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We are concerned with the exponential stability problem of a class of nonlinear hybrid stochastic heat equations (known as
stochastic heat equations with Markovian switching) in an infinite state space. The fixed point theory is utilized to discuss the
existence, uniqueness, and 𝑝th moment exponential stability of the mild solution. Moreover, we also acquire the Lyapunov
exponents by combining the fixed point theory and the Gronwall inequality. At last, two examples are provided to verify the
effectiveness of our obtained results.

1. Introduction

There have been enormous theories for both definite and
stochastic partial differential equations (SPDEs) since they
can describe various phenomena in reality recently.Through-
out the previous literature, besides the existence and unique-
ness, the stability for SPDEs is a popular topic. Some results
on exponential stability of SPDEs were investigated by Cara-
ballo and Liu [1] and Luo [2].

At present, the hybrid SDEs and hybrid SPDEs (also
known as SDEs and SPDEs with Markovian switching), for
example, hybrid stochastic heat equations, have been paid
much attention owing to their wide applications in natural
science, engineering, biology, finance, and other areas. In
addition, one important reason to consider hybrid SDEs or
SPDEs is that real situations may exhibit sudden changes
or go into different cases in different periods resulting
in parameter transition and probably changes in branch
structure so that we needMarkov chains to characterize such
systems. For example, [3, 4] discussed some properties of
the solutions to SDEs with Markovian switching. So far, the
𝑝thmoment exponential stability of stochastic heat equations
without Markovian switching has been studied extensively,
for example, [5, 6], while hybrid stochastic heat equations
remain open due to the difficulty arising fromMarkov chains.

As a consequence, it is more challenging and exciting to
explore the stabilization of the systems with Markov chains.

Up to now, there have been many methods to study the
stability of SPDEs as well as hybrid stochastic heat equations
like Lyapunov’s function method, successive approximation
approach, large deviation technique, and so on. For example,
Deng et al. [7] obtained some sufficient conditions on the
stability of hybrid stochastic differential equations by using
the Lyapunov’s functionmethod and stochastic feedback con-
trols. In [8], Ubøe and Zhang constructed sequence solutions
to approximate the exact solution successively. Gong and
Qian studied the large deviation rate function of the Markov
chainsmore completely in [9]. In [10], Bao et al. discussed the
𝑝th moment exponential stability of linear hybrid stochastic
heat equations by employing the explicit formulae and large
deviation technique. However, we cannot use the method
of the linear case to obtain the stability property of a class
of nonlinear hybrid stochastic heat equations. Generally
speaking, it is very difficult to calculate the explicit formulae
of solutions to nonlinear hybrid stochastic heat equations.
Furthermore, the Markov chain has no unique stationary
probability distribution when it is not irreducible in an
infinite state space, which makes the analysis of Lyapunov
exponents more difficult.
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To overcome difficulties raised by what was mentioned
above, we utilize a new method—the fixed point theory—to
deal with the stability of a class of nonlinear hybrid stochastic
heat equations in this paper. It is well known that the fixed
point theory first put forward by Burton is usually applied
to study the almost sure exponential stability and the 𝑝th
moment exponential stability of both SDEs and SPDEs such
as second-order stochastic evolution equations, for example,
[11], nonlinear neutral SDEs, for example, [12], and stochastic
Volterra-Levin equations, for example, [13–15]. Different
from the method in [10], we use the fixed point theory
to analyze the stability of nonlinear hybrid stochastic heat
equations. Firstly, we prove the existence and uniqueness of
the solution, as well as the 𝑝th moment exponential stability.
Then, we obtain the 𝑝th moment Lyapunov exponents by
using the Gronwall inequality instead of seeking the proper
rate function which was complicated to compute in [10].
Moreover, we provide two examples and some comparisons
to show that our results extend and improve those given in
the previous literature.

The rest of this paper is organized as follows. In Section 2,
we introduce the notations and the model of nonlinear
hybrid stochastic heat equations along with some necessary
assumptions. In Section 3, by applying the fixed point theo-
rem, we prove the existence, uniqueness, and 𝑝th moment
exponential stability of hybrid stochastic heat equations.
Besides, based on the Gronwall inequality, we further obtain
the Lyapunov exponents of the solutions and make some
comparisons with the previous results. In Section 4, we
provide two simple examples to verify the effectiveness of the
obtained results. In the last section, we conclude the paper
with some general remarks.

2. Preliminaries, Model, and Assumptions

In this section, we introduce some preliminaries and com-
mon notations for a more detailed description, and then give
the model that we will deal with.

