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ABSTRACT 

 

Implementation of digital signal processing (DSP) algorithms in hardware, 

such as field programmable gate arrays (FPGAs), requires a large number of 

multipliers. Fast, low area multiply-adds have become critical in modern 

commercial and military DSP applications. In many contemporary real-time DSP 

and multimedia applications, system performance is severely impacted by the 

limitations of currently available speed, energy efficiency, and area requirement of 

an onboard silicon multiplier.  

My research focus is on two key ideas for improving DSP performance: 

1. Develop new high performance, efficient shift-add techniques 

(“multiplierless”) to implement the multiply-add operations without the 

need for a traditional multiplier structure. 

2. There is a growing trend toward design prototyping and even 

production in FPGAs as opposed to dedicated DSP processors or ASICs; 

leverage this trend synergistically with the new multiplierless structures 

to improve performance. 

My work is based on a dramatic new technique for converting between 2’s 

complement and CSD number systems, and results in high-performance structures 



 

xv 

that are particularly effective for implementing adaptive systems in reconfigurable 

logic. 

Adaptive system implementations require real-time conversion of 

coefficients to Canonical Signed Digit (CSD) or similar representations to benefit 

from multiplierless techniques for implementing filters. Multiplierless approaches 

are used to reduce the hardware and increase the throughput. This dissertation 

introduces the first non-iterative hardware algorithm to convert 2’s complement 

numbers to their CSD representations (FastCSD) using a fixed number of shift and 

logic operations. As a result, the power consumption and area requirements 

required for hardware implementation of DSP algorithms in which the coefficients 

are not known a priori can be greatly reduced. Because all CSD digits are produced 

simultaneously, the conversion speed and thus the throughput are improved when 

compared to overlap-and-scan techniques such as Booth’s recoding. 

I leverage FastCSD to develop a new, high performance iterative 

multiplierless structure based on a novel real-time CSD recoding, so that more zero 

partial products are introduced. Up to 66.7% zero partial products occur compared 

to 50% in the traditional modified Booth’s recoding. Also, this structure reduces 

the non-zero partial products to a minimum. As a result, the number of arithmetic 

operations in the carry-save structure is reduced. Thus, an overall speed-up, as well 

as low-power consumption can be achieved. Furthermore, because the proposed 
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structure involves real time CSD recoding and does not require a fixed value for the 

multiplier input to be known a priori, the proposed multiplier can be applied to 

implement digital filters with non-fixed filter coefficients, such as adaptive filters.  

I also introduce a new multi-input Canonical Signed Digit (CSD) multiplier 

unit, which requires fewer shift/add/subtract operations and reduced CSD number 

conversion overhead compared to existing techniques. This results in reduced 

power consumption and area requirements in the hardware implementation of DSP 

algorithms. Furthermore, because all the products are produced simultaneously, the 

multiplication speed and thus the throughput are improved. The multi-input 

multiplier unit is applied to implement digital filters with non-fixed filter 

coefficients, such as adaptive filters. The implementation cost of these digital filters 

can be further reduced by limiting the wordlength of the input signal with little or 

no sacrifice to the filter performance, which is confirmed by my simulation results. 

The proposed multiplier unit can also be applied to other DSP algorithms, such as 

digital filter banks or matrix and vector multiplications. 

Finally, the tradeoff between filter order and coefficient length in the design 

and implementation of high-performance filters in Field Programmable Gate 

Arrays (FPGAs) is discussed. Non-minimum order FIR filters are designed for 

implementation using Canonical Signed Digit (CSD) multiplierless 

implementation techniques. By increasing the filter order, the length of the 
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coefficients can be decreased without reducing the filter performance. Thus, an 

overall hardware savings can be achieved.  
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Chapter 1 

 

INTRODUCTION 

 

1.1 Introduction to digital filters 

Digital filters are among the most significant components in DSP 

applications. Often, DSP algorithms are implemented using general purpose DSP 

processors. Although those DSP processors typically have high-speed multiply and 

accumulator circuits, only a limited number of operations can be performed before 

the next sample arrives, thereby limiting the bandwidth.  

VLSI based filters including those using FPGAs and ASICs, are 

implemented with a parallel-pipelined architecture, enhancing the overall 

performance. For high-performance applications, VLSI implementations provide 

better device utilization through conservation of board space and system power 

consumption, which is an important advantage not available with many stand-alone 

DSP chips. Digital filter implementation in FPGAs and other VLSI 

implementations allows for higher sampling rates and lower cost than that available 
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from traditional DSP chips [1]. 

Finite impulse response (FIR) filters are widely used in many digital signal 

processing application areas such as communications and signal preconditioning. 

