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Abstract
We are concerned with a class of hybrid stochastic fourth-order parabolic equations
with Markov switching in an infinite state space. By employing the fixed point theory
we study the existence, uniqueness and pth moment exponential stability of the mild
solution. Finally, we provide two examples to verify the effectiveness of our results.
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1 Introduction
In recent years, the hybrid stochastic differential equations (SDEs) and hybrid stochas-
tic partial differential equations (SPDEs), for example, hybrid stochastic heat equations,
have been paid much attention owing to their wide applications in natural science, engi-
neering, biology, finance, and other areas. Researchers are interested in the existence and
uniqueness of the solutions and their stability for SDEs and SPDEs. As is well known, the
Lyapunov method provides a powerful implement in studying the stability of SDEs, and
there are many methods to study the stability of SPDEs including hybrid stochastic heat
equations, such as the Lyapunov function method [], successive approximation approach
[], large deviation technique [, ], fixed pointed theory [–], and so on. It should be
mentioned that the fixed point theory, which is introduced by Burton, is a very important
method to discuss the stability of both deterministic and stochastic differential equations.
In fact, many authors have used this method to study the stability of SDEs and SPDEs; lots
of difficulties that arise by using the Lyapunov method vanish on applying fixed point the-
ory, especially those problems with Markov chains and Poisson jumps. For instance, Yang
and Zhu [] studied the pth moment exponential stability of nonlinear hybrid stochas-
tic heat equations, Luo [] successfully gave some conditions for ensuring heat stochastic
Volterra-Levin equations to be stable in mean square and also almost surely exponentially
stable, Guo and Zhu [] studied the stability of stochastic Volterra-Levin equations with
Possion jumps, and so on.

However, to the best of the authors’ knowledge, there are no published papers on the
stability analysis for a class of stochastic fourth-order parabolic equations. In fact, fourth-
order parabolic equations without noise disturbances have received extensive attention
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and were widely studied in the past few years. The most famous fourth-order parabolic
equation is the Cahn-Hilliard equation, which was first proposed by Caln and Hilliard in
 when they studied the diffusion phenomena in phase transition (e.g., alloy, polymer,
etc.). Later, similar mathematical models were proposed in the study of many diffusion
phenomena such as competition and exclusion of biological groups, moving process of
a river basin, diffusion of an oil film over a solid suffice. As a model to describe these
phenomena, the Cahn-Hilliard equation has intrigued many mathematicians’ interests,
and many good results [–] were obtained, such as the global existence, the asymptotic
behavior, the stability of the solution of the Cahn-Hilliard equation, and so on. However,
these results are all about deterministic equations. In fact, the real situations may exhibit
indefinite stochastic factors, and they may exhibit sudden changes or go to different cases
in different periods resulting in parameter transitions and probably changes in branch
structure, so that we need to study the hybrid stochastic fourth-order parabolic equations
involving Markov chains.

Inspired by the method of fixed point theory, which is widely used in the discussion of
hybrid stochastic heat equations, in this paper, we are concerned with the stability problem
for a class of hybrid stochastic fourth-order parabolic equations. Based on the fixed point
theory, we not only obtain the existence and uniqueness of the mild solution, but also the
pth moment exponential stability of the solution.

The rest of this paper is organized as follows. In Section , we introduce the notation and
the model of hybrid stochastic fourth-order parabolic equations along with some neces-
sary assumptions. In Section , based on the basic solution of the definite homogeneous
fourth-order parabolic equation, by applying the fixed point theory we prove the exis-
tence, uniqueness, and pth moment exponential stability of hybrid stochastic fourth-order
parabolic equations. In Section , we provide two examples to verify the effectiveness of
the obtained results with some general remarks.

2 Preliminaries
In this section, we introduce some preliminaries and common notation for a more detailed
description and then give the model that we will deal with.

