement learning approach for fair traffic
signal control. 2021 IEEE International Intelligent Transportation Systems Conference
(ITSC), 2512–2518. https://doi.org/10.1109/ITSC48978.2021.9564847

Rahmattalabi, A., Jabbari, S., Lakkaraju, H., Vayanos, P., Izenberg, M., Brown, R., Rice, E.,
& Tambe, M. (2021). Fair influence maximization: A welfare optimization approach.
Proceedings of the AAAI Conference on Artificial Intelligence, 35, 11630–11638. https:
//doi.org/10.1609/aaai.v35i13.17383

Rampasek, L., & Wolf, G. (2021). Hierarchical graph neural nets can capture long-range in-
teractions. 2021 IEEE 31st International Workshop on Machine Learning for Signal
Processing (MLSP), 1–6. https://doi.org/10.1109/MLSP52302.2021.9596069

Ratliff, H. D., & Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse: A solvable
case of the traveling salesman problem. Operations Research, 31, 507–521. https://doi.
org/10.1287/opre.31.3.507

Raza, S. M., Sajid, M., & Singh, J. (2022). Vehicle routing problem using reinforcement learning:
Recent advancements (D. Gupta, K. Sambyo, M. Prasad, & S. Agarwal, Eds.). Advanced
Machine Intelligence and Signal Processing, 269–280. https://doi.org/10.1007/978-981-
19-0840-8 20

Reymond, M., & Nowe, A. (2019). Pareto-dqn: Approximating the pareto front in complex multi-
objective decision problems. Proceedings of the Adaptive and Learning Agents Workshop
2019 (ALA-19) at AAMAS.

Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013). A survey of multi-objective
sequential decision-making. Journal of Artificial Intelligence Research, 48, 67–113. https:
//doi.org/10.1613/jair.3987

Ropke, S., & Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40, 455–472.
https://doi.org/10.1287/trsc.1050.0135

Sadiq, A. S., Dehkordi, A. A., Mirjalili, S., & Pham, Q.-V. (2022). Nonlinear marine predator
algorithm: A cost-effective optimizer for fair power allocation in noma-vlc-b5g networks.
Expert Systems with Applications, 203, 117395. https://doi.org/10.1016/j.eswa.2022.
117395

Sawik, T. (2015). On the fair optimization of cost and customer service level in a supply chain
under disruption risks. Omega, 53, 58–66. https://doi.org/10.1016/j.omega.2014.12.004

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy
optimization algorithms. https://doi.org/10.48550/arxiv.1707.06347

Siddique, U., Weng, P., & Zimmer, M. (2020). Learning fair policies in multi-objective (deep)
reinforcement learning with average and discounted rewards. In H. D. III & A. Singh
(Eds.). PMLR. https://proceedings.mlr.press/v119/siddique20a.html

Silver, D. (2015). Lectures on reinforcement learning. https://www.davidsilver.uk/teaching/
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser,

J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
& Hassabis, D. (2016). Mastering the game of go with deep neural networks and tree
search. Nature, 529, 484–489. https://doi.org/10.1038/nature16961

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines.
Journal of Business Research, 104, 333–339. https://doi.org/10.1016/j.jbusres.2019.07.
039

108

https://doi.org/10.1109/TVT.2021.3117792
https://doi.org/10.1109/TVT.2021.3117792
https://doi.org/10.1109/ITSC48978.2021.9564847
https://doi.org/10.1609/aaai.v35i13.17383
https://doi.org/10.1609/aaai.v35i13.17383
https://doi.org/10.1109/MLSP52302.2021.9596069
https://doi.org/10.1287/opre.31.3.507
https://doi.org/10.1287/opre.31.3.507
https://doi.org/10.1007/978-981-19-0840-8_20
https://doi.org/10.1007/978-981-19-0840-8_20
https://doi.org/10.1613/jair.3987
https://doi.org/10.1613/jair.3987
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1016/j.eswa.2022.117395
https://doi.org/10.1016/j.eswa.2022.117395
https://doi.org/10.1016/j.omega.2014.12.004
https://doi.org/10.48550/arxiv.1707.06347
https://proceedings.mlr.press/v119/siddique20a.html
https://www.davidsilver.uk/teaching/
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/j.jbusres.2019.07.039
https://doi.org/10.1016/j.jbusres.2019.07.039

BIBLIOGRAPHY

Song, W., Chen, X., Li, Q., & Cao, Z. (2023). Flexible job-shop scheduling via graph neural
network and deep reinforcement learning. IEEE Transactions on Industrial Informatics,
19, 1600–1610. https://doi.org/10.1109/TII.2022.3189725

Srinivas, S., & Yu, S. (2022). Collaborative order picking with multiple pickers and robots: Inte-
grated approach for order batching, sequencing and picker-robot routing. International
Journal of Production Economics, 254, 108634. https://doi.org/10.1016/j.ijpe.2022.
108634

Stolletz, R., & Brunner, J. O. (2012). Fair optimization of fortnightly physician schedules with
flexible shifts. European Journal of Operational Research, 219, 622–629. https://doi.
org/10.1016/j.ejor.2011.10.038

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
Tajmajer, T. (2018). Modular multi-objective deep reinforcement learning with decision values.

2018 Federated Conference on Computer Science and Information Systems (FedCSIS),
85–93.

Tang, X., He, Y., Qi, P., Chang, Z., Jiang, M., & Dai, Z. (2021). A new multi-objective opti-
mization model of water resources considering fairness and water shortage risk. Water,
13, 2648. https://doi.org/10.3390/w13192648

Tangpattanakul, P., Jozefowiez, N., & Lopez, P. (2012). Multi-objective optimization for select-
ing and scheduling observations by agile earth observing satellites. In C. A. C. Coello, V.
Cutello, K. Deb, S. Forrest, G. Nicosia, & M. Pavone (Eds.). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-32964-7 12

Tong, L., Chen, Y., Zhou, X., & Sun, Y. (2021). Qoe-fairness tradeoff scheme for dynamic
spectrum allocation based on deep reinforcement learning. The 5th International Con-
ference on Computer Science and Application Engineering, 1–7. https://doi.org/10.
1145/3487075.3487137

Vouros, G. A. (2023). Explainable deep reinforcement learning: State of the art and challenges.
ACM Computing Surveys, 55, 1–39. https://doi.org/10.1145/3527448

Wang, Y., Zhang, M., Ao, J., Wang, Z., Dong, H., & Zeng, M. (2022). Profit allocation strat-
egy of virtual power plant based on multi-objective optimization in electricity market.
Sustainability, 14, 6229. https://doi.org/10.3390/su14106229

Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., & de Freitas, N. (2015). Dueling
network architectures for deep reinforcement learning. https://doi.org/10.48550/arxiv.
1511.06581

Waters, T. R., Putz-Anderson, V., Garg, A., & Fine, L. J. (1993). Revised niosh equation
for the design and evaluation of manual lifting tasks. Ergonomics, 36, 749–776. https:
//doi.org/10.1080/00140139308967940

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292. https:
//doi.org/10.1007/BF00992698

Wen, J., Zhao, J., & Jaillet, P. (2017). Rebalancing shared mobility-on-demand systems: A re-
inforcement learning approach. 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), 220–225. https://doi.org/10.1109/ITSC.2017.8317908

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A., Zhang, M., Su, Y., Su, H., & Zhu, J.
(2022). Tianshou: A highly modularized deep reinforcement learning library. Journal of
Machine Learning Research, 23 (267), 1–6. http://jmlr.org/papers/v23/21-1127.html

Wu, H., Ma, C., Mitra, B., Diaz, F., & Liu, X. (2023). A multi-objective optimization framework
for multi-stakeholder fairness-aware recommendation. ACM Transactions on Informa-
tion Systems, 41, 1–29. https://doi.org/10.1145/3564285

Xie, L., Li, H., & Luttmann, L. (2022). Formulating and solving integrated order batching
and routing in multi-depot agv-assisted mixed-shelves warehouses. European Journal of
Operational Research. https://doi.org/10.1016/j.ejor.2022.08.047

