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Résumé

La croissance du commerce électronique exige une hausse des performances des systèmes d’en-
treposage, qui sont maintenant repensés pour faire face à un volume massif de demandes à
être satisfait le plus rapidement possible. Le système manuel et le système à robots mobile
(SRM) sont parmi les plus utilisés pour ces activités. Le premier est un système centré sur
l’humain pour réaliser des opérations complexes que les robots actuels ne peuvent pas effec-
tuer. Cependant, les nouvelles générations de robots autonomes mènent à un remplacement
progressif par le dernier pour augmenter la productivité.

Quel que soit le système utilisé, plusieurs problèmes interdépendants doivent être résolus
pour avoir des processus de stockage et de prélèvement efficaces. Les problèmes de stockage
concernent les décisions d’où stocker les produits dans l’entrepôt. Les problèmes de prélèvement
incluent le regroupement des commandes à exécuter ensemble et les itinéraires que les cueilleurs
et les robots doivent suivre pour récupérer les produits demandés. Dans le système manuel, ces
problèmes sont traditionnellement résolus à l’aide de politiques simples que les préparateurs
peuvent facilement suivre. Malgré l’utilisation de robots, la même stratégie de solution est
répliquée aux problèmes équivalents trouvés dans le SRM.

Dans cette recherche, nous étudions les problèmes de stockage et de prélèvement rencontrés lors
de la conception du système manuel et du SRM. Nous développons des outils d’optimisation
pour aider à la prise de décision pour mettre en place leurs processus, en améliorant les mesures
de performance typiques de ces systèmes. Certains problèmes traditionnels sont résolus avec
des techniques améliorées, tandis que d’autres sont intégrés pour être résolus ensemble au lieu
d’optimiser chaque sous-système de manière indépendante.

Nous considérons d’abord un système manuel avec un ensemble connu de commandes et inté-
grons les décisions de stockage et de routage. Le problème intégré et certaines variantes tenant
compte des politiques de routage communes sont modélisés mathématiquement. Une méta-
heuristique générale de recherche de voisinage variable est présentée pour traiter des instances
de taille réelle. Des expériences attestent de l’efficience de la métaheuristique proposée par
rapport aux modèles exacts et aux politiques de stockage communes.

Lorsque les demandes futures sont incertaines, il est courant d’utiliser une stratégie de zonage
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qui divise la zone de stockage en zones et attribue les produits les plus demandés aux meilleures
zones. Les tailles des zones sont à déterminer. Généralement, des dimensions arbitraires sont
choisies, mais elles ignorent les caractéristiques de l’entrepôt et des demandes. Nous abordons
le problème de dimensionnement des zones pour déterminer quels facteurs sont pertinents
pour choisir de meilleures tailles de zone. Les données générées à partir de simulations exhaus-
tives sont utilisées pour trainer quatre modèles de régression d’apprentissage automatique –
moindres carrés ordinaire, arbre de régression, forêt aléatoire et perceptron multicouche – afin
de prédire les dimensions optimales des zones en fonction de l’ensemble de facteurs pertinents
identifiés. Nous montrons que tous les modèles entraînés suggèrent des dimensions sur mesure
des zones qui performent meilleur que les dimensions arbitraires couramment utilisées.

Une autre approche pour résoudre les problèmes de stockage pour le système manuel et pour
le SRM considère les corrélations entre les produits. L’idée est que les produits régulièrement
demandés ensemble doivent être stockés près pour réduire les coûts de routage. Cette politique
de stockage peut être modélisée comme une variante du problème d’affectation quadratique
(PAQ). Le PAQ est un problème combinatoire traditionnel et l’un des plus difficiles à résoudre.
Nous examinons les variantes les plus connues du PAQ et développons une puissante méta-
heuristique itérative de recherche tabou mémétique en parallèle capable de les résoudre. La
métaheuristique proposée s’avère être parmi les plus performantes pour le PAQ et surpasse
considérablement l’état de l’art pour ses variantes.

Les SRM permettent de repositionner facilement les pods d’inventaire pendant les opérations,
ce qui peut conduire à un processus de prélèvement plus économe en énergie. Nous intégrons
les décisions de repositionnement des pods à l’attribution des commandes et à la sélection des
pods à l’aide d’une stratégie de prélèvement par vague. Les pods sont réorganisés en tenant
compte du moment et de l’endroit où ils devraient être demandés au futur. Nous résolvons
ce problème en utilisant la programmation stochastique en tenant compte de l’incertitude
sur les demandes futures et suggérons une matheuristique de recherche locale pour résoudre
des instances de taille réelle. Nous montrons que notre schéma d’approximation moyenne de
l’échantillon est efficace pour simuler les demandes futures puisque nos méthodes améliorent
les solutions trouvées lorsque les vagues sont planifiées sans tenir compte de l’avenir.

Cette thèse est structurée comme suit. Après un chapitre d’introduction, nous présentons une
revue de la littérature sur le système manuel et le SRM, et les décisions communes prises pour
mettre en place leurs processus de stockage et de prélèvement. Les quatre chapitres suivants
détaillent les études pour le problème de stockage et de routage intégré, le problème de dimen-
sionnement des zones, le PAQ et le problème de repositionnement de pod. Nos conclusions
sont résumées dans le dernier chapitre.

Keywords : Conception d’entrepôt ; systèmes de stockage et de prélèvement ; heuristiques ;
parallélisme ; apprentissage automatique ; programmation stochastique
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Abstract

The rising of e-commerce is demanding an increase in the performance of warehousing sys-
tems, which are being redesigned to deal with a mass volume of demands to be fulfilled as
fast as possible. The manual system and the robotic mobile fulfillment system (RMFS) are
among the most commonly used for these activities. The former is a human-centered system
that handles complex operations that current robots cannot perform. However, newer gener-
ations of autonomous robots are leading to a gradual replacement by the latter to increase
productivity.

Regardless of the system used, several interdependent problems have to be solved to have
efficient storage and picking processes. Storage problems concern decisions on where to store
products within the warehouse. Picking problems include the batching of orders to be fulfilled
together and the routes the pickers and robots should follow to retrieve the products demanded.
In the manual system, these problems are traditionally solved using simple policies that pickers
can easily follow. Despite using robots, the same solution strategy is being replicated to the
equivalent problems found in the RMFS.

In this research, we investigate storage and picking problems faced when designing manual and
RMFS warehouses. We develop optimization tools to help in the decision-making process to
set up their processes and improve typical performance measures considered in these systems.
Some classic problems are solved with improved techniques, while others are integrated to be
solved together instead of optimizing each subsystem sequentially.

We first consider a manual system with a known set of orders and integrate storage and routing
decisions. The integrated problem and some variants considering common routing policies are
modeled mathematically. A general variable neighborhood search metaheuristic is presented
to deal with real-size instances. Computational experiments attest to the effectiveness of the
metaheuristic proposed compared to the exact models and common storage policies.

When future demands are uncertain, it is common to use a zoning strategy to divide the
storage area into zones and assign the most-demanded products to the best zones. Zone sizes
are to be determined. Commonly, arbitrary sizes are chosen, which ignore the characteristics
of the warehouse and the demands. We approach the zone sizing problem to determine which
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factors are relevant to choosing better zone sizes. Data generated from exhaustive simulations
are used to train four machine learning regression models – ordinary least squares, regression
tree, random forest, and multilayer perceptron – to predict the optimal zone sizes given the
set of relevant factors identified. We show that all trained models suggest tailor-made zone
sizes with better picking performance than the arbitrary ones commonly used.

Another approach to solving storage problems, both in the manual and RMFS, considers the
correlations between products. The idea is that products constantly demanded together should
be stored closer to reduce routing costs. This storage policy can be modeled as a quadratic
assignment problem (QAP) variant. The QAP is a traditional combinatorial problem and one
of the hardest to solve. We survey the most traditional QAP variants and develop a powerful
parallel memetic iterated tabu search metaheuristic capable of solving them. The proposed
metaheuristic is shown to be among the best performing ones for the QAP and significantly
outperforms the state-of-the-art for its variants.

The RMFS allows easy repositioning of inventory pods during operations that can lead to
a more energy-efficient picking process. We integrate pod repositioning decisions with order
assignment and pod selection using a wave picking strategy such that pods are parked after
being requested considering when and where they are expected to be requested next. We
solve this integrated problem using stochastic programming considering the uncertainty about
future demands and suggest a local search matheuristic to solve real-size instances. We show
that our sample average approximation scheme is effective to simulate future demands since
our methods improve solutions found when waves are planned without considering the future
demands.

This thesis is structured as follows. After an introductory chapter, we present a literature
review on the manual and RMFS, and common decisions made to set up their storage and
picking processes. The next four chapters detail the studies for the integrated storage and
routing problem, the zone sizing problem, the QAP, and the pod repositioning problem. Our
findings are summarized in the last chapter.

Keywords: Warehouse design; storage and picking systems; heuristics; parallel computing;
machine learning; stochastic programming
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Introduction

The efficiency of warehouse operations is vital for determining a company’s competitiveness
since logistic costs constitute an important part of the overall costs (Rouwenhorst et al., 2000).
The importance of having an efficient warehouse management system has been increasing in
the past years with the changes in the global markets. Businesses have moved to places where
labor costs are lower as an effect of globalization. The increasing sales volumes of e-commerce,
which skyrocketed after the restrictions imposed to control the spread of the Covid-19 virus,
require new business strategies related to logistic operations. Also, the development of new
information technologies has made goods move faster than before (Boysen et al., 2019a; Ho
and Tseng, 2006; Yener and Yazgan, 2019).

Warehouse processes may be summarized to receiving, storage, picking, and shipping (Rouwen-
horst et al., 2000). While the receiving and the shipping have their interesting problems, it
is at the storage and picking that the biggest part of the warehouse operations is performed.
Warehouses are often optimized for cost-efficient order picking considering resource constraints
such as labor, capital, and space (De Koster et al., 2007; Van Gils et al., 2018c).

The storage system refers to the system used to store products in storage locations. It consists
of multiple subsystems comprising the policy used to define storage locations, the storage and
the rearrangement processes at the storage area, and the technologies used for the storage
system. The picking system refers to the system used to pick products from storage locations.
Its subsystems are related to the batch of orders to create the pick lists, the zoning of the
warehouse, the routes followed by pickers to retrieve items, and all technologies and resources
involved in these operations.

The storage and picking processes in a manual warehouse are performed by human pickers
who walk through the storage area collecting the requested products at their storage locations
(Petersen, 1997, 1999). Many automated systems in use eliminate the unproductive walking of
pickers by bringing products to fixed picking stations located around the storage area (Azadeh
et al., 2019). More recently, the robotic mobile fulfillment system (RMFS), where robots can
lift inventory pods and bring them to stationary pickers, has been successfully adopted in
e-commerce warehouses (Boysen et al., 2019a).
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Designing an efficient storage and picking system involves several interrelated decisions. For
this reason, the choice of methods to solve them is highly dependent on each other. No
overall accepted systematic procedure exists to design such systems (Rouwenhorst et al., 2000).
Nevertheless, some decisions to be made are common regardless of the system used.

The problem that involves the assignment of products to storage locations is known as storage
location assignment problem (SLAP). Overall, products have to be placed in convenient loca-
tions to be easily picked during the picking process. Its objective is to optimize a performance
measure associated with space and distance, normally the minimization of travel distances
(Reyes et al., 2019). Occasionally, products’ locations have to be rearranged due to factors
that may affect product demands (Carlo and Giraldo, 2012). Rearrangements of products’
locations should be done when savings on overall picking costs and effort are higher than the
cost of the process to rearrange them. In manual warehouses, rearrangements are costly and,
therefore, infrequent. However, pods can be easily moved around in an RMFS. The location
where pods should park after a pick is a decision problem known as pod repositioning problem
(PRP) (Xie et al., 2021).

The travel distances used to evaluate solutions for the SLAP and PRP are determined by
the routes followed either by pickers or robots. This routing problem is known as the order
picking problem (OPP) (Pansart et al., 2018; Scholz et al., 2016). In a manual system, routes
contain the multiple storage locations visited to retrieve all products in the pick list. On the
other hand, a robot in an RMFS follows a straightforward route from the pod location to the
workstation where the pick is performed. However, since products are usually scattered among
multiple pods, the pod to be selected is a decision problem known as pod selection problem
(PSP) (Weidinger and Boysen, 2018).

Combining several orders into batches has been shown to reduce the total picking time sig-
nificantly in manual systems (Petersen and Aase, 2004). The order batching problem (OBP)
consists in determining which set of orders will be treated together by a single picker. In an
RMFS, orders are usually assigned to stations using an online picking strategy, i.e., decisions
are made in real-time. In this case, the OBP is modified to the order assignment problem
(OAP) in which an order from the backlog is assigned to a workstation considering the cur-
rent state of the system (Merschformann et al., 2019). Batching can be adopted in RMFS to
reduce the number of visits of pods to stations whenever order assignment decisions can be
done periodically (wave picking). This can have a significant impact on the robot utilization
associated costs.

All these problems have already been studied in the literature (De Koster et al., 2007; Gu
et al., 2007; Merschformann et al., 2019). Even as individual problems, most are considered
to be hard to solve. The SLAP is related to the quadratic assignment problem (QAP),
which is one of the hardest combinatorial problems to solve (Drezner, 2008). The OPP is a
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special case of the traditional travelling salesman problem (Scholz et al., 2016). The OAP is
usually modeled as a clustering problem (Li et al., 2020; Mirzaei et al., 2021). The OBP is
formulated as a set partitioning problem (Gademann and Velde, 2005). The PRP and PSP
require some knowledge about the stochastic nature of future demands to be solved efficiently
(Merschformann et al., 2019). Many effort is being dedicated in the literature to integrate
them (Dijkstra and Roodbergen, 2017; Van Gils et al., 2018c). However, integrating decisions
further increases the complexity of the problem to be solved.

The recent advances in computational technologies (parallel computing) and solution tech-
niques (hybrid metaheuristics, machine learning, stochastic optimization) enable these hard
problems to be solved by complex models resulting from their efficient integration. In this
research, we develop tools to help design efficient warehousing systems, both manual and
RMFS. The problems previously described are modeled and solved either as individual prob-
lems or as integrated ones considering the current technological development. Exact methods
are proposed to find optimal solutions for them. Due to their complexity, alternative heuristic
approaches are also suggested to deal with real-size instances. The objective is to solve clas-
sical problems more efficiently than using the methods previously proposed, and to integrate
them with others, whenever applicable.

The remainder of this thesis is organized as follows. In Chapter 1, we analyze the literature on
the design of storage and picking systems, particularly the manual system and the RMFS. We
present significant studies that investigate tactical and operational problems commonly found
in the design of these two systems related to storage, batching, and routing. A description of
common methods to solve them is provided, and part of the chapter is dedicated to introducing
studies that investigated the interactions between them. Also, we provide a brief discussion
of the literature analyzed and pinpoint some pertinent directions for future research.

In Chapter 2, we introduce and model the storage location and order picking problem for a
manual warehouse, which consists of the integration of the SLAP and the OPP solved as a
deterministic problem. The problem considers that a set of pick lists representing the future
demands is known. Then, the storage area is organized such that the total traveling distance
to be followed by the pickers to retrieve the products contained in these pick lists is minimized.
The model is adapted to four special cases with imposed heuristic routing policies commonly
found for the manual warehouse. The resulting non-linear models are linearized. Experiments
show that even the linear models are difficult to be solved up to optimality. Therefore, we
present a metaheuristic that is observed to be very efficient for real size problems. The results
obtained significantly improve solutions generated by common storage policies, which are used
to solve the SLAP as an individual problem.

In Chapter 3, the assumption that we have total knowledge of future demands is relaxed. We
are now interested in assigning products to zones of different sizes to be determined. The goal
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is to minimize the expected average route length. While popular, solving the SLAP with an
ABC storage policy with arbitrary and standard sizes for each zone can lead to considerable
efficiency loss in many common warehouse settings. In this chapter, we investigate the zone
sizing problem. We implemented a simulator to estimate the average route length given factors
related to the warehouse layout, the pick list characteristics, and the rules used to decide the
shape of zones and to create the routes. An exhaustive search is done for several combinations
of zone sizes. Those that result in the lowest route lengths are analyzed to evaluate which
factors impact the most the best zone sizes found. This data is used to train several machine
learning tools to predict the optimal zone sizes through the use of regression analysis. We
analyze the trade-off between applicability and performance when deciding which model to
use. Regardless of the choice made, our models lead to a significant improvement in order
picking efficiency when compared to the arbitrary zone sizes commonly used in practice.

In Chapter 4, we study cases where correlations between product demands can be identified.
This correlation means that these products have a higher chance of being picked together.
Then, the storage locations can be arranged such that correlated products are stored closer
to each other. This problem is modeled as a variant of the QAP and can be found in both
manual and RMFS, where products are assigned to storage locations such that the interaction
between pairs of products is minimized. Interactions are measured by the correlation of
products and the distance between their storage locations. In this chapter, we present a
powerful parallel metaheuristic to solve the QAP and four of its most famous variants. This
metaheuristic extends the most successful heuristics to solve the QAP. Parallelism is used
to improve solutions concurrently. The effectiveness of this method is attested by solving
the hardest benchmark instances from the QAP literature. We show that our metaheuristic
significantly outperforms the best methods found for all variants of the QAP.

Chapter 5 presents our study to integrate decisions commonly made when designing an RMFS.
We present an integrated framework where the PRP is solved together with the OAP and the
PSP in a wave picking strategy to reduce energy consumption by robots carrying the heavy
pods between the storage area and the picking stations. A dynamic model is presented to plan
multiple waves simultaneously when future demands are known. Since precise information
about the future is seldom available, we suggest different approaches to plan waves when
demands are uncertain or unknown. The integrated problem is solved using a two-stage
stochastic programming model with a sample average approximation scheme to simulate future
demands. Alternatively, we suggest a simple local search matheuristic to deal with larger
instances. We show that integrating the PRP with the other problems leads to an increase
in the picking efficiency, which is further improved solving the stochastic problem with the
sampling scheme suggested.

Finally, in the conclusion, we summarize the main contributions of this thesis and points to
potential future research directions.
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Chapter 1

Storage and picking systems

Warehouse processes may be summarized to receiving, storage, picking, and shipping (Rouwen-
horst et al., 2000). The receiving process checks the products when they arrive at the ware-
house. The storage process stores them in storage locations. Products remain in the storage
area until orders arrive requiring their retrieval. The retrieval of products from their storage
locations is done at a picking process. Picked items may require sorting and consolidation
activities when the batch of products is grouped according to the order requests. Finally, on
the shipping process, the orders are checked, packed, and loaded in vehicles to be delivered.

The picking process is identified as the most labor-intensive and costly activity in a warehouse,
with the cost estimated to be as much as 50–70% of the total warehouse operating expense
(Frazelle, 2016; Tompkins et al., 2010). The rising of e-commerce increased the volume of
operations handled in warehouses, requiring to deal with a large number of small orders,
large assortment, tight delivery schedules, and varying workloads (Boysen et al., 2019a). The
underperformance may result in high costs and unsatisfied customer demand (Van Gils et al.,
2018c). For this reason, optimizing order picking activities are of the highest priority for
productivity improvements.

The storage system consists of multiple subsystems comprising the policy used to define storage
locations, the storage and the rearrangement processes at the storage area, and the technologies
used for the storage system. The picking subsystems are related to the batch of orders to create
the pick lists, the zoning of the warehouse, the routes followed by pickers or robots to retrieve
products, and all technologies and resources involved in these operations. The interaction
between the storage and picking (S/P) systems is a topic of intensive research (Dijkstra and
Roodbergen, 2017; Le-Duc and De Koster, 2005; Merschformann et al., 2019; Petersen, 1999;
Petersen and Aase, 2004; Tappia et al., 2019; Van Gils et al., 2018b,c).

The decisions involved in the integrated S/P system are structured at a strategic, tactical, and
operational level (Rouwenhorst et al., 2000; Van Gils et al., 2018c). Strategic level decisions
concern the design of the process flow and the selection of warehousing systems. A system
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in which a picker follows a route inside the storage area to retrieve products contained in its
pick list is known as picker-to-product. The most traditional one is the manual system, where
the picking process is performed by human pickers (Petersen, 1997, 1999). Many assistive
devices can be used in practice, such as conveyor belts, picking carts, and, more recently,
augmented and virtual reality and exoskeletons (Glock et al., 2020). The opposing is the
product-to-picker which considers that pickers stay at fixed positions and products are carried
to them to be picked and separated according to the orders. Product-to-picker systems are
usually associated with automated systems. Many automated systems are found, such as
crane-based, shuttle-based, aisle-based, carousels, vertical lift modules, among others (Azadeh
et al., 2019; Roodbergen and Vis, 2009). Recently, internet retailers are adopting robotic
mobile fulfillment systems (RMFS), where robots are capable of lifting and carrying movable
shelves (pods), transporting them to ergonomically designed stations where pickers retrieve
the demanded products (Azadeh et al., 2019).

The choice between a manual or an automated system should take into consideration the
technical capabilities of the system, such that the storage system and the suitability of the
equipment used (Rouwenhorst et al., 2000). The use of automation is a means for reducing
labor costs and picking times. Besides, robotic technologies provide increased flexibility and
scalability due to the easiness of adding and removing pods and robots in the system (Azadeh
et al., 2019). Many companies prefer to use manual systems since humans are more flexible
than machines in reacting to unexpected changes in the process. For example, the variability in
items’ shapes and sizes is still a barrier to automation. Moreover, a large investment is usually
required to automate the systems (Grosse et al., 2015; Petersen and Aase, 2004). De Koster
et al. (2007) state that manual picking processes account for 80% of all picking systems in
Western Europe. Independent of whether the S/P systems are mostly manual or automated,
high costs are related to the storage and picking processes.

Manual warehouses have been studied for a long time, with many contributions from the
managerial and optimization perspectives to several of their functions. This large body of
literature led to literature reviews which focused on different aspects, such as De Koster et al.
(2007); Gu et al. (2007, 2010); Reyes et al. (2019) and Van Gils et al. (2018c). Automated
systems, being much more recent, have had considerably fewer studies dedicated to their
specific operations. The only systematic review available that pinpoints studies dealing with
the most common decision problem is da Costa Barros and do Nascimento (2021), although
no discussion on the solution techniques is provided. In this chapter, we not only provide
a categorization of different problems arising at the tactical and operational level of manual
systems, but we also provide a classification of the problems particular to automated systems,
focusing on three main categories: storage systems, batching decisions, and associated routing
problems.

Regardless of the system used, the storage area in warehouses may be divided into the forward
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area and the reserve area. In the forward area, products are stored in convenient units or
small lots for easy retrieval by a picker. The reserve area is used to store products in the most
economical way to serve as replenishment for the forward area (Bodnar and Lysgaard, 2014;
Rouwenhorst et al., 2000). The decisions concerning where to locate each of these areas in the
facility take into account the activity relationship between them and the other departments
(De Koster et al., 2007). Here, we will focus on the decisions taken within the forward area.

In this chapter, we consider both the manual and the RMFS and describe the most common
decision problems found at the tactical and operational levels in these systems. The remainder
of this chapter is organized as follows. In section 1.1, we describe the literature on manual
systems, classifying them into storage, batching, or routing functions. Section 1.2 provides the
same classification for automated systems, discussing the unique challenges and opportunities
offered by the RMFS. Section 1.3 presents a transversal literature analysis and directions for
further research. Finally, our conclusions are presented in Section 1.4.

1.1 Manual system

In manual systems, the forward area is usually organized in block layouts containing picking
aisles parallel to each other, as shown in Figure 1.1. Products are stored in and picked from one
or both sides of the picking aisles. The placement of additional paths within aisles, called cross
aisles, separates the storage area into more blocks (Scholz et al., 2016). In a multi-block layout,
a subaisle is a part of an aisle that traverses each block. The aisle height is also an important
factor in the warehouse layout decisions. Wide aisles are those that allow two-way traffic of
pickers and have enough space for pickers to turn around in the aisles. The space required for
wide aisles is relatively high. In contrast, narrow aisles utilize less space, increasing storage
capacity. However, they are less efficient since they may cause congestion as a result of blocking
(Chabot et al., 2018; Van Gils et al., 2018b). Mowrey and Parikh (2014) attribute blocking
to either the inability of the pickers to pass each other in the aisle due to narrow aisles (in the
aisle blocking) or not being able to pick a product when another picker is there (pick column
blocking). Input/output (I/O) points, also known as loading/shipping docks, pick-up/drop-off
points, or depots, are placed around the storage area at points where pickers depart from and
arrive to after retrieving the items in their pick lists. The operations done on the I/O points are
those related to the receiving and shipping processes, such as order consolidation, packaging,
and shipment. Their locations vary for each warehouse layout. Studies investigating the effect
of placing them in different locations can also be found (Petersen, 1997; Petersen and Aase,
2004; Roodbergen and Vis, 2006). Other layouts, such as the fishbone and flying-V, can be
potentially recommended for unit-load warehouses, but they do not offer significant benefits
when performing multiple picks in a route (Gue and Meller, 2009; Ozden et al., 2020).

The decisions concerning the number of blocks, and the number, length, and width of aisles
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Figure 1.1 – Layout of a multi-block storage area in a manual warehouse

in each block, should take into consideration not only the efficiency of the operations and the
usage of space but also the resource constraints such as capital and available space (De Koster
et al., 2007; Van Gils et al., 2018c). The criterion used is typically to maximize throughput
using the minimum investment and operational costs. The throughput is characterized by
productivity and the service level. The productivity can be either related to labor, picking,
or equipment productivity. The service level refers to the quality of the service (e.g., the
percentage of orders picked on time, or the number of pick errors). A simple way to understand
the importance of throughput in a warehouse is that the sooner the order can be retrieved,
considering the service level required, the sooner it is available for shipping to the customer.
Consequently, the total promised shipping time can be reduced (Van Gils et al., 2018c).

Operational costs can be composed of labor and space utilization costs in manual warehouses
(Mowrey and Parikh, 2014), but they are usually measured in terms of time-related perfor-
mance indicators. In the picking process, this includes the setup, travel, search, and pick
times (Grosse et al., 2015; Scholz et al., 2016). These four components account for 95% of
the total pick time (Tompkins et al., 2010). Idle time can also be considered due to blocking
or unavailability of pickers. Van Gils et al. (2018c) add the waiting, sorting, and other time-
consuming activities to the other components previously mentioned. These time-consuming
components can be expressed, e.g., in terms of travel cost per time unit. Travel time can also
be related to travel distance. Distance has been considered as a performance criterion since
the early studies on warehouse design (Christofides and Colloff, 1973). In rectangular layouts,
it is usually measured using the Manhattan metric, which considers the shortest path using
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the aisles and cross aisles between different points within the storage area (Theys et al., 2010).

Some constraints also considered include the target criterion (e.g., retrieve all orders within a
time limit), physical constraints (e.g., the maximum height of a storage system, the capacity of
the forklifts), investment constraints (e.g., maximum budget), and environmental or ergonomic
conditions (Rouwenhorst et al., 2000). Constraints found in the literature include heavy
products being constrained to some storage locations (Renaud and Ruiz, 2008) or to the
picking sequence (Chabot et al., 2017), and the capacity of the picking device used (Gademann
and Velde, 2005). The number of pickers simultaneously retrieving items in the storage area
should also be considered. Single pickers may benefit from the lack of congestion while multiple
pickers increase output by working in parallel. This is an important consideration while
modeling order picking problems since static models are much easier to solve than dynamic
ones (Klodawski et al., 2018). Finally, since humans are central actors in manual systems,
ergonomic constraints play an important role. Many studies indicate that complicated routes
increase memory demands, which can lead to resistance from pickers and increase the risk of
missing picks (Grosse et al., 2015; Petersen and Aase, 2004).

Designing a manual system involves a large number of interrelated decisions. The most com-
mon tactical and operational level decisions are related to storage, batching, and routing.
Other problems not explored in this review, such as the design of dedicated picking zones
(Van Gils et al., 2018c) and the storage rearrangement (Carlo and Giraldo, 2012; Pazour and
Carlo, 2015), are also important in some contexts. Detailed descriptions of these and other
related problems can be found in the literature reviews of De Koster et al. (2007); Gu et al.
(2007); and Van Gils et al. (2018c, 2019b). The previously described performance criteria,
objectives, and constraints can be considered when solving storage, batching, and routing
problems. Next, we present the decisions made at each of them and the methods used to solve
them.

1.1.1 Storage

The storage location assignment problem (SLAP), as introduced by Hausman et al. (1976),
consists of determining the most efficient assignment of products to locations in a warehouse to
minimize the total material handling effort. Products have to be placed in convenient locations
to be easily picked during the picking process. The SLAP is usually solved assuming that the
set of products to be located, the set of available locations, and the distances between locations
and between each location and the I/O point are known. Each slot commonly contains a single
type of product, but mixed systems are also possible, such as in a gravity flow rack when
multiple types of products are located in a single slot (Bodnar and Lysgaard, 2014). Usually,
products are assigned to a single location, but it is possible to scatter products around the
storage area if advantageous. Weidinger (2018) states that with highly heterogeneous orders,
a highly scattered warehouse may lead to shorter picking routes on average because products
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demanded together have a higher probability of being found near each other. Some efforts
exist to estimate the picking effort when not all information is known in advance (Roodbergen
and Vis, 2006; Dijkstra and Roodbergen, 2017).

The choice of a solution method to the SLAP is heavily dependent on the capacity of forecasting
future demands. If future demands are too unpredictable, it is impossible to assert that a
storage setup is any better than another. So, in order to design a good performance measure
on the quality of a SLAP solution, it is required that some sort of forecasting exists for the
arriving orders. A simple way to forecast future picks is by observing the historical order
profiles. Simple techniques, such as the moving average or exponential smoothing, perform
well if enough information is available at the product level (Kübler et al., 2020; van Gils
et al., 2017). For products with sporadic demands, more sophisticated methods can be used,
such as the nearest neighbors forecasting methodology (Nikolopoulos et al., 2016). Analytical
functions, such as the ABC curve, are also typically used to account for demand skewness
since it is common that few products account for the majority of the demand volume (Caron
et al., 1998).

Solution methods for the SLAP are classified according to the information available about
future demands. A taxonomy for the most used methods was presented by Hausman et al.
(1976) and it is still widely in use. These are random storage, dedicated storage, and class-
based storage.

The random storage policy was originally presented in Hausman et al. (1976) as the closest-
open location heuristic. It considers that new products received in the warehouse are assigned
to the closest empty space to the I/O point, reducing the handling effort. Among its advantages
is its simplicity to use, less storage space required, and the uniform utilization of the warehouse,
which reduces aisle congestion. The downside is the longer travel times for pickers to retrieve
products (Chen et al., 2011; Kofler et al., 2014; Petersen and Aase, 2004). Tappia et al.
(2019) affirm that when fast-moving products change rapidly over time, as in e-commerce
warehouses, it is hard to implement other storage policies than the random policy. When
future demands of individual products are predictable, a better alternative is to assign those
with higher demands to better locations saving on average picking time.

The dedicated storage policy, or full turnover policy, fixes the location of high-turnover prod-
ucts to most-desired locations. It consists of sorting products using a turnover-based rule and
the locations using a distance-based rule and, then, assigning the most demanded products to
the best locations. A major drawback of this policy is that it requires a high degree of future
demand information at the product level. Also, each change in the demand rates requires a
rearrangement of products in the storage area (De Koster et al., 2007). Several rules exist
to sort products and locations. The cube per order index (COI) prioritizes heavy and fast-
moving items to be assigned to the most desired locations (Heskett, 1963). For single picking,
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COI is well known to minimize the order picking travel distance (Kofler et al., 2014). The
shortest distance to the I/O point is a common rule used. Other rules based on the storage
area layout can be found (Petersen, 1999; Van Gils et al., 2018b). The nearest-location policy,
or diagonal policy, assigns products in a diagonal pattern from the I/O point and results in
a similar rank as the shortest distance rule. The within-aisle policy ranks aisles according to
their distance to the I/O point. In the across-aisle policy, products are stored across the pick
aisles. For a multi-block layout, the nearest-subaisle policy ranks subaisles according to the
distance of their heads to the I/O point. Different studies show that each of these policies
performs well under different warehouse settings and all of them can be found in practice
(Jarvis and McDowell, 1991; Le-Duc and De Koster, 2005; Petersen, 1999; Roodbergen, 2012).

In many cases, some sort of future demand forecasting is possible, although not with very
high precision for each product. An alternative to the dedicated policy in such cases is the
class-based storage policy. It separates products into classes, again using a turnover-based
rule, and storage locations into zones then assigns each class of products to a storage zone.
The final position of a product within a class is usually determined at random. Class-based
storage policies are easier to implement than dedicated ones because they do not require a
complete list of items ranked by volume, and they require less management time than dedicated
storage policies (Petersen et al., 2004). One needs to determine the number of classes and
the zone shapes and sizes. Typically, a three-zone system, known as the ABC, is preferred
since it significantly improves the average route length without adding too much management
complexity (Hausman et al., 1976; Larson et al., 1997; Petersen et al., 2004). For the single
pick case, optimal zone shapes and sizes can be found using analytical models (Eynan and
Rosenblatt, 1994; Hausman et al., 1976; Rao and Adil, 2017). However, there is no firm
strategy on how to define class partitions when multiple picks are performed (De Koster et al.,
2007). The zone shapes are usually defined using distance-based rules (Petersen et al., 2004).
For the zone sizes, a 20/80 partition for a two-zone system, i.e., the 20% most demanded
products are in the first zone and the remaining 80% in the second, and a 20/30/50 partition
for a three-zone system are used as a rule-of-thumb (Dijkstra and Roodbergen, 2017; Le-Duc
and De Koster, 2005; Manzini et al., 2015; Pansart et al., 2018). A few studies show that the
dimensions of the zones can be defined empirically according to the skewness of the demand
distribution of the products (Petersen et al., 2004; Van Gils et al., 2018b). Their findings
show that the less skewed the demands are, the fewer savings a class-based policy generates
in the picking process compared to the random policy. Also, higher savings are obtained in
small pick lists than in larger ones. Roodbergen (2012) provides insights on the interactions
between the layout, routing, and storage policies in an ABC system, showing that the best
zone sizes change according to the policies in use.

Figure 1.2 provides an example of random and class-based policies for different distance rules.
Squares of the same color represent products classified in the same class. Note that the
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random and the dedicated storage policies are special cases of the class-based storage policy
for when the number of classes is equal to one and to the number of slots in the storage area,
respectively.

(a) Random (b) Nearest-location (c) Within-aisle

(d) Across-aisle (e) Nearest subaisle

Figure 1.2 – Storage policies

A different way to solve the SLAP is using a correlated storage policy, as introduced by Frazelle
and Sharp (1989). Products that are frequently ordered together are said to be correlated.
Storing correlated products close to each other may reduce the expected average travel dis-
tance. Correlation is defined as the joint probabilities that products appear in the same order.
Several similarity measurements are found in the literature (Chuang et al., 2012; Jane and
Laih, 2005; Xiao and Zheng, 2010). A simple and common way to calculate correlation in
practice is by counting the number of times the products were picked together (Kofler et al.,
2014). Then, products can be clustered and assigned to the same zones in the storage area
based on their correlation (Frazelle and Sharp, 1989; Rosenwein, 1994).

A different approach to the correlated policy models it as a quadratic assignment problem
(QAP), therefore not creating explicit clusters of products (Li et al., 2016; Mantel et al., 2007;
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Yener and Yazgan, 2019). In the QAP, a set of products have to be assigned to a set of slots
such that the interactions between pairs of products are minimized. Interactions are measured
by the correlation of the products and the distance between their storage locations. The QAP
requires that each product be assigned to a slot, and vice versa. In the SLAP, one extra
location representing the I/O point is considered. The correlation between products and the
I/O point may be defined as the product’s popularity (Mantel et al., 2007; Yener and Yazgan,
2019). The QAP is considered one of the hardest combinatorial optimization problems to
solve since optimal algorithms can solve only relatively small problems with a low number of
products (Drezner, 2008). Therefore, heuristic methods are popular for this problem. Kim and
Smith (2012) model the SLAP as a variant of the QAP and solve it using simulated annealing.
Li et al. (2016) consider a dynamic SLAP, model it as another variant of the QAP, and solve
using a greedy genetic algorithm. In the QAP literature, we can still find local search (Aksan
et al., 2017), tabu search (James et al., 2009a; Misevičius, 2012), memetic algorithm (Benlic
and Hao, 2015), ant colony (Dokeroglu and Cosar, 2016), and many hybrid metaheuristics
(Dokeroglu, 2015; Dokeroglu et al., 2019; López et al., 2018b; Tosun, 2015). Also, several
variants are studied, such as: the bottleneck assignment problem (Burkard, 2002), in which
the largest interaction is minimized; the biquadratic assignment problem (Burkard et al.,
1994), in which interactions between groups of four products are considered; the quadratic
semi-assignment problem (Saito et al., 2009), in which the assumption that each slot can have
only one product is relaxed; the generalized QAP (Lee and Ma, 2004), in which slots are
capacitated; among others (Hahn et al., 2008b, 2010; Knowles and Corne, 2003; Punnen and
Wang, 2016; Smith and Li, 2001). All the mentioned variants can be adapted to the SLAP as
desired.

1.1.2 Batching

An order is the combination of several items that are requested by a customer. The retrieval
of items in the storage area is done following pick lists. A pick list contains the items to
be retrieved and their respective locations in the warehouse. The order batching problem
(OBP) consists of determining which orders are placed on a pick list to be retrieved from their
storage locations by a single picker (Petersen and Aase, 2004). Combining several orders into
batches has been shown to reduce total picking time significantly. The OBP is formulated in
Gademann and Velde (2005) as a set partitioning problem solved using a column generation
algorithm. Due to its difficulty to solve, several heuristics are presented in the literature as
batching policies. The most trivial is the single order picking when each pick list is composed
of a single customer order (Renaud and Ruiz, 2008; Van Gils et al., 2018c). This strategy is
often preferred because it is easy to implement and it reduces effort on the sorting process
since order integrity is always maintained (Petersen and Aase, 2004). A similar approach is
the single item picking, where the pick list is composed of a single item. Single item picking
is mostly used in product-to-picker systems when the picker capacity or movement is limited
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so that only one item can be retrieved per route. A mix of both policies may be adopted by
a company. Renaud and Ruiz (2008) present a case study where these two policies are used
depending on the type of customer to be served. For customers that order a large number of
products, the single item picking is used, while for customers that may order any quantity of
any product, the single order picking is used.

The most prominent methods to batch multiple orders are priority rule based algorithms,
seed algorithms, and savings algorithms (Scholz and Wäscher, 2017). In priority rule based
algorithms, priorities are assigned to customer orders, then orders are assigned to batches
following these priorities. An example of a priority rule-based algorithm is the first-come-first-
serve (FCFS) batching (Van Gils et al., 2018b). In seed algorithms, batches are generated
sequentially starting from a selected order, called seed, determined by a selection rule. Then,
accompanying orders that fit in the remaining capacity of the picker are added using another
selection rule. The bin packing batching is an example of a seed algorithm (Petersen and
Aase, 2004). Several others seed choice and selection rules are evaluated in Ho and Tseng
(2006). Savings algorithms batch orders based on the time saving that can be obtained by
combining such orders into one pick list. These sophisticated algorithms are based on the
Clarke-and-Wright algorithm for the vehicle routing problem. A savings algorithm is used
in Van Gils et al. (2018b), and it is compared to the FCFS and a seed algorithm to order
batching. A description of the savings algorithm is presented in Scholz and Wäscher (2017).
All these policies are designed to provide a feasible solution to the OBP. More sophisticated
algorithms, such as local searches and metaheuristics can be used to improve the solutions
found both for a dynamic (i.e., real-time order arrival) and static (i.e., all orders known in
advance) picking (Henn et al., 2012).

If a batching is performed, a decision on the process of sorting products from different orders
has to be made. The sort-while-pick strategy allows a picker to separate items from different
orders while the picking process occurs, e.g., separating the items in different spaces of the
picking equipment. This strategy is applied when orders consist of only relatively a few small
items. The advantage is that no sorting process is needed after orders have been picked.
Alternatively, in the pick-and-sort strategy, the items are collected first and sorting activities
follow immediately after picking. In this strategy, the storage capacity of the picker may
be used more efficiently (Gademann and Velde, 2005). However, if the additional sorting
operations are too costly, any benefits gained with batching orders may quickly disappear
(Petersen and Aase, 2004).

1.1.3 Routing

When receiving a pick list, the warehouse dispatches a picker from the I/O point to collect
the items in the pick list and transport them back to it. The order picking problem (OPP)
determines the tour to be followed by the picker to optimize a performance indicator, normally
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time or distance traveled (Ratliff and Rosenthal, 1983).

Given a single pick list, the OPP can be modeled as a traveling salesperson problem (TSP)
with a special cost structure related to the warehouse layout. The TSP consists of determining
a minimum distance cycle that passes through each vertex once and only once. In the OPP,
each location to be visited, including the I/O point, corresponds to a vertex, and the distance
between two vertices is set to be the shortest distance between their corresponding locations
in the warehouse. Several formulations adapted from the TSP literature can be found for the
OPP (Pansart et al., 2018; Scholz et al., 2016).

Any warehouse layout can be represented using a TSP formulation. Even when special condi-
tions apply, like for narrow aisles (Chabot et al., 2018) or scattered storage (Weidinger, 2018),
the TSP formulation is adaptable to model the OPP. While the TSP is a hard problem to
solve, the OPP can be solved efficiently under certain conditions. Ratliff and Rosenthal (1983)
introduce an optimal algorithm for a single-block warehouse to solve it in polynomial time
using dynamic programming. For a two-block warehouse, an efficient algorithm is described
in Scholz and Wäscher (2017).

Since pick lists usually contain few picks, solving the OPP for a single pick list is not too
expensive computationally. However, when multiple pick lists are considered, the total distance
traveled is computed by solving multiple OPPs, one for each pick list. In these cases, the use
of exact approaches in sequence may result in unacceptable computing times. The alternative
option to solve the OPP in such cases is the use of heuristics.

Heuristics for the TSP may be used to solve the OPP as well. The most successful one is the
Lin-Kernighan-Helsgaun (LKH) heuristic. The LKH approximates the optimal solutions for
the OPP very well for different warehouse settings (Van Gils et al., 2018b). Other heuristics
for the OPP aims to provide simple routes that can be easily memorized and accepted by
pickers, minimizing the risk of a missed pick (Petersen, 1999). They are called routing policies
and are chosen according to the problem characteristics, such as the warehouse shape, the
number of aisles and cross aisles, the pick list size, the storage and batching policies, etc.
Van Gils et al. (2018c) provide an extensive list of studies that analyzed the impact of these
factors on the system performance given the routing policy chosen.

Several routing policies are found in the OPP literature. The first two policies allow pickers to
enter each aisle, or subaisle for the multi-block case, only once. In the aisle-by-aisle policy, a
picker traverses entire aisles that contain a product to be picked picking all required products
before proceeding to the next aisle. The best cross aisle to move to the next aisle is determined
using dynamic programming. In the S-shape, or traversal, policy, pickers traverse the leftmost
aisle that contains picks to the back of the warehouse and then return to the front picking
products one block at a time. Any subaisle containing a pick is traversed. After the last
pick in a block, the picker returns to the front of that block and continues to the next. In a
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single-block layout, aisles containing picks are entirely crossed. A return is allowed in the last
pick of the last aisle visited if it is advantageous.

The next three policies delimit a point in each aisle or subaisle where a picker cannot pass
through. The steps are taken for a single-block warehouse layout, but they can be adapted
to a multi-block case. The return policy considers that each picker enters and leaves through
the same end of aisles containing pick items, i.e., the limit point is the deepest pick in the
aisle. In the midpoint policy pickers can go as far as the middle of the aisle before returning
to leave it from the same end they entered. Exceptions are applied only for the first and last
aisles containing picks so that the picker can access the opposite cross aisle and return to the
I/O point after all picks. In the largest gap policy, pickers enter aisles as far as the start of
the largest distance between two adjacent picks in that aisle. They may also opt to avoid
traversing it if the distance between the first or last pick and the closest end of the aisle is
larger. Then, they return to leave at the same end that they entered. As in the midpoint
policy, a picker never crosses the entire aisle except in the first and last aisles containing
items. Rao et al. (2020) present a closed-form expression for the expectation of the largest
gap between consecutive picks in an aisle.

The combined policy combines the two types of decisions described before, i.e., entirely crossing
aisles or returning to leave at the same end. The picker enters an aisle as far as the deepest
pick in it. Then, a decision on either going to the end of the aisle or returning to exit at
the same end entered has to be made. The choice is made using dynamic programming by
always looking one aisle ahead to be at a better starting point for the next aisle. An example
of all six routing policies presented is shown in Figure 1.3. A detailed description of all steps
considered in these heuristics can be found in Petersen (1997) for the single-block layout and
in Roodbergen and De Koster (2001) for the multi-block layout.

The pick list size is a factor that greatly influences the performance of routing policies. Petersen
and Aase (2004) observe that for larger pick lists, the optimal routing tends to form S-shape
routes, no matter the SLAP and the OBP policies used. Also, as the average order size
increases, the use of a more complex routing policy yields minimal improvements. This is
an interesting observation because larger pick lists are harder to solve to optimality in non-
standard warehouses.

1.1.4 Interactions between the storage, batching, and routing problems

Since the SLAP, OBP, and OPP are mainly solved using heuristic policies, many studies try to
find which combinations of policies perform best under different warehouse settings. Van Gils
et al. (2018c) survey studies that investigate the combination of policies for these and other
problems found in the manual system design.

The interactions between the SLAP and the OPP are also well studied. One of the earliest
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(a) Aisle-by-aisle (b) S-shape (c) Return

(d) Midpoint (e) Largest gap (f) Combined

Figure 1.3 – Routing policies

studies is presented in Petersen (1999). He analyzes the performance of combined, largest gap,
and S-shape routing policies with within-aisle and diagonal dedicated storage policies. He
concludes that the combined and largest gap policies are good performing combinations with
the diagonal policy. S-shape combines better with within-aisle, although the other two routing
policies performed better than S-shape even for within-aisle. Van Gils et al. (2018b) investigate
the effect of other pairs of storage and routing policies concluding that the optimal routing
policy significantly outperforms all routing heuristics in all combinations of layouts tested.
Within-aisle also combines well with the aisle-by-aisle and the optimal routing (Petersen and
Aase, 2004; Theys et al., 2010). Another good combination observed is the return with across
aisle (Caron et al., 1998). For a class-based storage policy, Petersen et al. (2004) show that
savings are attainable using either optimal or S-shape routing compared to random storage, but
they are higher when a within-aisle policy is used. A different approach is to model the SLAP
considering imposed routing policies. Mantel et al. (2007) assume a specific warehouse system
(vertical lift module) and solve the SLAP for an S-shape policy. Also, Dijkstra and Roodbergen
(2017) use dynamic programming to optimally assign products for several heuristic routing
policies, showing the efficiency losses observed from the deviation of solutions obtained using
their method and the common heuristic storage policies.

The SLAP and OBP interactions are also investigated, although less intensively. Most stud-
ies only consider random and within-aisle storage in combination with the batching policies
(Van Gils et al., 2018c). Seed rules that minimize the number of aisles are preferred with a
within-aisle dedicated storage policy (Ho and Tseng, 2006). Other more sophisticated meth-
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ods, such as metaheuristics, also perform well with within-aisle (Henn and Wäscher, 2012;
Henn and Schmid, 2013; Hsieh and Huang, 2011).

In their review, Van Gils et al. (2018c) show that the OBP and OPP is the combination of S/P
problems with the highest number of papers found that investigate their interactions. These
problems can be solved in an integrated manner using mathematical programming models,
mainly for static picking. Due to the complexity of solving these models exactly, it is common
to solve them using (meta-)heuristics (Aerts et al., 2021; Briant et al., 2020; Cheng et al., 2015;
Li et al., 2017; Lin et al., 2016; Van Gils et al., 2019a). For the heuristic policies, Van Gils
et al. (2018b) observed that when the FCFS and the savings batching policies are used, the
largest gap and S-shape routing policies perform best. Meanwhile, when the seed batching
policy is used, the return routing policy performance increases significantly.

Finally, the interactions between the joint SLAP, OBP, and OPP are investigated in Kübler
et al. (2020) where metaheuristics are proposed to solve these three problems in a dynamic
context.

1.2 Robotic mobile fulfillment system

The RMFS is a relatively new category of automated S/P system (Guizzo, 2008). It was
popularized by Kiva Systems Inc., later acquired by Amazon, which largest warehouses control
thousands of robots (Fragapane et al., 2021). Since then, other providers have entered the
mobile robots market (Lamballais et al., 2020; Weidinger et al., 2018). The robots in an
RMFS are battery-powered automated guided vehicles that are guided by bar codes on the
floor to orientate them (Guizzo, 2008). They can lift pods with more than 1,000 kg and move
at a human walking speed (da Costa Barros and do Nascimento, 2021). A new generation of
autonomous robots, which do not require fixed paths in predefined points to move, is being
introduced, adding flexibility to the operating environment (Fragapane et al., 2021).

In addition to the intrinsic advantages associated with automatization, an RMFS provides
increased flexibility and scalability due to the easiness to add and remove pods and robots in
the system. They also require a relatively low investment cost even for a large fleet of robots
compared to other automated systems. Throughput rates are much higher in an RMFS
compared to manual warehouses. Due to the lifting capacity of robots, RMFS are efficient
when used in warehouses containing several small and lightweight items, which is a perfect fit
for e-commerce warehouses (Wulfraat, 2012; Boysen et al., 2019a).

The workflow in an RMFS is as follows. Products arriving at the warehouse or coming from
the reserve area are replenished into identical storage shelves, called inventory pods, with
empty storage slots brought by robots to the replenishment stations. Then, the robots move
the pods to an empty storage location into the storage area where they wait to be requested
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again. Once requested, a robot moves underneath the pod, lifts it, and brings it to a picking
station, where a stationary picker retrieves the products demanded (Boysen et al., 2017).

The storage area has a grid format, and each square represents either an aisle or a storage
location, either containing a parked pod or not. Replenishment and picking stations are
located around the storage area. Each space in the grid can be occupied by a single robot at a
time, and robots may travel under pods if required. A buffer zone exists between the stations
and the storage area where robots with pods can form a queue. An example of a RMFS
floor plan is presented in Figure 1.4. The aisles in an RMFS are typically one-way to avoid
congestion. Two-way aisles are mostly used when robots are aisle-captive, i.e., dedicated to
a designated aisle (Wang et al., 2020). Recharging stations for the robots are usually located
around the storage area. Other layouts can also be found, although they are less common in
practice (Aldarondo and Bozer, 2020; Jin et al., 2020).