Let {�,F , {Ft}t≥, P} be a complete probability space with a filtration satisfying the
usual conditions. Let {B(t), t ≥ } be a real-valued Brownian motion defined on this prob-
ability space. Let � ⊂ R

n be a bounded domain equipped with C∞ boundary ∂�. Let
Lp(�) denote the family of all real-valued integrable functions equipped with the usual
norm ‖f ‖p := (

∫
�

f p(x) dx)/p, f ∈ Lp(�). In particular, when p = , we denote ‖f ‖ :=
‖f ‖ = (

∫
�

f (x) dx)/ and the inner product 〈f , g〉 =
∫
�

f (x)g(x) dx for f , g ∈ L(�). Also,
we can define Hm(�), m = , , , , by Hm(�) := {u ∈ L(�)|Dαu ∈ L(�), |α| ≤ m} and
Hm

 (�) := {u ∈ Hm(�)|u =  on ∂�}. Let A :=
∑n

i= ∂/∂x
i be the Laplace operator with

domain D(A) := Hm
 (�) ∩ Hm(�), which generates a strongly continuous semigroup etA.

We denote the Fourier transform of u as û with û(ξ ) := (π )– n

∫
Rn e–ixξ u(x) dx, and the

inverse Fourier transform of u as ǔ with ǔ(x) := (π )– n

∫
Rn eixξ u(ξ ) dξ . Furthermore, let

{r(t),t ≥ } be a right-continuous Markov chain that takes values in a listed state space
S = {, , . . . , N}, where N is some positive integer, or arrives at ∞. Moreover, we assume
that the Markov chain {r(t), t ≥ } is independent of the Brownian motion {B(t), t ≥ }.
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In this paper, we consider the following hybrid stochastic fourth-order parabolic equa-
tion:

⎧
⎪⎨

⎪⎩

∂u(t,x)
∂t = Au – Au + α

(
r(t)

)
u(t, x) + β

(
r(t)

)
u(t, x)Ḃ(t), x ∈ �, t > ,

u(t, x) = , x ∈ ∂�, t > ,
u(, x) = u(x), x ∈ �.

(.)

Here the initial value u is a D(A)-valued F-measurable random variable, independent
of r(·) and B(·), such that E‖u‖p < ∞ for any p > . Moreover, α, β are the mappings from
S → R, and in this paper we take simply αi := α(i), βi := β(i).

Next, we will give the definitions of a mild solution to Eq. (.) and pth moment exponen-
tial stability, together with the well-known BDG inequality, which plays an important role
in the proofs of our results. For convenience, we will take u(t) := u(t, ·) and u := {u(t, ·)}t≥

such that u is an L(�)-valued stochastic process since u(t) is an L(�)-valued random
variable.

Definition  An L(�)-valued stochastic process u = {u(t, ·)}t∈[,T] is a mild solution to
(.) if the following conditions are satisfied:

(i) u ∈ C([, T]; L(�)) for any t ∈ [, T], and u(t) is adapted to Ft with

P
{

ω :
∫ t



∥
∥u(s)

∥
∥p ds < ∞

}

= ;

(ii) u satisfies the stochastic integral equation

u(t, x) = e(A–A)tu +
∫ t


e(A–A)(t–s)α

(
r(s)

)
u(s, x) ds

+
∫ t


e(A–A)(t–s)β

(
r(s)

)
u(s, x) dB(s) (.)

a.s. for any t ∈ [, T] and x ∈ �.

Definition  Equation (.) is called exponentially stable in the pth moment if there exist
a pair of constants δ >  and K >  such that E‖u(t)‖p ≤ KE‖u‖pe–δt , t ≥ .

Lemma  [] (Bukholder-Davis-Gundy inequality) For every  < p < ∞, there exists a
universal constant Jp such that for every continuous local martingale M vanishing at zero
and any stopping time T ,

E
(‖MT‖p) ≤ E

(
sup

≤s≤T
‖Ms‖p

)
≤ JpE

(〈M, M〉T
) p

 , (.)

where 〈M, M〉 is the cross-variation of M.

Finally, we present a necessary assumption to close this section.

Assumption A

(A) ‖etA‖ ≤ Me–γ t for some constant M and γ > ;
(A) sup≤i≤N |αi| < ∞, sup≤i≤N |βi| < ∞.
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3 pth moment exponential stability
In this section, we will first deduce the exponential stability of the basic solution of the
homogeneous equation of (.), and then we will use the fixed point principle to discuss the
existence and uniqueness of the mild solution to (.) and prove the exponential stability
results.

Theorem  Let p ≥  and suppose that Assumption A holds. Then (.) is exponentially
stable in the pth moment if

p–M̃p

γ p

∣
∣α∗∣∣p +

p–M̃pJp

(γ )
p


∣
∣β∗∣∣p ∈ (, ), (.)

where Jp = (pp+/(p – )p–)
p
 , |α∗| = sup≤i≤N |αi|, |β∗| = sup≤i≤N |βi|, and M̃ is some con-

stant.