109

https://doi.org/10.1109/TII.2022.3189725
https://doi.org/10.1016/j.ijpe.2022.108634
https://doi.org/10.1016/j.ijpe.2022.108634
https://doi.org/10.1016/j.ejor.2011.10.038
https://doi.org/10.1016/j.ejor.2011.10.038
https://doi.org/10.3390/w13192648
https://doi.org/10.1007/978-3-642-32964-7_12
https://doi.org/10.1145/3487075.3487137
https://doi.org/10.1145/3487075.3487137
https://doi.org/10.1145/3527448
https://doi.org/10.3390/su14106229
https://doi.org/10.48550/arxiv.1511.06581
https://doi.org/10.48550/arxiv.1511.06581
https://doi.org/10.1080/00140139308967940
https://doi.org/10.1080/00140139308967940
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/ITSC.2017.8317908
http://jmlr.org/papers/v23/21-1127.html
https://doi.org/10.1145/3564285
https://doi.org/10.1016/j.ejor.2022.08.047

BIBLIOGRAPHY

Xu, J., Tian, Y., Ma, P., Rus, D., Sueda, S., & Matusik, W. (2020). Prediction-guided multi-
objective reinforcement learning for continuous robot control. In H. D. III & A. Singh
(Eds.). PMLR. https://proceedings.mlr.press/v119/xu20h.html

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks?
http://arxiv.org/abs/1810.00826

Xu, L., Li, Y.-p., Li, Q.-m., Yang, Y.-w., Tang, Z.-m., & Zhang, X.-f. (2015). Proportional fair
resource allocation based on hybrid ant colony optimization for slow adaptive ofdma
system. Information Sciences, 293, 1–10. https://doi.org/10.1016/j.ins.2014.09.028

Yaacoub, E., & Dawy, Z. (2014). Fair optimization of video streaming quality of experience in lte
networks using distributed antenna systems and radio resource management (D. Nace,
Ed.). Journal of Applied Mathematics, 2014, 1–12. https://doi.org/10.1155/2014/562079

Yang, F., Huang, H., Shi, W., Ma, Y., Feng, Y., Cheng, G., & Liu, Z. (2022). Pmdrl: Pareto-
front-based multi-objective deep reinforcement learning. Journal of Ambient Intelligence
and Humanized Computing. https://doi.org/10.1007/s12652-022-04232-x

Yang, R., Sun, X., & Narasimhan, K. (2019). A generalized algorithm for multi-objective re-
inforcement learning and policy adaptation. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d Alché-Buc, E. Fox, & R. Garnett (Eds.). Curran Associates, Inc. https://
proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf

Ye, Q. C., Zhang, Y., & Dekker, R. (2017). Fair task allocation in transportation. Omega, 68,
1–16. https://doi.org/10.1016/j.omega.2016.05.005

Yu, J. J. Q., Yu, W., & Gu, J. (2019). Online vehicle routing with neural combinatorial optimiza-
tion and deep reinforcement learning. IEEE Transactions on Intelligent Transportation
Systems, 20, 3806–3817. https://doi.org/10.1109/TITS.2019.2909109

Yue, D., & You, F. (2014). Fair profit allocation in supply chain optimization with transfer price
and revenue sharing: Minlp model and algorithm for cellulosic biofuel supply chains.
AIChE Journal, 60, 3211–3229. https://doi.org/10.1002/aic.14511

Zhang, M., Winkelhaus, S., & Grosse, E. H. (2021). Evaluation of human workload in a hybrid
order picking system. IFAC-PapersOnLine, 54, 458–463. https://doi.org/10.1016/j.
ifacol.2021.08.053

Zhang, Z., Qin, H., & Li, Y. (2020). Multi-objective optimization for the vehicle routing problem
with outsourcing and profit balancing. IEEE Transactions on Intelligent Transportation
Systems, 21, 1987–2001. https://doi.org/10.1109/TITS.2019.2910274

Zhao, J. (2019). Optimizations with intelligent reflecting surfaces (irss) in 6g wireless networks:
Power control, quality of service, max-min fair beamforming for unicast, broadcast, and
multicast with multi-antenna mobile users and multiple irss. http://arxiv.org/abs/1908.
03965

Zhou, S.-Z., Zhan, Z.-H., Chen, Z.-G., Kwong, S., & Zhang, J. (2021). A multi-objective ant
colony system algorithm for airline crew rostering problem with fairness and satisfaction.
IEEE Transactions on Intelligent Transportation Systems, 22, 6784–6798. https://doi.
org/10.1109/TITS.2020.2994779

Zhou, Y., Pahwa, A., & Yang, S.-S. (2006). Modeling weather-related failures of overhead dis-
tribution lines. IEEE Transactions on Power Systems, 21, 1683–1690. https://doi.org/
10.1109/TPWRS.2006.881131

Zhu, Q., & Oh, J. (2018). Deep reinforcement learning for fairness in distributed robotic multi-
type resource allocation. 2018 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), 460–466. https://doi.org/10.1109/ICMLA.2018.00075

Zimmer, M., Glanois, C., Siddique, U., & Weng, P. (2021). Learning fair policies in decentralized
cooperative multi-agent reinforcement learning. In M. Meila & T. Zhang (Eds.). PMLR.
https://proceedings.mlr.press/v139/zimmer21a.html

110

https://proceedings.mlr.press/v119/xu20h.html
http://arxiv.org/abs/1810.00826
https://doi.org/10.1016/j.ins.2014.09.028
https://doi.org/10.1155/2014/562079
https://doi.org/10.1007/s12652-022-04232-x
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://doi.org/10.1016/j.omega.2016.05.005
https://doi.org/10.1109/TITS.2019.2909109
https://doi.org/10.1002/aic.14511
https://doi.org/10.1016/j.ifacol.2021.08.053
https://doi.org/10.1016/j.ifacol.2021.08.053
https://doi.org/10.1109/TITS.2019.2910274
http://arxiv.org/abs/1908.03965
http://arxiv.org/abs/1908.03965
https://doi.org/10.1109/TITS.2020.2994779
https://doi.org/10.1109/TITS.2020.2994779
https://doi.org/10.1109/TPWRS.2006.881131
https://doi.org/10.1109/TPWRS.2006.881131
https://doi.org/10.1109/ICMLA.2018.00075
https://proceedings.mlr.press/v139/zimmer21a.html

BIBLIOGRAPHY

Zou, Y., Zhang, D., & Qi, M. (2019). Order picking system optimization based on picker-robot
collaboration. Proceedings of the 2019 5th International Conference on Industrial and
Business Engineering, 1–6. https://doi.org/10.1145/3364335.3364386

Žulj, I., Salewski, H., Goeke, D., & Schneider, M. (2022). Order batching and batch sequencing
in an amr-assisted picker-to-parts system. European Journal of Operational Research,
298, 182–201. https://doi.org/10.1016/j.ejor.2021.05.033

111

https://doi.org/10.1145/3364335.3364386
https://doi.org/10.1016/j.ejor.2021.05.033

Appendices

112

Appendix A

Expanded Mathematical
Formulation

Indices and Sets

i ∈ N Set of all items that must be picked. Note that multiple items can have the same
location.

r ∈ R Set of AMRs.
k ∈ K Set of human pickers.
t ∈ T Set of pickruns.

Parameters

M Sufficiently large positive number.
τKi,i′ Travel time from location of item i to location of item i′ by human pickers.

τRi,i′ Travel time from location of item i to location of item i′ by AMRs.

τ o,Rr,i Travel time from starting location of AMR r to location i.

τ o,Kk,i Travel time from starting location of picker k to location i.

ηUi Time to retrieve item i from its storage location, which can already be done before
AMR is there. Note, this does not apply to our use case.

ηLi Time to place item i on an AMR.
aTi,t 1 if item i must be picked in pickrun t, 0 otherwise.

uRi,i′ 1 if AMR r collects item i before item i′ in the same trip but not necessarily exactly
before item i (i.e. relative precedence), 0 otherwise.

li,t 1 if item i is the last item to be picked in pickrun t, 0 otherwise.
uTt,t′ 1 if tour t occurs before tour t′.

Variables

Decision Variables
AK

i,k 1 if human picker k is assigned to pick item i, 0 otherwise.

UK
i,i′ 1 if item i must be retrieved before item i′ by the same picker, 0 otherwise.

Other Variables
AR

i,r,t 1 if AMR r is assigned to transport item i in tour t, 0 otherwise.

AR
r,t 1 if AMR r is assigned to perform pickrun t.

BK
i,k Retrieval begin time of item i by picker k.

FK
i,k Retrieval finish time of item i by picker k.