Figure 1.4 – Representation of an RMFS storage area layout

Many performance measures are considered when evaluating the picking process in an RMFS.
These are usually analyzed in the literature through the use of queuing models to simulate
the dynamic arrival of orders and the movement of robots in the storage area. Azadeh et al.
(2019) classify these studies as “system analysis” since their focus is on modeling techniques
to estimate the performance of the system. The most common measure is the throughput
rate, usually given as the rate of orders treated per hour. Lamballais et al. (2017) estimate
the maximum order throughput, average order cycle time, and robot utilization of an RMFS
with different settings. Zou et al. (2017) analyze different policies for assigning robots to
stations to evaluate the retrieval throughput time. Yuan and Gong (2017) estimate the optimal
number and velocity of robots to maximize throughput time. Zou et al. (2018) estimate system
performance under different battery charging and swapping strategies, finding that inductive
charging allows a higher throughput time. Yuan et al. (2018) estimate the throughput rate for
different replenishment policies. Roy et al. (2019) analyze the effects on system throughput
for different assignment strategies for robots to storage zones considering both the picking
and replenishment processes. Lamballais et al. (2020) evaluate the optimal number of pods
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per product, the ratio of picking/replenishment stations, and the replenishment level per pod
that improves throughput. Wang et al. (2020) suggest using aisle-captive robots to improve
throughput and average order flow time. Gong et al. (2020) calculate the throughput of
an RMFS where orders are classified by their urgency determining the optimal number of
robots and stations. A simulation framework for the RMFS is provided by Merschformann
et al. (2018). It is used later in Merschformann et al. (2019) to analyze the trade-offs between
seven performance measures for different policies combinations used to solve the most common
operational problems found in an RMFS.

Following the structure suggested by Azadeh et al. (2019), another type of study found is on
“operations planning and control”. Studies in this category focus on optimizing the system
rather than simply evaluating it. Most of these studies consider problems within the RMFS
and optimize them, generally using mathematical programming and heuristics. Although
throughput measures can also be optimized, in this type of study the focus is on optimizing
different performance indicators. Examples are minimizing the distance traveled by robots
(Gharehgozli and Zaerpour, 2020; Weidinger et al., 2018), the total energy consumed (Li
et al., 2020), or the total number of pod visits to picking stations (Boysen et al., 2017; Jiang
et al., 2020; Valle and Beasley, 2021; Xiang et al., 2018; Xie et al., 2021). In a different
approach, Aldarondo and Bozer (2020) develop analytical formulas to estimate the expected
travel distances and throughput capacity as a function of the order assignment rule, the shape
of the forward area, and the location of the picking stations.

Even before its popularization, Enright and Wurman (2011) discussed several decision prob-
lems which could be considered for future research to optimize an RMFS. A literature review
on recent developments on the RMFS is provided in da Costa Barros and do Nascimento
(2021). As for the manual system, we are interested here in describing and analyzing tactical
and operational decisions for storage, batching, and routing. Merschformann et al. (2019)
provide a classification for the most common problems found to design an RMFS. Next, we
present the decisions made at some of these problems and the methods used to solve them.

1.2.1 Storage

Storage location decisions in an RMFS are divided into two distinct categories. The first
one consists of choosing the assignment of products to pods during replenishment activities.
Different than in manual systems, scattered storage is widely used in RMFS. This storage
policy reduces waiting time in an environment with multiple picking stations. This is because
if a popular product is stored in a single pod that pod may be very busy moving between
different stations, which could delay the picking process (Boysen et al., 2017; Valle and Beasley,
2021). The scattered storage also increases the probability of having pods containing multiple
products to be picked together. The “pile-on” measures the average number of picks per pod
visit, and it is also a common performance measure optimized in an RMFS. To improve the
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pile-on, several studies use correlated-based models to assign correlated products to the same
pod. As for the manual system, these models can be based on a QAP variant (Xiang et al.,
2018), clustering, (Li et al., 2020; Mirzaei et al., 2021) or other heuristic policies (Guan and
Li, 2018; Yuan et al., 2018).

The second category of storage location decisions is represented by the pod repositioning
problem (PRP) (Xie et al., 2021). The PRP consists of determining where to park a pod in
the storage area after being treated at a replenishment or picking station. When a pod is
returned, it can be repositioned in any empty storage location. Several heuristic policies can
be used to solve the PRP, most are equivalent to the policies used for the SLAP in manual
systems.

In the random policy, the pod is returned to any free storage location. The nearest policy
determines that a pod should return to the nearest empty location to the station where the
replenishment or picking was last performed, seeking an improvement in the space utilization.
In the fixed policy, the pod always returns to the same location it was previously assigned.
Usually, a turnover-based rule is applied to decide the fixed locations of the pods (Aldarondo
and Bozer, 2020; Li et al., 2020). Although this policy is commonly used in manual systems,
in an RMFS it is more advantageous to reposition the pod in a more convenient location
dynamically to save time and energy. A related method is the class-based policy, which assigns
pods to fixed zones within the storage area (Wang et al., 2020). The exact position within
the zone where the pod is parked can be defined using, for example, the random or nearest
policies. Weidinger et al. (2018) suggest considering when the pod will be required again, if
this information is available, to determine whether it is positioned closer or further away from
the station to be visited next. Following this idea, they suggest the shortest path policy, which
assigns the pod to a storage location such that it results in the shortest route considering the
previous station visited and the next one. When the set of future pod requests is known, an
optimal policy can be modeled as a scheduling problem as in Weidinger et al. (2018), or as a
TSP as in Gharehgozli and Zaerpour (2020). In both cases, the total travel distance followed
by a robot to perform all tasks is minimized. Rimélé et al. (2021) still suggest solving the PRP
dynamically since the state of storage locations, either being occupied or empty, is uncertain
due to the stochastic travel times of robots.

1.2.2 Batching

The batching problem in an RMFS defines how to assign orders to stations, called the order
assignment problem (OAP) (Merschformann et al., 2019). In the OAP orders are usually
assigned to stations in real time to improve the system throughput. So, a decision on the
order sequencing is relevant (Boysen et al., 2017; Valle and Beasley, 2021). The OBP for
a manual system differs from the OAP since orders are batched before being assigned to a
picker, improving the system efficiency.
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In an RMFS, once an order arrives, it is placed in a backlog containing all orders not yet
assigned to stations. The capacity of a station is defined as the number of orders or products
it can handle at a time. In a busy environment, where several orders are available in the
backlog, all the station capacity is used and, whenever an order is finished, another one from
the backlog has to be assigned to that station. Merschformann et al. (2019) present several
policies to solve the OAP. In the random policy, a random order from the backlog is assigned.
The FCFS policy assigns the order received first to reduce throughput times. The due-
time policy selects the order with the earliest due time, aiming to finish orders before their
deadline. The common-lines policy compares the currently assigned orders with all orders
from the backlog and selects the one with the most products in common with the objective
of increasing the pile-on. The pod-match policy selects the order from the backlog that best
matches the pods heading to the station at the moment of assignment. Merschformann et al.
(2019) show that the pod-match policy performs best since it looks at the incoming pods at
a station. A modified version of this policy is used in Xie et al. (2021) where a pick-and-sort
strategy is adopted by considering that orders can be split between several stations. This can
increase the picking efficiency at the cost of requiring additional consolidation time during the
packing process.

A growing number of papers suggest wave picking in an RMFS as a way to minimize the
number of pod visits. In wave picking, the trigger to solve the batching problem is the end
of the current wave. Thus, multiple orders can be batched and assigned together to stations.
Larger batch sizes are preferred to an energy-efficient picking (Xu et al., 2019). Usually, a
balanced workload among pickers is considered, such that approximately the same number
of picks is performed in each station in each wave (Valle and Beasley, 2021). The batching
problem is formulated such that a known set of orders is separated into different batches and
each one is assigned to a station. Due to the balanced workload, it is expected that all stations
finish their job almost simultaneously. Then, the next wave of batched orders is assigned to
the stations, and so on. Variants of this problem are formulated and solved in Boysen et al.
(2017); Jiang et al. (2020); Valle and Beasley (2021); Xiang et al. (2018).

1.2.3 Routing

Since pickers are stationary, the routing problem in an RMFS considers the paths traveled by
robots within the storage area. Robots cycle between picking pods, carrying them to stations,
returning them to empty storage locations, and moving to the next pod demanded. This is
called a dual command cycle. Each of these trips follows a path computed using any shortest-
path algorithm, such as the A∗, for a collision-free path considering other robots’ locations and
static obstacles on the floor (Kumar and Kumar, 2018; Li and Liu, 2016). Although routing
costs can be measured in function of the total distance traveled by robots, a better measure
is to convert it to energy consumption, since in an automated warehouse the electricity costs
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are prevalent (Pazour and Carlo, 2015). Models that estimate the energy consumed by robots
in operation in an RMFS are found in Li et al. (2020) and Zou et al. (2018).

Once the storage and batching problems are solved, a task is sent from a central server to
robots to retrieve the pods that contain the products demanded. The particular robots chosen
have to be defined. The task allocation is optimized by considering the arrival sequence of
tasks and the position of robots (Li and Liu, 2016; Zhou et al., 2014).

Due to the scattered storage, deciding which pod to select for transportation is also a decision
in an RMFS, known as the pod selection problem (PSP). Merschformann et al. (2019) also
present several policies to solve the PSP. The random policy selects a pod that contains at
least one product in the orders assigned to the station. The nearest policy selects the pod
located in the nearest position to the station according to the path planning solution. The
pile-on policy selects the pod containing the most products demanded in the orders assigned
to the station. The demand policy selects the pod containing the most products demanded
in the backlog. The lateness policy aims to fulfill late orders by selecting pods with products
needed to fulfill them. Finally, the age policy aims to finish the oldest orders of a station by
selecting a pod containing the products needed to fulfill the oldest order.

1.2.4 Interactions between the storage, batching, and routing problems

The interactions between the PRP, OAP and PSP are investigated in Merschformann et al.
(2019). After a series of experiments, they observe some cross-dependencies between different
combinations of policies used to solve these problems. For example, the demand policy for the
PSP is among the best and worst performing combinations of policies depending on the other
policies used. Aldarondo and Bozer (2020) study the expected dual command distances as a
function of the PRP and PSP policies combinations, the shape of the storage area, and the
configuration of the stations around it. Two combinations of policies are investigated: random
PRP with random PSP and fixed PRP with nearest PSP. They show that the latter yields an
expected route length up to 65% lower than the former.

Several studies propose the integration of the OAP and PSP. After deciding the allocation of
products to pods, Xiang et al. (2018) model the OAP as an OBP in which a predefined number
of batches have to be created to minimize the number of pods visits. Jiang et al. (2020) propose
a model for wave picking where replenishment decisions are integrated with the OAP and PSP.
Xie et al. (2021) propose another model where decisions are made periodically considering the
pods currently available in the stations and that orders can be split among stations or split
over periods. Valle and Beasley (2021) propose a model that integrates the OAP and PSP
and, then, the sequence that the pods visit the stations is defined. Finally, Zhuang et al.
(2021) integrate the OAP and PSP with the order and pod sequencing problems using a linear
programming model and solve large instances using a metaheuristic. No study was found that

23



integrated these two problems with the PRP.

1.3 Literature analysis and research directions

The previous sections introduced some of the most commonly solved tactical and operational
problems for the planning of manual and RMFS warehouses. For the manual system, the most
observed effort in the literature is undoubtedly the analysis of the interactions between the
problems. On their review, Van Gils et al. (2018c) found 61 papers dealing with combinations
of these planning problems, mostly published in the last decade, which shows the strong recent
trending of such publications. For the RMFS, however, the literature is still too recent and
little attention has been given to analyze the interactions between multiple problems.

The integration of problems is even less studied. For both systems, integrated decisions are
mostly for the joint routing and batching problems. Although manual systems are being
studied for decades, almost all integrated approaches found by Van Gils et al. (2018c) were
published in the last years. This is mainly because integrated models are usually hard to be
solved since they may result in nonlinear or stochastic programming models.

Heuristics as an alternative for optimal approaches are found. The most commonly used are
the simple policies presented here, which are proposed to deal with each problem individually.
Since most studied problems are assignment problems, the pairwise exchange local search is
also commonly used to improve solutions. It is found at least in Ho and Tseng (2006); Renaud
and Ruiz (2008); Scholz and Wäscher (2017); and Xiang et al. (2018). We also found many
metaheuristic approaches used to diversify the search for the optimal solution. They include
tabu search (Chen et al., 2011), simulated annealing (Ho and Tseng, 2006; Kofler et al., 2011,
2014; Pazour and Carlo, 2015), genetic algorithm (Carlo and Giraldo, 2012; Guan and Li,
2018), variable neighborhood search (Jiang et al., 2020), and adaptive large neighborhood
search (Chabot et al., 2018; Gharehgozli and Zaerpour, 2020; Weidinger et al., 2018; Zhuang
et al., 2021).

From this literature analysis, we summarize the research opportunities observed as follows:

• Integration within storage decisions: most of the studies integrating warehouse de-
sign planning problems consider only batching and routing decisions. The integration of
these with storage decisions is important due to the interdependencies of these problems;

• Different performance measures: Most of the formulations found for manual sys-
tems are focused on optimizing the same performance measures (time or distance). Other
measures, such as pick accuracy and service level, require more investigation. For exam-
ple, scattered locations could increase the probability of pick errors due to the increasing
complexity of the storage area setup. For the RMFS, most studies focus on maximizing
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order throughput rates without considering the implications on operational costs. More
attention should be given to better evaluate the efficiency of this system, for example,
measured by the energy consumption of robots;

• S/P systems comparison: the comparisons between the manual system and the
RMFS found are mostly qualitative. No study directly compares the trade-offs between
an increased order throughput provided by the RMFS with the costs to implement it.
Future studies should provide clear guidelines on when it is more advantageous to change
from one to another, which can help managers to adopt the use of automated vehicles
in other distribution centers than for e-commerce;

• Congestion effects: Warehouses are very dynamic environments, and studies that
consider congestion in the manual system literature are still scarce. The analysis of stor-
age and picking processes without considering congestion effects can lead to misleading
conclusions in most modern warehouse systems. So, the effect of congestion on opera-
tional decisions and performance measures is another topic with great opportunities to
research;

• Human factors and new technologies: despite the increasing automation of S/P
systems, they still rely largely on manual human work. The interaction between humans
and new technologies in S/P systems is a topic largely neglected. The impacts of the
introduction of new technologies in warehouses, such as virtual reality, augmented reality,
exoskeletons, and automated vehicles, should be more investigated. It is still unclear how
they will affect the performance of the pickers and of the S/P systems overall;

• New optimization methodologies: The advances in computational power and new
business analytics methodologies open an opportunity to reinvestigate classical opti-
mization problems found in warehouses using more powerful tools. Parallel computing,
machine learning, and stochastic optimization are some of the fields offering novel tools
that can be used to solve problems otherwise considered infeasible to be modeled and
solved;

• Adapt classical methods to modern systems: Although the RMFS is a relatively
new system, many techniques used to solve problems for other systems can be adapted
to it. Studies are showing that storage problems in an RMFS can be solved efficiently
using storage policies for the manual system. The same can be said about routing and
batching. Future research should account for the advantages and disadvantages of using
classical solution methods against most sophisticated ones, thus providing convincing
arguments to managers and pickers to accept the changes.
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1.4 Conclusions

This chapter addressed the most common tactical and operational problems in the warehousing
literature to design manual and robotic mobile fulfillment systems. Specifically, decisions
related to storage, batching, and routing are described and a brief overview of studies that
investigate them is provided.

The problems investigated have been shown to have interdependencies not yet fully investi-
gated. They are usually solved sequentially and their interactions are evaluated for different
solution approaches, such as for simple policies. The recent development of sophisticated
optimization tools and the improvement in computational capacity is opening new research
opportunities to investigate problems that otherwise could not be solved. For this reason, the
number of studies proposing to integrate them using a single and general framework is grow-
ing. In this thesis, we use many modern techniques to integrate and solve storage, batching,
and routing problems found in the manual and RMFS.
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Chapter 2

Integrating storage location and order
picking problems in warehouse
planning

Chapter information A paper based on this chapter is published in Transportation Re-
search Part E: Logistics and Transportation Review : A. Silva, L. C. Coelho, M. Darvish, and
J. Renaud. Integrating storage location and order picking problems in warehouse planning.
Transportation Research Part E: Logistics and Transportation Review, 140:102003, 2020.

Résumé

Dans ce chapitre, les problèmes d’affectation des produits et de prélèvement des marchandises
dans un système manuel d’entreposage sont intégrés. Dans ce problème, nous voulons affecter
des produits à des emplacements de stockage afin de minimiser la distance totale parcourue
pour cueillir l’ensemble de produits commandés. Nous avons modélisé le problème intégré et
d’autres quatre cas particuliers qui imposent des politiques de routage (retour, forme de « S »,
point milieu et l’intervalle le plus grand) pour l’arrangement en un seul bloc. Les modèles sont
linéarisés à l’aide de techniques de linéarisation simples. Nous résolvons ces modèles à l’aide
d’un solveur commercial pour des instances artificielles qui simulent les entrepôts couramment
rencontrés en pratique. Les résultats montrent que ces modèles sont limités à résoudre des
problèmes à petits entrepôts et à peu de commandes. Comme alternative, nous présentons une
métaheuristique générale de recherche de voisinage variable qui s’avère très efficace pour les
petites instances. Pour des entrepôts plus grands et avec plus de prélèvements, nous montrons
que notre métaheuristique améliore considérablement les solutions générées par les politiques
de stockage communes.
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Summary

In this chapter, we investigate the integration of the storage location assignment and the or-
der picking problems for a manual warehousing system. The objective of the problem is to
assign products to storage locations to minimize the total route length traveled by pickers to
fulfill a set of orders known. We modeled the integrated problem and four special cases for
the single-block layout with imposed routing policies (return, S-shape, midpoint, and largest
gap). The models are linearizes using simple linearization techniques. We perform compu-
tational experiments with a commercial solver on instances generated to simulate warehouse
settings commonly found in practice. The results show that the effectiveness of these mod-
els is limited to small warehouses and few orders. As an alternative, we present a General
Variable Neighborhood Search metaheuristic, which is observed to be very efficient for those
small instances. For larger warehouses and with more picks, we show that our metaheuristic
significantly improves solutions generated by common storage policies.

2.1 Introduction

The most resource-intensive process performed in a warehouse is the order picking activity
(Scholz and Wäscher, 2017), which is highly dependent on the storage location policy used.
The storage location assignment may be performed immediately after the reception of a prod-
uct or periodically. Its purpose is to place products in convenient locations where they can be
easily picked during the picking process. Order picking refers to the activities performed to
retrieve products from their storage locations to satisfy demands specified by customer orders.
Due to labor intensity in such systems, the order picking process alone concentrates 50 to 75%
of the total operating costs for a typical warehouse (Frazelle, 2016). Thus, warehouses are
often optimized for cost-efficient order picking.

The problem of deciding where to locate products in a warehouse is known as storage loca-
tion assignment problem (SLAP). It consists of determining the most efficient assignment of
products to locations in order to minimize the total handling effort. The order in which the
products are collected is determined by a routing strategy to be followed by the pickers in a
problem known as order picking problem (OPP). The SLAP solution is an input of the OPP,
since routes can be created only after product locations are known. At the same time, a SLAP
solution can only be evaluated when the strategy to solve the OPP is known.

The SLAP and OPP as individual problems have been extensively studied (De Koster et al.,
2007; Gu et al., 2007). When considered together, they are usually solved sequentially for
different combinations of storage location and picking policies. These policies are usually very
simple heuristics used to create a solution for each problem. They present advantages such as
being easily memorized, reducing costs caused by pick errors, and they are easily accepted by
the pickers (Petersen and Aase, 2004; Petersen et al., 2004).
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Traditionally, SLAP is considered to be a tactical problem, while the OPP is an operational
one. However, since the warehouse environment is dynamic, there is a need to continuously
shift the location assignments of products. In a dynamic slotting strategy, the storage area of
a warehouse is reorganized more frequently. Reassignments can occur, for example, on a daily
(Kim and Smith, 2012) or monthly (Kofler et al., 2014) basis specifically for each pick wave or
“period”. When multiple periods are considered, the storage area can be reorganized between
each period in order to minimize the total travel distance by all pickings and reassignments.
SLAP solutions are evaluated by calculating the exact routes that will be performed to retrieve
the products demanded during a period. Thus, the storage allocations may be updated more
frequently in order to optimize pickings performed during the considered period. Nevertheless,
little attention had yet been given to integrating these two problems in warehouse planning
(Van Gils et al., 2018c).

In this paper, we integrate the SLAP and OPP and solve them as a single problem that
we name as storage location and order picking problem (SLOPP). We present a cubic mixed
integer programming (MIP) model to solve the general integrated SLOPP, which does not
assume any specific warehouse layout. However, we cannot ignore that heuristic routing
policies are still widely used, so we also present MIP models to solve non-integrated versions
of the SLOPP. In these versions, the picking is performed using well known heuristic routing
policies as return, S-shape, midpoint and largest gap. We name these non-integrated versions,
respectively, SL+Re, SL+Ss, SL+Mp and SL+Lg. As special cases of the integrated SLOPP,
a feasible solution for any of them is clearly a feasible solution for the SLOPP itself. The
four special cases are mathematically modeled considering the most common warehouse layout
found in practice, i.e., the rectangular single-block layout with multiple aisles. We also propose
a General Variable Neighborhood Search (GVNS) metaheuristic framework to approximate
optimal solutions for the SLOPP and its special cases. Computational experiments attest to
the effectiveness of the GVNS in solving the problems for the small instances. We also test
it for regular size instances, as used in literature, to analyze the advantage of solving the
integrated version of the problem. We show that optimizing storage location assignments can
yield large gains in the picking performance when compared to arranging the storage locations
using common storage policies, regardless of which routing policy is used to solve the OPP
subproblem.

The remainder of this paper is organized as follows. In Section 2.2, we review the literature
of the SLAP and the OPP. The MIP models for the general and integrated SLOPP and its
four special cases are presented in Section 2.3. The proposed GVNS is presented in Section
2.4. Section 2.5 provides the computational experiments results. In Section 2.6 we discuss the
practical implications of this research. Finally, our conclusions follow in Section 2.7.
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2.2 Background on the storage location assignment and order
picking problems

We present a brief review on the SLAP and OPP. For complementary information, we refer
to the literature reviews in De Koster et al. (2007); Gu et al. (2007, 2010); Reyes et al. (2019)
and Van Gils et al. (2018c).

2.2.1 Storage location assignment problem

Problems that involve the assignment of products to storage locations in the warehouse are
known as SLAP. Several different performance measures to be optimized and constraints can
be considered. The most commonly used is associated with the space and distance, which
includes the minimization of travel distances (Reyes et al., 2019). This problem considers the
storage area layout, the set of orders to be fulfilled and assumes a picking policy. The SLAP
was introduced by Hausman et al. (1976) for an automated warehouse, and it has been widely
studied since then (e.g., Carlo and Giraldo (2012); Kofler et al. (2014)).

The SLAP is related to the quadratic assignment problem (QAP), which is considered to be
one of the hardest combinatorial optimization problems to solve optimally due to its nonlinear
objective function (Drezner, 2008). In their review, Reyes et al. (2019) report that although
exact methods exist to solve SLAP variants, such as those based in clustering and affinity-
based assignment techniques (e.g., Chuang et al. (2012); Li et al. (2016); Ming-Huang Chiang
et al. (2014)), they usually are not used due to the complexity of the problem.

Since SLAPs are very hard problems to solve using exact methods, typically simple heuristics
are used to generate the product assignments. These heuristics are typically divided into the
random, dedicated, and class-based categories. This taxonomy was presented by Hausman
et al. (1976) and it is still widely in use. The choice of the most appropriate policy depends
on the available product information (Carlo and Giraldo, 2012; Gu et al., 2007).

The random storage consists of the random assignment of products to locations in the storage
area. Its main advantage is its simplicity, but the downside is obviously the longer travel
times for pickers to retrieve products (Chen et al., 2011; Kofler et al., 2014; Petersen and
Aase, 2004). Tappia et al. (2019) also point that when fast moving products change rapidly
over time, like in e-commerce warehouses, it is hard to implement other storage policies than
the random one. The dedicated storage policy fixes the location of high-turnover products to
“best” locations. Products are sorted using a demand based rule and locations sorted based on
the distance to the I/O point and, then, the best products are assigned to the best locations.
Several rules used to sort products and locations are discussed in literature (Kofler et al., 2014;
Petersen, 1999; Van Gils et al., 2018b). The class-based storage policy is an alternative for
when demand forecasting is possible but not very precise for each individual item. The class-
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based policy divides products into classes and storage locations into zones, then assigns each
class to a zone. The final position of a product within its zone is usually determined randomly.
A different way to classify items is by their affinity. Items that are frequently ordered together
are said to be affine. Some studies (Mantel et al., 2007; Yener and Yazgan, 2019) use the
QAP formulation to allocate products based on affinity, although not creating explicit classes.
References for studies that use affinity-based rules in the classification of products are found
in Kofler et al. (2014).

Figure 2.1 provides an example of random and class-based policies (diagonal and within-aisle
metrics). Squares with the same background color represent products with similar demand.
We note that the random and the dedicated storage policies are special cases of the class-based
one for when the number of classes is equal to one and to the number of products to be located,
respectively.

(a) Random (b) Diagonal (c) Within-aisle

Figure 2.1 – Storage policies

2.2.2 Order picking problem

The objective of the OPP is to optimize a performance measure, e.g., minimize time or distance
traveled by the picker. For pick lists with only one product, the OPP optimal solution is easily
generated by solving a shortest path problem for the round trip between the I/O point and the
product location. For a pick list with products in multiple locations, an optimal OPP solution
is obtained by solving a special case of the Traveling Salesman Problem (TSP) (Applegate
et al., 2007), given that there is enough capacity for the picker to retrieve all products in only
one route. In the OPP, each item in the pick list, as well as the I/O point, corresponds to a
vertex and the distance between two vertices is set to be the shortest distance between their
corresponding locations in the warehouse. Formulations for the OPP adapted from the TSP
literature are found in Pansart et al. (2018) and Scholz et al. (2016).

Any warehouse layout can be represented using a TSP formulation. Even when special con-
ditions apply, like for narrow aisles (Chabot et al., 2018) or scattered warehouses (Weidinger,
2018). While the TSP is a hard problem to solve, the OPP can be solved efficiently under cer-
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tain conditions. Ratliff and Rosenthal (1983) introduce an optimal algorithm for a rectangular
single-block warehouse which is solvable in polynomial time using dynamic programming. The
two-block case is described in Scholz and Wäscher (2017). Heuristics used for the TSP may
be used to solve the OPP as well. The most successful one is the Lin-Kernighan-Helsgaun
(LKH) (Helsgaun, 2000). Theys et al. (2010) used LKH to approximate optimal OPP routes
reporting an average optimality gap of 0.1% for different warehouse settings.

While LKH searches for near-optimal OPP solutions, certain routing policies provide simple
solutions that can be easily memorized and executed by the pickers. These routing policies
are chosen according to the problem characteristics, such as warehouse shape, number of
aisles and cross aisles, pick list size, and the storage and batching policies. Van Gils et al.
(2018c) provided an extensive list of studies that analyze the interaction of these factors on
the performance of the chosen routing policy.

Several routing policies are found in the OPP literature. The return policy considers that each
picker enters and leaves through the same end of aisles containing pick items. In the S-shape
policy, also known as traversal policy, a picker enters an aisle that contains a product to be
picked and traverses it until its end. A return is allowed in the furthest location containing a
pick of the last aisle visited, if it is advantageous (Roodbergen and De Koster, 2001). In the
midpoint policy, pickers are able to go as far as the middle of the aisle before returning and
leaving the aisle from where they entered. Exceptions are applied for the first and last aisles
containing items so that the picker can access the opposite cross aisle and return to the I/O
point after picking all items. In the largest gap policy, pickers enter aisles as far as to the point
where the item that has the largest gap to another item, or the closest cross aisle, is located.
Gaps are calculated as the distance between two adjacent items in the aisle or, if the item is
the first or last item in the aisle, the distance between this item and the closest cross aisle.
Then, the pickers return and leave at the same end that they entered. As in the midpoint
policy, a picker never crosses the entire aisle except for the first and last ones containing items.
Other policies include the combined and the aisle-by-aisle (Petersen, 1997; Roodbergen and
De Koster, 2001). Examples of each of these routing policies are presented in Figure 2.2,
along with the optimal route and its cost in parentheses. Although most policies presented
here are for a single-block layout, they are easily adaptable to multi-block cases (Roodbergen
and De Koster, 2001).

2.2.3 Discussions on the interactions between SLAP and OPP

When analyzing the SLAP and OPP simultaneously, the main question raised is which OPP
policy performs the best for a given SLAP policy, and vice-versa. When deciding the route
in the OPP, the product locations must be known prior to solving the problem. Nevertheless,
the storage locations may be determined even if a routing strategy is not assumed a priori.
Studies that analyze the interactions between the two problems consider that the SLAP and

32



(a) Optimal (76) (b) S-shape (98) (c) Return (102)

(d) Midpoint (90) (e) Largest gap (88)

Figure 2.2 – Routing policies

the OPP are solved in sequence. First, products are allocated to storage locations using a
storage policy. Then, different routing policies are tested and their performances are evaluated
to determine the overall performance of the system. Table 2.1 presents an overview of the
studies that considered multiple policies for the SLAP and the OPP to analyze well-performing
combinations under different circumstances.

Table 2.1 – Overview of the papers that investigated multiple storage and routing policies

Reference
Storage policies Routing policies

Random Class-based Dedicated Optimal HeuristicDemand Distance Demand Distance
Chan and Chan (2011) COI Wa/Ot Ss/Re/Ot

Chen et al. (2010) Fr Wa/Ot Ss/Re/Lg/Ot
Dekker et al. (2004) Fr Wa/Ot Ss/Mp/Lg/Ot

Dijkstra and Roodbergen (2017) Fr Di/Wa/Ot Ss/Re/Mp/Lg
Hsieh and Huang (2011) Fr Wa Ss/Ot
Hsieh and Tsai (2006) Fr/Af Di Ss/Re
Pan and Wu (2012) Fr Di/Wa/Aa Ss/Re/Ot
Petersen (1999) Fr Di/Wa Ss/Lg/Ot

Petersen and Aase (2004) Fr Wa Fr Wa Ss/Ot
Petersen et al. (2004) Fr Di/Wa/Ot Ss

Quader and Castillo-Villar (2018) Fr Wa/Ot Ss/Re/Mp/Lg
Roodbergen et al. (2015) Fr Di/Wa/Ot Ss/Re/Lg/Ot

Theys et al. (2010) Fr Wa Ss/Lg/Ot
Van Gils et al. (2018a) Fr Wa/Ot Ss/Re/Mp
Van Gils et al. (2018b) Fr Di/Wa/Ot Ss/Re/Lg/Ot
Van Gils et al. (2019b) Fr Di/Wa/Ot Ss/Re/Mp/Ot

*Fr: Frequency-based, Af: Affinity-based, COI: Cube per order index, Wa: Within-aisle, Di: Diagonal, Ss: S-shape,
Re: Return, Mp: Midpoint, Lg: Largest gap, Ot: Other

When demands are known only at the product level, i.e., we have a good approximation of
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the number of times each product will be ordered, the best way to solve the SLAP is using a
simple storage policy due to the uncertainties involved in the batching of orders to create pick
lists. In this case, it is useful to know the interactions between storage and routing policies so
that a good combination is used. Otherwise, when demands are known at the order level, i.e.,
we know not only the demand of each product but also the products contained in each pick
list, it is possible to precisely evaluate SLAP solutions by calculating the exact routes that
will be performed to retrieve the products in each picking route. This might be the case of
markets with stable demands or those in which customers order with more antecedence, such
that picking may be performed in waves (Kim and Smith, 2012). This approach is possible
even on some unstable markets depending on the availability of data to forecast demands. In
such situations, companies may decide to perform reassignment operations to better place the
products, for example, in the beginning of the day or the week, in order to minimize picking
effort during the period (Kofler et al., 2014).

All cited studies so far consider the decisions on both problems are made sequentially. The
integration of location and routing decisions is not new and has proved to be beneficial both in
warehousing (Van Gils et al., 2018b,c) and in general logistics problems (Nagy and Salhi, 2007;
Salhi and Rand, 1989). If the routing policy is given as an input for the SLAP, and future
orders are known or predictable, the storage area setup can be determined optimally for that
policy. For instance, Boysen and Stephan (2013) model a SLAP with return routing using
dynamic programming considering a layout with only one rack (half-aisle), also proving the
NP-hardness of the case with a single aisle. Although some studies explore SLAPs with the
assumption of a routing policy, only Mantel et al. (2007) and Dijkstra and Roodbergen (2017)
consider a manual picker-to-parts warehouse with demands known at the product or order
level, and optimal assignments at single storage locations level in a more complex layout than
with a single aisle. They also compare solutions obtained for the optimal SLAP for different
routing policies. However, Mantel et al. (2007) assume a specific warehouse system (vertical
lift module) and present an MIP for the SLAP with an S-shape routing policy where a return
is not allowed in the last aisle. Compared to them, we do not assume any specific warehouse
system, and we present a mathematical model for the problem with a slightly different S-shape,
besides other routing policies. Dijkstra and Roodbergen (2017) present a mathematical model
to generate near-optimal storage location assignments using dynamic programming for the four
routing policies presented here. The route lengths are calculated from picking probabilities
for product retrieval instead of static pick lists as considered here. Their findings confirm the
best combinations of storage and routing policies, e.g., return combines with diagonal, S-shape
with within-aisle, and largest gap and midpoint both with within-aisle, among other storage
policies. However, Dijkstra and Roodbergen (2017) did not evaluate the SLAP performance
for the optimal OPP solution, which is one of the objectives of this study.
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2.3 Mathematical models

In this section, we present MIP models to solve the general integrated SLOPP, as well as the
four special cases considered here (SL+Re, SL+Ss, SL+Mp and SL+Lg). The general SLOPP
model is derived from a TSP one. It is designed to accept any warehouse structure, so it is
not required to know specific layout parameters a priori, such as the number of aisles, number
of slots, etc. After, we adapt it to the special case of a rectangular single-block warehouse
layout, which is also used as a reference to model the other four SLOPP special cases. Finally,
the linearization technique used for all nonlinear models is briefly described.

2.3.1 General integrated SLOPP

A general formulation for the SLOPP is described next. The term general is used to indicate
that the problem does not assume any storage layout. This is the most integrated and flexible
version of the problem as it does not assume any policy or heuristic underneath. We consider
a set L = {1, . . . , L} of locations representing the slots available, and L∗ = L ∪ {0} the set
including location 0 representing the I/O point. A set P = {1, . . . , P} of products to be
located is defined, with P∗ = P ∪ {0} being the set that includes a dummy product 0 that
is assigned to the I/O point. Each product in P must be assigned to exactly one location in
L, thus P ≤ L. Products not demanded by any order may be ignored from P without loss of
generality of the model. A set O = {1, . . . , O} of orders is known, and each order o contains
a pick list Qo ⊂ P∗, so that the products to be picked in each route are known in advance.
Although we consider here a pick-by-order environment, where pick lists are composed solely
of products from a single order, Qo can also represent a previously defined batch of different
customer orders that will be picked together without loss of generality. Since all routes start
and end in the I/O point, the product 0 is contained in all pick lists. The matrix D = {dij}
represents the cost (distance, time, etc.) for a picker to move from location i to location j.
Note that values in D can be set to zero to represent products located in the same location.
The binary routing variable xoij is equal to one if the route to pick the items in the o-th order
contains the path going from location i to location j, or zero otherwise. We assume that
there is enough capacity for the picker to retrieve all products from o in only one route. The
assignment variable yki is also binary and equals to one if product k is assigned to location i.
y00 = 1 is defined to locate the I/O point at location 0. Finally, we define auxiliary variables
uok, which are used to create a valid route for order o, representing in which position product
k ∈ Qo \ {0} is retrieved in the route. The general SLOPP is formulated as follows:

Min
∑
o∈O

∑
k∈Qo

∑
l∈Qo\{k}

∑
i∈L∗

∑
j∈L∗\{i}

dijx
o
ijykiylj , (2.1)
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subject to ∑
i∈L

yki = 1, ∀k ∈ P, (2.2)∑
k∈P

yki ≤ 1, ∀i ∈ L, (2.3)∑
k∈Qo

yki =
∑

j∈L∗\{i}

xoij , ∀o ∈ O, i ∈ L∗, (2.4)

∑
k∈Qo

ykj =
∑

i∈L∗\{j}

xoij , ∀o ∈ O, j ∈ L∗, (2.5)

uok − uol + |Qo|xoijykiylj ≤ |Qo| − 1, ∀o ∈ O, k, l ∈ Qo \ {0}, k 6= l, i, j ∈ L∗, i 6= j, (2.6)

0 ≤ uok ≤ |Qo| − 1, ∀k ∈ Qo \ {0}, o ∈ O, (2.7)

xoij ∈ {0, 1}, ∀o ∈ O, i, j ∈ L∗, i 6= j, (2.8)

yki ∈ {0, 1}, ∀k ∈ P, i ∈ L∗. (2.9)

The objective function (2.1) minimizes the total routing cost. Constraints (2.2) assign each
product to exactly one location. Constraints (2.3) define that each location can have no more
than one product assigned to it. Constraints (2.4) and (2.5) link the assignment and routing
variables. They ensure that when there is a product k in order o located in a certain slot, then
one path must be chosen that leaves and enters this slot. Constraints (2.6) eliminate subtours
in the routes by guaranteeing that if product k is located in i, product l is located in j, and
slot j is visited after slot i in the route, then uol > uok, where l and k are products in the pick
list. These constraints are derived from the Miller-Tucker-Zemlin (MTZ) formulation for the
TSP as presented in Scholz et al. (2016) for the OPP. Constraints (2.7) define the bound of
the auxiliary variables, while constraints (2.8) and (2.9) define the domain of the routing and
assignment variables, respectively.

We now describe the specific warehouse layout case examined in this paper. We consider a
picker-to-product system for a rectangular warehouse with a single block. This is a common
layout studied in literature (Dijkstra and Roodbergen, 2017; Petersen and Aase, 2004; Rood-
bergen and De Koster, 2001). The storage area has a set A = {1, . . . , A} of parallel aisles
with a set B = {1, . . . , B} of rows of slots. Each row, including those in the first and last
aisles, contains two slots, i.e., one in the left rack and another in the right rack. We ignore the
distance between the two slots in the same row (two-sided picking). We denote (a, b) as the
slot located in aisle a and row b. Due to the two-sided picking, we can ignore if it is on the
left or right side of the row. A cross aisle exists both in the front and the back of the aisles.
The distance a picker has to move from the entrance of an aisle to the entrance of an adjacent
aisle is equal to M . Each slot has the capacity for a product with a sufficient number of single
items meaning that no replenishment is needed during the picking. All products have the same
physical requirements (space, temperature, etc.). Two neighbor rows within the same aisle
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have distance N , which is also the distance a picker has to travel to move from the head of
the aisle in any cross aisle to the first row in the aisle. Pickers may perform a return anywhere
at no cost, which is a common assumption when the picking equipment allows back and forth
movement change with no additional effort. The effects of congestion is negligible, i.e., time
to remove items is small enough to avoid pick-column blocking, and aisles allow picker passing
each other, avoiding in-the-aisle blocking. Finally, an I/O point is located at the head of the
first aisle. We illustrate this setting in Figure 2.3. It represents the floor plan of a warehouse
with A = 5 aisles and B = 5 rows in each aisle.

Figure 2.3 – Representation of a warehouse with two-sided parallel aisles in a single block

In order to solve the SLOPP for the single-block warehouse, the cost matrixD is determined by
solving a special case of the shortest path problem between every pair of slots. The minimum
distance dij between two slots located in i = (ai, bi) and j = (aj , bj) is calculated as:

dij = M(|ai − aj |) +

N |bi − bj |, if ai = aj ,

N min{(bi + bj), (2B + 2− bi − bj)}, otherwise.
(2.10)

The first term gives the distance traveled in the cross aisles, while the second term gives the
distance within-aisle either when both slots are in the same aisle or when they are in different
aisles. The min function represents the decision of using the cross aisle in the front or in the
back of the storage area to change aisles. The SLOPP may now be solved using the distance
matrix as defined.

2.3.2 Storage location with different routing policies

It is also possible to model reductions of the SLOPP for the special case of a single-block
warehouse when considering any routing policy other than the optimal one, which we refer to
as SL+routing policy.

Consider DCA
o as being the distance traveled by the picker in the cross aisles and DWA

o as the
distance traveled within the aisles to pick products from order o. For any routing strategy,
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the objective of the problem is to minimize the total distance traveled to fulfill all required
orders given as

min
∑
o∈O

(
DCA
o +DWA

o

)
. (2.11)

In order to calculate DCA
o and DWA

o , we should define the locations of the products to be
picked in each route. Considering the set of products (P) to be located, and the single-block
layout as described in Section 2.3.1, we define the binary location variable ykab as equal to
one if product k ∈ P is assigned to the slot located in (a, b), and zero otherwise. Thus, the
following constraints can be used to assign all products in P to locations (constraints (2.12))
such that no location has more than two products (2.13), one on each side. Thus, DCA

o and
DWA
o are functions dependent of y.∑

a∈A

∑
b∈B

ykab = 1, ∀k ∈ P, (2.12)∑
k∈P

ykab ≤ 2, ∀a ∈ A, b ∈ B, (2.13)

ykab ∈ {0, 1}, ∀k ∈ P, a ∈ A, b ∈ B. (2.14)

For the sake of easiness to understand the models, we define new auxiliary variables to compute
DCA
o and DWA

o for different routing policies instead of representing them by a function of y.
We summarize in Table 2.2 the new auxiliary variables used in the four models we designed to
solve the storage location (SL) with return (SL+Re), S-shape (SL+Ss), midpoint (SL+Mp),
and largest gap (SL+Lg) routing policies, also indicating in which models they are used.

Table 2.2 – Notation of the models

Variable Description Re Ss Mp Lg
foa Furthest row containing a pick in aisle a
zoa If there is a pick in aisle a
vo Last aisle containing a pick
voa If aisle a is the last aisle containing a pick
ko Auxiliary variable used to calculate sSS

o

sSS
o (S-shape special case) If the number of aisles with picks is odd
f1
oa Furthest row from lower cross aisle below midpoint containing a pick in aisle a
f2
oa Furthest row from upper cross aisle above midpoint containing a pick in aisle a
z1oa If there is a pick in a row below midpoint in aisle a
z2oa If there is a pick in a row above midpoint in aisle a
u2
o First aisle containing a pick above midpoint

u2
oa If aisle a is the first aisle containing a pick above midpoint

sMP
o (Midpoint special case) If u2

o 6= 0 and u2
o 6= vo

wMP
oa If aisle a is neither the first aisle above midpoint nor the last aisle with a pick
Goa Largest gap between two neighbor picks or a pick and a neighbor cross aisle in aisle a

goab
Gap between a pick in row b ∈ B ∪ {0} to nearest pick in another row or cross aisle in
aisle a. When b = 0 we have the largest gap from the lower cross aisle to the first pick

hoab Auxiliary variable used to calculate the largest gap
uo First aisle containing a pick
uoa If aisle a is the first one containing a pick
sLG
o (Largest gap special case) If uo 6= vo
wLG

oa If aisle a is between the first and last aisles with a pick
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Storage location with return routing (SL+Re)

Considering the sets, variables, and parameters as previously defined, we represent the dis-
tances traveled in the SL+Re as follows. For any route o ∈ O, DCA

o = 2M(vo − 1), i.e., the
distance to travel back and forth between the I/O point and the last aisle containing a product
to be picked. Furthermore, the distance traveled within all aisles is DWA

o = 2N
∑

a∈A foa, i.e.,
the sum of the distances to go back and forth from the front cross aisle to the furthest location
that contains a pick in each aisle. In order to calculate vo and foa, we added the following
constraints to the base model (2.11)–(2.14) to create a model for the SL+Re:

foa ≥
∑
b∈B

bykab, ∀o ∈ O, a ∈ A, k ∈ Qo \ {0}, (2.15)

foa ≤ Bzoa, ∀o ∈ O, a ∈ A, (2.16)

if zoa = 1 and
A∑

c=(a+1)

zoc = 0→ vo = a, ∀o ∈ O, a ∈ A, (2.17)

zoa ∈ {0, 1}, ∀o ∈ O, a ∈ A, (2.18)

0 ≤ foa ≤ B, ∀o ∈ O, a ∈ A, (2.19)

1 ≤ vo ≤ A, ∀o ∈ O. (2.20)

Constraints (2.15) define a lower bound for foa. Since we minimize foa in the objective
function, there is no need to limit its upper bound. Constraints (2.16) set zoa to one if foa
assumes a value greater than zero. zoa is used to determine if a is the last aisle containing
a product from order o, then vo = a. These constraints can be written using indicator (or
logical) constraints available in modern MIP solvers as presented in constraints (2.17). The
remaining constraints (2.18)–(2.20) define the domain of the decision variables.

Storage location with S-shape routing (SL+Ss)

For the SL+Ss, the distances traveled are calculated as follows. The distance in the cross
aisles is DCA

o =
∑

a∈A 2Mvoa(a − 1), which is similar to the return routing, but using the
equivalent binary decision variables v. The use of a binary v is more adequate to calculate the
distance within-aisles given as DWA

o =
∑

a∈A(N(B + 1)zoa + 2NsSSo foavoa) − N(B + 1)sSSo .
The expression N(B + 1) represents the distance traveled when the entire aisle is crossed by
the picker. So, according to the first term of the equation, when there are products to be
picked in an aisle, the picker crosses it entirely. Since this term also considers the last aisle
independently of the value of sSSo , we have to add the last two terms to correct the distance
traveled in the last aisle when the picker performs a return in it. Thus, the SL+Ss is modeled
using the base model (2.11)–(2.14), constraints (2.15), (2.16), (2.18) and (2.19) to calculate

39



zoa and foa, and the following constraints to determine voa and sSSo :

if zoa = 1 and
A∑

c=(a+1)

zoc = 0→ voa = 1, ∀o ∈ O, a ∈ A, (2.21)

∑
a∈A

zoa = 2ko + sSSo , ∀o ∈ O (2.22)

voa ∈ {0, 1}, ∀o ∈ O, a ∈ A, (2.23)

sSSo ∈ {0, 1}, ∀o ∈ O, (2.24)

0 ≤ ko ≤ A/2, ∀o ∈ O. (2.25)

Constraints (2.21) are the equivalent indicator constraints to set the appropriate value for

the binary variable v. The variable sSSo is calculated as the remainder of
∑

a∈A zoa

2
using

constraints (2.22). Constraints (2.23)–(2.25) define the domain of the variables voa, sSSo and
ko, respectively. We note that our model is rather different than that of Mantel et al. (2007)
because we consider the return option at the last aisle, which makes the problem significantly
harder to solve.

Storage location with midpoint routing (SL+Mp)

To the formulation of the SL+Mp, we have divided the storage area into two zones. Midpoint
is defined as the row p = dB/2e. Zone 1 (B1 = {1, . . . , p}) contains all locations below p,
including p itself. Meanwhile, zone 2 (B2 = {p + 1, . . . , B}) contains all locations above p.
This definition is used to create variables z1 and z2, which are the z equivalent of each zone,
as well as f1 and f2, which are their f equivalents. These, along with other exclusive auxiliary
variables for this routing policy, are used to calculate the distances traveled as follows. As in the
return routing, DCA

o = 2M(vo−1). Furthermore, DWA
o = 2N((B+1)sMP

o +
∑

a∈A(f1
oaw

MP
oa +

f2
oaw

MP
oa +foavoa−foavoasMP

o )). This long equation can be explained by dividing it into three
parts. The first part (2N(B+ 1)sMP

o ) is the distance traveled to cross the first and last aisles
entirely when sMP

o is activated, i.e., there is at least one aisle with a product to be picked above
the midpoint and it is different than the last aisle with a product to be picked. The second
part (

∑
a∈A(f1

oaw
MP
oa +f2

oaw
MP
oa )) is the distance traveled to the rows closest to the midpoint in

all aisles except for the first and the last. The third part (
∑

a∈A(foavoa− foavoasMP
o )) models

the special case when there is only one aisle with products to be picked above midpoint and
it is the last aisle. In this case, we ignore the zones and calculate the furthest row containing
a product to be picked in the last aisle using variable f to determine the return point within
the aisle. The SL+Mp is modeled using the base model (2.11)–(2.14), constraints (2.15) and
(2.17) to calculate foa and vo, and the following constraints to determine f1

oa, f2
oa, z1

oa, z2
oa,

zoa, u2
o, u2

oa, voa, sMP
o , and wMP

oa :

if
∑
b∈Br

∑
k∈Qo

ykab = 0→ f roa = 0, o ∈ O, a ∈ A, r = {1, 2}, (2.26)
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if
∑
k∈Qo

ykab ≥ 1 and
p∑

d=(b+1)

∑
k∈Qo

ykad = 0→ f1
oa = b, o ∈ O, a ∈ A, b ∈ B1 (2.27)

if
∑
k∈Qo

ykab ≥ 1 and
b−1∑

d=p+1

∑
k∈Qo

ykad = 0→

f2
oa = (B + 1)− b,

o ∈ O, a ∈ A, b ∈ B2 (2.28)

if f roa = 0→ zroa = 0, o ∈ O, a ∈ A, r = {1, 2}, (2.29)

f roa ≤ Bzroa, o ∈ O, a ∈ A, r = {1, 2}, (2.30)

zoa ≥ zroa, o ∈ O, a ∈ A, r = {1, 2}, (2.31)

zoa ≤
2∑
r=1

zroa, o ∈ O, a ∈ A, (2.32)

if
∑
a∈A

z2
oa = 0→ u2

o = 0, o ∈ O, (2.33)

if z2
oa = 1 and

a−1∑
c=1

z2
oc = 0→ u2

o = a, o ∈ O, a ∈ A, (2.34)

if u2
o 6= 0 and u2

o 6= vo → sMP
o = 1, o ∈ O, (2.35)

if u2
o = 0 or u2

o = vo → sMP
o = 0, o ∈ O, (2.36)

u2
o =

∑
a∈A

au2
oa, o ∈ O, (2.37)∑

a∈A
u2
oa ≤ 1, o ∈ O, (2.38)

vo =
∑
a∈A

avoa, o ∈ O, (2.39)∑
a∈A

voa ≤ 1, o ∈ O, (2.40)

wMP
oa ≤ 1− u2

oa, o ∈ O, a ∈ A, (2.41)

wMP
oa ≤ 1− voa, o ∈ O, a ∈ A, (2.42)

wMP
oa ≥ 1− u2

oa − voa, o ∈ O, a ∈ A, (2.43)

0 ≤ f1
oa, f

2
oa ≤ p, ∀o ∈ O, a ∈ A, (2.44)

z1
oa, z

2
oa, zoa, u

2
oa, voa, s

MP
o , wMP

oa ∈ {0, 1}, ∀o ∈ O, a ∈ A, (2.45)

0 ≤ u2
o ≤ A, ∀o ∈ O. (2.46)

Constraints (2.26)–(2.28) determine the furthest row to be traveled in each zone of each aisle.
Constraints (2.29) and (2.30) set the proper values to variables z1 and z2. Constraints (2.31)
and (2.32) set the proper value to variables z. Constraints (2.33) and (2.34) determine the first
aisle with products to be picked above the midpoint. Constraints (2.35) and (2.36) set sMP to
its appropriate value. Constraints (2.37) set proper values to the integer and binary versions
of u2 and constraints (2.38) certify that no more than one binary is activated. Constraints
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(2.39) and (2.40) do the same for v. Constraints (2.41)–(2.43) set wMP to its correct value.
Finally, constraints (2.44)–(2.46) define the domain of the variables.