Throughout this paper, the following notations will be
used. Let {𝐵(𝑡), 𝑡 ≥ 0} be a real-valued Brownian motion
defined on the complete probability space {Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃}

which has a filtration satisfying the usual conditions. We
denote a bounded domain Θ ⊂ R𝑛, equipped with C∞

boundary 𝜕Θ. In this paper,L2(Θ) is defined as usual, that is,
the family of all-real valued square integrable functions with
their inner product ⟨𝑓, 𝑔⟩ := ∫

Θ
𝑓(𝑥)𝑔(𝑥)𝑑𝑥, 𝑓, 𝑔 ∈ L2(Θ)

and norm ‖𝑓‖ := (∫
Θ
𝑓
2
(𝑥)𝑑𝑥)

1/2, 𝑓 ∈ L2(Θ). Also, we can
define 𝐻𝑚(Θ), 𝑚 = 1, 2, by 𝐻𝑚(Θ) := {𝑢 ∈ L2(Θ) | 𝐷𝛼𝑢 ∈

L2(Θ), |𝛼| ≤ 𝑚} and 𝐻𝑚
0
(Θ) by 𝐻𝑚

0
(Θ) := {𝑢 ∈ 𝐻

𝑚
(Θ) |

𝑢 = 0 on 𝜕Θ}.Then, we can denote the Laplace operator𝐴 :=
∑
𝑛

𝑖=1
(𝜕
2
/𝜕𝑥
2

𝑖
), with domainD(𝐴) := 𝐻1

0
(Θ) ∩ 𝐻

2

0
(Θ), which

generates a strongly continuous semigroup 𝑒𝑡𝐴. Furthermore,
let {𝑟(𝑡), 𝑡 ≥ 0} be a right continuous Markov chain which
takes values in a listed state space 𝑆 = {1, 2, . . . , 𝑁}, where𝑁
is some positive integer or arrives at∞. Moreover, we assume
that the Markov chain {𝑟(𝑡), 𝑡 ≥ 0} is independent of the
Brownian motion {𝐵(𝑡), 𝑡 ≥ 0}.

Model Definition. In this paper, we consider the following
hybrid stochastic heat equation:

𝜕𝑢 (𝑡, 𝑥)

𝜕𝑡
= 𝐴𝑢 (𝑡, 𝑥) + 𝛼 (𝑟 (𝑡)) 𝑓 (𝑡, 𝑢 (𝑡, 𝑥) , 𝑟 (𝑡))

+ 𝛽 (𝑟 (𝑡)) 𝑔 (𝑡, 𝑢 (𝑡, 𝑥) , 𝑟 (𝑡)) �̇� (𝑡) ,

𝑥 ∈ Θ, 𝑡 > 0,

𝑢 (𝑡, 𝑥) = 0, 𝑥 ∈ 𝜕Θ, 𝑡 > 0,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) 𝑥 ∈ Θ,

(1)

where 𝛼, 𝛽 are mappings from 𝑆 → R and we take 𝛼
𝑖
:= 𝛼(𝑖),

𝛽
𝑖
:= 𝛽(𝑖) simply in this paper. Letting us fix an interval

[0, 𝑇], 𝑇 > 0, then the operators 𝑓, 𝑔 : [0, 𝑇] ×L2(Θ) × 𝑆 :

→ L2(Θ) are F
𝑡
-measurable while the initial value 𝑢

0
is

a D(𝐴)-valued, F
0
-measurable random variable, which is

independent of 𝑟(⋅) and 𝐵(⋅), and, for any 𝑝 > 0, E‖𝑢
0
‖
𝑝
< ∞.

Next, wewill give the definitions of themild solution to (1)
and𝑝thmoment exponential stability aswell as𝐶

𝑝
inequality.

For the convenience of writing, we will take 𝑢(𝑡) := 𝑢(𝑡, ⋅)
and 𝑢 := {𝑢(𝑡, ⋅)}

𝑡≥0
such that 𝑢 is aL2(Θ)-valued stochastic

process since 𝑢(𝑡) is aL2(Θ)-valued random variable.

Definition 1. A L2(Θ)-valued stochastic process 𝑢 =

{𝑢(𝑡)}
𝑡∈[0,𝑇]

is called a mild solution to (1) if the following
conditions are satisfied:

(i) 𝑢 ∈ C([0, 𝑇];L2(Θ)) and for any 𝑡 ∈ [0, 𝑇], 𝑢(𝑡) is
adapted toF

𝑡
with

𝑃{𝜔 : ∫

𝑡

0

‖𝑢(𝑠)‖
𝑝
𝑑𝑠 < ∞} = 1; (2)

(ii) stochastic integral equation

𝑢 (𝑡, 𝑥) = 𝑒
𝐴𝑡
𝑢
0
+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝐵 (𝑠)

(3)

holds a.s. for any 𝑡 ∈ [0, 𝑇] and 𝑥 ∈ Θ.