113

APPENDIX A. EXPANDED MATHEMATICAL FORMULATION

LK
i,k Time at which picker k is ready to leave the location of item i.

FR
i,r,t Collection finish time of item i by AMR r in pickrun t.

BR
i,r,t Collection begin time of item i by AMR r in pickrun t.

CR
r,t Completion time of pickrun t by AMR r.

St Start time of pickrun t.
Ct Completion time of pickrun t.
C Delivery completion time of the last fulfilled order.
Wk The total workload of picker k.

minC (A.1)

maxF (W1,W2, . . . ,W|K|) (A.2)

subject to∑
k∈K

AK
i,k = 1 ∀i ∈ N (A.3)

AK
i,k −AK

i′,k ≤ 1− (UK
i,i′ + UK

i′,i) ∀i, i′ ∈ N , i ̸= i′, k ∈ K (A.4)

AK
i,k +AK

i′,k ≤ 1 + (UK
i,i′ + UK

i′,i) ∀i, i′ ∈ N , i ̸= i′, k ∈ K (A.5)

BK
i.k ≥ τo,K

k,i −M · (1−AK
i,k) ∀i ∈ N , k ∈ K (A.6)∑

k∈K

BK
i.k ≥

∑
k∈K

LK
i′,k + τK

i′,i · UK
i′,i −M · (1− UK

i′,i) ∀i, i′ ∈ N , i ̸= i′ (A.7)

FK
i,k = BK

i,k + ηU
i ·AK

i,k ∀i ∈ N , k ∈ K (A.8)

LK
i,k ≥ FK

i,k ∀i ∈ N , k ∈ K (A.9)

LK
i,k ≥

∑
t∈T

FR
i,r,t −M ·

(
2−AK

i,k −
∑
t∈T

AR
i,r,t

)
∀i ∈ N , k ∈ K, r ∈ R (A.10)

BK
i,k ≤ M ·AK

i,k ∀i ∈ N , k ∈ K (A.11)

Fi,k ≤ M ·AK
i,k ∀i ∈ N , k ∈ K (A.12)

LK
i,k ≤ M ·AK

i,k ∀i ∈ N , k ∈ K (A.13)

BR
i,r,t ≥ St +

∑
i′∈N

(
τR
i′,i · li′,t′ · uT

t′,t

)
−M ·

(
2−AT

i,r,t −AT
r,t′

) ∀i ∈ N , r ∈ R, t, t′ ∈ T , t ̸= t′ (A.14)

∑
r∈R

BR
i,r,t ≥

(∑
r∈R

FR
i′,r,t + τR

i′,i

)
· uT

i′,i · aT
i,t · aT

i′,t ∀i, i′ ∈ N , i ̸= i′, t ∈ T (A.15)

BR
i,r,t ≥ τo,R

r,i −M · (1−AR
i,r,t) ∀i ∈ N , r ∈ R, t ∈ T (A.16)

BR
i,r,t ≥ FK

i,k −M · (2−AK
i,k −AR

i,r,t) ∀i ∈ N , r ∈ R, t ∈ T , k ∈ K (A.17)

FR
i,r,t = BR

i,r,t + ηL
i ·AR

i,r,t ∀i ∈ N , r ∈ R, t ∈ T (A.18)

BR
i,r,t ≤ M ·AR

i,r,t ∀i ∈ N , r ∈ R, t ∈ T (A.19)

FR
i,r,t ≤ M ·AR

i,r,t ∀i ∈ N , r ∈ R, t ∈ T (A.20)

Ct ≥ FR
i,r,t −M · (1−AR

i,r,t) ∀i ∈ N , r ∈ R, t ∈ T (A.21)

St ≥ Ct′ · uT
t′,t −M · (2−AT

r,t −AT
r,t′) ∀r ∈ R, t, t′ ∈ T , t ̸= t′ (A.22)

C ≥ Ct ∀t ∈ T (A.23)

Wk =
∑
i∈N

wi ·Ai,k ∀k ∈ K (A.24)

∑
r∈R

AT
r,t = 1 ∀t ∈ T (A.25)

AR
i,r,t = AT

r,t · aT
i,t ∀i ∈ N , r ∈ R, t ∈ T (A.26)

AK
i,k, U

K
i,i′ , A

R
i,r,t, A

T
r,t ∈ {0, 1} ∀i, i′ ∈ N , k ∈ K, r ∈ R, t ∈ T (A.27)

BK
i,k, F

K
i,k, L

K
i,k, F

R
i,r,t, B

R
i,r,t, Ct, St, C ≥ 0

∀i ∈ N , k ∈ K, r ∈ R,

t ∈ T
(A.28)

114

Appendix B

Simulation Data Distributions

0 5 10 15 20 25
Number of Items

0

10

20

30

40

50

60

70

O
cc

ur
en

ce
s

(%
)

Figure B.1: Distribution of the occurrences of pick frequencies used in the simulation model.

115

APPENDIX B. SIMULATION DATA DISTRIBUTIONS

0 5 10 15 20
Product Mass (kg)

0

2

4

6

8

10

12

14

16
O

cc
ur

en
ce

s
(%

)

Figure B.2: Distribution of product masses.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Product Volume (m3)

0

5

10

15

20

25

30

35

O
cc

ur
en

ce
s

(%
)

Figure B.3: Distribution of product volumes.

116

APPENDIX B. SIMULATION DATA DISTRIBUTIONS

0 50 100 150 200 250
Expected Pick Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
R

el
at

iv
e

Fr
eq

ue
nc

y

Figure B.4: Histogram of the expected pick times of 100,000 sampled combinations of products
and number of picked items.

0 50 100 150 200 250
Expected Pick Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure B.5: Histogram of the expected pick times of combinations of products and number of
picked items from the real order data.

117

Appendix C

Snapshot of Decision Tree Data

Table C.1 outlines a snapshot of five rows of the data used to train the decision tree for the
pure performance policy. The numbered columns relate to the following features.

1. Current picker location

2. AMR location indicator

3. Distance from picker

4. AMR destination distance

5. Expected time until next AMR destination

6. Expected time until two-step ahead AMR destination

7. Picker location indicator

8. Picker destination distance

9. Number of pickers to aisle

10. Number of AMRs to aisle

11. Minimum distance of other pickers

12. Node depth within aisle

13. Aisle distance from origin

14. Minimum distance next AMR destination

15. Second smallest distance next AMR destination

16. Minimum distance two-step ahead AMR destination

17. Second smallest distance two-step ahead AMR destination

18. Number of waiting AMRs in aisle

19. Number of AMRs to aisle

20. Distance of closest other picker destination

21. Distance of closest unserved AMR destination

22. Distance of second closest unserved AMR destination

23. Minimum expected time of other pickers

118

A
P
P
E
N
D
IX

C
.
S
N
A
P
S
H
O
T

O
F
D
E
C
IS
IO

N
T
R
E
E

D
A
T
A

Table C.1: Snapshot of 5 rows of the dataset used to train the decision tree for the pure performance policy. Columns 1-23 indicate the node features
and y the value assigned to the node by the pure performance policy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 y

0.0 1.0 16.8 0.0 -10.0 -10.0 0.0 -10.0 2.0 9.0 5.2 0.9 0.7 0.0 0.0 0.0 0.0 6.0 1.0 5.2 0.0 0.0 7.0 8.4
0.0 0.0 19.2 11.2 -10.0 -10.0 0.0 -10.0 1.0 3.0 8.4 0.2 0.9 4.2 11.2 6.6 0.0 1.0 2.0 7.0 0.0 0.0 10.9 6.1
0.0 0.0 71.4 8.4 -10.0 -10.0 0.0 -10.0 3.0 16.0 1.4 0.6 0.0 16.8 19.6 21.0 0.0 5.0 2.0 1.4 0.0 0.0 6.8 -0.3
0.0 1.0 29.0 0.0 -10.0 -10.0 0.0 -10.0 2.0 5.0 2.4 0.1 0.4 2.4 0.0 8.0 0.0 4.0 1.0 2.4 0.0 0.0 7.6 1.3
0.0 1.0 9.4 0.0 -10.0 -10.0 0.0 -10.0 3.0 10.0 5.6 0.2 0.1 8.4 0.0 22.4 0.0 4.0 1.0 1.4 0.0 0.0 11.3 18.0

119

Appendix D

Grid Search Results for Decision
Tree Analysis

Table D.1: Grid search results for the decision tree analysis of policy 1. R2 is the average R2

evaluation value over the five cross-validation folds.

