

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Residue Number Systems: a Survey

Nannarelli, Alberto; Re, Marco

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nannarelli, A., & Re, M. (2008). Residue Number Systems: a Survey. Kgs. Lyngby: Technical University of
Denmark, DTU Informatics, Building 321. (D T U Compute. Technical Report; No. 2008-04).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13714386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/residue-number-systems-a-survey(779bf689-cc55-46b4-8250-ebcb871fcfd1).html

IMM-Technical Report-2008-04

Residue Number Systems: a Survey

Alberto Nannarelli(1), Marco Re(2)

(1)DTU Informatics
Technical University of Denmark

Kongens Lyngby, Denmark

Email: an@imm.dtu.dk

(2)Department of Electronic Engineering
University of Rome Tor Vergata,

Rome, Italy
Email: marco.re@uniroma2.it

May 30, 2008

Contents

List of Figures . iii

List of Tables . v

List of Abbreviations . vi

1 Introduction 1

1.1 History of Residue Number System 2

1.2 Basic Theory of Residue Number System 3

1.2.1 The Isomorphism Technique 4

1.3 Input/Output Conversion . 6

1.3.1 Input Conversion . 6

1.3.2 Output Conversion . 7

1.4 Moduli Selection . 8

1.5 Scaling . 9

1.6 Quadratic Residue Number System 10

1.7 RNS and Fault-Tolerance . 11

2 Implementation Aspects 13

2.1 Modular Addition . 13

2.2 Modular Multiplication . 14

2.3 Reduction to Modulus m . 16

2.4 Input/Output Conversion . 17

2.4.1 Input Conversion . 17

2.4.2 Output Conversion . 22

3 Case Study: FIR Filters 29

3.1 RNS Implementation of FIR Filters 32

3.2 FIR Filters in Transposed Form . 32

3.2.1 Transposed FIR Filters in TCS 32

i

3.2.2 Transposed FIR Filters in RNS 34

3.2.3 Transposed Truncated FIR Filters in TCS 36

3.2.4 Transposed FIR Filters: Summary 36

3.3 FIR Filters in Direct Form . 39

3.3.1 Direct FIR Filters in TCS 39

3.3.2 Direct FIR Filters in RNS 40

3.3.3 Direct FIR Filters: Summary 41

3.4 RNS Coding Overhead . 41

3.4.1 Coding Overhead . 43

3.4.2 Design Space Exploration 44

3.5 Carry-Save RNS Filter . 48

3.6 Low Power RNS Implementation 50

3.6.1 Multi-Voltage RNS Filter 50

3.6.2 Low Leakage Dual Threshold Voltage RNS Filter 51

3.6.3 Results of Implementations 54

3.7 Complex FIR Filters . 56

3.7.1 Comparison TCS vs. QRNS 58

3.8 FPGA Implementation . 60

3.8.1 The Experimental Set-Up 60

3.8.2 Results . 60

3.9 ASIC vs. FPGA Implementations 64

3.9.1 ASIC-SC: Power Consumption Contributions 65

3.9.2 Analysis of Experimental Results: ASIC-SC 69

3.9.3 FPGA: Power Consumption Contributions 70

3.9.4 Analysis of Experimental Results: FPGA 72

4 Tools 73

4.1 Tool Description . 73

4.2 Architecture Chooser . 75

4.3 Characterization . 75

4.4 Examples and Results . 76

5 Conclusions and Future Work 77

5.1 DSP Functions of Interest and Applications 77

5.2 Proposal for Further Developments 79

ii

Acknowledgments 81

Bibliography 81

iii

List of Figures

1.1 Example of N → RNS mapping. 4

1.2 The isomorphism table for m = 11. 5

1.3 The isomorphism multiplication rule. 5

1.4 Input converter generic architecture. 6

2.1 Architecture of the modular adder. 14

2.2 Structure of isomorphic multiplication. 15

2.3 Modulo reduction block architecture 17

2.4 Hardware implementation of the input converter for N = 7 and
m = 17. 21

2.5 Output converter architecture. 27

2.6 Implementation of output converter. 28

3.1 FIR filters in transposed (top) and direct (bottom) form. 30

3.2 Truncation schemes. 31

3.3 Architecture of RNS FIR filters. 32

3.4 TCS FIR filter in transposed form. 33

3.5 Tap structure for the transposed TCS FIR filter. 33

3.6 RNS FIR filter in transposed form. 35

3.7 Trends for transposed FIR filters: area (top) and power dissipation
(bottom). 38

3.8 TCS FIR filter in direct form. 39

3.9 RNS FIR filter in direct form. 41

3.10 Trends for direct FIR filters: delay critical path (top) and area
(bottom). 42

3.11 Results of EXP-1: direct and transposed TCS vs. RNS 46

3.12 Results of EXP-2: transposed TCS vs. RNS 47

3.13 Results of EXP-3: complete filter TCS vs. RNS 48

iv

3.14 Structure of FIR filter in transposed form and its critical path. . . 48

3.15 Tap structure for RNS carry-save. 49

3.16 Relay station. 49

3.17 The HS and LL cells mix depends on the synthesis timing constraint. 53

3.18 Summary of results for low power filters. 55

3.19 Dynamic (top) and static (bottom) power dissipation (TCS vs.
RNS). 57

3.20 Structure of QRNS filter. 58

3.21 Structure of tap in complex TCS FIR filter. 59

3.22 FPGA Measurement set-up. 61

3.23 Plots of ETCS , ERNS and ECSRNS 62

3.24 Photo of the test bed. 63

3.25 Comparisons of TCS and RNS implementations of FIR filters (ASIC-
SC) . 66

3.26 ASIC-SC power contributions . 67

3.27 Contributions to the node capacitance. 68

3.28 Increasing of node capacitances with complexity 69

3.29 Power consumption breakdown for FPGA implementation 71

4.1 Tool interface for the designer. 74

4.2 Structure of the tool. 75

v

List of Tables

1.1 Example of QRNS multiplication mod 13. 11

2.1 Example of isomorphic transformation for m = 5 (q = 2). 15

2.2 Input converter comparison. 20

3.1 FIR filters in transposed form: summary of results. 37

3.2 FIR filters in direct form: summary of results. 43

3.3 Moduli set and dynamic range for EXP-1. 45

3.4 Moduli set and dynamic range for EXP-2. 47

3.5 Delay, area and power dissipation per tap in RNS FIR. 50

3.6 Power dissipation for multiple supply voltage in tap. 51

3.7 Impact of leakage on technology scaling. 52

3.8 Filter dual-Vt implementations: results. 56

3.9 Complex filters: summary of results. 59

3.10 Measurements of average power consumption and Ec. 62

3.11 Expressions of Ec for the different filters. 63

3.12 Area, power and globality ratios for the ASIC-SC implementation . 69

3.13 Interconnects in FPGA. 70

3.14 Area, power and globality ratios for FPGA implementation. 72

4.1 Area estimation for generated filters. 76

vi

List of Abbreviations

AC Architecture Choser
ASIC-SC Application Specific Integrated Circuit-Standard Cell
CPP Cyclic Convolution Property
CRC Cyclic Convolution Codes
CRT Chinese Remainder Theorem
CS Carry-Save
DFT Discrete Fourier Transform
DIT Direct Isomorphic Transformation
DSE Design Space Exploration
DSP Digital Signal Processing or Processor
FFT Fast Fourier Transform
FIR Finite Impulse Response
FPGA Field Programmable Gate Array
GF Galois Field
GI Globality Index
HS High Speed
IFFT Inverse Fast Fourier Transform
IIT Inverse Isomorphic Transformation
INTT Inverse Number Theoretic Transform
LL Low Leakage
LSB Least Significant Bit
LUT Look-Up-Table
MRC Mixed Radix Conversion
MRS Mixed Radix System (Number System)
MSB Most Significant Bit
MV-RNS Multi Voltage RNS
NTT Number Theoretic Transform
OH Coding Overhead
PFA Prime Factor Algorithm
QRNS Quadratic Residue Number System
RNS Residue Number System
RNS-PC Residue Number System Product Code
RRNS Redundant Residue Number System

vii

RS Reed-Solomon
RTL Register Transfer Level
TCS Two’s Complement System
VB VHDL Builder
VHDL VHSIC Hardware Description Language

viii

Chapter 1

Introduction

The use of alternative number systems in the implementation of application specific
Digital Signal Processing (DSP) systems has gained a remarkable importance in
recent years. In particular, the renewed success of the Residue Number System
(RNS) is mainly related to the request of low power consumption and high speed,
but it is also related to the availability of hardware platforms, such as FPGAs,
particularly suitable for the implementation of RNS arithmetic blocks. In fact, the
RNS operations are often based on Look-Up Tables (LUTs) which are the basic
building blocks in modern FPGAs. The main purpose of this report is

• introduction of the basic theoretical aspects of the Residue Number System
(RNS)

• discussion of the DSP operations that can take advantage from the RNS
arithmetic

• discussion of the critical operations

• description of the architecture of the basic building blocks used in DSP
systems

• description of a ”killer application” such as FIR filtering in order to prove
the effectiveness of RNS in terms of area, speed and power consumption

• CAD tool that can free the designer from the RNS non conventional math-
ematical aspects

• overview of the state of the art in terms of patents and industrial applications

• motivations for future work.

1

1.1 History of Residue Number System

The basic modular arithmetic formal theory has been written by important math-
ematicians such as for example Fermat, Eulero and Gauss, during the sixteenth,
seventeenth and nineteenth centuries. The introduction of the use of modular
arithmetic in applied sciences and in particular in electronic engineering happened
during the fifties together with the explosion of the computer technology. In partic-
ular, during the fifties the experimentation started both, in digital signal processing
and computer arithmetic fields. In 1955 and the following years, the first computer
based on residue arithmetic principles was built by Svoboda and Valach [1], [2],[3],
in Czechoslovakia, by using the vacuum tube technology of the day. At the end of
the fifties and in the first years of the sixties, at the Harvard Computation Labora-
tory [4] at the University of Harvard, at RCA [5], at Lockheed Missiles and Space
Company [6] and at Westinghouse [7], important research started on the subject
of modular arithmetic and on the Residue Number System. In those years, the
main interest was focused on the design and implementation of On Board Pro-
cessors (OBP) for space, avionic and military applications characterized by high
speed and very high reliability. In fact, the RNS representation is a non positional
number representation that is intrinsically parallel and consequently for some im-
portant arithmetic operations (such as for example addition and multiplication) it
corresponds to very fast architectures.

Moreover, its arithmetic structure characterized by lack of communication be-
tween the modular processors suggests its use in high reliability systems. In the
subsequent years before the explosion of the Digital Signal Processing (DSP) and
Very Large Scale Integration (VLSI) era, the use of RNS based electronic sys-
tems was relegated to very special applications. After that, these two new fields
pushed for rediscovering RNS. In fact the new DSP algorithmic techniques were
based on basic arithmetic operators (e.g. linear combinations of integer numbers).
Moreover, with the advent of VLSI the implementation of RNS operators were
facilitated (a very efficient implementation of RNS is obtained by using LUTs).
Two other important points that are the key of the renewed interest for RNS are

1. Low power consumption

2. High reliable systems (Fault Tolerance)

The importance of power consumption is related to two important field of appli-
cations

• Low power for portable multimedia applications and embedded computing

• Low power to permit the use of new devices such as for example Field Pro-
grammable Gate Arrays (FPGAs) in power critical applications. In fact, it
is well known, that the flexibility and computational power of the modern
FPGAs comes at the cost of very high power consumption.

2

The importance of high reliability in the design of complex digital systems also
in the case of non special applications (such as space or military) is related to
the extensive use of digital electronics in transportation, but more importantly, it
is related to the scaling of the electronic technologies. It is well known, in fact,
the effect of high energy particles and radiations (now these effects are important
also at the sea level) for the modern nano-technologies that are used in the most
advanced CMOS processes [8], [9]. For this reason, the use of a number represen-
tation that intrinsically enables low power, parallelism (speed) and fault tolerance
(reliability) becomes a useful design choice for the IC designer.

1.2 Basic Theory of Residue Number System

A Residue Number System is defined by a set of relatively prime integers

{m1,m2, . . . ,mP } .

The dynamic range of the system is given by the product of all the moduli mi:

M = m1 · m2 · . . . · mP .

Any integer X ∈ [0,M − 1] has a unique RNS representation given by:

X
RNS
→ (〈X〉m1

, 〈X〉m2
, . . . , 〈X〉mP

)

where

〈X〉mi
= X mod mi

(
e.g.

X

mi
= qi + 〈X〉mi

)

and qi is the integer quotient of X
mi

, and 〈X〉mi
is its remainder (0 ≤ 〈X〉mi

< mi).
A comprehensive description of the RNS theory and its application to computer
systems can be found in [10], [11], [12] and [13].

Figure 1.1 illustrates an example of RNS, with base { 5, 7, 8 } and dynamic
range M = 5 · 7 · 8 = 280, and how a positive integer from the set [0,M − 1] is
mapped into the RNS.

When signed integers are mapped in RNS two cases arises:

1. M odd: in this case the range of the RNS representation is

−
M − 1

2
≤ X ≤

M − 1

2

2. M even: in this case the range of the RNS representation is

−
M

2
≤ X ≤

M

2
− 1

3

8

7

5

{ 3, 6, 5 }

3

5

6
0 13 279

R N S

Figure 1.1: Example of N → RNS mapping.

The computation of the residues in the case of negative numbers is obtained by
complementing the residues i.e.

〈X〉mi
=

{
〈X〉mi

if X ≥ 0
〈mi − 〈|X|〉mi

〉mi
if X < 0

Operations such as addition and multiplication, are done in parallel on the different
RNS moduli

Z = X op Y
RNS
→

Zm1
= 〈Xm1

op Ym1
〉m1

Zm2
= 〈Xm2

op Ym2
〉m2

.
ZmP

= 〈XmP
op YmP

〉mP

(1.1)

and the dynamic range of each of the RNS processor channels is limited to mi − 1.

1.2.1 The Isomorphism Technique

A special technique, based on isomorphic transformations [10], can be used in
RNS to transform the modular multiplication into a simpler modular addition. It
is based on the concept of indices that are similar to logarithms, and primitive
roots r which are similar to logarithm bases. It is possible to demonstrate that if
the number m is prime there exists a number of primitive radices (the number of
the primitive radices can be computed by using the Euler’s function) that share the
following property: every element of the field F (m) = {0, 1, . . . ,m − 1} excluding
the zero element can be generated by using the following equation

F (m) =
〈
rk
〉

m
(1.2)

4

F(11) r=2 r=6 r=7 r=8

11

kr k k k k

1 0 0 0 0
2 1 9 3 7
3 8 2 4 6
4 2 8 6 4
5 4 6 2 8
6 9 1 7 3
7 7 3 1 9
8 3 7 9 1
9 6 4 8 2
10 5 5 5 5

Figure 1.2: The isomorphism table for m = 11.

1 1
7 6 9⋅ =2α =

6α =
7α =

8α =

10
9 7 6+ =

10
3 1 4+ =

10
1 7 8+ =

10
9 3 2+ =

Figure 1.3: The isomorphism multiplication rule.

where k is an integer number. In Figure 1.2 the generation of the elements for
F (11) is shown. In this case the four primitive radices {2, 6, 7, 8} can be utilized.
The product of two elements a and b belonging to the field is implemented by

1. Forward transformation of a and b in the corresponding indices

2. Addition modulo m − 1 of the two indices

3. Reverse conversion of the result of the addition to obtain the final result of
the modular product

An example of the multiplication algorithm for the different primitive radices in
the case m = 11 is illustrated in Figure 1.3.

5

Z1

ZP

X
Input

Converter
LUT

Z2

Figure 1.4: Input converter generic architecture.

1.3 Input/Output Conversion

In this Section, the basic methods for the input and output conversion in RNS
systems are illustrated. A lot of work has been presented in the literature on these
subjects [14]. Clearly, the conversions from N to RNS, and vice-versa, constitute
a significant overhead in systems implemented in RNS. However, efficient methods
to perform those conversions are presented in [15] [16], [17], and [18]. Anyhow,
when in the RNS processor the number of operations to process each input sample
increases the input and output conversion overhead becomes less important.