Storage location with largest gap routing (SL+Lg)

The SL+Lg is modeled as follows. The distance traveled in the cross aisles is similar to
the return and midpoint, given as DCA

o = 2M(vo − 1). To calculate the distance traveled
within aisles, like in the SL+Mp, we have to consider the different cases when only the lower
cross aisle or both cross aisles are used. The first case is obeserved when all picked items
are located in a single aisle. If more than two aisles should be entered, then the first and
last are entirely crossed, while in the intermediary ones returns are performed to avoid the
distance from the largest gap. Thus, the distance within-aisle is given as DWA

o = 2N((B +

1)sLGo +
∑

a∈A(sLGo wLGoa (B + 1 − Goa) + (1 − sLGo )foavoa)). The first term in the formula
((B + 1)sLGo ) represents the first and last aisles crossed entirely when sLG is active. The
second term (

∑
a∈A(sLGo wLGoa (B + 1 − Goa))) is the distance traveled in the intermediary

aisles given by the total number of rows minus the largest gap in that aisle. The third term
(
∑

a∈A((1 − sLGo )foavoa)) is the special case when all picks are in the same aisle, so that a
simple return at the furthest row containing a pick is performed. Now, we model the SL+Lg
using the base model (2.11)–(2.14), constraints (2.15)–(2.17), (2.39), (2.40) to calculate foa,
zoa, vo, voa, and the following constraints to determine uo, uoa, goab, Goa, wLGoa , and hoab:

if zoa = 1 and
a−1∑
c=1

zoc = 0→ uo = a, o ∈ O, a ∈ A, (2.47)

uo =
∑
a∈A

auoa, o ∈ O, (2.48)∑
a∈A

uoa = 1, o ∈ O, (2.49)

if uo ≤ (a− 1) and vo ≥ (a+ 1)→ wLGoa = 1, o ∈ O, a ∈ A, (2.50)

if uo ≥ a or vo ≤ a→ wLGoa = 0, o ∈ O, a ∈ A, (2.51)

if uo = vo → sLGo = 0, o ∈ O, (2.52)

if uo 6= vo → sLGo = 1, o ∈ O, (2.53)

if zoa = 0→ goa0 = 0, o ∈ O, a ∈ A, (2.54)

if
∑
k∈Qo

ykoab ≥ 1 and
b−1∑
d=1

∑
k∈Qo

ykoad = 0→ goa0 = b, o ∈ O, a ∈ A, b ∈ B, (2.55)

if
∑
k∈Qo

ykoab = 0→ goab = 0, o ∈ O, a ∈ A, b ∈ B, (2.56)
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if
∑
k∈Qo

ykoab1 ≥ 1 and
∑
k∈Qo

ykoab2 ≥ 1

and
b2−1∑

b3=(b1+1)

∑
k∈Qo

ykoab3 = 0→ goab1 = b2 − b1,
o ∈ O, a ∈ A, b1, b2 ∈ B, (2.57)

if
∑
k∈Qo

ykoab1 ≥ 1 and
B∑

b2=(b1+1)

∑
k∈Qo

ykoab2 = 0→

goab1 = B + 1− b1,

o ∈ O, a ∈ A, b1 ∈ B, (2.58)

Goa ≥ goab, o ∈ O, a ∈ A, b ∈ B, (2.59)

Goa ≤ goab +
∑

b2∈B∪{0}

(B + 1)hoab2 , o ∈ O, a ∈ A, b ∈ B, (2.60)

∑
b∈B∪{0}

hoab = 1, o ∈ O, a ∈ A, (2.61)

uo, goab, Goa ≥ 0, ∀o ∈ O, a ∈ A, (2.62)

uoa, w
LG
oa , hoab ∈ {0, 1}, ∀o ∈ O, a ∈ A, b ∈ B. (2.63)

Constraints (2.47) determine the first aisle with a pick. Constraints (2.48) and (2.49) set
proper values for uo and uoa. Constraints (2.50) and (2.51) use indicator constraints to ensure
that wLGoa = 1 when uo < a < vo, and zero otherwise. Constraints (2.52) and (2.53) guarantee
that sLG = 1 only if the first and last aisles are different. If there is no pick in the aisle, then
the gap is set to zero in constraints (2.54). Constraints (2.55) make sure that if there is a
product in row b and there is no product between the lower cross aisle and row b − 1, then
the gap from the lower cross aisle to the first pick is b. Constraints (2.56) set the gap in row
b to zero when there is no pick in b. Constraints (2.57) state that if there is a pick in b1 and
b2, and no other pick between the two, then the gap in row b1 is equal to b2− b1. Constraints
(2.58) handle the special case when the pick in b1 is the last pick in the aisle. So, the gap in
b1 is the distance from it to the upper cross aisle. Constraints (2.59)–(2.61) are linear forms
to compute the largest value between all gaps, i.e., Goa = max(goab|b ∈ B ∪ {0}). Finally,
constraints (2.62) and (2.63) define the domain of the new variables.

2.3.3 Linearizations

The introduced models, except for the SL+Re, are nonlinear MIP formulations due to the
product of variables either in the objective function or in constraints, as in (2.6). Nonlinear
MIP models can be reformulated to an equivalent linear representation using a linearization
technique. In order to solve the problems, we reformulated the models using the standard
linearization technique (Glover and Woolsey, 1974). The technique is used to replace the
product of variables as follows:

• product of two binary variables a and b is treated by replacing ab by a new variable c
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and adding the constraints c ≤ a, c ≤ b and c ≥ a+ b− 1;

• product of three binary variables a, b, and c, abc is replaced by d and the constraints
d ≤ a, d ≤ b, d ≤ c and d ≥ a+ b+ c− 2;

• product of binary variable a and non-binary variable b, ab is replaced by c by adding
the constraints c ≤ ba, where b is the upper bound value b can assume, c ≤ b, and
c ≥ b− b(1− a).

The advantage of linearizing a problem is that it can be solved by any integer linear pro-
gramming solver. While the standard linearization benefits from its simplicity, it has the
disadvantage of requiring a large number of auxiliary variables and constraints to replace the
nonlinear terms.

2.4 A General Variable Neighborhood Search for the SLOPP
and its special cases

Variable Neighborhood Search (VNS) is a metaheuristic that uses a systematic change of
neighborhood within a descent phase to find a local optimum starting from different points
generated by a perturbation phase (Mladenović and Hansen, 1997). Among its several variants,
the one with some of the most successful applications is the General VNS (GVNS) (Hansen
et al., 2019). In the GVNS, the descent phase consists in the application of several local
searches (LS) performed in a deterministic way by a method called Variable Neighborhood
Descent (VND). The reasoning of VND is that a local optimum in a neighborhood is not
necessarily a local optimum in another, such that the use of several LSs are more likely to
reach global optimum (Hansen et al., 2019). The implemented VND is shown in Algorithm 1.

We first define an initial solution, as described in Section 2.4.1. Then, a setNl of neighborhoods
is defined with l = {1, 2, 3} representing the three LSs, presented in Section 2.4.2, used for the
exploration, and their exploration order is known a priori (line 1). The first improving solution
found in a neighborhood replaces the current one (first improvement strategy) until there is no
possibility of improvement in that neighborhood (lines 4–6). Preliminary experiments showed
that the first improvement strategy performed better than searching the whole neighborhood
for the best improving solution which is too time consuming. The search returns to the
first neighborhood when the solution is improved in the current neighborhood. Otherwise, it
continues in the next neighborhood (lines 7–11). The solution returned by the VND (line 13)
should be a local minimum with respect to all three neighborhoods.

The perturbation phase of the GVNS consists in applying a function Shake as presented
in Algorithm 2. This function is used to move from solution x to a random solution in
the Slot Exchange neighborhood. Preliminary experiments showed that the Slot Exchange
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Algorithm 1 Function VND(x)
1: Neighborhoods Nl(x), l = {1, 2, 3};
2: repeat
3: xl ← x;
4: while there is a x′ ∈ Nl(x)|f(x′) < f(x) do
5: x← x′;
6: end while
7: if f(x) < f(xl) then
8: l = 1;
9: else
10: l = l + 1;
11: end if
12: until l < 4
13: return x.

neighborhood performs particularly well. In summary, each shake consists in selecting two
random and different products and swap their locations in the storage area (more details
about this neighborhood is presented in Section 2.4.2). A total of S swaps is performed before
Shake ends. Note that small values of S tend to lead to the same local optimum when VND
is applied. Otherwise, if S is too high, the new solution may lose the good characteristics of
the initial solution, thus behaving like a randomly generated solution.

Algorithm 2 Function Shake(x, S)
1: for s = 1 to S do
2: Randomly select i, j ∈ P|i 6= j;
3: x← SlotExchange(x, i, j);
4: end for
5: return x.

The steps of our GVNS are presented in Algorithm 3. Besides an initial solution x, it receives
the maximum number of cycles K and shakes in each cycle S, and the time limit T . We start
the GVNS by applying the VND to x (line 2). The stopping criteria are either when K or T is
reached. In each cycle, we iterate a counter s until S is reached. For each s, a shake followed by
a VND is performed (lines 5–6). If the objective function of the new local optimum improves
the previous best known solution (BKS), s is reset, and the BKS is updated. Otherwise, s is
incremented (lines 7–12). The shake counter is reset at the end of each cycle (line 15).

2.4.1 Generating an initial solution

A feasible solution for the SLOPP may be generated using any combination of a storage and
a routing policy, such as those presented in Section 2.2.1.

The storage policy is used to assign products in P to locations in L, i.e., to an aisle a and
row b in the single-block layout. The policies implemented are: (i) random, (ii) dedicated
with frequency-based and diagonal, and (iii) dedicated with frequency-based and within-aisle.
Given a product k ∈ P, its frequency is calculated by the number of times that k ∈ Qo for
all o ∈ O. In the diagonal policy, the distance between a slot located in l = (a, b) and the

45



Algorithm 3 Function GVNS (x, K, S, T )
1: k = 1, s = 1, t = 0;
2: x′ ← VND(x);
3: while k ≤ K and t ≤ T do
4: while s ≤ S do
5: x′ ← Shake(x′, s);
6: x′ ← VND(x′);
7: if f(x′) < f(x) then
8: x← x′;
9: s = 1;
10: else
11: s = s+ 1;
12: end if
13: end while
14: k = k + 1;
15: s = 1;
16: t← Run time;
17: end while
18: return x.

I/O point is given by dl0 = M(a − 1) + Nb. Then, the product with the highest frequency
is assigned to the closest slot to the I/O point, and so forth. Ties are broken randomly. For
the within-aisle policy, the distance between a to the I/O point is calculated as M(a − 1).
The aisles are sorted from the closest to the farthest, and the closest aisle is filled with the
products with the highest frequencies, and so on.

When the products locations are known, the SLOPP reduces to an OPP for each order. Each
OPP can be solved using an optimal or a heuristic method. The objective function value of
the solution is the sum of the distances traveled by the picker in all routes generated for the
OPPs. In the storage location problem with heuristic routing policies, i.e., SL+Re, SL+Ss,
SL+Mp and SL+Lg, the computation of the routes is straightforward, and done by verifying
where picks are located in each aisle. We highlight that the largest gap requires additional
operations to solve the maximum gap problem (Preparata and Shamos, 2012), which can be
solved in O(n) using the pigeonhole principle for n points of interest in the aisle, i.e., the items
to be retrieved in it and the two end aisles. In the case of the SLOPP, the objective function
is obtained by solving an instance of the travelling salesman problem (TSP) for each route,
either using an optimal or heuristic method, such as LKH.

2.4.2 Local searches

We defined three neighborhoods to search for local improvements during VND. They are all
based on the swap of products locations in the warehouse. Whenever the storage setup is
changed, a new call for the routing policy is made to reevaluate the picking routes. A picking
route is reevaluated only if a product contained in its pick list is involved in the change, and
if the exchanged products do not belong to the same order, which would result in the same
route.
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The first neighborhood is defined as the swap of products assigned to different slots. The
slot exchange LS finds two slots with an ordered product located in at least one of them and
swaps their assignments. Mathematically, given a slot located in (ak, bk) containing a product
k, i.e., ykakbk = 1, and a slot located in (al, bl) containing a product l, i.e., ylalbl = 1, the slot
exchange reassigns k to the slot in (al, bl), i.e., ykalbl = 1, and l to the slot in (ak, bk), i.e.,
ylakbk = 1. All combinations of pairs of slots are tested except when ak = al and bk = bl. Since
only slots containing products and in different locations are swapped, this neighborhood size
is O(|P||L|) in the worst case, given that the number of locations |L| = AB. A neighbor is an
improving solution either if its objective function is better or, specially for this LS, when it
has equal value, but the swap moves a product with higher frequency closer to the I/O point.
This second condition proved to be very effective in avoiding bad local optimum.

The second neighborhood is defined as the swap of products contained in different rows. The
row exchange LS finds two rows with at least one ordered product in at least one of them,
even if they are in different aisles, and swaps their products. In the storage layout considered,
the row exchange allows the exchange of up to four products simultaneously instead of two
as in the slot exchange, which has the potential to escape from local optima found by the
slot exchange. Mathematically, consider a row located in (ai, bi) containing products k and l,
i.e., ykaibi = ylaibi = 1, and another row located in (aj , bj) containing products m and n, i.e.,
ymajbj = ynajbj = 1, the row exchange reassigns k and l to (aj , bj), i.e., ykajbj = ylajbj = 1, and m
and n to (ai, bi), i.e., ymaibi = ynaibi = 1. The row exchange is applied for all pairs of rows in
different locations with products assigned to them. This neighborhood size is O(|L|2) in the
worst case, i.e., when there are products located in all existing rows.

The third neighborhood is defined as the swap of all products contained in different aisles.
The aisle exchange LS finds two aisles with at least one ordered product in at least one of
them and swaps their products. The position of the products in the original aisle is respected
in their new aisle. This LS requires that the number of slots in the two swapped aisles are
the same. Mathematically, for two swapped aisles ai, aj ∈ A, given a product k located in
(ai, b), i.e., ykaib = 1 and another product l located in (aj , b), i.e., ylajb = 1, the aisle exchange
reassigns k to (aj , b), i.e., ykajb = 1, and l to (ai, b), i.e., ylaib = 1. This is done for all rows
b ∈ B that belong to the two swapped aisles. For a warehouse with A identical aisles, this
neighborhood size is O(A2) in the worst case.

2.5 Computational experiments

The SLAP and OPP literature lacks a well-established set of benchmark instances so that
different methods could be compared on the same set. Instead, researchers usually create
their own test instances based on the problem and the circumstances explored. We designed
our instances using the parameters presented in Table 2.3 and share them on https://www.
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leandro-coelho.com/slot-assignment-and-order-picking/. All instances consider the
distances as M = N = 1. The small set is used to evaluate the MIP models and to adjust the
GVNS parameters, while the regular set, consisting of instances similar in size to those used
in the literature (Pansart et al., 2018; Scholz and Wäscher, 2017; Scholz et al., 2016), is solved
only by the GVNS. In Table 2.3, column Aisles represents the number of identical two-sided
picking aisles in the storage area, Rows per aisle is the number of rows in each aisle, each one
containing two slots, Orders corresponds to the number of orders to be fulfilled, and Products
per order is the number of unique products contained in each order to be picked in one pick
round. The orders were generated using three different distributions, as shown in the Demand
column. The Random distribution selects the products using a uniform distribution, while
the Skewed distribution uses the Pareto principle to divide products into three classes. The
Skewed A/B/C notation is used to state that items from the smaller group appear A% of the
times, the medium group appears B%, and the bigger group appears C%. We used A/B/C
as either 50/30/20 or 80/15/5. Due to the low number of items in small instances, only the
random distribution is used. Three different instances are created for each combination of
these five parameters. The result is 108 small and 486 regular size instances. We highlight
that the largest instances in the small set have the same parameters as the smallest instances
in the regular set. However, they are generated with different seeds.

Table 2.3 – Warehouse layout and demand parameters used to generate the experimental
instances

Set Aisles (A) Rows per Orders (|O|) Products per Demandaisle (B) order (|Qo|)

Sm
al

l 1
5
10

1
3
5

Random3 5
5 10

R
eg

ul
ar 5

10
50

10 5 Random
10 30 20 Skewed 50/30/20
20 50 50 Skewed 80/15/5

Computational experiments are performed in an Intel Gold 6148 Skylake CPU with 2.4 GHz
and with a memory limit of 16 GB of RAM. The linear MIPs are solved using the CPLEX
C++ API (version 12.5). The routes for the SLOPP are generated using the Concorde TSP
solver. As reported by Theys et al. (2010), the LKH heuristic approximates very well the
optimal OPP solution. Concorde provides an implementation of the LKH heuristic, which is
used here. We use previously computed routes for an order as a warm start to LKH. Based
on preliminary experiments, we fixed the number of 4-swap kicks in the LKH heuristic to two
kicks. The heuristic routing policies are implemented in C++.

2.5.1 Solving the linear MIP model

The first set of experiments consists in solving instances in the small set using the linear MIP
models for the SLOPP and its four special cases. The problems are solved using CPLEX with
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standard parameters and a time limit of two hours. The objective is to evaluate the maximum
instance size for which an optimal solution can be proven using these models. For that, we
group the instances from the small set according to the number of slots in the warehouse
(2AB), and the number of items picked in a route (|O||Qo|). Thus, each combination of Slots
× Picks contains three instances. Table 2.4 shows the average time to solve the problem to
optimality. Each cell is colored with a shade of grey representing the number of instances
solved in that group, with darker cells representing more instances solved.

Table 2.4 – Average time to prove optimality of small instances using the linear MIP models
for the SLOPP and its fours special cases

Problem Slots (A × B) Picks (|O| × |Qo|)
3 (1 × 3) 5 (1 × 5) 15 (5 × 3) 25 (5 × 5) 30 (10 × 3) 50 (10 × 5)

SL
O

P
P

10 (1 × 5) 0.3s 5.1s - - - -
20 (1 × 10) 3.3s - - - - -
30 (3 × 5) 146.3s - - - - -
50 (5 × 5) 3435.6s - - - - -
60 (3 × 10) 7099.9s - - - - -
100 (5 × 10) - - - - - -

SL
+

R
e

10 (1 × 5) <0.1s <0.1s <0.1s 0.1s 3 0.1s 0.1s
20 (1 × 10) <0.1s <0.1s 0.1s 0.9s 1.7s 22.8s
30 (3 × 5) <0.1s <0.1s 0.8s 20.5s 83.1s -
50 (5 × 5) <0.1s <0.1s 4.6s 173.0s 181.9s -
60 (3 × 10) <0.1s <0.1s 0.7s 36.2s 216.5s -
100 (5 × 10) <0.1s 0.1s 42.5s 294.3s - -

SL
+

Ss

10 (1 × 5) <0.1s <0.1s <0.1s 0.1s <0.1s 0.1s
20 (1 × 10) <0.1s <0.1s 0.1s 0.7s 1.5s 21.7s
30 (3 × 5) <0.1s <0.1s 1.0s 5.3s 296.3s 420.7s
50 (5 × 5) <0.1s <0.1s 3.1s 21.6s 940.9s -
60 (3 × 10) <0.1s <0.1s 0.9s 15.1s 306.8s -
100 (5 × 10) <0.1s <0.1s 15.7s 57.0s 409.1s -

SL
+

M
p

10 (1 × 5) <0.1s <0.1s 0.1s 0.2s 0.9s 1.4s
20 (1 × 10) <0.1s <0.1s 1.2s 4.2s 10.7s 210.8s
30 (3 × 5) 0.1s 0.1s 136.4s 1199.1s - -
50 (5 × 5) 0.1s 0.2s 862.6s 4321.4s - -
60 (3 × 10) 0.1s 0.2s 447.0s 3174.8s - -
100 (5 × 10) 0.3s 0.9s 2984.6s - - -

SL
+

Lg

10 (1 × 5) <0.1s <0.1s 0.4s 0.8s 2.5s 4.8s
20 (1 × 10) 0.1s 0.1s 2.0s 25.4s 54.6s 6453.6s
30 (3 × 5) 0.1s 0.2s 28.1s 71.6s 896.6s -
50 (5 × 5) 0.2s 0.3s 148.2s 387.2s - -
60 (3 × 10) 0.4s 0.9s 155.1s 3018.8s - -
100 (5 × 10) 1.5s 2.0s 656.0s 5044.5s - -

*Each cell contains the average over three instances. Dark gray shows that all three instances are solved.
Medium gray indicates that only two instances are solved to optimality, and light gray indicates that only
one instance is solved to optimality

The results show that the linear MIP model for the general SLOPP is of no practical use even
for small instances with only three or five picks, which have optimal solutions that could be
found intuitively. We also highlight how fast the average time to prove optimality increases
by adding more slots to the warehouse, even with only three picks. In larger instances, the
SLOPP model runs out of memory, which is in line with Forrester (2016) about the standard
linearization technique requiring a huge number of variables and constraints. The linearization
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of the cubic term in the objective function in the SLOPP model requires the introduction
of O(|O||L|2|P2|) new variables and constraints, which for large instances of the small set
represents hundreds of millions of new variables.

When solving the models for the special cases, the solver was able to find optimality in most
of the small instances. The SL+Re and SL+Ss models, which are relatively simpler in terms
of number of variables and constraints, can be solved for instances slightly larger than the
SL+Mp and SL+Lg models. We note that although there are cubic terms in some of the
objective functions, they require the addition of only O(|O|A) new variables and constraints,
significantly fewer than in the general SLOPP.

2.5.2 GVNS setting

Since the MIP models are difficult to solve for larger instances from the small set, an alternative
method to deal with instances from the regular set is required. We now show how the GVNS
was set for the experiments to solve the regular size set.

Setting the search strategy

In the neighborhood search strategy setting, we demonstrate through experiments the reason
why the application of the three neighborhoods proposed in our VND is more effective than the
application of only one or two of them. The experiment consists in creating initial solutions for
the storage location subproblem of the SLOPP using the three storage policies implemented
and by applying VND for each of them using different combinations of LSs. We tested an
improvement strategy of using a single, a pair and a trio of LSs in all possible orders exhaus-
tively, i.e., until no improving solution can be found. Results are compared for all instances of
the small instance set for which the MIPs proved optimality. A table summarizing the results
obtained is presented in A.1. The results indicate that the average gap significantly decreases
when more neighborhoods are explored, when all three of them are performed, and the ex-
ploration order is not important (unlike when only two of them are used). For this reason,
and to increase diversity, for the remaining experiments, we set the neighborhood exploration
order to be randomly decided at the beginning of every VND. This leads to a reduction in
the search bias during GVNS cycles, which helps avoid local minima. We also note that the
exploration of the three neighborhoods is performed within one second, even for the largest
instances of the set.

Setting the number of shakes and cycles

We solve the SLOPP and its special cases for all small instances using the proposed GVNS
to improve solutions generated by the first VND. From the experiments described and with
results reported in A.2, we set the maximum number of shakes S = 5. Then, each run is
performed again up to K = 20, 000 cycles. We calculate gaps to the BKS, either a proven
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optimal or the best feasible solution known, at different parts of the GVNS. The first solution
observed is the initial solution. The next solution observed is that after VND is applied to
improve the initial solution (Algorithm 3, line 2). Then, we observe the current best solution
for several values of K. From 10 different runs using different initial solutions generated using
the storage policies implemented, a very fast convergence is observed when GVNS is atK = 20,
so that the difference between solutions for all runs is no more than 0.01%. Since all solutions
converge to similar ones regardless of the initial one, this is evidence of the robustness of this
metaheuristic when improving solutions for the SLOPP and its special cases. The results of
these tests indicate that solutions are improved up to K = 10, 000, within a run time of less
than two minutes. For these reasons, we choose this setting for the remaining experiments.

2.5.3 Solving the regular size set

We now perform detailed experiments to evaluate our algorithm on the regular size instance
set. We analyze the solutions obtained for the SLOPP when different routing policies are used
to create the picking routes. First, we use a method where solutions are evaluated during the
whole search by a single routing policy. Four heuristic policies – return (Re), S-shape (Ss),
midpoint (Mp), and largest gap (Lg) – and an optimal policy (LKH) are considered resulting
in solutions for each of the five problems – SL+Re, SL+Ss, SL+Mp, SL+Lg and SLOPP,
respectively – considered here. After, we present a new strategy that alternates the routing
policy between Mp and LKH to show how the GVNS can benefit from the speed of the latter
and the quality of the former to generate even better solutions for the SLOPP. The GVNS is
run with the previous determined parameters (S = 5 and K = 10, 000). The initial solution
used is the best among the three generated from the storage policies. Each instance is solved
five times. A two-hour time limit is used in all experiments since managers usually dispose
of enough time to make rearrangement decisions when they are done, for example, on a daily
basis. The results are presented for each problem setting, so that it is possible to analyze their
impact in combination with each routing policy.

Comparison of solutions for the SLOPP and its special cases using GVNS with
different routing policies

In this round of experiments, the objective is to compare the GVNS performance using different
routing policies given the same run conditions, i.e., the same run time limit and parameters.
We remind that a solution given by GVNS with any heuristic routing policy (Re, Ss, Mp, Lg)
is both a solution for the special case and the integrated SLOPP, since the latter generalizes
the former. From the results, we can draw conclusions about which special case gives better
solutions under different instance conditions, and also for what routing policy the GVNS finds
better solutions for the SLOPP. Table 2.5 shows the average route length given by GVNS with
routes created using the five routing policies. The table is complemented with A.3, where we
show the average run time and last cycle performed before the search stops. We have grouped
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all instances with different demand distributions in each row of the table, presenting the results
for combinations of the remaining instance attributes. So, it is possible to identify for which
routing policy the GVNS finds better solutions under each combination of warehouse size and
orders’ characteristics.

We conclude from the experiments that the best policy to generate routes for the SLOPP
in our GVNS in most cases is Mp since these solutions consistently outperform the others.
They have the lowest average route length and the largest number of best average solution
for combinations of instance attributes. The second best is the Re, which presents a good
performance, specially in warehouses with long aisles (B = 50). LKH finds some of the best
solutions in smaller warehouses (A = 5 and B = 10), but significantly worse solutions in larger
ones. Finally, Ss and Lg did not have the best average solution in any case.

The key factors to explain the success of midpoint compared to the other policies are: (i) low
computational complexity; (ii) differentiated special cases; and (iii) good approximation of
optimal routes.

Regarding factor (i), as shown by A.3, Mp average running time is slightly higher than those
of Re and Ss, but lower than that of Lg and significantly lower than that of LKH. Lower
computational complexity means that more solutions can be evaluated within the time limit,
as shown by the higher value of k in A.3. Consequently, more neighborhoods are explored
during the search, which increases the chances of finding the global optimum solution. The
high computational complexity is the possible explanation of LKH performing well in many
small instances (A = 5 and B = 10) and deteriorating fast when the instance becomes larger.

Factor (ii) differentiates the performance of Mp when compared to Lg. Normally, it is expected
that Lg should dominate Mp (Dijkstra and Roodbergen, 2017), since it is a less restricted
version of that. Since good SLOPP solutions tend to concentrate high demanded products
close to the I/O point, it is common that solutions contain orders with all picks in two or more
aisles of rows located across the front cross aisle. Examples of this are commonly found in
instances with few picks (Qo = 5) and long aisles (B = 50). In this case, Re generates a better
route than Lg or Ss. However, when Qo is higher, some orders may require that products
are picked further into the aisles. In this case, it may be better to entirely cross both aisles,
as one would under Ss and Lg. The more aisles a storage area has (A = 20), and the more
routes are performed (O = 50), the greater are the chances that entirely crossing two aisles
is better. Since Mp can provide good solutions to both situations, it has a higher chance of
finding better solutions overall. Even if its special cases were incorporated to Lg, there is no
guarantee that it would outperform Mp due to factor (i).

Factor (iii) differentiates Mp from Re and Ss. These two policies are known to perform
well only under very special circumstances (Dijkstra and Roodbergen, 2017; Petersen, 1997;
Van Gils et al., 2018b). The return policy approximates well an optimal route when picks
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Table 2.5 – Average route length found by GVNS with different routing policies

A B O Qo Re Ss Mp Lg LKH

5

10

10
5 108.9 144.7 108.9 144.7 109.2
20 350.5 317.7 292.3 302.8 290.5
50 717.3 542.8 549 558.4 522.0

30
5 502.5 612.4 496.8 608.6 501.9
20 1466.8 1250.5 1142.0 1174.9 1115.7
50 2534.1 1872.4 1979.0 1940.9 1739.5

50
5 999.5 1159.1 966.7 1146.0 968.5
20 2694.8 2256.7 2080.0 2121.0 2018.8
50 4412.8 3228.8 3468.0 3359.8 2994.6

50

10
5 113.4 134.3 113.2 133.2 115.5
20 374.2 808.4 372.9 822.6 708.1
50 922.5 1143.1 947.9 1083.0 1089.1

30
5 583.8 972.8 581.6 994.0 602.8
20 2222.4 3102.0 2386.4 3134.1 2931.6
50 4922.0 5224.7 4030.5 4347.0 4587.1

50
5 1303.2 2264.4 1297.7 2264.8 1352.0
20 4992.7 5986.1 4899.6 5613.6 5324.8
50 10400.8 9629.5 7852.2 8379.5 8578.6

10

10

10
5 110.0 134.9 110.0 134.9 110.9
20 365.6 358.5 320.4 323.9 323.8
50 797.8 709.6 668.0 687.6 669.0

30
5 514.9 606.2 511.7 604.2 522.3
20 1685.7 1619.3 1441.3 1466.9 1414.4
50 3265.1 2701.9 2632.9 2627.2 2526.6

50
5 1058.6 1235.4 1048.8 1215.8 1063.8
20 3298.3 3100.2 2718.4 2758.7 2674.4
50 6044.4 4883.4 4833.7 4764.4 4562.5

50

10
5 114.9 119.3 114.8 119.3 116.5
20 325.2 826.3 325.0 824.8 925.4
50 788.4 1167.6 807.7 1068.1 1566.4

30
5 542.4 733.5 543.1 743.2 560.1
20 1898.9 3261.7 1876.1 3251.6 3175.4
50 4775.0 6662.5 4559.0 4666.0 5809.5

50
5 1154.8 1726.9 1153.2 1757.6 1191.1
20 4330.3 6549.2 4871.5 6029.2 5780.8
50 10877.9 12987.1 8957.8 9730.3 11925.9

20

10

10
5 112.8 125.1 112.7 125.1 114.3
20 360.8 378.7 336.5 337.3 349.7
50 854.7 815.0 726.1 770.5 795.6

30
5 525.2 585.0 521.8 582.0 535.8
20 1813.4 1918.1 1623.8 1682.3 1657.9
50 3845.7 3612.3 3308.8 3337.2 3317.5

50
5 1100.0 1237.3 1086.0 1218.4 1118.7
20 3697.3 3861.1 3226.8 3307.1 3331.5
50 7572.4 6902.4 6323.3 6330.7 6256.9

50

10
5 116.7 116.9 116.7 116.9 118.4
20 321.7 723.5 321.9 757.3 1006.7
50 788.2 1227.8 786.9 1077.9 1873.5

30
5 557.2 580.3 558.1 588.0 565.3
20 1638.4 3262.6 1629.2 3257.4 2807.9
50 4209.3 7547.3 4526.6 4991.3 6864.4

50
5 1163.6 1347.8 1163.2 1361.4 1184.5
20 3710.3 6742.5 3696.5 6051.7 5775.2
50 9874.4 15597.6 9500.8 10422.8 13777.4

Average 2293.2 2715.1 2048.6 2355.9 2443.0
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are located either in only one aisle or in many aisles if they are in locations across the front
cross aisle. Thus, Re is particularly good in warehouses with long aisles (B = 50) as shown
by the experiments. Meanwhile, the S-shape policy performs best when there are many picks
distributed along the entire storage area. Since optimal storage location assignments tend
to concentrate high demanded products close to the I/O point, this situation arises when all
stored products are highly demanded, such that every single order would contain picks in
many different locations around the storage area. In our instances, this is the case of small
warehouses (A = 5 and B = 10) with many products per order (Qo = 50).

Other observations from the results are:

• instances with few picks and large warehouses (e.g., A = 20, B = 50, O = 10, Qo = 5)
have similar solutions regardless of the routing policy, since the optimal routes in those
cases are the “go to the aisle, pick and return” special case. In these scenarios, picks
from a single order are usually concentrated close to each other in a single aisle;

• in horizontal layouts, i.e., with a large number of short aisles (A = 20 and B = 10),
and for a large number of picks (Qo = {20, 50}), Lg and Mp perform best. In vertical
layouts, i.e., with a small number of long aisles (A = 5 and B = 50), Mp and Re are the
best. Possible explanations are such as those previously discussed for factor (ii);

• in warehouses with a similar layout proportion (A = 5 and B = 10 against A = 20

and B = 50) for the same number of picks, solutions are usually better in the smaller
warehouse. The reason is that in our instances smaller warehouses have fewer varieties
for ordered products and, consequently, a higher average demand per product, meaning
a higher concentration of picks near the I/O point.

Solving the SLOPP using GVNS with a combination of Mp and LKH

From the previous experiments, we observe the robustness of Mp since it performs well in
our GVNS under different instance settings. The results show that instead of wasting time
evaluating routes for bad SLAP solutions, it is better to use a fast and fairly good heuristic to
find better storage location assignments quicker, speeding up the improvement of the initial
solution. However, it is expected that Mp can provide a good approximation to optimal OPP
solutions, but not as good as LKH, given the same SLAP solution. Thus, we suggest here
a different search strategy for our GVNS that alternates between Mp and LKH to solve the
OPP sub-problem. This strategy consists of using Mp during the most intensive part of GVNS,
i.e., the VND, and then update the solution using LKH to optimize the routes when VND is
over. This way, the routes for the local optimum SLAP solution generated in the VND using
Mp are updated to near optimal ones with LKH. We performed a new round of experiments
for this new strategy. Detailed results are reported in A.4. In summary, it shows that the
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average solution provided by GVNS is improved from 2048.6 to 2023.5 (1.2% of improvement)
when compared to the average solution of using only Mp. Since LKH requires more time to
be solved, the average number of cycles to run this combined Mp/LKH is lower than when
using only Mp. For that reason, there are situations where Mp alone may still outperform the
combined Mp/LKH.

Solution improvement over the change of the storage policy

We analyze the potential improvement on route length by changing the storage policy from
a heuristic to the optimal one considering that the routing policy is maintained. For each
instance of the SLOPP, solved using the Mp/LKH strategy, and its four special cases, solved
using the respective heuristic routing policy, we consider two solutions obtained in the exper-
iments from Section 2.5.3 and 2.5.3: (i) the best initial solution among the three generated
using a storage policy (random, diagonal and within-aisle); and (ii) the average solution of
the five runs of GVNS for the storage location with the respective routing policy. In Table
2.6, we present the improvement from (i) to (ii) in column Improv. over initial calculated as

improv(x) =
f(x)− f(x′)

f(x)
, where x is the solution (i) and x′ is the solution (ii). In each line

of the table, average results are presented for the parameters shown on the left.

Table 2.6 – Average solution improvement from the heuristics to an optimal storage policy for
the SLOPP and its special cases

SL+Re SL+Ss SL+Mp SL+Lg SLOPP
Improv. over Improv. over Improv. over Improv. over Improv. over
initial (%) initial (%) initial (%) initial (%) initial (%)

A
5 40.7 28.8 42.1 33.7 35.1
10 51.0 40.5 52.6 46.0 45.9
20 59.0 50.2 58.7 53.8 53.8

B
10 38.1 32.9 41.0 35.8 33.1
50 62.4 46.8 61.3 53.2 56.8

O
10 56.5 40.9 55.9 45.3 50.5
30 49.6 41.0 50.7 45.9 44.2
50 44.6 37.6 46.8 42.3 40.0

Qo
5 53.6 55.0 53.3 53.4 52.1
20 53.2 36.7 52.9 38.5 47.3
50 44.0 27.9 47.1 41.5 35.4

D
Random 55.4 45.9 55.4 50.1 49.7
Skew 50 51.9 41.1 52.8 46.6 46.4
Skew 80 43.4 32.6 45.2 36.8 38.7

Two main conclusions are drawn from these results. First, regardless of the problem consid-
ered, the search for optimal storage location assignments significantly improves the solutions
generated by the heuristic storage policies, with average improvements from 27.9% (SL+Ss
and Qo = 50) to 62.4% (SL+Re and B = 50). Finally, the total distance traveled is improved
more when optimal storage locations are searched, compared to using heuristic storage poli-
cies, when warehouses are larger, when there are fewer orders or orders with fewer items, and
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when demands are less skewed. This pattern is observed in almost all routing scenarios tested
as boldened in the table.

2.6 Practical notes and further discussions

The results from research and practice show the importance of storage location and picker
routing planning on the order picking performance. Traditionally, these problems are solved
separately since the storage location has been considered to be more static in the literature
and assumed to be less prone to changes. However, several factors, such as seasonality, mar-
keting efforts, shelf life, and expiration dates, have an impact on the demand of the products.
This means that the SLAP solution, in certain industries and for certain businesses, would be
more dynamic and should be revised periodically. Some may argue that the cost of relocations
is too high to justify product location reassignments being performed more often. However,
considering the travelled distance minimization, the results of our experiments show the ben-
efits of changing storage and routing policies in order to improve picking efficiency. Therefore,
although known intuitively, warehouse managers should consider this link between the two
problems, as modeled in our SLOPP.

Although it is interesting to see that mathematical models can be used to solve different
versions of the SLOPP, the experiments show that they have limitations to solve even small
instances. As our results show, the time spent to solve the problem increases dramatically as
the size of either the warehouse or the orders grow. In reality, warehouse managers may deal
with thousands of products in very large warehouses. The size of these real instances makes
those exact methods impractical. Therefore, an application of a solution algorithm such as
our GVNS not only saves time – as the unsolvable instances by the exact method are now
solved within less than a second – but also provides good quality solutions in practice.

Obviously, when one changes from heuristic policies to optimal algorithms, it is expected to
achieve better solutions. In this paper, we considered a case with single-block layout, two-
sided picking and known orders where using the optimal storage layout we could on average
reduce between about 27% to 62% of the total route length traveled by the pickers. Larger
warehouses with fewer routes and smaller orders are especially fit for this change. From the
warehouse managers point of view, the tradeoffs between reshuffling costs and the savings
obtained by changing the current storage assignments to meet the SLOPP solution obtained
by our GVNS need to be evaluated. Warehouse reshuffling policies and costs are discussed in
Pazour and Carlo (2015). Since reshuffling can be performed in several ways depending upon
the storage and retrieval system in use, this is an interesting topic for further investigation.
Future research can consider the integration of SLOPP with the reshuffling problem for specific
systems.

When rearrangements are performed less frequently than on a daily basis, say weekly or
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monthly, managers may dispose of much more time than the two-hour time limit considered
in our experiments (Kofler et al., 2014). Since most of the runs were stopped before reaching
the number of cycles so that solutions converge, this indicates that better solutions are still
within reach if we could let our GVNS run for a longer time. In order to prove this claim, we
ran experiments for the SLOPP using our GVNS with the Mp/LKH strategy for eight hours,
and we observed an improvement of about 1% on average when compared to the two-hour limit
(avg. solution reduced from 2023.5 to 2002.7), with improvements of up to 3% being found for
larger instances. Nevertheless, the low improvement is an indication that convergence, and
possibly the optimal solution for the problem, is not far. Finally, although not tested here,
other combinations, possibly even more complex, can be developed for specific cases that may
outperform both Mp and Mp/LKH for the SLOPP.

2.7 Conclusions

In this paper we have introduced new optimization tools to solve storage location assignment
problems. The SLAP consists in arranging the products in a warehouse in order to optimize
material handling during the picking process. A SLAP solution is evaluated according to the
performance of the order picking, measured as the distance traveled by pickers. When decisions
regarding product assignment and routing are integrated, we have the storage location and
order picking problem (SLOPP) as introduced here. The SLOPP is modeled as a cubic
mixed integer programming problem. We also model four special cases of the problem when
routing policies are imposed, i.e., when the routes must be created using a heuristic routing
policy, which are straightforward methods to create picking routes. These policies are modeled
mathematically considering a typical single-block warehouse for the first time in this paper.
To solve the SLOPP, we assume that all orders are known a priori, which might not be the
case in markets with too volatile demands. Otherwise, when demands are known at the order
level, the integration of these problems is advantageous.

Extensive computational experiments show that the models can deal with very limited size
instances. As an alternative, we have proposed a General Variable Neighborhood Search
(GVNS) metaheuristic with a descent phase consisting of the exploration of three different
neighborhoods adapted for the problem. The GVNS presented is capable of providing optimal
solutions for all instances solved using the models within less than a second. We also show
that, in instances of size comparable to those of real scenarios, the search for optimal storage
location assignments leads to savings ranging from about 27% to 62% compared to solutions
from common storage policies. Savings can be even higher when considering that routing
policies can also be changed, for example, from a heuristic policy to an optimal one. GVNS
has also the potential to keep improving solutions the longer it runs. This demonstrates the
potential benefits of searching for an optimal assignment of products to storage locations.
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Research directions include strenghtening or remodeling the formulations to speed up the
search for the optimal solution in the single-block layout and other ones. Finally, other ele-
ments from warehouse planning may be incorporated to the SLOPP, such as the integration
with other decisions (batching, zoning), constraints (safety, blocking) and parameters (rear-
rangement costs to modify the storage plan).
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Chapter 3

Estimating optimal ABC zone sizes in
manual warehouses

Chapter information A paper based on this chapter is currently submitted for publication:
A. Silva, K. J. Roodbergen, L. C. Coelho, and M. Darvish. Estimating optimal ABC zone
sizes in manual warehouses. Document de travail du CIRRELT-2021-22, Tech. Rep., 2021.

Résumé

Quand les demandes futures ne peuvent pas être prévues avec précision, c’est commun l’utilisation
d’une politique de stockage ABC pour le problème d’affectation des produits. Dans cette poli-
tique, la zone de stockage est divisée en trois zones, puis des ensembles de produits les plus
demandés sont affectés aux zones avec les meilleurs emplacements de stockage. Malgré la
popularité de cette méthode, les dimensions des zones sont encore choisies arbitrairement en
pratique, menant à une grande perte d’efficacité dans des entrepôts. Dans ce chapitre, nous
identifions les facteurs d’entrepôt parmi l’aménagement, les caractéristiques de la demande et
les politiques pour le zonage et le routage, qui influencent les dimensions optimales des zones
dans une politique ABC, c’est-à-dire, celles qui minimisent la distance moyenne attendue des
routes. Nous proposons l’utilisation de modèles d’apprentissage automatique pour prédire les
dimensions optimales des zones en considérant les plus pertinents parmi les facteurs men-
tionnés. Ces modèles sont entraînés à l’aide de données générées à partir de simulations des
performances des entrepôts sous de nombreuses dimensions de zones. Des expériences mon-
trent que les dimensions fournies par nos modèles améliorent considérablement l’efficacité du
prélèvement des marchandises par rapport aux dimensions arbitraires couramment utilisées,
notamment pour les systèmes à une seule zone (politique aléatoire), à deux zones (règle 20/80)
et à trois zones (20/30/50).
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Summary

In situations where future demands cannot be precisely forecast, it is common to use the
class-based ABC storage policy for the storage location assignment problem. In this policy,
the storage area is divided into three zones, then sets of most-demanded products are assigned
to the zones with the best storage locations. Despite the method’s popularity, zone sizes
are still mostly chosen arbitrarily, which can lead to major efficiency loss in many common
warehouse settings. In this chapter, we identify warehouse factors among the layout, demand
characteristics, and policies to define zones and picking routes, that influences the optimal
zone sizes in an ABC policy, i.e., minimizes the expected average route length. We propose
the use of machine learning models to predict optimal zone sizes considering the most relevant
among the mentioned factors. These models are trained using data generated from simulations
of the performance of common warehouse settings under many zone sizes. Computational
experiments show that zone sizes provided by all models significantly improve the order-
picking efficiency when compared to the arbitrary zone sizes commonly used, notably for the
one-zone (random policy), the two-zone (20/80 rule), and the three-zone (20/30/50) systems.

3.1 Introduction

When products from a supplier arrive at a warehouse, they often stay temporarily in a stor-
age area, such as the forward or reserve areas. Each of these areas may still be divided into
different areas to accommodate products, e.g., in pallet racks or on shelves, according to their
characteristics, such as size, temperature, etc. Products remain in these storage areas until
they are retrieved, in response to customers’ orders. Methods for storage location assignment
decide the location within a storage area to assign each product (Reyes et al., 2019). Typically,
a warehouse receives products from a supplier in bulk (for example, a full pallet), while ship-
ments to customers are in significantly smaller quantities (for example, in boxes). Hence, the
retrieval of products from storage, called order-picking, tends to be much more labor-intensive
than their storage. Generally, order-picking is the most time-consuming activity of the entire
warehouse (Frazelle, 2016). Furthermore, the order-picking process is often time critical, for
example, due to strict deadlines for meeting same-day or next-day delivery requirements in
the e-commerce (Boysen et al., 2019a). It is for these reasons that the design of good poli-
cies for storage location assignment is vital for achieving an efficient order-picking process in
warehouses (De Koster et al., 2007; Petersen et al., 2004).

If the storage and order-picking processes are performed by workers who walk or drive be-
tween locations in a storage area, this is commonly referred to as a manual warehouse or
a picker-to-parts warehouse (De Koster et al., 2007). We describe the warehouse as being
“manual” to refer to the system used in the storage area of interest in this study. Of course,
the same warehouse may contain multiple storage areas being operated by different systems,
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either manual or automated. Despite the significant attention given to automated warehouse
systems in the literature (Boysen et al., 2019a), manual warehouses can provide better flex-
ibility for accommodating demand fluctuations, and have lower investment costs (Calzavara
et al., 2019). Flexibility and scalability are especially valuable in warehouses of online retailers
(Schrotenboer et al., 2017). These emphasize the need for continued process improvements for
manual warehouses. The storage area of a typical manual warehouse has a rectangular shape
consisting of parallel pick aisles. The area is divided into blocks and pickers use cross aisles
between pairs of blocks to change aisles. Pick routes start and end at an I/O point located
at one corner of the storage area. The layout configuration involves a number of strategic
decisions such as the number and size of aisles and blocks. A graphical display of such layout
is provided in Silva et al. (2020, Figure 3).

Storage location assignment problems are among the tactical level decisions. Policies for
this problem match products with locations based on their properties. The ‘most important’
products should be assigned to the ‘best’ locations, and the ‘least important’ products to
the ‘worst’ locations. For deciding which products are ‘most important’, the criterion of
order frequency is commonly used, i.e., how often a product appears on a customer’s order
(e.g., Guo et al., 2016; Lee and Elsayed, 2005; Petersen, 1999). However, order frequency
is not stable over time, which may induce the need for repositioning products when their
demand has changed (Pazour and Carlo, 2015). To mitigate the need for repositioning, while
simultaneously maintaining the advantages of assigning ‘most important’ products to ‘best’
locations, the concept of class-based storage is widely deployed in practice and studied in the
literature (e.g., Chan and Chan, 2011; Muppani and Adil, 2008). In the class-based storage,
products are grouped into classes, based on order frequencies, and each class is subsequently
assigned to a dedicated zone of the warehouse. Within a zone, the assignment is random.
The class of the fastest moving products is generally called class A, the next fastest-moving
class is called class B, and so on. Since each product is assigned to only one zone, scattered
storage is not commonly used in class-based policies. We still highlight that the meaning
of zones in the storage location assignment context, as used here, differs from zones in the
order picking context. In the latter, the storage area is divided in pick zones where a set of
pickers are dedicated to a single zone, and orders are split among different pickers (Van Gils
et al., 2018c), where workload balance becomes a relevant factor (Vanheusden et al., 2020).
Although zone picking is not considered here, this study can be easily extended for it.

To implement a class-based storage system, three decisions must be made: (i) the number
of classes, (ii) the size of each zone for each class, and (iii) the positioning of each zone
in the layout. Their objective is to reduce the expected average order-picking time, which
is a function of the distances traveled by pickers to retrieve products, referred here as the
average route length (ARL). From the literature, it is known that adding more classes tends
to decrease the ARL, albeit at a decreasing rate (De Koster et al., 2012). Since having a
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large number of classes defeats the purpose of hedging against demand frequency changes, a
common compromise between the two objectives is to use three classes (see, e.g., Hausman
et al., 1976; Roodbergen, 2012; Mirzaei et al., 2021), which is often referred to as the ABC
storage. Also, the decision problem of where to position each zone is extensively studied (see,
e.g., Chan and Chan, 2011; Le-Duc and De Koster, 2005; Petersen et al., 2004). In contrast,
zone sizing has received scarce attention in the literature. In Section 3.2, we review relevant
literature in more detail. Note that methods to address the positioning of zones are often
referred to as storage policies (Petersen, 1999; Silva et al., 2020). Even though this wording
may appear more encompassing than it actually is, we adhere to this convention.