Proof Let H be the Banach space of all Ft-adapted continuous processes consisting of
functions u(t, x) such that E‖u(t, x)‖p ≤ M∗E‖u‖pe–ηt , t ≥ , where M∗ > ,  < η < γ . We
denote the norm in H by ‖u(t, x)‖H := supt≥ E‖u(t, x)‖p. Next, we divide the proof into
two parts.

In part , we deduce the exponential stability of the basic solution of the homogeneous
equation of (.), and in part , we employ the fixed point principle to discuss the case of
the nonhomogeneous equation.

Part : Analysis of the basic solution.
The mild solution of (.) can be expressed as follows:

u(t, x) = e(A–A)tu +
∫ t


e(A–A)(t–s)α

(
r(s)

)
u(s, x) ds

+
∫ t


e(A–A)(t–s)β

(
r(s)

)
u(s, x) dB(s), (.)

where e(A–A)tu =
∫
�

G(x – y)u(y) dy is the solution of

ut = Au – Au (.)

with the initial value u, and G(t, x) is the basic solution of (.).
Taking the Fourier transform of (.), we obtain

ût +
(|ξ | + |ξ |)û = . (.)

Hence, we have

Ĝ(t)(ξ ) = e–(|ξ |+|ξ |)t , (.)

and then

G(t, x) = F–(e–(|ξ |+|ξ |)t) = G(t, x) ∗ G(t, x). (.)



Wei et al. Advances in Difference Equations  (2016) 2016:65 Page 5 of 10

Here F– denotes the inverse Fourier transform, ‘∗’ denotes the convolution of G(t, x)
and G(t, x), G(t, x) is the basic solution of

ut – Au =  (.)

with Ĝ(t)(ξ ) = e–|ξ |t , whereas G(t, x) is the basic solution of

ut + Au =  (.)

with Ĝ(t)(ξ ) = e–|ξ |t . By [] we see that the decay behavior of solution for (.) is as
follows:

∥
∥G(t, x)

∥
∥

p ≤ C(p)t– 
 (– 

p ) (p ≥ ). (.)

We denote eAt := G(x, t), e–At := G(x, t), and e(A–A)t := G(x, t). Then it follows from
(.), (.), Assumption (A), and the Young inequality with convolution that

∥
∥e(A–A)t∥∥ =

∥
∥G(t, ·)∥∥ =

∥
∥G(t, ·) ∗ G(t, ·)∥∥

≤ ∥
∥G(t, ·)∥∥∥

∥G(t, ·)∥∥ ≤ C
∥
∥G(t, ·)∥∥

= C
∥
∥etA∥

∥ ≤ M̃e–γ t . (.)

Hence, we get the exponential stability of the basic solution e(A–A)t of (.).
Part : We will discuss the existence, uniqueness, and exponential stability of the mild

solution to (.).
We derive the operator φ : H → H as follows:

⎧
⎪⎨

⎪⎩

φ(u)(t) = e(A–A)tu +
∫ t

 e(A–A)(t–s)α(r(s))u(s, x) ds
+

∫ t
 e(A–A)(t–s)β(r(s))u(s, x) dB(s),

φ(u)() = u.

It is easy to prove that the following holds by the Cp inequality:

E
∥
∥φ(u)(t)

∥
∥p ≤ p–E

∥
∥e(A–A)tu

∥
∥p + p–E

∥
∥
∥
∥

∫ t


e(A–A)(t–s)α

(
r(s)

)
u(s, x) ds

∥
∥
∥
∥

p

+ p–E
∥
∥
∥
∥

∫ t


e(A–A)(t–s)β

(
r(s)

)
u(s, x) dB(s)

∥
∥
∥
∥

p

:= p–
∑

i=

E
∥
∥Ii(t)

∥
∥p. (.)

