382 research outputs found

    Spectrum analysis of LTI continuous-time systems with constant delays: A literature overview of some recent results

    Get PDF
    In recent decades, increasingly intensive research attention has been given to dynamical systems containing delays and those affected by the after-effect phenomenon. Such research covers a wide range of human activities and the solutions of related engineering problems often require interdisciplinary cooperation. The knowledge of the spectrum of these so-called time-delay systems (TDSs) is very crucial for the analysis of their dynamical properties, especially stability, periodicity, and dumping effect. A great volume of mathematical methods and techniques to analyze the spectrum of the TDSs have been developed and further applied in the most recent times. Although a broad family of nonlinear, stochastic, sampled-data, time-variant or time-varying-delay systems has been considered, the study of the most fundamental continuous linear time-invariant (LTI) TDSs with fixed delays is still the dominant research direction with ever-increasing new results and novel applications. This paper is primarily aimed at a (systematic) literature overview of recent (mostly published between 2013 to 2017) advances regarding the spectrum analysis of the LTI-TDSs. Specifically, a total of 137 collected articles-which are most closely related to the research area-are eventually reviewed. There are two main objectives of this review paper: First, to provide the reader with a detailed literature survey on the selected recent results on the topic and Second, to suggest possible future research directions to be tackled by scientists and engineers in the field. © 2013 IEEE.MSMT-7778/2014, FEDER, European Regional Development Fund; LO1303, FEDER, European Regional Development Fund; CZ.1.05/2.1.00/19.0376, FEDER, European Regional Development FundEuropean Regional Development Fund through the Project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376]; National Sustainability Program Project [LO1303 (MSMT-7778/2014)

    Stability analysis of linear ODE-PDE interconnected systems

    Get PDF
    Les systèmes de dimension infinie permettent de modéliser un large spectre de phénomènes physiques pour lesquels les variables d'états évoluent temporellement et spatialement. Ce manuscrit s'intéresse à l'évaluation de la stabilité de leur point d'équilibre. Deux études de cas seront en particulier traitées : l'analyse de stabilité des systèmes interconnectés à une équation de transport, et à une équation de réaction-diffusion. Des outils théoriques existent pour l'analyse de stabilité de ces systèmes linéaires de dimension infinie et s'appuient sur une algèbre d'opérateurs plutôt que matricielle. Cependant, ces résultats d'existence soulèvent un problème de constructibilité numérique. Lors de l'implémentation, une approximation est réalisée et les résultats sont conservatifs. La conception d'outils numériques menant à des garanties de stabilité pour lesquelles le degré de conservatisme est évalué et maîtrisé est alors un enjeu majeur. Comment développer des critères numériques fiables permettant de statuer sur la stabilité ou l'instabilité des systèmes linéaires de dimension infinie ? Afin de répondre à cette question, nous proposons ici une nouvelle méthode générique qui se décompose en deux temps. D'abord, sous l'angle de l'approximation sur les polynômes de Legendre, des modèles augmentés sont construits et découpent le système original en deux blocs : d'une part, un système de dimension finie approximant est isolé, d'autre part, l'erreur de troncature de dimension infinie est conservée et modélisée. Ensuite, des outils fréquentiels et temporels de dimension finie sont déployés afin de proposer des critères de stabilité plus ou moins coûteux numériquement en fonction de l'ordre d'approximation choisi. En fréquentiel, à l'aide du théorème du petit gain, des conditions suffisantes de stabilité sont obtenues. En temporel, à l'aide du théorème de Lyapunov, une sous-estimation des régions de stabilité est proposée sous forme d'inégalité matricielle linéaire et une sur-estimation sous forme de test de positivité. Nos deux études de cas ont ainsi été traitées à l'aide de cette méthodologie générale. Le principal résultat obtenu concerne le cas des systèmes EDO-transport interconnectés, pour lequel l'approximation et l'analyse de stabilité à l'aide des polynômes de Legendre mène à des estimations des régions de stabilité qui convergent exponentiellement vite. La méthode développée dans ce manuscrit peut être adaptée à d'autres types d'approximations et exportée à d'autres systèmes linéaires de dimension infinie. Ce travail ouvre ainsi la voie à l'obtention de conditions nécessaires et suffisantes de stabilité de dimension finie pour les systèmes de dimension infinie.Infinite dimensional systems allow to model a large panel of physical phenomena for which the state variables evolve both temporally and spatially. This manuscript deals with the evaluation of the stability of their equilibrium point. Two case studies are treated in particular: the stability analysis of ODE-transport, and ODE-reaction-diffusion interconnected systems. Theoretical tools exist for the stability analysis of these infinite-dimensional linear systems and are based on an operator algebra rather than a matrix algebra. However, these existence results raise a problem of numerical constructibility. During implementation, an approximation is performed and the results are conservative. The design of numerical tools leading to stability guarantees for which the degree of conservatism is evaluated and controlled is then a major issue. How can we develop reliable numerical criteria to rule on the stability or instability of infinite-dimensional linear systems? In order to answer this question, one proposes here a new generic method, which is decomposed in two steps. First, from the perspective of Legendre polynomials approximation, augmented models are built and split the original system into two blocks: on the one hand, a finite-dimensional approximated system is isolated, on the other hand, the infinite-dimensional truncation error is preserved and modeled. Then, frequency and time tools of finite dimension are deployed in order to propose stability criteria that have high or low numerical load depending on the approximated order. In frequencies, with the aid of the small gain theorem, sufficient stability conditions are obtained. In temporal, with the aid of the Lyapunov theorem, an under estimate of the stability regions is proposed as a linear matrix inequality and an over estimate as a positivity test. Our two case studies have been treated with this general methodology. The main result concerns the case of ODE-transport interconnected systems, for which the approximation and stability analysis using Legendre polynomials leads to exponentially fast converging estimates of stability regions. The method developed in this manuscript can be adapted to other types of approximations and exported to other infinite-dimensional linear systems. Thus, this work opens the way to obtain necessary and sufficient finite-dimensional conditions of stability for infinite-dimensional systems