Zone sizes depend on a multitude of strategic factors, including the warehouse layout, and
tactical factors, such as operating policies that impact the picking process. Notably, relevant
operating policies to consider are storage policies (how the zones are positioned in the lay-
out) and routing policies (how a route through the warehouse is determined to retrieve the
products in a pick list). Computing the actual ARL in each route is not possible when the
decision on zone sizing is made since the routes that pickers will follow depend on the actual
pick lists, which are unknown at the tactical level. A challenge is that there are no closed-
form mathematical expressions to determine the expected ARL for every possible warehouse
setting. The only alternative for a consistent performance analysis is through simulation. A
straightforward method to solve the zone sizing problem is by simulating a warehouse with
many combinations of zone sizes and observing which one leads to the minimum ARL. This
has been done in the literature in small scale only (e.g., Petersen et al., 2004). However, simu-
lation requires relatively high computation times, which makes it intractable to compare very
large number of solutions. For this reason, the adoption of arbitrary zone sizes is a common
practice.

The first major contribution of this paper is to implement a tailor-made simulator, extending
the work of Roodbergen (2012). The simulator considers many factors derived from the layout
properties of the multi-block warehouse, the demand frequency of products, the number of
products in customers’ orders, and the storage and routing (S/R) policies in use. Since the
number of possible settings is infinite, we generate a limited number by randomly sampling
from an extended range of commonly occurring settings, including shelf rack layouts (Çelik
and Süral, 2019) and pallet rack layouts (Parikh and Meller, 2010). Each setting is simulated
considering thousands of zone sizes using grid search, and each zone size is evaluated by their
expected ARL. Even for a limited number of settings, the extensive simulations required about
12,000 CPU hours. We analyze the big data generated to quantify the influence of many new
input factors (features) in the best zone sizes (targets) using a univariate linear regression. We
also show that the best observed zone sizes significantly change according to the warehouse
settings, therefore justifying the need of deploying tools that can estimate the optimal sizes
given a warehouse setting.
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As a second major contribution, we propose a new methodology to solve the zone sizing
problem using machine learning (ML) regression methods. The ML methods result in models
that receive as input the features previously mentioned and output the three zone sizes required
for the ABC storage. Although in preliminary experiments nine ML regression methods were
tested, only the four most promising ones are presented. They are ordinary least squares
(OLS), regression tree (RT), random forest (RF), and multilayer perceptron (MLP). Their
models are developed using the data generated in the simulations. Briefly, we select the zone
sizes that lead to the lowest ARL for each warehouse setting simulated, and these zone sizes are
used as target values to train the regression models. We remove unnecessary features through
a dimensionality reduction step and set the relevant parameters of the models. The models
are compared against themselves and the most common zone sizes used in practice, including
the use of a random policy, a two-zone (20/80) policy, and a classical 20/30/50 policy, by
their performance using the mean square error (MSE) metric and the ARL. We also show
that an additional step of rounding predictions to the nearest subaisle (RNS) can improve
the solutions. Finally, we show that there is a trade-off between simplicity and performance
among the ML models trained. Figure 3.1 presents a summary of the methodology described.

Figure 3.1 – Summary of the methodology adopted in this paper
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By deploying ML methods on this dataset, we aim at developing models that can quickly
and easily determine proper zone sizes, given any set of input factors, without future need
for repeating the extensive simulations. We highlight that our methods do not imply that
the zone sizing decision should be done after other strategic and tactical decisions. Also, this
methodology can be easily adapted for different problems found in warehouses, both manual
and automated.

The remainder of this paper is structured as follows. Section 3.2 gives an overview of related
literature. In Section 3.3, we describe our simulation model, including a detailed description of
the factors considered. Section 3.4 contains an overview of the four ML methods used. Section
3.5 presents an analysis of the data gathered from the simulations. Section 3.6 presents the
setup of the regression models, their performance comparison, and a qualitative analysis of
each method attribute. Finally, the concluding remarks of this paper are found in Section 3.7.

3.2 Literature review

Zone shapes and sizes are usually investigated together in the class-based storage literature.
For warehouses with single-command cycles, in which storage and retrieval operations are
performed carrying a single load, found mainly in automated systems and unit-load ware-
houses, these problems can be solved analytically. Hausman et al. (1976) analyze the optimal
partitioning point for a two-zone system in terms of the demand skewness, showing that the
first zone should be smaller when demands are more skewed. For the ABC system, the best
partitioning points are determined numerically using grid search. The results show that the
best combination of classes A and B tends to be smaller when demands are more skewed and,
consequently, class C tends to be larger. Eynan and Rosenblatt (1994) extend the Hausman
et al. (1976) procedure to optimally determine zone boundaries for n classes. Rao and Adil
(2017) also develop analytical models to find an optimal partitioning point in a two-zone
system, but considering that storage location assignments are determined using a heuristic
storage policy. Similar procedures are also presented for different systems, such as for a 3D
compact automated system (Yu and De Koster, 2009), a live-cube compact system (Zaerpour
et al., 2017), and a warehouse with diagonal cross aisles (Bortolini et al., 2019b). Still for sin-
gle picks, Van den Berg (1996) solves the zone sizing problem using a dynamic programming
algorithm that simultaneously assigns locations and products to classes.

In this paper, we consider a setting where multiple picks are performed in each route. Different
than for single-command cycles, there is no firm strategy on how to define class partitions in
a multiple picking setting (De Koster et al., 2007). For a specific case of a warehouse with
a single-block layout, Petersen et al. (2004) analyze how to set up the class-based policy for
zones shaped following simple rules commonly used in practice in a system with two, three
and four zones. A few different zone sizes are tested only for the two-zone case, which they

64



concluded that either a 30/70 or 40/60 partition is the best option for the specific layout
considered, depending on the number of picks to be done in the routes. For the three-zone
case, they arbitrarily considered sizes as 20/30/50. In fact, for many studies, the size of each
zone is an input parameter in their models, not a decision variable (Dijkstra and Roodbergen,
2017; Manzini et al., 2015; Roodbergen et al., 2015; Sooksaksun et al., 2012). Many of them
consider that demands follow a 20/80 curve (20% of products account for 80% of the total
demand) and, therefore, define zones using the 20/80 partition for two classes or the 20/30/50
for three classes. Using these zone sizes for a skewed demand scenario in an ABC system,
Le-Duc and De Koster (2005) investigate zone shapes in a two-block warehouse with the I/O
located in the head of the cross aisle that separates them. A mathematical model is developed
to determine the partial length of each aisle used for storing each class. They show that the
shape of the optimal zones depends largely on the demand skewness, the number of picks
in each route, the storage assignment policy, and the warehouse length/width ratio. For
the same two-block layout, Rao and Adil (2013) develop analytical models to simultaneously
determine the number of classes, class boundaries, pick list size, and number of aisles. Dijkstra
and Roodbergen (2017) show that the optimal class boundaries in a single-block warehouse
where pickers follow the return routing policy must be non-increasing as a function of the
aisle number. Chan and Chan (2011) present a case study of a single-block, multi-level rack
warehouse with an ABC storage system where different combinations of S/R policies are
simulated for various pick densities. Roodbergen (2012) provides insights on the interactions
between layout, routing, and storage policies in an ABC system, showing that the best zone
sizes change according to the policies in use. We extend the work of Roodbergen (2012) to
provide a deeper analysis of the data generated in our simulations and by developing tools to
estimate optimal zone sizes without requiring to run the simulator again. Compared to the
remaining literature, our contributions are stated as follows.

• Perform extensive simulations for different zone sizes used in common manual warehouse
settings. Other studies only considered small scale simulations for a reduced number of
input factors;

• Analyze the data generated by the simulations to provide a quantitative measure for
the influence of factors in the zone sizing solution. Previous studies only provide the
improvement of the expected ARL when using different settings for their simulations;

• Train machine learning models to estimate the optimal zone sizes from the factors pre-
viously described. This methodology has never been applied to solve the zone sizing
problem;

• Compare their applicability regarding attributes such as the quality of the solutions
provided and the ease of implementation in practice. They are also compared against
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commonly used methods, such as the arbitrary zone sizes previously mentioned and the
random storage policy;

• Provide methods that can determine good zone sizes in negligible calculation time, which
allows for embedding our methods in other warehouse design methods, for example, for
optimizing warehouse layout.

3.3 Multi-block warehouse factors and simulator

The routes followed by pickers to retrieve products ordered are influenced by several factors.
Le-Duc and De Koster (2005) and Petersen (1999) summarize them to the layout of the
warehouse, the demand pattern, the storage strategy, the batching method, and the routing
method. Each of these features are discussed next.

3.3.1 Layout factors

In a standard multi-block warehouse, there are five layout factors to be considered: number
of aisles, number of cross aisles, aisle length, aisle width, and cross aisle width.

The number of aisles influences travel distances since more aisles containing picks increase
the distance to be travelled in a route. Longer aisles may also increase the route length since
pickers spend more time travelling in a single aisle before a new one can be entered. Usually,
warehouses have at least two cross aisles, one at the front and one at the back of the storage
area. Additional cross aisles may reduce route length depending on the pick locations. Finally,
wider aisles and cross aisles also increase the travel distance. We ignore the distance between
the left and the right side racks in an aisle and consider that pickers walk in the middle of
aisles and cross aisles. The total storage capacity of the warehouse is twice the number of
aisles multiplied by the aisle length. This is a continuous representation of storage capacity,
which generalizes the representation of capacity in terms of total number of slots.

3.3.2 Demand distribution

The only factor related to the demand is its distribution. Typically, few products account
for the majority of the demand volume. Some related works (Le-Duc and De Koster, 2005;
Petersen et al., 2004) consider that the demands are represented by a step function where a
certain percentage of products accounts for a certain percentage of the total demand, usually
20% of products accounting for 80% of demand. Caron et al. (1998) present an analytical
function to describe this characteristic using a continuous function known as ABC curve.
Namely,

F (x) =
(1 + s)x

s+ x
, 0 ≤ x ≤ 1, s ≥ 0, s+ x 6= 0, (3.1)
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where x indicates the zone size corresponding to the items whose order frequency represent
a fraction F (x) of total warehouse activity. The parameter s indicates the skewness of the
demand. For example, for s = 0.067 it holds that 80% of the picks are generated by 20% of
the products, reducing to 70% for s = 0.12, 60% for s = 0.2 and 50% for s = 0.333, which are
common skewness values found in the step functions of related works.

3.3.3 Storage strategy

The storage strategy accounts for assigning products within the storage area. The zone size is
expected to significantly influence the efficiency of the storage location assignment (Van Gils
et al., 2018b). In this work, we consider an ABC storage system. While our main objective is
to estimate the optimal combination of zone sizes, the zone shapes are determined following
one of the four methods for the ABC storage shown in Figure 3.2. In this figure, different
colors define the zones, with the class A being represented in black, class B in grey, and class
C in white. Across-aisle (Aa) locates the A products in the front-most locations of each pick
aisle. Nearest-location (Nl) ranks storage locations by their distance to the I/O point and,
then, locates the A products in the closest locations to the I/O. Nl is closely related to the
method of diagonal storage (Petersen, 1999), which defines boundaries following a diagonal
shape. For single product orders, Nl minimizes the expected ARL. Nearest-subaisle (Ns) ranks
subaisles according to the distance of their heads to the I/O point and, then, the A products
are assigned to the closest subaisles. In case more than one zone is assigned to the same
subaisle, the products of the best class are assigned to the best locations within this subaisle
first. Finally, within-aisle (Wa) ranks aisles according to their distance to the I/O point and
assigns the A products to the best aisles. Different studies show that each of these policies
perform well under different warehouse settings and all of them can actually be found in real
cases (Jarvis and McDowell, 1991; Le-Duc and De Koster, 2005; Petersen, 1999; Roodbergen,
2012).

(a) Across-aisle (Aa) (b) Nearest-location (Nl) (c) Nearest-subaisle (Ns) (d) Within-aisle (Wa)

Figure 3.2 – Storage policies
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3.3.4 Batching policy

Batching accounts for how the demanded products are grouped to be retrieved by a single
picking tour. Several batching policies exist (De Koster et al., 2007). Even though we do not
explicitly consider batching, our methodology takes the number of picks per route, i.e., the
number of locations to visit in a single route, as an input, which may be based on individual
orders (pick-by-order) or be the result of a batching procedure. As such, our methods can also
be deployed in conjunction with batching procedures for joint optimizations.

3.3.5 Routing policy

Given a pick list and the location of the products contained in it, the order-picking problem
(OPP) consists of determining the route to be followed by the picker in order to retrieve them
with the objective of minimizing the total distance traveled (Pansart et al., 2018; Scholz et al.,
2016). Although exact methods can be found to solve this problem (Pansart et al., 2018;
Ratliff and Rosenthal, 1983; Scholz and Wäscher, 2017; Theys et al., 2010), the usage of these
methods is intractable, considering that calculation time increase rapidly for an increasing
number of cross aisles, and considering the extremely large number of routes that needs to be
calculated for our approach. Furthermore, simple heuristic policies are also more likely to be
accepted by pickers since they are more intuitive (Grosse et al., 2016).

We consider the four routing policies shown in Figure 3.3. Aisle-by-aisle (Aba) considers that
each aisle containing at least one pick is visited once. The best cross aisle to move to the
next aisle is determined using dynamic programming. In S-shape (Sh), pickers traverse the
left-most aisle that contains picks to the back of the warehouse and then return to the front
picking products one block at a time. Any subaisle containing a pick is traversed. After the
last pick in a block, the picker returns to the front of that block and continues to the next.
Largest gap (Lg) also starts with the picker moving to the back of the warehouse, then picking
products one block at a time. Whenever a subaisle contains a pick, instead of entirely crossing
it, the picker avoids the “largest gap” and returns to leave it from the same side entered. A
gap represents the distance between two adjacent picks, or between the middle of a cross aisle
and the nearest pick. The last subaisle of a block is traversed entirely to allow the picker to
enter the subaisles from the other side of the block. The last considered policy is the combined
(Co). It follows the same logic of performing all picks from the back of the warehouse to the
front, block by block. However, whenever a subaisle is entered, the picker can choose between
traversing it or making a return when all picks within it are done. The choice is made using
dynamic programming by always looking one subaisle ahead in order to be in a better starting
point for the next subaisle. A detailed description of these policies is found in Roodbergen
and De Koster (2001).
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(a) Aisle-by-aisle (Aba) (b) S-shape (Sh) (c) Largest gap (Lg) (d) Combined (Co)

Figure 3.3 – Routing policies

3.3.6 Warehouse simulator

Given the five layout factors, the skewness parameter, the number of picks per route, the
combination of S/R policies, and the zone sizes, we use a simulator to estimate the expected
ARL. The estimations could be done using analytical formulas in some specific situations
(Aldarondo and Bozer, 2020; Battini et al., 2015; Hwang et al., 2004; Le-Duc and De Koster,
2005; Ozden et al., 2020; Parikh and Meller, 2010). Notably, they exist for layouts with
only one or two blocks, and for specific policies that may differ from those considered here.
Since analytical formulas are not available for all situations, our simulator is useful due to
its flexibility for accepting any layout and policies among those considered. Furthermore,
most analytical formulas provide only approximations of the ARL, and hence using different
formulas from different sources may create unintended inconsistencies between data points,
which is prevented by using our simulator for all situations. Regression models to predict the
best zone sizes can be developed regardless of whether the training data is generated using
the simulator or analytical formulas.

In the simulator, the warehouse layout is created first, then the zones are set considering the
shapes and locations determined by the storage policy used and their sizes. Then, pick lists
are sampled using the ABC curve. They basically contain the zones where each pick will be
performed. Next, a random location within that zone is chosen for each pick. The simulator
computes the route traveled by the picker to retrieve all products demanded following the
routing policy used. This procedure is repeated several times. Each time the route length is
found for a new pick list sampled, the estimated ARL and its two-sided confidence interval C
are updated as:

Cα/2 = x̄± zα/2
s√
n
, (3.2)

where x̄ is the estimated ARL, s is the standard deviation of the route lengths estimated
from the n pick lists sampled, and zα/2 is a value that follows from the cumulative normal
distribution function for a chosen degree of certainty (1 − α/2). The simulations stop when
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the maximum accepted half-width ε is attained, i.e., when (3.3) holds.

ε ≥ zα/2
s

x̄
√
n

(3.3)

3.4 Machine learning regression methods

In the context of regression analysis, ML methods are used to predict a set of continuous
output values (targets) from a set of input variables (features). These methods are trained
using real or synthetic data in order to find a model that best fits the dataset that they are
“learning” by finding the correlations between features and targets.

The use of ML regression methods in the warehousing literature is very limited, with most
applications found in demand forecasting (Nikolopoulos et al., 2016; Shi et al., 2020), but
also in rental price estimation (Ma et al., 2018), forklifts engagement predictions (Mirčetić
et al., 2016), and the development of a dynamic routing system for automated guided vehicles
(Nguyen Duc et al., 2020).

We test several ML regression methods to estimate the ABC zone sizes that minimize the ARL.
The objective is to derive a model that learns the unknown function used by the simulator
indirectly leading to the optimal zone sizes through the minimization of the ARL. If we were
fitting a model to predict the length of a single route, the ML methods would be learning
the set of instructions defined by the routing policy used. However, to predict the ARL, it
is reasonable to assume that the unknown function is also dependent on the storage policy
used. This means that 16 different functions are to be learned considering the combinations
of the four storage strategies (S) of Figure 3.2 combined with the four routing policies (R) of
Figure 3.3. For this reason, each of the ML methods used are trained for each combination
of S/R policies separately. The dataset used to train them is generated using the simulator
considering its input factors (see Section 3.5.3) as features and the best zone sizes as targets.

The ML regression methods used in this study are: ordinary least squares (OLS), regression
tree (RT), random forest (RF), and multilayer perceptron (MLP).

In summary, OLS constructs linear functions combining the features to predict each target
(Weisberg, 2013). RT is a multi output model composed of several binary decisions performed
in a tree-like structure that is able to capture nonlinear relationships between the features
and the targets (Loh, 2014). RF is an ensemble method where multiple RTs are randomly
created to perform independent predictions, then all predictions are averaged, thus increasing
the model robustness (Breiman, 2001). Finally, MLP is a feedforward deep neural network,
consisting of an input layer that receives the features, one or more hidden layers where the
values of the features are transformed using nonlinear functions, and an output layer that
gives the predicted target values (Aggarwal, 2018). These methods represent four of the
most commonly used categories of supervised learning methods for regression analysis, i.e.,
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linear regression, decision trees, ensemble methods, and neural networks. Other methods
were also tested in a preliminary round of experiments, such as ridge and lasso regressions,
AdaBoost, gradient boosting, and support vector machines, but only the most promising ones
were selected.

3.4.1 Ordinary least squares

OLS is one of the most popular statistical methods used for regression analysis. It fits a linear
function using the values of the features to predict the targets. The linear model is such that
the sum of the squared deviation is minimized.

Linear regression models assume that target values are unbounded, i.e., they can assume any
real number. In the case of ABC zone sizes, they are bounded by zero and the maximum num-
ber of storage locations in a warehouse. Multivariate fractional regression models (Murteira
and Ramalho, 2016) can be an alternative to use in this situation, however, these models
are more appropriate when there are many observations at the upper and/or lower bounds.
For ABC zone sizing, it is known that optimal zone sizes lie not too close to their bounds.
Otherwise, it would be more advantageous to reduce the number of classes in the solution. In
this case, we ignore the bounded nature of the targets and use a regular OLS regression.

Since OLS supports the prediction of only one target, for the ABC zone sizing, three linear
functions are modeled, one for each zone size. Advantages of OLS compared to the other
models used here are that it provides simple functions that are easy to apply in real cases
and to interpret, since they show which features contribute the most to the predicted values.
However, OLS usually does not perform well when the relationships between features and
targets are nonlinear.

3.4.2 Regression tree

RT is a non-parametric method that can be used for regression analysis. It is based on a
hierarchical decision scheme using a tree like structure, also known as decision tree, as the
example in Figure 3.4. The tree contains a root node containing all data, a set of internal nodes
and a set of terminal nodes (leaves). At each node, a binary decision is made using a condition
associated to one of the input features, until a leaf is reached containing a combination of the
estimated target values (Loh, 2014).

Construction of an RT starts from the root node, where its prediction is made based on
the target values of the training samples. Then, it searches over all features for a split that
minimizes the sum of squared errors for the two new nodes generated. This process continues
for each new node generated until a user-defined stopping criteria is reached. An RT is easy to
understand and to interpret, since it breaks complex decisions into several simpler ones, hence
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Figure 3.4 – Example of an RT for the zone sizing problem

# cross aisles ≤ 2

# picks per route ≤ 12

# aisles ≤ 10

11/17/72 10/15/75

Skewness ≤ 0.16

11/18/71 14/18/68

# cross aisles ≤ 3

Aisle length ≤ 11

25/29/46 12/38/50

Skewness ≤ 0.10

18/30/52 26/36/38

True False

it can be visualized. Moreover, it can be used to deal with complex nonlinear relationships.
More on RT is found in Loh (2014).

3.4.3 Random forest

RF belongs to the class of the ensemble methods in machine learning (Breiman, 2001). In
ensemble learning, several, usually simple, estimators are combined such that each provides
a prediction and, then, all predictions are combined, improving the robustness over single
estimators. RF consider multiple RTs, like the one previously shown in Figure 3.4, such that
each tree is built from a set of randomly sampled data with randomly sampled features with
the same distribution for all trees in the forest (bootstrap sample). The predictions of each tree
are averaged for the final solution. The structure of an RF to the ABC zone sizing is shown
in Figure 3.5. As the number of trees increases, the error for the forest tends to converge,
decreasing the variance of the RF model, and increasing accuracy when applied to unseen
data, i.e., a lower overfitting. Due to this reason, RF is robust with respect to outliers.

Figure 3.5 – Structure of an RF for the zone sizing problem

Training data (bootstrap sample)

. . .

Tree 1 Tree 2 Tree n

Prediction 1: A1/B1/C1 Prediction 2: A2/B2/C2 Prediction n: An/Bn/Cn

Average: Ā/B̄/C̄
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3.4.4 Multilayer perceptron

Artificial neural networks are machine learning methods inspired by how the human brain
processes information and are used to approximate complex functions including nonlinear
relationships that depend on several features. MLP is an artificial neural network composed
of a structured network of one input layer, one or multiple hidden layers, and one output layer,
as shown in Figure 3.6. The input layer consists of one node for each feature considered, while
the output layer consists of one node for each target to be predicted. Each hidden layer is
composed of a number of nodes where the values from the previous (input or hidden) layer
are input, transformed using a nonlinear activation function, and sent to the next (hidden
or output) layer in the forward direction (feedforward architecture). A loss function, usually
minimizing the sum of squared errors in regression problems, is optimized in the output layer
via backpropagation (Aggarwal, 2018).

Figure 3.6 – Structure of an MLP to the zone sizing problem

...

...
...

# aisles

# cross aisles

Aisle length

Zone A size

Zone B size

Zone C size

Input layer Hidden layer 1 Hidden layer 2 Ouput layer

MLPs are scale sensitive; if one input feature has a larger range than another, and both
have a similar variance, then the MLP has a tendency to be more sensitive to the larger
one. Therefore, feature scaling is recommended when setting an MLP (Aggarwal, 2018).
Standardization is a common way to scale features and is done as:

X̂ =
X − X̄
σ

, (3.4)

where X represents the feature samples for a feature with mean X̄ and standard deviation σ,
transforming all features to have a mean of zero and unit variance.

The MLP has been demonstrated to be a very powerful tool since it does not require a high
level of abstraction about the data domain and it self-organizes its complexity by adding or
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removing neurons according to the available data or computational power (Aggarwal, 2018).
Its hidden layers have a non-convex loss function, such that different initializations can lead
to different validation accuracy. We detail in Section 3.6.1 how we set the number of hidden
layers and the number of neurons in our MLP model.

3.4.5 Model evaluation

The objective of all models is to estimate the ABC zone sizes such that the ARL is minimized.
Due to the long time required to run simulations with a high level of confidence, we do not
use this metric directly when setting up the models. Instead, we use a common, and fast to
compute, score metric for evaluating the model’s performance: Mean Squared Error (MSE).
MSE measures the variance of the predictions, therefore reducing worst case estimations. The
formula for MSE is shown in equation (3.5), where n is the sample size, Yi is the i-th observed
value for the feature and Ŷi is the value predicted.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2. (3.5)

A model is considered to be better for a combination of parameters that result in a lower
MSE. We show in Section 3.6 that this metric predicts well the model performance for the
original objective of minimizing the ARL.

3.5 Data analysis

In this section, we detail how the simulator was setup to generate the dataset used to train
the regression models. We also present an analysis of the relevant information extracted from
the data generated. The simulator was implemented in C++ and simulations were run on a
parallel cluster of machines with an Intel Gold 6148 Skylake with 2.4 GHz at each node with
up to 1,000 nodes allowed to be used in parallel.

3.5.1 Dataset generation

The dataset used to train our models was generated using the warehouse simulator described
in Section 3.3. We generate 1000 samples to represent different warehouse settings. Each sam-
ple is generated using common values found in practice for the warehouse factors passed to the
simulator (Roodbergen, 2012). The values of each factor were selected using a uniform dis-
tribution considering lower and upper bounds. This way the samples are generated randomly
instead of in a grid pattern, which would require the generation of many more samples to be
representative. All values generated are integer, except for the skewness. The bounds used
are shown in Table 3.1 together with the S/R policies. Therefore, a total of 16,000 instances
were generated.
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Table 3.1 – Bounds of the input features

Feature Bounds
Number of aisles [6, 18]

Number of cross aisles [2, 6]
Aisle length (in meters) [10, 30]
Aisle width (in meters) [2, 6]

Cross aisle width (in meters) [2, 6]
Picks per route [5, 25]

Skewness [0.05, 0.35]
Storage policy {Aa, Nl, Ns, Wa}
Routing policy {Aba, Sh, Lg, Co}

For each instance, we estimate the ARL by performing a grid search, simulating the combi-
nations of zone sizes A/B/C, where A = {1%, 2%, . . . , 75%}, B = {1%, 2%, . . . , 75%}, and
C = 100% − A − B. This results in 4350 feasible combinations for each instance. Pick lists
were generated until ε = 0.25% for a 99% of degree of certainty. The result is a 5 GB data
file containing the expected ARL for each combination of zone sizes and instances. Total
simulation time took around 12,000 CPU hours, which was only possible to run due to the
parallel cluster of machines available.

3.5.2 Target analysis

We first analyze the data obtained from the simulator regarding the best combinations of
ABC zone sizes, i.e., the zone sizes that led to the lowest expected ARL for each warehouse
setting sample. We will refer to these as the best known solutions (BKS), although due to
the inherent uncertainties involved in the simulation of the expected ARL other zone sizes
simulated may perform better. A summary of this data is presented in Table 3.2. It shows
that the overall BKS found are A = 18.33%, B = 35.49%, and C = 46.18%, which slightly
deviates from the commonly used sizes of 20/30/50.

Table 3.2 – Statistics for the best zone sizes found in the simulations

Attributes Zone A size Zone B size Zone C size
Mean 18.33 35.49 46.18

Standard deviation 8.77 8.07 10.22
Minimum 2 1 4

Lower quartile 12 30 39
Median 17 35 46

Upper quartile 23 41 52
Maximum 55 62 81

In Figure 3.7 we plot every BKS found. The x-axis shows A and the y-axis shows B. Red dots
indicate the popular 20/30/50 solution. BKS are presented for different combinations of S/R
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policies. This figure represents well the high standard deviation and the large range between
minimum and maximum observed sizes from Table 3.2, indicating that the use of fixed zone
sizes as a rule-of-thumb usually leads to a solution numerically far from the optimal one. Only
half of the BKS fall within a range of A = 12% to 23%, B = 30% to 41%, and C = 39% to
52%.

Figure 3.7 – Best zone sizes found in each simulation

We observe different data patterns for different combinations of S/R policies in Figure 3.7.
One of them is the diverse density of points for different combinations of zone sizes in each
S/R policy. For instance, Wa/Lg has most of the BKS with B above the reference point,
while in Aa/Aba the opposite is seen. Figure 3.8 exhibits the mean BKS for each S/R policy.
Note that the overall optimal zone A size is more than 2.5 times higher when using Aa/Aba,
than when using Wa/Lg. We remind that the figure conceals actual variation in performance
within each bar. However, these sizes are expected to lead to a better performance than the
common 20/30/50 and can be easily adopted in practice. Later in this paper (see Figure 3.10),
we present the gap between the ARL when using these average BKS for each S/R policy and
the ARL of the BKS found in the simulations for each sample. We show that although the
average performance is better than 20/30/50, the ARL deviation to that of the BKS is still
high.

Another metric used to justify the need for having accurate models to predict optimal zone
sizes is the number of combinations of zone sizes simulated within a gap δ from the ARL of the
BKS. For δ = 0%, we have approximately one combination per sample, since ties rarely occur.
Due to the uncertainty when estimating ARL using the simulator, defined at ε = 0.25%, we
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Figure 3.8 – Average best zone sizes per S/R policies found in the simulations

are interested in finding a combination that leads to an ARL below twice the value of ε from
the best solution. If this is the case, we cannot reject the hypothesis that the solution found
is equal to the BKS.

Some combinations of S/R policies are naturally easier to estimate good zone sizes since their
performance do not change significantly when the zone sizes are changed marginally. It is
the case of Aa/Sh, which places high demanded products in as many aisles as possible with
a routing policy that prefers to travel a few aisles entirely. This is a poor combination in
practice since bringing highly demanded products to the front of the aisles does not lead to
a reduction in the number of aisles visited. The opposite is expected for Wa/Sh, in which
placing a single highly demanded product in a new aisle can significantly increase the ARL.
This implies that a model to predict optimal zone sizes for the Aa/Sh policies is not required
to be as accurate as a model for the Wa/Lg policies to generate good solutions. For this
matter, different models are applied for each S/R policy combination.

3.5.3 Features analysis

Feature engineering is a process of using domain knowledge to create/extract new features from
a given dataset (Turner et al., 1999). We extract new meaningful features in the warehousing
context from the original warehouse factors using nonlinear operations. They are:

• Number of subaisles: number of aisles / (number of cross aisles − 1)

• Subaisle length: aisle length / (number of cross aisles − 1)
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• Warehouse length: aisle length + cross aisle width × number of cross aisles

• Warehouse width: number of aisles × aisle width

• Dimensions ratio: warehouse length / warehouse width

• Picks per aisle: picks per route / number of aisles

• Picks per subaisle: picks per route / number of subaisles

• Pick density : picks per route / (aisle length × number of aisles)

These eight extracted features and the seven original ones constitute the preliminary set of
input features used in the models.

We performed univariate linear regressions between each of the 15 features and each of the
three targets for each S/R policy. The obtained coefficient of determination (R2) values are
presented in Table 3.3 with those above 0.1 highlighted. Observe that skewness (7) has the
highest R2 values in most policy combinations, which means that this feature shares a higher
percentage of the variance with the targets than the others. When Nl or Ns storage policies are
used, skewness is almost always the only feature with a relatively high R2. For the Aa policy
– except when used with Sh – number of cross aisles (2), number of subaisles (8), subaisle
length (9) and picks per subaisle (14) are the most linearly correlated with the best zone sizes
found. Note that all these features are related to each other since (8), (9) and (14) indirectly
contain (2). Finally, when using Wa – except with Lg – several features have a relatively high
R2. We highlight that none of the correlations observed are absolutely high (above 0.5), which
is an indication that either the features are not correlated at all with the targets or they have
a nonlinear correlation.

3.6 Models setup

In this section, we present how the four regression models are set to predict optimal ABC
zone sizes. Each model has its most relevant parameters set using the data generated in the
simulations, then the performances of each model with the best settings are compared. Finally,
we present an additional step to improve model performance based on the data previously
analyzed.

The models were implemented using the Python package Scikit-learn (Pedregosa et al., 2011).
We demonstrate the easiness to set the models by performing all training and testing on a
personal computer with a six-core Intel Core i5-9400 with 2.9 GHz. The resulting equations
of our OLS and the RT are made available online on https://www.leandro-coelho.com/

warehousing-zone-sizes/ to enable a visualization and to facilitate the use of our results.
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Table 3.3 – R2 for the univariate linear regression between warehouse factors and zone sizes

S/R policy (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Aa/Aba 0.00 0.25 0.00 0.00 0.01 0.01 0.20 0.14 0.25 0.05 0.00 0.02 0.01 0.10 0.02
Aa/Sh 0.01 0.04 0.01 0.00 0.01 0.01 0.05 0.01 0.04 0.03 0.01 0.03 0.00 0.02 0.00
Aa/Lg 0.00 0.33 0.00 0.00 0.00 0.02 0.03 0.19 0.37 0.10 0.00 0.03 0.00 0.22 0.00
Aa/Co 0.01 0.16 0.00 0.01 0.01 0.01 0.08 0.08 0.19 0.04 0.01 0.03 0.00 0.10 0.00
Nl/Aba 0.03 0.04 0.03 0.05 0.01 0.00 0.37 0.03 0.04 0.01 0.08 0.08 0.01 0.02 0.01
Nl/Sh 0.00 0.02 0.02 0.02 0.00 0.00 0.24 0.01 0.02 0.02 0.03 0.01 0.00 0.04 0.01
Nl/Lg 0.02 0.02 0.03 0.05 0.00 0.01 0.21 0.03 0.06 0.00 0.08 0.03 0.01 0.04 0.00
Nl/Co 0.01 0.03 0.01 0.03 0.01 0.00 0.23 0.02 0.02 0.02 0.04 0.02 0.00 0.04 0.00
Ns/Aba 0.02 0.01 0.02 0.03 0.00 0.02 0.29 0.00 0.01 0.02 0.05 0.04 0.02 0.01 0.03
Ns/Sh 0.01 0.07 0.01 0.02 0.01 0.02 0.14 0.05 0.08 0.03 0.02 0.01 0.02 0.13 0.02
Ns/Lg 0.02 0.03 0.02 0.04 0.01 0.01 0.23 0.04 0.04 0.02 0.06 0.03 0.02 0.02 0.00
Ns/Co 0.01 0.02 0.01 0.01 0.01 0.01 0.18 0.02 0.03 0.02 0.01 0.00 0.01 0.06 0.02
Wa/Aba 0.07 0.07 0.01 0.06 0.01 0.06 0.18 0.06 0.05 0.06 0.10 0.14 0.06 0.11 0.04
Wa/Sh 0.01 0.13 0.01 0.03 0.00 0.04 0.19 0.10 0.13 0.05 0.03 0.03 0.03 0.17 0.03
Wa/Lg 0.00 0.02 0.01 0.03 0.01 0.05 0.25 0.01 0.03 0.01 0.03 0.02 0.01 0.01 0.02
Wa/Co 0.02 0.10 0.02 0.04 0.00 0.05 0.21 0.09 0.08 0.06 0.02 0.04 0.03 0.11 0.04
*(1): Number of aisles, (2): Number of cross aisles, (3): Aisle length, (4): Aisle width, (5): Cross aisle width,
(6): Picks per route, (7): Skewness, (8): Number of subaisles, (9): Subaisle length, (10): Warehouse length,
(11): Warehouse width, (12): Dimensions ratio, (13): Picks per aisle, (14): Picks per subaisle, (15): Pick density

For all models, we split the 1000 sampled warehouses arbitrarily into 67% as a training set and
33% as a test set. For the training set, we filter the solutions that result in an ARL gap up
to δ percent to the ARL of the BKS found in the simulations. From preliminary experiments,
we observed that OLS, RT and RF performed better when fit to a training set that contains
only data with δ = 0%, such that only the BKS are used for training. We present later in
Section 3.6.1 how δ was determined for the MLP. For the test set, we only use the BKS, since
we want to compare the predicted values with the best ones.

3.6.1 Models development

The regression models are setup after the execution of a dimensionality reduction to remove
unnecessary features and a parameter setting. These steps are presented next.

Dimensionality reduction

The addition of highly correlated features may lead to some undesirable conditions, such
as overfitting, overly complex models, and more computational time to fit. Dimensionality
reduction is the process of transforming a dataset such that only the relevant features are
used. We use the backward search to observe which features can be removed from the linear
(OLS) and nonlinear (RT, RF, MLP) models in order to improve their performance. Backward
search iteratively removes one feature at a time considering the best removal strategy, i.e., the
feature that degrades the least the model performance (Marill and Green, 1963). For OLS
and RT, fewer features lead to cleaner models, which are easier to interpret and implement in
practice. From the experiments, we observe that the use of the same features selected for RT
in the other nonlinear models leads to a better performance, besides being trained faster. The
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results of the backward search for the linear and nonlinear models with default parameters
used in Scikit-learn are presented in Table 3.4. It shows the feature removed in each iteration
of the search, and the MSE values for all models fit for both training and test sets. Since no
results are obtained after removing the last feature, nothing is shown in the last row of the
table. In preliminary experiments we have also used other search procedures, such as forward
search, but no significant difference in the features selected was observed.

Table 3.4 – Results for the backward search feature selection method (which feature is removed
next)

OLS RT
Feature MSE train MSE test Feature MSE train MSE test

All features 36.27 43.63 All features 1.03 45.38
Pick density 36.42 37.66 Pick density 1.03 38.46

Cross aisle width 36.51 37.66 Cross aisle width 1.03 38.77
Warehouse width 36.69 37.69 Warehouse width 1.03 38.34

Number of subaisles 37.00 37.96 Number of subaisles 1.03 38.46
Aisle length 37.59 38.35 Picks per subaisle 1.03 37.85

Number of cross aisles 38.18 38.89 Subaisle length 1.03 38.01
Picks per aisle 38.93 39.67 Warehouse length 1.03 37.46

Dimensions ratio 39.83 40.48 Aisle length 1.03 36.65
Warehouse length 40.79 41.26 Aisle width 1.03 36.13
Number of aisles 42.51 42.73 Number of aisles 1.03 36.08

Aisle width 44.54 44.33 Picks per route 1.03 38.09
Picks per route 46.13 46.02 Picks per aisle 1.13 52.43

Picks per subaisle 47.55 47.60 Dimensions ratio 29.96 47.84
Subaisle length 56.31 55.89 Number of cross aisles 53.03 56.29

Skewness – – Skewness – –

From the results shown in Table 3.4, we observe that the best performance for the test set
is obtained when 13 features are used in OLS and 5 features in RT. The most important
features are read from the bottom to the top of the table. Unsurprisingly, skewness is the
most important feature overall for both methods. Another relevant feature is picks per route.
Number of cross aisles and dimensions ratio seem to be very relevant in RT, but not so
much in OLS, which could be explained by these features having a considerable nonlinear
correlation with the targets, but a very low linear one. It is interesting to see that most of
the artifical features contain significant information to improve the OLS performance, but for
RT some of them are actually used to substitute some of the original features in the models.
For example, combining aisle length, number of aisles, cross aisle width and aisle width with
number of cross aisles seems to generate a new feature (dimensions ratio) that contains more
significant information for the problem than considering the first four as separate features. For
the remainder of our experiments, we use OLS with the best 13 features (the last 13 features
in Table 3.4). RT, RF and MLP are trained with the best five features (the last five features
in Table 3.4). Next, we detail how the parameters of these models were set in this study.
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Parameter setting

All methods except for the OLS require some parameter tuning to improve performance. We
show next how these parameters were set.

Regression tree. The results for the feature selection presented in Section 3.6.1 show a very
high difference in performance between the train and test sets in the RT model. This indicates
that when RT is trained using the default parameters, it might result in overfitting. Commonly,
pruning is used to reduce overfitting. Methods used to stop early the tree building process are
known as pre-pruning, which avoids growing an overly complex tree (Esposito et al., 1997).
The pre-pruning technique considered here determines a minimum number of training samples
(min samples leaf ) required to be at a leaf node. So, a node will only be split if it results in
two other nodes containing at least this number of samples. The choices for this parameter
ranged from 1 to 20. As shown in Figure 3.9, overfitting is observed when the value is too low.
As the value increases, the curves representing the MSE for the training and test sets converge.
Past the point where MSE for the test set is minimum (min samples leaf = 10), both curves
start to increase together, leading to an underfitted model. For a better performance, we set
the min samples leaf parameter to 10 for the remaining experiments.

Figure 3.9 – Results for the setting of the min samples leaf parameter in the RT model

Random forest. Random forests depend primarily on two parameters: the number of esti-
mators (n in Figure 3.5) and the maximum number of features for the bootstrapping. The
number of estimators represents the number of trees in the ensemble. Overall, more trees
reduce variance at the cost of increased computation time. After preliminary tests, we keep
the number of estimators at the Scikit-learn default value of 100. The maximum number of
features represents the number of features randomly chosen at each estimator. More features
make the trees more similar, while fewer features can make trees more diverse. However, too
few features may turn the trees too biased. We run another batch of experiments to set the
maximum number of features, setting it from one to all five features chosen using the backward
search for the RT. The results show that the MSE for the test set is at its lowest point (MSE
= 19.88) when the maximum number of features is four. We use this value for the remaining
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experiments using RF.

Multilayer perceptron. The parameters to tune in the MLP are the number of hidden
layers and the number of neurons in each hidden layer. Before tuning them, we performed
experiments for different δ values to observe how MLP behaves when more information about
the gaps are used. The parameter δ determines which data from those generated by the simu-
lator are used to train a model. A higher δ can help the model learn more about the unknown
function to compute the ARL inside the simulator. However, it also means significantly more
data are used to train, which may lead to an exponential increase in the training time. We
train the RF with default parameters for δ = 0.0% to 0.5%. For that, we have added a new
feature to the dataset called gap. This feature measures the distance of the observed data
point to the best solution obtained for the same problem. This way, gap in the training set
varies between zero and δ, while for the test set gap is always zero, since we are interested in
predicting the optimal solution. Table 3.5 shows the results obtained for an MLP with a single
hidden layer with 10 neurons and the maximum number of iterations set to 5000 to allow con-
vergence in the optimization process. The remaining parameters are as default in Scikit-learn.
All features were scaled. We observe that the performance for the test set increases with more
data used for training, but peak performance is obtained with δ = 0.1. Following the goal of
maximizing performance, we train the MLP in the remaining experiments using δ = 0.1.

Table 3.5 – Results for the setting of the δ parameter in the MLP model

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE train 32.17 27.78 32.75 38.97 45.45 52.11
MSE test 34.11 28.03 28.18 29.65 30.17 29.89

As the results in Table 3.5 show, the performance of the MLP using the parameters described
is worse than RF. In order to improve it, the two parameters are set using a grid search. We
tested the number of hidden layers from one to three with 20, 50, 100, 200 and 300 neurons
each. The remaining MLP parameters are as in the previous round. Table 3.6 shows the
results obtained in the grid search. The best setting found is the use of two layers with 200
neurons each. The MSE for the test set improved from 28.03 to 19.63 when compared to using
a single layer with 10 neurons.

3.6.2 Models testing

In this section, we compare the performance of each model for the test set. First, we recap how
each model performed using the MSE metric and the training time (Table 3.7). The results
show that OLS scores worse than the other models for the test set, while MLP generates
solutions closer to the best solutions found in the simulations. However, the time to fit the
MLP is significantly higher than the time to fit the RF, and the score improvement is marginal.
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Table 3.6 – Results for the setting of the number of hidden layers and neurons parameters in
the MLP model

Neurons per layer 1 layer 2 layers 3 layers
MSE train MSE test MSE train MSE test MSE train MSE test

20 24.01 25.26 19.96 22.14 18.10 21.37
50 20.62 22.81 16.45 20.30 15.06 20.40
100 18.59 21.26 15.43 19.92 13.67 19.88
200 17.81 20.77 15.06 19.63 13.33 20.03
300 17.37 21.08 14.61 19.84 12.83 19.77

Table 3.7 – MSE among different models

Method MSE train MSE test Time to fit (s)
Ordinary least squares 36.51 37.65 5.8

Regression tree 18.90 28.58 5.8
Random forest 3.60 19.85 8.4

Multilayer perceptron 15.06 19.63 173.1

A model that performs well in the MSE metric will not necessarily do well for the zone sizing
problem. In order to measure the real model performances, we run the simulator using the
predicted zone sizes for the test set and compared the expected ARL against those from the
BKS found by the grid search done using the simulator. In Figure 3.10, we compare the quality
of the predictions made by each model against a random policy, which is equivalent to the
use of a single zone, a 20/80 policy representing the most common partition for a two-zone
system, a 20/30/50 policy representing the most common sizes used for an ABC system, a
18/35/47 policy representing the average target values shown in Table 3.2, and Avg per S/R
representing the average target values derived for each S/R policy shown in Figure 3.8. These
results are for the ensemble of the 16 models trained for each combination of S/R policies. In
B.1, we detail the average and worst case results for each of them.

The results shown in Figure 3.10 indicate that the use of three zones performs significantly
better on average than a random storage or a two-zone system, regardless of the method used
to define zone boundaries. This is in accordance with the findings of Eynan and Rosenblatt
(1994) for a warehouse with single-command cycles and De Koster et al. (2012) for a multiple
picking setting with a conveyor belt. Moreover, although 20/30/50 is the most common
combination used in practice, 18/35/47 has on average a better performance (1.61% versus
1.50%), and if arbitrary sizes are picked from the list derived for each S/R policy, the solutions
are even better on average (1.37%).

Regarding the first regression method, although the linear relationship between features and
targets is weak, OLS is capable of improving the average gap to the BKS compared to the
arbitrary sizes (1.05%), but the variance in performance remains high. RT, which is a com-
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Figure 3.10 – Methods gaps to the ARL of the best combination of zone sizes found in the
simulations

peting method due to its ease of interpretability and replicability, has an even better average
performance (0.76%) and a much lower variance.

As expected, RF and MLP show the best average performances among all methods (0.65%
both). Also, variance is low with a slight advantage to MLP. On the other hand, RF finds
better solutions in the best cases, sometimes even finding solutions with a negative gap to the
BKS.

These conclusions attest that the models that performed better for the MSE metric also
performed better for reducing the estimated ARL, even though MSE is not contained in the
objective function of the zone sizing problem. Also, regardless of the policies, all average
solutions are improved when using a trained ML model.

3.6.3 An improvement step: round to the nearest subaisle

As shown in B.1, variations in performance in all methods are observed between models for
each S/R policy. As explained in Section 3.5.2, some S/R policies are naturally easier to
find good estimations for the optimal zone sizes. Overall, all models can predict better zone
sizes when Aa or Nl are used than when Ns or Wa are used. The latter are storage policies
linked to the sizes of aisles and subaisles. We noted that among the good solutions for these
two policies are those that zone boundaries overlap the point where aisles or subaisles end.
This knowledge is used to improve the predictions of the models by rounding them to the
percentage representing the nearest number of full subaisles that each zone should cover. For
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example, instead of predicting that A covers 14.7 subaisles, it is rounded such that it contains
15 subaisles. In Table 3.8, we show the new average and maximum ARL gaps to the BKS
for each S/R policy using the round to the nearest subaisle (RNS) procedure as an additional
step for the predictions done by the RF. The average ARL gap of the predicted solutions to
the BKS improves from 0.65% to 0.50%, but the gains are most notable in the predictions for
the Ns and Wa policies.

Table 3.8 – Comparison between the original predictions by RF against the predictions rounded
to the nearest subaisle

S/R Policy RF RF + RNS
Avg (%) Max (%) Avg (%) Max (%)

Aa/Aba 0.27 1.42 0.28 1.71
Aa/Sh 0.29 5.44 0.24 6.01
Aa/Lg 0.66 4.74 0.65 5.14
Aa/Co 0.30 2.57 0.30 3.07
Nl/Aba 0.35 2.28 0.39 2.32
Nl/Sh 0.46 2.74 0.52 3.76
Nl/Lg 0.47 3.63 0.50 3.75
Nl/Co 0.38 1.90 0.43 2.24
Ns/Aba 0.85 5.62 0.59 2.50
Ns/Sh 1.01 4.18 0.64 3.99
Ns/Lg 1.06 5.25 0.71 3.39
Ns/Co 0.91 4.77 0.66 5.84
Wa/Aba 1.01 6.36 0.79 6.45
Wa/Sh 0.85 3.85 0.46 3.54
Wa/Lg 0.69 6.30 0.39 3.44
Wa/Co 0.80 4.98 0.50 5.34
Average 0.65 4.13 0.50 3.91

The additional RNS step led the RF to achieve a remarkable milestone. We remind that
the stopping criterion used for the simulations was a maximum half-width ε = 0.25%. In an
analysis done in Section 3.5.2, we mentioned that zone sizes that lead to an ARL of up to
twice ε can also be considered to be optimal since we cannot reject the hypothesis that the
BKS is equal to it. After the RNS step, the average gap of the predicted solutions reached this
threshold, which means further improvements past this point are statistically meaningless. In
fact, 67.9% of the predictions made by RF after rounding are below a 0.5% gap from the BKS.
Before rounding, this metric was only at 41.6%. Gains with rounding to the nearest subaisle
are observed in all models used for the Ns and Wa storage policies. This is an important
information extracted from the data to be considered as a simple guideline for practitioners
to improve zone sizing solutions.

3.6.4 Managerial analysis

In this section, we provide a summary of the results obtained in the previous experiments and
a discussion to highlight the pros and cons of using each method presented to solve the zone
sizing problem in practice.
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Summary of the results obtained

We summarize the analysis of the results of the computational experiments done for a quick
reference:

• We observed that the arbitrary sizes 18.33/35.49/46.18 (rounded to 18/35/47) represent
a better choice overall than the most common choice 20/30/50;

• Given the combination of S/R policy in use, better arbitrary sizes can be chosen with
zone A size ranging from 12% to 31%, zone B size ranging from 28% to 41%, and zone
C size ranging from 41% to 50% (see Figure 3.8);

• Different S/R policies have different levels of accuracy required to estimate good zone
sizes. For example, it is easier to estimate good zone sizes for Aa/Sh than for Wa/Lg;

• For most of the S/R policies, skewness is the most relevant feature (see Table 3.3).
However, its linear correlation is not high enough to justify its use alone to estimate
good zone sizes;

• The exception for the previous statement is when Aa is the storage policy in use. In this
case, the features related to the subaisles (number, length, etc.) are the most relevant
ones. However, they are not enough to provide good estimations of optimal zone sizes;

• Although 13 features have to be considered together such that OLS can provide good
predictions, RT requires only five features – skewness, number of cross aisles, dimensions
ratio, picks per aisle, and picks per route. This indicates that the correlation between
these features and the zone sizes is nonlinear;

• After setting the models to reduce overfitting, using MSE as evaluation metric indicates
that the performance of OLS < RT < RF = MLP (see Table 3.7). The same is
observed when we change the evaluation metric to the expected ARL, proving that
MSE is an adequate metric to use to train the models;

• All four ML models could provide an overall performance better than the arbitrary zone
sizes, with an average reduction of the ARL near 1% and worst case scenario reducing
up to 15% when the best models are used;

• Finally, we suggest an additional step of rounding predictions to the nearest subaisle.
This led to significant performance improvement for the Ns and Wa policies.