Max. Depth Max. Nr. of Features Min. Samples Leaf Nodes R2

4 sqrt 5 0.31
4 sqrt 10 0.35
4 sqrt 25 0.32
4 sqrt 50 0.36
4 sqrt 100 0.32
4 sqrt 250 0.35
4 log2 5 0.35
4 log2 10 0.35
4 log2 25 0.35
4 log2 50 0.38
4 log2 100 0.31
4 log2 250 0.34
4 1 5 0.56
4 1 10 0.56
4 1 25 0.56
4 1 50 0.56
4 1 100 0.56
4 1 250 0.56
7 sqrt 5 0.49
7 sqrt 10 0.46
7 sqrt 25 0.49
7 sqrt 50 0.51
7 sqrt 100 0.43
7 sqrt 250 0.42
7 log2 5 0.49
7 log2 10 0.47
7 log2 25 0.41
7 log2 50 0.47
7 log2 100 0.48
7 log2 250 0.40

120

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

7 1 5 0.71
7 1 10 0.71
7 1 25 0.71
7 1 50 0.71
7 1 100 0.71
7 1 250 0.71
10 sqrt 5 0.55
10 sqrt 10 0.58
10 sqrt 25 0.55
10 sqrt 50 0.58
10 sqrt 100 0.57
10 sqrt 250 0.52
10 log2 5 0.59
10 log2 10 0.59
10 log2 25 0.59
10 log2 50 0.60
10 log2 100 0.59
10 log2 250 0.58
10 1 5 0.80
10 1 10 0.80
10 1 25 0.80
10 1 50 0.79
10 1 100 0.79
10 1 250 0.78
15 sqrt 5 0.67
15 sqrt 10 0.68
15 sqrt 25 0.71
15 sqrt 50 0.66
15 sqrt 100 0.65
15 sqrt 250 0.62
15 log2 5 0.64
15 log2 10 0.68
15 log2 25 0.70
15 log2 50 0.68
15 log2 100 0.63
15 log2 250 0.63
15 1 5 0.84
15 1 10 0.84
15 1 25 0.84
15 1 50 0.83
15 1 100 0.82
15 1 250 0.80
25 sqrt 5 0.68
25 sqrt 10 0.72
25 sqrt 25 0.70
25 sqrt 50 0.67
25 sqrt 100 0.66
25 sqrt 250 0.63
25 log2 5 0.70
25 log2 10 0.70
25 log2 25 0.71

121

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

25 log2 50 0.68
25 log2 100 0.65
25 log2 250 0.65
25 1 5 0.82
25 1 10 0.84
25 1 25 0.84
25 1 50 0.83
25 1 100 0.82
25 1 250 0.80
40 sqrt 5 0.69
40 sqrt 10 0.70
40 sqrt 25 0.72
40 sqrt 50 0.68
40 sqrt 100 0.68
40 sqrt 250 0.60
40 log2 5 0.70
40 log2 10 0.69
40 log2 25 0.72
40 log2 50 0.70
40 log2 100 0.68
40 log2 250 0.63
40 1 5 0.82
40 1 10 0.83
40 1 25 0.84
40 1 50 0.83
40 1 100 0.82
40 1 250 0.80
50 sqrt 5 0.68
50 sqrt 10 0.70
50 sqrt 25 0.70
50 sqrt 50 0.70
50 sqrt 100 0.65
50 sqrt 250 0.64
50 log2 5 0.69
50 log2 10 0.71
50 log2 25 0.71
50 log2 50 0.68
50 log2 100 0.65
50 log2 250 0.63
50 1 5 0.82
50 1 10 0.83
50 1 25 0.84
50 1 50 0.83
50 1 100 0.82
50 1 250 0.80

122

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

Table D.2: Grid search results for the decision tree analysis of policy 2. R2 is the average R2

evaluation value over the five cross-validation folds.

Max. Depth Max. Nr. of Features Min. Samples Leaf Nodes R2

4 sqrt 5 0.47
4 sqrt 10 0.42
4 sqrt 25 0.40
4 sqrt 50 0.38
4 sqrt 100 0.51
4 sqrt 250 0.48
4 log2 5 0.43
4 log2 10 0.40
4 log2 25 0.40
4 log2 50 0.36
4 log2 100 0.43
4 log2 250 0.50
4 1 5 0.69
4 1 10 0.69
4 1 25 0.69
4 1 50 0.69
4 1 100 0.69
4 1 250 0.69
7 sqrt 5 0.59
7 sqrt 10 0.53
7 sqrt 25 0.53
7 sqrt 50 0.48
7 sqrt 100 0.54
7 sqrt 250 0.58
7 log2 5 0.53
7 log2 10 0.44
7 log2 25 0.55
7 log2 50 0.54
7 log2 100 0.55
7 log2 250 0.49
7 1 5 0.78
7 1 10 0.78
7 1 25 0.78
7 1 50 0.78
7 1 100 0.78
7 1 250 0.78
10 sqrt 5 0.59
10 sqrt 10 0.64
10 sqrt 25 0.62
10 sqrt 50 0.63
10 sqrt 100 0.63
10 sqrt 250 0.60
10 log2 5 0.61
10 log2 10 0.63
10 log2 25 0.64
10 log2 50 0.65
10 log2 100 0.68

123

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

10 log2 250 0.62
10 1 5 0.83
10 1 10 0.83
10 1 25 0.83
10 1 50 0.83
10 1 100 0.82
10 1 250 0.81
15 sqrt 5 0.69
15 sqrt 10 0.72
15 sqrt 25 0.70
15 sqrt 50 0.71
15 sqrt 100 0.67
15 sqrt 250 0.67
15 log2 5 0.72
15 log2 10 0.72
15 log2 25 0.75
15 log2 50 0.71
15 log2 100 0.71
15 log2 250 0.70
15 1 5 0.86
15 1 10 0.86
15 1 25 0.86
15 1 50 0.86
15 1 100 0.85
15 1 250 0.83
25 sqrt 5 0.74
25 sqrt 10 0.76
25 sqrt 25 0.75
25 sqrt 50 0.76
25 sqrt 100 0.72
25 sqrt 250 0.70
25 log2 5 0.74
25 log2 10 0.76
25 log2 25 0.75
25 log2 50 0.75
25 log2 100 0.74
25 log2 250 0.70
25 1 5 0.85
25 1 10 0.86
25 1 25 0.87
25 1 50 0.86
25 1 100 0.85
25 1 250 0.83
40 sqrt 5 0.78
40 sqrt 10 0.78
40 sqrt 25 0.75
40 sqrt 50 0.73
40 sqrt 100 0.71
40 sqrt 250 0.70
40 log2 5 0.75
40 log2 10 0.76

124

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

40 log2 25 0.77
40 log2 50 0.77
40 log2 100 0.75
40 log2 250 0.68
40 1 5 0.85
40 1 10 0.86
40 1 25 0.87
40 1 50 0.86
40 1 100 0.85
40 1 250 0.83
50 sqrt 5 0.76
50 sqrt 10 0.77
50 sqrt 25 0.77
50 sqrt 50 0.74
50 sqrt 100 0.74
50 sqrt 250 0.67
50 log2 5 0.74
50 log2 10 0.76
50 log2 25 0.73
50 log2 50 0.76
50 log2 100 0.74
50 log2 250 0.68
50 1 5 0.85
50 1 10 0.86
50 1 25 0.87
50 1 50 0.86
50 1 100 0.85
50 1 250 0.83

125

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

Table D.3: Grid search results for the decision tree analysis of policy 3. R2 is the average R2

evaluation value over the five cross-validation folds.