    Delay-Independent Stability Analysis of Linear Time-Delay Systems Based on Frequency

    Get PDF
    This paper studies strong delay-independent stability of linear time-invariant systems. It is known that delay-independent stability of time-delay systems is equivalent to some frequency-dependent linear matrix inequalities. To reduce or eliminate conservatism of stability criteria, the frequency domain is discretized into several sub-intervals, and piecewise constant Lyapunov matrices are employed to analyze the frequency-dependent stability condition. Applying the generalized Kalman–Yakubovich–Popov lemma, new necessary and sufficient criteria are then obtained for strong delay-independent stability of systems with a single delay. The effectiveness of the proposed method is illustrated by a numerical example

    Das Spektrum zeitverzögerter Differentialgleichungen: numerische Methoden, Stabilität und Störungstheorie

    Get PDF
    Three types of problems related to delay-differential equations (DDEs) are treated in this thesis. We first consider the problem of numerically computing the eigenvalues of a DDE. Here, we present an application of a projection method for nonlinear eigenvalue problems (NLEPs). We compare this projection method with other methods, suggested in the literature, and used in software packages. The projection method is computationally superior to all of the other tested method for the presented large-scale examples. We give interpretations of methods based on discretizations in terms of rational approximations. Some notes regarding a special case where the spectrum can be explicitly expressed with a formula containing a matrix version of the are Lambert W function are presented. We clarify its range of applicability, and, by counter-example, show that it does not hold in general. The second part of this thesis is related to exact stability conditions of the DDE. All those combinations of the delays such that there is a purely imaginary eigenvalue (called critical delays) are parameterized. In general, an evaluation of the parameterization map consists of solving a quadratic eigenvalue problem of squared dimension. We show how the computational cost for one evaluation of the map can be reduced by exploiting a relation to a Lyapunov equation. The third and last part of this thesis is about generalizations of perturbation results for NLEPs. A sensitivity formula for the movement of the eigenvalues extends to NLEPs. We introduce a fixed point form for the NLEP, and show that some methods in the literature can be interpreted as set-valued fixed point iterations for which asymptotic convergence can be established. We also show how the Bauer-Fike theorem can be generalized to the NLEP under special conditions.In dieser Arbeit werden drei verschiedene Problemklassen im Bezug zu delay-differential equations (DDEs) behandelt. Als erstes gehen wir auf die Berechnung der Eigenwerte von DDEs ein. In dieser Arbeit wenden wir eine Projektionsmethode für nichtlineare Eigenwertprobleme (NLEPe) an. Wir vergleichen diese mit anderen bereits bekannten Verfahren, wobei die hier vorgestellte Methode bedeutend bessere numerische Eigenschaften für die verwendeten Beispiele hat. Zusätzlich treffen wir Aussagen über Diskretisierungsmethoden zur rationalen Approximation. Desweiteren betrachten wir einen Spezialfall, bei welchem das Spektrum explizit mit Hilfe einer Matrix-Version der Lambert W-Funktion dargestellt werden kann. Für diese Formel bestimmen wir einen möglichen Anwendungsbereich. Im zweiten Teil der Arbeit werden exakte Stabilitätsbedingungen von DDEs betrachtet. Die Menge der Delays, für welche die DDE einen imaginären Eigenwert hat (sogenannte kritische Delays), wird parameterisiert. Im Allgemeinen ist zur Auswertung der Parametrisierungsabbildung das Lösen eines quadratischen Eigenwertproblems nötig, dessen Größe dem Quadrat der Dimension der DDE entspricht. Wir zeigen wie der Rechenaufwand durch Ausnutzung einer Lyapunov-Gleichung reduziert werden kann. Der letzte Teil dieser Arbeit befasst sich mit der Verallgemeinerung der Störungstheorie auf NLEPe. Unter anderem lässt sich eine Sensitivitätsformel auf NLEPe erweitern. Desweiteren wird eine Fixpunktform für NLEPe vorgestellt, und gezeigt dass einige Methoden aus der Literatur als mengenwertige Fixpunktiterationen dargestellt werden können, für welche wir asymptotische Konvergenz feststellen. Wir zeigen zusätzlich, dass das Bauer-Fike Theorem unter bestimmten Bedingungen auf NLEPe verallgemeinert werden kann