Methods comparison

Whenever developing methods to solve optimization problems, it is usual to give all attention
to their performance and overlook their applicability. In practice, there are many variables that
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are usually disregarded when modeling the problem. They may play a vital role when deciding
whether a better performing method is of practical use. For the zone sizing problem, we present
a set of seven important characteristics a method must have in order to be applicable. All
methods presented in this work are evaluated according to these attributes. The first one is,
obviously, the method’s performance considering the average quality of the solutions obtained.
Another desirable attribute is the variance of solutions. Ideally, a method provides similar
solutions in terms of quality regardless of the warehouse setting. Infeasible solutions, such as
negative zone sizes or sizes that sum up more than 100%, can be given so that the infallibility is
another attribute to be considered. An infallible method can always provide feasible solutions,
disregarding its performance, even for unusual features. The fourth attribute evaluated is the
interpretability. Methods that result in interpretable models have a decision process easy to
understand and, therefore, to be accepted by practitioners. This can reduce the resistance for
its adoption, especially when it results in unusual zone boundaries. Another desired attribute is
the quickness to train and run the method until satisfactory solutions are obtained. Specifically
for the zone sizing problem, it is important to evaluate whether a method requires a demand
forecasting accuracy in order to make good predictions. Some methods are more sensible to
the precision of the real skewness feature than others and, therefore, accuracy in the demand
forecasting is required. Finally, the implementation cost of the method should be considered.
The cost can be measured based on the overall effort required for its implementation.

Table 3.9 provides a summary of how each method is classified among these seven attributes.
Arbitrary sizes consider zone boundaries established from commonly used reference values,
such as the 20/30/50, 18/35/47 or using a reference table such as the one for the S/R policy
combinations. For OLS and RT, we consider the adoption of the models provided in this work,
which are ready to be adopted and easy to understand since they consist of simple arithmetic
operations in the OLS case or a tree with binary decisions in the RT case. For RF and MLP, we
understand that the models trained here are hardly replicable. Therefore, new models would
have to be trained, for example, using real data from the warehouse operations. Finally, for
the use of simulations as a solving method, we consider that the warehouse would have to
implement their own tailor-made simulator and design the experiments to search for the best
combination of zone sizes, which may require many decisions to be made such as which zone
sizes combinations to test, and the desired degree of certainty for the results obtained, which
are decisions not required when using the other methods presented here.

From a practical perspective, no single method absolutely outperforms others for all attributes.
Overall, arbitrary sizes are better applicable in cases where no demand forecasts are available.
This is hardly the case for existing warehouses. The only advantage of OLS over RT is its
slightly easier interpretability. However, RT has many more advantages, therefore being more
recommended overall. RF and MLP are better options when the slightly better performance
they provide can result in significant savings, for example, in companies with large scale
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Table 3.9 – Qualitative comparison between different methods to solve the zone sizing problem

Method Performance Variance Infallibility Interpretability Quickness Forecasting accuracy Cost
Arbitrary sizes Poor Very high Yes Very easy No run required None None

OLS Fair High Can fail Very easy No run required Required None
RT Good Average Yes Easy No run required Desirable None
RF Very good Average Yes Hard Fast train and test Desirable Low∗

MLP Very good Low Can fail Very hard Slow train, fast test Required Low∗

Simulator Excellent Very low Yes Average Very slow Required High
*Considering that data for training is readily available. Otherwise, gathering data for the warehouse performance under different
zone sizes can be significantly more expensive than building a simulator

operations and many warehouses. Therefore, it is reasonable to assume that data is available
to train them. The simulator is recommended in case an even better performance is desirable
and enough resources are available to implement it.

3.7 Conclusions

This paper investigates the ABC zone sizing problem, which arises from the class-based policy
used to solve the storage location assignment problem. In this problem, a multi-block ware-
house is divided into three zones of sizes to be determined. The set of products to be assigned
to storage locations are divided into three classes according to their demands, and, the best
classes are assigned to the best zones. Although the zone sizing is a common problem faced
in manual warehouses, the literature about it is still scarce.

We have generated detailed synthetic data to represent real warehouses and customer orders
using a simulator to estimate the average route length. The simulator is fed with a set
of warehouse factors related to its layout, the pick list characteristics, and the storage and
routing policies used. An analysis of the data obtained from an extensive batch of simulations
revealed that good zone sizes vary significantly within a large range. Only half of the optimal
zone sizes for the common warehouse settings analyzed fall within a range of 12% to 23%
for zone A, 30% to 41% for zone B, and 39% to 52% for zone C. We have also shown that
some combinations of storage and routing policies are harder to approximate good solutions
than others. We observed that all considered features have weak linear correlations with the
zone sizes, and that the demand skewness is the most correlated feature for most storage and
routing policies combinations.

We have then used the data from the simulations to train several machine learning regression
methods to learn on how to predict the optimal zone sizes. This was done by showing to them
what are the best solutions found for different settings. This approach provides a faster way to
solve the problem compared to implementing a simulator, which can be too time-consuming
for warehouses. The models that can capture nonlinear relationships between features and
targets performed better than the linear regression. We have shown that a set of only five
features – demand skewness, number of cross aisles, dimensions ratio, picks per aisle, and
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picks per route – is enough to obtain a good performance using these nonlinear models. We
have also suggested an additional step of rounding predictions to the nearest subaisle for some
policies to improve the predictions.

There is a trade-off between performance and applicability among the models. Arbitrary sizes
are easy to remember and significantly outperform alternative methods such as the random
storage or a two-zone system. However, they do not fully benefit from the performance po-
tential of using a three-zone system. The linear functions and decision trees are interpretable
models that consider the problem features to improve performance. Even though linear corre-
lations are weak, the linear regression model outperformed the more primitive solutions. The
decision tree trained predicts solutions on average 0.76% from the best ones found in the simu-
lations and it is a method that can be easily adopted using the trees generated here. For even
better results, an ensemble method, such as the random forest, or a neural network, such as
the multilayer perceptron, can be used. We used a random forest to show that solutions with
an average gap of 0.5% to the best found in the simulations are achievable. At this point, the
loss of solution’s quality is statistically insignificant, such that most of the solutions predicted
are no different than those provided by the simulations.

This study can be extended by considering different characteristics commonly found in manual
warehouse, such as the influence of other batching policies or the use of zone picking. The
success of the proposed methodology is also an indication that it may work for different
problems and warehousing systems, given that enough data is available or can be obtained to
train the ML models.
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Chapter 4

Quadratic assignment problem
variants: a survey and an effective
parallel memetic iterated tabu search

Chapter information A paper based on this chapter is published in European Journal of
Operational Research: A. Silva, L. C. Coelho, and M. Darvish. Quadratic assignment problem
variants: a survey and an effective parallel memetic iterated tabu search. European Journal
of Operational Research, 292(3):1066–1084, 2021.

Résumé

Dans la politique de stockage corrélée, les produits constamment prélevés ensemble doivent être
affectés à des emplacements proches pour réduire la distance moyenne attendue des routes.
Cette politique peut être modélisée comme une problème d’affectation quadratique (PAQ).
Dans le PAQ, nous minimisons les interactions entre paires de produits. Certaines variantes
existent comme lorsque la plus grande interaction entre produits est minimisée (affectation
de goulot d’étranglement), lorsque les interactions entre groupes de quatre produits sont min-
imisées (affectation biquadratique), lorsque le nombre de produits et d’emplacements ne sont
pas égaux (semi-affectation quadratique), ou lorsque des multiples produits peuvent être af-
fectés au même emplacement (affectation quadratique généralisée). Dans ce chapitre, nous
présentons une métaheuristique itérative de recherche tabou mémétique en parallèle pour ré-
soudre le PAQ et ses variantes. Des expériences utilisant des instances de référence de la
littérature attestent de l’efficience de notre métaheuristique, montrant sa compétitivité par
rapport aux meilleures méthodes existant, soit séquentielles ou parallèles. Nous montrons que
notre métaheuristique surpasse de manière significative les meilleures méthodes trouvées pour
les quatre variantes du PAQ, mettant à jour de manière significative leur littérature.
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Summary

In the correlated storage policy, products constantly picked together should be assigned to close
storage locations to reduce the expected average route length. This policy can be modeled as
a quadratic assignment problem (QAP). In the QAP, we seek to minimize the interactions be-
tween pairs of products. Some studied variants are when the largest interaction is minimized
(bottleneck assignment), when interactions between groups of four products are minimized (bi-
quadratic assignment), when the number of products and locations are not equal (quadratic
semi-assignment), or when more than one product can be assigned to the same location (gen-
eralized quadratic assignment). In this chapter, we present a powerful parallel iterated tabu
search metaheuristic to solve the QAP and the four variants mentioned. Computational ex-
periments using the hardest benchmark instances from the literature attest the effectiveness of
our metaheuristic, showing its competitiveness when compared to the state-of-the-art meth-
ods, sequential and parallel. We show that our metaheuristic significantly outperforms the
best methods found for all four variants of the QAP, significantly updating their literature.

4.1 Introduction

Consider an assignment problem where facilities have to be located in sites. Each facility can be
located in one site and each site can hold exactly one facility. The distances between sites and
the flows between facilities are given. The Quadratic Assignment Problem (QAP), introduced
by Koopmans and Beckmann (1957), consists in minimizing a cost function expressed by the
distance and the flow between each pair of facilities assigned to their respective sites. The
QAP is a well-known and well-studied problem, being considered as one of the most difficult
to solve in combinatorial optimization. Even finding an approximate solution to the QAP
is hard due to the quadratic form of its objective function in addition to its combinatorial
nature (Sahni and Gonzalez, 1976). The QAP has received considerable attention during the
last decades, as shown by the several QAP books and reviews (see Finke et al. (1987), Loiola
et al. (2007), Burkard (2013) and Abdel-Basset et al. (2018b)).

Several problems related to the QAP appear in literature. The Quadratic Bottleneck Assign-
ment Problem (QBAP) (Steinberg, 1961) aims to minimize the maximum interaction cost
between two facilities instead of the overall network cost. The Biquadratic Assignment Prob-
lem (BiQAP) (Lawler, 1963) is essentially a QAP in which the interactions occur between
quadruple of facilities simultaneously instead of pairs. The Quadratic Semi-Assignment Prob-
lem (QSAP) (Greenberg, 1969) relaxes the constraints that all sites have to be assigned to
exactly one facility, allowing the number of potential sites to be different than the number
of facilities. A relatively new problem is the Generalized QAP (GQAP) (Lee and Ma, 2004),
which considers that multiple facilities can be located in a site, if enough resources are avail-
able. Other less used and studied variants also exist (Smith and Li, 2001; Knowles and Corne,
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2003; Hahn et al., 2008b, 2010; Punnen and Wang, 2016).

A number of practical problems can be formulated as a QAP or one of its variants (Steinberg,
1961; Lawler, 1975; Pollatschek et al., 1976; Eiselt and Laporte, 1991; Bos, 1993; Phillips and
Rosen, 1994; Miranda et al., 2005; Dell’Amico et al., 2009; Ünal and Uysal, 2014). Perhaps
the most popular applications arise in logistics and facility layout (Dickey and Hopkins, 1972;
Elshafei, 1977; Krarup and Pruzan, 1978; Fu and Kaku, 1997; Benjaafar, 2002; Chiang et al.,
2002; Cordeau et al., 2006; Yener and Yazgan, 2019). These problems can also be adapted
to formulate other fundamental problems such as the traveling salesman problem, the graph
partitioning problem, the maximal clique problem, clustering and scheduling (Hansen and Lih,
1992; Pardalos et al., 1994; Malucelli, 1996).

An extensive review on formulations, solution techniques, and applications of QAPs is found in
Abdel-Basset et al. (2018b). Exact methods usually fail to prove solution optimality within a
reasonable time for instances of considerable size. Attempts to solve the QAP through a black-
box solver using compact MILP formulations are found in Fischetti et al. (2012) and Zhang
et al. (2013). An appropriate approach to deal with these instances is the use of metaheuristics.
In a 2018 review, Abdel-Basset et al. (2018b) refer to 140 metaheuristics published to the
QAP. This problem is customarily one of the first that new metaheuristic frameworks are
adapted to, due to its simple formulation and difficulty of solving (Duman et al., 2012; Abdel-
Basset et al., 2018a; Mihić et al., 2018; Dokeroglu et al., 2019). The most effective heuristics
hybridize two or more metaheuristics, usually variants of the tabu search (TS), such as the
robust TS (RoTS) (Taillard, 1991) and the concentric TS (CoTS) (Drezner, 2005b). The TS
is the intensification component coupled with another metaheuristic, used as a diversification
component, to generate new initial solutions for the search, such as random swaps (Misevičius,
2012), genetic algorithm (Drezner, 2003, 2005a), simulated annealing (Chiang and Chiang,
1998; Misevičius, 2003, 2004) and ant colony (Gambardella et al., 1999; Talbi et al., 2001).
Many of these hybrid metaheuristics are population-based, such as memetic algorithms (Benlic
and Hao, 2015; Harris et al., 2015), allowing multiple solutions to evolve in parallel. Therefore,
parallel computing can be used to potentially linearly reduce the running time of the algorithm
with the number of available cores.

The best performing algorithms found to solve large-size instances of the QAP apply some
level of parallelism to hybrid metaheuristics, usually requiring little modifications to adapt
the algorithm to a parallel computing environment. Parallelization in the QAP literature is
used both to speedup exact methods, such as the branch-and-bound algorithms proposed in
Pardalos and Crouse (1989) and Clausen and Perregaard (1997), and heuristics. The chunks of
code usually parallelized in heuristics are the objective function evaluation – for example, when
evaluating neighbor solutions during a tabu search (Van Luong et al., 2011) – or the application
of one or several heuristics whenever evolving multiple solutions simultaneously. Due to the
intense arithmetic computation level of the objective function evaluation, this process can be
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greatly speeded up using Graphical Processing Units (GPUs), although parallelization using
CPUs is also possible (Taillard, 1991). Czapiński (2013) reported speed ups of up to 300× in
large size instances using the CUDA platform. However, several limitations exist to design an
effective algorithm in a GPU environment related to memory management (Zhu et al., 2010).
Nonetheless, some classical metaheuristics have been adapted to be run in GPUs (Tsutsui and
Fujimoto, 2009; Poveda and Gómez, 2018; Sonuc et al., 2018). Another way to parallelize an
algorithm is by using a cluster of machines with multiple nodes or a single CPU with multiple
cores. In a shared-memory environment, it is common to use a cooperative heuristic, where a
mechanism is used to exchange useful information between the parallel instances in the hope
of accelerating the search process or improving the solution quality. Information is shared
through a global memory that can contain, for example, the history of the search already
performed by a tabu search (Talbi and Bachelet, 2006), the pheromones of ants in an ant colony
(Talbi et al., 2001), all individuals to be crossed in evolutionary algorithms (Dokeroglu, 2015;
Harris et al., 2015; Tosun, 2015; Munera et al., 2016), a reference set with the best individuals
found so far to be used in the crossing over (James et al., 2005, 2009a), previously visited
solutions to perform similarity checks avoiding searches in redundant areas of the solutions
space (Aksan et al., 2017), the best solutions found in each node (Abdelkafi et al., 2019), or
even the parameters of a selected metaheuristic in a hyper-heuristic framework (Dokeroglu and
Cosar, 2016). In distributed-memory systems, only the development of independent algorithms
is possible, where no information is exchanged between parallel instances, as in Clausen and
Perregaard (1997). Despite successful applications of parallel hybrid algorithms for the QAP,
no study was found to solve its variants using parallel computing.

The main challenge when designing a hybrid metaheuristic for the QAP is on the elaboration
of appropriate diversification procedures for a more efficient search (Misevičius, 2019). In this
paper, we present a parallel memetic iterated tabu search (PMITS) metaheuristic to solve
the QAP, QBAP, BiQAP, QSAP and GQAP. The PMITS extends the iterated tabu search
presented in Misevičius (2012), which is one of the best performing sequential (non-parallel)
algorithms to solve the hardest benchmark instances found in the QAPLIB (Misevičius, 2019),
to a parallel environment by adding: (i) a modified version of the randomized uniform-like
crossover (RULX) operator (Misevičius and Kilda, 2005), called skewed crossover (SX), and
an adaptive mutation operator to generate new solutions to be improved by the neighborhood
searches; (ii) a two-phase neighborhood search, where in the first phase a 2-opt local search –
for QAP, QBAP and BiQAP – followed by a drop/add local search – for QSAP and GQAP –
are performed, so that the new solution is moved to a local optimum; (iii) an acceptance cri-
terion based on the previous local optimum visited; (iv) a modified version of Taillard’s RoTS
to be used in the second phase of the neighborhood search, which saves all visited solutions
in the tabu list, reducing the number of parameters to be set and the management of data
in the tabu list; (v) a long-term memory where solutions previously found by the tabu search
are cached to fast retrieval, speeding up the algorithm; and (vi) an anti-stagnation operator
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that restarts the whole population when no new improving solution is found. We use parallel
computing to perform the memetic operators (crossover and mutation), the local searches and
the tabu search in multiple processes simultaneously. Cooperation between the parallel nodes
occur when executing SX and verifying the acceptance criterion. We show that our frame-
work is robust enough to be adapted to solve all five problems effectively requiring no major
modifications. Computational experiments attest the effectiveness of PMITS. Our method
has the best average performance compared to the state-of-the-art parallel metaheuristics for
the hardest instance sets of QAPLIB for the QAP, finding solutions on average at 0.03% from
best known solutions (BKS). For the QBAP, BiQAP, QSAP, and GQAP, we find the BKS in
all instances tested significantly outperforming the state-of-the-art methods used as compar-
isons, either heuristics or exact methods. As another contribution of this paper, we present
and compare exact approaches for the QAP variants using three different formulations – a
quadratic integer programming (QIP) model, and two linearization techniques.

The remainder of this paper is organized as follows. Section 4.2 gives a formal presentation
of the five problems considered by presenting their quadratic mathematical formulations and
two techniques to linearize them. Section 4.3 reviews the best performing metaheuristics,
both sequential and parallel, to solve each problem found in literature. Section 4.4 details the
PMITS. The results of computational experiments for each of the problems are presented in
Section 4.5. Finally, Section 4.6 presents our concluding remarks.

4.2 Mathematical formulations and literature review

The quadratic formulations for the QAP, QBAP, BiQAP, QSAP, and GQAP are presented
next followed by two linearization techniques for the quadratic terms.

4.2.1 Quadratic Assignment Problem

Let n be the number of facilities to be assigned to n sites, where N = {1, . . . , n} represents
the set of such facilities and sites. Also, let p(i) represent the site where facility i ∈ N is
installed. Two n× n matrices are given. F = (fij) represents the flow between facilities i and
j, and D = (dkl) represents the distance between sites k and l. A simple way to describe the
QAP is by a quadratic 0–1 formulation using a permutation matrix X = (xij), such that:

xik =

1, if p(i) = k,

0, otherwise.
(4.1)

The matrix X is characterized by the following assignment constraints:∑
i∈N

xik = 1, ∀k ∈ N , (4.2)

94



∑
k∈N

xik = 1, ∀i ∈ N , (4.3)

xik ∈ {0, 1}, ∀i, k ∈ N . (4.4)

Hence, the QAP is formulated as:

min
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

fijdklxikxjl, (4.5)

subject to constraints (4.2)–(4.4), where each single product of f and d is the cost of assigning
facilities i and j to sites k and l, respectively.

The QAP is a widely known combinatorial problem with a vast literature. We refer the reader
to the reviews of Finke et al. (1987), Loiola et al. (2007), Burkard (2013) and Abdel-Basset
et al. (2018b). Although the literature on exact approaches for the QAP is vast, benchmark
instances with as few as 30 nodes are yet open to be solved (Burkard et al., 1997).

4.2.2 Quadratic Bottleneck Assignment Problem

In the bottleneck version of the QAP, the same inputs for the original problem are given. The
objective, however, is to find a permutation p ∈ ΠN such that:

min
p∈ΠN

max
i,j∈N

fijdp(i)p(j), (4.6)

which can be reformulated with a linear objective function by introducing a slack variable Z
as:

minZ, (4.7)

subject to (4.2)–(4.4), and to

Z − fijdklxikxjl ≥ 0, ∀i, j, k, l ∈ N . (4.8)

The literature of the QBAP is very limited. Burkard (2002) states that the QBAP is NP-
hard since it contains the bottleneck travelling salesman problem as a special case. He also
proves the asymptotic behavior of the problem. Although the QBAP can be solved using the
same QAP algorithms, we could not find any study with computational results for the QBAP.
Steinberg (1961) introduces QBAP for a wiring problem, but unfortunately the problem is not
solved in the paper, only presenting the results for the given backboard wiring instance as a
QAP.

4.2.3 Biquadratic Assignment Problem

In the BiQAP, we are given two four-dimensional arrays as input, A = (aijkl) and B =

(bp(i)p(j)p(k)p(l)), where aijkl is the QAP flow-equivalent parameter for the facilities i, j, k and
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l, and bp(i)p(j)p(k)p(l) is the distance-equivalent parameter for the sites p(i), p(j), p(k) and p(l).
The BiQAP is formulated in the Koopmans-Beckmann form (Burkard et al., 1994) as:

min
p∈ΠN

∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

aijklbp(i)p(j)p(k)p(l). (4.9)

N -adic variants of the QAP, such as the cubic and quartic versions – as the BiQAP is also
called – are generalizations of the QAP, therefore, they are also NP-hard. Although the BiQAP
has been considered since the 1960s, it was formally studied for the first time several decades
later in Burkard et al. (1994), who present different formulations for the problem and show
how to compute lower bounds for the optimal solution value, derived from lower bounds for
the QAP. The asymptotic behavior of the BiQAP is proved by showing that the ratio between
the worst and optimal solution values tends to one as the size of the problem increases.

4.2.4 Quadratic Semi-Assignment Problem

In the QSAP, we are given a possible distinct number of facilities and sites, where M =

{1, . . . ,m} is the set of facilities and N = {1, . . . , n} is the set of sites. Semi-assignment
constraints state that only facilities should be assigned to sites, but sites can stay unassigned.
Also, there is no constraint on the number of facilities assigned to each site. A location cost
matrix C = (cik), where each value represents the cost of assigning facility i to site k, is
usually considered. The quadratic 0-1 formulation of the QSAP is given as:

min
∑
i∈M

∑
k∈N

cikxik +
∑
i∈M

∑
j∈M

∑
k∈N

∑
l∈N

fijdklxikxjl, (4.10)

subject to ∑
k∈N

xik = 1, i ∈M, (4.11)

xik ∈ {0, 1}, i ∈M, k ∈ N . (4.12)

The QSAP NP-hardness is proven in Sahni and Gonzalez (1976). Malucelli and Pretolani
(1995), Malucelli (1996), Drwal (2014) and Panyukov and Shangin (2016) provide lower bounds
for the QSAP and present certain polynomial solvable cases. Saito et al. (2009) study the
polytope that arises from a MILP reformulation of the problem. Milis and Magirou (1995)
propose a Lagrangean relaxation algorithm for this problem and show that even for a QSAP
of small size, it is hard to find optimal solutions.

4.2.5 Generalized Quadratic Assignment Problem

The GQAP is the capacitated version of the QSAP. The arrays ri, indicating the size of a
facility i, and Cj , indicating the capacity of a site j, are given. The formulation of the GQAP,
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as presented in Lee and Ma (2004), considers the objective function (4.10) subject to (4.11),
(4.12) and to capacity constraints given as:∑

i∈M
rixik ≤ Ck, k ∈ N . (4.13)

Once again, only small instances could be solved to optimality in the GQAP. Lee and Ma
(2004) present three linearization approaches and a branch-and-bound algorithm. Hahn et al.
(2008a) describe a reformulation with a dual ascent procedure in a branch-and-bound scheme
to prove optimality for instances adapted from another problem. Pessoa et al. (2010) find new
lower bounds for the same instances using Lagrangean relaxations of the reformulation from
Hahn et al. (2008a).

4.2.6 Linearization techniques

The quadratic terms in the presented models can be linearized using linearization techniques so
that the problems can be solved by means of general purpose mixed integer linear programming
solvers. Two common techniques are the standard linearization (Glover and Woolsey, 1974)
and the reformulation-linearization technique (RLT) (Sherali and Adams, 2013).

To convert the QIP model presented in Section 4.2.1 for the QAP using the standard lineariza-
tion technique, we first define linearization variables zikjl = xikxjl, i.e., zijkl is equal to one if
facility i is assigned to site k and facility j is assigned to site l, and zero otherwise. Then, the
objective function (4.5) is replaced by:

min
∑
i∈N

∑
j∈N

∑
k∈N

∑
l∈N

fijdklzikjl, (4.14)

and the following linear constraints are added to the model:

zikjl ≤ xik, ∀i, j, k, l ∈ N , (4.15)

zikjl ≤ xjl, ∀i, j, k, l ∈ N , (4.16)

zikjl ≥ xik + xjl − 1, ∀i, j, k, l ∈ N . (4.17)

0 ≤ zikjl ≤ 1, ∀i, j, k, l ∈ N . (4.18)

While the advantage of the standard linearization technique lays on its simplicity, RLTs usually
require the addition of fewer constraints to the model. The RLT consists of a reformulation
step in which nonlinear valid inequalities are generated, and a linearization step in which each
product term in the objective and constraints is replaced by a single variable. Considering
again the linearization variables zikjl = xikxjl, the level-1 RLT (RLT-1) formulation of QAP
provided by Frieze and Yadegar (1983) considers the objective function (4.14) and adds the
following constraints to the original model:∑

i∈N
zikjl = xjl, ∀j, k, l ∈ N , (4.19)
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∑
j∈N

zikjl = xik, ∀i, k, l ∈ N , (4.20)

∑
k∈N

zikjl = xjl, ∀i, j, l ∈ N , (4.21)∑
l∈N

zikjl = xik, ∀i, j, k ∈ N , (4.22)

0 ≤ zikjl ≤ 1, ∀i, j, k, l ∈ N . (4.23)

Both models (standard and RLT-1) can be reduced by considering common assumptions found
in an instance structure. By assuming fii = 0 and dkk = 0, we eliminate all constraints where
i = j and k = l. For a symmetric instance, i.e., fij = fji and dkl = dlk, we can eliminate all
variables zikjl with i > j by making the substitutions necessary in the objective function and
constraints. RLTs of higher levels can also be found and provide good overall results (Adams
et al., 2007; Hahn et al., 2012). Although one can find other formulations and linearization
techniques for the QAP in the literature (Loiola et al., 2007; Nyberg and Westerlund, 2012;
Burkard, 2013; Abdel-Basset et al., 2018b), they are usually designed to perform well under
specific conditions such as for special matrix structures (Çela et al., 2018). The advantage
of the presented RLT-1 is to provide an easy to understand model that has a reasonable
performance for any instance structure and an easy adaptability for the QAP variants. RLTs
are found in the literature for some QAP variants. For the GQAP, an RLT-1 has been
applied by Hahn et al. (2008a), where they show that this technique outperforms three other
reformulations proposed by Lee and Ma (2004). For the QSAP, Billionnet and Elloumi (2001)
and Schüle et al. (2009) present RLT-1 models similar to those described here, and Schüle
et al. (2009) also provide higher levels RLT formulations.

4.3 State-of-the-art metaheuristics for the QAP and variants

In this section, we review the best performing metaheuristics, both sequential and parallel,
found to solve the QAP and its variants.

4.3.1 Sequential metaheuristics for the QAP

Undoubtedly, the most well-studied algorithm to solve the QAP is the robust tabu search
(RoTS) introduced by Taillard (1991). RoTS is an adaptation of tabu search to the QAP,
which uses a special data structure as tabu list that forbids previously visited moves from a
2-opt local search. Most of the best-performing algorithms found to solve the QAP use, or
adapt, RoTS as the intensification procedure. Most of its success is due to the fast evaluation
of pairwise exchange neighbor solutions in QAPs (see more in Section 4.4.3) together with
the easiness to be hybridized with many metaheuristics. Hybridization in QAP literature is
commonly done in an iterated local search (ILS) framework, where RoTS, or any kind of local
search variant, is used for intensification and another metaheuristic is used for diversification
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(Stützle, 2006). The ITS presented by Misevičius (2012) succesfully improves RoTS by using
a diversification operator that modifies the previous best solution found by a TS using a
mutation operator mechanism based on multiple random swaps of facility assignments. While
Misevičius’ algorithm works with the evolution of a single solution, Benlic and Hao (2015)
propose a memetic algorithm, called Breakout Memetic Algorithm (BMA), where a population
of solutions evolve by applying crossover and mutation operators, followed by a special local
search procedure, called Breakout Local Search (BLS), which is a special version of a TS
adapted to the QAP, where the perturbation move is adaptively modified between random
and guided (using a tabu list) moves. The crossover operator used, called uniform crossover,
selects two solutions from the current pool and creates a new one with nearly 50% of genes from
each parent. A modified version of this operator, developed to improve performance in our
algorithm, is used in this work (see Section 4.4.3). The Teaching-Learning-Based Optimization
metaheuristic is hybridized with RoTS (TLBO-RTS) in Dokeroglu (2015). This is a two-phase
evolutionary algorithm where solutions are recombined first with a higher-quality solution and
then with the other current solutions before being improved by RoTS. Other diversification
procedures to generate solutions to be improved by RoTS and some variants are analyzed in
James et al. (2009b) for a population-based algorithm.

4.3.2 Parallel metaheuristics for the QAP

Many of the best performing parallel metaheuristics for the QAP are based on the sequential
algorithms. When Taillard (1991) introduced RoTS, he proposed to distribute the neighbor-
hood search on many processors, dividing a neighborhood into same-sized parts, and evaluating
each of these parts on different processors. He also presented a theoretical parallelization of
multiple independent TS. The TLBO-RTS of Dokeroglu (2015) is also presented with a par-
allel version where different populations evolve independently on multiple island processors.
The Parallel Hybrid Algorithm (PHA) of Tosun (2015) is performed in three stages. First, a
population evolves in parallel islands using a genetic algorithm (GA) with occasional migra-
tions of individuals between the islands. Then, a TS is used to diversify the solutions. Finally,
solutions are improved using RoTS. James et al. (2009a) introduced the Cooperative Parallel
Tabu Search (CPTS) which is a multi-start TS that applies a modified RoTS with different
parameters for each processor. Initial solutions for the search are generated by using a global
reference set which uses information exchange to promote intensification and diversification.
The parallel BLS (BLS-OpenMP) by Aksan et al. (2017) evolves multiple solutions in parallel
using the BLS of Benlic and Hao (2015). They implemented an operator that constantly
checks the similarity of solutions to avoid redundancies on the starting points of the search.
An Extremal Optimization (EO) procedure, an evolutionary algorithm which progressively
eliminates the least fit solutions, is hybridized with RoTS and run in parallel (ParEOTS) by
Munera et al. (2016). Improvements were achived when RoTS, EO and a GA run in parallel
using a framework designed for cooperative parallel local searches (CPLS-GA) in López et al.
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(2018a). While the CPLS framework is designed to handle single-solution metaheuristics,
another framework was proposed to ease the implementation of hybrid metaheuristics using
cooperative parallelism, called Parallel Hybridization of Simple Heuristics (PHYSH) in López
et al. (2018b). Another metaheuristic hybridized with RoTS is the Artificial Bee Colony by
Dokeroglu et al. (2019). In its parallel version (PABC-QAP), multiple bee hives generate
different solutions in separate processors using short-run TSs. The best solutions generated
in the hives are then improved by a long-run TS. While in all described methods the meta-
heuristics used to evolve solutions are static, Dokeroglu and Cosar (2016) present a MultiStart
Hyper-heuristic (MSH-QAP) where four different methods – RoTS, BLS, simulated annealing
and ant colony – can be used. An evolutionary mechanism is used in the primary node to
evaluate the four heuristics and find near-optimal parameters for a given problem instance.
In a second phase, the best performing heuristic is selected to perform several multistarts in
parallel in order to improve the solution quality.

A good speedup can also be achieved when implementing RoTS in GPUs. Unlike CPUs, a
GPU in the CUDA environment follows a single instruction – multiple data (SIMD) pattern,
meaning that it executes the same instruction set on different data elements at the same time.
Several threads run concurrently, each one executing the same program (kernel). Kernels can
communicate with each other via a shared memory. Memory management should be done as
effectively as possible due to current limitations. Zhu et al. (2010) present a parallel SIMD
tabu search (SIMD-TS), using the concentric tabu search (CoTS) presented by Drezner (2003),
designed for the unique environment found in GPUs. Independent TSs are assigned to each
thread. By assigning each search to a thread, the algorithm can perform a full search without
communicating with the CPU, which is a time expensive task. A random diversification
operator is called after some TS iterations to avoid stagnation. An improved version of this
algorithm is presented by Czapiński (2013). The Parallel Multistart Tabu Search (PMTS)
implements the CoTS with two levels of parallelism, first for the neighborhood evaluation, as
in Zhu et al. (2010), and second for the tabu list management and move selection, achieving a
much higher speedup. An adaptation using RoTS with roughly equal performance is presented
by Novoa et al. (2015). Although other QAP algorithms on GPU can be found (see a survey
in Abdelkafi et al. (2016)), to the best of our knowledge these are the best performing ones.

All methods described in this and the previous subsections are tested on several instances
from the QAPLIB library (Burkard et al., 1997), having very similar performances, and can
be considered as being the best methods found to solve the QAP.

4.3.3 Metaheuristics for the QAP variants

BiQAP. Due to the difficulty to solve the BiQAP exactly, some heuristics have been proposed.
Burkard and Çela (1995) develop and compare variants of simulated annealing, tabu search and
other improvement methods, particularly using pairwise exchange algorithms. Computational
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experiments using benchmark instances from Burkard et al. (1994) suggest that one version
of the simulated annealing is the best among the variants tested. Later, Mavridou et al.
(1998) describe a GRASP that iteratively constructs greedy solutions by making the first four
assignments simultaneously using their cost of interaction, then assigns the other facilities
one by one, and uses the pairwise exchange algorithm to improve the solution. This method
was able to find the optimal solution for all the instances used in Burkard and Çela (1995)
improving the performance of the simulated annealing, however, requiring large CPU times.

QSAP. The QSAP has many applications in scheduling, clustering, and partitioning problems
(Domschke, 1989; Magirou and Milis, 1989; Hansen and Lih, 1992; Skutella, 2001). Some task-
assignment problems can be formulated as QSAPs (Billionnet et al., 1992). Also, the hub
location (Saito et al., 2009) and the metric labeling (Kleinberg and Tardos, 2002) problems
are special cases of the QSAP. Any heuristic for these particular problems can be adapted
to solve the QSAP. For the problem itself, Domschke et al. (1992) investigate three different
management ideas to deal with the tabu list in a simple tabu search and compare them with
simulated annealing.

GQAP. Heuristic approaches are also presented for the GQAP. Cordeau et al. (2006) present
a memetic heuristic that combines genetic algorithms and tabu search, which solves Lee’s
instances faster and introducing larger instances. Mateus et al. (2011) propose several GRASP
with path-relinking heuristics using different construction, local search, and path-relinking
procedures. Later, McKendall and Li (2017) propose a simple tabu search heuristic to solve
Cordeau’s instances, and compare its performance with the other heuristics.

QBAP. Although any heuristic for the QAP potentially works for the QBAP, no study was
found to explicitly consider it.

For none of these problems we could find implementations of the robust tabu search or any
other of the main frameworks (parallelism, memetic operators) used in our PMITS.

4.4 Parallel memetic iterated tabu search

We now present our parallel memetic iterated tabu search (PMITS) metaheuristic. Following
the successful diversification-intensification approach for QAPs, we integrate a diversification
phase where multiple solutions evolve in parallel using crossover and mutation operators, then
are improved by local searches, and, if the local optimum is different than the previous one,
they are improved in an intensification phase using a tabu search adapted from the QAP for
its variants.
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4.4.1 Solution representation

A solution x for any of the five problems considered can be encoded as a vector x = {p(i)|i ∈
N}, where p(i) represents the site where facility i is installed, as previously defined. The five
QAP variants considered here are split into two sets. The permutation problems are those in
which x is represented by a permutation of the sites indices. The QAP, QBAP and BiQAP
belong to this set. Meanwhile, the non-permutation problems are those that a site index can
appear multiple times in x. This set contains the QSAP and GQAP.

4.4.2 Constructive heuristics

Three different heuristics are implemented to create initial solutions. On the permutation
problems, we simply generate a random permutation of the sites, assigning each one to a
facility. On the QSAP, every facility is assigned to a random site, until all facilities are
located. To generate a feasible solution for the GQAP, additional steps are required to respect
capacity constraints. The steps performed are as follows:

1. Generate a queue of unassigned facilities in a random order;

2. Assign the first facility in the queue to a randomly drawn site. If there is enough
capacity available, the facility stays assigned to the site and is removed from the queue.
Otherwise, draw another site, different than the ones already selected. Repeat this until
the facility is successfully assigned to a site or all sites are checked;

3. If the facility cannot fit in any site, remove a random facility already assigned from its
site and place it in the end of the queue. Then, recheck if the current facility fits in this
site. Repeat this step until the current facility can be assigned to a site;

4. Repeat steps 2 and 3 until the queue of unassigned facilities is empty.

Due to the randomness of these steps, all combinations of assignments are reachable using this
procedure. Therefore, given enough time, this constructive heuristics is capable of finding any
feasible solution, if one exists. In the permutation problems and the QSAP, a feasible solution
is generated in time O(n) for an instance with n facilities. However, for the GQAP heuristic,
if the feasible solution space is too restricted, such as in the case when capacity constraints
are tight, the process of removing assigned facilities to give space to unassigned ones can take
extra time until a feasible solution is found. We present next local search heuristics to improve
feasible solutions, which are embedded within the proposed PMITS metaheuristic.

4.4.3 Diversification via memetic operators

The PMITS proposed in this study consists of the parallel evolution of multiple processes
using a memetic algorithm. Each process represents a solution evolved through generations.
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In total, P processes evolve in parallel representing a population of feasible solutions. In
memetic algorithms, solutions are modified every generation by a crossover operator that
exchanges information between known solutions and by a mutation operator, and they are
subsequently improved by a neighborhood search. In our metaheuristic, each solution from
the previous population is replaced in the current one by a new solution generated from the
crossover of itself with another randomly chosen solution from the previous population using
the crossover and mutation operators described in Section 4.4.3. Then, the new solution is
improved by the local searches described in Section 4.4.3. The resulting local optimum is
accepted only if it is a different solution than the original one from the previous population.

Crossover and mutation

Several crossover operators for the QAP are compared in Misevičius and Kilda (2005). Their
results show that higher performance is obtained with crossovers with lower degree of disrup-
tion. From preliminary experiments, we decided to use in our PMITS a modified version of
the randomized uniform-like crossover (RULX) in which the degree of disruption is reduced
when generating new solutions. In the RULX, two solutions (parents) are selected from the
current population. Then, from a randomized starting position within the encoded vectors of
the parents, the value is selected from one of the parents with probability φ = 0.5 from parent
1 and 1 − φ = 0.5 from parent 2. The operator moves to the next one following a randomly
chosen direction. For the permutation problems, if the chosen value was already placed in
another previously visited position, we change the value to the one of the other parent. If
both were already assigned, the position is left empty. When the whole vector is iterated, the
unassigned facilities are randomly assigned to the empty sites. The RULX can potentially
generate solutions that are up to 50% different from each parent. To reduce the level of dis-
ruption, we modified RULX so that φ is biased, i.e., φ > 0.5. We call this modified version
of RULX as Skewed Crossover (SX). The value of φ is a parameter of SX. In PMITS, this
probability is set dynamically. It starts from a fixed value, set from preliminary experiments
to φ = min{0.9, (n − 3)/n} – to guarantee that, on average, at least three positions of the
offspring are different than parent 1 – and it is reduced by 0.01 every time a solution fails to
be accepted by the criterion previously mentioned.

The mutation procedure used consists of performing k random moves in the neighborhoods
defined for the local searches. For the permutation problems, this means to perform k 2-
opt moves, where each move is performed for a pair of facilities chosen randomly. For the
non-permutation problems, a random move can be either in the 2-opt neighborhood or in
the drop/add neighborhood with equal probability (see a description of these neighborhoods
in Section 4.4.3). In the latter, a random facility is chosen and moved to a new random
site, always respecting the problem constraints to keep the new solution feasible whenever
applicable. The value of k is also set dynamically, starting at k = 1 and increasing by 1 every
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time a solution is not accepted if mutation is used. This procedure is similar to the kicks in a
variable neighborhood search. A mutation procedure has a fixed probabilityM of being called
after a crossover. The value of M was set experimentally as shown in Section 4.5.3.

Local searches

Local search heuristic is a technique used to improve a solution by searching in the neighbor-
hood of its solution space. In the proposed PMITS, we implement two of the most common
procedures used in local searches for the QAP and its variants. The first one is well suited
for all problems studied here and is based on swapping the positions of two facilities. The
second one is applicable only to the non-permutation problems, and consists of the movement
of facilities between sites.

Pairwise exchange local search. Local search 1 (LS1) performs the pairwise exchange
procedure (Fleurent and Ferland, 1994; Skorin-Kapov, 1990). If solution x = {p(i)|i ∈ N} is
a starting point for LS1, the neighbor x′ = {q(i)|i ∈ N} obtained by the swap of facilities of
indices r and s is:

q(i) = p(i), ∀i ∈ N \ {r, s},

q(r) = p(s),

q(s) = p(r).

The neighborhood of LS1 (N1(x)) contains the solutions generated by all swaps between r

and s such that r < s. The objective of LS1 is to find the best (hopefully improving) solution
x∗ contained in the neighborhood of x, i.e., x∗ = arg min{f(x′)|x′ ∈ N1(x)}, also known as
steepest descent. In our heuristic, an exhaustive search is performed, meaning that every time
a solution is improved a new local search is performed starting from this new solution. The
local search stops when no improving solution can be found in a neighborhood.

In the permutation problems, all swaps will result in a feasible and distinct solution, meaning

that a neighborhood contains exactly
n(n− 1)

2
solutions. In the QSAP, when two different

facilities are located in the same site, their swap does not change the current solution. So,

LS1 neighborhood size in this problem is bounded by
n(n− 1)

2
; the actual size depends on the

number of distinct sites where facilities are located. For example, in the case that all facilities
are assigned to the same site, then N1(x) = {∅}. In the GQAP, the neighborhood size can be
even smaller. Beyond distinct locations between swapped facilities, we should also consider if
the swap results in a feasible solution. In a swap between any pair of facilities i and j with
capacities ri ≥ rj the neighbor generated is feasible if ri − rj ≤ Cp(j) −

∑
k|p(k)=p(j) rk, i.e., if

there is enough capacity left in the site to accommodate the extra space of the new facility it
is receiving.
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In each iteration of LS1, we are interested in calculating the difference ∆(x, r, s) = f(x′)−f(x),
where x′ ∈ N1(x) is obtained by swapping facilities r and s in the current solution x. The
simplest way to calculate ∆(x, r, s) is by calculating separately f(x) and f(x′), then performing
the subtraction. For the QAP, this would take O(n2) because the calculation of f(x) for any
feasible solution x takes O(n2) time. However, when using the pairwise exchange local search
for the QAP, one particular effect is that the cost of a neighbor solution can be computed in
O(n) operations, instead of O(n2). For symmetric matrices F and D with null diagonal, the
computation is as follows (full formula can be found in Taillard (1991) and Benlic and Hao
(2013)):

∆(x, r, s) =
∑

i∈N\{r,s}

2(fri − fsi)(dp(r)p(i) − dp(s)p(i)). (4.24)

Taillard (1991) proposed to use memory to store the values ∆(x, r, s) so that if x′ is the
solution obtained after swapping the sites of facilities r and s in the solution x, then computing
∆(x′, u, v) is even faster if pairs {r, s} and {u, v} are mutually exclusive, i.e., {r, s} ∪ {u, v} =

{∅}. Thus, ∆(x′, u, v) is calculated in O(1) as:

∆(x′, u, v) =2(fsu − fsv + frv − fru)(dq(s)q(u) − dq(s)q(v) + dq(r)q(v) − dq(r)q(u)) + ∆(x, u, v).

(4.25)

Misevičius (2012) presented a trick to speed up these computations using three-dimensional
matrices to retrieve the values of the subtractions performed that was also implemented in
our algorithm.

The same reductions are applicable to the QSAP and GQAP with the addition of the differ-
ences in the sum of location costs. An adaptation for BiQAP also implemented is shown in
Burkard and Çela (1995), where the objective function computation is reduced from O(n4) to
O(n3) time by calculating the difference between a solution and its neighbor, and to O(n2) by
storing the values ∆(x, r, s) to calculate neighbor objective functions after the first iteration.
We refer the reader to Burkard and Çela (1995) to see the full detailed reduced equations for
the BiQAP. The same principle can be used to adapt these formulas to reduce the evaluation
time for QBAP to O(n) after a swap between facilities r and s, where the new bottleneck
is changed to facilities k ∈ N and r (or s) if fkrdkr (or fksdks) is greater than the current
bottleneck value.

Drop/add local search. Local search 2 (LS2) performs drop and add procedures to generate
neighbor solutions for the non-permutation problems. This represents the exchange of the
location of a facility. The neighborhood N2(x) of a solution x explored by LS2 contains all
solutions where facility i ∈ N is moved from its current site p(i) to another site k ∈M\{p(i)}.

In the QSAP, every facility movement will result in a feasible and distinct solution. Since each
facility can be moved to m− 1 different sites, LS2 neighborhood of a QSAP solution contains
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exactly n(m − 1) solutions. In the GQAP, it is necessary to verify capacity restrictions to
ensure the procedure results in a feasible solution.

Now define ∆(x, r, p(r), p′(r)) = f(x′)−f(x), where x′ ∈ N2(x) is obtained by moving facility
r from its current site p(r) to a new site p′(r) in the current solution x. The evaluation of
QSAP and GQAP solutions after a drop/add move can also be done in O(n) in the symmetric
case by computing

∆(x′, r, p(r), p′(r)) =(crp′(r) − crp(r)) +
∑

i∈N\{r}

2fri(dp(r)p(i) − dp′(r)p(i)), (4.26)

where the first subtraction refers to the differences in the location costs between the old and
the new sites, while the second term of the equation refers to the differences in the assignment
costs between r to each other facility.

4.4.4 Intensification via tabu search

The tabu search (TS) is undoubtedly the most popular and successful metaheuristic to solve
the QAP. It consists in allowing solutions to move to the least degrading solution when no
improving neighbor exists. In order to avoid cycling, the return to the previous solutions
is forbidden. A data structure called tabu list is maintained indicating all forbidden moves.
This list contains elements defining forbidden moves. In the QAP, a forbidden move can
be defined by the pairs of facilities recently swapped (Skorin-Kapov, 1990) or by prohibiting
moves where both facilities would be assigned to sites they had occupied in recent iterations, as
in the succesful Taillard’s RoTS (Taillard, 1991). We implemented a modified version of RoTS
where we simply save all solutions previously visited during the current call of the search in the
tabu list, thus eliminating parameters such as the tabu list size, the aspiration criteria and the
number of iterations to keep a solution as tabu. Note that this might increase the complexity
order to verify if a solution is in the tabu list, but it prevents the same solution being visited
more than once during a single search. The only parameter to be set is the stopping criterion,
chosen as the maximum number of iterations I performed by the TS without improvement in
the best solution. The improving mechanism used is the pairwise exchange local search (LS1).
Therefore, we can summarize the steps of our TS as:

1. Search for the best solution that is not in the tabu list using LS1 and change the current
solution to it;

2. Add the new current solution to the tabu list;

3. If the current solution is the best one found so far, restart the iteration counter;

4. Repeat steps 1–3 until the iteration counter reaches I.
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Since the TS procedure described is deterministic, we can save time by avoiding to explore a
neighborhood already searched by caching initial solutions and their best solution found after
TS. In our algorithm, we save solutions obtained in every run of TS in a map. Maps are data
structures that associate a key to a value (Cplusplus, 2020). In the map created, the key
is the initial solution and the value is its local optimum found by TS. Computationally, the
search for an element in a map is quickly performed in O(|N | log k), since they are typically
implemented as balanced binary search trees, where k is the number of keys contained in the
map and |N | refers to the size of the key. Thus, the process of retrieving a solution from the
map is significantly faster than performing all steps from TS again. Although the same process
could also be applied to individual local searches, the huge number of possible keys and the
low repeatability of initial solutions after crossovers makes it computationally inneficient.

The pseudocode of PMITS is presented in Algorithm 4. For each of the P parallel evolutionary
processes, we are interested in three solutions: the current solution (x), the previous local
minimum (x′), and the best solution found so far (x∗). Each process is sent to a secondary node
using a dynamic load balancing method. Whenever a secondary node finishes the execution
of its process, it sends a message to the primary node to request a new process. The first
step of PMITS consists in creating a feasible solution for each process using the constructive
heuristics (line 5). Then, they are improved in parallel secondary nodes using TS (lines 6–8).
Initially, all three solutions are equal, i.e., x = x′ = x∗ (line 9). The perturbation phase
comes next. First, we reset the number of random swaps for mutation (k) and the skewed
probability (φ) for each thread. For each parallel secondary node, the solution x is modified
by the SX operator (line 14) and by the mutation operator, if mutation is selected (lines
16–19). The new solution is improved using the local searches LS1 and LS2, respectively and
whenever applicable, to reach a local minimum (line 20). If the current local minimum x is
different than the previous local minimum x′, then the solution is accepted (lines 21–28). If
this solution is an existing key in the map, the new solution is retrieved from its associated
value (lines 22–23). Otherwise, the TS is applied to improve x and the result is saved in the
map (lines 25–26). If the solution is not accepted in line 21, the whole perturbation process for
this thread p is repeated (lines 13–32). The best solution found in p is updated, if necessary
(lines 29–31). An operator to avoid the stagnation behavior of the search after long trials
restarts the whole population every thousandth generation after the last improvement in the
best solution. In our PMITS, we consider up to three stopping criteria that depends on the
resources available (line 10). The first is the maximum number of iterations, i.e., the number of
times the perturbation process is repeated (lines 10–34). The second is the maximum running
time. Finally, we observed in preliminary experiments that when multiple solutions converge
from different start points to a similar local optimum, there is a very high chance that this
solution is the global optimum. Thus, we defined a third stopping criteria stating that if at
least 50% of the solutions in X ∗ are equal to the best solution found so far, then the search
stops and the algorithm returns the best solution in X ∗. This last criterion is best suited to
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use when P is high enough so that more solutions need to converge to avoid a false positive.