Max. Depth Max. Nr. of Features Min. Samples Leaf Nodes R2

4 sqrt 5 0.30
4 sqrt 10 0.37
4 sqrt 25 0.50
4 sqrt 50 0.38
4 sqrt 100 0.32
4 sqrt 250 0.34
4 log2 5 0.55
4 log2 10 0.47
4 log2 25 0.39
4 log2 50 0.37
4 log2 100 0.41
4 log2 250 0.38
4 1 5 0.71
4 1 10 0.71
4 1 25 0.71
4 1 50 0.70
4 1 100 0.70
4 1 250 0.70
7 sqrt 5 0.55
7 sqrt 10 0.50
7 sqrt 25 0.52
7 sqrt 50 0.55
7 sqrt 100 0.57
7 sqrt 250 0.55
7 log2 5 0.50
7 log2 10 0.57
7 log2 25 0.66
7 log2 50 0.46
7 log2 100 0.46
7 log2 250 0.49
7 1 5 0.79
7 1 10 0.79
7 1 25 0.79
7 1 50 0.79
7 1 100 0.79
7 1 250 0.79
10 sqrt 5 0.67
10 sqrt 10 0.66
10 sqrt 25 0.60
10 sqrt 50 0.67
10 sqrt 100 0.68
10 sqrt 250 0.62
10 log2 5 0.59
10 log2 10 0.64
10 log2 25 0.65
10 log2 50 0.62
10 log2 100 0.68

126

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

10 log2 250 0.59
10 1 5 0.82
10 1 10 0.82
10 1 25 0.82
10 1 50 0.82
10 1 100 0.82
10 1 250 0.82
15 sqrt 5 0.77
15 sqrt 10 0.71
15 sqrt 25 0.71
15 sqrt 50 0.72
15 sqrt 100 0.67
15 sqrt 250 0.69
15 log2 5 0.74
15 log2 10 0.69
15 log2 25 0.71
15 log2 50 0.67
15 log2 100 0.71
15 log2 250 0.73
15 1 5 0.82
15 1 10 0.83
15 1 25 0.84
15 1 50 0.84
15 1 100 0.84
15 1 250 0.83
25 sqrt 5 0.72
25 sqrt 10 0.77
25 sqrt 25 0.71
25 sqrt 50 0.70
25 sqrt 100 0.73
25 sqrt 250 0.72
25 log2 5 0.73
25 log2 10 0.71
25 log2 25 0.75
25 log2 50 0.69
25 log2 100 0.71
25 log2 250 0.70
25 1 5 0.81
25 1 10 0.83
25 1 25 0.84
25 1 50 0.84
25 1 100 0.84
25 1 250 0.83
40 sqrt 5 0.72
40 sqrt 10 0.74
40 sqrt 25 0.76
40 sqrt 50 0.74
40 sqrt 100 0.70
40 sqrt 250 0.71
40 log2 5 0.74
40 log2 10 0.74

127

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

40 log2 25 0.75
40 log2 50 0.75
40 log2 100 0.72
40 log2 250 0.67
40 1 5 0.81
40 1 10 0.83
40 1 25 0.84
40 1 50 0.84
40 1 100 0.84
40 1 250 0.83
50 sqrt 5 0.74
50 sqrt 10 0.76
50 sqrt 25 0.74
50 sqrt 50 0.72
50 sqrt 100 0.73
50 sqrt 250 0.67
50 log2 5 0.72
50 log2 10 0.73
50 log2 25 0.72
50 log2 50 0.73
50 log2 100 0.73
50 log2 250 0.67
50 1 5 0.81
50 1 10 0.83
50 1 25 0.84
50 1 50 0.84
50 1 100 0.84
50 1 250 0.83

128

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

Table D.4: Grid search results for the decision tree analysis of policy 4. R2 is the average R2

evaluation value over the five cross-validation folds.

Max. Depth Max. Nr. of Features Min. Samples Leaf Nodes R2

4 sqrt 5 0.44
4 sqrt 10 0.43
4 sqrt 25 0.36
4 sqrt 50 0.34
4 sqrt 100 0.47
4 sqrt 250 0.40
4 log2 5 0.48
4 log2 10 0.37
4 log2 25 0.37
4 log2 50 0.33
4 log2 100 0.37
4 log2 250 0.38
4 1 5 0.72
4 1 10 0.72
4 1 25 0.72
4 1 50 0.72
4 1 100 0.72
4 1 250 0.72
7 sqrt 5 0.58
7 sqrt 10 0.58
7 sqrt 25 0.58
7 sqrt 50 0.57
7 sqrt 100 0.46
7 sqrt 250 0.51
7 log2 5 0.56
7 log2 10 0.44
7 log2 25 0.57
7 log2 50 0.60
7 log2 100 0.56
7 log2 250 0.45
7 1 5 0.81
7 1 10 0.81
7 1 25 0.81
7 1 50 0.81
7 1 100 0.81
7 1 250 0.81
10 sqrt 5 0.64
10 sqrt 10 0.68
10 sqrt 25 0.68
10 sqrt 50 0.63
10 sqrt 100 0.64
10 sqrt 250 0.67
10 log2 5 0.64
10 log2 10 0.62
10 log2 25 0.67
10 log2 50 0.65
10 log2 100 0.64

129

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

10 log2 250 0.65
10 1 5 0.85
10 1 10 0.85
10 1 25 0.85
10 1 50 0.85
10 1 100 0.85
10 1 250 0.84
15 sqrt 5 0.74
15 sqrt 10 0.76
15 sqrt 25 0.72
15 sqrt 50 0.70
15 sqrt 100 0.73
15 sqrt 250 0.72
15 log2 5 0.71
15 log2 10 0.74
15 log2 25 0.73
15 log2 50 0.70
15 log2 100 0.72
15 log2 250 0.70
15 1 5 0.86
15 1 10 0.86
15 1 25 0.87
15 1 50 0.87
15 1 100 0.86
15 1 250 0.85
25 sqrt 5 0.77
25 sqrt 10 0.77
25 sqrt 25 0.79
25 sqrt 50 0.71
25 sqrt 100 0.74
25 sqrt 250 0.73
25 log2 5 0.76
25 log2 10 0.74
25 log2 25 0.75
25 log2 50 0.73
25 log2 100 0.75
25 log2 250 0.68
25 1 5 0.85
25 1 10 0.86
25 1 25 0.87
25 1 50 0.87
25 1 100 0.86
25 1 250 0.85
40 sqrt 5 0.75
40 sqrt 10 0.78
40 sqrt 25 0.76
40 sqrt 50 0.78
40 sqrt 100 0.74
40 sqrt 250 0.71
40 log2 5 0.76
40 log2 10 0.74

130

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

40 log2 25 0.77
40 log2 50 0.76
40 log2 100 0.69
40 log2 250 0.74
40 1 5 0.85
40 1 10 0.86
40 1 25 0.87
40 1 50 0.87
40 1 100 0.86
40 1 250 0.85
50 sqrt 5 0.75
50 sqrt 10 0.77
50 sqrt 25 0.79
50 sqrt 50 0.75
50 sqrt 100 0.72
50 sqrt 250 0.68
50 log2 5 0.77
50 log2 10 0.75
50 log2 25 0.79
50 log2 50 0.76
50 log2 100 0.75
50 log2 250 0.70
50 1 5 0.85
50 1 10 0.86
50 1 25 0.87
50 1 50 0.87
50 1 100 0.86
50 1 250 0.85

131

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

Table D.5: Grid search results for the decision tree analysis of policy 5. R2 is the average R2

evaluation value over the five cross-validation folds.

Max. Depth Max. Nr. of Features Min. Samples Leaf Nodes R2

4 5 sqrt 0.46
4 10 sqrt 0.38
4 25 sqrt 0.38
4 50 sqrt 0.38
4 100 sqrt 0.36
4 250 sqrt 0.41
4 5 log2 0.42
4 10 log2 0.33
4 25 log2 0.38
4 50 log2 0.32
4 100 log2 0.42
4 250 log2 0.45
4 5 1 0.68
4 10 1 0.68
4 25 1 0.68
4 50 1 0.68
4 100 1 0.68
4 250 1 0.68
7 5 sqrt 0.51
7 10 sqrt 0.57
7 25 sqrt 0.58
7 50 sqrt 0.53
7 100 sqrt 0.51
7 250 sqrt 0.59
7 5 log2 0.58
7 10 log2 0.49
7 25 log2 0.58
7 50 log2 0.61
7 100 log2 0.62
7 250 log2 0.53
7 5 1 0.79
7 10 1 0.79
7 25 1 0.79
7 50 1 0.79
7 100 1 0.79
7 250 1 0.79
10 5 sqrt 0.59
10 10 sqrt 0.69
10 25 sqrt 0.64
10 50 sqrt 0.70
10 100 sqrt 0.67
10 250 sqrt 0.62
10 5 log2 0.69
10 10 log2 0.67
10 25 log2 0.65
10 50 log2 0.66
10 100 log2 0.65