Definition 2. Equation (1) is called exponentially stable in the
𝑝thmoment if there exists a pair of constants 𝛿 > 0 and𝐾 > 0
such that E‖𝑢(𝑡)‖𝑝 ≤ 𝐾E‖𝑢

0
‖
𝑝
𝑒
−𝛿𝑡, 𝑡 ≥ 0.

Lemma 3 (𝐶
𝑝
inequality). Let {𝜉

𝑘
, 1 ≤ 𝑘 ≤ 𝑛} be an arbitrary

family of random variables; then one has

E(


𝑛

∑

𝑘=1

𝜉
𝑘



𝑝

) ≤ 𝐶
𝑝

𝑛

∑

𝑘=1

E (𝜉𝑘

𝑝

) , (4)

where 𝐶
𝑝
= 𝑛
𝑝−1, 𝑝 ≥ 1; 𝐶

𝑝
= 1, 0 < 𝑝 < 1.

Finally, we present some necessary assumptions to close
this section.
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Assumptions. Consider the following:

(A1) ‖𝑒
𝑡𝐴
‖ ≤ 𝑀𝑒

−𝛾𝑡 for some constants𝑀 > 0 and 𝛾 > 0;

(A2) the operators 𝑓, 𝑔 satisfy the following properties: for
any 𝑢, V ∈ 𝐿2(Θ) and 𝑝 ≥ 2, there exist positive
constants 𝐿

𝑓𝑖
, 𝐿
𝑔𝑖
(𝑖 ∈ 𝑆) such that

𝑓 (𝑡, 0, 𝑖) = 0, 𝑔 (𝑡, 0, 𝑖) = 0,

𝑓 (𝑡, 𝑢 (𝑡, 𝑥) , 𝑖) − 𝑓 (𝑡, V (𝑡, 𝑥) , 𝑖)
 ≤ 𝐿𝑓𝑖 ‖

𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)‖ ,

𝑔 (𝑡, 𝑢 (𝑡, 𝑥) , 𝑖) − 𝑔 (𝑡, V (𝑡, 𝑥) , 𝑖)
 ≤ 𝐿𝑔𝑖 ‖

𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)‖ ;
(5)

(A3) sup1≤𝑖≤𝑁|𝛼𝑖|𝐿𝑓𝑖 < ∞, sup
1≤𝑖≤𝑁

|𝛽
𝑖
|𝐿
𝑔𝑖
< ∞.

Remark 4. It is obvious to see that (1) has a trivial solution
under Assumptions A1–A3 when the initial value 𝑢

0
is equal

to zero.

3. 𝑝th Moment Exponential Stability

In this section, we will use the fixed point principle to discuss
the existence and uniqueness of the mild solution to (1) and
prove the exponential stability result.

Theorem 5. Let 𝑝 ≥ 2 and suppose that Assumptions A1–A3
hold. Then, (1) is exponentially stable in the 𝑝th moment if the
following holds:

2
𝑝−1
𝑀
𝑝

𝛾𝑝
𝛼
∗
𝑝

𝐿
𝑝

𝑓
∗ +
√2
𝑝−2

𝑀
𝑝
𝐽
𝑝

𝛾𝑝/2
𝛽
∗
𝑝

𝐿
𝑝

𝑔
∗ ∈ (0, 1) , (6)

where 𝐽
𝑝
= (𝑝
𝑝+1
/2(𝑝 − 1)

𝑝−1
)
𝑝/2, |𝛼∗|𝐿

𝑓
∗ = sup

1≤𝑖≤𝑁
|𝛼
𝑖
|𝐿
𝑓𝑖
,

|𝛽
∗
|𝐿
𝑔
∗ = sup

1≤𝑖≤𝑁
|𝛽
𝑖
|𝐿
𝑔𝑖
.

Proof. Let 𝐻 be the Banach space of all F
𝑡
-adapted con-

tinuous processes consisting of functions 𝑢(𝑡, 𝑥) such that
E‖𝑢(𝑡, 𝑥)‖𝑝 ≤ 𝑀∗E‖𝑢

0
‖
𝑝
𝑒
−𝜂𝑡, 𝑡 ≥ 0, where 𝑀∗ > 0, 0 <

𝜂 < 𝛾. Below we denote the norm in 𝐻 by ‖𝑢(𝑡, 𝑥)‖
𝐻
:=

sup
𝑡≥0

E‖𝑢(𝑡, 𝑥)‖𝑝.
Then, we derive an operator 𝜑 : 𝐻 → 𝐻 as follows:

𝜑 (𝑢) (𝑡) = 𝑒
𝐴𝑡
𝑢
0
+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝐵 (𝑠) ,

𝑡 > 0,

𝜑 (𝑢) (0) = 𝑢
0
.