1.3.1 Input Conversion

The conversion of the input data in the RNS format is obtained by computing the
integer remainder of the division of Z by mi i.e. the quantity

Zi = 〈Z〉mi
(1.3)

there are many works presented in the literature on this subject. They can be
categorized depending on the class of used moduli i.e. special moduli-sets and
general moduli-sets. As stated in Section 1.4, the best approach is the use of
general moduli-sets. In this case, the use of LUTs is the most obvious possibility
and the architecture of the converter is shown in Figure 1.4. If n is the number
of input bits, the LUT size in terms of number of cells is 2n and the number of
bits that are needed for the residue binary coding is

b =
P∑

i=1

⌈log2mi⌉ (1.4)

This approach can be efficiently used when the number of bits of the data to be

6

converted in RNS is not large. A careful choice of the moduli set helps in containing
the memory resources by minimizing the coding overhead (Section 3.4.1).

In the case in which n is large, and consequently, the amount of memory
becomes too large, the techniques that can be used are based on the observation
that finding a residue of a number with respect to a given modulus is basically
obtained by computing modular sums of different combinations of modular powers
of two (as shown in Section 2.4.1). Usually these techniques are fast (systolic) and
are useful if some latency can be tolerated.

1.3.2 Output Conversion

The conversion from the RNS representation of the set Zi that represents the data
encoded in RNS, can be accomplished by two different techniques the Mixed Radix
Conversion (MRC) and the Chinese Remainder Theorem (CRT) [11]. The most
used technique for high speed implementations is the CRT that is based on the
following reconstruction formula

Z =

〈
P∑

i=1

mi · 〈mi
−1〉mi

· Zi

〉

M

= 〈H〉M (1.5)

with mi = M
mi

and mi
−1 obtained by 〈mi · mi

−1〉mi
= 1.

To better explain the CRT, we perform the conversion RNS → N for the
example of Figure 1.1. The RNS base is { 5, 7, 8 } and its dynamic range is
M = 280. We start by computing the values mi = M

mi

m1 =
280

5
= 56 m2 =

280

7
= 40 m3 =

280

8
= 35

To compute mi
−1, we have to find a number x such that

〈mi · x〉mi
= 1 (1.6)

For this reason, x is called the multiplicative inverse of mi and indicated as mi
−1.

By computer iterations, we find

m1
−1 = 1 m2

−1 = 3 m3
−1 = 3

Finally, applying (1.5) to the set of residues {3, 6, 5} we get

〈
3∑

i=1

mi · 〈mi
−1〉mi

· Zi

〉

280

= 〈 56 · 1 · 3 + 40 · 3 · 6 + 35 · 3 · 5 〉280 =

〈 1413 〉280 = 13

7

If positive and negative integers have been used in the RNS system the ouput
conversion must be slightly modified to convert the residues in a binary negative
and positive range. In particular due to the algorithm used for mapping the relative
integers (section 1.2) the following rule is used

• H belongs to the range of the signed representation: in this case the correct
value is 〈H〉M .

• H does not belong to the range of the signed representation: in this case the
result is 〈H〉M − M .

For example, given the moduli set {13, 15, 16} → M = 3120 the representation
range is X ∈ [−1560, 1559].

The conversion of the negative value X = −9
RNS
→ {4, 6, 7} is obtained by using

the CRT formula where mi = {240, 208, 195} and mi
−1 = {11, 7, 11} obtaining

〈3111〉3120 = 3111 that is out of the representation range. In this case the correct
result is X = 3111 − 3120 = −9. Vice versa, in the case of the conversione of

the value X = 9, we have X = 9
RNS
→ {9, 9, 9}. The recontructed value is

〈3129〉3120 = 9.

1.4 Moduli Selection

The choice of the moduli in a RNS based DSP system is of particular importance
because of its impact on complexity, power consumption and speed. Moreover it
is not easy to find a simple methodology for their selection due to conflicting con-
ditions. For example in order to maximize the parallelism, the maximum number
of moduli to obtain the required dynamic range should be used, but this choice is
in conflict with the implementation complexity of some important operations such
as for example Mixed Radix Conversion. In the following are indicated and briefly
illustrated a number of important criteria

1. Necessary condition: The moduli in the chosen set must be coprime.

2. Dynamic range: The moduli selected must cover the dynamic range of the
application.

3. Isomorphism technique use: in order to easily implement multiplications
by using the isomorphism technique the selected moduli must be prime.
These moduli are characterized by the existence of the primitive radices
that are the base of the isomorphism technique.

4. Balance: The differences between the moduli should be as small as pos-
sible. By this way the hardware complexity and consequently the speed
performance of each of the channel of the modular processor are similar.

8

5. Low coding overhead: Due to the fact that just one module can be a
power of two and that the other modules are not powers of two the moduli
selection should correspond to the minimum coding overhead.

6. Simplification of the arithmetic operations: The moduli can be se-
lected in order to simplify arithmetic operations. For example moduli that
are near to powers of two (such as for example mi = {2k − 1, 2k, 2k + 1})
are useful to simplify modular addition and multiplication.

7. Size of individual moduli: in order to better exploit the RNS character-
istic, in terms of parallelism and consequently speed, the individual moduli
should not be too large.

8. Parallelism: the use of a high cardinality set of moduli permits to exploit
the parallelism of the RNS representation.

9. Selection of the moduli to have unity multiplicative inverses1: in
order to simplify certain RNS operations such as for example, MRC and
CRT, a moduli selection characterized by the maximum number of unity
multiplicative inverses is an advantage.

1.5 Scaling

As stated above the RNS is very interesting for the implementation of some op-
erations, perhaps commonly used in DSP but, on the other hand, several basic
operations such as sign detection and truncation, which are trivial in two’s com-
plement, are not easily implemented in RNS. In DSP, the most common operation
affected by this problem is the scaling operation (i.e. the division by a constant
factor followed by rounding or truncation) used for reducing the dynamic range in
DSP units. In large systems, dynamic range reduction might be needed in differ-
ent parts of the datapath requiring several scaling blocks. For these reasons, the
investigation of optimized RNS scaling techniques is an important aspect of the
RNS implementation of DSP systems. The scaling techniques are mainly based on
division remainder zero and base extension and have been presented in books such
as, [19], [11]. Some specialized techniques have been presented in the literature.
These techniques can be classified in three main groups:

1. Scaling by one or several moduli of the RNS base: [20], [21], [22], [23], [24],
[25].

2. Scaling by an integer belonging to the RNS dynamic range [26].

3. Scaling by a power of two [27].

1In the CRT mi has unity multiplicative inverse when in (1.6) x = 1.

9

In the first group, different algorithms are used to reduce the dynamic range
by a scaling factor that is the product of some moduli of the RNS base. In the
second group, a factorization of the CRT (see 1.5) is exploited to scale by an integer
number S in the dynamic range of the RNS representation. Differently from the
algorithms at points 1. and 2., the last technique does not require a binary or a
Mixed Radix System (MRS) conversion since the scaling operation is completed
in the RNS domain. Moreover, scaling by a power of two is the classical way for
dynamic reduction in binary systems and it is possible to obtain a programmable
scaler with a slightly increase in the hardware complexity.

1.6 Quadratic Residue Number System

In the case of the representation of complex numbers, we can transform the imagi-
nary term into an integer if the equation q2 + 1 = 0 has two distinct roots q1 and q2

in the ring of integers modulo mi (Zmi
). A complex number xR + jxI = (xR, xI) ∈ Zmi

,
with q root of q2 + 1 = 0 in Zmi

has a unique Quadratic Residue Number System
(QRNS) [12] representation given by

(xR, xI)
QRNS
→ (Xi, X̂i) i = 0, 1, . . . , P

Xi = 〈xR + q · xI〉mi

X̂i = 〈xR − q · xI〉mi

The inverse QRNS transformation is given by

xR = 〈2−1(Xi + X̂i)〉mi

xI = 〈2−1 · q−1(Xi − X̂i)〉mi

where 2−1 and q−1 are the multiplicative inverses of 2 and q, respectively, modulo
mi:

〈2 · 2−1〉mi
= 1 and 〈q · q−1〉mi

= 1 .

Moreover, it can be proved that for all the prime integers which satisfy

p = 4k + 1 k ∈ N

the equation q2 + 1 = 0 has two distinct roots q1 and q2.

As a consequence, the product of two complex numbers xR + jxI and yR + jyI

is in QRNS

(xR + jxI)(yR + jyI)
QRNS
→ (〈XiYi〉mi

, 〈X̂iŶi〉mi
) (1.7)

and it is realized by using two integers multiplications instead of four. Table 1.1
shows an example of QRNS multiplication in the ring modulo 13.

10

example for m = 13:
q = q1 = 5 ↔ 〈5 · 5〉13 = −1
(xR + jxI)(yR + jyI) = (3 + j)(2 + j2) = 4 + j8

conversion to QRNS
X = 〈3 + 5 · 1〉13 = 8 Y = 〈2 + 5 · 2〉13 = 12

X̂ = 〈3 − 5 · 1〉13 = 11 Ŷ = 〈2 − 5 · 2〉13 = 5
multiplications

X · Y = 〈8 · 12〉13 = 5 X̂ · Ŷ = 〈11 · 5〉13 = 3
conversion from QRNS

ZR = 〈7(5 + 3)〉13 = 4 being 2−1 = 7
ZI = 〈7 · 8(5 − 3)〉13 = 8 being q−1 = 8

Table 1.1: Example of QRNS multiplication mod 13.

1.7 RNS and Fault-Tolerance

In the last decade, RNS fault-tolerant techniques have been studied extensively.
These techniques are normally based on a RNS representation with suitable re-
dundancy. In this way the resulting RNS structure can detect and correct errors
in the output data. There are two methods for adding redundancy to the RNS
representation

1. addition of one or more redundant moduli to the normal RNS representa-
tion obtaining the so called Redundant Residue Number Systems (RRNS)
representation [28]

2. use of the Residue Number System Product Code (RNS-PC) [29].

In the following a basic introduction on the general principles in RNS error de-
tection and correction techniques is given. Given a P moduli RNS representation,
the addition of K moduli, such that for each of the added moduli mi > mP (being
mP the largest modulo in the RNS representation), gives a RRNS representation.
The set of non-redundant moduli constitutes the application dynamic range M ,

M =
P∏

i=1

mi (1.8)

The remaining K moduli form the set of the redundant moduli allowing for
error detection and correction. MK is the product of the redundant moduli

MK =
K∏

i=P+1

mi (1.9)

11

From 1.8 and 1.9 derives that MT = M × MK . The interval [0,MP − 1] is
the legitimate range, while the interval [MP , MT − 1] is the illegitimate range.
This extended number of states to represent the legitimate range permits error
detection and correction [11].

For example the addition to the normal moduli set of one more modulo gives
the possibility to determine whether a single error has occurred just by checking
if it belongs to the legitimate or the illegitimate range. The same principle can be
used in order to obtain single error correction. It can be obtained by using a set
of two redundant moduli where each one must be larger than any of the moduli
in the basic set. As a general consideration, the use of these algorithms requires
MRC or CRT and consequently it is very important to rely on optimized hardware
implementations.

12

Chapter 2

Implementation Aspects

In this chapter, the architectures that implement the basic modular operations
and the conversions are described. These are the building blocks for implementing
the most important DSP algorithms such as, for example, FIR filters. Specifically,
the architectures described are:

• modular addition

• modular multiplication

• reduction to modulus m

• input and output conversions

2.1 Modular Addition

The modular addition
〈a1 + a2〉m

can be implemented by two additions. If the result of a1 + a2 exceeds the modulo
(it is larger than m− 1), we have to subtract the modulo m. In order to speed-up
the operation we can execute in parallel the two operations:

(a1 + a2) and (a1 + a2 − m).

If the sign of the three-term addition is negative, it means than the sum (a1 + a2) < m
and the modular sum is a1 + a2, otherwise the modular addition is the result of the
three-term addition. The above algorithm can be implemented with two binary
adders as shown in Figure 2.1.

The modular adder can be simplified when:

13

n−bit adder

carry−save adder

m u x

n−bit adder

0 1

−m 1 2

MSB

n
n

nn

n

1

a a

Figure 2.1: Architecture of the modular adder.

m = 2k. In this case a modulo 2k addition only requires the sum of the k least-
significant bits.

m = 2k − 1. In this case, the modulo 2k − 1 addition is computed as

a = 〈a1 + a2〉2k−1 = 〈 a1 + a2 + MSB(a1 + a2) 〉2k

and it can be implemented, eliminating the carry-save adder of Figure 2.1,
with two adders in parallel, one with carry-in set to 0, the other to 1 and
then selecting the correct result according to the MSB of the sum computed
in the adder with carry-in=0.

2.2 Modular Multiplication

Because of the complexity of modular multiplication, it is convenient to implement
the product of residues by the isomorphism technique (see Chapter 1.2.1). By using
isomorphisms, the product of the two residues is transformed into the sum of their
indices which are obtained by an isomorphic transformation. According to [10], if
m is prime there exists a primitive radix q such that its powers modulo m cover
the set [1,m − 1]:

n = 〈qw〉m with n ∈ [1,m − 1] and w ∈ [0,m − 2].

An example of isomorphic transformation is shown in Table 2.1 for m = 5. In this
case, the primitive radix is q = 2.

14

n w 〈qw〉m = n
0 N/A
1 0 〈20〉5 = 1
2 1 〈21〉5 = 2
3 3 〈23〉5 = 3
4 2 〈22〉5 = 4

Table 2.1: Example of isomorphic transformation for m = 5 (q = 2).

1
w

2
w

mod(m−1) adder

w

.
m

a
2

a
1

IIT Table

DIT Table DIT Table

a
1

a
2

Figure 2.2: Structure of isomorphic multiplication.

Both transformations n → w and w → n can be implemented with m−1 entries
look-up tables, if the moduli are not too large (less than 8-bit wide). Therefore,
the product of a1 and a2 modulo m can be obtained as:

〈a1 · a2〉m = 〈qw〉m

where
w = 〈w1 + w2〉m−1 with a1 = 〈qw1〉m and a2 = 〈qw2〉m

In order to implement the modular multiplication the following operations are
performed:

1) Two Direct Isomorphic Transformations (DIT) to obtain w1 and w2;

2) One modulo m − 1 addition 〈w1 + w2〉m−1;

3) One Inverse Isomorphic Transformations (IIT) to obtain the product.

The architecture of the isomorphic multiplier is shown in Figure 2.2. Special
attention has to be paid when one of the two operands is zero. In this case there
exists no isomorphic correspondence and the modular adder has to be bypassed.

15

For example, for the modular multiplication 〈3 · 4〉5 = 2 using the isomorphic trans-
formation of Table 2.1, we have

1) 3 = 〈23〉5
DIT
→ w1 = 3

4 = 〈22〉5
DIT
→ w2 = 2

2) 〈2 + 3〉4 = 1

3) 1
IIT
→ 〈21〉5 = 2

2.3 Reduction to Modulus m

The sum modulus m of N operands is a useful operation in residual processors in
order to avoid the growth of the data during the computations. In the following,
it is illustrated a simplified architecture for the modulus extraction introduced in
[30]. The sum of N addends mod m in general exceeds m:

N∑

j=1

pj = S > m with 0 ≤ S ≤ N(m − 1) .

For small values of N(m − 1) (e.g. N(m − 1) ≤ 27), a N(m − 1)-entry LUT
can be used to associate to each S the corresponding 〈S〉m.

For N(m− 1) > 27, the technique shown in [30] is used. The basic idea is that
by choosing an integer term k such that N ≤ 2k, it is possible to compute the
following equation

Ŝ =

∑N
j=1〈pj · 2

k〉m − α · m

2k
with

{
0 ≤ α < 2k

−m ≤ Ŝ < m

where the term α is chosen to obtain an integer value of Ŝ when divided by 2k.
The term 〈S〉m can be obtained as

〈S〉m =

{
Ŝ if Ŝ ≥ 0

Ŝ + m if Ŝ < 0

The architecture of the modulus reduction block is illustrated in Figure 2.3.
In the figure, we assume the input to the modulus reduction block in carry-save
(CS) representation: a redundant format that delays the carry-propagation to the
last stages of the architecture. The delay of the scheme in Figure 2.3 is

tmod−red(N,m) = c2⌈log2 N⌉ + c1⌈log2 m⌉ + c0

where c2, c1 and c0 are constants depending on the implementation technology.