132

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

10 250 log2 0.60
10 5 1 0.84
10 10 1 0.84
10 25 1 0.84
10 50 1 0.84
10 100 1 0.83
10 250 1 0.83
15 5 sqrt 0.76
15 10 sqrt 0.76
15 25 sqrt 0.77
15 50 sqrt 0.73
15 100 sqrt 0.72
15 250 sqrt 0.70
15 5 log2 0.77
15 10 log2 0.75
15 25 log2 0.73
15 50 log2 0.69
15 100 log2 0.70
15 250 log2 0.69
15 5 1 0.86
15 10 1 0.87
15 25 1 0.87
15 50 1 0.87
15 100 1 0.86
15 250 1 0.84
25 5 sqrt 0.80
25 10 sqrt 0.77
25 25 sqrt 0.80
25 50 sqrt 0.75
25 100 sqrt 0.69
25 250 sqrt 0.68
25 5 log2 0.78
25 10 log2 0.78
25 25 log2 0.75
25 50 log2 0.72
25 100 log2 0.73
25 250 log2 0.72
25 5 1 0.86
25 10 1 0.87
25 25 1 0.87
25 50 1 0.87
25 100 1 0.86
25 250 1 0.84
40 5 sqrt 0.78
40 10 sqrt 0.79
40 25 sqrt 0.77
40 50 sqrt 0.76
40 100 sqrt 0.72
40 250 sqrt 0.67
40 5 log2 0.76
40 10 log2 0.77

133

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

40 25 log2 0.77
40 50 log2 0.78
40 100 log2 0.72
40 250 log2 0.70
40 5 1 0.86
40 10 1 0.87
40 25 1 0.87
40 50 1 0.87
40 100 1 0.86
40 250 1 0.84
50 5 sqrt 0.79
50 10 sqrt 0.76
50 25 sqrt 0.79
50 50 sqrt 0.78
50 100 sqrt 0.73
50 250 sqrt 0.68
50 5 log2 0.78
50 10 log2 0.78
50 25 log2 0.74
50 50 log2 0.78
50 100 log2 0.74
50 250 log2 0.72
50 5 1 0.86
50 10 1 0.87
50 25 1 0.87
50 50 1 0.87
50 100 1 0.86
50 250 1 0.84

134

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

Table D.6: Grid search results for the decision tree analysis of policy 6. R2 is the average R2

evaluation value over the five cross-validation folds.

Max. Depth Max. Nr. of Features Min. Samples Leaf Nodes R2

4 5 sqrt 0.38
4 10 sqrt 0.32
4 25 sqrt 0.30
4 50 sqrt 0.33
4 100 sqrt 0.38
4 250 sqrt 0.40
4 5 log2 0.37
4 10 log2 0.35
4 25 log2 0.38
4 50 log2 0.43
4 100 log2 0.41
4 250 log2 0.38
4 5 1 0.69
4 10 1 0.69
4 25 1 0.69
4 50 1 0.69
4 100 1 0.69
4 250 1 0.69
7 5 sqrt 0.62
7 10 sqrt 0.63
7 25 sqrt 0.50
7 50 sqrt 0.58
7 100 sqrt 0.50
7 250 sqrt 0.61
7 5 log2 0.58
7 10 log2 0.57
7 25 log2 0.51
7 50 log2 0.56
7 100 log2 0.55
7 250 log2 0.61
7 5 1 0.82
7 10 1 0.82
7 25 1 0.82
7 50 1 0.82
7 100 1 0.82
7 250 1 0.81
10 5 sqrt 0.65
10 10 sqrt 0.66
10 25 sqrt 0.67
10 50 sqrt 0.65
10 100 sqrt 0.69
10 250 sqrt 0.63
10 5 log2 0.70
10 10 log2 0.67
10 25 log2 0.71
10 50 log2 0.69
10 100 log2 0.67

135

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

10 250 log2 0.63
10 5 1 0.87
10 10 1 0.87
10 25 1 0.87
10 50 1 0.87
10 100 1 0.87
10 250 1 0.86
15 5 sqrt 0.80
15 10 sqrt 0.79
15 25 sqrt 0.77
15 50 sqrt 0.77
15 100 sqrt 0.76
15 250 sqrt 0.70
15 5 log2 0.76
15 10 log2 0.78
15 25 log2 0.80
15 50 log2 0.78
15 100 log2 0.74
15 250 log2 0.73
15 5 1 0.91
15 10 1 0.91
15 25 1 0.91
15 50 1 0.90
15 100 1 0.89
15 250 1 0.88
25 5 sqrt 0.81
25 10 sqrt 0.78
25 25 sqrt 0.81
25 50 sqrt 0.76
25 100 sqrt 0.74
25 250 sqrt 0.70
25 5 log2 0.83
25 10 log2 0.84
25 25 log2 0.81
25 50 log2 0.74
25 100 log2 0.76
25 250 log2 0.72
25 5 1 0.91
25 10 1 0.92
25 25 1 0.92
25 50 1 0.91
25 100 1 0.90
25 250 1 0.88
40 5 sqrt 0.83
40 10 sqrt 0.81
40 25 sqrt 0.81
40 50 sqrt 0.80
40 100 sqrt 0.79
40 250 sqrt 0.67
40 5 log2 0.82
40 10 log2 0.83

136

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

40 25 log2 0.80
40 50 log2 0.77
40 100 log2 0.80
40 250 log2 0.73
40 5 1 0.91
40 10 1 0.92
40 25 1 0.92
40 50 1 0.91
40 100 1 0.90
40 250 1 0.88
50 5 sqrt 0.82
50 10 sqrt 0.81
50 25 sqrt 0.84
50 50 sqrt 0.77
50 100 sqrt 0.75
50 250 sqrt 0.72
50 5 log2 0.82
50 10 log2 0.82
50 25 log2 0.81
50 50 log2 0.82
50 100 log2 0.81
50 250 log2 0.73
50 5 1 0.91
50 10 1 0.92
50 25 1 0.92
50 50 1 0.91
50 100 1 0.90
50 250 1 0.88

137

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

Table D.7: Grid search results for the decision tree analysis of the pure performance policy. R2

is the average R2 evaluation value over the five cross-validation folds.

Max. Depth Max. Nr. of Features Min. Samples Leaf Nodes R2

4 5 sqrt 0.49
4 10 sqrt 0.35
4 25 sqrt 0.40
4 50 sqrt 0.44
4 100 sqrt 0.49
4 250 sqrt 0.49
4 5 log2 0.49
4 10 log2 0.42
4 25 log2 0.44
4 50 log2 0.50
4 100 log2 0.34
4 250 log2 0.48
4 5 1 0.76
4 10 1 0.76
4 25 1 0.76
4 50 1 0.76
4 100 1 0.76
4 250 1 0.76
7 5 sqrt 0.63
7 10 sqrt 0.65
7 25 sqrt 0.67
7 50 sqrt 0.68
7 100 sqrt 0.65
7 250 sqrt 0.67
7 5 log2 0.65
7 10 log2 0.61
7 25 log2 0.63
7 50 log2 0.68
7 100 log2 0.65
7 250 log2 0.67
7 5 1 0.88
7 10 1 0.88
7 25 1 0.88
7 50 1 0.88
7 100 1 0.88
7 250 1 0.88
10 5 sqrt 0.76
10 10 sqrt 0.79
10 25 sqrt 0.75
10 50 sqrt 0.76
10 100 sqrt 0.79
10 250 sqrt 0.74
10 5 log2 0.72
10 10 log2 0.77
10 25 log2 0.79
10 50 log2 0.79
10 100 log2 0.75