Next, we will divide the proof into three steps.
Claim : φ is continuous in the pth moment on [, +∞).
Proof of Claim : Let u ∈ H , t ≥ , and |r| be sufficiently small. Then we get

E
∥
∥I(t + r) – I(t)

∥
∥p = E

∥
∥e(A–A)(t+r)u – e(A–A)t u

∥
∥p

≤ E
∥
∥e(A–A)t u

(
e(A–A)r – 

)∥∥p → 
(|r| → 

)
; (.)
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E
∥
∥I(t + r) – I(t)

∥
∥p = E

∥
∥
∥
∥

∫ t+r


e(A–A)(t+r–s)α

(
r(s)

)
u(s, x) ds

–
∫ t


e(A–A)(t–s)α

(
r(s)

)
u(s, x) ds

∥
∥
∥
∥

p

= E
∥
∥
∥
∥

∫ t


e(A–A)(t+r–s)α

(
r(s)

)
u(s, x) ds

+
∫ t+r

t

e(A–A)(t+r–s)α
(
r(s)

)
u(s, x) ds

–
∫ t


e(A–A)(t–s)α

(
r(s)

)
u(s, x) ds

∥
∥
∥
∥

p

≤ p–E
∥
∥
∥
∥

∫ t


e(A–A)(t–s)α

(
r(s)

)
u(s, x)

(
e(A–A)r – 

)
ds

∥
∥
∥
∥

p

+ p–E
∥
∥
∥
∥

∫ t+r

t

e(A–A)(t+r–s)α
(
r(s)

)
u(s, x) ds

∥
∥
∥
∥

p

→ 
(|r| → 

)
. (.)

Then, by the BDG inequality (Lemma ) and (.), the following holds as |r| → :

E
∥
∥I(t + r) – I(t)

∥
∥p

= E
∥
∥
∥
∥

∫ t+r


e(A–A)(t+r–s)β

(
r(s)

)
u(s, x) dB(s) –

∫ t


e(A–A)(t–s)β

(
r(s)

)
u(s, x) dB(s)

∥
∥
∥
∥

p

≤ p–E
∥
∥
∥
∥

∫ t


e(A–A)(t–s)β

(
r(s)

)
u(s, x)

(
e(A–A)r – 

)
dB(s)

∥
∥
∥
∥

p

+ p–E
∥
∥
∥
∥

∫ t+r

t

e(A–A)(t+r–s)β
(
r(s)

)
u(s, x) dB(s)

∥
∥
∥
∥

p

≤ p–JpE
(∫ t


M̃e–(t–s)∥∥β

(
r(s)

)
u(s, x)

(
e(A–A)r – 

)∥
∥ ds

)p


+ p–JpE
(∫ t+r

t

M̃e–(t+r–s)∥∥β
(
r(s)

)
u(s, x)

∥
∥ ds

)p


→ 
(|r| → 

)
. (.)

Hence, we see that φ is pth continuous on [, +∞).
Claim : φ(H) is contained in H .
Proof of Claim : It follows from (.) and (.) that

E
∥
∥I(t)

∥
∥p = E

∥
∥e(A–A)tu

∥
∥p ≤ M̃pe–pγ tE‖u‖p ≤ M̃pe–ηtE‖u‖p. (.)

By Assumptions (A) and (A), (.), and by the Hölder inequality we have

E
∥
∥I(t)

∥
∥p = E

∥
∥
∥
∥

∫ t


e(A–A)(t–s)α

(
r(s)

)
u(s, x) ds

∥
∥
∥
∥

p

≤ M̃pE
(∫ t


e–γ (t–s)∣∣α

(
r(s)

)∣
∣
∥
∥u(s, x)

∥
∥ds

)p
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= M̃pE
(∫ t


e–γ (t–s)(– 

p )e–γ (t–s) 
p
∣
∣α

(
r(s)

)∣
∣
∥
∥u(s, x)

∥
∥ds

)p

≤ M̃pE
(∫ t


e–γ (t–s) ds

)
p–

∫ t


e–γ (t–s)∣∣α

(
r(s)

)∣∣p∥∥u(s, x)
∥
∥p ds

≤ M̃p

γ p– E
∫ t


e–γ (t–s)∣∣α

(
r(s)

)∣
∣p∥∥u(s, x)

∥
∥p ds

≤ M̃p|α∗|p
γ p– E

∫ t


e–γ (t–s)∥∥u(s, x)

∥
∥p ds

≤ M̃p|α∗|p
γ p–

∫ t


e–γ (t–s)M∗E‖u‖pe–ηt ds

≤ M̃pM∗|α∗|p
γ p– E‖u‖p

∫ t


e–γ (t–s)e–ηt ds

≤ M̃pM∗|α∗|p
γ p–(γ – η)

E‖u‖pe–ηt , (.)