Many important properties make FIR filters attractive, such as simple structure, 

easily achieved linear-phase performance and pipelined design. FIR filter operation 

can be represented by the following equation [2]: 

                             

1 1

0 0

( ) ( ) ( )
M M

k
k k

k k

y n h x n k H z h z
− −

−

= =

= − ⇔ =∑ ∑                            (1.1) 

where M is the filter length and the kh  are the filter coefficients. 

The basic structures of FIR filters can be classified into several major forms: 

direct form, cascade form, polyphase, lattice, etc.  

An infinite impulse response (IIR) filter is a recursive filter in which the 

current output depends on previous outputs as well as inputs. To meet certain 

specifications, an IIR filter can often be much more efficient in terms of order 

compared to an FIR filter. The main drawbacks of IIR filters are that potential 

instability can be introduced by feedback, limit cycles may occur, phase response is 

typically non-linear and it is hard to implement in a pipelined design. 

The basic IIR equation is given by [2]: 
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1 0

( ) ( ) ( )
N M

k k
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−

= =

=− − + −∑ ∑                                     (1.2) 

with the direct form transform function 

 
1 1

0 1 1
1

1
( )

1

M
M

N
N

b b z b zH z
a z a z

− −
−

−

+ + +
=

+ + +
                                    (1.3) 

where M is the maximum input delay, the bk  are the numerator coefficients; N is 

the maximum output delay, and the aj are the denominator coefficients. 

Adaptive filters have achieved widespread acceptance and are included in 

many digital signal processing application areas. Whenever there are situations 

where the prescribed specifications are not available, or are time-varying, a digital 

filter with adaptive coefficients, known as an adaptive filter, is employed as the 

solution. These situations include applications such as system identification, active 

noise control (ANC), and others [3].  

Adaptive filters automatically adjust their coefficients to get the best results 

according to some objective function. The objective function yields a coefficient 

update (learning) algorithm. The choice of the algorithm is generally the most 

crucial aspect of the overall adaptive process. In this dissertation, I would like to 

introduce the Least Mean Square (LMS) update method [3]. This algorithm is 

widely used in various applications of adaptive filtering due to its computational 
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simplicity. This solution uses an approximation to the gradient in the direction that 

obtains the minimum mean square error (MSE).  

A general block diagram of a LMS adaptive filter is illustrated in Figure 1.1 

[3], where estimation error ( )e n  is:  

                                         ( ) ( ) ( )e n d n y n= −                                                (1.4)   

where n  is the iteration number, ( )d n  is desired output and ( )y n is filter output.  

Then, the tap-coefficient adaptation equation is given by: 

            

( )
( )

( )

( )
( )

( )

( )

( )
( )

( )

0 0

1 1

1
1 1

1N N

w n w n x n
w n w n x n

e n

w n w n x n N

μ

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

+ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦       

                 (1.5) 

where ( )x n  represents the input signal, μ  denotes gradient step size, and ( )kw n  is 

the vector of time-varying filter coefficients.  

The filter output ( )y n can be written: 

( ) ( ) ( ) ( )0 1 1 Ny n w x n w x n w x n N= + − + + − .                     (1.6) 

The learning error ( )e n  is computed based on the desired output ( )d n  as 

shown in (1.4). This error is used to update the time-varying FIR filter coefficients 
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as in (1.5). Then, the filter output ( )y n is calculated as in (1.6) above. It is, of 

course, the convolution of the input ( )x n  with the FIR time-varying filter 

coefficients ( ).kw n  In all practical applications, this loop is computed repeatedly. 

The gradient step size, µ, is chosen carefully to ensure convergence (not too large) 

without being so conservative (not too small) that the learning rate is too slow.  

 

Figure 1.1 LMS adaptive FIR filter [3]. 

 

The basic structures for adaptive filtering can be classified into FIR 

adaptive filters and IIR adaptive filters.  

 

1.2 Problem statement 

Implementation of digital signal processing (DSP) algorithms and 

      W  ( )x n  ( )y n

Adaptation 
Algorithm 

( )d n+
( )e n  

−
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multimedia applications in hardware, such as field programmable gate arrays 

(FPGAs) and digital signal processors, requires a large number of multiplications. 

Fast, low area multiply-adds are critical in DSP implementations in modern 

commercial and military DSP applications.  

In many contemporary real-time DSP and multimedia applications, system 

performance is severely impacted by the limitations of currently available speed, 

energy efficiency, and area requirement of an onboard silicon multiplier. This is 

exacerbated in handheld multimedia devices due to the small size and limited 

battery lifetimes.  Therefore, there has been a lot of research carried out on the 

development of advanced multiplier techniques to reduce the energy consumption, 

area requirements, and/or computation time, e.g. [4]-[12].  