(7)

It is easy to prove that the following holds by 𝐶
𝑝
inequality

yields:

E𝜑 (𝑢) (𝑡)

𝑝

≤ 3
𝑝−1E𝑒

𝐴𝑡
𝑢
0



𝑝

+ 3
𝑝−1E

×


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠



𝑝

+ 3
𝑝−1E

×


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝐵 (𝑠)



𝑝

:= 3
𝑝−1

3

∑

𝑖=1

E𝐼𝑖(𝑡)

𝑝

.

(8)

Next, we will divide the proof into three steps.

Claim 1. 𝜑 is continuous in the 𝑝th moment on [0, +∞).

Proof of Claim 1. Let 𝑢 ∈ 𝐻, 𝑡
1
≥ 0, and let |𝑟| be sufficiently

small,

E𝜑(𝑡1 + 𝑟) − 𝜑(𝑡1)

𝑝

≤ 3
𝑝−1

3

∑

𝑖=1

E𝐼𝑖(𝑡1 + 𝑟) − 𝐼𝑖(𝑡1)

𝑝

. (9)

Letting |𝑟| → 0, it is easy to see that

E𝐼1 (𝑡1 + 𝑟) − 𝐼1 (𝑡1)

𝑝

= E𝑒
𝐴(𝑡1+𝑟)𝑢

0
− 𝑒
𝐴𝑡1𝑢
0



𝑝

= E𝑒
𝐴𝑡1𝑢
0
(𝑒
𝐴𝑟
− 1)



𝑝

→ 0 (|𝑟| → 0) ,

(10)

E𝐼2 (𝑡1 + 𝑟) − 𝐼2 (𝑡1)

𝑝

= E

∫

𝑡1+𝑟

0

𝑒
𝐴(𝑡1+𝑟−𝑠)𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠

−∫

𝑡1

0

𝑒
𝐴(𝑡1−𝑠)𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠



𝑝

≤ 2
𝑝−1E

×


∫

𝑡1

0

𝑒
𝐴(𝑡1−𝑠)𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) (𝑒

𝐴𝑟
− 1) 𝑑𝑠



𝑝

+ 2
𝑝−1E

×



∫

𝑡1+𝑟

𝑡1

𝑒
𝐴(𝑡1+𝑟−𝑠)𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠



𝑝

→ 0 (|𝑟| → 0) .

(11)

Then, by Burkhölder-Davis-Gundy inequality, the follow-
ing holds when |𝑟| → 0:

E𝐼3 (𝑡1 + 𝑟) − 𝐼3 (𝑡1)

𝑝

= E

∫

𝑡1+𝑟

0

𝑒
𝐴(𝑡1+𝑟−𝑠)𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝐵 (𝑠)
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−∫

𝑡1

0

𝑒
𝐴(𝑡1−𝑠)𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝐵 (𝑠)



𝑝

≤ 2
𝑝−1E


∫

𝑡1

0

𝑒
𝐴(𝑡1−𝑠)𝛽 (𝑟 (𝑠))

× 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) (𝑒
𝐴𝑟
− 1) 𝑑𝐵 (𝑠)



𝑝

+ 2
𝑝−1E



∫

𝑡1+𝑟

𝑡1

𝑒
𝐴(𝑡1+𝑟−𝑠)

× 𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝐵 (𝑠)



𝑝

≤ 2
𝑝−1
𝐽
𝑝
E

× (∫

𝑡1

0

𝑀
2
𝑒
−2𝛾(𝑡1−𝑠)

×

𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) (𝑒

𝐴𝑟
− 1)



2

𝑑𝑠)

𝑝/2

+ 2
𝑝−1
𝐽
𝑝
E(∫
𝑡1+𝑟

𝑡1

𝑀
2
𝑒
−2𝛾(𝑡1+𝑟−𝑠)

×
𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠))


2

𝑑𝑠)

𝑝/2

→ 0 (|𝑟| → 0) . (12)

Hence, from (10)–(12), we see that 𝜑 is 𝑝th continuous on
[0, +∞).

Claim 2. 𝜑(𝐻) is contained in𝐻.

Proof of Claim 2. It follows from (8) that

𝐼
1
(𝑡) = E𝑒

𝐴𝑡
𝑢
0



𝑝

≤ 𝑀
𝑝
𝑒
−𝑝𝛾𝑡E𝑢0


𝑝

≤ 𝑀
𝑝
𝑒
−𝜂𝑡E𝑢0


𝑝

.