E
∥
∥I(t)

∥
∥p = E

∥
∥
∥
∥

∫ t


e(A–A)(t–s)β

(
r(s)

)
u(s, x) dB(s)

∥
∥
∥
∥

p

≤ M̃pJpE
(∫ t


e–γ (t–s)∣∣β

(
r(s)

)∣
∣∥∥u(s, x)

∥
∥

ds
) p



≤ M̃pJpE
(∫ t


e–γ (t–s)(– 

p )e–γ (t–s) 
p
∣
∣β

(
r(s)

)∣
∣∥∥u(s, x)

∥
∥


ds

) p


≤ M̃pJpE
(∫ t


e–γ (t–s) ds

)
p
 –

∫ t


e–γ (t–s)∣∣β

(
r(s)

)∣∣p∥∥u(s, x)
∥
∥p ds

≤ M̃pJp

(γ )
p
 –

∣
∣β∗∣∣p

∫ t


e–γ (t–s)E

∥
∥u(s, x)

∥
∥p ds

≤ M̃pJp

(γ )
p
 –

∣
∣β∗∣∣pM∗

∫ t


e–γ (t–s)E‖u‖pe–ηs ds

≤ M̃pJp

(γ )
p
 –

∣
∣β∗∣∣pM∗E‖u‖p

∫ t


e–γ (t–s)e–ηs ds

≤ M̃pM∗Jp|β∗|p
(γ )

p
 –(γ – η)

E‖u‖pe–ηt . (.)

From (.)-(.) it is easy to see that

E
∥
∥φ(u)(t)

∥
∥p ≤ kE

∥
∥φ(u)()

∥
∥pe–ηt , (.)

where k = p–M̃p( + M∗|α∗|p
γ p–(γ –η) + M∗JP |β∗|p

(γ –η)(γ )
p
 –

), which means that φ(H) ⊆ H .

Claim : φ is contractive for arbitrary u, v ∈ H with u(, x) = v(, x) = u(x).
Proof of Claim : Consider the following:

E sup
≤t<∞

∥
∥φ(u)(t) – φ(v)(t)

∥
∥p

≤ p–E sup
≤t<∞

∥
∥
∥
∥

∫ t


e(A–A)(t–s)α

(
r(s)

)(
u(s, x) – v(s, x)

)
ds

∥
∥
∥
∥

p
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+ p–E sup
≤t<∞

∥
∥
∥
∥

∫ t


e(A–A)(t–s)β

(
r(s)

)(
u(s, x) – v(s, x)

)
dB(s)

∥
∥
∥
∥

p

≤ p–M̃pE sup
≤t<∞

(∫ t


e–γ (t–s)∣∣α

(
r(s)

)∣∣
∥
∥u(s, x) – v(s, x)

∥
∥ds

)p

+ p–M̃pJpE sup
≤t<∞

(∫ t


e–γ (t–s)∣∣β

(
r(s)

)∣∣∥∥u(s, x) – v(s, x)
∥
∥ ds

) p


≤ p– M̃p|α∗|p
γ p– E sup

≤t<∞

∫ t


e–γ (t–s)∥∥u(s, x) – v(s, x)

∥
∥p ds

+ p– M̃pJp|β∗|p
(γ )

p
 –

E sup
≤t<∞

∫ t


e–γ (t–s)∥∥u(s, x) – v(s, x)

∥
∥p ds

≤ p– M̃p|α∗|p
γ p– E sup

≤t<∞

∥
∥u(s, x) – v(s, x)

∥
∥p

∫ t


e–γ (t–s) ds

+ p– M̃pJp|β∗|p
(γ )

p
 –

E sup
≤t<∞

∥
∥u(s, x) – v(s, x)

∥
∥p

∫ t


e–γ (t–s) ds

≤ p– M̃p|α∗|p
γ p E sup

≤t<∞

∥
∥u(s, x) – v(s, x)

∥
∥p

+ p– M̃pJp|β∗|p
(γ )

p


E sup
≤t<∞

∥
∥u(s, x) – v(s, x)

∥
∥p

≤ k̃E sup
≤t<∞

∥
∥u(s, x) – v(s, x)

∥
∥p, (.)

where

k̃ =
p–M̃p|α∗|p

γ p +
p–M̃pJp|β∗|p

(γ )
p


. (.)