My research in this dissertation is focused on the implementation of 

adaptable algorithms in DSP applications. Such as, adaptive filters, Active Noise 

Control (ANC) etc.. The coefficients of an adaptive filter change with time. These 

filters can automatically adjust their coefficients to get the best result according to 

some objective function. The objective function yields a coefficient update 

(learning) algorithm. For real-time implementation of digital filters, parallel 

implementation of the multiplications is typically required. Many researchers have 

addressed the question of how to implement the multiplications for 

fixed-coefficient filters. Recently there has been a renewed interest in 
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adaptable-coefficient filters [6], [8], [13]. In general, there is a tradeoff between the 

hardware complexity and the filter performance associated with the wordlength of 

the multipliers (usually coefficients). Increased coefficient wordlength increases 

implementation complexity, and decreased coefficient wordlength results in 

greater filter response error. In fixed coefficient filters, multiplierless techniques 

are sometimes implemented by encoding the coefficients in Canonical Signed Digit 

(CSD) number system [14] or Signed Power of Two (SPT) representation [8]. 

Further improvement can be achieved by using dependence-graph algorithms, such 

as Multiplier Adder Graph (MAG) [15] or Bull-Horrocks’ algorithm [16]. Most of 

those approaches cannot be applied to real-time implementation of adaptive and 

non-fixed coefficient systems; e.g., LUT and dependence-graph algorithms which 

require the value of the filter coefficients to be known a priori.  Some researchers 

have considered techniques for implementing adaptive filters that use specialized 

encoding of the inputs. CSD coding of coefficients for adaptive filters has been 

proposed [6], and non-uniform quantization of inputs has been considered [17]. 

 In this dissertation, I consider the case of adaptive filters in which the filter 

coefficients cannot be known a priori. To decrease the implementation complexity 

without increasing the filter response error, developing new time and space 

efficient techniques for high performance FPGA implementation of adaptive and 

non-fixed coefficient digital filters become critical, which include new algorithm to 

convert 2’s complement to CSD and new high performance “multiplierless” 
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multiply-add structures. 

The result of my research will be new multiply-add algorithms and 

architectures providing 

• Significantly reduced space complexity 

• Significantly reduced time complexity 

• Significantly reduced power consumption 

 compared to the current state of the art. 

Many modern DSP processors are optimized for floating point coefficients; 

the new techniques developed in this dissertation provide a performance advantage 

for fixed point filter implementations. Thus, the techniques developed here are 

more appropriate for FPGA implementations. 

The new techniques developed in this dissertation are particularly well 

suited for implementing high speed adaptive filters implementations where 

adaptation can be applied in both the coefficient values and their word lengths. This 

fits well with the reconfigurable hardware capabilities available in an FPGA 

implementation as opposed to ASIC or dedicated DSP processor. 
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1.3 Original contributions 

This dissertation makes the following contributions: 

• Developed the first non-iterative hardware algorithm to convert 2’s 

complement to CSD (FastCSD) [18]. 

• Faster than almost all existing techniques 

• Lower space complexity 

• Lower power consumption 

• Leveraged FastCSD [18] to develop a new, high performance iterative 

multiplier structure based on novel real-time CSD recoding [19], [20], 

which has simpler structure than other competitive techniques with less 

computational complexity and low power consumptions. 

• Compared with other CSD multipliers: faster, smaller, better power 

efficiency and/or flexibility 

• Compared to traditional array multipliers: lower area, lower power 

consumption 

• Compared to traditional iterative multipliers: faster, lower power 

consumption 
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• Developed the first multi-input multiplier unit suitable for adaptive DSP 

algorithm implementations [21]. 

• Optimized filter order and coefficient length for design of high performance 

FIR filters [22]. 

 

1.4 Organization of the dissertation 

This dissertation will be organized as follows. The first chapter provides 

some introductory discussion. The second chapter provides an overview of filter 

implementation techniques in FPGAs. I review some common filter design 

techniques, and then multiplierless techniques in filter design are introduced. A 

novel hardware implementation method for adaptive filter coefficients and a 

multiplier structure based on a novel real-time CSD recoding will be studied and 

developed in Chapter 3 and Chapter 4, respectively. In Chapter 5, I consider two 

extension topics, the first is a multi-input multiplier unit suitable for adaptive DSP 

algorithm implementations; the other one is a method that optimizes filter order and 

coefficient length in the design of high performance filters for high throughput 

FPGA implementations. In Chapter 6, I summarize my contributions and outline 

areas for future work.  
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Chapter 2 

 

 OVERVIEW OF FILTER IMPLEMENTATION 

TECHNIQUES IN FPGAS 

 

2.1 Introduction of filter implementation solutions 

Digital Signal Processing (DSP) is one of the most active areas in VLSI 

research and development [2]. Traditionally, DSP algorithms are implemented 

either using general purpose DSP processors [23] or using Application Specific 

Integrated Circuits (ASICs) [24]. Although DSP processors are less expensive and 

flexible, they have the disadvantage of low speed. The applications of those 

processors are limited since many DSP applications require high speed and high 

throughput. On the other hand, ASICs which are high speed, but expensive and less 

flexible, cannot satisfy the needs of all designers. 