(13)

By Assumptions A1–A3 and the Hölder inequality, we have

𝐼
2
(𝑡) = E


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠



𝑝

≤ 𝑀
𝑝E(∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

|𝛼 (𝑟 (𝑠))|
𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠))

 𝑑𝑠)

𝑝

≤ 𝑀
𝑝E[(∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

𝑑𝑠)

𝑝−1

× (∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

|𝛼 (𝑟 (𝑠))|
𝑝

×
𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠))


𝑝

𝑑𝑠)]

≤
𝑀
𝑝

𝛾𝑝−1
E(∫
𝑡

0

𝑒
−𝛾(𝑡−𝑠)

|𝛼 (𝑟 (𝑠))|
𝑝
𝐿
𝑝

𝑓
(𝑟 (𝑠)) ‖𝑢 (𝑠, 𝑥)‖

𝑝
𝑑𝑠)

≤
𝑀
𝑝

𝛾𝑝−1
E(𝛼
∗
𝑝

𝐿
𝑝

𝑓
∗ ∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

‖𝑢 (𝑠, 𝑥)‖
𝑝
𝑑𝑠)

≤
𝑀
𝑝𝛼
∗
𝑝

𝐿
𝑝

𝑓
∗

𝛾𝑝−1
∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)E‖𝑢 (𝑠, 𝑥)‖𝑝𝑑𝑠

≤
𝑀
𝑝
𝑀
∗𝛼
∗
𝑝

𝐿
𝑝

𝑓
∗

𝛾𝑝−1
E𝑢0


𝑝

∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

𝑒
−𝜂𝑠
𝑑𝑠

≤
𝑀
𝑝
𝑀
∗𝛼
∗
𝑝

𝐿
𝑝

𝑓
∗

𝛾𝑝−1 (𝛾 − 𝜂)
E𝑢0


𝑝

𝑒
−𝜂𝑡
,

𝐼
3
(𝑡) = E


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝐵 (𝑠)



𝑝

≤ 𝑀
𝑝
𝐽
𝑝
E

× (∫

𝑡

0

𝑒
−2𝛾(𝑡−𝑠)𝛽 (𝑟 (𝑠))


2𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠))


2

𝑑𝑠)

𝑝/2

≤ 𝑀
𝑝
𝐽
𝑝
E[(∫

𝑡

0

𝑒
−2𝛾(𝑡−𝑠)

𝑑𝑠)

(𝑝/2)−1

× (∫

𝑡

0

𝑒
−2𝛾(𝑡−𝑠)𝛽 (𝑟 (𝑠))


𝑝

×
𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠))


𝑝

𝑑𝑠)]

≤ 𝑀
𝑝
𝐽
𝑝
(2𝛾)
(2−𝑝)/2𝛽

∗
𝑝

𝐿
𝑝

𝑔
∗ ∫

𝑡

0

𝑒
−2𝛾(𝑡−𝑠)E‖𝑢 (𝑠, 𝑥)‖𝑝𝑑𝑠

≤ 𝑀
𝑝
𝑀
∗
𝐽
𝑝
(2𝛾)
(2−𝑝)/2𝛽

∗
𝑝

𝐿
𝑝

𝑔
∗E𝑢0


𝑝

∫

𝑡

0

𝑒
−2𝛾(𝑡−𝑠)

𝑒
−𝜂𝑠
𝑑𝑠

≤
𝑀
𝑝
𝑀
∗

2𝛾 − 𝜂
𝐽
𝑝
(2𝛾)
(2−𝑝)/2𝛽

∗
𝑝

𝐿
𝑝

𝑔
∗E𝑢0


𝑝

𝑒
−𝜂𝑡
.

(14)

From (13)-(14), it is easy to see that E‖𝜑(𝑢)(𝑡)‖𝑝 ≤

𝑘E‖𝜑(𝑢)(0)‖𝑝𝑒−𝜂𝑡, where 𝑘 = 3
𝑝−1
𝑀
𝑝
(1 + (𝑀

∗
/𝛾
𝑝−1
(𝛾 −

𝜂))|𝛼
∗
|
𝑝
𝐿
𝑝

𝑓
∗ + (𝑀

∗
𝐽
𝑝
(2𝛾)
(2−𝑝)/2

/(2𝛾 − 𝜂))|𝛽
∗
|
𝑝
𝐿
𝑝

𝑔
∗), which

implies 𝜑(𝐻) ⊆ 𝐻.

Claim 3. 𝜑 is contractive for arbitrary 𝑢, V ∈ 𝐻 with 𝑢(0, 𝑥) =
𝑢
0
(𝑥) = V(0, 𝑥).