Algorithm 4 Parallel memetic iterative tabu search (PMITS)
1: Population size: P ; Mutation rate: M ; Number of TS iterations: I; {Parameters}
2: Set of best solutions: X ∗ = {x∗1, . . . , x∗P };
3: Set of current local optimum solutions: X ′ = {x′1, . . . , x′P };
4: Set of modified solutions: X = {x1, . . . , xP };
5: Create X ∗ using the constructive heuristics;
6: for all parallel p ∈ P do
7: x∗p ← TS(x∗p, I); {Perform TS on each solution}
8: end for
9: X ′ ← X ∗ and X ← X ∗;
10: while stopping criteria are not satisfied do
11: Set kp = 1 and φp = min{0.9, (n− 3)/n} for each solution
12: for all parallel p ∈ {1, . . . , P} do
13: repeat
14: xp ← SX(x′p, rand(X ′), φ); {Crossover current solution with a random one from the

previous population}
15: φp ← φp − 0.01;
16: if rand(0, 1) ≤M then
17: xp ←Mutation(xp, kp); {Mutate current solution}
18: kp ← kp + 1;
19: end if
20: xp ← LS(xp); {Search for local optimum}
21: if xp 6= x′p then
22: if xp ∈ map then
23: x′p ← Solution associated to key xp in map; {Retrieve TS solution from map}
24: else
25: x′p ← TS(xp); {Apply TS on the local optimum}
26: Save key xp with solution x′p in map; {Save TS solution in map}
27: end if
28: end if
29: if f(x′p) < f(x∗p) then
30: x∗p ← x′p; {Update best solution}
31: end if
32: until xp 6= x′p
33: end for
34: if the last generation that the best solution in X ∗ was updated > 1000 then
35: Recreate X ′ using the constructive heuristics;
36: end if
37: end while
38: return best solution in X ∗.

4.5 Computational experiments

This section provides the results obtained from extensive computational experiments per-
formed to setup our PMITS and to compare its performance with state-of-the-art methods to
solve the QAP and its variants. We used computers equipped with an Intel Gold 6148 Skylake
CPU with a 2.4 GHz clock, 8 GB of RAM and 40 cores. The PMITS was implemented in C++,
compiled with the Intel compiler icpc, while the exact models were solved using CPLEX 12.5.
The parallelism was implemented using OpenMP, which allows the implementation of shared-
memory parallel programming as used in PMITS. The executable files of our codes can be
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found at https://github.com/afcsilva/PMITS-for-QAPVar.git. All instances and results
are available from https://www.leandro-coelho.com/quadratic-assignment-problems/.

4.5.1 Test instances

The QAP is solved using three sets of classical instances from the QAPLIB benchmark library.
They are the Taia (unstructured, randomly generated), Taib (real-life-like instances) and Sko
(instances with grid-based distances) sets. Each instance is labeled using the name of the set
and the number of facilities contained in it. Together, the three sets consist of 31 problem
instances with up to 100 facilities and sites. Although the library provides more instances, the
others are easily solvable by many existing methods, thus they are not considered here. We did
not find any instance set specifically designed for the QBAP. Thus, we used the same QAP sets
for this problem, including six other smaller instances from Taia and Taib. For the BiQAP,
the original instances used in Mavridou et al. (1998) are reported to be lost after contact with
one of the authors. Thus, we generated 12 new instances using a random uniform distribution
between 1 and 9 to determine each distance between sites and each flow between facilities
considering both as symmetric matrices. The new instances have similar sizes as those from
Mavridou et al. (1998), i.e., 10 to 36 sites and facilities. The GQAP is solved using a set of
21 instances taken from Cordeau et al. (2006), with up to 50 facilities and 20 sites. These
instances are labeled with a code consisting of three parts: the number of facilities, the number
of sites, and the tightness of the capacity constraints. Other smaller instances for this problem
are found in Mateus et al. (2011), but they are easily solved using the existing methods, thus
they also are not considered here. For the QSAP, we consider two sets of instances. Set 1 is
an adaptation from the 21 instances of Cordeau et al. (2006) for the GQAP with no facility
capacities. In these instances, distances between a facility to itself is zero. Since sites in the
QSAP are uncapacitated, this would result in a solution with all facilities located in a single
site, which gives a solution equal to zero. To prevent this, we set djj for j ∈M to be equal to
50% of the average graph distance. Set 2 has 20 instances generated as follows. A number r
of points in an Euclidean space of size 100 × 100 are generated where 70% of them represent
facilities, i.e., |N | = 0.7r, and the remaining represent sites, i.e., |M| = 0.3r. Instances are
generated for r ∈ {50, 75, 100, 125, 150} points. The flow matrix F is generated uniformly from
the interval [q, 100], where q ∈ {1, 10, 25, 50}. The distance matrixD is the Euclidean distance
matrix. Distances djj for j ∈ M are set in the same way as for the set 1. The assignment
costs cij are set to δikdik, where δik is randomly generated using a uniform distribution from
[q, 100] for q ∈ {1, 10, 25, 50}. The instances are identified by the number of points r and class
q. While instances in set 1 are all symmetric, in the new set they are all asymmetric.

4.5.2 Testing the exact models for the QAP and variants

We adapted the standard reformulation technique and the RLT-1 presented for the QAP to
all four variants considered in this paper. Our goal is to determine which formulation (original
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QIP models, standard linearization, or RLT-1) performs better for each problem. Results for
these experiments are shown in C.1. For the MILP solver used, we observed that, for the
QAP, the QIP model works best for the instances tested. For the QBAP, RLT-1 presented the
best performance. For the QSAP and the GQAP, the standard technique performed usually
better for smaller instances while the QIP was better for larger instances. We highlight that
our results show that the standard technique can potentially outperform the state-of-the-art
RLT-1 formulation used in Pessoa et al. (2010) for the GQAP. From the six instances that
standard solved that were used in their experiments, five were solved by their best RLT-1
model. The average time to solve them was 100 minutes for their RLT-1 model, but only
two minutes by our standard linearization model. Also, the standard model was capable of
solving an instance with 40 facilities, which is the largest GQAP instance with optimality
proven. Finally, no instance of the BiQAP could be solved within the time limit using any
formulation.

4.5.3 Parameter setting

Two rounds of experiments were performed to tune our PMITS. We first set the parameters P
(population size),M (mutation rate), and I (number of TS iterations) using a selected number
of instances. As reported by other studies, the performance of QAP algorithms is influenced by
the characteristics of the solutions space landscape (Benlic and Hao, 2015; Dokeroglu, 2015).
Thus, we individually set parameters for each QAP benchmark set using a pair of instances
from each one chosen using the criteria of picking those that are neither too easy nor too hard
to solve in a short run according to observations during preliminary experiments. These are:
tai40a and tai50a for Taia, tai80b and tai100b for Taib, and sko81 and sko90 for Sko. The
same criteria was used to chose three instances for each of the remaining problems. These are:
tai15a, tai20a, and tai25a for the QBAP; |N | ∈ {18, 20, 22} for the BiQAP; 35-15-95, 40-09-
95, and 50-10-95 for the GQAP; and 100-C1, 125-C10, and 150-C25 for the QSAP. Then,
we analyze our metaheuristic speedup when using the parallelism by presenting a scalability
analysis to determine the number of CPU cores to use in the search.

Setting the population size, mutation rate and number of tabu search iterations

We performed a grid search to determine which combination of the parameters P (population
size), M (mutation rate) and I (number of TS iterations) leads to a faster convergence of the
best solution found by our PMITS. We increased P from 40 to 1,000,M from 0 to 1, and I from
0 to 500, using four different values for each one, resulting in 64 combinations of parameters
values. Tests were replicated 20 times for each instance with each of the combinations tested.
Only the time limit was considered as a stopping criterion, being 10 seconds for the QSAP
and GQAP, one minute for the QAP and QBAP, and five minutes for the BiQAP. The results
are presented in Tables 4.1 and 4.2. The average percent deviations (APD) are computed as
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the average relative distance between the average solution of the 20 replications and the best
known solution (BKS) of each instance.

Table 4.1 – Parameter setting of PMITS: average percentage deviation for QAP instances

Taia Taib Sko

P M I = 0 I = 50 I = 200 I = 500 I = 0 I = 50 I = 200 I = 500 I = 0 I = 50 I = 200 I = 500
APD APD APD APD APD APD APD APD APD APD APD APD

40

0.0 0.64 0.20 0.20 0.20 0.04 0.02 0.04 0.04 0.07 0.04 0.06 0.07
0.1 0.65 0.19 0.18 0.18 0.04 0.03 0.03 0.03 0.08 0.04 0.05 0.07
0.5 0.68 0.22 0.20 0.15 0.02 0.02 0.03 0.02 0.07 0.04 0.05 0.06
1.0 0.73 0.22 0.17 0.19 0.02 0.01 0.02 0.02 0.06 0.04 0.05 0.06

100

0.0 0.62 0.16 0.19 0.17 0.01 0.01 0.01 0.03 0.06 0.04 0.06 0.07
0.1 0.63 0.16 0.17 0.18 0.01 0.01 0.01 0.03 0.06 0.04 0.05 0.07
0.5 0.65 0.18 0.18 0.17 0.01 0.01 0.01 0.02 0.07 0.04 0.05 0.07
1.0 0.72 0.19 0.17 0.16 0.01 0.00 0.01 0.02 0.06 0.04 0.05 0.07

400

0.0 0.60 0.16 0.15 0.12 0.01 0.01 0.02 0.05 0.08 0.04 0.06 0.08
0.1 0.57 0.16 0.16 0.16 0.01 0.01 0.02 0.05 0.08 0.04 0.06 0.09
0.5 0.66 0.17 0.15 0.13 0.00 0.00 0.02 0.06 0.08 0.04 0.05 0.09
1.0 0.64 0.16 0.13 0.13 0.00 0.00 0.02 0.06 0.07 0.04 0.06 0.08

1000

0.0 0.53 0.17 0.13 0.15 0.01 0.01 0.05 0.13 0.08 0.05 0.08 0.12
0.1 0.59 0.17 0.17 0.16 0.01 0.01 0.05 0.12 0.07 0.05 0.07 0.12
0.5 0.61 0.17 0.14 0.14 0.00 0.01 0.05 0.11 0.08 0.05 0.08 0.12
1.0 0.66 0.17 0.16 0.15 0.00 0.01 0.04 0.10 0.07 0.04 0.07 0.12

Table 4.2 – Parameter setting of PMITS: average percentage deviation for QAP variants
instances

QBAP BiQAP QSAP GQAP

P M I = 0 I = 50 I = 200 I = 500 I = 0 I = 50 I = 200 I = 500 I = 0 I = 50 I = 200 I = 500 I = 0 I = 50 I = 200 I = 500
APD APD APD APD APD APD APD APD APD APD APD APD APD APD APD APD

40

0.0 2.06 1.99 2.44 2.78 0.19 0.09 0.09 0.09 6.61 6.32 6.56 6.83 0.94 0.14 0.26 0.37
0.1 2.15 2.12 2.29 2.95 0.18 0.09 0.09 0.09 0.64 0.10 0.06 0.08 0.47 0.06 0.19 0.24
0.5 2.07 2.14 2.53 2.79 0.17 0.10 0.09 0.09 0.04 0.02 0.02 0.03 0.34 0.04 0.14 0.16
1.0 2.05 2.27 2.63 2.88 0.17 0.08 0.09 0.09 0.03 0.01 0.03 0.04 0.24 0.01 0.08 0.06

100

0.0 1.92 2.07 2.44 2.91 0.16 0.08 0.08 0.08 5.06 5.60 6.11 6.35 0.70 0.10 0.23 0.32
0.1 2.03 2.05 2.34 2.91 0.17 0.08 0.08 0.08 0.08 0.04 0.02 0.07 0.35 0.07 0.17 0.14
0.5 1.95 2.06 2.62 2.94 0.16 0.09 0.08 0.08 0.03 0.00 0.00 0.01 0.26 0.00 0.05 0.10
1.0 2.11 1.98 2.66 2.95 0.14 0.08 0.07 0.08 0.03 0.01 0.02 0.01 0.21 0.01 0.03 0.00

400

0.0 1.60 1.80 2.23 2.96 0.14 0.08 0.08 0.08 2.23 3.45 4.15 3.79 0.45 0.03 0.17 0.16
0.1 1.65 2.00 2.32 2.71 0.16 0.07 0.07 0.07 0.09 0.02 0.07 1.37 0.31 0.02 0.12 0.16
0.5 1.68 1.83 2.53 2.86 0.14 0.07 0.07 0.07 0.03 0.01 0.01 1.38 0.24 0.01 0.03 0.11
1.0 1.63 2.00 2.46 2.79 0.14 0.07 0.08 0.07 0.03 0.01 0.01 0.87 0.22 0.00 0.00 0.03

1000

0.0 1.59 1.86 2.30 2.72 0.15 0.07 0.07 0.07 0.84 1.31 2.01 1.53 0.42 0.01 0.14 0.22
0.1 1.63 1.88 2.25 2.53 0.15 0.07 0.07 0.07 0.09 0.04 1.03 1.34 0.29 0.00 0.11 0.17
0.5 1.58 1.87 2.59 2.74 0.14 0.07 0.07 0.07 0.05 0.02 0.69 1.73 0.25 0.00 0.01 0.14
1.0 1.76 1.89 2.41 2.95 0.14 0.07 0.07 0.07 0.04 0.02 0.19 0.78 0.17 0.00 0.01 0.05

The results show how some of the components of the algorithm behave when solving each
problem. For the QAP, Table 4.1 shows that runs using a longer TS are more desirable
for Taia, while for Sko shorter TS runs and, consequently, more crossing overs attain better
results. For Taib, it is even possible to achieve good results with TS turned off. For the QBAP,
we see from Table 4.2 that TS should be turned off and the population size should be large
for better results. For the BiQAP, it is important to have TS on, regardless of the number
of iterations performed among those evaluated, with a high population. For the QSAP, a
small population with average number of TS iterations is the best option. For the GQAP,
several different combinations attained good results, with highlight to those with a medium
to large population and average number of TS iterations. Overall, mutation rates only affect
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results significantly on QSAP and GQAP, where it is clearly better to have more mutations
happening.

For the remaining experiments, we chose the following parameter values based on these results:

• QAP: P = 400, M = 0 and I = 500 for Taia, and P = 100, M = 1 and I = 50 for Taib
and Sko;

• QBAP: P = 1000, M = 0.5 and I = 0;

• BiQAP: P = 1000, M = 0.5, and I = 200;

• QSAP: P = 100, M = 0.5 and I = 50;

• GQAP: P = 100, M = 0.5 and I = 50.

Setting the number of cores

We run a scalability analysis to verify the speedup achieved with parallelization in our code
for each problem using the parameters as previously set and the instances used in the pa-
rameter setting. We use a fixed number of initial solutions (population size) and compare
the computing time (wall-clock seconds) needed by PMITS to finish the exploration of their
neighborhoods using a maximum number of cycles as the sole stopping criterion represented
by the number of iterations performed by PMITS (lines 10–37 in Algorithm 4). The number
of cycles was set so that run time using 40 threads are approximately those used in the pa-
rameter setting. We run for T ∈ {1, 2, 4, 8, 16, 32, 40} cores. Figure 4.1a presents the speedup
obtained in each problem, while Figure 4.1b shows the efficiency of the parallelism. The
speedup obtained when running with T cores is calculated as ST = r1/rT , where rT is the
wall-clock time for the algorithm with T cores. Ideally, a parallel algorithm would speed up
the search the same number of times as the number of parallel cores used. In practice, ST is
upper bounded by T due to the time lost with the parallel overheads and the tasks performed
outside of the parallelized code. A measure of efficiency in the scalability analysis is thus
calculated as ET = ST /T , where ET is the percentage of speedup obtained by the run with T
cores compared to the ideal case.

The results demonstrate that in all problems, even considering their different parameter set-
tings and instance sizes, paralellism can significantly speedup the run. Except for the QBAP,
speedup increases when the number of cores is up to 40. This indicates that the performance
could be further improved by using a larger number of cores if available. Speedup efficiency
in the BiQAP, QAP and GQAP are above 80% with 40 cores. Efficiency drops quite steady
down to 54% with 40 threads for the QSAP and to only 13% for the QBAP, likely because TS
is turned off. It is relevant to notice that none of the best performing parameter settings have
P equal to the number of CPU cores of our computational environment. The main reason
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(a) Speedup (b) Efficiency

Figure 4.1 – Scalability analysis for the parallelism in the PMITS

for this is that the run time of TS, which is the most time-consuming process of PMITS, is
variable, which reduces the efficiency of core usage in a single process per core setting. For
the next experiments, we used 40 cores for the QAP, BiQAP, QSAP and GQAP, and 16 cores
for the QBAP, which are the number of cores that achieve the peak in speedups observed.

4.5.4 Comparison of PMITS against state-of-the-art methods

We present next the performance of our PMITS for all instance sets described in Section 4.5.1.
In all but the GQAP, as stopping criteria, we used a time limit of one hour or a convergence
criteria of 50% of the parallel solutions being equal to the best solution found so far. The
maximum number of cycles is unlimited. PMITS is executed 20 times for each instance. All
state-of-the-art methods used as comparison are those introduced in Sections 4.2 and 4.3.

Comparison for the QAP

A version of PMITS without paralellism, or simply MITS, is compared to the sequential
algorithms JRG-DivTS (James et al., 2009b), ITS (Misevičius, 2012), TLBO-RTS (sequen-
tial) (Dokeroglu, 2015), and BMA (Benlic and Hao, 2015) in Table 4.3. With parallelism
on, PMITS is compared to CPTS (James et al., 2009a), TLBO-RTS (parallel) (Dokeroglu,
2015), PHA (Tosun, 2015), MSH-QAP (Dokeroglu and Cosar, 2016), BLS-OpenMP (Aksan
et al., 2017), PHYSH-QAP (López et al., 2018b), and PABC-QAP (Dokeroglu et al., 2019)
in Table 4.4. Results are reported as the APD to the BKS, calculated as the average of

APD(x) =
f(x)− f(x∗)

f(x)
where f(x) is the solution obtained by the heuristic and f(x∗) is the

BKS. Wall-clock time in minutes are reported only for reference since the algorithms were run
on different computation environments. Overall, for the sequential algorithms, BMA presented
the best performance followed by our MITS, which considerably improves ITS that inspired
our metaheuristic. For the parallel algorithms, since most rely on different versions of a TS, as
intensification procedure, we observed similar performances. For average size Taia instances
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(tai40a, tai50a and tai60a), PHA, BLS-OpenMP and PMITS have the best performances.
For the larger ones (tai80a and tai100a), PMITS and PHYSH-QAP are the best ones. Taib
instances have a 0.00% gap in all runs with most algorithms, as well as for Sko instances.
Analyzing both tables together, note that PMITS improves the average APD from 0.06% to
0.03% compared to MITS, reducing the number of instances without a 0.00% APD from 14 to
six. Also, it is interesting to observe that although BLS outperforms MITS, its parallel adap-
tation (BLS-OpenMP) is outperformed by PMITS. A possible explanation lies on the chosen
parameters for our algorithm, which used a large population size to benefit from speedup pro-
vided by paralellism. One would expect that for a sequential search, a better population size
would be a smaller one. GPU implementations, such as SIMD-TS (Zhu et al., 2010) and TS
(Novoa et al., 2015), have a considerably worse performance than the algorithms in Table 4.4
for the Taia and Taib instances. For Sko, only PMTS (Czapiński, 2013) has results reported,
and they are of comparable quality with those from the state-of-the-art CPU metaheuristics.

Comparison for the QBAP

Ideally, a fair way to evaluate a heuristic is by comparing it against other heuristics only.
However, in the absence of other published heuristics to solve QBAP, we compare our PMITS
against the solutions found by CPLEX for reference using the models presented in Section
4.2.2. CPLEX can provide upper/lower bounds to the optimal solution. This has a practical
purpose of showing how one can benefit from using a heuristic instead of an exact solver, such
as the speedup provided and the difference in solution quality. The results are shown in Table
4.5. Wall-clock times are reported in minutes. We show the best solution found by CPLEX
with any model and the best and average solution found by our heuristic for 20 runs. Each
solution shown in the table found by the solver is the optimal solution for the problem when
the time is under 60 minutes, or the best upper bound found when the run stopped. In most
of the larger instances, n.s. is displayed in the table meaning that no solution is found within
the time limit. PMITS finds the BKS in all 31 instances. We note that in instances with
n < 20 of Taia and n < 60 of Taib, PMITS finds the optimal solution in all 20 runs.

Comparison for the BiQAP

We compare our PMITS for the Biquadratic QAP to the GRASP by Mavridou et al. (1998),
which was kindly provided by the authors so that both methods could be run in the same
computation environment. In our experiments, both algorithms were run 20 times. GRASP
parameters were set as in the original paper. We limited it to a maximum of 100 iterations
per run. The results using both methods are presented in Table 4.6. Wall-clock times are
reported in minutes. All BKS are found only by PMITS. The APD reported is from the
average solution of all runs to the BKS. For the PMITS, we show two different APDs. The
first is from the solution found after the algorithm stopped using its regular stopping criteria
(convergence and time), while the second is the APD at the moment that PMITS spent the

114



Table 4.3 – Comparison of MITS with state-of-the-art sequential metaheuristics for the QAP

Instance BKS JRG-DivTS ITS TLBO-RTS BMA MITS
APD Time APD Time APD Time APD Time APD Time

tai20a 703,482 0.00 0.2 0.00 0.0 0.00 5.2 0.00 0.0 0.00 0.6
tai25a 1,167,256 0.00 0.6 0.00 0.1 0.00 8.3 0.00 0.0 0.00 2.1
tai30a 1,818,146 0.00 1.3 0.00 0.2 0.00 12.1 0.00 0.0 0.00 4.9
tai35a 2,422,002 0.00 4.4 0.00 0.5 0.00 16.7 0.00 0.0 0.00 17.4
tai40a 3,139,370 0.22 5.2 0.22 1.3 0.07 57.5 0.06 8.1 0.05 60.0
tai50a 4,938,796 0.73 10.2 0.41 5.5 0.55 127.6 0.13 42.0 0.19 60.0
tai60a 7,205,962 0.72 25.7 0.45 12.5 0.64 128.5 0.14 67.5 0.32 60.0
tai80a 13,499,184 0.87 52.7 0.48 60.0 0.77 244.8 0.43 65.8 0.55 60.0
tai100a 21,043,560 0.90 142.1 0.35 200.0 1.08 385.7 0.44 44.1 0.57 60.0
tai20b 122,455,319 0.00 0.2 0.00 0.0 0.00 0.3 0.00 0.0 0.00 0.0
tai25b 344,355,646 0.00 0.5 0.00 0.0 0.00 0.3 0.00 0.0 0.00 0.1
tai30b 637,117,113 0.00 1.3 0.01 0.0 0.00 1.0 0.00 0.0 0.00 17.6
tai35b 283,315,445 0.00 2.4 0.02 0.1 0.00 1.5 0.00 0.0 0.00 0.7
tai40b 637,250,948 0.00 3.2 0.01 0.2 0.00 2.3 0.00 0.0 0.00 2.1
tai50b 458,821,517 0.00 8.8 0.02 0.5 0.00 4.4 0.00 1.2 0.00 8.5
tai60b 608,215,054 0.00 17.1 0.04 1.1 0.00 7.6 0.00 5.2 0.00 58.4
tai80b 818,415,043 0.01 58.2 0.23 3.0 0.01 18.8 0.00 31.3 0.00 60.0
tai100b 1,185,996,137 0.06 118.9 0.14 6.7 0.05 36.1 0.00 13.6 0.00 60.0
sko42 15,812 0.00 4.0 0.00 0.2 0.00 7.7 0.00 0.0 0.00 1.0
sko49 23,386 0.01 9.6 0.01 0.3 0.01 4.1 0.00 0.0 0.00 48.7
sko56 34,458 0.00 13.2 0.02 0.7 0.00 18.5 0.00 0.0 0.00 18.2
sko64 48,498 0.00 22.0 0.01 1.5 0.00 27.5 0.00 0.0 0.00 43.0
sko72 66,256 0.01 38.0 0.06 3.0 0.02 39.2 0.00 3.5 0.01 60.0
sko81 90,998 0.02 56.4 0.06 6.0 0.02 56.6 0.00 4.3 0.02 60.0
sko90 115,534 0.03 89.6 0.07 12.0 0.03 79.4 0.00 15.3 0.01 60.0
sko100a 152,002 0.03 129.2 0.09 30.0 0.04 109.5 0.00 22.3 0.05 60.0
sko100b 153,890 0.01 106.6 0.06 30.0 0.03 109.4 0.00 6.5 0.02 60.0
sko100c 147,862 0.01 126.7 0.06 30.0 0.02 109.6 0.00 12.0 0.01 60.0
sko100d 149,576 0.03 123.5 0.09 30.0 0.04 109.3 0.01 20.9 0.03 60.0
sko100e 149,150 0.01 108.8 0.07 30.0 0.02 109.7 0.00 11.9 0.01 60.0
sko100f 149,036 0.02 110.3 0.08 30.0 0.02 109.5 0.00 23.0 0.06 60.0

Average 0.12 44.9 0.10 16.0 0.11 62.9 0.04 12.9 0.06 38.2

same time as the GRASP for a fair comparison between both methods. The results show
that PMITS outperforms GRASP by finding solutions at 0.07% from BKS compared to 0.40%
for the GRASP. We also notice that by letting the algorithm run longer the average APD is
reduced to 0.03%, which indicates that solutions keep improving by our heuristic. In fact,
only instances with up to 14 facilities are stopped by the convergence criteria and instances
with up to 18 facilities have the BKS found in all 10 runs. This shows how difficult it is to
solve the BiQAP for the conditions considered in the set of instances tested.

Comparison for the QSAP

For the same reasons as for the QBAP, we conducted tests on the two sets of instances for the
QSAP using our PMITS heuristic and CPLEX with the models presented in Section 4.2.4.
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Table 4.4 – Comparison of PMITS with state-of-the-art parallel metaheuristics for the QAP

Instance BKS
CPTS TLBO-RTS PHA MSH-QAP PHYSH-QAP BLS-OpenMP PABC-QAP PMITS
10 cores 40-50 cores 46 cores 64 cores 64 cores 8-16 cores 255 cores 40 cores

APD Time APD Time APD Time APD Time APD Time APD Time APD Time APD Time
tai20a 703,482 0.00 0.1 – – 0.00 0.4 0.00 1.0 – – 0.00 0.1 0.00 0.0 0.00 0.0
tai25a 1,167,256 0.00 0.3 – – 0.00 0.6 0.00 1.3 – – 0.00 0.1 0.00 0.1 0.00 0.1
tai30a 1,818,146 0.00 1.6 – – 0.00 1.0 0.00 1.5 – – 0.00 0.2 0.00 0.2 0.00 0.2
tai35a 2,422,002 0.00 2.3 0.00 18.3 0.00 1.3 0.00 1.8 – – 0.00 0.3 0.00 0.0 0.00 0.5
tai40a 3,139,370 0.15 3.5 0.00 29.0 0.00 10.6 0.26 30.0 0.03 2.9 0.00 32.2 0.00 4.0 0.00 60.0
tai50a 4,938,796 0.44 10.3 0.36 55.0 0.00 12.7 0.17 37.5 0.13 4.4 0.00 68.2 0.31 19.8 0.00 60.0
tai60a 7,205,962 0.48 26.4 0.41 95.3 0.00 19.6 0.27 45.0 0.24 4.9 0.00 107.9 0.45 34.0 0.08 60.0
tai80a 13,499,184 0.69 94.8 0.87 239.5 0.64 40.0 0.53 60.0 0.46 5.0 0.50 235.9 0.83 173.0 0.35 60.0
tai100a 21,043,560 0.63 261.2 0.64 483.3 0.58 71.9 0.41 75.0 0.39 5.0 0.65 448.5 0.64 335.6 0.34 60.0
tai20b 122,455,319 0.00 0.1 – – 0.00 0.4 0.00 1.0 0.00 0.0 0.00 0.1 0.00 0.0 0.00 0.0
tai25b 344,355,646 0.00 0.4 – – 0.00 0.6 0.00 1.3 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0
tai30b 637,117,113 0.00 1.2 – – 0.00 0.8 0.00 1.5 0.00 0.0 0.00 0.2 0.00 0.1 0.00 1.0
tai35b 283,315,445 0.00 5.5 0.00 22.4 0.00 1.1 0.00 1.8 0.00 0.0 0.00 0.3 0.00 0.0 0.00 0.0
tai40b 637,250,948 0.00 4.5 – – 0.00 1.6 0.00 2.0 0.00 0.0 0.00 0.3 0.00 0.2 0.00 0.1
tai50b 458,821,517 0.00 13.8 – – 0.00 5.8 0.00 3.0 0.00 0.1 0.00 0.7 0.00 1.6 0.00 0.3
tai60b 608,215,054 0.00 30.4 – – 0.00 9.5 0.00 3.2 0.00 0.2 0.00 18.6 0.00 0.7 0.00 6.9
tai80b 818,415,043 0.00 110.9 0.00 239.0 0.00 27.7 0.00 4.0 0.00 0.7 0.00 218.1 0.00 8.0 0.00 60.0
tai100b 1,185,996,137 0.00 241.0 0.00 508.2 0.00 42.5 0.00 5.0 0.00 2.4 0.00 160.8 0.00 164.7 0.00 60.0
sko42 15,812 0.00 5.3 – – 0.00 1.6 0.00 2.1 – – 0.00 0.4 0.00 0.2 0.00 0.1
sko49 23,386 0.00 11.4 0.00 54.1 0.00 4.0 0.00 2.5 – – 0.00 0.6 0.00 7.5 0.00 13.3
sko56 34,458 0.00 21.0 0.00 81.6 0.00 16.2 0.00 2.8 0.00 0.0 0.00 0.8 0.00 0.9 0.00 0.7
sko64 48,498 0.00 42.9 0.00 119.3 0.00 23.1 0.00 3.2 0.00 0.0 0.00 1.2 0.00 2.4 0.00 2.4
sko72 66,256 0.00 69.6 0.00 170.8 0.00 33.6 0.00 3.6 0.00 0.2 0.00 1.8 0.00 7.0 0.00 60.0
sko81 90,998 0.00 121.4 – – 0.00 39.9 0.00 4.1 0.00 0.4 0.00 2.4 0.00 15.2 0.00 60.0
sko90 115,534 0.00 193.7 0.00 342.8 0.00 40.5 0.00 4.5 0.00 1.7 0.00 3.2 0.00 14.7 0.00 40.9
sko100a 152,002 0.00 304.8 0.00 594.3 0.00 41.7 0.00 75.0 0.00 2.2 0.00 29.8 0.01 170.5 0.01 60.0
sko100b 153,890 0.00 309.6 0.01 482.6 0.00 42.3 0.00 75.0 0.00 0.9 0.00 8.5 0.00 127.7 0.00 60.0
sko100c 147,862 0.00 316.1 0.00 508.5 0.00 42.2 0.00 75.0 0.00 1.3 0.00 4.3 0.00 48.3 0.00 60.0
sko100d 149,576 0.00 309.8 0.01 509.4 0.00 41.9 0.00 75.0 0.00 1.1 0.00 12.9 0.00 45.9 0.01 58.5
sko100e 149,150 0.00 309.1 0.01 614.5 0.00 42.5 0.00 75.0 0.00 0.8 0.00 4.3 0.00 42.1 0.00 60.0
sko100f 149,036 0.00 310.3 0.01 482.6 0.00 42.0 0.00 75.0 0.00 1.7 0.00 17.1 0.00 28.3 0.01 60.0

Average 0.08 101.0 0.12 282.5 0.04 21.3 0.05 24.2 0.05 1.4 0.04 44.5 0.07 40.4 0.03 31.1

The results are presented in Table 4.7. For set 1, which contains smaller instances, the exact
method proved the optimal solution for 19 out of 21 instances. The PMITS not only finds all
BKS, including the two instances without proven optimality, but it also presents a very high
consistency by finding the BKS in all runs for all instances. All that in an average time of less
than a tenth of minute, compared to approximately nine minutes for the exact models. The
set 2 is harder to solve due to the larger number of facilities and sites. None of the 20 instances
has the optimality proven by the exact method, although in two occasions the BKS are equally
found in both methods. For instances with up to |N | = 125, the PMITS always stops when
reaching the convergence stopping criteria. In larger instances, although the heuristic has not
converged, in all of them the same solution is found in all 20 runs.

Comparison for the GQAP

We compare next the proposed PMITS with other heuristics available in the literature for
the QSAP. They are the memetic heuristic (Memetic) by Cordeau et al. (2006), the GRASP
(GRASP-PR) by Mateus et al. (2011), and the tabu search (TS) by McKendall and Li (2017).
Following the procedure used in the two latter papers, we added a new stopping criterion so
that the PMITS stops the search right after finding the BKS reported in the other works.
Table 4.8 shows the results obtained for each instance tested with wall-clock times reported
in minutes. The times for the other heuristics are those reported in their works. We highlight
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Table 4.5 – Comparison of PMITS with the best results found by CPLEX for the QBAP

Instance CPLEX PMITS
Solution Time (min) Best sol. Avg. sol. Time (min)

tai10a 4,256 0.1 4,256 4,256 0.0
tai12a 4,756 0.2 4,756 4,756 0.2
tai15a 4,757 0.9 4,757 4,757 25.3
tai17a 4,704 18.5 4,704 4,704 60.0
tai20a 5,200 > 60.0 5,096 5,122.6 60.0
tai25a 5,880 > 60.0 5,328 5,474.1 60.0
tai30a 6,992 > 60.0 5,952 5,999.3 60.0
tai35a 8,613 > 60.0 6,120 6,254 60.0
tai40a 9,306 > 60.0 6,370 6,475.6 60.0
tai50a 9,604 > 60.0 6,873 6,899.2 60.0
tai60a 9,702 > 60.0 7,134 7,170.6 60.0
tai80a n.s. 7,695 7,731.3 60.0
tai100a n.s. 8,036 8,093 60.0
tai12b 4,371,380 0.6 4,371,380 4,371,380 0.0
tai15b 22,204,329 0.7 22,204,329 22,204,329 0.0
tai20b 17,132,916 > 60.0 17,132,916 17,132,916 0.0
tai25b 31,797,414 > 60.0 17,166,072 17,166,072 0.1
tai30b 49,847,879 > 60.0 25,462,115 25,462,115 0.3
tai35b 16,153,962 > 60.0 7,159,056 7,159,056 7.1
tai40b 24,261,283 > 60.0 12,566,129 12,566,129 14.9
tai50b 13,002,408 > 60.0 5,180,968 5,180,968 30.0
tai60b 15,427,179 > 60.0 5,800,564 5,837,290.4 60.0
tai80b n.s. 3,335,332 3,384,604.8 60.0
tai100b n.s. 4,188,992 4,233,119.1 60.0
sko42 100 > 60.0 50 53.5 32.4
sko49 110 > 60.0 60 63 17.1
sko56 120 > 60.0 70 76 24.2
sko64 130 > 60.0 80 82 48.0
sko72 140 > 60.0 90 91.5 51.0
sko81 n.s. 100 103.5 39.1
sko90 n.s. 100 109.5 43.5

sko100a n.s. 110 119 36.6
sko100b n.s. 120 122 48.1
sko100c n.s. 110 119.5 15.5
sko100d n.s. 120 120 40.5
sko100e n.s. 120 120.5 57.0
sko100f n.s. 110 118 29.3

that the TS by McKendall and Li (2017) was stopped in the instance 30-20-95 in a different
solution, 0.27% far from the BKS. The difficulty to solve this instance comes from the tight
capacity available in the sites, which makes the search for feasible solutions longer using
random constructive heuristics. Around a third of the time spent by PMITS on this instance
was trying to generate the initial population. Although a direct comparison of running time
between the different heuristics is not possible since they were run in different environments,
we can see how effective the proposed PMITS is. Excluding the hard 30-20-95 instance, the
average time for our heuristic to find the BKS is less than one second.
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Table 4.6 – Comparison of PMITS with GRASP by Mavridou et al. (1998) for the BiQAP

Instance BKS GRASP PMITS
APD Time APD Time1 APD Time2

|N | = 10 239,980 0.15 0.0 0.00 0.0 0.00 0.0
|N | = 12 478,278 0.63 0.0 0.00 0.0 0.00 0.4
|N | = 14 915,566 0.46 0.1 0.00 0.1 0.00 4.2
|N | = 16 1,572,146 0.58 0.1 0.05 0.1 0.00 60.0
|N | = 18 2,523,592 0.53 0.3 0.05 0.3 0.00 60.0
|N | = 20 3,846,588 0.61 0.5 0.16 0.6 0.02 60.0
|N | = 22 5,681,512 0.55 1.0 0.16 1.0 0.05 60.1
|N | = 24 8,084,696 0.42 1.6 0.14 1.8 0.05 60.1
|N | = 26 11,144,442 0.39 2.7 0.13 2.9 0.06 60.2
|N | = 28 15,091,044 0.33 4.2 0.09 4.7 0.04 60.3
|N | = 30 19,835,460 0.29 6.3 0.07 7.0 0.03 60.4
|N | = 32 25,768,226 0.27 9.6 0.05 10.1 0.04 60.8
|N | = 34 32,885,928 0.20 14.2 0.03 15.8 0.02 61.2
|N | = 36 41,295,160 0.24 19.6 0.08 21.3 0.07 61.1

Average 0.40 4.3 0.07 4.7 0.03 47.8
1 Stopping criteria is the running time from GRASP
2 Regular stopping criteria (50% convergence or one-hour time limit)

4.6 Conclusions

In this paper, we have presented a simple yet effective parallel memetic iterated tabu search
(PMITS) algorithm, adapted to solve the Quadratic Assignment Problem (QAP) and four
of its variants, i.e., the Quadratic Bottleneck Assignment Problem (QBAP), the Biquadratic
Assignment Problem (BiQAP), the Quadratic Semi-Assignment Problem (QSAP), and the
Generalized Quadratic Assignment Problem (GQAP). Although these variants have many
practical applications, some of their literature is outdated compared to the advances recently
achieved for the QAP. We have provided an important survey of the literature and algorithmic
structures for these problems.

The PMITS was developed following the successful diversification-intensification approach
for QAPs, where solutions evolve using a memetic algorithm to generate new solutions from
combinations of existing ones in the current population, then being improved by one or two
local searches, depending on the problem, and by a tabu search whenever new local optima
are found. Although the algorithm exploits an iterated tabu search, which is well-known to
work well on QAP, we modify some classical frameworks creating new ones – such as the new
skewed crossover, the modified tabu list structure, the improved acceptance criteria for the
tabu search, and the new long-term memory using a map to speedup the search process – to
improve its effectiveness for the QAP. We also extend the objective function evaluation speedup
formulas for the QAP to its variants. The algorithm was set for each individual problem
through computational experiments using sets of benchmark instances found in literature,
among other instances created here. The results of the experiments show that PMITS is
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Table 4.7 – Comparison of PMITS with the best results found by CPLEX for the QSAP

Instance CPLEX PMITS
Sol. Time (min) Best sol. Avg. sol. Time (min)

20-15-35 1,599,473 0.4 1,599,473 1,599,473 0.0
20-15-55 1,427,052 0.2 1,427,052 1,427,052 0.0
20-15-75 1,648,679 0.4 1,648,679 1,648,679 0.0
30-06-95 5,486,902 0.1 5,486,902 5,486,902 0.0
30-07-75 4,834,397 0.1 4,834,397 4,834,397 0.0
30-08-55 4,484,813 0.2 4,484,813 4,484,813 0.0
30-10-65 3,649,165 0.2 3,649,165 3,649,165 0.0
30-20-35 3,351,755 15.0 3,351,755 3,351,755 0.0
30-20-55 3,247,260 6.6 3,247,260 3,247,260 0.0
30-20-75 3,301,384 60.0 3,301,384 3,301,384 0.0
30-20-95 2,941,907 3.0 2,941,907 2,941,907 0.0
35-15-35 4,533,539 3.2 4,533,539 4,533,539 0.0
35-15-55 4,220,924 2.0 4,220,924 4,220,924 0.0
35-15-75 5,620,789 60.0 5,620,789 5,620,789 0.0
35-15-95 4,555,240 5.7 4,555,240 4,555,240 0.0
40-07-75 8,347,601 0.8 8,347,601 8,347,601 0.0
40-09-95 7,107,977 1.9 7,107,977 7,107,977 0.0
40-10-65 7,509,269 2.2 7,509,269 7,509,269 0.0
50-10-65 11,795,583 2.7 11,795,583 11,795,583 0.0
50-10-75 10,107,391 1.5 10,107,391 10,107,391 0.0
50-10-95 11,882,812 15.6 11,882,812 11,882,812 0.0
50-C1 1,022,084 60.0 1,022,084 1,022,084 0.0
50-C10 1,124,895 60.0 1,123,607 1,123,607 0.0
50-C25 1,293,354 60.0 1,292,223 1,292,223 0.0
50-C50 1,573,474 60.0 1,573,474 1,573,474 0.0
75-C1 2,045,813 60.0 1,993,829 1,993,829 0.0
75-C10 2,232,142 60.0 2,195,019 2,195,019 0.0
75-C25 2,581,945 60.0 2,530,699 2,530,699 0.0
75-C50 3,124,028 60.0 3,089,736 3,089,736 0.0
100-C1 3,731,562 60.0 3,490,341 3,490,341 0.1
100-C10 4,469,237 60.0 3,836,299 3,836,299 0.1
100-C25 5,085,661 60.0 4,412,117 4,412,117 0.0
100-C50 6,083,200 60.0 5,370,205 5,370,205 0.0
125-C1 5,358,958 60.0 4,881,972 4,881,972 0.6
125-C10 6,261,164 60.0 5,375,051 5,375,051 0.7
125-C25 6,713,149 60.0 6,196,362 6,196,362 0.7
125-C50 7,902,849 60.0 7,564,714 7,564,714 0.8
150-C1 14,631,247 60.0 6,930,942 6,930,942 7.5
150-C10 15,934,010 60.0 7,625,357 7,625,357 7.2
150-C25 18,104,789 60.0 8,782,100 8,782,100 58.0
150-C50 21,721,652 60.0 10,707,271 10,707,271 57.5
Average 5,918,271.3 33.7 4,918,227.2 4,918,227.2 3.2

among the best performing heuristics developed for the QAP, specially on the larger Taia
instances, which are undoubtedly the hardest benchmark instances to solve from QAPLIB,
and significantly outperforms the state-of-the-art methods for the other four problems.
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Table 4.8 – Comparison of PMITS with state-of-the-art heuristics for the GQAP

Instance BKS Memetic GRASP-PR TS PMITS
Time Time Time Time

20-15-35 1,471,896 1.6 0.1 0.0 0.0
20-15-55 1,723,638 1.7 0.0 0.0 0.0
20-15-75 1,953,188 1.7 0.0 4.2 0.0
30-06-95 5,160,920 1.9 0.0 0.0 0.0
30-07-75 4,383,923 2.6 0.1 0.0 0.0
30-08-55 3,501,695 1.6 0.0 0.0 0.0
30-10-65 3,620,959 3.5 2.0 0.1 0.0
30-20-35 3,379,359 9.4 1.3 32.8 0.0
30-20-55 3,593,105 7.7 0.4 24.6 0.0
30-20-75 4,050,938 8.7 0.7 0.0 0.0
30-20-95 5,710,645 87.2 9050.3 0.21 9.0
35-15-35 4,456,670 7.6 5.1 26.8 0.0
35-15-55 4,639,128 6.4 0.4 0.0 0.0
35-15-75 6,301,723 6.6 1.1 0.0 0.0
35-15-95 6,670,264 14.4 24.2 0.0 0.0
40-07-75 7,405,793 3.0 1.0 0.0 0.0
40-09-95 7,667,719 19.0 7.0 0.1 0.1
40-10-65 7,265,559 4.0 0.3 0.0 0.0
50-10-65 10,513,029 8.4 0.4 0.0 0.0
50-10-75 11,217,503 10.1 22.5 0.1 0.0
50-10-95 12,845,598 20.9 1.5 0.4 0.0

Average 10.9 434.2 4.2 0.4
1 Avg. time reported to find the solution 5,726,530 (APD of 0.27% from BKS)
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Chapter 5

Robotic mobile fulfillment system with
pod repositioning for energy saving

Résumé

Le système à robots mobile permet un repositionnement facile d’inventaire en retournant
des pods à différents endroits après qu’ils ont été demandés. Une meilleure organisation des
pods mène à un processus de prélèvement économe en énergie, car ils peuvent être garés
plus près d’où ils seront demandés au futur. Quand une commande arrive, nous devons
décider quelle station de prélèvement s’en occupera (affectation de commande), quelle pod
contenant les produits demandés doit être amenée à cette station (sélection de pods), et vers
quel endroit de stockage ces pods doivent retourner après le prélèvement (repositionnement
de pods). Dans ce chapitre, ces problèmes sont résolus de manière intégrée en utilisant une
stratégie de prélèvement par vague, où les décisions sont prises périodiquement. Le problème
est d’abord modélisé pour le cas où les demandes futures sont connues. Cependant, étant donné
que des informations complètes sur les demandes futures sont rarement disponibles dans la
pratique, nous proposons d’autres modèles pour le résoudre, soit lorsqu’aucune information
sur les demandes futures existent (approche myope) ou lorsque les demandes sont incertaines
(approche stochastique). Une matheuristique de recherche locale est présentée pour résoudre
des instances de taille réelle. Nous mesurons la réduction de la consommation d’énergie lorsque
les décisions de repositionnement de pods sont intégrées aux autres décisions et lorsqu’un
schéma d’échantillonnage est utilisé pour représenter les demandes futures. Cette mesure est
faite par des expériences pour des instances avec des caractéristiques réelles trouvées dans les
RMFS. Nos résultats attestent de l’efficacité de la considération des données stochastiques des
demandes lors de la planification des problèmes opérationnels résolus.
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Summary

The robotic mobile fulfillment system allows easy inventory repositioning by returning pods to
different locations after being requested. A better inventory arrangement leads to an energy-
efficient picking process since pods can be parked closer to where they will be requested
next. After an order arrives, we have to decide which picking station will deal with it (order
assignment), which pod containing the products requested should be brought to this station
(pod selection), and to which storage location these pods should return after picking (pod
repositioning). In this chapter, we solve these problems in an integrated manner using a
wave picking strategy, where decisions are made periodically. They are first modeled for when
future demands are known. Since full information about future demands is seldom available in
practice, we propose different models to solve it, such as when no information about the future
demands is available (myopic approach) or when demands are uncertain (stochastic approach).
A local search matheuristic is presented to solve real-size instances. We measure the energy
consumption reduction when pod repositioning is integrated with the other decisions and
when a sampling scheme represents future demands through computational experiments for
instances with real characteristics found in an RMFS. Our results attest to the effectiveness
of considering stochastic data for demands when planning the operational problems solved.

5.1 Introduction

Although many distribution center operations are still very labor-intensive, mainly due to the
advent of e-commerce, a growing effort to automate some of these processes is observed in
the last decades (Azadeh et al., 2019). Automated warehousing systems work with manual
picking stations as a product-to-picker system. A growing category of automated systems is
the robotic mobile fulfillment system (RMFS), where mobile robots can lift movable inventory
pods and bring them directly to stationary human pickers in fixed stations located around
the storage area (Boysen et al., 2019a). This system was just recently popularized (Guizzo,
2008; Mountz et al., 2008; Wurman et al., 2008). Since then, many providers have entered
the mobile robots market and many large online retailers have switched the entirely manual
picking operations in their distribution centers to an RMFS (Boysen et al., 2019a; Lamballais
et al., 2020; Weidinger et al., 2018; Zou et al., 2018).

In addition to the intrinsic advantages associated with automation, an RMFS provides in-
creased flexibility and scalability due to the ease of adding and removing pods and robots
in the system and repositioning inventory in the storage area. They also require a relatively
low investment cost, even for a large fleet of robots compared to other automated systems.
Picking rates can be more than double in an RMFS compared to manual warehouses since
they eliminate the unproductive walking time of pickers (Roodbergen and Vis, 2009). Due
to the lifting capacity of robots, the RMFS is efficient when used in warehouses containing
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several small and lightweight items, which makes it a perfect choice for e-commerce (Azadeh
et al., 2019).

Early studies dealing with operational problems in the RMFS literature focused on optimizing
performance measures related to the maximization of order throughput (Lamballais et al.,
2017; Zou et al., 2017). Although optimizing this measure is important in scenarios where a
very tight delivery deadline has to be met, in reality, most applications allow picking tasks
to wait if this results in a more efficient overall picking process. For example, orders with
standard shipping can be delayed over orders with priority shipping. Minimizing operation
costs is as important as reducing the picking time in periods of low demand (Makris et al.,
2006). These costs are usually associated with the number of pod visits to stations, which is
another common measure optimized (Aldarondo and Bozer, 2020; Jiang et al., 2020; Xiang
et al., 2018), or the distance traveled by robots (Weidinger et al., 2018). With many robots
running simultaneously in a typical warehouse, the total energy consumed is significantly high.
Using energy consumption as a performance measure can balance pod visits and distances
traveled by robots since energy consumption is directly related to both of them.