An FPGA is a network of reconfigurable hardware with reconfigurable 

interconnects that can be easily programmed, which provides solutions that 

maintain both the advantages of the approach based on DSP processors and the 

approach based on ASICs [25], [26]. An integrated chip designer can use an FPGA 
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to dynamically design a chip, test it, reconfigure it, and settle on a design that can 

then be used to manufacture an ASIC. The major advantages of FPGAs are  

• Versatility 

•  Flexibility 

• Huge performance gain for some applications 

• Re-useable hardware designs 

 

2.2 FPGA DSP implementation issues 

Based on the advantages above, many DSP algorithms, such as FFTs, FIR 

or IIR filters, to name just a few, previously built with ASICs or DSP processors, 

are now routinely replaced by FPGAs [1]. Also, some recent FPGAs include DSP 

features [25], such as ALTERA® Stratex and XILINX® Virtex II, which makes 

FPGAs more attractive for DSP algorithm implementations. 

There is a growing trend toward design prototyping and even production in 

FPGAs as opposed to dedicated DSP processors or ASICs. I leverage this trend 

synergistically with the new multiplierless structures to further improve the 

performance. 
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The reasons for me to choose FPGA as the design platform are listed here.  

First of all, the new techniques developed in this dissertation provide a 

performance advantage for fixed point filter implementations. Many modern DSP 

processor are optimized for floating point coefficients [24]; thus the techniques 

developed here are more appropriate for FPGA implementations [25]. 

Secondly, the new techniques developed in this dissertation are particularly 

well suited for implementing adaptive filters. Adaptation can be applied in both the 

coefficient values and their word lengths. This fits well with the reconfigurable 

hardware capabilities available in an FPGA implementation as opposed to ASIC or 

dedicated DSP processor [25]. 

Finally, the new techniques developed in this dissertation are particularly 

well suited for high speed FPGA implementations as opposed to DSP processor 

[25]. 

 

 2.3 Current filter implementation techniques 

The most common filter implementation approaches are multiplier-based 

design and LUT-based design [27]. 
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2.3.1 Multiplier-Based design 

To better understand multiplier based design techniques, let us discuss the 

characteristics of the multiplier first. Multiplication involves two basic operations: 

generation of partial products and accumulation of partial products. Hence, all 

techniques for speeding up multiplication can be categorized into to two main 

groups: those that seek to reduce the number of nonzero partial products and those 

that seek to accelerate the accumulation of partial products [27].     

There are three types of multipliers: sequential/iterative multipliers, parallel 

multipliers and array multipliers [28]. Sequential multipliers, also called iterative 

multipliers in some literature, generate partial products sequentially and add each 

newly generated product to previously accumulated partial products. The major 

properties for this type of multipliers are small area consumption, reduced pin 

count and wire length, and high clock rate but low speed. Parallel multipliers 

generate partial products in parallel and accumulate them using a fast 

multi-operand adder. Using this type of multiplier, the execution speed is increased 

by sacrificing area. An array of identical cells generates new partial products and 

accumulates them simultaneously in an array multiplier, such that no separate 

circuits are required for generation and accumulation; in this way, execution time is 

reduced, but hardware complexity is increased [28].  

Here, let’s study the basic idea of multiplication by considering a sequential 
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fixed-width 2’s complement multiplier as an example. Suppose inputs and 

coefficients are all n-bit wide, then the product will be 2n-bit wide. Often, the 

product will be quantized to n-bits by eliminating the n Least Significant Bits 

(LSBs). This approach can reduce area consumption, but rounding error is 

introduced. When it is applied to basic Multiply-Accumulator (MAC) filter design 

in Figure 2.1 [27], we can see the area consumption is reduced by sacrificing speed.  

 

 

Figure 2.1 Multiply-Accumulator implementation of digital filter using 
sequential 2’s complement multiplier [27].  

 

Figure 2.2 shows a possible hardware realization of the sequential 2’s 

complement iterative multiplier with additions and right-shifting [27]. For an n-bit 

+

×

Accumulator

h 

x[n] 

y[n] 

Multiply-Accumulator 

2’s Complement multiplier 
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by n-bit multiplication, the right-shifting only requires n-bit adder in stead of 2n-bit 

in the left-shifting structure. Note that the multiplier and the lower half of the partial 

product can share the same register, which is a common area-optimization method 

in the sequential multipliers [27]. Typically, the multiplier and partial products are 

right-shifted one bit at a time per iteration. Therefore, the product is completed after 

n iterations, which requires n add/shift operations, regardless of the operands’ 

value. 

 

 

Figure 2.2 Schematic depiction of a right-shifting 2’s complement iterative 
shift/add multiplier [27]. 