16

m u x
0 1MSB 1

CSA 3:2

k−bit adder

table
− a m

n−kn−k

n−k+1

n−k

k

k

n−k+1

n−k

(n−k+1)−bit adder (n−k+1)−bit adder

Ss Sc

n n

m

n−k

CSA 3:2

CSA 3:2

Figure 2.3: Modulo reduction block architecture

2.4 Input/Output Conversion

The advantages of the use of RNS can be limited by the input and output con-
versions required for the translation from the binary to the RNS representation,
and vice-versa, especially when the number of operations to be executed for each
input sample it is not high. In fact, the implementation of the converters consti-
tutes a fixed overhead on the total area, delay and power dissipation. In this part
of the report some considerations on the architectures for the input and output
conversion are described.

2.4.1 Input Conversion

The input conversion, is implemented by using different techniques, from Look-Up
Table (LUT) [12] to systolic architectures [15]. Informations about different con-
version techniques can be found in a recent book [19] and some basic mathematics
is shown in Section 1.3.1. In the following, it is illustrated a general technique
for the input conversion for an odd modulus m. The architecture is based on the

17

structure presented in [15], and significant improvements are obtained by intro-
ducing a new algorithm for the computation of the modulo reduction stage. In
[15], the conversion from binary to RNS (i.e. the modulus extraction 〈X〉m) is
obtained by applying three computational steps:

1. Initial mapping (one stage).

2. Dynamic range reduction (obtained by using reduction stages whose number
and structure depend on the modulo m and the number of input bits).

3. Final mapping to the mod m ring based on LUT.

This architecture uses more than one stage for the dynamic range reduction
step. These stages introduce latency and require resources. However, the dynamic
range reduction step can simply be accomplished by introducing a scaling factor.
As described in [15], the modulo operation can be expressed as

〈X〉m =

〈
N−1∑

i=0

bi2
i

〉

m

=

〈
N−1∑

i=0

bi

〈
2i
〉
m

〉

m

=

〈
L−1∑

i=0

pi2
i

〉

m

=

⌈log2(m−1)⌉∑

i=0

di2
i (2.1)

where N is the number of bits of the input data, 〈 〉T is the mod T oper-
ator, bi are the digits of the binary representation of the number X and L =⌈
log2

∑N−1
i=0

〈
2i
〉
m

⌉
is the number of bits needed to represent the maximum value

of the summation (when all the digits bi are 1).

Multiplying both sides of (2.1) by the scale factor 2k, we obtain

k =

⌈
log2

(⌊
Pmax

m

⌋)⌉
(2.2)

In (2.2) Pmax represents the maximum value assumed by the term
∑N−1

i=0 bi

〈
2i+k

〉
m

.
This value can be evaluated by simulation. However if 2 is a primitive radix of m,
the bound for Pmax can be found analytically. In fact, the period of the sequence
〈2i〉m is P = m − 1 and the summation of its elements is m(m−1)

2 , therefore

Pmax <

(⌊
N

P

⌋
+ 1

)
m(m − 1)

2
(2.3)

Multiplying both the sides of (2.1) by 2k we obtain

18

〈X2k〉m =

〈
L−1∑

i=0

bi

〈
2i+k

〉
m

〉

m

(2.4)

and finally

X =

∑L−1
i=0 bi

〈
2i+k

〉
m
− αm

2k
=

H − αm

2k
(2.5)

In (2.5), the term αm is related to the mod m operation and its evaluation is
accomplished by using a LUT addressed by the k least significant bits (lsb’s) pi of
the term H [18]. The quantity H is evaluated by using a systolic architecture as
in [15], while the modulo extraction is performed by using the technique presented
in [18]. If the result of (2.5) is negative, a final addition of the quantity m must
be performed.

This algorithm can be extended for dealing with signed numbers. In a N
bits two’s complement representation a negative number x is represented by the
positive number X defined as

X = 2N + x (2.6)

The extension can be performed by considering the binary expression of (2.6)

X = 2N + x =

N−1∑

i=0

bi2
i (2.7)

where bN−1 represents the sign bit. That bit is 0 for positive numbers and 1 for
the negative ones. From the above expression we can obtain the number x and
applying the mod m operator on both the terms we get

〈
x〉m = 〈b0 + b12

1 + · · · + bN−1(2
N−1 − 2N)

〉
m

=

〈
L∑

i=0

pi2
i

〉

m

(2.8)

The expression is similar to that of (2.1), the only difference is that the bit bN−1

is used to add the quantity 〈2N−1 − 2N 〉m. As consequence the same architecture
can be used to convert signed and unsigned numbers and just a modification of
the constants factors is required.

In the following a numerical example shows the algorithm. Let us consider the
case of N = 4 input bits. In the case of unsigned representation the range is [0, 15].
Instead, for two’s complement representation the range is [−8, 7]. If we choose the
modulus m = 3, for two complement numbers equation (2.8) becomes

〈X〉3 = 〈b0 + b1 · 2
1 + b2 · 1 + b3 · 1〉3 (2.9)

19

Applying the above equation to the input value x = 5, whose binary represen-
tation is b0b1b2b3 = 1010 we get

〈5〉3 = 〈1 + 0 · 21 + 1 · 1 + 0 · 1〉3 = 〈2〉3 = 2 (2.10)

On the other hand, if the input assumes the value −5, corresponding to the binary
number b0b1b2b3 = 1101 eq.(2.9) becomes

〈−5〉3 = 〈1 + 1 · 21 + 0 · 1 + 1 · 1〉3 = 〈4〉3 = 1 (2.11)

The Hardware Architecture

The converter hardware architecture in the case of m = 17 and N = 7, is shown in
Figure 2.4. The LUT used to obtain the value αm, addressed by the bits p0 and
p1, is embedded in the systolic architecture. The final addition of the quantity m
(if the term H is negative) has been obtained by using a final systolic hardwired
adder. A comparison with the architecture proposed in [15] is shown in Table 2.2,
for m = 17, N = 7.

In this table, TCell represent the delay of the FA cell and TRom is the ROM
access time. The presented architecture requires less hardware resources and has
a smaller latency with respect to the architecture presented in [15]. In particular,
a LUT of 4 cells (corresponding to k = 2) is required while using the method [3]
a LUT of 32 cells must be used. A so small LUT can be easily implemented by
using very simple structures for example based on mux trees. Due to this fact,
the proposed algorithm permits to embed the LUT into the systolic architecture
without loss of speed. The advantage over the approach presented in [15] is more
evident when the number of input bits N becomes large.

HW resources This impl. Impl. [15]

Registers 65 84
FA 8 11
HA 16 8

LUT (N. of bits) 16 bits 160 bits
Latency 15 17

Tc Tcell TCell + TRom

Table 2.2: Input converter comparison.

20

Figure 2.4: Hardware implementation of the input converter for N = 7 and
m = 17.

21

2.4.2 Output Conversion

As shown in Section 1.3.2 the output conversion, is usually performed by using
the Chinese Remainder Theorem and still appears to be a crucial point in the
realization of competitive RNS systems specially when the number of operations
to be implemented in the RNS before the conversion is not high.

For the output conversion, some authors proposed the use of three moduli sets
[31], [32], [17], [33], [34] to obtain simpler and more efficient conversion architec-
tures. For example in [33] and [34] the set (2n−1, 2n, 2n+1) has been considered.
Of course, this approach reduces the exploitation of the RNS properties (the max-
imum advantages are obtained by using a lot of small value moduli as shown in
Section 1.4).

In fact, P grows with the desired wordlength and, consequently, the resulting
modular processor becomes slower. On the other hand, high speed and low power
multimedia applications require computations with large dynamic range and fine
granularity in the wordlength selection (this aspect is related to the wordlength
optimization phase in the fixed point optimization step).

Of course these requirements cannot be fully matched by using three moduli.
To overcome these problems, in a lot of applications moduli sets with more than
three moduli are required.

In [18] an efficient method for the RNS-Binary conversion, based on a set of P
moduli, has been proposed. Although this method does not limit the number of
moduli, it imposes an important limitation because only odd moduli can be used.
This reduces the RNS advantages because power of two modular arithmetic ex-
hibits very efficient implementations (for this reason, normally the greatest modulo
is chosen of the form 2h).

When (1.5) is implemented by a digital circuit two problems arise. The first one
concerns the complexity of the involved arithmetic operations (a set of modulo ad-
ditions and modulo multiplications). There are a number of methods to efficiently
implement the computation of the term H. In [35] look-up tables (LUT) are used
to compute the terms and a tree of carry save adders implements the summation.
The second problem is related to the computation of the modulo M operation.
This operation is complex [36] due to the large value of M and to the dynamic
range of the term H. In fact, from (1.5) we obtain the following bounds

0 ≤ H =

P∑

i=1

mi〈m
−1
i · Zi〉mi

≤
P∑

i=1

M

mi
· (mi − 1) < P · M (2.12)

Equation (2.12) shows the relation between the range of H and P . Moreover,
the methodologies used for the modulo computation of specific modulus set (as
those based on moduli close to powers of two) do not appear to be useful for this
modulo operation. Indeed, if we maintain the generality of the procedure, the final
modulo cannot be constrained. To obtain a more suitable form for the mod M

22

operation, let us consider the number Z · 2k being k a suitable integer quantity.
Multiplying both the members of (1.5) by 2k we obtain

〈Z · 2k〉M =

〈
P∑

i=1

mi〈m
−1
i · Zi · 2

k〉mi

〉

M

(2.13)

The terms of the summation in (2.13) have the same dynamic range as given by
(2.12) since the factor 2k appears inside a mod mi operation. Equation (2.13) can
be rewritten as

Z · 2k =
P∑

i=1

mi〈m
−1
i · Zi · 2

k〉mi
− α · M (2.14)

where α comes from the external modulo operation. From (2.14) we get

Z =

∑P
i=1 mi〈m

−1
i · Zi · 2

k〉mi
− α · M

2k
=

H − α · M

2k
(2.15)

Properties of (2.15) has been exploited in [18]. Due to the presence of a power
of two modulus, this expression cannot be directly used for the computation of
the output conversion. In the present case, (2.14) must be modified taking into
account that one of the residues, is a power of two (we suppose mP = 2h). In this
case, we have

〈Z〉2h = ZP (2.16)

From (2.16) derives that the h least significant bits of Z correspond to the h
bits of ZP . This means that the reconstruction of these bits does not require any
operation in the residue to binary conversion process. In this case, the main task
of the converter is the reconstruction of the remaining most significant bits of Z.
These bits correspond to the number ε defined as

ε =
Z − 〈Z〉2h

2h
=

Z − ZP

2h
(2.17)

Starting from this value the converted value Z can be obtained by

Z = ε · 2h + ZP . (2.18)

The ε value can be computed by introducing (2.15) in (2.17)

ε =
H−2kZP

2h − αM̃

2k
(2.19)

where M̃ = M/2h. Since the definition of the term H implies that

〈H〉2h =
〈
2kZP

〉
2h

(2.20)

23

the first term of the numerator of (2.19) is an integer quantity H̃ given by

H̃ =
H − 2kZP

2h
(2.21)

Using (2.21), (2.19) can be rewritten as

ε =
H̃ − α · M̃

2k
(2.22)

Due to the scaling by the factor 2h, this expression requires for its computation
a reduced dynamic range. Eq.(2.22) is similar to (2.15) and, as we show later, a

simplified method can be used to select the value αM̃ . In the following, all the
expressions are defined in terms of ε, H̃, M̃ .

The most difficult task, in the evaluation of (2.22), is the computation of the

term αM̃ . To solve this problem, we firstly evaluate the dynamic range of the
term H̃. Starting from (2.21) we obtain

−2k < H̃ < P · M̃ (2.23)

consequently, the factor α belongs to the interval

−2k < α < P (2.24)

Starting from this result, (2.22) suggests an efficient method to find the right

value α · M̃ to be subtracted to H̃. In fact, in order to obtain integer values of ε
(the reconstructed value), the quantity H̃ −α · M̃ must be a multiple of the factor

2k. This means that the k least significant bits of H̃ −α ·M̃ must be equal to zero.
Starting from this observation, we can derive that the correct value of the term α
belongs to the subset

Υ = {α ∈ I : 〈α · M̃〉2k = 〈H̃〉2k} (2.25)

Where I is the set of integer numbers. This subset only depends on the k least
significant bits of H̃. Unfortunately, using these bits we are able to select only 2k

values of α · M̃ , out of the P + 2k + 1 possible values, according with (2.23). If k
is chosen such that

2k ≥ P − 1 (2.26)

the values of α · M̃ can be computed starting from the 2k positive values stored
in a very small LUT. In fact, since ε must be a positive number, the quantity
H̃ −α · M̃ must be positive. If this does not happens, the obtained value of α ∈ Υ
is incorrect. From (2.23) and (2.25) the correct value is obtained by subtracting

24

2k from the incorrect one. So, if α′ is the incorrect value addressed by the LUT
and α is the correct one, ε is obtained by

ε =
H̃ − α · M̃

2k
=

H̃ − α′ · M̃

2k
+ M̃ (2.27)

The procedure deriving from (2.27) can be summarized by the following steps:

1. The term α′ · M̃ is read from the LUT addressed by the k least significant
bits of H̃.

2. The sum H̃−α ·M̃ is computed and the k least significant bits are discarded.

3. If the obtained result is negative the quantity M̃ is added.

The conversion into a two’s complement representation can be easily performed
by using the following conventions for the RNS representation of signed numbers.
Since M is even, positive numbers are into the range [0, (M/2) − 1] and negative
ones are in [M/2, M − 1].

The signed conversion must translate these ranges into the ranges of the two’s
complement representation. This translation can be performed by considering the
following procedure. As first step we add, mod M , the quantity S = M/2. This
operation translates the positive numbers into the range [M/2, M − 1], while
the negative ones are now in the interval [0, (M/2) − 1]. As a final step, the
two’s complement value of the output can be reconstructed through the binary
subtraction of the value M/2 from the final result.

This procedure has been embedded in the algorithm and in order to reduce
the computation steps, the final subtraction has been merged with the conditional
subtraction required for the α correction. Therefore if the reconstructed value
Z ′ = ε′ · 2h + 〈ZN + S〉2h is positive we only subtract the value S. Otherwise, for
negative values, the quantity M − S = M/2 is added. The above algorithm can
be summarized in the following steps

1. Compute the quantity H̃ using the modified residue Z ′
i = 〈Zi + S〉mi

.

2. Compute the quantities ε′, Z ′ = ε′ · 2h + 〈ZP + S〉2h .

3. Compute the quantity Z. If Z ′ is negative the two’s complement output
result is obtained as Z = Z ′ + M − S otherwise Z = Z ′ − S

In the following, a numerical example is given. Let us consider the case of a
RNS representation based on the moduli set,

mi = {3, 5, 7, 8}

25

where Z4 = 23 (i.e. h = 3). The number of moduli is four therefore, from (2.26),
k = 2. For this set we have

mi = {280, 168, 120, 105}, m−1
i = {1, 2, 1, 1}, M = 840

M̃ = 105, S = 420

and

H = 280〈1·2k ·(Z1+S)〉3−168〈2·2k ·(Z2+S)〉5+120〈1·2k ·(Z3+S)〉7+105〈1·2k ·(r4+S)〉8

Consider the value Z = −209
RNS
−−−→ {1, 1, 1, 7}.

H = 1684, H̃ = 1684−4·〈7+420〉8
8 = 209

The correct α value is 1. Consequently we have ε′ = 26 and for Z ′ we obtain
Z ′ = 26 · 8 + 〈7 + 420〉8 = 211 > 0.

In this case we have to subtract the term S = 420 obtaining Z = 211 − 420 =
−209.

Implementation

The converter architecture is sketched in Figure 2.5. The P LUTs are addressed
by the residues Zi and store the terms

mi〈m
−1
i · 2k · (Zi + S)〉mi

The LUT-P stores the term mP 〈m̂
−1
P 2k(ZP +S)〉mP

−2k〈ZP +S〉2h . A Carry-Save

Adder (CSA) is used to compute H̃. The k least significant bits of H̃ are used

to address the LUT αM̃ that stores the multiples α′M̃ . The selected multiple is
added to H̃ in order to obtain the value ε′. The h least significant bits of the value
〈ZP + S〉2h are directly juxtaposed with ε′ to obtain the value Z ′. The correct
signed value Z is obtained by a final summation. Depending on Sgn(Z ′) the value
−S or M − S is conditionally added to Z ′.