    Linear time-delay systems: the complete type functionals approach

    Full text link
    [EN] Recent results on Lyapunov-Krasovskii functionals of complete type for linear time-delay systems are presented. The main concepts and results are introduced for the single delay system case, and necessary and sufficient stability conditions expressed in terms of the Lyapunov delay matrix are explained. The use of complete type functionals in analysis and controller design is discussed. The contribution focuses mainly at results of researchers in Mexico.[ES] Se introducen resultados recientes del enfoque de funcionales de Lyapunov-Krasovski de tipo completo para sistemas lineales con retardos. Se explican brevemente los principales conceptos y resultados para el caso de sistemas con un retardo así como las condiciones necesarias y suficientes de estabilidad expresadas en terminos del análogo de la matriz de Lyapunov. Las extensiones  de este tipo de condiciones de estabilidad a otras clases de sistemas con retardos son expuestas brevemente. Tambien se presentan aplicaciones existentes del efoque de funcionales de tipo completo a problemas de analisis y de diseño de controladores. El trabajo se enfoca a contribuciones de investigadores de Mexico a este tema de estudio.Este trabajo ha sido realizado parcialmente gracias al apoyo del Conacyt, México, Proyecto A1-S-24796.Mondié, S.; Gomez, M. (2022). Contribuciones al estudio de sistemas lineales con retardos: el enfoque de funcionales de tipo completo. Revista Iberoamericana de Automática e Informática industrial. 19(4):381-393. https://doi.org/10.4995/riai.2022.16828OJS38139319

    Gridding discretization-based multiple stability switching delay search algorithm: The movement of a human being on a controlled swaying bow

    Get PDF
    Delay represents a significant phenomenon in the dynamics of many human-related systems - including biological ones. It has i.a. a decisive impact on system stability, and the study of this influence is often mathematically demanding. This paper presents a computationally simple numerical gridding algorithm for the determination of stability margin delay values in multiple-delay linear systems. The characteristic quasi-polynomial - the roots of which decide about stability - is subjected to iterative discretization by means of pre-warped bilinear transformation. Then, a linear and a quadratic interpolation are applied to obtain the associated characteristic polynomial with integer powers. The roots of the associated characteristic polynomial are closely related to the estimation of roots of the original characteristic quasi-polynomial which agrees with the system's eigenvalues. Since the stability border is crossed by the leading one, the switching root locus is enhanced using the Regula Falsi interpolation method. Our methodology is implemented on - and verified by - a numerical bio-cybernetic example of the stabilization of a human-being's movement on a controlled swaying bow. The advantage of the proposed novel algorithm lies in the possibility of the rapid computation of polynomial zeros by means of standard programs for technical computing; in the low level of mathematical knowledge required; and, in the sufficiently high precision of the roots loci estimation. The relationship to the direct search QuasiPolynomial (mapping) Rootfinder algorithm and computational complexity are discussed as well. This algorithm is also applicable for systems with non-commensurate delays. © 2017 Pekař et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.CZ.1.05/2.1.00/19.0376, ERDF, European Regional Development FundMinistry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme [LO1303 (MSMT-7778/2014)]; European Regional Development Fund under the project CEBIA-Tech Instrumentation [CZ.1.05/2.1.00/19.0376
    • …
    corecore