 

17 

2.3.2 LUT-based design 

Another commonly used technique in FPGA design is the Look-Up-Table 

(LUT) [29]. Many algorithms used in DSP, such as filtering, are based on constant 

coefficient values. Usually for the multipliers involved in these types of algorithms, 

output purely depends on the input data. Thus, a Look-Up-Table can be used to 

implement the multiplier by storing pre-computed partial products of the fixed 

coefficient in distributed ROM to reduce the logic cost. This kind of design 

technique includes Constant Coefficient Multiplier (KCM) (see Figure 2.3) [29] 

and Distributed Arithmetic (DA) approaches [30].  

An advantage of LUT architectures is that they simplify timing of 

synchronous logic, so they are fast. However, the disadvantage is an unusually 

large number of memory cells required to implement some designs, as in the case 

when the number of inputs is large, which requires much area. Also, the 

multiplier’s wordlength usually is fixed and the value of multiplier should be 

known ahead of time [29].  

Another Look-Up-Table based design is Distributed Arithmetic which is 

used to design bit-level architectures for vector-vector multiplications based on 

saving partial products in memories [30]. Because the coefficients are known ahead 

of time, it is possible to pre-calculate the result of a multiplication. FIR filter can be 

presented as a product of two length-M vectors H (coefficients) and X (inputs). 
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Figure 2.3 Constant Coefficient Multiplier (KCM) filter design [29]. 

 

Then, the output of an FIR filter can be expressed as a summation of products:  

1

0
( )

M

k
k

Y H X h x n k
−

=
= = −∑i , where y(n) is the filter output at time n, hk is the kth 

coefficient (which does not change over time) and x(n-k) is the input signal delayed 

by k samples and x(n-k) consists of N bits { x0(n-k), x1(n-k), x2(n-k)……, xN-1(n-k)},  

where x0(n-k) is the sign bit [31].  

We can express x(n-k)  as 
1

0
1

( ) ( ) ( )2
N

b
b

b
x n k x n k x n k

−
−

=
− = − − + −∑ , so 

1 1

0
0 1
1 1 1

0
1 0 0

( ) ( ) ( )2

( ) 2 ( )

M N
b

k b
k b
N M M

b
k b k

b k k

y n h x n k x n k

h x n k h x n k

− −
−

= =

− − −
−

= = =

⎡ ⎤
= − − + −⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= − − −⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑ ∑
.

              (2.1)                  

x[n] y[n]
8 

0 x C 
1 x C 

254 x C 
255 x C 

C is the constant 
coefficient 



 

19 

Figure 2.4 [30] shows a 4-tap Distributed Arithmetic (DA) filter design, 

where M =4 is the number of filter-taps. The accumulation can be efficiently 

implemented using a shift-adder, and the resulting LUT is defined also shown in 

Figure 2.4 [30]. After N look-up cycles, the output is computed. 

Assume that a LUT and a general-purpose multiplier have the same delay t, 

the computational latencies are Nt for DA and Mt for a general-purpose multiplier 

based MAC. If N<< M, the speed of DA can be much faster than the MAC-based 

design [26].  

 

 

Figure 2.4 Distributed Arithmetic (DA) 4-tap FIR filter design [30]. 
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2.4 Modified radix-4 Booth’s recoding multiplier 

Booth’s recoding is a tricky way to reduce the number of partial products in 

a binary multiplier [12]. The basic idea is to replace additions arising from a string 

of ones with a single subtraction at rightmost in a run of ones, then add back a one 

before the leftmost one in the run based on: 

1 1 12 2 2 2 2 2j j i i j i− + ++ + + + = −                                   (2.2) 

The longer the sequence of 1s, the larger savings can be achieved, for 

example, number “0011110” is recoded by “01000 1 0”. Therefore, many zero 

partial products are generated. However, the original proposed Booth’s recoding 

algorithm can only speed up multiplication when a multiplier has many consecutive 

1’s, and Booth’s recoding becomes very inefficient when a multiplier has 

alternative 1 and 0’s, e.g. the number “010101” is represented by “1 1 1 1 1 1 ”, 

requiring more add/shift operations.  

The radix-4 modified Booth’s recoding algorithm has been widely used in 

modern high-speed multiplication circuits [32]. Using a modified Booth algorithm, 

sequential 3-bit segments of a 2’s complement number are converted into the digit 

set{ }2, 1, 0± ± . This technique reduces an n-bit 2’s complement multiplier to 

2n⎡ ⎤⎢ ⎥  digits. The number of partial products has been reduced to n/2 which can be 

readily calculated by shift/add/subtract operations, such that these multipliers can 



 

21 

achieve about 40% reduction in area and power consumption [27]. 

The radix-4 modified Booth’s recoding is performed by the scheme shown 

in Table 2.1 [27]. The 2’s complement number b is converted to b', where the digit 

bi' of the Booth’s recoded number b' is obtained from the three digits b2i+1, b2i and 

b2i-1 of a 2’s complement number b, a is the multiplicand.  

