2,174 research outputs found

    ASIC Implementation of Time-Domain Digital Backpropagation with Deep-Learned Chromatic Dispersion Filters

    Full text link
    We consider time-domain digital backpropagation with chromatic dispersion filters jointly optimized and quantized using machine-learning techniques. Compared to the baseline implementations, we show improved BER performance and >40% power dissipation reductions in 28-nm CMOS.Comment: 3 pages, 3 figures, updated reference list, added one sentence in the result section for clarit

    Performance of an Echo Canceller and Channel Estimator for On-Channel Repeaters in DVB-T/H Networks

    Get PDF
    This paper investigates the design and performance of an FIR echo canceller for on-channel repeaters in DVB-T/H network within the framework of the PLUTO project. The possible approaches for echo cancellation are briefly reviewed and the main guidelines for the design of such systems are presented. The main system parameters are discussed. The performance of an FIR echo canceller based on an open loop feedforward approach for channel estimation is tested for different radio channel conditions and for different number of taps of the FIR filter. It is shown that a minimum number of taps is recommended to achieve a certain mean rejection ratio or isolation depending on the type of channel. The expected degradation in performance due to the use of fixed point rather than floating point arithmetic in hardware implementation is presented for different number of bits. Channel estimation based on training sequences is investigated. The performance of Maximum Length Sequences and Constant Amplitude Zero Autocorrelation (CAZAC) Sequences is compared for different channels. Recommendations are given for training sequence type, length and level for DVB-T/H on-channel repeater deployment

    Residue Number Systems: a Survey

    Get PDF

    Multiplierless CSD techniques for high performance FPGA implementation of digital filters.

    Get PDF
    I leverage FastCSD to develop a new, high performance iterative multiplierless structure based on a novel real-time CSD recoding, so that more zero partial products are introduced. Up to 66.7% zero partial products occur compared to 50% in the traditional modified Booth's recoding. Also, this structure reduces the non-zero partial products to a minimum. As a result, the number of arithmetic operations in the carry-save structure is reduced. Thus, an overall speed-up, as well as low-power consumption can be achieved. Furthermore, because the proposed structure involves real time CSD recoding and does not require a fixed value for the multiplier input to be known a priori, the proposed multiplier can be applied to implement digital filters with non-fixed filter coefficients, such as adaptive filters.My work is based on a dramatic new technique for converting between 2's complement and CSD number systems, and results in high-performance structures that are particularly effective for implementing adaptive systems in reconfigurable logic.My research focus is on two key ideas for improving DSP performance: (1) Develop new high performance, efficient shift-add techniques ("multiplierless") to implement the multiply-add operations without the need for a traditional multiplier structure. (2) There is a growing trend toward design prototyping and even production in FPGAs as opposed to dedicated DSP processors or ASICs; leverage this trend synergistically with the new multiplierless structures to improve performance.Implementation of digital signal processing (DSP) algorithms in hardware, such as field programmable gate arrays (FPGAs), requires a large number of multipliers. Fast, low area multiply-adds have become critical in modern commercial and military DSP applications. In many contemporary real-time DSP and multimedia applications, system performance is severely impacted by the limitations of currently available speed, energy efficiency, and area requirement of an onboard silicon multiplier.I also introduce a new multi-input Canonical Signed Digit (CSD) multiplier unit, which requires fewer shift/add/subtract operations and reduced CSD number conversion overhead compared to existing techniques. This results in reduced power consumption and area requirements in the hardware implementation of DSP algorithms. Furthermore, because all the products are produced simultaneously, the multiplication speed and thus the throughput are improved. The multi-input multiplier unit is applied to implement digital filters with non-fixed filter coefficients, such as adaptive filters. The implementation cost of these digital filters can be further reduced by limiting the wordlength of the input signal with little or no sacrifice to the filter performance, which is confirmed by my simulation results. The proposed multiplier unit can also be applied to other DSP algorithms, such as digital filter banks or matrix and vector multiplications.Finally, the tradeoff between filter order and coefficient length in the design and implementation of high-performance filters in Field Programmable Gate Arrays (FPGAs) is discussed. Non-minimum order FIR filters are designed for implementation using Canonical Signed Digit (CSD) multiplierless implementation techniques. By increasing the filter order, the length of the coefficients can be decreased without reducing the filter performance. Thus, an overall hardware savings can be achieved.Adaptive system implementations require real-time conversion of coefficients to Canonical Signed Digit (CSD) or similar representations to benefit from multiplierless techniques for implementing filters. Multiplierless approaches are used to reduce the hardware and increase the throughput. This dissertation introduces the first non-iterative hardware algorithm to convert 2's complement numbers to their CSD representations (FastCSD) using a fixed number of shift and logic operations. As a result, the power consumption and area requirements required for hardware implementation of DSP algorithms in which the coefficients are not known a priori can be greatly reduced. Because all CSD digits are produced simultaneously, the conversion speed and thus the throughput are improved when compared to overlap-and-scan techniques such as Booth's recoding

    Optimized Trigger for Ultra-High-Energy Cosmic-Ray and Neutrino Observations with the Low Frequency Radio Array

    Get PDF
    When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.Comment: Submitted to Nuclear Instruments and Methods in Physics Research Section

    Revisiting Multi-Step Nonlinearity Compensation with Machine Learning

    Get PDF
    For the efficient compensation of fiber nonlinearity, one of the guiding principles appears to be: fewer steps are better and more efficient. We challenge this assumption and show that carefully designed multi-step approaches can lead to better performance-complexity trade-offs than their few-step counterparts.Comment: 4 pages, 3 figures, This is a preprint of a paper submitted to the 2019 European Conference on Optical Communicatio

    Programmable Switched Capacitor Finite Impulse Response Filter with Circular Memory Implemented in CMOS 0.18ÎĽm Technology

    Get PDF
    This paper presents a programmable multi-mode finite impulse response (FIR) filter implemented as switched capacitor (SC) technique in CMOS 0.18ÎĽm technology. Intended application of the described circuit is in analog base-band filtering in GSM/WCDMA systems. The proposed filter features a regular structure that allows for elimination of some parasitic capacitances, thus significantly improving the filtering accuracy. Due to its modularity that allows for dividing the circuit into two separate sections, the circuit can be easily reconfigured to work as either infinite impulse response (IIR) or as finite impulse (FIR) filter. One of the key components that allows for this multi-mode operation is the proposed programmable and ultra low power multiphase clock circuit. The 24-taps filter for the sampling frequency of 30MHz dissipates power of 4.5mW from a 1.8V suppl
    • …
    corecore