Recalling condition (.) and noting that k̃ ∈ (, ), we see that φ is a contractive map-
ping. By the fixed point theory we derive that φ has a unique fixed point u(t, x) in H , which
is also exponentially stable in the pth moment from the proofs of the two parts.

Therefore, the proof of the desired assertion in Theorem  is completed. �

Remark  If p = , then it is obvious that (.) is mean square exponentially stable.

Remark  In Theorem , we apply the fixed point theory to obtain the existence and
uniqueness of the solution for a class of linear hybrid stochastic fourth-order parabolic
equations. In fact, if we add some proper assumptions, then we can also get some good
results for the nonlinear case. We leave this for the future work.

4 Two examples
In this section, we provide two examples for stochastic fourth-order parabolic equations
with Markovian switching as applications of our main results.
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Example  Consider the following stochastic fourth-order parabolic equation with
Markovian switching:

⎧
⎪⎨

⎪⎩

∂u(t,x)
∂t = Au – Au + α

(
r(t)

)
u(t, x) + β

(
r(t)

)
u(t, x)Ḃ(t), x ∈ (,π ), t > ,

u(t, ) = u(t,π ) = , t > ,
u(, x) =

√
π
 cos x, x ∈ (,π ),

(.)

where {r(t), t ≥ } takes values in S = {, } with generator � = (γij)×:

–γ = γ = , –γ = γ = q > , (.)

which implies that the Markov chain {r(t), t ≥ } has a unique invariant measure π =
(π,π) = (q/q + , /q + ). Take α() = a/M̃, α() = b/M̃, α() = c/M̃, α() = d/M̃, where
a, b, c, d ∈ R, M̃ are some constants. Recall that A is an infinitesimal generator with a
strongly continuous semigroup etA, t ≥ , so that the eigenfunctions of –A are en(x) =
√

π
 sin nx ∈ D(A), n = , , . . . , and the relevant eigenvalues of A are λn = n, that is,

Au =
∑∞

n= –n〈u, en〉H en, and we can easily get etAu =
∑∞

n= e–nt〈u, en〉Hen, u ∈ H , and
‖etA‖ ≤ e–πt , t ≥ . So we have γ = π, M = . Then it is easy to compute

k̃ =
p–

πp [a ∨ b]p +
√

p–Jp

πp [c ∨ d]p. (.)

So we can conclude that system (.) is pth moment exponentially stable if k̃ < .

Example  We consider the stochastic fourth-order parabolic equation (.) with the in-
finite state space S in which the Markov chain {r(t), t ≥ } takes values.

Let {r(t), t ≥ } in (.) be a right-continuous Markov chain that takes values in an in-

finite state space S = {, , . . .}. Take αi = 
M̃i

and βi = Jp
– 

p

M̃i
, where M̃ is some constant.

Then

∣
∣α∗∣∣ = sup

≤i≤N

∣
∣
∣
∣


M̃i

∣
∣
∣
∣ =


M̃

,
∣
∣β∗∣∣ = sup

≤i≤N

∣
∣
∣
∣
Jp

– 
p

M̃i

∣
∣
∣
∣ =

Jp
– 

p

M̃
. (.)

It is easy to conclude that

k̃ =


πp +
(
√

)p–

πp ∈ (, ). (.)

Therefore, by Theorem  we see that (.) is pth moment exponentially stable.

Remark  The state space S in Example  in which Markov chain {r(t), t ≥ } takes values
is infinite, so generally we can get the pth moment exponential stability of the solution by
assuming the space to be finite.

Remark  If p = ,then (.) is mean square exponentially stable.
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Remark  It should be mentioned that Bao et al. [] applied the large derivative tech-
nique to discuss the Lyapunov exponent stability of hybrid stochastic heat equation. Dif-
ferently from [], we have studied the pth moment exponential stability of hybrid stochas-
tic fourth-order parabolic equations. Moreover, we employ the fixed point theory, which
is different from the method of [].

5 Conclusions
In this paper, we have studied the stability problem of a class of hybrid stochastic fourth-
order parabolic equations. Based on the fixed point theory and Bukholder-Davis-Gundy
inequality, we not only established the existence and uniqueness of the equation in an
infinite state space, but also proved the pth moment exponential stability of the system.
Moreover, at the end of this paper, we gave two simple examples to verify all our con-
ditions. In the future work, we will focus ourselves on the stability of more complicated
models such as nonlinear hybrid stochastic fourth-order parabolic equations with Markov
chains and variable time delay.
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