 

TABLE 2.1 RADIX-4 MODIFIED BOOTH’S RECODING [27] 
 

b2i +1 b2i b2i-1 '
ib  Operation 

0 0 0 0 +0 

0 0 1 1 +a 

0 1 0 1 +a 

0 1 1 2 +2a 

1 0 0 -2 -2a 

1 0 1 -1 -a 

1 1 0 -1 -a 

1 1 1 0 0 

 



 

22 

Possible hardware implementation of the multiple generation part of a 

radix-4 multiplier based on Booth’s recoding is shown in Figure 2.5 [27]. Since five 

possible multiples of multiplicand a (0, ±1, ±2) are involved, we need at least 3 bits 

to encode a desired multiple. A simple and efficient encoding is to devote one bit to 

distinguish 0 from nonzero digits, one bit to the sign of a nonzero digit, and one bit 

to the magnitude of a nonzero digit. The recoding circuit thus has three inputs and 

produces three outputs, where “neg” indicates if the multiple should be added or 

subtracted, “non0” indicates if the multiple is nonzero, and “two” indicates that a 

nonzero multiple of 2. 

The major advantages of radix-4 Booth’s recoding are [27]: 

• Halving of the number of partial products. This is important in circuit 

design as it relates to the propagation delay of the circuit, and the 

complexity and power consumption of its implementation. It can encode 

the digits by looking at three bits at a time. 

• Avoiding implementation of calculating multiples of 3. Instead of using 

shift and add to generate a multiply by 3, generating partial products only 

needs shifting and negating with radix-4 Booth’s recoding.  

• Potential advantage: It might reduce the number of 1’s in the multiplier. 
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Figure 2.5 Hardware realization of multiple generation part with radix-4 
Booth’s recoding [27].  

 

The disadvantage of Booth’s recoding is the increased area; compared with 

a standard 2’s complement multiplier that doesn’t use Booth’s recoding, since it 

needs to handle signed numbers, such that the additional recoding logic and 

subtractions are required in Booth multipliers.  

It is possible to extend radix-4 recoding scheme to higher radices to achieve 

more savings, such as the radix-8 modified Booth’s algorithm [27]. 
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2.5 Multiplierless techniques in filter implementations 

As we know multipliers are the most expensive building blocks in terms of 

silicon area and throughput in digital filter implementations. Thus, a great effort 

has been made to speed up and simplify the multiplication [4]-[12]. Many 

researchers have addressed this problem by restricting the coefficient wordlength, 

or by quantizing filter coefficients to the limit number of power-of-two [33]-[35]. 

In these cases, a conventional multiplier is avoided altogether [36]. Multiplications 

can be replaced by simple shift and add operations [36].  This results in 

multiplierless techniques. Instead of traditional multiply-add implementations, 

these multiplierless techniques use the knowledge that multiplication by a 

power-of-two can be simply obtained by shifting the data bus by the appropriate 

number of bits. Thus, filter coefficients can be realized by incorporating a few 

adders (or subtractors) and bit shifters. The bit shifters are implemented by 

choosing the appropriate interconnections [37]. The number of add/shift operations 

is directly related to the power consumption and area required, and it depends on 

the number of 1’s in the multiplier.  

Usually, multiplierless techniques are divided into alternate number 

representations and constant multiplication problems. As we discussed in section 

2.3.1, there are two ways to speed up multiplication. One is by reducing the number 

of operands (partial products) to be added; the other is by adding the operands 
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faster (accelerating accumulation) [27]. Most multiplierless techniques make use of 

all the essences of the above two categories, since filter coefficients are realized by 

the limit number of power-of-two, and thus, the number of operands to be added is 

significantly reduced. At the same time, only simple shift and add/subtract 

operations are involved in most multiplierless techniques, the resultant increase in 

speed is also huge [36].  

 

2.5.1   Alternate number representations 

Further benefits can be achieved by considering alternate number 

representations, such as the Canonical Signed Digit (CSD) number system [14] or 

Signed Power of Two (SPT) representation [8] and Minimal Signed Digit (MSD) 

[38].  

 

2.5.1.1 Canonical Signed Digit (CSD) 

CSD representation [39] is a radix-two number system with digit set 

{ 1,  0, 1}−  that has the “canonical” property that no two consecutive bits in the 

CSD number are nonzero and the possible number of nonzero bits in a CSD number 

is minimal [14]. For example, the 2’s complement number 
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10101101 01010101x= = , where “ 1 ” stands for “-1”. This representation 

replaces the additions arising from a string of ones in a binary number with a single 

subtraction, so that the “shift-and-add” algorithm becomes “shift-and-add/subtract”, 

i.e. a multiplier can be realized by incorporating a few adders (or subtractors) and 

bit shifters. CSD numbers have proven to be useful in implementing multiplierless 

multiplication with reduced complexity, because the cost of multiplication is a 

direct function of the number of nonzero bits in the multiplier, which can be 

reduced by using CSD representation. It is shown in [9] that the probability that a 

CSD digit jc  has a nonzero value is given by 

                ( 1) 1 3 (1 9 )[1 ( 1 2) ]n
jP c n= = + − −                                     (2.3) 

where n is the number of bits in the representation. 