A common strategy to improve order picking efficiency is to process orders in batches using
wave picking (Çeven and Gue, 2017), which is adopted in real-world RMFS (Zhuang et al.,
2021). At the beginning of a wave, the current state of the system is known (number and
capacity of operating picking stations, current set of orders in the backlog, and position of
pods within the storage area). Then, several operational decisions are made, such as the
assignment of orders to stations (order assignment problem, OAP), the selection of pods to be
carried to the stations in the current wave (pod selection problem, PSP), and the location they
should return to after picking (pod repositioning problem, PRP). Although these problems are
known to be interrelated (Merschformann et al., 2019), only the OAP and the PSP have been
extensively investigated in an integrated manner (Jiang et al., 2020; Valle and Beasley, 2021;
Xiang et al., 2018; Xie et al., 2021; Zhuang et al., 2021). In wave picking, the integration of
PRP decisions with the OAP and the PSP can lead to a better arrangement of inventory in
the storage area for future waves. However, no study could be found that integrates decisions
for all these problems, being one of this research main objectives.

We investigate different approaches to solve the PRP in an integrated manner with the OAP
and the PSP in an RMFS using a wave picking strategy. The objective is to reduce the total
energy consumed by robots carrying the pods around the storage area to meet the demands.
We first consider an ideal scenario where the demands of future waves are already known to
model the integrated problem as a dynamic integer non-linear programming (DINLP) problem.
We acknowledge that it is unrealistic to dispose of full information about future demands
in most situations. Therefore, we derive new methods to solve the integrated problem by
planning waves individually. Given the information available at the beginning of each wave,
in the sequential approach, the problem is solved using a two-phase procedure. In the first
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phase, the OAP and the PSP decisions are made using an integer linear programming (ILP)
model adapted from the literature (Valle and Beasley, 2021; Xie et al., 2021). Then, in
the second phase, the PRP is solved using the “nearest rule”, which assigns pods to the
nearest available locations (Merschformann et al., 2019). The sequential approach is used as a
benchmark to evaluate the benefits of integrating decisions for the PRP with the OAP and the
PSP. The integrated problem, in which all three problems are solved together for a wave, is
modeled as an integer non-linear programming (INLP) problem. Since no information about
future demands is available, we call it the myopic approach. Alternatively, the integrated
problem is also solved considering that future demands can be predicted with uncertainty.
The stochastic approach considers that scenarios for future demands can be sampled from an
ABC distribution function commonly used in the warehousing literature, as it accounts for
the skewness of demands (Caron et al., 1998). This approach is modeled using a two-stage
stochastic programming model and is solved with a Benders decomposition scheme. The first
stage solves the integrated problem for the current wave, and the second stage solves for the
upcoming wave represented by the sampled scenarios. We observe that the models for the
myopic and stochastic approaches are too heavy to deal with real-case instances. Thus, we
present a local search matheuristic where the sequential approach solution is improved by a
simple local search to approximate optimal solutions for the other approaches.

Extensive computational experiments on instances generated based on the data commonly
used in the RMFS literature are performed to assess the impact on energy consumption when
planning a wave using all three approaches, i.e., sequential, myopic, and stochastic. Their
solutions are also compared against the DINLP solutions to observe how far they are from
the best possible case. We further extend our analysis to evaluate the energy consumption for
when the number of pod visits is minimized and when we can delay picks until more orders
arrive before planning the waves.

This paper is structured as follows. Section 5.2 provides a literature review on the relevant
papers that solved the OAP, PSP, and PRP. Section 5.3 describes the RMFS considered, the
decision problems, and how the energy consumption of the robots is estimated. Section 5.4
introduces the mathematical models for the approaches considered. Section 5.5 presents the
local search matheuristic used to solve large instances of the integrated problem. Section 5.6
reports the computational results for the different approaches and situations analyzed. Finally,
Section 5.7 presents the concluding remarks of this paper.

5.2 Literature review

Nearly all studies dealing with an RMFS at the operational level, to some extent, use a
solution strategy to the three problems considered (OAP, PSP, and PRP). We summarize the
relevant studies that investigate these problems, focusing on those that study the PRP or at
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least two of the three problems considered. They are referenced in Table 5.1, showing the
problems investigated, the picking strategy used (real-time, wave, or single solution), and the
performance measures considered. More details about the RMFS are found in the reviews of
Azadeh et al. (2019); Boysen et al. (2019a), and Jaghbeer et al. (2020).

Table 5.1 – Studies that investigate the OAP, PSP, or PRP

Reference OAP PSP PRP Picking strategy Performance measure
Weidinger et al. (2018) Single solution Distance traveled
Xiang et al. (2018) Single solution Pod visits

Merschformann et al. (2019) Real-time Order throughput rate
Aldarondo and Bozer (2020) — Pod visits

Li et al. (2020) Real-time Energy consumption
Jiang et al. (2020) Wave Pod visits
Rimélé et al. (2021) Real-time Cycle and travel times
Xie et al. (2021) Real-time, Wave Pod visits

Valle and Beasley (2021) Single solution Pod visits
Zhuang et al. (2021) Wave Pods movements

Our study Wave Energy consumption

The OAP and the PSP are the problems mostly investigated together on order picking in the
RMFS literature. Xiang et al. (2018) solve the integrated OAP–PSP after replenishment deci-
sions are made using an ILP model. A heuristic procedure is suggested to solve the integrated
problem considering product correlations and order associations. A variable neighborhood
search (VNS) is used to search for improved solutions by exchanging orders between batches.
Later, Jiang et al. (2020) integrate replenishment decisions made in waves with the OAP and
the PSP. A divide-and-conquer paradigm is used to generate an initial solution for the prob-
lem. Then, another VNS is used to improve it. Xie et al. (2021) also integrate the OAP and
the PSP by proposing several ILPs where orders are allowed or forbidden to be split among
different batches or periods. Although they consider real time picking using a simulation
framework, the problem is solved periodically, when some jobs are finished at the stations,
such that orders are assigned in batches to the stations. A heuristic is proposed to accelerate
the computational time. The PRP is solved in the simulations using a policy that positions
pods in the nearest available location. They show that their integrated approach significantly
reduces the number of pod visits to stations compared to when OAP and PSP decisions are
made sequentially, such as in Merschformann et al. (2019). Valle and Beasley (2021) also
integrate OAP and PSP decisions using an ILP. Many additional constraints are proposed,
such as adding picks from different pod sides, allocating a single pod to multiple stations, and
balancing the workload among pickers. Two heuristics are proposed to solve the integrated
problem. The first is based on the assignment of batches to one station at a time. The second
is based on fixing parts of the decision variables and solving the resulting sub-problem (par-
tial integer optimization). After this problem is solved, they also solve the pod sequencing
problem. Finally, Zhuang et al. (2021) consider the OAP and the PSP and integrate them
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with the order and pod sequencing problems. As most of the other mentioned studies, the
objective is to minimize the number of pods visiting stations, although they consider a slightly
different measure to also count the number of movements between stations. The integrated
problem is modeled using an ILP and, for larger instances, an adaptive large neighborhood
search (ALNS) is proposed.

The PRP is considerably less investigated. Weidinger et al. (2018) present an ILP model
and an ALNS to solve the PRP given that the sequence of pods to bring to the stations is
known. Aldarondo and Bozer (2020) provide analytical formulas to determine the expected
distance traveled by robots to perform a task as a function of the PSP and PRP policies, the
shape of the storage area, and the locations of the stations. Li et al. (2020) consider that
pods are assigned to locations using a decentralized storage policy based on a turnover rate.
Simulations of an RMFS operating with this policy show a significant reduction in energy
consumption and an increase in the order picking efficiency. Two studies found analyze the
three problems considered here. Merschformann et al. (2019) summarize the most common
policies of the literature and practice and sequentially solve all three problems in real time.
The OAP is solved when an order is fulfilled, which triggers another order from the backlog to
be assigned to the station. The PSP is solved when a robot working for a station can perform
a new task. Finally, the PRP is solved when a pod leaves a station. For each of the problems,
several solution policies are suggested. The RMFS operating with different combinations
of policies is evaluated using a simulation framework to determine which one performs best
considering several performance measures. The experiments show that cross-dependencies
exist between the policies used. Rimélé et al. (2021) present a mathematical framework to
model the decisions considering the stochastic nature of processing times and demands. The
decision process is formalized for a real time picking strategy using a dynamic stochastic
model. The model is illustrated using simple rules, similar to those used in Merschformann
et al. (2019).

Compared to the literature analyzed, our major contributions are summarized as: (i) we extend
the ILP model from Xie et al. (2021) to integrate the PRP decisions with the OAP and the
PSP; (ii) we analyze the impact of integrating these problems on the energy consumption in
an RMFS, since only the PRP is considered in Li et al. (2020); (iii) pod repositioning in wave
picking is also new since previous studies, such as Merschformann et al. (2019) and Rimélé et al.
(2021), considered a real time picking strategy only; and (iv) we present the first stochastic
programming model using a sampling scheme to account for the uncertainty of future demands
in wave picking. The previous solution approaches either considered deterministic versions or
real-time simulations to solve these problems.
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5.3 Problem description

In the RMFS considered, products are stored in identical storage pods. Robots can move
underneath the pods, lift them, and carry them to where they are demanded. The storage area
has a grid format, where each square represents either an aisle, used by robots to carry a pod
through, or a storage location, either containing a parked pod or not. As commonly considered
in the RMFS literature, both vertical and horizontal aisles are one-way and directions alternate
among parallel aisles (Lamballais et al., 2017; Merschformann et al., 2019). Storage locations
are grouped in blocks divided by rows, each with a storage location on each side, thus allowing
pods to have direct access to aisles. Picking stations are equally distributed on one side of
the storage area and a buffer zone separates the stations from the storage area. The ordered
products are picked by stationary pickers from the pods carried to the stations. Figure 5.1
shows the floor plan representation of the described storage area.

Figure 5.1 – Representation of an RMFS storage area layout

5.3.1 Decision problems

In wave picking, a planning horizon is divided into multiple periods, each representing a wave.
Orders that arrived in the previous period, for example, overnight, are in a backlog and can
be picked in the first wave. Each order contains a set of distinct order lines, i.e., different
products to be picked. The OAP has to be solved to determine which orders will be handled
by which stations (Merschformann et al., 2019). In the OAP, multiple orders are batched
and assigned together to stations. Overall, larger batch sizes are preferred for energy-efficient
picking. However, batch sizes are limited by the capacity of stations, determined by the
maximum number of bins that picked products are deposited that are available in the station
at a time. To avoid further order consolidation operations, we consider that each bin is used
to deposit products from a single order, although combining order lines is also possible when
orders can be split among stations (Xie et al., 2021). Another common consideration is to
balance pickers’ workload, such that each picker performs a similar number of picks in each
wave (Valle and Beasley, 2021; Zhuang et al., 2021). To account for fairness among works
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distributed to pickers, we consider workload balance in our models. Workload balance is
modeled such that the difference between the number of order lines assigned in a wave to all
pairs of pickers does not exceed a threshold.

In a sequential approach, given an OAP solution, the next decision concern which pods con-
taining the demanded products should be carried to each station. Typically, scattered storage
is adopted in an RMFS, such that items of the same product are spread over the warehouse
in multiple pods (Weidinger and Boysen, 2018). This increases the probability of having some
nearby pods carrying a requested product, reducing the mean processing time of orders (Boy-
sen et al., 2017; Lamballais et al., 2020). Due to the scattered storage, we have to decide which
pods should be carried to the stations to meet the demands of the orders assigned to them by
solving the PSP. We consider that pod replenishment is done before the beginning of the plan-
ning horizon such that the inventory in each pod is known when planning the picking waves.
We also assume that a sufficient quantity of items to satisfy all orders for the planning horizon
are available in each pod, which is a common and reasonable assumption in practice (Zhuang
et al., 2021). The initial pod locations are also known, which can be randomly generated or
determined by a storage policy, such as zoning (Lamballais et al., 2017). When solving the
OAP and the PSP in an integrated manner, the same products contained in different orders
are usually batched together and assigned to a single station. Thus, we avoid the same pod
being used by multiple stations within a wave. For this reason, we also assume that each pod
is carried to a station only once per wave.

Still in the sequential approach, once the OAP and the PSP are solved, it is time to plan
the robots’ tasks. A task indicates where each robot should go and the path to be followed.
A central server is responsible for assigning all tasks to robots. The decisions about which
robots will be selected consider their positions and the arrival sequence of tasks (Gharehgozli
and Zaerpour, 2020; Li and Liu, 2016). When deciding the storage location for returning
a pod once the picking at a station is done, we solve the PRP (Xie et al., 2021). When a
pod is returned, it can be repositioned at any available storage location, i.e., a location that
has a space to park the pod. In our models to integrate the PRP with other problems, we
consider that all locations left empty by the pods demanded in the current wave are available
for all pods at their return. The rearrangement of pod locations is an important aspect to be
considered in a dynamic context, such as wave picking. The reason is that pods containing
products that will be demanded in a future wave can be positioned near picking stations,
saving time and energy.

5.3.2 Energy consumption

From a context of sustainable development, the objective when solving the previously men-
tioned problems is to minimize the energy consumed by robots. Energy saving has been the
most frequently studied topic within the context of green warehousing (Bortolini et al., 2019a).
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Typical robot’s tasks in an RMFS are done following these steps:

Step (i) Move the unloaded robot from its current position to a requested pod;

Step (ii) Lift the pod;

Step (iii) Move the loaded robot to the designated station;

Step (iv) Stop while picking is performed;

Step (v) Move the loaded robot to place the pod in its new position;

Step (vi) Drop the pod.

The steps described ignore certain situations, such as blocking, obstacles that may appear in
the robot’s path forcing them to stop, and queues formed by robots waiting to be processed
by stations. Blocking and queues are not an issue in the wave picking modeled here since
time constraints are not considered, so robots carrying pods can wait until the path is entirely
free at no energy cost. Unexpected obstacles rarely occur during operations such that their
impact is negligible. The energy consumed to move a loaded robot is 2.5 times higher than
moving an unloaded one (Zou et al., 2018). Since most of the time robots are loaded, the
effect on unloaded moves (i) has a low impact on the total energy consumed and is, therefore,
disregarded here. For this reason, tasks that unloaded robots move to recharge stations are
also not relevant for this study. So, the total energy consumed El1sl2 in the pertinent steps of
a robot task to carry a pod from a location l1 to a station s and back to a location l2 is

El1sl2 = Elift + El1s + Esl2 + Edrop, (5.1)

where the energy consumed is Elift to lift the pod at its initial storage location l1 (ii), El1s to
move from l1 to a station s (iii), Esl2 to return the pod to a storage location l2 (v), and Edrop
to drop the pod in l2 (vi). The energy spent in (iv) is negligible.

Robots paths are computed as the shortest path between storage locations and stations fol-
lowing the grid layout of the storage area and the directions of the aisles. To move straight
between two points, a robot accelerates, reaches the maximum speed and keeps moving if the
path is long enough, and then decelerates. If the path is too short, the robot does not reach
its maximum speed, so the energy consumed is only a fraction of the energy spent during the
acceleration/deceleration. The total energy spent in a full path between a storage location
and a station, or vice-versa, is then the sum of the energy spent to perform all the straight
paths contained in it. Figure 5.2 is based on Li et al. (2020) and shows an example of the
speed changes in a path traveled by a robot. Paths are short in the example when moving the
pod from its storage location to the aisle, and vice-versa, and when entering in front of the
station. Note in Figure 5.2b that speed changes are split into a section representing the path
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traveled by the robot when carrying the pod to the station (El1s), then it sits there while the
picks are performed, and finally, it returns the pod to its new storage location (Esl2).

(a) Path traveled (b) Speed change and energy consumed

Figure 5.2 – Path and speed of a robot to perform a task

The energy consumed by a robot traveling at a constant speed is

Ec = eu
dc
vmax

, (5.2)

where eu denotes the energy consumed by a unit of time, dc is the distance traveled at a
constant speed, and vmax is the maximum speed of a robot. The energy consumed by a robot
during acceleration and deceleration is

Ea = Ed = eu
vmax
a

, (5.3)

where a is the acceleration/deceleration of a robot. In summary, El1s and Esl2 are the sum of
all straight paths performed by a robot, and each straight path is the sum of Ea, Ec, and Ed,
depending on its length.

Zou et al. (2018) estimate the work to lift/drop a pod as Elift = Edrop = 0.8 kJ. Li et al.
(2020) estimate that a robot charged with 2.4 kWh of energy will operate for about 6 h.
Therefore, the average hourly energy consumption rate of this robot is eu = 0.4 kWh or 0.4

kJ/s. They also assume a maximum speed of vmax = 2 m/s and an acceleration of a = 1

m/s2. We consider that the distance between the center of each square on the square grid
layout is equal to one meter. With the given equations and parameters, we can estimate the
total energy consumed by a robot to perform a task.

5.4 Mathematical models for the integrated OAP–PSP–PRP

Next, we present the mathematical formulations to solve the OAP, PSP, and PRP in an
integrated manner for the RMFS previously described. For ease of reference, Table 5.2 pro-
vides a summary of the notation used to model the integrated problem. Other notation used
throughout this section will be introduced when needed.
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Table 5.2 – Notation for the integrated OAP–PSP–PRP dynamic model

Sets
L Storage locations
S Picking stations
P Pods
I Products
Pi ⊆ P Pods that contain product i ∈ I
W = {1, . . . , |W|} Waves
O Orders
Ow ⊆ O Orders arrived in wave w ∈ W
Io ⊆ I Order lines (products) of an order o ∈ O
Parameters

El1sl2
Energy consumed by a robot to carry a pod from location l1 to
station s and return to location l2

Lp Initial location of pod p
C Stations capacity (in orders) in a wave
δ Maximum difference of order lines assigned to pickers in a wave
Decision variables
xwps (PSP) Whether pod p is assigned to station s in wave w
ywos (OAP) Whether order o is assigned to station s in wave w
ywios Whether product i of order o is assigned to station s in wave w
zwpl (PRP) Whether pod p is parked at location l at the end of wave w

Regardless of the strategy used to solve the integrated problem, we are given a set of storage
locations L, picking stations S, pods P, and products I. The set Pi ⊆ P represents all pods
that contain a product i. The initial location of a pod p is given by Lp. The maximum number
of orders a station can handle in a wave is given by C. A parameter δ is used to define the
maximum difference in the number of picks (order lines) performed by all pairs of pickers.
Setting δ = 0 will impose the same number of picks to be performed at each station. However,
setting a larger δ allows more flexibility when distributing picking tasks. As discussed in
Section 5.3.2, the energy consumed by a robot to carry a pod from a storage location l1 to a
station s and return to a location l2 is represented by El1sl2 .

Since we consider wave picking, all decisions are made dynamically at the beginning of each
wave. So, we are given W = {1, . . . , |W|} as the set of waves to be planned. Let O represent
the set of all orders that will arrive in the planning horizon each containing the order lines
(products) Io ⊆ I. The set Ow ⊆ O indicates all orders added to the backlog at the beginning
of the wave w.

Three types of decision variables are considered, each representing one of the problems being
integrated. Binary variables xwps represent the PSP decisions and indicate whether pod p

is assigned to station s in wave w. Binary variables ywos represent the OAP decisions and
indicate whether order o is assigned to station s in wave w. It is also required to define
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variables ywios indicating whether product i demanded by order o is assigned to station s in
wave w. Finally, binary variables zwpl represent the PRP decisions and indicate whether pod
p is parked at location l at the end of wave w, regardless of this pod being used in this wave.
For convenience, we consider z0

pl as the binary equivalent of the parameter Lp to represent
whether pod p is initially located in l.

5.4.1 A dynamic integer non-linear programming model for the case with
known demands

The OAP, PSP, and PRP for the RMFS presented are integrated using a DINLP model to
consider the decisions to be made in all waves. This model works as an oracle and assumes that
all orders that will arrive in each wave are known a priori. Although this is a strong assumption
for a real-world application in e-commerce distribution centers, we will show later that this
model can be adapted to be used with the data available for demands with uncertainty. The
integrated problem is modeled as follows.

min
∑
w∈W

∑
p∈P

∑
s∈S

∑
l1∈L

∑
l2∈L

El1sl2z
(w−1)
pl1

xwpsz
w
pl2 (5.4)

subject to ∑
o∈Ow

∑
s∈S

ywos = |Ow|, ∀w ∈ W (5.5)

∑
s∈S

ywos = 1, ∀w ∈ W, o ∈ Ow (5.6)

ywos = ywios, ∀s ∈ S, w ∈ W, o ∈ Ow, i ∈ Io (5.7)∑
p∈Pi

xwps ≥ ywios, ∀s ∈ S, w ∈ W, o ∈ Ow, i ∈ Io (5.8)

∑
s∈S

xwps ≤ 1, ∀p ∈ P, w ∈ W (5.9)∑
o∈Ow

ywos ≤ C, ∀s ∈ S, w ∈ W (5.10)

∑
o∈Ow

∑
i∈Io

∣∣ywios1 − ywios2∣∣ ≤ δ, ∀s1, s2 ∈ S, w ∈ W (5.11)

∑
p∈P

zwpl ≤ 1, ∀l ∈ L, w ∈ W (5.12)

∑
l∈L

zwpl = 1, ∀p ∈ P, w ∈ W (5.13)∣∣∣z(w−1)
pl − zwpl

∣∣∣ ≤∑
s∈S

xwps, ∀p ∈ P, l ∈ L, w ∈ W (5.14)

xwps ∈ {0, 1}, ∀p ∈ P, s ∈ S, w ∈ W (5.15)

ywos, y
w
ios ∈ {0, 1}, ∀s ∈ S, w ∈ W, o ∈ Ow, i ∈ Io (5.16)
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zwpl ∈ {0, 1}, ∀p ∈ P, l ∈ L, w ∈ W. (5.17)

The objective function (5.4) minimizes the energy consumed by robots to perform all tasks
assigned to them during the planning horizon. The cubic expression indicates a task performed
by a robot, meaning that a pod initially located in l1 as defined in a previous wave (z(w−1)

pl1
= 1)

is carried in this wave to station s (xwps = 1) and is returned to location l2 (zwpl2 = 1). Then,
the energy cost to perform this task is El1sl2 .

Constraints (5.5) set the number of orders satisfied in a wave equal to the number of orders
arrived in that wave. Constraints (5.6) guarantee that orders are assigned to a single station.
Constraints (5.7) ensure that if an order is assigned to a station in a wave, then all its order
lines are also assigned to the same station in the same wave. Constraints (5.8) assure that at
least one pod containing products assigned to a station will be carried to it when required.
Constraints (5.9) determine that each pod can only visit one station in each wave. Capacity
constraints (5.10) guarantee that the number of orders assigned to the stations respects their
capacities. The workload balance is guaranteed by constraints (5.11) by imposing that the
difference in the number of picks performed in each pair of stations s1 and s2 is lower than
threshold δ. Constraints (5.12)–(5.14) are used to solve the PRP by ensuring that pods are
assigned to valid locations after each wave. Constraints (5.12) guarantee that no more than
one pod is parked at any location after the wave. Constraints (5.13) guarantee that all pods
are assigned to a single location at any time. Finally, constraints (5.14) impose that pods
stay in the same location (|z(w−1)

pl − zwpl| = 0) when not moved in a wave (
∑

s∈S x
w
ps = 0). We

highlight that the opposite is not always true since a pod can move and still return to the
same location. The domain of the decision variables is defined in constraints (5.15)–(5.17).

Linearization

The MIP model presented is non-linear due to the cubic term in the objective function and
the module function in the constraints (5.11) and (5.14). To make it solvable by a commercial
solver for linear programming, we can linearize the former by replacing the product abc of
three binary variables a, b, and c, by a new binary variable d, adding the constraints d ≤ a,
d ≤ b, d ≤ c, and d ≥ a + b + c − 2 to the model. Meanwhile, the latter is linearized by
replacing the constraint in the form of |a| ≤ b by two new constraints a ≤ b and a ≤ −b.

Valid inequality

A valid inequality for the DINLP model described consists of removing the furthest locations
from the decision variables when a pod has to return from a station. The rationale is that it
will never be optimal to return a pod after a pick to a storage location beyond the |P| closest
locations from the station it was assigned to, i.e., to park in the furthest |L| − |P| locations
from this station. Since distances are station-dependent, it is not possible to simply remove a
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set of locations from the model. Instead, the locations are sorted by distance to each station
and, then, the inequality

xwps + zwpl ≤ 1, ∀p ∈ P, l ∈ Lp, s ∈ S (5.18)

is added to the model to guarantee that when a pod p is assigned to a station s, it cannot
return to a location l in the set Lp containing the |L| − |P| furthest locations from p.

Lower bound

A lower bound to the problem can be input to the solver to speed up the optimization process.
For the problem considered, it can be retrieved from the minimum number of pod visits to
satisfy the demands in each picking wave. To calculate a lower bound for the minimum number
of pod visits in a wave, we first get the number of distinct products demanded in this wave
(U). Then, we identify the pod with the maximum number of products and the number of
demanded products it contains (V ). Knowing U and V , a lower bound for the number of pod
visits is given by W = dU/V e. An example to illustrate is as follows. If among the orders in
the backlog we have to pick nine distinct products and the pod containing the most products
among them has four products, we can be assured that no less than W = d9/4e = 3 pods are
required to meet all demands in this wave. Since our model minimizes energy consumption,
not pod visits, we have to transform the lower bound described in terms of energy.

Given the minimum number of pod visits, a lower bound for the energy consumption is com-
puted in a two-phase process. In the first phase, we have to find theW nearest pods containing
at least one of the products demanded in this wave, which is a lower bound for the PSP. In
the second-phase, we have to return them to the nearest available locations, which is a lower
bound for the PRP. The detailed steps for this procedure are as follows:

Step (i) Sort all pods by their distances to the nearest station;

Step (ii) Get the W nearest pods in the sorted list that contain at least one product
demanded in this wave;

Step (iii) Add to the lower bound the distances of these pods to their nearest stations;

Step (iv) Sort all available locations, including those left empty by the W nearest pods, by
the nearest distance to each station;

Step (v) Given the nearest stations of the W nearest pods chosen, add to the lower bound
of the distances to return them to the nearest available locations.
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Model reduction

Another significant improvement is possible by reducing the number of locations |L| in half
since the energy cost to bring a pod from any row is similar, regardless of the side the pod is
parked. In this case, it is enough the reformulate constraints (5.12) to∑

p∈P
zwpl ≤ 2, ∀l ∈ L, w ∈ W, (5.19)

and apply it on the reduced set L.

5.4.2 Solution approaches for the case with demand uncertainty

Warehouses may opt for wave picking to simplify the decision-making on the order picking
process so that the operational decisions can be made periodically instead of in real-time.
Wave picking also has the advantage of creating order batches more efficiently. The larger
pool of orders in the backlog allows different products located in the same pod to be batched
and picked together. This results in a reduction in pod visits, as shown by many previous
studies, but may decrease the energy consumed by robots when pods parked in better locations
are used for the picks.

In the optimization context, wave picking can be seen as a sequential decision problem in which
decisions are made in an iterative process between “decide” and “reveal new information”. This
strategy belongs to the a priori optimization modeling paradigm since the OAP, PSP, and PRP
decisions are made given the current state of the warehouse considering that the uncertainty
may affect the outcome. The main source of uncertainty in the RMFS lies in the future
products to be picked. Therefore, in practice, warehouse managers may opt for approaches
that account for the demand uncertainty to solve the integrated problem. Among the factors
to be considered are the possibility of forecasting demands and the degree of difficulty to adopt
the approach chosen.

The following sections describe the solution approaches considered in this study. In the se-
quential approach, we consider the most common method used in the literature where the
problem is decomposed into two subproblems solved sequentially, i.e., first, the OAP and the
PSP are solved together, then the PRP alone. In the myopic approach, we assume that no
information about future demands is available or that the problem is solved with no looka-
head. Therefore, each wave must be planned considering only the current state of the system.
Finally, in the stochastic approach, we assume that the information about future demands is
known at a stochastic level when planning for a wave. This information can be embedded in
the model, helping find robust solutions that are expected to lead to good solutions for the
next wave by explicitly considering the expected future costs associated with the decisions
made at the current wave.
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The mathematical models for these approaches are derived from the DINLP model presented
before. We highlight that using any of these approaches to solve the integrated problem will
necessarily result in a solution worse than the optimal solution found solving the DINLP model
if the predicted scenario used to define the DINLP turns out to be exactly observed. For this
reason, we will refer henceforth to the integrated problem with known demands as the optimal
(oracle) approach. Table 5.3 summarizes the approaches considered, showing what tasks they
are optimizing and the type of objective function considered.

Table 5.3 – Summary of the solution approaches considered for the integrated OAP–PSP–PRP

Approach Optimality Objective function
Sequential Bring pods in the 1st wave only Linear
Myopic 1st wave only Quadratic
Stochastic 1st wave + expected future cost Stochastic
Optimal (oracle) All waves Cubic

Sequential approach

In the sequential approach, the integrated problem is solved in a two-phase process for each
wave using the information available for the orders currently in the backlog, i.e., the set of
orders Ow that arrived in this wave w. The previous DINLP model is decomposed into two
subproblems which are solved sequentially. The first subproblem is the integrated OAP–
PSP, while the second one is the PRP alone. This approach allows us to verify the impact
of not integrating pod repositioning with the other problems. The integrated OAP–PSP
can be adapted from the DINLP model by removing PRP decisions. The dynamic model is
reformulated to remove the index w from all decision variables. The result is an ILP formulated
as:

min
∑
l∈L

∑
s∈S

(Elift + ELps)xps (5.20)

subject to ∑
o∈Ow

∑
s∈S

yos = |Ow|, (5.21)

∑
s∈S

yos = 1, ∀o ∈ Ow (5.22)

yos = yios, ∀s ∈ S, o ∈ Ow, i ∈ Io (5.23)∑
p∈Pi

xps ≥ yios, ∀s ∈ S, o ∈ Ow, i ∈ Io (5.24)

∑
s∈S

xps ≤ 1, ∀p ∈ P (5.25)∑
o∈Ow

yos ≤ C, ∀s ∈ S (5.26)
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∑
o∈Ow

∑
i∈Io

|yios1 − yios2 | ≤ δ, ∀s1, s2 ∈ S (5.27)

xps, yos, yios ∈ {0, 1}, ∀p ∈ P, s ∈ S, o ∈ Ow, i ∈ I. (5.28)

The objective function (5.20) represents the total energy consumed by robots to bring the
pods demanded from their storage locations to the stations. Constraints (5.21)–(5.27) are
equivalent to constraints (5.5)–(5.11) for the OAP and the PSP decisions, and constraints
(5.28) define the domain of the variables of the OAP and the PSP. The resulting linear model
is an adaptation of the ILP model presented in Xie et al. (2021) to consider energy consumption
as the system performance measure and a workload balance to ensure a fair amount of work
distributed among pickers.

This ILP model optimizes the energy consumption to bring pods to stations. However, it is
still required to return pods to storage locations to complete all decisions for a wave. Since
we do not consider the order of pods arriving at stations, this PRP is a simplification of the
problem presented in Weidinger et al. (2018). Given the set of pods located at picking stations,
defined by solving the previous OAP and PSP model, and the set of storage locations available
in the storage area, a simple way to approximate the optimal solution for this PRP is by using
the nearest rule presented in Merschformann et al. (2019), where each pod is returned to the
nearest available storage location to the station they are in. This rule is effective since parking
pods further than the nearest available location is undesirable since it will result in a higher
energy cost. We still note that any combination of assignments of pods in a station to the
nearest available storage locations results in the same PRP solution. Despite its simplicity,
Merschformann et al. (2019) show that the nearest rule still performed best in most cases. In
the dynamic context analyzed, however, it may lead to bad solutions in the long term since it
can park pods that will not be required for a long time in good locations.

Myopic approach

The myopic approach can be seen as the integrated version of the sequential approach since
all three problems are solved using a single framework. Following the notation previously
introduced, the myopic approach is modeled as follows.

min
∑
p∈P

∑
s∈S

∑
l∈L

ELpslxpszpl (5.29)

subject to (5.21)–(5.28) and to ∑
p∈P

zpl ≤ 1, ∀l ∈ L (5.30)

∑
l∈L

zpl = 1, ∀p ∈ P (5.31)

|1− zpl| ≤
∑
s∈S

xps, ∀p ∈ P, l ∈ L (5.32)
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zpl ∈ {0, 1}, ∀p ∈ P, l ∈ L. (5.33)

As in the sequential approach, the objective function and all constraints are adapted from the
dynamic model to consider that decisions are made for a single wave. So, the objective function
(5.29) considers the tasks performed to move a pod p from its initial location Lp to the station it
is required and back to any available space in the storage area. The myopic approach considers
all constraints from the sequential approach, setting the new constraints (5.30)–(5.32) for the
PRP decisions. Compared to the DINLP model for the optimal approach, this model has two
major implications. First, its size is significantly reduced without the additional index for the
waves. Also, the objective function of the model is now quadratic instead of cubic, which can
be linearized by replacing the quadratic term ab by a new variable c, adding the constraints
c ≤ a, c ≤ b, and c ≥ a+ b− 1 to the model. The valid inequalities, lower bound, and model
reduction described in Section 5.4.1 are easily adapted for the myopic model considering a
single wave scenario.

Stochastic approach

Given the current state of the RMFS, we have shown that the myopic approach can be used to
make successive decisions for the dynamic integrated problem. However, since it only considers
short-term costs, its solution can place pods with a low turnover in good positions in the
storage area, reducing the efficiency of picking in future waves. An alternative way to solve
the dynamic problem is by integrating the expected behavior of future demands arriving in
the next wave to the model using stochastic programming, resulting in the so-called stochastic
approach. Predicting future demands is a challenge for many warehouses using the RMFS.
However, advances in tools for regression analysis, such as neural networks, are improving
predictions for the short and medium terms classically made using time series estimators and
other machine learning methods (Garnier, 2021).

Consider an arbitrary solution uw = {xw, yw, zw} for the integrated problem in a picking
wave w. The expected cost of uw is given by f(uw, zw−1) + E[w + 1], where f(uw, zw−1) is
the cost of uw for the initial pod locations zw−1, and E[w + 1] is the expected cost of the
subsequent wave w+ 1. Assuming continuous distributions for the uncertain demands for the
wave w + 1, we can approximate E[w + 1] by sampling a set Ω of scenarios to represent the
backlog state at the beginning of w+ 1, where each scenario ξ ∈ Ω sampled has a probability
of occurrence P (ξ). The cost of an arbitrary solution uw+1

ξ for the scenario ξ with the pods
initially arranged as defined by uw is given by f(uw+1

ξ , zw). We ignore the expected cost of
the next wave, E[w + 2] for the sake of avoiding the curse of dimensionality to allow some
optimization potential. Therefore, the expected cost of wave w+ 1 for the arbitrary solutions
for each backlog sampled is E[w+1] =

∑
ξ∈Ω P (ξ)f(uw+1

ξ , zw). In the stochastic approach, we
are interested in finding the optimal solution uw amongst the solutions space Uw representing
all feasible solutions for the integrated problem in a given wave w. We do that by solving a
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two-stage stochastic programming model where the first stage is defined as

min
uw∈Uw

f(uw, zw−1) + Eξ∈Ω[Q(uw, ξ)], (5.34)

where Q(uw, ξ) is the optimal solution for the subproblem

min
u(w+1)∈U(w+1)

f(u
(w+1)
ξ , zw), (5.35)

solved in the second stage for a given scenario ξ ∈ Ω.

The myopic model presented in Section 5.4.2 is adapted to solve this two-stage stochastic pro-
gramming model using a logic-based Benders decomposition technique (Hooker and Ottosson,
2003). In the first stage, it is enough to modify the objective function (5.29) for the myopic
approach to

min
∑
p∈P

∑
s∈S

∑
l∈L

ELpslx
w
psz

w
pl +

∑
ξ∈Ω

P (ξ)f(zwpl, ξ), (5.36)

where the term P (ξ)f(zwpl, ξ) is added to represent the stochastic costs to be estimated. To
this end, we solve a similar model in the second-stage to find the optimal solution for the set
of orders Oξ that are expected to arrive in each scenario ξ ∈ Ω. A scenario ξ is solved for the
objective function

min f(zwpl, ξ) =
∑
p∈P

∑
s∈S

∑
l∈L

E(lzwpl)sl
xw+1
ps zw+1

pl , (5.37)

where lzwpl represents the index of the initial location of a pod p in this stage given by the
solution found in the first stage, and the second-stage variables xw+1, yw+1, and zw+1 are
subject to the myopic constraints. The sampling technique used to generate Oξ is presented
in Section 5.5.2 and the samples are generated as described in Section 5.6.2.

In the optimization process implemented, we replace the stochastic cost term P (ξ)f(zwpl, ξ)

in the objective function by a new decision variable c. Whenever a new feasible solution for
the first-stage model is found we solve the second-stage model for each scenario ξ ∈ Ω to find
f(zwpl, ξ). Then, we add a cut to the first-stage model as

c ≥

1−
∑
p∈P

∑
l∈L

(1− zwpl)

∑
ξ∈Ω

P (ξ)f(zwpl, ξ), (5.38)

indicating that c should be at least equal to the expected cost
∑

ξ∈Ω P (ξ)f(zwpl, ξ) whenever
all variables zwpl values reappear in the optimization process.

It is possible to improve the optimization process described from a lower bound derived for
the stochastic costs. Let LB(ξ) be a known lower bound for f(zwpl, ξ). The lower bound for
the stochastic costs in (5.36) is

∑
ξ∈Ω P (ξ)LB(ξ). Adding this lower bound to (5.36) can

significantly speed up the solving process since the second-stage model will be solved only
when the stochastic costs can improve the current solution given the lower bound provided.
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Given the improvement described, we still have to subtract LB(ξ) from the objective function
of the second-stage model for scenario ξ to compensate the stochastic costs already considered
in the first stage. In our experiments, the lower bound LB(ξ) is calculated using a modified
version of the method described in Section 5.4.1 since we do not know the initial pod locations
for the second stage before solving the first-stage model. Now, we consider that the minimum
number of pods W to be picked will have to traverse the buffer zone twice without identifying
their possible initial locations.

5.5 A local search matheuristic for the integrated
OAP–PSP–PRP with demand uncertainty

Due to the complexity of solving most of the models presented, the conception of a heuristic
is required to approximate the optimal solution for the integrated problem with stochastic
demands for large-size instances. We design a local search matheuristic. This matheuristic
combines the effectiveness of generating solutions using one of the mathematical models pre-
viously introduced with a local search capable of quickly verifying a neighborhood based on
the repositioning of pods.

The matheuristic is divided into three parts detailed in the next sections. The first part gen-
erates a feasible solution for the problem from a simple adaptation of the sequential approach.
Then, we explain how we can generate representative scenarios to estimate the stochastic cost
of this solution. Finally, a very efficient local search is described that can improve the initial
solution by searching in a neighborhood defined by solutions generated by swapping pod po-
sitions in the current wave. The structure of our search allows the stochastic cost to be easily
updated for each neighbor solution using simple analytical formulas.

5.5.1 Generating feasible solutions

A feasible solution for a wave requires determining which orders are assigned to which stations,
which pods are assigned to which stations, and where each pod should return after the picks,
considering the constraints previously described, such as the picking stations’ capacities and
workload balance. The first two decisions pose the biggest challenge to generating a feasible
solution since the number of existing matches between products contained in orders and pods
is huge when scattered storage is used. Previous studies attempted to design heuristics for
the integrated OAP–PSP (Jiang et al., 2020; Valle and Beasley, 2021; Xiang et al., 2018; Xie
et al., 2021). A common technique is to use mathematical models, either entirely or partially,
to obtain a feasible solution that a local search algorithm can later improve.

In this study, due to the reduced complexity of the ILP model presented for the integrated
OAP–PSP compared to the other models presented, we use this model to generate a set of
feasible solutions for the integrated OAP–PSP. State-of-the-art mathematical programming
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solvers can generate a pool of solutions for a problem that are certified to be the N best
solutions for it. So, we start our matheuristic by solving the ILP model until N solutions are
proven to be the best possible ones. Then, the PRP is solved using the nearest rule to decide
where the pods should be returned to after the picks. All solutions are evaluated and only the
best one is kept.

In preliminary experiments, we observed that a too high N value does not lead to good
solutions since an improving one for the OAP–PSP–PRP is rarely too far from the optimal
one for the OAP–PSP. Therefore, we fixed N to 100 in all our experiments. Since this heuristic
starts from the optimal solution of the sequential approach and possibly improves it for the
current wave, it leads to an energy cost that is upper bounded by the optimal solution for the
sequential approach and lower bounded by the solution for the myopic approach. We show
by our computational experiments (Section 5.6) that, despite its simplicity, our matheuristic
improves the initial solutions to be closer to those given by the myopic approach.

5.5.2 Evaluating the stochastic cost

Given a feasible solution for the current wave, we estimate the stochastic cost of the next
wave by sampling possible scenarios that may be observed in the future. We sample a number
of scenarios S using a sample average approximation (SAA) scheme. The SAA is used to
solve stochastic problems using a Monte Carlo simulation. It considers that a random sample
of scenarios drawn from known probability distribution functions can approximate well the
expected cost of all possible scenarios (Kleywegt et al., 2002). We use the SAA to sample a
certain number of scenarios using typical demand distributions as described in Section 5.6.2,
and the same scenarios sampled are reused during the whole solving process to speed up the
run.

After generating the backlog of S scenarios, we evaluate the stochastic cost by considering the
pods’ positions determined in the heuristic to generate feasible solutions as the initial layout.
Then, we solve the ILP model for the OAP–PSP for each scenario individually followed by the
PRP with the nearest rule. The stochastic cost is given by multiplying the solutions found by
the probability of occurrence of each scenario.

Another important remark about the evaluation of the stochastic cost using the SAA is that
scenarios are evaluated independently from each other. This provides a great opportunity
to perform evaluations using parallel computing. Parallelism assigns different tasks of the
algorithm to different threads of a computer to speed them up, potentially linearly reducing
the running time of the block of tasks being parallelized. We used parallelism when solving
the OAP–PSP for each scenario, which is by far the most time-consuming task done in our
matheuristic.
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5.5.3 Improving the current solution

Thus far, we described how a feasible solution for the current wave of the integrated OAP–
PSP–PRP is generated by our matheuristic and how its stochastic cost for the subsequent
wave is estimated using the SAA technique. With this information in hand, we can improve
the current solution to reduce its first and second wave costs using a simple best improvement
local search algorithm based on rearranging pods after they return from stations in both waves.
Algorithm 5 presents the pseudocode for the local search implemented. The idea of the best
improvement search is to keep updating the solution to the best one found in its neighborhood
until no more improving solution can be found (lines 1 and 33). A neighborhood of a solution
is defined as all the solutions that can be generated by changing the final position of a pod
moved in the current wave. Given a pod p1 moved in this wave, it can be repositioned to any
available storage location, and the difference in the energy cost of this wave is Es1l∗ − Es1l1 ,
i.e., the cost of returning this pod from the assigned station s1 to an available location l∗

instead of returning to its current location l1 (lines 4–7). The next step is to evaluate how this
movement impacts the energy cost of the future waves represented by the sampled scenarios.
For each scenario, the local search updates the initial location of p1 and its cost in case p1 is
also moved in the wave representing this scenario (lines 12–14) and searches for the pod p2

that when repositioned to the location left empty by p1 after the current wave leads to the
lowest difference in the energy cost ∆∗2 (lines 15–21). The savings (or increase) in the total
solution cost is given by the sum of the savings in both stages (line 23). If this difference is
negative, then the movement of p1 to l∗ and of p2 to l1 results in an improving solution to the
problem (lines 25–29). Since we use the best improvement strategy, we search for all solutions
in the neighborhood before deciding where the solution should be moved to (line 32). The
final solution for the search described is expected to approximate well the optimal solution for
the stochastic approach. In the next section, we compare its results with those found by each
of the previously described approaches.

5.6 Computational experiments

In this section, we report and analyze the results of extensive computational experiments
performed using the methods presented. Additionally, we compare solutions for a different
objective function, i.e., minimizing the number of pod visits instead of the energy consumption,
and we provide a new solution approach where we can wait for more orders to arrive before
starting to plan the picking waves.

The computational environment used to run the experiments is equipped with an Intel Gold
6148 Skylake CPU with a 2.4 GHz clock. Runs were limited to use a maximum of 8 GB
of RAM and four cores. All methods were implemented in C++, and the parallelism was
implemented using OpenMP. The exact models were solved using Gurobi 9.5.
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Algorithm 5 Best improvement local search
1: repeat
2: Best pod repositioning for the current wave and each scenario i: z∗1 , z∗2 ← ∅;
3: Best improvement: ∆∗ = 0;
4: for all pods p1 moved in this wave to a station s1 and returned to a location l1 do
5: for all locations available l∗ after the current wave do
6: Move p1 from l1 to l∗ at the end of the current wave;
7: ∆1 = Es1l∗ − Es1l1 ; {Update current wave return cost}
8: for all scenarios i = {1, . . . , S} do
9: ∆∗2 ={Large number}
10: for all pods p2 moved in this wave to a station s2 and returned to a location l2 in a scenario i

do
11: ∆2 = 0;
12: if p1 is also moved in i from a location l′ to a station s′ then
13: ∆2 = ∆2 + (El∗s′ − El′s′); {Update future wave depart cost}
14: end if
15: if l1 is available at the end of scenario i then
16: Move p2 from l2 to l1 at the end of the scenario i;
17: ∆2 = ∆2 + (Es2l1 − Es2l2); {Update future wave return cost}
18: end if
19: if ∆2 < ∆∗2 then
20: ∆∗2 = ∆2;
21: end if
22: end for
23: ∆1 = ∆1 + ∆∗2;
24: end for
25: if ∆1 < ∆∗ then
26: z∗1 ← {p1, l∗};
27: z∗2 ← {p2, l1};
28: ∆∗ = ∆1;
29: end if
30: end for
31: end for
32: Reposition pods saved in z∗ to their new locations;
33: until No improvement is possible (∆∗ ≥ 0)

5.6.1 Instance generation

As is common in the warehousing literature, synthetic instances were generated to test the
optimization models and the matheuristic presented. Their parameters are based on previous
studies on the RMFS, most simulating real conditions found in warehouses. A summary of
the parameters of the instances generated is presented in Table 5.4.

Table 5.4 – Summary of the instances generated

Layout |L| |S| |P| |I| |Ip| |W| |Ow| |Io| Lp C δ skewness
Tiny 16 2 13 10 3

2

5

[1,4] Rand

3

4
High

Medium
Low

Small 72 2 61 20, 40 5, 10 10 6
Medium 200 3 170 50, 100 7, 15 25 10
Large 504 4 428 200, 500 10, 25 50 15

We generated instances in four different layout sizes – tiny, small, medium, large – each
represented by different numbers of vertical aisles, horizontal aisles, and rows in each block.
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The tiny layout is a 2 × 1 × 2, meaning that it has two vertical aisles, one horizontal aisle
(front and back aisles excluded), and two rows of locations in each of its four blocks. Since
each row has two storage locations (one on each side), these instances have |L| = 16 locations
where pods can be parked. Small, medium and large sizes are, respectively, 3×2×4, 5×4×4,
and 9× 6× 6, meaning they have 72, 200, and 504 storage locations, respectively. The largest
layout generated is similar to the one used in (Xie et al., 2021) for their experiments to solve
the OAP–PSP. The energy cost for a task El1sl2 is set as explained in Section 5.3.2 for a buffer
zone of five meters separating the stations from the storage area. The number of stations
|S| is between two to four. The number of pods is equal to 85% of the number of storage
locations, i.e., |P| = 0.85|L|. The number of distinct products available in the storage area
|I| is between 10 to 500. Being Ip ⊆ I the set of products contained in a pod p, we set |Ip|
to be between 3 to 25 products. These combinations allow us to analyze different levels of
products scatteredness in the storage area. All instances have a planning horizon of two waves.
Limiting |W| = 2 has the advantage of requiring less computational effort to solve instances
and allowing a fair comparison between our solution approaches with a smaller set of instances.
New waves are triggered when there are enough products in the backlog to use most of the
capacity available to reduce pickers’ idle time, without overloading the system and leaving
some flexibility to move orders between stations when solving the OAP. The orders in each
wave are generated using the procedure described in Section 5.6.2 for the scenarios generation
such that each order has one to four products, the average order comprises 1.6 items, and the
majority of them has a single item, as seen in e-commerce distribution centers. The initial
location of pods Lp is always determined randomly. Stations capacities C range between 3
to 15 orders. The maximum difference of order lines picked by stations δ is arbitrarily fixed
at four to allow some flexibility when assigning orders to stations. Finally, three demand
skewness are considered to generate orders in all sizes, ranging from 20% of orders accounting
for 80% (low), 50% (medium), and 33% (high) of all demands. The given parameters result
in three settings for the tiny layout and 12 settings for the remaining layouts each. Random
seeds were used to generate 20 instances for each setting, which result in 780 instances in total,
all of them carefully generated to contain feasible solutions.

5.6.2 Scenarios generation

A scenario contains a certain number of orders, each with a certain number of products, which
can be a combination of any subset of products among all products available I.

The first decision when sampling a scenario to estimate the stochastic costs is to determine
the number of orders to be sampled. Since the starting point of a wave is a decision controlled
by the warehouse manager, we simply consider that the number of orders to be generated is
fixed to the number of orders arrived in the current wave.

The next decision is about the number of order lines contained in each order. Orders in e-
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commerce are typically composed of few products. The number of order lines in each order is
commonly generated from a truncated geometric distribution (Lamballais et al., 2017; Valle
and Beasley, 2021; Xie et al., 2021). In this distribution, given a parameter µ the probability
that an order containsm distinct products is represented by µ(1−µ)(m−1)/

∑M
n=1 µ(1−µ)(n−1)

for m = {1, . . . ,M}, where M is the maximum number of items in an order. Following Valle
and Beasley (2021), we generated orders usingM = 4 and µ = 1/1.73, chosen such that orders
have an average of 1.6 order lines, which is known to be the average order demand at German
Amazon warehouses (Boysen et al., 2019b). The chosen distribution also implies that 85% of
orders contain only one item.

There is only left to determine the lines of each order, which can be generated using an
ABC curve (Caron et al., 1998). The ABC curve is used to represent demand skewness by a
continuous analytical function. The more skewed demands are, the more weight few products
have in the total demand. The ABC curve is given as

F (x) =
(1 + s)x

s+ x
, 0 ≤ x ≤ 1, s ≥ 0, s+ x 6= 0, (5.39)

where x indicates the relative position of a product whose order frequency represent a fraction
F (x) of total warehouse activity. The parameter s indicates the skewness of the demand. In
the instances generated, we used s = 0.067 to represent the low skewness case, holding that
that 20% of the products (x = 0.2) account for 80% of the picks (F (x) = 0.8), reducing to 50%
when s = 0.333 in the medium skewness case, and to 33% when s = 1 in the high skewness
case. Given that the available products I are sorted by their demands, the ABC curve is used
to generate the order lines for the scenarios from random x values. Finally, equal probabilities
of occurrence are assumed for each scenario among the S scenarios sampled, i.e., P (ξ) = 1/S.