138

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

10 250 log2 0.77
10 5 1 0.93
10 10 1 0.93
10 25 1 0.93
10 50 1 0.93
10 100 1 0.93
10 250 1 0.92
15 5 sqrt 0.88
15 10 sqrt 0.85
15 25 sqrt 0.84
15 50 sqrt 0.83
15 100 sqrt 0.83
15 250 sqrt 0.75
15 5 log2 0.85
15 10 log2 0.85
15 25 log2 0.82
15 50 log2 0.83
15 100 log2 0.78
15 250 log2 0.77
15 5 1 0.96
15 10 1 0.96
15 25 1 0.95
15 50 1 0.95
15 100 1 0.94
15 250 1 0.93
25 5 sqrt 0.88
25 10 sqrt 0.89
25 25 sqrt 0.86
25 50 sqrt 0.66
25 100 sqrt 0.83
25 250 sqrt 0.77
25 5 log2 0.88
25 10 log2 0.88
25 25 log2 0.87
25 50 log2 0.85
25 100 log2 0.78
25 250 log2 0.71
25 5 1 0.96
25 10 1 0.96
25 25 1 0.96
25 50 1 0.95
25 100 1 0.94
25 250 1 0.93
40 5 sqrt 0.89
40 10 sqrt 0.85
40 25 sqrt 0.88
40 50 sqrt 0.81
40 100 sqrt 0.81
40 250 sqrt 0.73
40 5 log2 0.87
40 10 log2 0.86

139

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

40 25 log2 0.87
40 50 log2 0.86
40 100 log2 0.80
40 250 log2 0.78
40 5 1 0.96
40 10 1 0.96
40 25 1 0.96
40 50 1 0.95
40 100 1 0.94
40 250 1 0.93
50 5 sqrt 0.87
50 10 sqrt 0.87
50 25 sqrt 0.85
50 50 sqrt 0.87
50 100 sqrt 0.85
50 250 sqrt 0.78
50 5 log2 0.89
50 10 log2 0.88
50 25 log2 0.84
50 50 log2 0.84
50 100 log2 0.83
50 250 log2 0.77
50 5 1 0.96
50 10 1 0.96
50 25 1 0.96
50 50 1 0.95
50 100 1 0.94
50 250 1 0.93

140

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

Table D.8: Grid search results for the decision tree analysis of the pure fairness policy. R2 is the
average R2 evaluation value over the five cross-validation folds.

Max. Depth Max. Nr. of Features Min. Samples Leaf Nodes R2

4 5 sqrt 0.39
4 10 sqrt 0.39
4 25 sqrt 0.43
4 50 sqrt 0.43
4 100 sqrt 0.37
4 250 sqrt 0.44
4 5 log2 0.44
4 10 log2 0.47
4 25 log2 0.37
4 50 log2 0.31
4 100 log2 0.37
4 250 log2 0.44
4 5 1 0.57
4 10 1 0.57
4 25 1 0.57
4 50 1 0.57
4 100 1 0.57
4 250 1 0.57
7 5 sqrt 0.54
7 10 sqrt 0.55
7 25 sqrt 0.46
7 50 sqrt 0.56
7 100 sqrt 0.51
7 250 sqrt 0.53
7 5 log2 0.53
7 10 log2 0.54
7 25 log2 0.56
7 50 log2 0.54
7 100 log2 0.52
7 250 log2 0.51
7 5 1 0.62
7 10 1 0.62
7 25 1 0.62
7 50 1 0.62
7 100 1 0.62
7 250 1 0.62
10 5 sqrt 0.57
10 10 sqrt 0.60
10 25 sqrt 0.58
10 50 sqrt 0.58
10 100 sqrt 0.58
10 250 sqrt 0.56
10 5 log2 0.59
10 10 log2 0.60
10 25 log2 0.57
10 50 log2 0.58
10 100 log2 0.58

141

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

10 250 log2 0.55
10 5 1 0.63
10 10 1 0.63
10 25 1 0.63
10 50 1 0.63
10 100 1 0.63
10 250 1 0.63
15 5 sqrt 0.59
15 10 sqrt 0.59
15 25 sqrt 0.60
15 50 sqrt 0.61
15 100 sqrt 0.57
15 250 sqrt 0.58
15 5 log2 0.59
15 10 log2 0.60
15 25 log2 0.58
15 50 log2 0.60
15 100 log2 0.59
15 250 log2 0.57
15 5 1 0.61
15 10 1 0.62
15 25 1 0.63
15 50 1 0.64
15 100 1 0.64
15 250 1 0.63
25 5 sqrt 0.54
25 10 sqrt 0.57
25 25 sqrt 0.59
25 50 sqrt 0.59
25 100 sqrt 0.60
25 250 sqrt 0.57
25 5 log2 0.53
25 10 log2 0.57
25 25 log2 0.59
25 50 log2 0.59
25 100 log2 0.59
25 250 log2 0.59
25 5 1 0.54
25 10 1 0.58
25 25 1 0.61
25 50 1 0.63
25 100 1 0.63
25 250 1 0.63
40 5 sqrt 0.52
40 10 sqrt 0.55
40 25 sqrt 0.59
40 50 sqrt 0.59
40 100 sqrt 0.58
40 250 sqrt 0.53
40 5 log2 0.51
40 10 log2 0.56

142

APPENDIX D. GRID SEARCH RESULTS FOR DECISION TREE ANALYSIS

40 25 log2 0.59
40 50 log2 0.60
40 100 log2 0.57
40 250 log2 0.58
40 5 1 0.51
40 10 1 0.57
40 25 1 0.61
40 50 1 0.63
40 100 1 0.63
40 250 1 0.63
50 5 sqrt 0.52
50 10 sqrt 0.56
50 25 sqrt 0.60
50 50 sqrt 0.60
50 100 sqrt 0.57
50 250 sqrt 0.58
50 5 log2 0.52
50 10 log2 0.55
50 25 log2 0.58
50 50 log2 0.60
50 100 log2 0.59
50 250 log2 0.58
50 5 1 0.51
50 10 1 0.57
50 25 1 0.61
50 50 1 0.63
50 100 1 0.63
50 250 1 0.63

143

Appendix E

Decision Tree Figures

144

A
P
P
E
N
D
IX

E
.
D
E
C
IS
IO

N
T
R
E
E

F
IG

U
R
E
S

samples = 22380
value = -0.06

samples = 40255
value = -0.25

samples = 22119
value = 0.27

samples = 40264
value = -0.03

samples = 75773
value = -0.27

samples = 17509
value = -0.57

samples = 24334
value = -0.61

samples = 7111
value = -1.15

samples = 17119
value = -0.4

samples = 39801
value = -0.55

samples = 21266
value = -0.62

samples = 9826
value = -0.75

samples = 42756
value = -0.74

samples = 13517
value = -0.92

samples = 4695
value = -1.21

samples = 1275
value = -0.87

Current picker workload <= -11.35
value = -0.18

Current picker workload <= -10.89
value = 0.07

Current picker workload <= 30.79
value = -0.33

Current picker workload <= 24.59
value = -0.73

Current picker workload <= -4.91
value = -0.51

Minimum distance
 of other pickers <= 34.8

value = -0.66

Distance of closest other
 picker destination <= 37.1

value = -0.78
Current picker workload <= 12.89

value = -1.14

Number of pickers to aisle <= 1.5
value = -0.06

Waiting AMR workload <= 11.55
value = -0.43

Distance of closest other
 picker destination <= 20.8

value = -0.56
AMR destination distance <= 39.4

value = -0.82

Current picker workload <= 0.94
value = -0.24

Distance from picker <= 48.8
value = -0.67

Distance from picker <= 27.8
value = -0.4

Figure E.1: Shallow decision tree for multi-objective policy 1. Decision paths must be read from top to bottom, with the left side indicating that
the condition is satisfied and the right side that it is not. Darker colors indicate high node values and lighter colors represent low node values.

145

A
P
P
E
N
D
IX

E
.
D
E
C
IS
IO

N
T
R
E
E

F
IG

U
R
E
S

samples = 1384
value = -15.87

samples = 17
value = -5.19

samples = 59090
value = -8.31

samples = 22388
value = -6.71

samples = 1530
value = -10.51

samples = 53964
value = -0.72

samples = 61008
value = -4.76

samples = 15872
value = -2.88

samples = 38855
value = -9.82

samples = 14530
value = -8.14

samples = 44729
value = -7.59

samples = 18142
value = -5.55

samples = 22955
value = -11.2

samples = 24479
value = -13.11

samples = 17938
value = -9.98

samples = 3119
value = -7.63

Minimum workload <= -26.33
value = -15.74

Minimum distance
 of other pickers <= 6.8

value = -7.87
Distance from picker <= 0.5

value = -0.99
Minimum distance

 of other pickers <= 8.6
value = -4.37

Minimum distance
 of other pickers <= 8.6

value = -9.36

Minimum distance
 of other pickers <= 8.6

value = -7.0
Distance from picker <= 56.2

value = -12.18
Distance of closest other

 picker destination <= 20.8
value = -9.63

Distance from picker <= 0.5
value = -8.0

Distance from picker <= 10.5
value = -2.96

AMR destination distance <= -5.0
value = -8.08

Minimum distance
 of other pickers <= 10.0

value = -11.4

AMR destination distance <= -5.0
value = -4.9

Distance from picker <= 43.6
value = -9.31

Distance from picker <= 22.6
value = -6.94

Figure E.2: Shallow decision tree for multi-objective policy 3. Decision paths must be read from top to bottom, with the left side indicating that
the condition is satisfied and the right side that it is not. Darker colors indicate high node values and lighter colors represent low node values.