A VLSI implementation based on the moduli set {3, 5, 7, 11, 17, 64} for
a 20 bit converter has been implemented (Figure 2.6). The architecture requires
six small LUTs. In fact the input LUTs are related to the moduli wordlength
that can be chosen sufficiently small for the most common dynamic ranges. The
computation of the term H̃ has been obtained by using a Carry-Save Adder (CSA),
and a carry-save representation has been maintained where possible. A fast Carry-
Propagate Adder (CPA) has been used to obtain the address to the LUT-αM̃ . In
the architecture, two different results are computed in parallel and the correct one
is selected by using Sgn(ǫ′). The architecture has been mapped on a XILINX-
V1000-6 FPGA. The number of used Configurable Logic Blocks (CLB) is 80 and
the maximum delay is 14 nsec (taking into account also the routing delays).

26

2hPZ S+

LUT

H
~

k

LUT-1 LUT-2 LUT-P

ε ′

Z

Z ′

S

M S− S−

(')Sgn Z MUX

h

h

M
~α

2log 1PM k+ −

2log M h + ɶ
 M

~
log2

++ ++

++ ++

++

2Z PZ1Z

Figure 2.5: Output converter architecture.

27

66 2
Z S+

CSA

+

cH
~

LUT-1 LUT-2 LUT-6

cε ′

Z

2Z 6Z1Z

+

M S− S−

)'(εSgn
MUX

S
LUT M

~αLUT M
~α

sH
~

sε ′

CSA

CPA

CPA

cε ′ sε ′ cε ′ sε ′

SIGN DETECTION

3 bits
6 bits

20 bits

6 bits

1 bit

3 bits

Figure 2.6: Implementation of output converter.

28

Chapter 3

Case Study: FIR Filters

In this chapter we present the case study of Finite Impulse Response (FIR) fil-
ters, for which the RNS implementation is quite convenient with respect to the
traditional implementation in the Two’s Complement System (TCS).

A Finite Impulse Response (FIR) filter of order N is described by the expression

y(n) =

N−1∑

k=0

akx(n − k) (3.1)

FIR filters can be either realized in transposed or direct form (Figure 3.1).

The design a FIR filter is typically implemented by suitable CAD tools (such
as Matlab for example) in Floating Point Arithmetic (FLP). In the majority of the
cases, when requirements of power consumption and speed are stringent, the filter
is implemented in Fixed Point Arithmetic (FXP). In this case, the filter coefficients
are rounded to a specific number of bits (the number of used bits has an impact
on the frequency mask of the filter) and two different strategies can be chosen in
order to limit the growth in the number of bits

1. Truncation after multiplication. In this case, to limit the number of
bits, truncation after multiplication is used (Figure 3.2.1). This approach is
typically used in the parallel implementation of FIR filters to reduce hard-
ware resources. Accurate FXP simulations must be done to evaluate the
truncation effects on the filter performace and define the number of bits to
be used for the representation of the internal variables.

2. Truncation after accumulation. In this case, to limit the number of
bits, truncation after accumulation is used (Figure 3.2.2). This approach
is typically used in the case of serial implementations of FIR filters (i.e.
based on a Multiply and Accumulate Unit (MAC)). The final truncation or
rounding are used to reduce the final number of bits. In this case, because

29

+ ++

Z
−1

Z
−1

Z
−1

+
a

0
a

1
aa

n−1

y(t)

x(t)

n−2

Z
−1

+

+ Z
−1

+

+Z
−1 +

++
a

0
a

1
a a

n−1

y(t)

x(t)

buffer

n−2

Figure 3.1: FIR filters in transposed (top) and direct (bottom) form.

truncation, or rounding, is done only once, a smaller error is introduced and
the filter will perform better than in case 1.

We compare filters over a vast range of architectures and show the results of
the design with respect to delay, throughput, area and power dissipation.

The chapter describes the following filter designs and comparisons:

• FIR filters in transposed form with programmable/constant coefficients

• FIR filters in direct form with programmable/constant coefficients

• RNS carry-save (faster) filters

• Low power RNS filters

• Complex filters

• FPGA implementations of TCS and RNS filters

• Comparisons of results ASIC vs. FPGA.

30

Z-1Z-1
x(n)

x(n-N+1)

y(n)

a0 a1 ak aN-1

x(n)

Z-1Z-1

TRUNCTRUNC TRUNCTRUNC

1. Truncation after multiplication.

Z-1Z-1
x(n)

x(n-N+1)

y(n)

a0 a1 ak aN-1

x(n)

Z-1Z-1

TRUNC

2. Truncation after accumulation.

Figure 3.2: Truncation schemes.

31

Binary

to RNS

Converter

RNS to

Binary

Converter
x(n) y(n)

... ...

RNS filter mod m 1

RNS filter mod m 2

RNS filter mod m P

... ...

Figure 3.3: Architecture of RNS FIR filters.

3.1 RNS Implementation of FIR Filters

As a direct consequence of (1.1), expression (3.1) becomes in RNS:

y(n) =

N−1∑

k=0

akx(n−k)
RNS
→

Ym1
(n) =

〈∑N−1
k=0 〈Am1

(k) · Xm1
(n − k)〉m1

〉
m1

Ym2
(n) =

〈∑N−1
k=0 〈Am2

(k) · Xm2
(n − k)〉m2

〉
m2

.

YmP
(n) =

〈∑N−1
k=0 〈AmP

(k) · XmP
(n − k)〉mP

〉
mP

(3.2)
and the filter can be implemented in RNS by decomposing it into P filters working
in parallel, as sketched in Figure 3.3. In general, filters in different moduli paths
can be implemented in different forms (direct or transposed), as long as the timing
is consistent.

3.2 FIR Filters in Transposed Form

We start our case study with FIR Filters in transposed form (Figure 3.1 top).

3.2.1 Transposed FIR Filters in TCS

The implementation of (3.1) in transposed form is shown (for a portion of the
filter) in Figure 3.4.

We assume to have a dynamic range of d bits, generated at the output of d
2 ×

d
2

square multipliers, which guarantees error-free operations for the given N .

The composing blocks of a FIR filter are multipliers, adders and registers. In
the following, we describe the architectures chosen for implementing these com-
posing blocks.

For the implementation of multipliers with the traditional binary system (TCS),

32

k+1
Y(n)

k
Y(n)

ak+1 ak−1

Y(n)
k+2

re
g

ak

re
g

re
g

Y(n) k−1

X(n)

re
g

re
g

re
g

d/2

d/2

d
d dd d d d

dd

d/2

d

Figure 3.4: TCS FIR filter in transposed form.

we chose to keep the product in carry-save (CS) format to speed-up the operation,
and delayed the assimilation of the CS representation to the last stage of the filter.
For the FIR filter in transposed form (Figure 3.1 top), in each tap we need to add
the CS representation of the product to the value stored in the register (previous
tap). Again, to avoid the propagation of the carry, we can store the CS represen-
tation. For this reason, we need to implement the addition with an array of 4:2
carry-save adders (CSA), as shown in Figure 3.5.

Multiplier

RegistersCSA 4:2

X

A

Ys

Yc

Ys

Yc k

k

kPs kPc

k

d/2

d/2

d d
d

d

d

d

d

d
k+1

k+1

Figure 3.5: Tap structure for the transposed TCS FIR filter.

The CS representation is finally converted into the two’s complement repre-
sentation by a carry-propagate adder (realized with a carry-look-ahead scheme) in
the last stage of the filter.

Figure 3.5 shows the implementation of the tap of a filter with programmable
coefficients. For filters with constant coefficients (not programmable) the imple-
mentation scheme is the same with the only difference in the multiplier which is
simplified.

Because the filter input x(n) is broadcast to all taps for transposed form,
buffering of x(n) is necessary especially for high-order filters.

The critical path for the TCS filter in transposed form is

tTCS/tra = tbuffer + tMULT + tCSA−4:2 + tREG (3.3)

33

where

tbuffer is the delay of the buffer(s);

tMULT is the delay of multiplier;

tCSA−4:2, the delay of the 4:2 adder, is about 3 × txor (delay of three XOR-2
gates);

tREG is the sum of the register propagation delay and the set-up time.

The filter latency is one extra cycle needed to compute y(n) from its CS repre-
sentation (y(n) = ys(n) + yc(n)). The expression for the area as a function of the
number of taps is:

ATCS/tra =

(
AMULT + d · ACSA−4:2 +

5

2
d · AFF

)
N + ACPA (3.4)

where

AMULT is the area of a d
2 × d

2 multiplier (output CS);

ACSA−4:2 is the area of a 1-bit 4:2 CSA;

AFF is the area of one flip-flop;

ACPA is the area of the final carry-propagate adder.

For the power dissipation the expression at a fixed frequency f0 is:

PTCS/tra = PTAP−TCS/tra · N + PCPA (3.5)

with the limitation that the term PTAP−TCS/tra strongly depends on the switching
activity [37] and consequently on the value of the filter coefficients.

3.2.2 Transposed FIR Filters in RNS

As a direct consequence of (3.2), a FIR filter is implemented in RNS by decom-
posing it into P filters working in parallel, as sketched in Figure 3.3. The bitwidth
si = ⌈log2 mi⌉ in each filter mod mi is such that b = ΣP

i=1si. This b is generally
larger than the dynamic range of the corresponding TCS filter

b ≥ d with

P∏

i=1

mi = M ≥ 2d

and this overhead is discussed in Section 3.4.1.

The RNS FIR filter is completed by an input and an output conversion block.

34

k+1
Y(n)

k
Y(n)

ak+1 ak−1

Y(n)
k+2

re
g

ak

re
g

re
g

Y(n) k−1

X(n)

re
g

re
g

re
g

si

si

si

si

si

Figure 3.6: RNS FIR filter in transposed form.

Each of the P RNS filters can be implemented in transposed form with a
scheme similar to that of Figure 3.4, and by replacing multipliers and adders with
their modular counterparts.

By choosing prime moduli of limited wordlength (mi < 26), the modular mul-
tiplication can be efficiently implemented by isomorphism (see Section 1.2.1 for
the implementation). The resulting RNS filter architecture in transposed form is
shown in Figure 3.6.

In case of filters with constant coefficients, the multiplication for a constant
can be easily performed by a look-up table implemented with synthesized logic.

The addition is also a modular operation and a correction step is needed if the
result of the binary addition exceeds the modulo (see Section 2.1 for implementa-
tion detail).

The critical path for the single modular filter in transposed form is:

tRNS/tra = tbuffer + tmodMULT + tmodADD + tREG (3.6)

where

tbuffer is the delay of the buffer(s);

tmodMULT is the delay of isomorphic multiplier modulo mi;

tmodADD is the delay of the modular adder;

tREG is the sum of the register propagation delay and the set-up time.

The delay of the critical path for RNS filters is the largest one among those of the
P filters tRNS/tra and the in/out conversion delays. However, by pipelining the
conversion units, normally the maximum delay is set by the slowest of the modular
paths. We assume that this is the case in the rest of the chapter.

The latency is determined by how many pipeline stages are in the input and output
conversion units.

35

The expressions for area and power are more complicated than those of the
corresponding TCS filters. For the area, we have

ARNS/tra =

(
P∑

i=1

(AmodMULTmi
+ AmodADDmi

+ 2si · AFF)

)
N+AconvIN+AconvOUT

(3.7)
where

AmodMULTmi
is the area of the modular multiplier mod mi;

AmodADDmi
is the area of the adder mod mi;

si is the number of bits required for mod mi;

AFF is the area of one flip-flop;

AconvIN and AconvOUT are the area of the converters. Both terms are a function
of the filter dynamic range and the moduli selection.

Similarly, for the power dissipation we have

PRNS/tra =

(
P∑

i=1

PTAP−mi/tra

)
N + PconvIN + PconvOUT (3.8)

where PTAP−mi/tra is the average power dissipation in the tap of the filter mod mi

with the limitation that this average value depends on the filter coefficients values.

3.2.3 Transposed Truncated FIR Filters in TCS

Sometimes accuracy is traded with performance by implementing filters with trun-
cated dynamic range. Truncation or rounding schemes are very tricky to be im-
plemented in RNS, and for this reason we limited our investigation to TCS filters.
We have tried different truncation schemes, but we report here only the case in
which the results of multiplications are truncated after d/2 bits.

The expressions for delay, area and power dissipation are similar to those of
(3.3), (3.4) and (3.5).

3.2.4 Transposed FIR Filters: Summary

To explore trade-offs for FIR filters realized in TCS and RNS we implemented
a number of filters, measured their performance and interpolated the results to
obtain the trend with respect to the filter order N (number of taps).

This first exploration is done by assuming a fixed dynamic range d. The filters
are implemented in standard cells (0.35µm library) and the delay, area and power
dissipation are determined by Synopsys tools.

36

TCS
Filter 20-bit dyn. range Cycle Area Power (1)

[ns] (NAND2 equiv.) N∗ [mW] N∗

var. coeff. 5.0 1250N + 230 6 13.5N + 14.9 6

const. coeff.(2) 4.9 844N + 230 8 8.6N + 14.9 8
TCS truncated

var. coeff. 5.0 860N + 120 24 9.2N + 7.1 20

const. coeff.(2) 4.7 565N + 120 43 5.8N + 7.1 27

RNS
Filter 20-bit dyn. range Cycle Area Power (1)

[ns] (NAND2 equiv.) [mW]
var. coeff. 5.0 745N + 2910 6.9N + 51.0

const. coeff.(2) 4.3 500N + 2910 4.2N + 51.0
(1) Power at 100MHz assuming random input activity.
(2) Assuming 50% of bits set at 1 on average.

Table 3.1: FIR filters in transposed form: summary of results.

The chosen dynamic range is 20 bits, and to cover this range a possible choice
of co-prime moduli is the following

mi = {3, 5, 7, 11, 17, 64} →
P∏

i=1

mi > 220

This choice of moduli give best delay/area/power tradeoffs for the specific tech-
nology. The implementation results for filters in transposed form are summarized
in Table 3.1.

By comparing the expressions of Table 3.1, we can determine what is the filter
order N (number of taps) for which the RNS filter has a smaller area and consume
less power than the corresponding TCS filter. For examples, for filter with variable
coefficients the ”equal power N point” N∗ is

13.5N∗ + 14.9 = 6.9N∗ + 51.0 → N∗ =
51.0 − 14.9

13.5 − 6.9
≃ 5.5

This means that for filters of order greater than 6 the RNS filter dissipates less
power than the TCS filter, or, in other words, the overhead of the RNS in-
put/output converters does not offset the power reduction when the filter has
more than 6 taps. Even if we compare the truncated TCS filters with error-free
RNS filters, the RNS filters show smaller area and power dissipation for the typical
size of filters (N ≫ 43). The trends for the area and the power dissipation as a
function of N are shown in Figure 3.7.

37

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 20 40 60 80 100

TCS

TCS trunc.

RNS

variable coeff.

constant coeff.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

TCS

TCS trunc.

RNS

variable coeff.

constant coeff.

Figure 3.7: Trends for transposed FIR filters: area (top) and power dissipa-
tion (bottom).

38

ak+1ak−1

re
g

ak

re
g

re
g

regreg reg

Adder Tree

x(n−k−1) x(n−k) x(n−k+1)

d/2

d
d/2

k−2
y(n)

k+2
y(n)

d

d/2

Figure 3.8: TCS FIR filter in direct form.

3.3 FIR Filters in Direct Form

For the FIR filter in direct form (Figure 3.1 bottom), it is convenient to implement
the addition with a Wallace’s tree to speed-up the operations. However, the use
of the tree makes the design of the filter not modular in the number of taps and
the filter latency changes with the filter order N .

3.3.1 Direct FIR Filters in TCS

The implementation of the filter in direct form is shown (for a portion of the filter)
in Figure 3.8.

Similarly to the TCS filters in transposed form, we assume a dynamic range
of d bits for error-free operations for the given N . The output of the d

2 ×
d
2 square

multipliers is carry-save. By opting for the CS representation of the products, for
a N-tap filter we have to add 2N addends. The resulting critical path is

tTCS/dir = tMULT + tCSA−4:2 · k + tREG (3.9)

where

k = ⌈log2 N⌉ assuming the tree realized with 4:2 CSAs;

tMULT is the delay of multiplier;

tCSA−4:2, the delay of the 4:2 adder;

tREG is the sum of the register propagation delay and the set-up time.

The approximated expression for the area is

ATCS/dir = (AMULT + d · AFF) N + d · ACSA−4:2(2
⌈log2N⌉ − 1) + d · AFF + ACPA

(3.10)
where

39

AMULT is the area of the CS multiplier;

ACSA−4:2 is the area of a 1-bit 4:2 CSA;

AFF is the area of one flip-flop;

ACPA is the area of the final carry-propagate adder.