Proof of Claim 3. Consider the following:

E sup
0≤𝑡<∞

𝜑 (𝑢) (𝑡) − 𝜑 (V) (𝑡)

𝑝

≤ 2
𝑝−1E sup
0≤𝑡<∞


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠
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−∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛼 (𝑟 (𝑠)) 𝑓 (𝑠, V (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠


𝑝

+ 2
𝑝−1E

× sup
0≤𝑡<∞


∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, 𝑢 (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠

− ∫

𝑡

0

𝑒
𝐴(𝑡−𝑠)

𝛽 (𝑟 (𝑠)) 𝑔 (𝑠, V (𝑠, 𝑥) , 𝑟 (𝑠)) 𝑑𝑠


𝑝

≤ 2
𝑝−1
𝑀
𝑝
𝛾
1−𝑝𝛼
∗
𝑝

𝐿
𝑝

𝑓
∗E

× sup
0≤𝑡<∞

∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

‖𝑢 (𝑠, 𝑥) − V (𝑠, 𝑥)‖𝑝𝑑𝑠

+ 2
𝑝−1
𝑀
𝑝
𝐽
𝑝
(2𝛾)
(2−𝑝)/2𝛽

∗
𝑝

𝐿
𝑝

𝑔
∗E

× sup
0≤𝑡<∞

∫

𝑡

0

𝑒
−2𝛾(𝑡−𝑠)

‖𝑢 (𝑠, 𝑥) − V (𝑠, 𝑥)‖𝑝𝑑𝑠

≤ 2
𝑝−1
𝑀
𝑝
𝛾
1−𝑝𝛼
∗
𝑝

𝐿
𝑝

𝑓
∗E sup
0≤𝑡<∞

‖𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)‖𝑝

× ∫

𝑡

0

𝑒
−𝛾(𝑡−𝑠)

𝑑𝑠

+ 2
𝑝−1
𝑀
𝑝
𝐽
𝑝
(2𝛾)
(2−𝑝)/2𝛽

∗
𝑝

𝐿
𝑝

𝑔
∗

× E sup
0≤𝑡<∞

‖𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)‖𝑝

× ∫

𝑡

0

𝑒
−2𝛾(𝑡−𝑠)

𝑑𝑠

≤ 2
𝑝−1
𝑀
𝑝
𝛾
−𝑝𝛼
∗
𝑝

𝐿
𝑝

𝑓
∗E sup
0≤𝑡<∞

‖𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)‖𝑝

+ 2
𝑝−1
𝑀
𝑝
𝐽
𝑝
(2𝛾)
−𝑝/2𝛽

∗
𝑝

𝐿
𝑝

𝑔
∗

× E sup
0≤𝑡<∞

‖𝑢 (𝑡, 𝑥) − V (𝑡, 𝑥)‖𝑝

= �̃�E sup
0≤𝑡<∞

‖𝑢(𝑡, 𝑥) − V(𝑡, 𝑥)‖𝑝,

(15)

where �̃� = (2
𝑝−1
𝑀
𝑝
/𝛾
𝑝
)|𝛼
∗
|
𝑝
𝐿
𝑝

𝑓
∗ + (√2

𝑝−2

𝑀
𝑝
𝐽
𝑝
/𝛾
𝑝/2
)

|𝛽
∗
|
𝑝
𝐿
𝑝

𝑔
∗ .

Recalling condition (6) and noting that �̃� ∈ (0, 1), we see
that 𝜑 is a contraction mapping. By the fixed point theory, we
derive that 𝜑 has a unique fixed point 𝑢(𝑡, 𝑥) in 𝐻, which is
also exponentially stable in the 𝑝th moment from the proof
of three claims.Therefore, the desired assertion inTheorem 5
is completed.

Remark 6. If 𝑝 = 2, then it is obvious that (1) is mean square
exponentially stable.

Remark 7. In Theorem 5, we apply the fixed point theory to
obtain the existence and uniqueness of the solution for a class

of nonlinear hybrid stochastic heat equations. Obviously, our
results extend and improve those given in [3, 5, 10].

Remark 8. According to the proof ofTheorem 5 and based on
the Gronwall inequality, we can easily obtain the Lyapunov
exponents of the solution as follows:

lim sup
𝑡→∞

1

𝑡
log (E (‖𝑢(𝑡)‖𝑝)) ≤ 𝐶 − 𝛾, (16)

where 𝐶 = 3
𝑝−1
𝑀
𝑝
𝛾
1−𝑝
|𝛼
∗
|
𝑝
𝐿
𝑝

𝑓
∗ + 3

𝑝−1
𝑀
𝑝
𝐽
𝑝
(2𝛾)
(2−𝑝)/2

|𝛽
∗
|
𝑝
𝐿
𝑝

𝑔
∗ .

