782 research outputs found

    p

    Get PDF
    We are concerned with the exponential stability problem of a class of nonlinear hybrid stochastic heat equations (known as stochastic heat equations with Markovian switching) in an infinite state space. The fixed point theory is utilized to discuss the existence, uniqueness, and pth moment exponential stability of the mild solution. Moreover, we also acquire the Lyapunov exponents by combining the fixed point theory and the Gronwall inequality. At last, two examples are provided to verify the effectiveness of our obtained results

    Low-frequency variability and heat transport in a low-order nonlinear coupled ocean-atmosphere model

    Full text link
    We formulate and study a low-order nonlinear coupled ocean-atmosphere model with an emphasis on the impact of radiative and heat fluxes and of the frictional coupling between the two components. This model version extends a previous 24-variable version by adding a dynamical equation for the passive advection of temperature in the ocean, together with an energy balance model. The bifurcation analysis and the numerical integration of the model reveal the presence of low-frequency variability (LFV) concentrated on and near a long-periodic, attracting orbit. This orbit combines atmospheric and oceanic modes, and it arises for large values of the meridional gradient of radiative input and of frictional coupling. Chaotic behavior develops around this orbit as it loses its stability; this behavior is still dominated by the LFV on decadal and multi-decadal time scales that is typical of oceanic processes. Atmospheric diagnostics also reveals the presence of predominant low- and high-pressure zones, as well as of a subtropical jet; these features recall realistic climatological properties of the oceanic atmosphere. Finally, a predictability analysis is performed. Once the decadal-scale periodic orbits develop, the coupled system's short-term instabilities --- as measured by its Lyapunov exponents --- are drastically reduced, indicating the ocean's stabilizing role on the atmospheric dynamics. On decadal time scales, the recurrence of the solution in a certain region of the invariant subspace associated with slow modes displays some extended predictability, as reflected by the oscillatory behavior of the error for the atmospheric variables at long lead times.Comment: v1: 41 pages, 17 figures; v2-: 42 pages, 15 figure

    Hamiltonian dynamics and geometry of phase transitions in classical XY models

    Full text link
    The Hamiltonian dynamics associated to classical, planar, Heisenberg XY models is investigated for two- and three-dimensional lattices. Besides the conventional signatures of phase transitions, here obtained through time averages of thermodynamical observables in place of ensemble averages, qualitatively new information is derived from the temperature dependence of Lyapunov exponents. A Riemannian geometrization of newtonian dynamics suggests to consider other observables of geometric meaning tightly related with the largest Lyapunov exponent. The numerical computation of these observables - unusual in the study of phase transitions - sheds a new light on the microscopic dynamical counterpart of thermodynamics also pointing to the existence of some major change in the geometry of the mechanical manifolds at the thermodynamical transition. Through the microcanonical definition of the entropy, a relationship between thermodynamics and the extrinsic geometry of the constant energy surfaces ÎŁE\Sigma_E of phase space can be naturally established. In this framework, an approximate formula is worked out, determining a highly non-trivial relationship between temperature and topology of the ÎŁE\Sigma_E. Whence it can be understood that the appearance of a phase transition must be tightly related to a suitable major topology change of the ÎŁE\Sigma_E. This contributes to the understanding of the origin of phase transitions in the microcanonical ensemble.Comment: in press on Physical Review E, 43 pages, LaTeX (uses revtex), 22 PostScript figure

    Hamiltonian Dynamics of Yang-Mills Fields on a Lattice

    Get PDF
    We review recent results from studies of the dynamics of classical Yang-Mills fields on a lattice. We discuss the numerical techniques employed in solving the classical lattice Yang-Mills equations in real time, and present results exhibiting the universal chaotic behavior of nonabelian gauge theories. The complete spectrum of Lyapunov exponents is determined for the gauge group SU(2). We survey results obtained for the SU(3) gauge theory and other nonlinear field theories. We also discuss the relevance of these results to the problem of thermalization in gauge theories.Comment: REVTeX, 51 pages, 20 figure

    Completely Mixing Quantum Open Systems and Quantum Fractals

    Get PDF
    Departing from classical concepts of ergodic theory, formulated in terms of probability densities, measures describing the chaotic behavior and the loss of information in quantum open systems are proposed. As application we discuss the chaotic outcomes of continuous measurement processes in the EEQT framework. Simultaneous measurement of four noncommuting spin components is shown to lead to a chaotic jump on quantum spin sphere and to generate specific fractal images - nonlinear ifs (iterated function system). The model is purely theoretical at this stage, and experimental confirmation of the chaotic behavior of measuring instruments during simultaneous continuous measurement of several noncommuting quantum observables would constitute a quantitative verification of Event Enhanced Quantum Theory.Comment: Latex format, 20 pages, 6 figures in jpg format. New replacement has two more references (including one to a paper by G. Casati et al on quantum fractal eigenstates), adds example and comments concerning mixing properties of of a two-level atom driven by a laser field, and also adds a number of other remarks which should make it easier to follow mathematical argument

    Amplitude Death: The emergence of stationarity in coupled nonlinear systems

    Full text link
    When nonlinear dynamical systems are coupled, depending on the intrinsic dynamics and the manner in which the coupling is organized, a host of novel phenomena can arise. In this context, an important emergent phenomenon is the complete suppression of oscillations, formally termed amplitude death (AD). Oscillations of the entire system cease as a consequence of the interaction, leading to stationary behavior. The fixed points that the coupling stabilizes can be the otherwise unstable fixed points of the uncoupled system or can correspond to novel stationary points. Such behaviour is of relevance in areas ranging from laser physics to the dynamics of biological systems. In this review we discuss the characteristics of the different coupling strategies and scenarios that lead to AD in a variety of different situations, and draw attention to several open issues and challenging problems for further study.Comment: Physics Reports (2012

    Global Demons in Field Theory : Critical Slowing Down in the Xy Model

    Full text link
    We investigate the use of global demons, a `canonical dynamics', as an approach to simulating lattice regularized field theories. This deterministically chaotic dynamics is non-local and non-Hamiltonian, and preserves the canonical measure rather than ή(H−E)\delta(H-E). We apply this inexact dynamics to the 2D XY model, comparing to various implementations of hybrid Monte Carlo, focusing on critical exponents and critical slowing down. In addition, we discuss a scheme for making energy non-conserving dynamical algorithms exact without the use of a Metropolis hit.Comment: 23 pages text plus 12 figures [Submitted to Nuc. Phys. B, 7/92
    • 

    corecore