As n becomes large, the probability tends towards 1/3, and we see that for 

an n-bit CSD multiplier, the number of add/subtract operations never exceeds n/2 

and can be reduced to n/3 on average, as the wordlength of multiplier grows [14]. 

To benefit from the CSD implementation advantages, the conversion of 

numbers from 2’s complement to CSD format must be implemented in hardware. 

Many researchers have addressed the question of how to convert 2’s complement to 

CSD numbers. Unfortunately, the cost of conversion using methods such as those 

based on Look-Up-Table (LUT) [29], canonical recoding techniques [40] or 
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complicated digital circuits [10], often outweighs the implementation advantages 

of CSD. 

The canonical recoding was studied by Reitwiesner in [40]. He converts a 

2’s complement number x into its canonical form z which contains the minimal 

number of non-zero bits as well as add/subtract operations by using the look-up 

table described in Table 2.2 [28]. Where ci is the previous carry and is ci+1 the next 

carry.  

 

TABLE 2.2 CANONICAL RECODING [28]  
 

xi +1 xi ci zi ci+1 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 0 0 

1 0 1 -1 1 

1 1 0 -1 1 

1 1 1 0 1 
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The main drawback to canonical recoding is that the bits of the multiplier 

are generated sequentially along with carry bits, while Booth’s recoding is 

carry-free and can be applied in parallel [28].  

Also, in order to take full advantage of the minimal number of add/subtract 

operations, the number of those operations must be variable which is difficult to 

implement [28]. 

 

Ruiz and Manzano proposed a self-timed CSD multiplier based on the 

canonical recoding algorithm in [10]. 

 

2.5.1.2 Minimal Signed Digit (MSD) 

Another popular radix-two number representation is Minimal Signed Digit 

Example: Assume c0=0 

 x=0111001 → z0=1, c1=0 

 x=011100 → z1=0, c2=0 

 x=01110 → z2=0, c3=0 

 x=0111 → z3= –1, c4=1 

 x=011 → z4= 0, c5=1 

 x=01 → z5=0, c6=1 

 x=(0)0 → z6=1, c7=0 

 z= 1001001 
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(MSD) [38] which includes all of the signed-digit representations having the same 

number of non-zero digits as CSD. So, the MSD representation of a number is not 

unique. In other words, CSD is just a special MSD number. For example, the 

decimal number 105 can be expressed as: 

10105 10101001 10011001CSD MSDx = = = . Although the CSD representation is 

good for one constant, it is not the best for multiplication by multiple constants 

because the CSD representation of a constant is unique and independent of the 

other constants, leading to limited sub-expressions for multiple constants. Using 

MSD representation, a given number can have multiple representations. By 

properly exploiting the redundancy of MSD representations, the hardware 

implementation can be significantly optimized by combining sub-expressions 

occurring in coefficients. Consider the previous example, 10101001CSD  requires 3 

adders. However, 10011001 (8 1)(16 1)MSD = − −  only needs 2 adders. 

 

2.5.2   Constant multiplication problems  

If the value of a multiplier is known a priori, the CSD expression can be 

calculated offline, and it can be further improved by constant multiplication 

techniques [41], such as Dempster-Macleod’s algorithm [15] or Bull-Horrocks’ 

algorithm [16]. 
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Constant Multiplication (CM) problems include Single Constant 

Multiplication (SCM) problems and Multiple Constant Multiplication (MCM) 

problems. Usually, these problems are solved by using graph topology, so the 

techniques developed to handle these problems are also called dependence-graph 

algorithms [41].  

 

2.5.2.1 Single Constant Multiplication methods (SCM) 

Through the use of CSD representations, the number of adders and shifters 

can be greatly reduced. However, further improvement is possible. Sometimes it is 

more efficient to first factor the multiplier into several factors, then realize each 

factor in a simple combination of powers-of-two, sums of two powers-of-two, or 

differences of two powers-of-two. The problem of finding a multiplierless 

multiplier block for the multiplication by a constant with the least number of 

add/subtracts is known as the SCM problem, and it is NP-complete as shown in 

[42]. An optimal solution for a constant less than or equal to 12 bits is called 

Multiplier Adder Graph (MAG) which is designed by Dempster and Macleod in 

[15]. Further improvement for constants up to 19 bits has been discussed in [43]. 