In particular, we derive that 𝐶 < 𝛾 when �̃� < 1 in
Theorem 5 such that the solution of (1) is exponentially stable
in the 𝑝th moment.

Remark 9. In [10], Bao et al. discussed the Lyapunov expo-
nents of linear hybrid stochastic heat equations by employing
the explicit formula of solution. However, we consider a
class of nonlinear hybrid stochastic heat equations in this
paper. Obviously, the method in [10] fails in our result
since the explicit formula of solution cannot be obtained in
the nonlinear case. So we apply succesfully the fixed point
principle to study the 𝑝th moment exponential stability of
a class of nonlinear hybrid stochastic heat equations, which
obviously generalizes the linear case.

4. Two Examples

In this section, we provide two examples of heat equations
with Markovian switching as the applications of our main
results and give some remarks compared to the previous
articles.

Example 1. Consider the following stochastic heat equation
with Markovian switching:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝐴𝑢 (𝑥, 𝑡) + 𝛼 (𝑟 (𝑡)) sin 𝑢 (𝑡, 𝑥)

3𝑟(𝑡)

+ 𝛽 (𝑟 (𝑡)) 𝑢 (𝑡, 𝑥) �̇� (𝑡) 𝑥 ∈ (0, 𝜋) , 𝑡 > 0,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 > 0,

𝑢 (0, 𝑥) = √
2

𝜋
cos𝑥 𝑥 ∈ (0, 𝜋) ,

(17)

where {𝑟(𝑡), 𝑡 ≥ 0} is a right continuous Markov chain which
takes values in an infinite state space 𝑆 = {1, 2, . . .}. Take 𝛼

𝑖
=

𝑖, 𝛽
𝑖
= 𝐽
−1/𝑝

𝑝
/𝑖, 𝑖 ∈ 𝑆. Below we recall that𝐴 is an infinitesimal

generator with a strongly continuous semigroup 𝑒𝑡𝐴, 𝑡 ≥ 0
so that the eigenfunctions of −𝐴 are 𝑒

𝑛
(𝑥) = √2/𝜋 sin 𝑛𝑥 ∈

D(𝐴), 𝑛 = 1, 2, . . ., and the relevant eigenvalues of𝐴 are 𝜆
𝑛
=

𝑛
2. Observing that 𝑒𝑡𝐴𝑢 = ∑∞

𝑛=1
𝑒
−𝑛
2
𝑡
⟨𝑢, 𝑒
𝑛
⟩
𝐻
𝑒
𝑛
, 𝑢 ∈ 𝐻, and

‖𝑒
𝑡𝐴
‖ ≤ 𝑒
−𝜋
2
𝑡, 𝑡 ≥ 0, we have 𝛾 = 𝜋2,𝑀 = 1.
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Since

𝑓 (𝑡, 𝑢 (𝑡, 𝑥) , 𝑖)
 =


sin 𝑢 (𝑡, 𝑥)

3𝑖


≤
1

3𝑖
‖𝑢 (𝑡, 𝑥)‖ , 𝑖 ∈ 𝑆,

(18)

we can choose 𝐿
𝑓𝑖
= 1/3

𝑖 and similarly 𝐿
𝑔𝑖
= 1. It is easy to

calculate that �̃� = (1/3𝜋
2𝑝
) + (√2

𝑝−2

/𝜋
𝑝
) ∈ (0, 1) with

𝛼
∗
𝐿
𝑓
∗ = 1/3, 𝛽∗𝐿

𝑔
∗ = 𝐽

−1/𝑝

𝑝
. Therefore, by Theorem 5 we

see that (17) is 𝑝th moment exponentially stable.

Remark 10. The state space 𝑆 in (17) is infinite in which
Markov chain {𝑟(𝑡), 𝑡 ≥ 0} takes values while generally we
assume the state space to be finite to gain the 𝑝th moment
exponential stability of the solution, so our results generalize
those in the previous literature (e.g., see [4, 10]).

Remark 11. If 𝑝 = 2, then (17) is mean square exponentially
stable.