If N is close to a power of 2 (2⌈log2N⌉ ≃ N), the area is linear with respect to N :

ATCS/dir = [AMULT + d(AFF + ACSA−4:2)] N − d · ACSA−4:2 + d · AFF + ACPA

(3.11)

For the power, we obtain an expression similar to (3.10) as a function of N.
However, because the switching activity in the tree is strongly dependent on its
size (due to glitches), the values obtained by the formula are not quite accurate.

3.3.2 Direct FIR Filters in RNS

A single filter mod mi can be implemented in direct form as shown in Figure 3.9
for a portion of the filter. A N-input Wallace’s tree, followed by a block to compute
the modulo (see Section 2.3), is needed. At the output of the tree, the dynamic
range is increased from si to si + k (k = ⌈log2 N⌉). The expressions for the delay
of the critical path in the mod mi filter is

tRNS/dir = tmodMULT + tCSA−4:2 · (k − 1) + tmod−red + tREG (3.12)

where

k = ⌈log2 N⌉ assuming the tree realized with 4:2 CSAs;

tmodMULT is the delay of isomorphic multiplier modulo mi;

tCSA−4:2, the delay of the 4:2 adder;

tmod−red is the delay of the circuit to extract mod mi;

tREG is the sum of the register propagation delay and the set-up time.

The tree in the RNS direct filter is one level shallower than the TCS filter. However,
the extra modulo operation impacts the critical path (and area and power as well).

The expressions for area is

ARNS/dir =

P∑

i=1

[(AmodMULTmi
+ 2si · AFF)N + AtreeRNS + Amod−red] + Aconv

(3.13)
where

40

ak+1ak−1

re
g

re
g

regreg reg
x(n−k−1) x(n−k+1)

ak

re
g

x(n−k)

si

si
si

si

Adder Tree.

mod
reduction

si

s +kis +ki

Figure 3.9: RNS FIR filter in direct form.

AtreeRNS = (si + k)ACSA−4:2 · (
N
2 − 1)

Aconv is the area of the in/out converters.

Similarly to the TCS case, also for the RNS, the power dissipation expressions
are not very accurate for filters in direct form. Therefore, they are omitted.

3.3.3 Direct FIR Filters: Summary

Table 3.2 summarizes the results for the different FIR in direct form implementa-
tions. The critical path depends on the number of levels in the tree (and conse-
quently, on the number of taps). We can introduce pipeline latches to speed-up
operations, but we increase area and power. For the error-free with variable co-
efficients filters the critical path of RNS and TCS filter is almost the same, but
the RNS is smaller and consumes less power for N > 8. For the error-free with
constant coefficients filters, the RNS is faster (about 1.7 ns less), and its area start
to be smaller for more than 16-tap filters. The worst break-even N is for constant
coefficients TCS truncated vs. RNS (N∗ = 97). The trends for the delay of the
critical path and the area as a function of N are shown in Figure 3.10.

3.4 RNS Coding Overhead

In this section we address the overhead due to the coding of the RNS base with
respect to the filter dynamic range, and delay-area tradeoffs. The Design Space
Exploration (DSE) and its results, are helpful in evaluating the effects of the RNS
coding overhead and to choose an efficient filter architecture trading-off filter order,
dynamic range, clock frequency and area.

41

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 3 4 5 6 7 8 9

RNS

RNS (const.)

TCS (ALL)

2 2 2 22 2 2

- logarithmic scale -

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 20 40 60 80 100

TCS

TCS trunc.

RNS

variable coeff.

constant coeff.

Figure 3.10: Trends for direct FIR filters: delay critical path (top) and area
(bottom).

42

TCS
Filter 20-bit dyn. range Crit. path Area Power (1)

[ns] (NAND2 equiv.) N∗ [mW]
var. coeff. 3.5 + 1.7k 1069N + 71 8 81.4

const. coeff.(2) 3.5 + 1.7k 649N + 71 16 68.8
TCS truncated

var. coeff. 3.5 + 1.7k 766N + 56 40 70.1

const. coeff.(2) 3.5 + 1.7k 493N + 56 97 51.7

RNS
Filter 20-bit dyn. range Cycle Area Power (1)

[ns] (NAND2 equiv.) [mW]
var. coeff. 5.1 + 1.7(k − 1) 691N + 3045 80.6

const. coeff.(2) 3.5 + 1.7(k − 1) 462N + 3045 73.5
(1) Power at 100MHz assuming random input activity.
(2) Assuming 50% of bits set at 1 on average.

Table 3.2: FIR filters in direct form: summary of results.

3.4.1 Coding Overhead

By defining D the dynamic range of an application, which corresponds to d bits
(D = 2d) in the two’s complement number system (TCS), the RNS base is chosen
such that

P∏

i=1

mi = M ≥ D = 2d .

Because each modulus of the RNS base is encoded in binary for a total number of
bits

b =
P∑

i=1

⌈log2 mi⌉ ,

we define OH = b − d as the RNS coding overhead.

The effect of this overhead is investigated as a function of the dynamic range in
the implementation of FIR filter architectures. Specifically, we evaluate all combi-
nations of P prime moduli covering the required dynamic range, select the suitable
moduli set with different criteria (see Section 3.4.2), and compare in terms of delay
and area the RNS implementation of the filter with the TCS implementation. We
do not consider power-of-two moduli (mi = 2k) because they do not add coding
overhead with respect to the TCS.

43

3.4.2 Design Space Exploration

The design space exploration is carried out to identify the tradeoffs between fil-
ters realized in TCS and RNS with respect to dynamic range, clock frequency
(throughput) and area.

We use the architectures presented in the previous sections for TCS and RNS
filters in direct and transposed form. For filters in direct form, the size and depth of
the adder tree depend on the filter order N . For this reason, we have characterized
TCS and RNS direct form filters of the same order (number of taps).

In the DSE, we run the following experiments:

EXP-1 : In this experiment, we consider the RNS moduli selected to obtain the
”worst case” coding overhead (OH) conditions for the RNS filters.

EXP-2 : In this experiment, we consider the RNS moduli selected to obtain the
best tradeoff delay-area for the given dynamic range.

EXP-3 : The moduli are chosen as in EXP-2, but the evaluation is carried on a
complete N-tap filter.

In EXP-1 and EXP-2, we do not include the TCS/RNS/TCS conversion and
consider the area value per tap, while in EXP-3 we take into account the impact
of the converters on FIR filters of the same order N .

The first two experiments are based on the characterization of the filter com-
posing blocks (multipliers, adders, registers, etc.) performed by Synopsys Design
Compiler and the STM 90 nm library of standard cells [38]. The results of EXP-3
are obtained by synthesis of the actual filters.

EXP-1: Worst Case OH

In this experiment, the choice of moduli (RNS base) is done by selecting the set
that for the given dynamic range has the largest RNS coding overhead OH = b−d.
This is done in two steps:

1. The group of RNS bases for which M ≥ 2d are first selected;

2. The base which has the largest b is selected. In case of tie, the set with the
largest number of moduli P is chosen.

The results of this selection are shown in Table 3.3.

In EXP-1, we consider a very large clock period so that the evaluation is based
on the results of the characterization of circuits optimized for minimum area.

Because for the RNS bases of Table 3.3 there is not a significant difference in
area per tap between the filters in direct and transposed form, in Figure 3.11 we

44

d Moduli Set b b − d
12 { 5, 7, 11, 17 } 15 3
16 { 5, 7, 11, 17, 19 } 20 4
20 { 3, 5, 11, 17, 19, 37 } 25 5
24 { 3, 5, 11, 13, 17, 19, 37 } 29 5
28 { 3, 5, 11, 13, 17, 19, 23, 29 } 33 5
32 { 3, 5, 7, 11, 13, 17, 19, 37, 41 } 38 6
36 { 3, 5, 7, 11, 13, 17, 19, 23, 29, 37 } 42 6
40 { 3, 5, 11, 13, 17, 19, 37, 41, 43, 47 } 47 7
44 { 3, 5, 11, 13, 17, 19, 23, 29, 37, 41, 43 } 51 7
48 { 3, 5, 7, 11, 17, 19, 23, 29, 31, 37, 41, 43 } 55 7

Table 3.3: Moduli set and dynamic range for EXP-1.

plot the curves1 of direct and transposed TCS (D-TCS and T-TCS) and just one
curve for the RNS filters. The area unit is 1 µm2.

Figure 3.11 show that for dynamic ranges d from 12 to 24, the area is roughly
the same for the four architectures (D-TCS is slightly better), and that for d > 24
bits RNS filters are significantly smaller than TCS.

EXP-2: Best Delay-Area Tradeoff

The results of EXP-1 are obtained for the worst case choice of the RNS base and
considering a very long clock period. In this experiment, we make more realistic
assumptions by introducing a timing constraint on the clock frequency (500 MHz)
and by selecting the moduli according not to the worst case OH, but to the results
of the characterization of delay/power/area done with a RNS filter design tool [39].
Given a target clock period, the tool selects the RNS base which guarantees the
smallest area (or lower power dissipation). The selected RNS bases are reported
in Table 3.4.

For filters in direct form (see Figure 3.8 and Figure 3.9) the timing constraint
might cause modifications in the filter architecture when for deep adder trees (large
N) it might be necessary to break the critical path and introduce pipeline registers.
For this reason, we limit EXP-2 to the case of filters in transposed form, where
the critical path is independent2 of the number of taps (see Figure 3.4 and Figure
3.6).

The results of the experiment are plotted in Figure 3.12. The dotted curves

1Actually the curve is a visual aid to better display the distribution of the experiment’s
discrete points.

2We do not consider the increased buffering on x for large N in this experiment.

45

0

5000

10000

15000

20000

25000

30000

10 15 20 25 30 35 40 45 50

ar
ea

 p
er

 ta
p

dynamic range

RNS

D-TCS

T-TCS

Figure 3.11: Results of EXP-1: direct and transposed TCS vs. RNS

refer to the corresponding results of EXP-1 (Figure 3.11). The figure clearly shows
that, when a timing constraint (TC = 2.0 ns) is introduced, the taps in the TCS
filter grow larger (tradeoff speed-area), while for the RNS this growth is compen-
sated by a choice of the moduli set which minimizes the area. The difference is
larger as the dynamic range increases. For d = 48 the area of the TCS is double
than the RNS filter.

Moreover, by tracing horizontal lines in Figure 3.12, we can roughly determine
the truncated TCS tap equivalent to the error-free RNS tap. For example, for
d = 40 the RNS area per tap is 10, 000 µm2. This area is equivalent to that of a
truncated TCS with dynamic range d = 24, that is a TCS filter with error ≥ 216

unit-in-last-position with respect to the RNS.

EXP-3: Complete N-order Filter

In this experiment we validate the results of the DSE with an actual implementa-
tion to see the impact of the TCS/RNS and RNS/TCS converters.

From Figure 3.12 we select d = 16 and determine the filter order N for which
the RNS has a smaller area than the TCS filter. We implement 10, 50 and 100-tap
complete filters in both TCS and RNS and plot the data-points, together with
their trends in Figure 3.13. From the figure we can see that for N⋆ > 12 taps the
RNS filter is smaller than the TCS filter.

46

d Moduli Set b b − d
12 { 3, 7, 13, 17 } 14 2
16 { 5, 7, 11, 13, 17 } 19 3
20 { 3, 7, 11, 13, 17, 23 } 23 3
24 { 3, 7, 11, 13, 17, 19, 23 } 28 4
28 { 3, 5, 7, 13, 17, 19, 23, 31 } 32 4
32 { 3, 5, 7, 11, 13, 17, 19, 29, 31 } 36 4
36 { 5, 7, 11, 13, 17, 23, 29, 31, 41 } 40 4
40 { 11, 13, 17, 19, 23, 29, 31, 37, 41 } 45 5
44 { 17, 19, 23, 29, 31, 37, 41, 43, 47 } 49 5
48 { 23, 29, 31, 37, 43, 47, 53, 59, 61 } 51 3

Table 3.4: Moduli set and dynamic range for EXP-2.

0

5000

10000

15000

20000

25000

30000

35000

40000

10 15 20 25 30 35 40 45 50

ar
ea

 p
er

 ta
p

dynamic range

RNS

TCS

EXP-1

EXP-1

Figure 3.12: Results of EXP-2: transposed TCS vs. RNS

47

0

100000

200000

300000

400000

500000

600000

0 20 40 60 80 100 120

ar
ea

filter order

N*

RNS

TCS

Figure 3.13: Results of EXP-3: complete filter TCS vs. RNS

k+1
Y(n)

k
Y(n)

ak+1 ak−1

Y(n)
k+2

re
g

ak
re

g

re
g

Y(n) k−1

X(n)

Critical

Path

Figure 3.14: Structure of FIR filter in transposed form and its critical path.

3.5 Carry-Save RNS Filter

The delay of the critical path for a FIR filter mod mi in transposed form is given
in (3.6) and graphically shown in Figure 3.14. To speed-up the operations by
making the clock period shorter, we can resort to a carry-save representation for
the binary representation of residues (ysk, yck) and avoid to compute the modular
addition in every tap. The operands to be added in a tap are three: the product
pk = 〈akx(n − k)〉mi

and the carry-save representation of yk−1

ysk = sum(ysk−1, yck−1, pk),
yck = carry(ysk−1, yck−1, pk).

The structure of the carry-save RNS tap is shown in Figure 3.15. With the new

48

CSA 3:2

Ys

Yc

k−1

k−1

n

Multiplier A

n

n

Ys

Yc
k

k
n

2

n
2

n
2

n
2

n
1

n
1

clock cycle

R
eg

is
te

rs

X buffer

HA
HA

OR

critical path

Figure 3.15: Tap structure for RNS carry-save.

X

Ys

Yc
k

k

n n n

CPA &
mod Register

nn
Y k

Register buffers X

clock cycle

n2

n2

Figure 3.16: Relay station.

representation, we reduce the term tmodADD of (3.6) to the delay of a half-adder
and the critical path is now:

tCS−RNS = tbuffer + tmodMULT + tXOR + tREG (3.14)

The critical path is essentially determined by the multiplier latency, being tbuffer

and tREG unavoidable, and being tXOR the minimum delay attainable for a half-
adder.

However, the CS-representation implies the doubling of the registers, and, as
the number of taps increases, a logarithmic increase in the bit-width of CSAs and
registers. For this reason, it might be convenient to insert some relay stations
(RS), which assimilate the carry-save representation of yk and extract its modulo
mi, to prevent the bit-width from growing too much. Relay stations are depicted
in Figure 3.16 and their delay is

tRS = tcpa&mod + tREG (3.15)

They introduce an extra cycle of latency, but they can also be used to better
dimension the buffering of x (i.e. reduce tbuffer).

49

The spacing of relay stations (i.e. the number n of taps between two relay sta-
tions) can be determined by combining (3.14), in which the term tbuffer increases
with n, and (3.15), where tcpa&mod depends on n.

The implementation in carry-save RNS (CS-RNS) is compared with TCS and
RNS in Section (3.6.3). In that implementation, the relay stations are spaced
by 8 taps, because this configuration gives the best delay-area tradeoff for the
technology and the set of moduli used.

3.6 Low Power RNS Implementation

In addition to the above presented implementations, we take advantage of the
structure of the RNS filters (P parallel channels) to reduce its power dissipation
without penalizing its speed.

3.6.1 Multi-Voltage RNS Filter

The power dissipated in a cell depends on the square of the supply voltage (VDD)
so that a significant amount of energy can be saved by reducing this voltage [37].
However, by lowering the voltage the delay increases, so that to maintain the
performance this technique is applied only to cells not in the critical path.

Table 3.5 reports details on the implementation of one RNS filter for the dif-
ferent paths corresponding to the moduli mi. Delay is normalized to the critical
path (i.e. clock cycle), while area and power dissipation are normalized to their
totals.

Modulus Delay Area Power
3 0.35 0.05 0.04
5 0.70 0.10 0.10
7 0.75 0.13 0.12

11 1.00 0.24 0.25
17 1.00 0.23 0.26
64 0.65 0.25 0.24

total - 1.00 1.00

Table 3.5: Delay, area and power dissipation per tap in RNS FIR.

Because the single tap delay of moduli 3, 5, 7 and 64 is less than the critical
path, we can use the available time slack and reduce the supply voltage for these
moduli without affecting the overall performance.