5.6.3 Comparisons for smaller instance sets

We start our analysis by using all methods presented, i.e., all exact approaches and our
matheuristic, to solve the smaller instance sets. Thus, we can observe what instance sizes each
method is capable of solving within a reasonable time, defined here to be a maximum of one
hour for each run. Four scenarios are sampled for the stochastic approach and the matheuristic
to estimate the stochastic costs, which is the number of cores available in our computational
environment, to achieve high efficiency. Table 5.5 compares the solutions obtained when
solving the sets Tiny to Medium. Column Opt shows the percentage of instances solved to
optimality within the time limit established. This indicator is not shown for the matheuristic
since optimality is not proven when using it. Column Time (s) is the average time in seconds
to prove optimality using the exact models or to stop the matheuristic when it is the case.
Columns Bring pods, 1st wave, and All waves show the average energy cost to bring pods to
stations in the first wave, the average total cost for the first wave, and the average total cost
for both waves, respectively, for the instances solved within the time limit. We highlight in
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the table the best costs for each one to stress that the sequential approach optimizes the cost
to bring pods in the 1stwave, the myopic approach optimizes all the costs for the 1st wave,
and the optimal approach optimizes all the costs for the whole planning horizon.

Table 5.5 – Methods comparison for the smaller instance sets

Approach Layout Opt Time (s) Energy cost
Bring pods 1st wave All waves

Optimal
Tiny 100% 85.8 9.99 20.04 39.38
Small 0% >3600 – – –
Medium 0% >3600 – – –

Stochastic
Tiny 97% 155.0 9.89* 19.09* 39.09*
Small 0% >3600 – – –
Medium 0% >3600 – – –

Myopic
Tiny 100% 0.3 9.78 19.45 39.71
Small 100% 34.0 14.99 28.17 61.73
Medium 0% >3600 – – –

Sequential
Tiny 100% 0.1 9.68 19.68 39.87
Small 100% 0.2 14.43 29.22 65.06
Medium 100% 4.8 30.47 61.27 132.60

Matheuristic
Tiny – 0.3 9.76 19.62 39.62
Small – 1.5 14.80 28.53 62.19
Medium – 26.1 30.72 60.46 129.28

∗: calculated only for the instances with optimality proven

Some observations are made from Table 5.5. First, the optimal and stochastic approaches
cannot solve any instance larger than those in the Tiny set, while the myopic approach cannot
solve any instance larger than those in the Small set, which significantly limits the applicability
of these methods in practice. From the instances with optimality proven, we note that the
myopic approach is leading to solutions on average 1.1% (Tiny) and 3.6% (Small) better than
the sequential approach for the current wave being planned, which attests the effectiveness
of integrating PRP decisions with the OAP and the PSP. However, solutions found by the
myopic approach are still 0.8% (Tiny) further than the best possible solutions as given by the
optimal approach. This means that there is room for improvement that could be reached using
the stochastic approach. Unfortunately, the stochastic approach could not solve all instances
from any sets, so a direct comparison between the costs shown in the table against any other
approach is not possible. Removing the instances that the stochastic approach could not solve
from the other approaches, we still observe a slight improvement of 0.04% compared to the
myopic approach and a distance of 0.69% to the optimal approach.

In summary, our matheuristic is significantly improving the initial solutions generated by
solving the OAP–PSP model from the sequential approach. For the tiny instances, we see an
improvement of the average solution compared to the myopic approach, which indicates that
the SAA technique used is being somewhat effective. For the small set, although solutions are
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not better in the matheuristic than in the myopic approach, we can see that it is approximating
them well in considerably less time. This time advantage becomes clear in themedium set when
the myopic approach is not able to prove the optimality of any instances while the matheuristic
is quickly finding improvements for the initial solutions provided by the sequential approach.

5.6.4 Comparisons for the largest instance set

Now, we conduct a deeper analysis for the large instance set using the two methods – the
sequential approach and the matheuristic – capable of solving instances at this size within the
same time limit of one hour. The results are presented in Table 5.6, detailed for the number
of products (|I|), the number of products per pod (|Ip|), and the demand skewness (skew).
Column #Inst shows the number of instances – out of a total of 20 instances – solved to
optimality for the sequential approach and that the matheuristic finished its run within the
time limit. Time (s) reports the average run time, and Cost is the equivalent of the column
All waves from Table 5.5. We also display a column Diff. showing how much our matheuristic
is improving the initial solution generated by the sequential approach. The improvements are
calculated only for the instances finished within the time limit using both methods.

Table 5.6 – Methods comparison for the large instance set

|I| |Ip| skew
Sequential approach Matheuristic

#Inst Time (s) Cost #Inst Time (s) Cost Diff.

200

10
33 20 220.6 319.96 20 965.2 316.15 -1.19%
50 20 166.7 309.52 20 649.5 308.85 -0.22%
80 20 76.7 279.09 20 744.0 276.11 -1.07%

25
33 19 907.2 178.65 2 2938.4 180.26 1.11%
50 19 636.2 177.15 9 2593.1 168.86 -1.17%
80 20 367.5 165.70 14 1984.8 164.24 0.54%

500

10
33 20 6.5 599.18 20 52.4 595.03 -0.69%
50 20 8.0 573.99 20 57.4 572.71 -0.22%
80 20 11.6 537.62 20 56.1 532.04 -1.04%

25
33 20 302.1 334.07 20 1273.7 331.17 -0.87%
50 20 269.2 323.70 19 1208.3 320.18 -0.83%
80 20 175.8 302.97 20 778.1 298.19 -1.58%

From Table 5.6, we see that in most cases our local search matheuristic improves the solutions
for the sequential approach for the real costs observed after all picking waves. This is a
clear sign that solving the stochastic model – approximated here by our matheuristic – using
the SAA scheme presented would lead to better solutions for the real demands than using
the sequential approach. The average improvement observed is by 0.76% for those real-size
instances. Instances with a lower |I| and a higher |Ip| have products more scattered within the
storage area and, consequently, are harder to solve due to the larger number of pod options to
choose to carry to stations. Given 428 pods in this layout size, when |I| = 200 and |Ip| = 25
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each product can be found on average in 53.5 pods. Meanwhile, when |I| = 500 and |Ip| = 10

each product is stocked only in 8.6 pods on average. Despite the increased difficulty to solve,
more scattered storage leads to much lower energy consumption, reducing from nearly 600 kJ
per wave to nearly 180 kJ per wave comparing the two most extreme situations investigated
and a high demand skewness. Another conclusion drawn here is that energy consumption is
reduced when the demands are more skewed. Reduction is around 10.6% to 12.7% when the
20% most demanded products account for 80% of the total demand instead of only 33%.

We highlight that not all runs of the sequential approach are being finished within the time
limit, indicating that this is approximately the largest instance size this method can be used
in practice. Since the matheuristic starts from this solution, we cannot use it to solve larger
instances either, unless a low scattered storage level is used, which is not common in an RMFS.

5.6.5 Further analysis

In this section, we extend our analysis to two new cases that are worth investigating since they
can significantly impact energy consumption in an RMFS. In the first case, we show how our
models can be used to minimize the number of pod visits, which is a common performance
measure optimized in the RMFS literature, as mentioned before, and compare solutions for
this metric and the energy consumption when either of the two are minimized. The second case
presents a situation where picks can be delayed so that waves are planned after the backlog
have more orders than the scenarios considered so far. We compare the results for a backlog
with twice more orders to show that, whenever possible, delaying picks can significantly save
energy due to a more efficient order assignment solution.

Minimize the number of pod visits versus energy consumption

Our exact models can be easily modified to optimize the number of pod visits instead of the
energy consumed by robots. For that, it is enough to change the objective function (5.20) for
the integrated OAP–PSP to

min
∑
p∈P

∑
s∈S

xps. (5.40)

We run the modified model to analyze the trade-off between energy consumption and the
number of pod visits when solving the same model for each objective, solving the PRP using
the nearest rule for both cases. Table 5.7 summarizes the results obtained. We removed
from this analysis all instances that took longer than one hour in either of the models to
allow a direct comparison of the results. The number of instances compared is shown by
#Inst. Columns Energy and #Pods show, respectively, the average energy consumption and
the number of pod visits for the solutions found. Columns Diff. shows the difference in each
indicator when solving the problem for minimizing the number of pod visits compared to
when minimizing energy consumption. Overall, the results show that minimizing the number
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of pod visits leads to solutions with a 9.1% to 18.6% higher energy consumption, even though
between 11.7% and 25.2% fewer pods are carried to stations. Despite the savings in energy
consumption, it is possible that blocking becomes more frequent, and long queues are formed
by the stations when more pods are carried around, which may affect energy consumption in
practice. Also, larger costs can occur from the larger number of robots required to pick the
extra pods. These drawbacks should be weighted by the warehouse manager when deciding
which objective function to be minimized.

Table 5.7 – Comparison between minimizing energy consumption and minimizing the number
of pod visits

|I| |Ip| skew #Inst Min energy Min #Pods
Energy #Pods Energy Diff. #Pods Diff.

200

10
33 20 319.96 33.8 367.33 12.9% 27.9 -21.0%
50 20 309.52 32.8 359.88 14.0% 27.2 -20.6%
80 20 279.09 29.5 316.23 11.7% 24.2 -21.9%

25
33 16 176.71 20.6 217.04 18.6% 16.9 -22.2%
50 18 176.48 20.5 211.04 16.4% 16.3 -25.9%
80 20 165.70 19.1 190.90 13.2% 15.3 -25.2%

500

10
33 20 599.18 54.1 659.75 9.2% 47.4 -14.1%
50 20 573.99 51.2 631.50 9.1% 45.9 -11.7%
80 20 537.62 48.9 596.46 9.9% 42.9 -13.9%

25
33 20 334.07 33.8 379.45 12.0% 28.2 -19.7%
50 20 323.70 32.7 371.81 12.9% 27.7 -17.9%
80 20 302.97 31.0 341.45 11.3% 26.1 -18.8%

Picking orders immediately versus waiting until all orders arrive

Normally, the longer we wait to make decisions, the more information becomes available and
the more efficient order picking can be. We present an alternative approach to solve the
integrated OAP–PSP–PRP for when the time available for the picks is not tight, such that we
can delay the picks to be done after more orders arrive than the available capacity. We call
this a wait-and-see approach. This approach can be seen as a myopic approach with a larger
number of orders in the backlog. In practice, it is preferred to wait for orders to be picked
in a later period with no significant penalty in the demand satisfaction, such as when dealing
with low-priority orders. In this case, more orders in the backlog allow the picks to be planned
more efficiently.

We solved all instances for the large layout set, either picking orders when arrive or using
the wait-and-see approach. Despite the possibility of using the INLP model for the myopic
approach to solve the wait-and-see approach, we opted to use our matheuristic in this analysis
so that we could compare solutions for the largest instance set, which is closer to found in a
real situation. We solve it considering that the orders for both waves are ready for picking at
the beginning of the first picking wave. Then, we run our matheuristic limiting the number of
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picks to be half the number of orders in the backlog for a fair comparison against solving the
original problem. After solving the problem for the first wave, we remove the orders picked
and run again the matheuristic for the remaining orders. Since the wait-and-see approach
generalizes the myopic approach, an optimal solution for it is a lower bound for the sum of
the optimal solutions of the myopic approach for each wave. In practice, the wait-and-see
approach may allow new orders to be added to the backlog as they arrive. The results found
show that the wait-and-see approach leads to solutions between 16% to 17.8% cheaper than
picking as orders arrive for the instances tested. The major drawback of this approach is the
increase in order cycle times. Again, these have to be weighted when deciding which approach
to use in practice.

5.7 Conclusions

In this paper, we investigated how the repositioning of inventory pods in the robotic mobile
fulfillment system can lead to a more efficient order picking process. This is analyzed by
observing the energy consumption reduction of robots carrying pods between the storage area
and the picking stations. We integrate pod repositioning decisions with those for two other
operational problems commonly found in this system, namely the order assignment and the
pod selection.

We proposed several approaches to solve the integrated problem using a wave picking strategy
for when future demands are uncertain. We showed that when pod repositioning decisions are
integrated with other decisions, waves can be performed consuming up to 3.6% less energy
than when decisions are made sequentially. When we add stochastic information about future
demands by sampling a few scenarios for them to the decision process, solving a two-stage
stochastic programming model, solutions can be improved even further. We still show that
these solutions are only 0.69% on average below the best possible case when future demands
are known.

We presented a local search matheuristic that starts from a solution generated by the sequen-
tial approach and improves it by searching a neighborhood with solutions where pods are
returned to different locations after the pickings are done. Our matheuristic also uses infor-
mation about future demands to provide robust solutions for the integrated problem. Our
experiments showed that this matheuristic can find solutions up to 1.58% better than the
sequential approach when instances are considerably larger than those solved by the exact
methods.

Finally, further analysis showed how to adapt our methods to minimize the number of pod
visits instead of energy consumption. Our experiments showed that minimizing pod visits
can lead to solutions with up to 18.6% higher energy consumption compared to when energy
consumption is explicitly minimized. A second case analyzed is when orders can wait to be
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picked in a later wave. We showed that a backlog with twice more orders can reduce energy
consumption by up to 17.8%.
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Conclusion

Designing storage and picking systems in warehouses, from the traditional manual system to
the innovative robotic mobile fulfillment system, requires a series of important decisions that
highly impact their performance. The relationship between storage and picking processes is a
growing topic of research due to the current economic context, mainly with the quick rise of
e-commerce. Also, the practical implications that designing these processes have when using
such warehousing systems is a topic of interest. Tactical and operational level decisions re-
garding the storage, batching, and routing are among those with higher interest since they are
responsible for the majority of operating costs in a warehouse. Traditionally, these problems
are solved using simple policies that present guidelines that can be easily followed by pickers
and managed by warehouse managers since they circumvent dealing with the stochastic nature
of processes. Recent advances in solution techniques and advances in computational power
allow that traditional problems found when designing storage and picking systems are reana-
lyzed and solved in a more integrated manner to consider the characteristics of the warehouse
in question. In this thesis, we have introduced, modeled, and solved storage, batching, and
routing problems found in the manual system and the RMFS, providing new tools to those
traditionally found in the warehousing literature and used in practice.

In Chapter 1, we introduced the basic concepts of the storage and picking systems in ware-
houses, showing that they can be viewed as an integrated system in practice due to their
relationship. Two S/P systems are described: the picker-to-product manual system and the
product-to-picker RMFS. The most common storage, batching, and routing decision problems
in these systems were introduced, and the solution techniques found in the literature were
described. These problems are usually solved sequentially using simple policies developed for
each individual problem. Our review showed that most of the studies found that attempt
to evaluate the interactions between these problems focus on answering which set of policies
result in the best performance when combined for different warehouse settings. Decisions are
more commonly integrated between batching and routing. However, integrating storage deci-
sions with them can lead to significant improvements in many performance measures as shown
by the studies that already investigated their interactions. To fill this gap in the literature,
all studies presented in this thesis either suggest new models or improve the known ones to
solve storage problems found in the manual and RMFS. This is done considering different
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warehouse settings and the batching and routing decisions made.

In Chapter 2, we integrated the storage and routing decisions in a manual warehouse. We
considered that a set of future orders is known, each representing a pick list to be followed by
pickers. The set of products to be picked should be arranged in the storage area such that
the total distance traveled by pickers to perform all routes is minimized. A general model for
the problem was introduced that does not consider any specific warehouse layout. Four other
models were presented for the cases that the routing problem must be solved using popular
policies for the single-block layout. From computational experiments, we showed that these
models can only be solved for small instances within a reasonable time. Therefore, we proposed
a general variable neighborhood search such that larger size instances, such as those found in
practice, can be solved faster. Our results revealed that the commonly used routing policies
can effectively speed up the search for an optimal assignment of products to storage locations
when using the proposed metaheuristic. Also, we showed that these near-optimal solutions are
a considerable improvement compared to those generated from the common storage policies
used in practice.

In Chapter 3, we relaxed the assumption that all future orders are fully known to solve
the storage problem in a manual warehouse. In this case, this problem is commonly solved
using the ABC storage policy, which divides the storage area into three zones and assigns
the products with the highest expected demands to the best zones. The optimal size of
each zone is known to be influenced by several factors, such as the warehouse layout, the
demand characteristics, and the policies used to define the zones shapes and picking routes.
We implemented a simulator to estimate the average route length given a huge number of
combinations of these factors and zone sizes. A grid search was performed to find the zone
sizes that resulted in the lowest expected route length for each combination of factors. From
these findings, we evaluated which factors impact the most the choice of good zone sizes using
regression analysis. In practice, zone sizes are commonly chosen using fixed values as a rule-
of-thumb. We trained four machine learning tools – ordinary least squares, regression tree,
random forest, and multilayer perceptron – using the data generated from the simulations to
suggest well-performing zone sizes from the most important factors observed. These tools were
evaluated and compared against the arbitrarily fixed sizes and the simulator, both quantitative
and qualitatively. The results showed that even the simpler tools could suggest zone sizes that
perform better than the common arbitrary sizes, and they can be significantly easier to be
implemented in practice than the simulator.

If enough data is available to identify correlations between products, a different strategy to
solve the storage problem is by locating correlated products close to each other, in a manual
system, or together in the same pod, in an RMFS. This may lead to significant reductions in
the travel time when these products are ordered together. A common way to model the storage
problem using a correlated storage policy is as a quadratic assignment problem. In Chapter
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4, we investigated the QAP and four of its most common variants found in the literature.
These problems were modeled as non-linear integer programming models and linearized using
common linearization techniques. Computational experiments showed that these models can
only solve instances of a limited size. Thus, we proposed a parallel memetic iterated tabu
search as an alternative to solve larger instances faster. The results attested to the effectiveness
of the parallelism since the metaheuristic was able to find or improve the majority of best
known solutions of the benchmark instances tested. Our parallel metaheuristic significantly
updated the literature of the QAP variants and can be easily adapted to solve other variants,
including those used to solve the storage problem with a correlated storage policy.

In Chapter 5, we integrate storage, batching, and routing decisions for an RMFS. Most of the
RMFS literature focuses on solving these problems sequentially and using an online picking
strategy, such that the throughput rate of the warehouse is maximized disregarding the opera-
tional costs to achieve this rate. The use of a wave picking strategy can lead to a more efficient
operation since multiple orders can be batched to be picked together, reducing the number
of robots traveling with pods within the warehouse. We analyzed the impact of integrating
pod repositioning decisions with order assignment and pod selection for the energy consump-
tion in a typical RMFS. Due to the dynamic nature of wave picking, we suggested using a
two-stage stochastic programming model to account for the uncertainty of future demands
when planning a picking wave. A local search matheuristic derived from the mathematical
models presented was used to solve real size instances. Our experiments showed that the
sampling scheme used to simulate future demands is effective to reposition pods after they are
requested within the storage area accounting for the expected demands in future waves. We
still showed that explicitly minimizing energy consumption can lead to a significant improve-
ment in the picking efficiency than minimizing the number of pods visits, as commonly done
in the literature.

This thesis contributes to the literature by presenting many modern optimization techniques to
support the decision process when designing warehousing systems, specifically for the storage
and picking processes. Overall, our research shows that there is still a large gap between
the methods commonly used in practice to solve the many tactical and operations problems
studied and those found in the warehousing literature. Despite warehouses being a well-
established component of supply chains, the many different characteristics found in these
facilities in practice is still an obstacle to generalizing the analyzes done in this and other
studies. Therefore, a limitation of our studies is that practical confirmation of our conclusions
is still lacking. We understand that using the suggested techniques has practical limitations
due to the inherent complexity to solve most of the problems found. As our experiments
show, despite the clear contributions to the existing literature, many of our models could
barely handle real size instances even by powerful computational machines, which in most
cases are too expensive to be used in warehouses. The stochastic nature of operations further
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limits their application in practice. Therefore, it is more practical to implement simple policies
that are proven to perform slightly well for the average case than tailoring solutions for each
specific case in most situations. As a future research direction, we observed that there is still
much room to investigate different warehousing systems and their implications when adopted
by warehouses used in different markets. A major challenge is to consider the limitations
found in practice to make the developed methods easier to be adopted.
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Appendix A

Appendices of chapter 2

A.1 Neighborhood exploration order

Table A.1 presents the results for all rounds of experiments with different neighborhood ex-
ploration orders. Column LS order shows the exploration order of the neighborhoods. The
subsequent columns show the average gap of the VND solution to the optimum found by the
MIP for each of the five problems for the instances solved up to optimality with the best gaps
in bold, and column Avg. is the weighted mean of the gaps with the number of instances in
each problem as weights. To compare, we show the average gap of the three initial solutions
generated by each of the storage policies to the optimal solution found by the MIP in row
Initial solution avg. gap (%). Computation times are not reported since all VND calls took
less than a second to finish.

Table A.1 – Results for the exploration of different combinations of neighborhoods in a VND

LS order SLOPP SL+Re SL+Ss SL+Mp SL+Lg Avg.
Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

Slot 0.00 5.84 8.50 3.53 6.67 6.02
Row 9.06 19.44 21.67 16.22 19.55 18.95
Aisle 21.97 33.38 36.01 27.70 33.31 32.40

Slot → Row 0.00 4.16 7.50 2.41 5.81 4.89
Slot → Aisle 0.00 5.61 6.47 3.39 4.68 4.93
Row → Slot 0.00 4.51 7.45 2.91 5.76 5.06
Row → Aisle 8.51 18.71 20.57 15.49 18.44 18.04
Aisle → Slot 0.00 5.89 6.91 3.47 4.49 5.10
Aisle → Row 8.51 18.54 20.67 15.15 18.04 17.86

Slot → Row → Aisle 0.00 3.91 5.49 2.34 3.80 3.82
Slot → Aisle → Row 0.00 3.90 5.51 2.34 3.84 3.83
Row → Slot → Aisle 0.00 4.28 5.37 2.80 3.91 4.00
Row → Aisle → Slot 0.00 4.26 5.53 2.78 3.95 4.04
Aisle → Slot → Row 0.00 3.91 5.50 2.17 3.66 3.76
Aisle → Row → Slot 0.00 4.09 5.46 2.82 3.76 3.95

Initial solution avg. gap (%) 22.33 33.61 36.45 28.19 33.84 32.81
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A.2 Setting the maximum number of shakes

We test S for different values to find if there is an appropriate one that leads to better solutions.
The GVNS was tested with S = {1, 2, 4, 5, 10, 20, 40}. Since VND is the most costly step in
our algorithm, we decided to use K = 400/S in order to keep the number of VND calls
approximately constant in each run. Each instance of the small set is solved 10 times, starting
from each of the three storage policies solution for each one of the five problems considered.
Table A.2 reports the results found. They are divided into two sets. Optimal is for the
instances solved up to optimality by CPLEX, while Feasible is for those with an upper bound
solution known but with optimality unproven within the time limit of two hours. Results for
the integrated SLOPP solved using the GVNS scheme are not reported since the optimal was
already found by only using a single VND, as shown previously in Table A.1, and there is not
a significant number of instances in the Feasible category for this problem. The results show
that the GVNS performance for S = 5 is, on average, better than for other values.

Table A.2 – Results for the parameter tuning of the maximum number of shakes S

S K
SL+Re SL+Ss SL+Mp SL+Lg

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

O
pt

im
al

1 400 0.03 0.4 0.02 0.4 0.00 0.3 0.01 0.5
2 200 0.02 0.4 0.00 0.5 0.00 0.3 0.00 0.5
4 100 0.01 0.4 0.00 0.5 0.00 0.4 0.00 0.6
5 80 0.00 0.5 0.00 0.5 0.00 0.4 0.00 0.6
10 40 0.00 0.5 0.00 0.6 0.00 0.4 0.00 0.7
20 20 0.00 0.5 0.00 0.6 0.00 0.4 0.00 0.7
40 10 0.00 0.6 0.00 0.7 0.00 0.5 0.00 0.8
#Inst 92 99 75 80

Fe
as

ib
le

1 400 -0.28 1.5 0.99 1.9 -3.34 1.6 -5.70 2.5
2 200 -0.40 1.7 0.58 2.1 -3.50 1.8 -5.97 2.7
4 100 -0.52 1.8 0.43 2.4 -3.59 1.9 -6.12 3.1
5 80 -0.58 1.9 0.35 2.5 -3.59 2.0 -6.11 3.2
10 40 -0.42 2.2 0.49 2.9 -3.58 2.3 -6.09 3.8
20 20 -0.36 2.5 0.63 3.5 -3.53 2.6 -5.95 4.5
40 10 -0.32 2.7 0.95 4.1 -3.49 2.9 -5.77 5.2
#Inst 16 9 33 28

A.3 Average time and number of cycles when solving the
regular set

Table A.3 complements Table 2.5 by presenting the average running time of GVNS when
stopped by one of the stopping criteria (7200 seconds or K = 10, 000 cycles) and the last cycle
k performed during the search. Time may be above 7,200 seconds due to the placement of
the verification of the time stopping condition in the algorithm. Rows that neither show a
time of 7200 seconds nor k = 10, 000 indicate that instances within the group were stopped
by different criteria between both.
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Table A.3 – Average running time and last cycle performed by GVNS for the SLOPP with
different routing policies

A B O Qo
Re Ss Mp Lg LKH

Time (s) k Time (s) k Time (s) k Time (s) k Time (s) k

5

10

10
5 374 10000 504 10000 374 10000 406 10000 7201 736
20 1379 7858 2251 10000 1379 10000 1547 10000 7226 24
50 3411 2534 5546 10000 3411 10000 3059 10000 7335 3

30
5 1110 10000 1598 10000 1110 10000 1358 10000 7203 215
20 4626 2337 7074 9894 4626 10000 5121 10000 7278 5
50 7200 750 7200 3361 7200 6133 7200 7367 7705 1

50
5 1868 9976 2712 10000 1868 10000 2236 10000 7204 119
20 7200 1314 7200 5521 7200 8790 7200 8353 7353 2
50 7200 413 7200 1682 7200 3450 7200 4181 8239 1

50

10
5 5220 10000 5858 10000 5220 10000 4537 10000 7204 135
20 7200 1699 7200 4743 7200 6086 7200 6474 7899 1
50 7200 404 7201 1549 7200 1891 7200 2436 7577 1

30
5 7200 3766 7200 4566 7200 5432 7200 6030 7220 31
20 7201 438 7201 1278 7201 1626 7200 1865 7692 1
50 7201 78 7201 367 7201 457 7202 613 7200 1

50
5 7200 1861 7200 2616 7200 3143 7200 3151 7227 15
20 7201 196 7201 654 7201 885 7201 949 7262 1
50 7203 32 7204 160 7203 252 7202 312 7200 1

10

10

10
5 1095 10000 1401 10000 1095 10000 1106 10000 7202 324
20 3316 2533 5829 10000 3316 10000 4157 10000 7267 7
50 7200 595 7200 4967 7200 6754 7200 6505 7750 1

30
5 2883 8218 3964 10000 2883 10000 3440 10000 7206 95
20 7200 674 7200 3808 7200 6508 7200 5403 7431 1
50 7200 162 7201 1206 7200 2040 7200 1910 7335 1

50
5 4834 4182 6905 9899 4834 10000 5913 10000 7210 52
20 7200 390 7200 2152 7200 3670 7200 3118 7618 1
50 7201 88 7201 588 7201 1103 7201 1131 7201 1

50

10
5 7200 3692 7200 3517 7200 3767 7200 4529 7213 62
20 7200 681 7200 1909 7200 2333 7200 2220 8106 1
50 7201 154 7201 699 7201 931 7201 875 7683 1

30
5 7200 1504 7200 1534 7200 1717 7200 2049 7235 17
20 7201 196 7201 562 7201 741 7201 684 7430 1
50 7203 14 7204 158 7203 219 7203 243 7202 1

50
5 7201 805 7201 896 7201 1017 7201 1155 7259 8
20 7201 82 7203 301 7201 385 7202 382 7200 1
50 7205 2 7208 48 7205 95 7204 127 7201 1

20

10

10
5 3692 10000 4442 10000 3692 10000 3376 10000 7205 156
20 7200 1184 7200 4972 7200 7989 7200 6906 7435 2
50 7200 182 7200 1742 7200 2611 7200 2335 7222 1

30
5 7200 3791 7200 6511 7200 8381 7200 7662 7212 45
20 7200 238 7200 1468 7200 2746 7200 2210 7966 1
50 7201 38 7201 413 7201 828 7201 669 7209 1

50
5 7200 1882 7200 3704 7200 5026 7200 4318 7232 20
20 7200 117 7201 803 7200 1550 7201 1220 8117 1
50 7201 17 7203 202 7201 432 7202 385 7206 1

50

10
5 7201 1074 7201 925 7201 962 7200 1211 7225 30
20 7201 273 7201 540 7201 635 7201 675 8553 1
50 7202 74 7203 247 7202 324 7202 312 7201 1

30
5 7201 497 7201 438 7201 474 7201 599 7272 8
20 7202 88 7203 222 7202 282 7202 218 7208 1
50 7206 5 7211 67 7206 94 7207 80 7205 1

50
5 7202 276 7203 267 7202 289 7202 342 7347 4
20 7204 33 7205 112 7204 149 7205 115 7211 1
50 7212 1 7217 18 7212 30 7210 36 7214 1

Average 6227 4115 6272 4099 6492 3543 6873 2174 7393 40
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A.4 Results for the SLOPP using GVNS with the Mp/LKH
search strategy

Table A.4 presents the results for the experiments with GVNS using the combined Mp/LKH
routing creation strategy as described in Section 2.5.3 for the instances of the regular set.

Table A.4 – Results for the SLOPP using GVNS with the Mp/LKH search strategy

B O Qo
A = 5 A = 10 A = 20

Avg. sol. Time (s) k Avg. sol. Time (s) k Avg. sol. Time (s) k

10

10
5 108.9 539 10000 110 1485 10000 112.7 4637 10000
20 292.3 2350 10000 319.6 5971 10000 336 7200 4921
50 521.3 5585 10000 662.5 7200 5073 724.6 7201 1816

30
5 496.8 1719 10000 512 4234 10000 521.6 7200 6090
20 1136.7 7146 9888 1437.3 7200 3878 1624.4 7200 1507
50 1741.5 7200 4537 2512.7 7200 1662 3277.6 7201 531

50
5 966 2893 10000 1049.3 7090 9589 1085.2 7200 3528
20 2050.1 7200 5800 2707.4 7200 2268 3225.7 7201 842
50 2997.4 7200 2578 4523.8 7201 865 6207.6 7203 279

50

10
5 113.2 6164 10000 114.9 7200 3347 116.8 7201 880
20 374.3 7200 4314 324.8 7200 1800 321.7 7201 524
50 951.7 7201 1488 809.5 7201 649 790.4 7202 232

30
5 582.7 7200 4286 543.2 7201 1400 557.6 7202 398
20 2383.6 7201 1227 1877 7201 523 1638.6 7203 208
50 4039.2 7202 406 4557.1 7204 164 4536.8 7209 69

50
5 1297.8 7200 2417 1152.7 7201 825 1161.8 7202 246
20 4902 7201 635 4897.9 7203 291 3698.4 7205 104
50 7795.5 7204 194 8931.1 7208 57 9538.6 7222 21

*Avg. sol. = 2023.5; Avg. time = 6524s; Avg. k = 3562
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Appendix B

Appendices of chapter 3

B.1 Detailed results by S/R policy

Table B.1 – Average and maximum percentage deviations to the ARL of the BKS found in
the simulations for each S/R policy combination (best values in boldface)

S/R Policy 18/35/47 Avg per S/R OLS RT RF MLP
Avg (%) Max (%) Avg (%) Max (%) Avg (%) Max (%) Avg (%) Max (%) Avg (%) Max (%) Avg (%) Max (%)

Aa/Aba 1.55 4.30 1.44 8.58 0.63 6.75 0.34 3.41 0.27 1.42 0.28 2.02
Aa/Sh 0.99 4.35 0.85 6.45 0.75 5.52 0.23 2.59 0.29 5.44 0.37 6.21
Aa/Lg 2.08 5.47 1.81 6.08 1.60 5.46 0.53 5.33 0.66 4.74 0.61 5.17
Aa/Co 1.16 3.77 1.22 4.29 0.94 3.64 0.42 5.50 0.30 2.57 0.36 2.74
Nl/Aba 0.76 5.22 0.81 6.88 0.49 3.21 0.44 2.28 0.35 2.28 0.38 2.93
Nl/Sh 0.96 5.24 0.91 4.90 0.69 4.01 0.61 2.83 0.46 2.74 0.45 2.73
Nl/Lg 0.98 5.97 0.87 4.22 0.62 3.45 0.58 3.44 0.47 3.63 0.49 3.52
Nl/Co 0.93 5.79 0.87 4.94 0.63 3.70 0.48 2.43 0.38 1.90 0.39 2.58
Ns/Aba 1.31 7.64 1.45 9.55 1.03 6.15 1.04 4.65 0.85 5.62 0.91 5.64
Ns/Sh 1.56 8.75 1.47 8.13 1.19 5.42 1.22 5.23 1.01 4.18 0.96 4.58
Ns/Lg 1.57 7.26 1.41 6.71 1.32 6.64 1.20 4.73 1.06 5.25 1.08 4.29
Ns/Co 1.47 6.53 1.40 5.96 1.23 5.68 1.15 5.64 0.91 4.77 1.02 6.12
Wa/Aba 2.24 14.01 2.14 15.43 1.64 10.17 1.15 5.98 1.01 6.36 1.10 7.52
Wa/Sh 1.88 10.00 1.73 7.92 1.20 7.39 0.96 5.21 0.85 3.85 0.66 3.48
Wa/Lg 2.51 10.11 1.87 11.22 1.60 18.60 0.89 7.07 0.69 6.30 0.60 3.13
Wa/Co 1.97 10.50 1.71 6.84 1.30 17.94 0.91 4.83 0.80 4.98 0.70 4.68
Average 1.50 7.18 1.37 7.38 1.05 7.11 0.76 4.45 0.65 4.13 0.65 4.21
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Appendix C

Appendices of chapter 4

C.1 Comparison of different models for the QAP and its
variants

We performed a set of experiments using the quadratic integer programming (QIP) model
and two linearization techniques – the standard linearization technique (Standard) and the
level-1 reformulation linearization technique (RLT-1) – for all benchmark instance sets for
each problem to verify the best performing model among the three to be solved. We note that
the PMITS is not a memory-intensive algorithm, but we set the 8 GB of RAM memory limit
for CPLEX. Solutions for BiQAP are not reported since no model could provide a feasible
solution for any instance tested due to the huge memory required to model and solve this
problem. For the remaining problems, the upper (UB) and lower (LB) bounds provided by
CPLEX after a 1-hour run for each instance tested are shown in Tables C.1–C.4. Solutions
highlighted are for the model that optimality is proved faster. In case of ties, we highlight
the method with lower UB and, persisting the tie, the method with higher LB. Finally, “n.s.”
means that the corresponding model could not provide a feasible solution for the problem
within the time and memory limit.
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Table C.1 – Comparison of different programming models for the QAP

Instance BKS QIP Standard RLT-1
UB LB Time (min) UB LB Time (min) UB LB Time (min)

tai20a 703,482 716,382 0 > 60 878,790 618599.2 > 60 766,572 0 > 60
tai25a 1,167,256 1,259,462 0 > 60 1,431,716 0 > 60 1,256,316 0 > 60
tai30a 1,818,146 1,956,590 0 > 60 2,223,712 0 > 60 2,065,198 0 > 60
tai35a 2,422,002 2,761,460 0 > 60 2,896,892 0 > 60 2,896,892 0 > 60
tai40a 3,139,370 3,578,260 0 > 60 3,852,726 0 > 60 3,852,726 0 > 60
tai50a 4,938,796 5,684,732 0 > 60 5,941,988 0 > 60 5,941,988 0 > 60
tai60a 7,205,962 8,330,288 0 > 60 8,469,610 0 > 60 8,469,610 0 > 60
tai80a 13,499,184 15,546,972 0 > 60 15,688,718 0 > 60 15,688,718 0 > 60
tai100a 21,052,466 n.s. n.s. n.s.
tai20b 122,455,319 123,614,297 0 > 60 283,943,307 0 > 60 133,399,543 0 > 60
tai25b 344,355,646 346,483,036 0 > 60 868,229,041 0 > 60 405,566,525 0 > 60
tai30b 637,117,113 680,108,642 0 > 60 1,354,588,506 0 > 60 822,850,107 0 > 60
tai35b 283,315,445 322,097,099 0 > 60 442,359,892 0 > 60 441,409,090 0 > 60
tai40b 637,250,948 769,041,254 0 > 60 1,204,324,820 0 > 60 1,204,324,820 0 > 60
tai50b 458,821,517 688,807,919 0 > 60 711,391,293 0 > 60 711,391,293 0 > 60
tai60b 608,215,054 911,005,849 0 > 60 1,027,374,245 0 > 60 1,027,374,245 0 > 60
tai80b 818,415,043 1,259,942,652 0 > 60 n.s. n.s.
tai100b 1,185,996,137 n.s. n.s. n.s.
sko42 15,812 18,454 480 > 60 20,566 0 > 60 20,566 0 > 60
sko49 23,386 27,112 700 > 60 28,712 0 > 60 28,712 0 > 60
sko56 34,458 40,694 0 > 60 42,650 0 > 60 42,650 0 > 60
sko64 48,498 58,330 0 > 60 59,838 0 > 60 59,838 0 > 60
sko72 66,256 78,830 0 > 60 80,474 0 > 60 80,474 0 > 60
sko81 90,998 107,062 0 > 60 108,562 0 > 60 108,562 0 > 60
sko90 115,534 134,998 0 > 60 135,724 0 > 60 135,724 0 > 60
sko100a 152,002 n.s. n.s. n.s.
sko100b 153,890 n.s. n.s. n.s.
sko100c 147,862 n.s. n.s. n.s.
sko100d 149,576 n.s. n.s. n.s.
sko100e 149,150 n.s. n.s. n.s.
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Table C.2 – Comparison of different programming models for the QBAP

Instance BKS QIP Standard RLT-1
UB LB Time (min) UB LB Time (min) UB LB Time (min)

tai10a 4,256 4,256 4,256 1.0 4,256 4,256 5.6 4,256 4,256 0.1
tai12a 4,756 4,756 4,756 5.3 4,756 4,756 55.1 4,756 4,756 0.2
tai15a 4,757 4,757 4,757 57.3 7,917 21.3 > 60 4,757 4,757 0.9
tai17a 4,704 9,312 0 > 60 8,170 14.2 > 60 4,704 4,704 16.3
tai20a 5,096 n.s. 8,742 10.7 > 60 5,200 103.2 > 60
tai25a 5,328 n.s. 9,024 8.2 > 60 5,880 0 > 60
tai30a 5,952 n.s. 8,930 0 > 60 6,992 0 > 60
tai35a 6,120 n.s. 8,613 0 > 60 8,613 0 > 60
tai40a 6,370 n.s. 9,306 0 > 60 9,306 0 > 60
tai50a 6,873 n.s. 9,604 0 > 60 9,604 0 > 60
tai60a 7,134 n.s. 9,702 0 > 60 9,702 0 > 60
tai80a 7,695 n.s. n.s. n.s.
tai100a 8,036 n.s. n.s. n.s.
tai12b 4,371,380 4,371,380 4,371,380 1.7 19,230,438 30,190.4 > 60 4,371,380 4,371,380 0.6
tai15b 22,204,329 22,204,329 22,204,329 6.5 291,946,422 549,753.1 > 60 22,204,329 22,204,329 0.7
tai20b 17,132,916 36,470,412 0 > 60 45,979,548 28,405.9 > 60 17,132,916 0 > 60
tai25b 17,166,072 n.s. 52,942,159 0 > 60 31,797,414 0 > 60
tai30b 25,462,115 n.s. 62,752,438 0 > 60 49,847,879 0 > 60
tai35b 7,159,056 n.s. 16,153,962 0 > 60 16,153,962 0 > 60
tai40b 12,566,129 n.s. 24,261,283 0 > 60 24,261,283 0 > 60
tai50b 5,180,968 n.s. 13,002,408 0 > 60 13,002,408 0 > 60
tai60b 5,800,564 n.s. 15,427,179 0 > 60 15,427,179 0 > 60
tai80b 3,335,332 n.s. n.s. n.s.
tai100b 4,188,992 n.s. n.s. n.s.
sko42 50 n.s. 100 0 > 60 100 0 > 60
sko49 60 n.s. 110 0 > 60 110 0 > 60
sko56 70 n.s. 120 0 > 60 120 0 > 60
sko64 80 n.s. 130 0 > 60 n.s.
sko72 90 n.s. 140 0 > 60 n.s.
sko81 100 n.s. n.s. n.s.
sko90 100 n.s. n.s. n.s.
sko100a 110 n.s. n.s. n.s.
sko100b 120 n.s. n.s. n.s.
sko100c 110 n.s. n.s. n.s.
sko100d 120 n.s. n.s. n.s.
sko100e 120 n.s. n.s. n.s.
sko100f 110 n.s. n.s. n.s.
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Table C.3 – Comparison of different programming models for the QSAP

Instance BKS QIP Standard RLT-1
UB LB Time (min) UB LB Time (min) UB LB Time (min)

20-15-35 1,599,473 1,599,473 0 > 60 1,599,473 1,599,473 0.4 1,743,672 950,356.9 > 60
20-15-55 1,427,052 1,427,052 0 > 60 1,427,052 1,427,052 0.2 1,427,052 1,227,895.5 > 60
20-15-75 1,648,679 1,657,225 0 > 60 1,648,679 1,648,679 0.4 1,688,867 1,200,323.1 > 60
30-06-95 5,486,902 5,486,902 4,105,696.8 > 60 5,486,902 5,486,902 0.1 5,594,528 4,491,337.9 > 60
30-07-75 4,834,397 4,834,397 2,144,853.4 > 60 4,834,397 4,834,397 0.1 4,903,530 3,886,765.5 > 60
30-08-55 4,484,813 4,484,813 1,622,616.9 > 60 4,484,813 4,484,813 0.2 4,807,529 3,076,850.8 > 60
30-10-65 3,649,165 3,649,165 0 > 60 3,649,165 3,649,165 0.2 3,941,471 2,659,682.7 > 60
30-20-35 3,351,755 3,548,616 1,445,131.9 > 60 3,351,755 3,351,755 15.0 4,164,734 1,389,583.5 > 60
30-20-55 3,247,260 3,626,523 1,467,746.9 > 60 3,247,260 3,247,260 6.6 4,219,973 1,367,307 > 60
30-20-75 3,301,384 3,891,689 1,323,822.8 > 60 3,301,384 3,128,684.2 > 60 3,953,122 1,299,154 > 60
30-20-95 2,941,907 3,363,980 1,438,963 > 60 2,941,907 2,941,907 3.0 3,939,205 1,370,752 > 60
35-15-35 4,533,539 5,029,510 2,349,754.3 > 60 4,533,539 4,533,539 3.2 5,493,652 2,095,453.5 > 60
35-15-55 4,220,924 4,693,131 2,288,238.8 > 60 4,220,924 4,220,924 2.0 5,289,805 2,196,135.5 > 60
35-15-75 5,620,789 6,285,897 2,233,543.4 > 60 5,620,789 5,387,465 > 60 6,984,087 2,173,483.5 > 60
35-15-95 4,555,240 4,907,006 2,192,591.2 > 60 4,555,240 4,555,240 5.7 5,287,916 2,046,658 > 60
40-07-75 8,347,601 8,347,601 4,903,659.1 > 60 8,347,601 8,347,601 0.8 8,737,467 5,694,638.2 > 60
40-09-95 7,107,977 7,107,977 0 > 60 7,107,977 7,107,977 1.9 8,133,094 3,910,355.4 > 60
40-10-65 7,509,269 7,509,269 0 > 60 7,509,269 7,509,269 2.2 8,377,608 3,642,050.2 > 60
50-10-65 11,795,583 12,492,942 5,797,763.7 > 60 11,795,583 11,795,583 2.7 12,992,679 5,014,669.8 > 60
50-10-75 10,107,391 11,319,400 5,358,212.8 > 60 10,107,391 10,107,391 1.5 12,402,134 4,754,003.3 > 60
50-10-95 11,882,812 13,603,227 5,843,897.8 > 60 11,882,812 11,882,812 15.6 14,560,121 4,527,029.3 > 60
50-C1 1,022,084 1,092,678 41,032.9 > 60 1,022,084 835,043.1 > 60 1,152,523 109,358 > 60
50-C10 1,123,607 1,215,531 122,053.5 > 60 1,124,895 881,573.8 > 60 1,276,380 116,293 > 60
50-C25 1,292,223 1,404,812 137,076.1 > 60 1,293,354 993,767.4 > 60 1,421,132 137,163 > 60
50-C50 1,573,474 1,649,234 173,004.7 > 60 1,573,474 1,184,582.1 > 60 1,717,190 177,208 > 60
75-C1 1,993,829 2,229,276 19,951 > 60 2,045,813 1,241,799.7 > 60 2,698,381 20,837.5 > 60
75-C10 2,195,019 2,517,200 34,183.5 > 60 2,232,142 1,347,948.3 > 60 2,618,208 33,113.5 > 60
75-C25 2,530,699 2,912,117 51,484.5 > 60 2,581,945 1,530,696.1 > 60 3,046,568 48,664 > 60
75-C50 3,089,736 3,632,103 67,276 > 60 3,124,028 1,838,668.9 > 60 3,544,038 67,955.8 > 60
100-C1 3,490,341 3,731,562 16,847 > 60 6,539,252 0 > 60 4,418,790 16,541 > 60
100-C10 3,836,299 4,469,237 33,257.5 > 60 7,122,728 0 > 60 5,096,063 33,099 > 60
100-C25 4,412,117 5,085,661 48,419 > 60 8,094,043 0 > 60 5,291,774 48,589 > 60
100-C50 5,370,205 6,083,200 66,634.5 > 60 9,712,705 0 > 60 6,304,163 68,208 > 60
125-C1 4,881,972 5,358,958 14,545.5 > 60 10,279,741 0 > 60 10,359,500 12,874.5 > 60
125-C10 5,375,051 6,261,164 32,730 > 60 11,194,743 0 > 60 11,272,100 29,013 > 60
125-C25 6,196,362 6,713,149 48,074 > 60 12,719,555 0 > 60 12,794,500 45,046 > 60
125-C50 7,564,714 7,902,849 68,468.5 > 60 15,260,785 0 > 60 15,330,000 63,558.3 > 60
150-C1 6,930,942 14,631,247 15,349 > 60 14,631,247 0 > 60 14,635,100 14,832.5 > 60
150-C10 7,625,357 15,934,010 34,671.5 > 60 15,934,010 0 > 60 15,939,600 34,596 > 60
150-C25 8,782,100 18,104,789 51,740.5 > 60 18,104,789 0 > 60 18,112,100 52,116.5 > 60
150-C50 10,707,271 21,721,652 71,162 > 60 21,721,652 0 > 60 21,733,200 71,387.3 > 60

Table C.4 – Comparison of different programming models for the GQAP

Instance BKS QIP Standard RLT-1
UB LB Time (min) UB LB Time (min) UB LB Time (min)

20-15-35 1,471,896 1,497,245 0 > 60 1,471,896 1,471,896 1.4 1,580,882 1,090,133 > 60
20-15-55 1,723,638 1,738,832 0 > 60 1,723,638 1,723,638 3.1 1,786,857 1,326,449.2 > 60
20-15-75 1,953,188 1,962,929 0 > 60 1,953,188 1,953,188 0.8 1,998,760 1,605,052 > 60
30-06-95 5,160,920 5,160,920 1,428,686.1 > 60 5,160,920 5,160,920 2.9 5,353,379 4,049,777.5 > 60
30-07-75 4,383,923 4,383,923 0 > 60 4,383,923 4,383,923 3.8 4,426,503 3,476,886 > 60
30-08-55 3,501,695 3,501,695 0 > 60 3,501,695 3,501,695 0.2 3,639,346 3,167,891.6 > 60
30-10-65 3,620,959 3,624,283 0 > 60 3,620,959 3,620,959 14.0 3,941,213 2,411,063.6 > 60
30-20-35 3,379,359 4,049,703 1,327,706.2 > 60 3,456,071 2,835,598.5 > 60 4,270,683 1,311,181.2 > 60
30-20-55 3,593,105 4,098,897 1,246,632.9 > 60 3,666,263 2,760,724.1 > 60 4,291,262 1,240,264.6 > 60
30-20-75 4,050,938 4,596,404 1,357,346.6 > 60 4,104,358 3,141,123.5 > 60 4,626,243 1,102,779.4 > 60
30-20-95 5,710,645 5,726,530 0 > 60 5,732,543 5,037,035.9 > 60 6,415,498 3,098,463 > 60
35-15-35 4,456,670 4,456,670 0 > 60 4,464,070 4,030,016.9 > 60 5,416,737 2,008,800.7 > 60
35-15-55 4,639,128 4,670,219 0 > 60 4,639,128 3,817,013.8 > 60 5,484,906 1,980,152.6 > 60
35-15-75 6,301,723 6,301,723 0 > 60 6,385,200 4,344,303.6 > 60 7,151,400 1,725,440.8 > 60
35-15-95 6,670,264 6,670,264 0 > 60 6,978,531 4,671,615.4 > 60 8,270,344 1,685,809.8 > 60
40-07-75 7,405,793 7,405,793 0 > 60 7,405,793 7,405,793 28.2 7,878,293 5,190,747.1 > 60
40-09-95 7,667,719 7,762,421 0 > 60 7,858,037 6,376,979.7 > 60 8,528,686 3,578,848.3 > 60
40-10-65 7,265,559 7,265,559 0 > 60 7,265,559 6,669,482.3 > 60 8,065,464 3,510,270.4 > 60
50-10-65 10,513,029 10,513,029 0 > 60 10,513,029 10,212,775.2 > 60 12,348,522 5,118,268.3 > 60
50-10-75 11,217,503 11,251,072 0 > 60 11,407,879 9,179,025.3 > 60 13,063,993 4,480,847 > 60
50-10-95 12,845,598 12,877,686 0 > 60 13,172,803 9,816,920 > 60 14,301,474 5,009,641.2 > 60
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