146

A
P
P
E
N
D
IX

E
.
D
E
C
IS
IO

N
T
R
E
E

F
IG

U
R
E
S

samples = 937
value = -15.42

samples = 81942
value = -8.96

samples = 277
value = -13.99

samples = 18556
value = -6.84

samples = 45803
value = -0.87

samples = 16309
value = -3.61

samples = 53788
value = -4.7

samples = 38142
value = -6.51

samples = 6971
value = -8.99

samples = 10164
value = -6.92

samples = 37872
value = -9.46

samples = 31794
value = -11.07

samples = 19022
value = -12.86

samples = 24144
value = -14.67

samples = 11279
value = -11.69

samples = 3000
value = -9.45

Distance from picker <= 0.5
value = -9.03

Distance from picker <= 0.5
value = -6.95

AMR destination distance <= 8.2
value = -1.59

Distance from picker <= 19.8
value = -5.45

Number of AMRs to aisle <= 0.5
value = -7.76

Distance from picker <= 37.1
value = -10.2

Distance from picker <= 58.6
value = -13.87

Minimum distance
 of other pickers <= 26.1

value = -11.22

Distance of closest other
 picker destination <= 7.2

value = -8.65
Distance from picker <= 12.4

value = -3.9
Number of pickers to aisle <= 0.5

value = -9.72
Minimum distance

 of other pickers <= 11.4
value = -13.21

AMR destination distance <= -5.0
value = -5.78

Distance from picker <= 47.8
value = -11.11

Distance from picker <= 28.2
value = -7.71

Figure E.3: Shallow decision tree for multi-objective policy 4. Decision paths must be read from top to bottom, with the left side indicating that
the condition is satisfied and the right side that it is not. Darker colors indicate high node values and lighter colors represent low node values.

147

A
P
P
E
N
D
IX

E
.
D
E
C
IS
IO

N
T
R
E
E

F
IG

U
R
E
S

samples = 910
value = -13.69

samples = 56904
value = -8.5

samples = 10716
value = -5.86

samples = 232
value = -12.83

samples = 39579
value = -0.4

samples = 12643
value = -4.32

samples = 66195
value = -5.11

samples = 2822
value = -9.46

samples = 18554
value = -6.4

samples = 619
value = -11.59

samples = 50279
value = -10.22

samples = 59240
value = -8.37

samples = 13319
value = -9.48

samples = 390
value = -14.95

samples = 33583
value = -11.76

samples = 34015
value = -13.44

Distance from picker <= 0.5
value = -8.58

Current picker location <= 0.5
value = -6.01

AMR destination distance <= 8.2
value = -1.35

Waiting AMR workload <= 99.8
value = -5.28

Waiting AMR workload <= 116.55
value = -6.57

AMR destination distance <= -5.0
value = -9.22

Waiting AMR workload <= 97.15
value = -9.64

Distance from picker <= 54.8
value = -12.61

Distance of closest other
 picker destination <= 8.2

value = -8.17
Distance from picker <= 10.0

value = -3.59
Number of pickers to aisle <= 0.5

value = -8.83
Number of pickers to aisle <= 0.5

value = -12.1

Number of AMRs to aisle <= 0.5
value = -5.25

Distance from picker <= 42.7
value = -10.1

Distance from picker <= 21.7
value = -7.79

Figure E.4: Shallow decision tree for multi-objective policy 5. Decision paths must be read from top to bottom, with the left side indicating that
the condition is satisfied and the right side that it is not. Darker colors indicate high node values and lighter colors represent low node values.

148

A
P
P
E
N
D
IX

E
.
D
E
C
IS
IO

N
T
R
E
E

F
IG

U
R
E
S

samples = 34730
value = -9.92

samples = 8521
value = -7.44

samples = 15510
value = -12.67

samples = 3635
value = -9.75

samples = 38370
value = -1.43

samples = 10859
value = -5.72

samples = 59804
value = -8.18

samples = 9064
value = -4.48

samples = 12255
value = -8.29

samples = 88574
value = -11.38

samples = 35799
value = -13.92

samples = 1056
value = -21.86

samples = 8313
value = -12.06

samples = 50105
value = -15.37

samples = 3879
value = -14.99

samples = 19526
value = -18.99

Distance of closest other
 picker destination <= 7.2

value = -9.43

Distance of closest other
 picker destination <= 7.2

value = -12.11
AMR destination distance <= 8.2

value = -2.38
Distance of closest other
 picker destination <= 9.6

value = -7.69
Number of pickers to aisle <= 0.5

value = -11.01
Waiting AMR workload <= 106.6

value = -14.15
Number of pickers to aisle <= 0.5

value = -14.9
Number of pickers to aisle <= 0.5

value = -18.33

Current picker workload <= 71.17
value = -10.25

Distance from picker <= 9.6
value = -5.48

Current picker workload <= 79.58
value = -11.85

Current picker workload <= 63.08
value = -15.88

Number of AMRs to aisle <= 0.5
value = -7.13

Distance from picker <= 42.7
value = -13.35

Distance from picker <= 20.8
value = -10.54

Figure E.5: Shallow decision tree for multi-objective policy 6. Decision paths must be read from top to bottom, with the left side indicating that
the condition is satisfied and the right side that it is not. Darker colors indicate high node values and lighter colors represent low node values.

149

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Company Background
	Research Motivation
	Research Questions
	Contributions

	Problem Statement
	Mathematical Formulation
	Assumptions and Scope

	Background
	Deep Reinforcement Learning
	Agent-Environment Interaction
	Markov Decision Process
	Finding an Optimal Policy
	Deep Reinforcement Learning Approaches

	Multi-Objective Reinforcement Learning
	Multi-Objective Markov Decision Process
	Optimal Policies in Multi-Objective Optimization

	Learning on Graphs
	Graph Fundamentals
	Graph Neural Networks

	Literature Review
	Collaborative Picking
	Human Factor in Collaborative Picking
	Workload Measurement

	Multi-Objective Deep Reinforcement Learning Methods
	Deep Reinforcement Learning for Related Problems
	Online Bipartite Matching
	Vehicle Routing Problem
	Dispatching Problem

	Fairness
	Defining Fairness
	Fair Deep Reinforcement Learning
	Fairness in Optimization

	Synthesis and Research Gap

	Methodology
	Simulation Model
	Warehouse
	Picker Process
	AMR Process

	Deep Reinforcement Learning Approach
	Markov Decision Process
	Learning Algorithm
	Deep Reinforcement Learning Agent

	Experiment Setup
	Warehouse Settings
	Benchmark Methods
	Efficiency Optimization
	Network Architectures
	Learning Algorithm
	Experiment Description

	Multi-Objective Optimization
	Network Architectures
	Learning Algorithm
	Experiment Description

	Results
	Efficiency Optimization
	Performance Evaluation on Fixed Warehouse Sizes
	Picker/AMR Transferability
	Warehouse Size Transferability
	Deterministic Instance Evaluation
	Architecture Comparison

	Multi-Objective Optimization
	Performance Evaluation on Fixed Warehouse Sizes
	Picker/AMR Transferability
	Warehouse Size Transferability
	Architecture Comparison

	Synthesis

	Policy Analysis
	Decision Tree Analysis
	Decision Tree Training
	Decision Tree Interpretation
	Decision Tree Policy Analysis

	Inspecting Policy Behavior

	Conclusions and Recommendations
	Main Findings
	Business Recommendations
	Limitations and Future Research

	Bibliography
	Appendices
	Expanded Mathematical Formulation
	Simulation Data Distributions
	Snapshot of Decision Tree Data
	Grid Search Results for Decision Tree Analysis
	Decision Tree Figures