The library of standard cells we used for this example normally operates at
VDD = 3.3 V . In Table 3.6 we report the possible supply voltage which can be used

50

in the modulo mi filters without increasing the critical path. Table 3.6 also reports
the power savings obtained with the listed supply voltage. These values have been
computed assuming that the switching activity does not change when scaling the
voltage. This assumption seems to be reasonable because an increased short-circuit
energy, due to longer transition times, is compensated by a suppression of some
glitches, due to a longer gate delay. The table shows a reduction of about 15% in
the power dissipation per tap.

single VDD multiple voltage
Modulus Delay VDD Power Delay VDD Power

3 0.35 3.3 V 0.04 1.00 1.7 V 0.01
5 0.70 3.3 V 0.10 1.00 2.7 V 0.07
7 0.75 3.3 V 0.12 1.00 3.0 V 0.10

11 1.00 3.3 V 0.25 1.00 3.3 V 0.25
17 1.00 3.3 V 0.26 1.00 3.3 V 0.26
64 0.65 3.3 V 0.24 1.00 2.7 V 0.16

total power 1.00 0.85

Table 3.6: Power dissipation for multiple supply voltage in tap.

The use of a multiple supply voltage requires level-shifting circuitry when going
from the lower voltage to the higher one [40]. In our case, voltage level shifters are
only required for a few bits before the output conversion stage.

3.6.2 Low Leakage Dual Threshold Voltage RNS Filter

With the technology scaling, and the increased transistor’s leakage due to sub-
threshold currents, also the static power dissipation starts to play an important
role in today’s power budgets. Moreover, the increasing smaller CMOS transistors
allow the hardware implementation of extra functions that before were executed
in software, and the migration of complex system to portable devices. Because of
the implementation of digital filters in ultra low power processors, such as the one
used in tiny systems with limited available power, it is important the static power
due to leakage is characterized and, possibly, reduced.

To have an idea of the impact of the device’s leakage on power dissipation, we
implemented a multiplier, which is the basic block of a FIR filter, in a 0.18 µm,
a 0.12 µm and in a 90 nm library. We used the same timing constraint, the
delay of 25 inverters with fanout of 4 (a standard measure of delay across different
technologies) in their respective libraries. The results, shown in Table 3.7, indicate
that the power dissipation due to leakage Pstat increases both in absolute value
and as the percentage of the overall power dissipation PTOT . By comparing the
0.18 µm and the 90 nm multipliers, we notice that PTOT has decreased of about
70% (mostly due to the scaling of VDD), but the static part Pstat has increased

51

Pstat Ptot Pstat/Ptot × 100
mult (180 nm) 0.25 945 0.03
mult (120 nm) 2.25 450 0.50
mult (90 nm) 3.59 299 1.20
P90nm/P180nm 14.36 0.32 40.0
Power dissipation in µW at 100MHz.

Table 3.7: Impact of leakage on technology scaling.

14 times and its contribution to the total 40 times. Moreover, for the 90 nm
implementation, if the multiplier is used as often as 1% of the processor usage time
the static power dissipation becomes dominant. Therefore, the design of systems
in nanometer technologies must take into account methodologies to reduce the
static power dissipation.

The standard cell library that has been used in this experiment provides two
classes of cells: cells with devices with a reduced threshold voltage (Vt) to achieve
High Speed, identified in the following as HS, and cells with devices with a higher
Vt to provide Low Leakage identified as LL [38].

Moreover, we consider the cells operating at the typical conditions with a power
supply VDD = 1.0 V and a temperature of 25 C.

By comparing the data-book for the two classes of cells HS and LL, the fol-
lowing points emerge when comparing the same cell (e.g. a NOT gate):

• The HS cell is faster than the corresponding LL cell. For the 1X drive NOT
gate loaded with 4 SL (library standard load) the HS gate is about 30%
faster than the LL one.

• The area is the same.

• The input capacitance is slightly smaller for the LL cells: For the 1X drive
NOT gate, the input capacitance in the LL cell is 10% smaller than in the
HS cell.

The total power dissipation for a CMOS gate is

PTOT = Pload + Psc + Pleak (3.16)

The term Pload is the power dissipated for charging and discharging the capacitive
load CL when the output toggles at a rate fp [41]

Pload = CLV 2
DDfp . (3.17)

Therefore, HS and LL cells loaded with the same CL and with the same switching
activity consumes the same Pload. However, for clusters of cells of the same type

52

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.5 1 1.5 2 2.5 3 3.5 4

cells

Tc

HS cells

LL cells

TOT cells

Figure 3.17: The HS and LL cells mix depends on the synthesis timing
constraint.

(due to the reduced input capacitance) the LL cells show a lower Pload, if the
activity is the same. For a chain of inverters toggling at the same rate, the HS
cells dissipate about 5% more than the LL cells.

The power due to short circuit currents Psc is

Psc =
β

12
(VDD − 2Vt)

3 trf

tp
(3.18)

where βHS ≥ βLL, trf is the average rise and fall time and tp = 1/fp [41]. From
(3.18), it is clear that for the LL cells Psc is lower than for HS cells, although, due
to the longer transition times, the term trf is higher.

The term Pleak is the static power dissipation

Pleak = VDDIsat (3.19)

where Isat is the reverse saturation current. This contribution is independent of
the switching activity, but depends on the state (logic level of the inputs) of the
gate. The LL cells are designed to have a Pleak several times smaller than the
corresponding HS cells.

In summary, LL cells are slower than HS cells, but dissipate less dynamic (if
the switching activity is the same) and static power than the corresponding HS
cells.

The current version of Synopsys Design Compiler [42] can handle the synthesis
of dual Vt standard cell libraries such as the one described above. The prioritized
design constraint is the delay (or better the clock period for a synchronous se-
quential system), but the tool keeps the power dissipation down by substituting
HS cells with LL when there is a sufficient time slack. Moreover, the dynamic
power dissipation is optimized as indicated in [43].

53

Figure 3.17 shows the variations in the HS and LL cell mix for a system synthe-
sized with different values of the timing constraint TC . In the circuit synthesized
with the smallest TC (minimum delay), the number of HS cells is dominant over the
LL cells. For the circuit synthesized with a longer TC (right side of Figure 3.17),
all cells are of LL type to have a reduced power dissipation.

3.6.3 Results of Implementations

In implementing these low power filters, we take advantage of state-of-the-art
design automation tools [42] which handle libraries of standard cells with dual
threshold transistors [38].

Multi-Voltage Implementation

First we compare in terms of power dissipation the following four schemes:

• TCS FIR filter in transposed form (Figure 3.4)

• RNS FIR filter in transposed form (Figure 3.6)

• RNS filter implemented in carry-save (CS-RNS)

• RNS filter implemented with multiple supply voltages (MV-RNS)

The filters are implemented in a 0.35µm library of standard cells. The results
are shown in Figure 3.18 with the plots of the power dissipation vs. N . In the table,
area is reported as number of NAND2 equivalent gates and power is computed at
100 MHz.

The table shows that the RNS filter can sustain the same throughput as the
TCS one, but dissipates less power when the filter has order N larger than 4.
Furthermore, the CS-RNS implementation of the filter can be clocked almost at
double speed, with respect to the traditional one, without a significant increase in
area and energy dissipated in a cycle (the power increases linearly with frequency).
Finally, a possible implementation of the RNS filter with multiple supply voltage
can lead to a further reduction of the power dissipated, without affecting the
performance of the filter.

Dual-Vt Implementation

Because each logic function can be implemented with a HS or a LL cell, the first
idea is to replace faster and power hungrier HS with LL cells when possible. By the
RNS decomposition of Figure 3.3, the filter is divided into as many independent
clusters of cells as the RNS moduli. Because of the different size of the moduli,

54

Filter Cycle Area Power @100 MHz
[ns] (NAND2 equiv.) N∗ [mW] N∗

TCS 5.0 200+1400N - 6.0 + 15.5N -
RNS 5.0 3250+920N 8 25.0 + 7.8N 4
CS-RNS 3.0 3470+1100N 12 27.4 + 10.5N 6
MV-RNS 5.0 ∼ 3250+920N (est.) 25.0 + 6.6N 3

0

50

100

150

200

250

300

Pave

0 5 10 15 N

RNS

TCS

CS-RNS

MV-RNS

Figure 3.18: Summary of results for low power filters.

55

blocks TCS RNS
n-taps Pstat Pdyn PTOT Pstat Pdyn PTOT

FIR 16-tap 60.5 6255.2 6396.5 32.4 4434.5 4466.9
FIR 32-tap 111.7 12448.3 12560.0 55.6 8206.8 8262.4
FIR 64-tap 214.5 23341.0 23554.5 105.3 15186.2 15291.5
FIR N-tap 9.1+ 212.2+ 221.8+ 7.5+ 944.0+ 951.5+

3.21N 378.4N 381.5N 1.53N 223.2N 224.7N
slope 3.21 378.4 381.5 1.53 223.2 224.7
ratio 1.00 1.00 1.00 0.50 0.60 0.60

Power dissipation in µW at 100MHz.

Table 3.8: Filter dual-Vt implementations: results.

the clusters have different maximum delays. The available time slack in the faster
clusters (smaller moduli) allows to exchange HS with LL cells and reduce both the
dynamic and static power dissipation. This is similar to what is done in [44] in
the dual voltage approach.

In order to compare the power dissipation of the filters, we have implemented
a 16, 32 and 64-tap error-free programmable FIR filter (20 bits dynamic range,
transposed form) in the traditional two’s complement system (TCS) and in RNS.

The comparison is carried out on filters implemented in the 90 nm STM library
of standard cells (VDD = 1.0 V , at 25 C) [38], and the power dissipation has been
computed by Synopsys Power Analyzer based on the annotated switching activity
of random generated inputs. All the filters can be clocked at fmax = 500 MHz.
Table 3.8 (upper part) summarizes the results for the implemented filters. The
power dissipation is computed at a clock frequency of 100 MHz.

By interpolating the results for static, dynamic and total power dissipation, we
obtain expressions of the power as a function of the filter order N (Table 3.8, lower
part). These trends are also plotted in Figure 3.19. The slopes P

tap indicated in

Table 3.8 (lower part) represent the average power dissipated per tap.

From these results, it is clear that the RNS decomposition in parallel paths
allows a reduction per tap of 40% for the dynamic and 50% for the static power
without delay penalty (throughput).

3.7 Complex FIR Filters

Due to the high number of multiplications needed in the case of the implementation
of a complex filter (for a complex product we need four real multiplications and

56

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

TCS

RNS

N

Pdyn

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

RNS

TCS

N

Pstat

Figure 3.19: Dynamic (top) and static (bottom) power dissipation (TCS vs.
RNS).

57

RNS FIR filter

RNS FIR filter

X

X̂

Y

Ŷ

x(t)_ y(t)_bin
to
QRNS

QRNS
to
bin

Figure 3.20: Structure of QRNS filter.

two additions, and if we use the Golub’a rule [45], three multiplications and five
additions), the use of the RNS and in particular of the isomorphism technique
appear to be very promising. In this section of the report, some results of the
comparison of a TCS and a Quadratic RNS (QRNS) implementation are presented.

The QRNS property of (1.7), described in Section 1.6, can be extremely useful in
applications characterized by intensive computations on complex numbers such as
for example complex FIR filters. A complex N taps FIR filter is expressed by

y(n) =
N−1∑

k=0

akx(n − k)

where x, y, ak denotes complex quantities. From (1.7), it is easy to derive for the
complex filter the structure shown in Figure 3.20, in which both portions of the
filter are realized with P RNS filters working in parallel as for the case of real
filters.

The modular multiplications and additions, and the input and output conversions
in the QRNS filter are implemented with the architectures shown in Chapter 2.

3.7.1 Comparison TCS vs. QRNS

The filter implemented in this example, is a complex 64-taps FIR filter with a
dynamic range of 20 bits. For this dynamic range, we can choose the following
QRNS base:

mi = {5, 13, 17, 29, 41}

such that
log2(5 · 13 · 17 · 29 · 41) > 20 .

The tap structure of the complex TCS filter is sketched in Figure 3.21. The
mod mi filters are implemented as shown in Figure 3.9 (direct form).

Both the TCS and the QRNS filters are implemented in a 0.35µm standard cells
library. Delay, area and power dissipation have been determined with Synopsys
tools.

58

Z
−1

Z
−1

++
a RE a

IM

++
a REa

IM

x
RE

x IM

−

Imaginary tree

Real tree

Figure 3.21: Structure of tap in complex TCS FIR filter.

Table 3.9 summarizes the results. In the table, area is reported as number of
NAND2 equivalent gates and power is computed at 166 MHz.

Table 3.9 shows that the QRNS filter has a higher latency, due to the conver-
sions, but it can be clocked at the same rate of the traditional filter, and conse-
quently, it can sustain the same throughput. However, the QRNS filter is almost
half the area on the traditional complex filter, and consumes one third of the
energy.

The results obtained show that the QRNS filter can sustain the same clock rate,
although it has a slightly longer latency. However, in terms of area and power the
QRNS version is more convenient. Similarly to real filters, a better improvement
is expected for filters with a larger number of taps.

Filter Cycle Latency Area Power
[ns] (cycles) (gate equiv.) [W]

QRNS 6.0 11 + 64 182, 400 2.5
Trad. 6.0 6 + 64 315, 700 7.4

ratio 1.0 1.07 0.57 0.34

Table 3.9: Complex filters: summary of results.

59

3.8 FPGA Implementation

In this section the result of the implementation of TCS and RNS filters in Field
Programmable Gate Arrays (FPGAs) is presented. Moreover, power consumption
estimations based on the measurement of the average current absorption in the ex-
perimental set-up has been obtained. A comparisons of the results by experiments
on FPGA with the results previously obtained for standard cells implementations
in Section 3.2.4 are also illustrated.

3.8.1 The Experimental Set-Up

The experimental set-up used for the power consumption evaluation is shown in
Figure 3.22. It is based on the following instruments and board:

FPGA board: Xilinx AFXPQ240-110 development board equipped with a Vir-
tex V600E HQ240 FPGA [46]. Separate power supplies for the FPGA core
(VCCINT) and for the I/O banks (VCCO) are available so power consumption
measurements of the core and I/O banks can be easily carried out. A picture
of the Xilinx development board is shown in Figure 3.24.

LSA and Pattern generator: Agilent 16720 pattern generator and logic state
analyzer for the stimuli generation and for the evaluation of the filter be-
haviour.

Multimeter: Agilent 34401 digital multimeter for the mean current measure-
ments.

The main target of the test bed has been the estimation of the core power
consumption. Consequently, the mean current has been measured by the digital
multimeter. The different FIR filters architectures (low pass frequency mask),
have been stimulated by random samples (uniform probability density function)
generated from the patter generator.

3.8.2 Results

The main purpose of this implementation is to check if the expressions shown in
Figure 3.18 obtained for standard cells are also valid for an FPGA implementation.
The power consumption evaluation has been obtained starting from measurements
on FIR filters with a given number of taps. From this data an extrapolation of the
power consumption for the same filters with any number of taps is obtained. For
this reason, measurements have been interpolated to fit the following expression

P = P1 · N + P0 (3.20)

60

Agilent 16702B
State Analyzer/Pattern

generator

xxxxxx
Agilent 34401A 6 1/2

Multimeter

Agilent E 3631A
Power Supply

20 bits out

10 bits input
samples

GNDVCC0=3.3 VVCCINT=1.8 V

XILINX AFXPQ240 -110
Development Board

XCV 600 E
Agilent 16702B

State Analyzer/Pattern
generator

xxxxxx
Agilent 34401A 6 1/2

Multimeter

Agilent E 3631A
Power Supply

20 bits out

10 bits input
samples

GNDVCC0=3.3 VVCCINT=1.8 V

XILINX AFXPQ240-110
Development Board

XCV 600 E

Figure 3.22: FPGA Measurement set-up.

which gives the average power dissipation for a N-tap filter.