Example 2. We compare the following linear stochastic heat
equation with that in [10]:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝐴𝑢 (𝑥, 𝑡) + 𝛼 (𝑟 (𝑡)) 𝑢 (𝑡, 𝑥)

+ 𝛽 (𝑟 (𝑡)) 𝑢 (𝑡, 𝑥) �̇� (𝑡) 𝑥 ∈ (0, 𝜋) , 𝑡 > 0,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 𝑡 > 0,

𝑢 (0, 𝑥) = √
2

𝜋
sin𝑥 𝑥 ∈ (0, 𝜋) ,

(19)

where {𝑟(𝑡), 𝑡 ≥ 0} takes values in 𝑆 = {1, 2}with the generator
Γ = (𝛾

𝑖𝑗
)
2×2

:

−𝛾
11
= 𝛾
12
= 1, −𝛾

22
= 𝛾
21
= 𝑞 > 0, (20)

which implies that theMarkov chain {𝑟(𝑡), 𝑡 ≥ 0} has a unique
invariant measure 𝜋 = (𝜋

1
, 𝜋
2
) = (𝑞/(𝑞 + 1), 1/(𝑞 + 1)). Take

𝛼(1) = 𝑎, 𝛼(2) = 𝑏, 𝛽(1) = 𝑐, 𝛽(2) = 𝑑, 𝑎, 𝑏, 𝑐, 𝑑 ∈ R.
Then, it is easy to compute �̃� = (2

𝑝−1
/𝜋
2𝑝
)|𝑎∨𝑏|

𝑝
+

(√2
𝑝−2

𝐽
𝑝
/𝜋
𝑝
)|𝑐∨𝑑|

𝑝. So we can conclude that the system of
(19) is 𝑝th moment exponentially stable if �̃� < 1.

Remark 12. Example 2 is also considered by Bao et al. [10]
based on the large deviation technique, in which a proper 𝑞
should be found to calculate the rate function 𝐼(𝜇) to testify
whether the solution of (19) is 𝑝th moment exponentially
stable or not. However, it is very difficult and complicated in
comparison with our conditions, especially in the nonlinear
hybrid stochastic heat equations. So our results generalize and
imporove those given in [10].

5. Conclusion

In this paper, we have studied the stability problem of a
class of nonlinear hybrid stochastic heat equations. Based on

the fixed point theory andBurkhölder-Davis-Gundy inequal-
ity, we not only establish the existence and uniqueness of the
equation in an infinite state space, but also prove the 𝑝th
moment exponential stability of the system. Moreover, we
give two simple examples to verify all our conditions at the
end of this paper. In the future work, we will focus on the
stability of more complicity models such as neutral stochastic
differential equations with Markov chains and variable time
delay.
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[5] A. A. Kwiecińska, “Stabilization of partial differential equations
by noise,” Stochastic Processes and their Applications, vol. 79, no.
2, pp. 179–184, 1999.

[6] B. Xie, “The moment and almost surely exponential stability
of stochastic heat equations,” Proceedings of the American
Mathematical Society, vol. 136, no. 10, pp. 3627–3634, 2008.

[7] F. Deng, Q. Luo, and X. Mao, “Stochastic stabilization of hybrid
differential equations,”Automatica, vol. 48, no. 9, pp. 2321–2328,
2012.

[8] J. Ubøe and T. Zhang, “A stability property of the stochastic heat
equation,” Stochastic Processes and Their Applications, vol. 60,
no. 2, pp. 247–260, 1995.

[9] G. L. Gong and M. P. Qian, “On the large deviation functions
of Markov chains,” Acta Mathematica Scientia, vol. 8, no. 2, pp.
199–209, 1988.

[10] J. Bao, X. Mao, and C. Yuan, “Lyapunov exponents of hybrid
stochastic heat equations,” Systems and Control Letters, vol. 61,
no. 1, pp. 165–172, 2012.

[11] R. Sakthivel and Y. Ren, “Exponential stability of second-order
stochastic evolution equations with Poisson jumps,” Communi-
cations in Nonlinear Science and Numerical Simulation, vol. 17,
no. 12, pp. 4517–4523, 2012.



Mathematical Problems in Engineering 7

[12] M.Wu, N. Huang, and C. Zhao, “Stability of a class of nonlinear
neutral stochastic differential equations with variable time
delays,” Analele Stiintifice ale Universitatii Ovidius Constanta,
vol. 20, no. 1, pp. 467–487, 2012.

[13] T. A. Burton, Stability by Fixed Point Theory for Functional
Differential Equations, Dover, Mineola, NY, USA, 2006.

[14] J. Luo, “Fixed points and exponential stability for stochas-
tic Volterra-Levin equations,” Journal of Computational and
Applied Mathematics, vol. 234, no. 3, pp. 934–940, 2010.

[15] L. Guo and Q. Zhu, “Stability analysis for stochastic Volterra-
Levin equations with Poisson jumps: fixed point approach,”
Journal of Mathematical Physics, vol. 52, no. 4, Article ID
042702, 15 pages, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