The VHDL RT-level code for the different filters, has been synthesized and
mapped on the FPGA device by using Xilinx Foundation. Measurements of aver-
age current absorption for six filters: 8-tap and 16-taps TCS, 8-taps and 16-taps
RNS and 8-taps and 16-taps CS-RNS have been done (20 bits dynamic range).
Table 3.10 shows the power consumption measurements at different clock frequen-
cies (Tc). The average power dissipation has been computed from P = VCCINT · I,
in which VCCINT is the FPGA core voltage supply and I is the measured current.
In CMOS technology, the dynamic power consumption scales with frequency as
(f = 1/Tc), but some values of power consumption in Table 3.10 do not follow this
rule due to inaccuracies of the measurement system. To improve the accuracy of
the estimations, the power consumption values obtained for different Tc have been
converted into energy per clock cycle:

Ec = P · Tc [nJ]

and then averaged obtaining the values shown in Table 3.10 (average). Therefore,
instead of fitting Equation 3.20 the following equation has been fitted

Ec(N) = E1 · N + E0 . (3.21)

In order to better evaluate the term E0, a circuit composed by the serial

61

TCS RNS CS-RNS
8-tap 16-tap 8-tap 16-tap 8-tap 16-tap

Tc P Ec P Ec P Ec P Ec P Ec P Ec

[ns] [mW] [nJ] [mW] [nJ] [mW] [nJ] [mW] [nJ] [mW] [nJ] [mW] [nJ]
1,000 20.5 20.5 41.2 41.2 12.4 12.4 20.2 20.2 10.6 10.6 16.7 16.7

500 40.7 20.3 81.2 40.6 24.3 12.2 40.3 20.2 21.6 10.8 33.5 16.7
250 80.3 20.0 160.0 40.0 49.1 12.3 81.0 20.3 42.8 10.7 66.6 16.7
200 99.9 19.9 198.5 39.7 60.8 12.2 101.0 20.2 53.3 10.6 83.0 16.6
100 197.6 19.7 387.9 38.8 121.5 12.1 198.7 19.9 105.8 10.6 164.7 16.5

average 20.1 40.1 12.2 20.1 10.7 16.6

slices 1240 2440 1364 2310 1358 2274
(% area) 17% 35% 19% 33% 19% 32%

Table 3.10: Measurements of average power consumption and Ec.

connection of the binary-RNS and RNS-binary converters has beeen mapped and
measured obtaining Ec(0) = 5.8 nJ

RNS

TCS

20 22 240 2 4 6 8 10 12 14 16 18

number of taps (N)

E
ne

rg
y

pe
r

cy
cl

e
 (

nJ
)

5

10

15

20

25

30

35

N *

CS−RNS

Figure 3.23: Plots of ETCS, ERNS and ECSRNS .

Finally, the values of Ec (for the different filters architectures) has been fitted
to obtain the expressions in Table 3.11 that has been plotted in Figure 3.23.

From Figure 3.23 we can see that for filters with more than 4 taps (N∗ = 4)
the RNS filter consumes less power. This result is similar to that of Section 3.6.3
(N∗ = 4 in Figure 3.18). The value N∗ obtained here seems to confirm that, due to
the small dynamic range of the residues, RNS has shorter (or at least not longer)
interconnections, and routing is more local than in TCS.

The result obtained for the CS-RNS filter is even more interesting: in a stan-

62

dard cells implementation (Figure 3.18) CS-RNS filters consume more energy than
the corresponding plain RNS filters, while in the FPGA implementation CS-RNS
filters consume less power.

In carry-save RNS filters, the modular sum

sk = 〈sk−1 + akx(n − k)〉mi

is not done in each tap, but sk (kept in carry-save format) is reduced modulo mi

every 8 taps.

Because additional registers are required to keep a carry-save representation
of sk-s, there is a tradeoff between combinational logic (adders) and flip-flops.

In standard cells, flip-flops consume considerably more energy than simple
logic gates, therefore, the use of a carry-save representation, which replaces adders
with registers, leads to an increase in power dissipation. In FPGAs, combinational
functions are implemented with LUTs, which apparently consume more energy
than flip-flops. Therefore, CS-RNS filters not only are faster than plain RNS (and
TCS) filters, but are smaller in terms of area and consume less power.

Ec [nJ] N∗

TCS 2.5 · N + 0.2 -
RNS 0.9 · N + 5.6 4
CS-RNS 0.7 · N + 5.7 3

Table 3.11: Expressions of Ec for the different filters.

Figure 3.24: Photo of the test bed.

63

3.9 ASIC vs. FPGA Implementations

In this section, the properties of RNS implementations based on two different tech-
nologies: ASIC-SC (Standard Cells) and FPGA are compared in terms of power
consumption.
As discussed above, the RNS representation offers great advantages in the im-
plementation of DSP systems. These advantages are mainly related to the ab-
sence of carry propagation among modular processors and the possibility to avoid
multiplications by using the isomorphism technique. For these reasons the RNS
implementations are characterized by

1. structures that are simpler than the TCS ones (suitable for high-speed pro-
cessing),

2. signals that are more local (signals are bounded inside each modular block)

In this Section, a power consumption model for FIR filter structures is devel-
oped. As general remark, we have to take into account that the different imple-
mentation technologies impact differently on the power consumption model, that
is:

• ASIC-SC (Standard Cells) are characterized by very variable logic and in-
terconnect structures.

• FPGAs, are characterized by a fixed structure based on CLBs, clock and
interconnects resources.

Consequently, the evaluation of power consumption for ASIC-SC technologies is,
in general, more complex.

In the previous Sections different FIR filtering structures have been compared.
In the following analysis, Ax and Px represent the area and the power consump-
tion of the filter, and x identifies the number system representation used in the
implementation namely RNS or TCS. In a FIR filter, Ax and Px grow linearly
with the number of taps (N), as shown in the following equation

Ax = kAx

1 + kAx

2 N (3.22)

Px = kPx

1 + kPx

2 N

In Figure 3.25 plots of the area and power consumption are shown in the case
of a ASIC-SC implementation [47]. In this example, FIR filter wordlength in
TCS representation is 10 bits for input data (including both input samples and
coefficients) and 20 bits for tap outputs. Equivalent wordlength is used in RNS

64

implementation.
The offset value in RNS implementation is related to the needs of input and output
converters.

3.9.1 ASIC-SC: Power Consumption Contributions

The contributions to the dynamic power consumption in an ASIC-SC implementa-
tion are highly dependent on the architecture of the digital system considered. In
the case of a microprocessor [48] the power consumption contributions are shown
in Figure 3.26.a and are categorized in terms of local and global interconnects
(both for clock and signals). This picture shows that local interconnects play a
fundamental role in power consumption, followed by local and global clock distri-
butions.

The breakdown for the local interconnect power consumption is shown in Fig-
ure 3.26.b and it is composed by three terms 1) power for gate charging (requiring
about 50% of the overall local power), 2) power for interconnect capacitance charg-
ing (about 30%), and 3) power for charging diffusion capacitances (about 20%).
Consequently, in ASIC-SC technology, the RNS characteristic can give advantages
in terms of:

1. Reduction of complexity (number of gates - area)

2. Reduction of the interconnection capacitances

To evaluate these effects a model that links power consumption to circuit com-
plexity (area) and interconnects locality is developed. In this model A is the area
in terms of number of (NAND2) equivalent gates and NL is the number of nodes.
At each node i a capacitance C(i) is connected. Considering a constant activity
factor α, the power consumption is expressed by

Ptot =

NL∑

i=1

α(i)C(i)FV 2
DD = αCtotFV 2

DD (3.23)

If α, F , and V 2
DD can be considered constant values, we obtain that Ptot is

proportional to the total capacitance Ctot.

In order to better understand the term Ctot in Figure 3.27 the contributions to
the capacitance of the node i are shown. The node capacitance can be expressed
as

Cnode = Cline + CFO = αCLline + βCFOnode (3.24)

where the line length Lline and the node fan-out FOnode contributions are
multipled by the coefficients (αC and βC). The mean value of this capacitance is

Cmean = αCLmean + βCFOmean (3.25)

65

a) RNS vs. TCS: Area comparison

b) RNS vs. TCS: Power comparison (ASIC-SC)

Figure 3.25: Comparisons of TCS and RNS implementations of FIR filters
(ASIC-SC)

66

13% Global signals

29% Local clock

Power Sharing Local-Global Resources

37% Local signals

21% Global clock

a) IC power contributions

30% Interconnect

IC Local Power Contributions

20% Diffusion

50% Gate

b) IC local contribution breakdown

Figure 3.26: ASIC-SC power contributions

67

Figure 3.27: Contributions to the node capacitance.

Consequently, the total capacitance is

Ctot = NLCmean (3.26)

where NL is the number of nodes of the circuit.

From the above expressions, the following value of power consumption is ob-
tained

Ptot = αNLCmeanFV 2
DD (3.27)

If we consider an increase in the number of gates, the global interconnect
capacitance changes for two reasons

1. Increase of the number of nodes (number of outputs).

2. Increase of the interconnect length and Fan Out (corresponding to an in-
crease in signal globality).

In order to link the circuit complexity and global interconnect effects to the
capacitance value, we can assume that

1. NL is proportional to the circuit complexity (number of gates or area A):
NL = γA

2. Lmean & FOmean are related to the signal locality (through the Globality
Index or GI)Lmean = φ1GI;FOmean = φ2GI

obtaining Ctot = NLCmean = γA(αCφ1 + βCφ2)GI = K · A · GI with K =
γ(αCφ1 + βCφ2) and finally

Ptot = αCtotFV 2
DD = α · K · A · GI · F · V 2

DD (3.28)

In this equation Ptot the effects of the complexity and of the locality of the inter-
connect are take into account by A and the Globality Index GI.

68

Figure 3.28: Increasing of node capacitances with complexity

Experiment Description AR PR GIR

1 64-taps transp. FIR 0.630 0.560 0.890
2 8-taps direct FIR 0.994 0.990 0.995
3 64-taps complex FIR 0.578 0.340 0.589
4 Polyphase Filter 0.747 0.624 0.850

Table 3.12: Area, power and globality ratios for the ASIC-SC implementation

3.9.2 Analysis of Experimental Results: ASIC-SC

In this Section eq. 3.28 is used to compare the RNS and TCS implementation
of the filters based on ASIC-SC technology obtaining the the power consumption
ratio

PRNS

PTCS
=

αKFV 2
DDARNSGIRNS

αKFV 2
DDATCSGITCS

(3.29)

By solving this equation with respect to GIRNS

GITCS
= GIR we obtain

GIR =
GIRNS

GITCS
=

PRNS

PTCS
/
ARNS

ATCS
=

PR

AR
(3.30)

The term GIR can be consequently computed by taking into account that in our
experiments the area ratio and the power (PR) ratios are obtained by simulations.
The final results of this evaluation are shown in Table 3.12.

With the exception of the experiment 3, the results show that locality (GI)
doesn’t play a significant role in power saving for ASIC-SC implementation (GIR

69

Name Description Architecture Capac.

Long lines span the full height & width 26.10 pF

Hex lines route signal to every 3rd or
6th block

18.40 pF

Double lines route signal to every 1st or
2nd block

13.20 pF

Direct Conn. route signal to neighboring blocks v.low

Table 3.13: Interconnects in FPGA.

is close to 1). Experiment 3, based on a Quadratic RNS (RNS) implementation,
shows a different behavior. This fact can be related to the activity factor that is
noticeably less in the QRNS representation (see [49]).

3.9.3 FPGA: Power Consumption Contributions

In the case of FPGA implementations the contributions to the power consumption
are quite different. It is possible to identify three main contributions ([50]).

1. logic and IOB

2. clocking structures

3. interconnect

The breakdown of these contributions is shown in Figure 3.29. Figure 3.29.a
shows that, for this technology, the role of the interconnections is important.

Moreover, in the modern FPGA architectures, different interconnect structures
are used for routing signals characterized by different degrees of locality. Their
contribution to the capacitance is shown in Table 3.9.3 where it can be seen that
capacitances are noticeably different for the local and the global lines.

Finally Figure 3.29.b, shows that global interconnects give a big contribution
to the overall power consumption in FPGAs. Starting from this observation, we
can foreseen a greater advantage exploiting RNS locality by implementing circuits
in FPGA technology.

70

71% Interconnect

FPGA Power Contributions

7% IOB

12% Logic

10% Clocking

a) FPGA power contributions

24% Long

32% Hex

13% IX bar

FPGA Interconnect Contribution

4% IY bar

27% Double

b) FPGA power interconnect

Figure 3.29: Power consumption breakdown for FPGA implementation

71

Description ARNS

ATCS

PRNS

PTCS

GIRNS

GITCS

1 8-taps FIR 1.1 0.612 0.554
2 16-taps FIR 0.947 0.51 0.539
3 8-taps CS FIR 1.095 0.533 0.487
4 16-taps CS FIR 0.93 0.416 0.447

Table 3.14: Area, power and globality ratios for FPGA implementation.

3.9.4 Analysis of Experimental Results: FPGA

The analysis of the effect of locality in FPGAs has been carried out by using the
same model used for the ASIC-SC technology.
In this case the area corresponds to the number of slices used in the implementa-
tion.

The effects of the locality of the RNS implementation are evident in Table 3.14.
In fact for FPGA technology the GI ratio (GIR) is about 0.5.

72

Chapter 4

Tools

Although digital filters based on the Residue Number System (RNS) show high
performance and low power dissipation, RNS filters are not widely used in DSP
systems, because of the complexity of the algorithms involved. Consequently, a
tool to design RNS FIR filters which

• hides the RNS algorithms to the designer,

• generates a synthesizable VHDL description of the filter taking into account
several design constraints such as: delay, area and energy

is important to help designers to exploit this technology (see GUI in Figure 4.1).
The tool discussed in this section, is able to help in the design of both pro-
grammable and constant coefficients FIR filters in transposed form. Moreover,
the tool chooses the set of RNS moduli which cover the given dynamic range and
best fit the design constraints. The design space exploration is based upon a char-
acterization of the blocks composing the filter, and it is done for the different
technologies supported: standard cells and FPGAs. Differently from the tool for
RNS design presented in [51], we only target FIR filters but offer a wide range of
design choices and an automatic selection of the set of moduli which best fit the
design constraints. The tool is suitable for an IP oriented design of System-on-
Chips offering to the designer the performances of RNS, but completely hiding its
complexity.

4.1 Tool Description

The structure of the tool is shown in Figure 4.2. It is divided into three main
blocks:

1. Front-end: which generates a list of parameters specifying the filter char-
acteristics such as: dynamic range (i.e. wordlength), filter order, etc.. The

73

Figure 4.1: Tool interface for the designer.

front-end could be a commercial tool, such as MATLAB.

2. Architecture Chooser (AC): AC chooses the filter architecture, selected
among a set of supported ones, that minimizes a given cost function. The
selection is done according to the filter parameters passed by the front-
end, the target technology library specifications, and the design constraints.
Moreover, AC generates a set of instructions describing the detail of the
selected architecture to be passed to the builder.

3. VHDL Builder (VB): generates the VHDL descriptions of the elementary
blocks (modular multipliers and adders, converters, . . .), and the top-level
filter netlist. Moreover, it builds a VHDL test bench file to verify the filter
functionality (e.g. to check if the VHDL simulations match the MATLAB
fixed point simulation results), and a synthesis script for the synthesizer
(only Synopsys Design Compiler is supported at this time).

74

VHDL

RTL−level

specs

target
N taps
dyn. range
progr./const.
Tc
QRNS/RNS

delay

area

power

Library

VHDL

CHARACTERIZATION

Synthesis +

Estimation / Measurement

library views

Front−end

(MATLAB)

VHDL

Builder

Architecture

Chooser

arch descr.

Figure 4.2: Structure of the tool.

4.2 Architecture Chooser

The Architecture Chooser (AC), according to the project constraints and the li-
brary characteristics (timing, area and power), determines the set of RNS moduli
to be used, the architectures used in each RNS path, and the overall filter orga-
nization (RNS paths plus converters [47]). Currently, AC supports a number of
optimization directives such as (TC is the clock period):

• Given TC , design filter with minimum area.

• Given TC , design filter with lower power dissipation.

• Design the filter that can sustain the maximum throughput (minimum TC).

Moreover, The AC instructs the VHDL Builder, to place pipeline registers, if
necessary.

4.3 Characterization

The characterization of the basic blocks composing the filter is the key for an
accurate estimate of the cost function. Therefore, the outcome of AC depends on
an accurate characterization. For each RNS modulus (currently we consider a set
of about 30) all basic blocks must be characterized in terms of timing, area and

75

dyn N TC [ns] estimated actual est./act.
20 40 5.0 37208 41368 0.90
20 40 4.5 39511 42938 0.92
20 40 4.0 42250 44828 0.94
16 40 4.5 29861 32705 0.91
24 40 4.5 53419 58537 0.91
16 40 4.0 32103 34039 0.94
16 80 4.0 64206 69384 0.93
16 120 4.0 96309 104462 0.92

Table 4.1: Area estimation for generated filters.

power. Furthermore, because we provide RTL-level descriptions to the synthesizer,
the area (and the power dissipation) largely depends on timing constraints. As
a consequence, the area and power characterization of a block must be done for
different clock rates, increasing the complexity of the cost function to minimize.
For the characterization of the power dissipation, we assume random activity at
the blocks input. To make the tool as independent as possible of the library, as
an option in AC, we can use standard units for (delay, area, and power)1. In this
way, when changing technology, the characterization process is reduced to a few
runs. We use the VHDL Builder to generate all blocks to be characterized (Figure
4.2).

4.4 Examples and Results

To test the accuracy of the estimates and, consequently, the soundness of the
architectural choices made, we generated with the tool a number of FIR filters
varying the dynamic range (dyn), the filter order (N), and the timing constraints
(TC). The target technology is the STM 0.35 µm standard cell library. In Table
4.1, we report the area estimates (as NAND2 equiv.) and the corresponding actual
values determined after synthesis performed by Synopsys Design Compiler. From
the last column of the table, the estimate error is less than 10% on the average.

1The delay of a NOT gate with fan-out=4, the area of a NAND2 gate, and the power
dissipated by a NOT with fan-out=1 at 100 MHz.

76

Chapter 5

Conclusions and Future Work

In this chapter, a brief analysis of the importance of the use of RNS with respect to
the evolving nanometric technologies and to the new available FPGA architectures,
is given. These considerations are also linked to the trends of embedded electronics.
The following topics will be briefly analyzed

• DSP functions of interest

• Hardware platforms of interest

• Candidate applications

• Proposal for further developments

5.1 DSP Functions of Interest and Applica-

tions

As stated in the report and illustrated in the case study (FIR filters), the most
straightforward use of the RNS is in operations that can be categorized as linear
combinations of integer numbers. For example the linear combination operator is
fundamental in many signal processing algorithms such as filtering or transforms.
Consequently, formulas of the following type are suitable for RNS implementations

Z =

N1∑

i1=1

N2∑

i2=1

· · ·
NP∑

iP =1

ai1, i2,··· ,ip · Xi1, i2,··· ,ip (5.1)

where ai1, i2,··· , ip and Xi1, i2,··· ,ip can be either real or complex numbers. The RNS
deals with real numbers, but it can be extended to complex computations with
QRNS.

Referring to (5.1) the RNS is particularly useful when

77

1. the input data data to the computational unit are characterized by a large
dynamic range

2. the order of the linear combination is high (i.e. the number of summations
and the summation indices are high)

3. the final result must be accurate in the sense that the application is critical
in terms of quantization errors (take into account that RNS offers error free
computations)

In practice when the number of Multiply and Accumulate (MAC) operations to
compute the result is very high RNS is convenient. Many applications are critical
in this sense:

1. High order FIR filters (both real and complex filters). Often in real appli-
cation we need to implement parallel filters with hundreds of taps in order
to obtain a high frequency selectivity. In situations in which a very precise
frequency mask is needed errors derived by

• rounding of the filter coefficients (coefficient characterized by a large
number of bits)

• truncation in the internal filter computations (it is necessary to avoid
truncation at the multipliers output)

must be avoided or limited.

2. Multidimensional FIR filtering. There are applications in which is needed
to elaborate multidimensional signals (medical imaging).

3. High resolution and high speed implementation for the DFT. There is an
extending field of applications for such transforms. In Electronic Warfare
(EW) for example, the most important apparatus is a high dynamic range
and very large bandwidth radio receiver. The real time analysis of the
spectrum is often based on an high resolution FFT.

4. High speed implementation for wavelet transforms.

5. Adaptive signal processing when the adaptation rate is high.

Another important factor that drives to faster DSP units and consequently to
a number representation that is intrinsically parallel such as the RNS, is the very
fast growth in the performance of Analog to Digital (ADC) and Digital to Analog
(DAC) converters. At present it is easy to see on the market ADCs and DACs
characterized by 10/12 bits of resolution at conversion speeds up to 2 GSPS.

Other applications of the RNS are in the following fields

78

1. Cryptography. In this relative new field for RNS, the designer deals with
very high dynamic range integer numbers that can take advantage from the
RNS as shown in the recent work in the literature [52].

2. Very high resolution Direct Digital Frequency Synthesis (DDFS).
An increment in the resolution of a DDFS is obtained by implementing
an accumulator characterized by a very high number of bits. If low power
consumption is required, at the same speed, the RNS is convenient (see the
patents section).

3. Low power implementations. FPGAs are really important in these days
due to the flexibility they add in the design chain. FPGAs can be repro-
grammed and a small number of different parts can be used in the product
design. The limitation of the FPGAs capability to penetrate important
markets, such as consumer portable multimedia and space, is related to
the power hungry technology. To reduce the power dissipation in FPGAs,
special design techniques must be used. In particular, it has been proved
in literature that saving of the order of 30% can enable FPGAs to these
markets.

5.2 Proposal for Further Developments

To extend the field of application of the RNS, the following topics should be
investigated

1. Efficient scaling techniques. Efficient algorithms for the scaling operation
permits to optimize the use of the RNS in adaptive signal processing and
IIR filtering. In fact, in the case of IIR filters, due to the feedback, scaling
is needed to avoid the growth in wordlength.

2. Polyphase Filter banks. In [53] a polyphase filter bank in the Quadratic
Residue Number System (QRNS) has been implemented and then compared,
in terms of performance, area, and power dissipation to the implementation
of a polyphase filter bank in the traditional two’s complement system (TCS).
The resulting implementations, designed to have the same clock rates, show
that the QRNS filter is smaller and consumes less power than the TCS one.
More investigations especially in the case in which an FPGA is chosen has the
target architecture are important due to the complexity of this architectures.

3. Improvement in the tool for the automatic generation of RNS based Intellec-
tual Property (IP) blocks by a more accurate characterization of the library
blocks.

4. More accurate power consumption evaluation for the new FPGAs families.

79

5. Exploration of the advantages obtainable in the synthesis and mapping of
RNS architectures to the new families of FPGAs based on 6-input LUTs.

6. Introduction of fault tolerant techniques based on RNS in DSP blocks, to
increment the reliability due to losses such as the radiation effects on nano-
metric technologies.

7. Evaluation of power consumption earnings that can be obtained by translat-
ing software procedures into RNS. In this way the microprocessor multiply
unit will not be used and only the internal memory access and modular
additions will be performed.

8. Use of the RNS in high dynamic range operations to be executed on low
cost microcontrollers characterized by the absence of the multiplier.

80

Acknowledgments

The stay of Prof. Marco Re at DTU was supported by the Otto Mønsteds Fond
in the context of a Visiting Professor grant for the years 2007-2008.

Prof. Marco Re wishes to thank all the people at DTU Informatics for their
kind hospitality and in particular the Director of the Department Prof. Kaj Mad-
sen who evaluated his application to be qualified for selection by the Otto Mønsteds
Fond.

Marco particularly thanks Prof. Alberto Nannarelli who invited him for the
visiting professor position and Prof. Flemming Stassen for the interesting historical
and scientific discussions.

81

Bibliography

[1] A. Svoboda and M. Valach. Operational circuits. Stroje Na Zpracovani In-
formaci, 3, 1955.

[2] A. Svoboda and M. Valach. Rational residual system of residual classes. Stroje
Na Zpracovani Informaci, 5:9–37, 1957.

[3] A. Svoboda and M. Valach. The numerical system of residual classes in
mathematical machines. Proc. Congr. Int. Automa, 1958.

[4] H. H. Aiken and W. Semon. Advanced digital computer logic. Tech. Rep.
WADC TR, pages 59–472, 1959.

[5] R. A. Bauught and E. C. Day. Electronic sign evaluation for residue number
systems,. RCA Tech. Rep. No. TR-60-597-32, 1961.

[6] R. I. Tanaka. Modular arithmetic techniques. Tech. Rep. No. 2-38-62-1A,
ASTDR, Lockheed Missiles and Space Co., 1962.

[7] D.L. Slotnick. Modular arithmetic computing techniques. Tech.Rep ASD
-TDR-63-280, Westinghouse Electric Corporation, Air Arm Division, 1963.

[8] R. C. Aitken. Nanometer technology effects on fault models for ics testing.
Computer, pages 46–51, 1999.

[9] ITRS. Nanometer Technology Effects on Fault Models for ICs Testing, 2007.
http://www.itrs.net/.

[10] I.M. Vinogradov. An Introduction to the Theory of Numbers. New York:
Pergamon Press, 1955.

[11] N.S. Szabo and R.I. Tanaka. Residue Arithmetic and its Applications in
Computer Technology. New York: McGraw-Hill, 1967.

[12] M.A. Sodestrand, W.K. Jenkins, G. A. Jullien, and F. J. Taylor. Residue
Number System Arithmetic: Modern Applications in Digital Signal Process-
ing. New York: IEEE Press, 1986.

82

[13] P. V. Ananda Mohan. Residue Number Systems: Algorithms and Architec-
tures. The Springer International Series in Engineering and Computer Science,
2002.

[14] Marco Re. Metodologie di conversione ingresso-uscita in processori in arit-
metica finita. PhD thesis, University of Rome Tor Vergata, 1996.

[15] T. Stouraitis. Efficient convertors for residue and quadratic-residue number
systems. IEE PROCEEDINGS-G, 139(6):626–634, 1992.

[16] T. V. Vu. Efficient implementation of the chinese remainder theorem for sign
detection and residue decoding. IEEE Trans. Circuits Systems-I, 45:667–669,
June 1985.

[17] S.Piestrak. A high-speed realization of a residue to binary number system
converter. IEEE Trans. Circuits Systems-II Analog and Digital Signal Pro-
cessing, 42:661–663, Oct. 1995.

[18] G. Cardarilli, M. Re, and R. Lojacono. A residue to binary conversion al-
gorithm for signed numbers. European Conference on Circuit Theory and
Design (ECCTD’97), 3:1456–1459, 1997.

[19] B. Premkumar A. Omondi. Residue Number Systems: Theory and Implemen-
tation. Imperial College Press, 2007.

[20] Z. D. Ulman and M. Czyzak. Highly parallel, fast scaling of numbers in non-
redundant residue arithmetic. IEEE Trans. Signal Processing, 46:487–496,
1998.

[21] A. Garcia and A. Lloris. A look-up scheme for scaling in the RNS. IEEE
Trans. Comput., 48:748–751, 1999.

[22] M. A. P. Shenoy and R. Kumaresan. A fast and accurate RNS scaling tech-
nique for high speed signal processing. IEEE Trans. Acoust., Speech, Signal
Processing, 37:929–937, 1989.

[23] F. Barsi and M. C. Pinotti. Fast base extension and precise scaling in RNS for
look-up table implementations. IEEE Trans. Signal Processing, 43:2427–2430,
1995.

[24] G. C. Cardarilli, M. Re, R. Lojacono, and G. Ferri. A systolic architecture for
high performance scaled residue to binary conversion. IEEE Trans. Circuits
Syst. I, 47:1523–1526, 2000.

[25] N. Burgess. Scaled and unscaled residue number system to binary conversion
techniques using the core function. Proc. of 13th Symposium on Computer
Arithmetic, pages 250–257, 1997.

83

[26] M. Griffin, M. Sousa, and F. Taylor. Efficient scaling in the residue number
system. Proc. of Intl. Conf. on Acoustics, Speech, and Signal Processing,
pages 1075–1078, 1989.

[27] U. Mayer-Base and T. Stouraitis. New power-of-two scaling scheme for cell-
based IC design. IEEE Trans. VLSI Syst., 1:446–450, 2003.

[28] F. Barsi and P. Maestrini. Error Correction Properties of Redundant Residue
Number System. IEEE Transactions on Computers, pages 370–375, March
1973.

[29] F. Barsi and P. Maestrini. Error Detection and Correction by Product Codes
in Residue Number System. IEEE Transactions on Computers, pages 915–
924, Sept. 1974.

[30] R. Lojacono G. C. Cardarilli, M. Re. Efficient modulo extraction for crt based
residue to binary converters. IEEE International Symposium on Circuits and
Systems, 3:2036–2039, 1997.

[31] R. Conway and J. Nelson. Fast converter for 3 moduli rns using new property
of crt. IEEE Trans. on Computers, 48(8):852–860, 1999.

[32] D. Gallaher, F. E. Petry, and P. Srinivasan. The digit parallel method for fast
rns to weighted number system conversion for specific moduli (2k−1, 2k, 2k +
1). IEEE Trans. Circuits Syst.-II, 44(1):53–57, 1997.

[33] A. B. Premkumar. An rns to binary converter in 2n-1, 2n, 2n+1 moduli set.
IEEE Trans. Circuits Syst.-II, 39(7):480–482, 1992.

[34] A. B. Premkumar, M. Bhardwaj, and T. Srikathan. High-speed and low-cost
reverse converters for the 2n−1, 2n, 2n+1 moduli set. IEEE Trans. Circuits
Syst.-II, 45(7):903–908, 1998.

[35] K.M. Elleyth and M.A. Bayoumi. Fast and flexible architectures for rns arith-
metic decoding. IEEE Trans.Circuits Systems.-II Analog and Digital Signal
Processing, 39(4):226–235, 1992.

[36] F. Barsi. Mod m arithmetic in binary systems. Information Processing Letters,
40(6):303–309, 1991.

[37] A. P. Chandrakasan and R. W. Brodersen. Low Power Digital CMOS Design.
Kluwer Academic Publishers, 1995.

[38] STMicroelectronics. 90nm CMOS090 Design Platform.
http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm.

[39] A. Del Re, A. Nannarelli, and M. Re. A tool for automatic generation of RTL-
level VHDL description of RNS FIR filters. Proc. of 2004 Design, Automation
and Test in Europe Conference (DATE), 48:686–687, Feb. 2004.

84

[40] K. Usami and M. Horowitz. Clustered voltage scaling technique for low-power
design. Proc. of International Symposium on Low Power Design, pages 3–8,
Apr. 1995.

[41] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI Design.
Addison-Wesley Publishing Company, 2nd edition, 1993.

[42] Synopsys Inc. Synopsys products: Design Compiler.
http://www.synopsys.com/products/logic/design compiler.html.

[43] B. Chen and I. Nedelchev. Power compiler: A gate-level power optimization
and synthesys system. Proc. of International Conference on Computer Design
(ICCD), pages 74–78, Oct. 1997.

[44] G. C. Cardarilli, A. Nannarelli, and M. Re. Reducing power dissipation in
FIR filters using the residue number system. to appear in Proc. of the 43rd
IEEE Midwest Symposium on Circuits and Systems, Aug. 2000. Available at
http://dspvlsi.uniroma2.it/pubs/mwscas00/.

[45] P. S. Moharir. Extending the scope of golub’s method beyond complex
multiplication to binary converters. IEEE Transactions on Computers, C-
34(5):484–487, 1985.

[46] Xilinx Inc. http://www.xilinx.com/.

[47] A. Nannarelli, M. Re, and G. C. Cardarilli. Tradeoffs between Residue Num-
ber System and Traditional FIR Filters. Proc. of IEEE International Sympo-
sium on Circuits and Systems, II:305–308, May 2001.

[48] U. Weiser, N. Magen, A. Kolodny, and N. Shamir. Interconnect-power dissi-
pation in a microprocessor. Proc. of SLIP’04, February 2004.

[49] T. Stouraitis and V. Paliouras. Considering the alternatives in low-power
design. IEEE Circuits and Devices Magazine, 17:22–29, July 2001.

[50] A. S. Kaviani, L. Shang, and K. Bathala. Dynamic power consumption in
Virtex-II FPGA family. Proc. of FPGA’02, February 2002.

[51] D. Soudris et al. A methodology for implementing FIR filters and CAD tool
development for designing RNS-based systems. Proc. of IEEE Int.l Sym. on
Circuits and Systems, V:129–132, May 2003.

[52] J-C. Bajard and L. Imbert. A full RNS implementation of RSA. IEEE
Transaction on Computers, pages 769–774, June 2004.

[53] G. C. Cardarilli, A. Del Re, A. Nannarelli, and M. Re. Low-power imple-
mentation of polyphase filtersnin quadratic residue number system. IEEE
International Symposium on Circuits and Systems, ISCAS 2004, 2:725–728,
2004.

85