Using this idea, more adders can be saved. For example, consider a multiplier 

93
128a = . The 2’s complement representation is 
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          1 3 4 5 793 0.1011101 2 2 2 2 2
128

a − − − − −= = = + + + +           (2.4)              

which needs four adders. If we rewrite the multiplier a  using CSD, we get  

                   2 5 7
7

93 10100101 1 2 2 2
128 2

a − − −= = = − − + .                        (2.5) 

An implementation using this CSD representation requires three 2-input 

adders and 3 shifts:  

                                  
2 5 72 2 2ax x x x x− − −= − − + .                                         (2.6) 

We can rewrite a  using MAG method as 
                           

93 31 3 (32 1) (4 1)
128 32 4 32 4

a − −
= = × = ×                              (2.7) 

to obtain  

5 2(1 2 )(1 2 )ax x− −= − −                                          (2.8) 

which can be computed using 2 adders and 2 shifts. 

Figure 2.6 shows these three types of implementations of multiplier 

93
128a =

 
visualized as graphs.  
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(a) 

 

(b) 

(c) 

 

Figure 2.6 Multiplication by 93
128  using (a) 2’s complement multiplier with 4 

adds/subtractors; (b) CSD representation with 3 adds/subtractors (c) MAG 
method with 2 adds/subtractors. 

X 
- -

2-5 
2-2 

aX
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In hardware implementations, the shifts are typically implemented through 

routing of signals rather than a clocked shifter circuit. This routing requirement 

may or may not increase area needs [37].  

 

2.5.2.2 Multiple constant multiplication methods 

An extension of SCM is the problem of finding a multiplierless multiplier 

block for the parallel multiplications by a set of N constants w0, w1..., wN with the 

least number of add/subtracts. These problems are known as MCM problems [41]. 

Some well known algorithms to solve MCM problem that are frequently used in 

FIR filters are Bull-Horrocks’ algorithm (BHA) [16] and its improved version 

Bull-Horrocks Modified (BHM) [44]. These two algorithms simultaneously 

multiply one input by N constants; thus, savings can be achieved by the overlapping 

of intermediate results. Another MCM method which yields better results is RAG-n 

[44]. It relies on the availability of an optimal single constant decomposition 

lookup table and is limited to 19 bits. Since the sub-expressions are actually MAGs, 

the MCM problem is also NP-complete. 

Currently the best heuristic method for solving MCM problems that I know 

is provided by Voronenko and Püschel in [41], which is called Hcub. Below I will 

implement and compare this method with multiplier based design and CSD 
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encoded design. I will use an example loop filter that is a component in the 

delta-sigma digital to analog (DA) converter to get better understanding of 

multiplierless techniques.  

 

2.5.3   Implementation of loop filter using multiplierless techniques 

Delta-sigma (ΔΣ ) modulation has become the most popular method for 

high-resolution A/D and D/A conversion [45]. Using feedback to shape the errors 

results in a high-speed, low-resolution quantizer. Better SNR and linearity can be 

achieved than with conventional converters [46]. The error-feedback ΔΣ  

modulator topology is shown in Figure 2.7 [46]. Clever algorithms for the loop 

filter must be combined with novel digital hardware to reduce space and increase 

throughput. Multiplierless techniques become the method of choice to implement 

the loop filter in this system [47]. 

The desired loop filter is a deep band-pass FIR filter, to get the best results 

without increasing the space; specialized filter design algorithms used by the Naval 

Research Laboratory (NRL) generate a very sparse, high order (198) filter with ten 

nonzero coefficients given by 

[1  1.3125  0.1877 -0.2153  0.1259  0.0526  0.0261 -0.0151  0.0104 -0.0043]. 
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Figure 2.7 Error-feedback ΔΣ architecture [46]. 

 

Multiplying these coefficients by 218 generates integer values which are easier to 

manipulate for implementation: 

[262144  344064  49215  -56441  33016  13787  6840  -3969  2726  -1120]. 

In Figure 2.8, I compare the frequency response results of the example loop 

filter with different quantization levels. Also, I implement and analyze candidate 

system architectures that balance speed, space and power, including multiplier 

based design, CSD number system design, and MCM design. I chose transposed 

form as the basic filter structure (shown in Figure 2.9); 20 bits for each coefficient 

hi (including sign bit) and each input sample x(n), internal computations ym use 40 

bits (no rounding). For MCM techniques, I use the Hcub method [41], a recent 

algorithm that has the current best results to my knowledge. Also, I use the Hcub 

generator [48] to create the directed acyclic graph (DAG) for the multiplierless 

multiplier block that implements the parallel multiplications of the ten nonzero 

coefficients in the loop filter.  
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Figure 2.8 Frequency responses for different quantization levels of example 
199 taps loop filter.  
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Figure 2.9 The filter structure of the example 199 taps loop filter. 

 

The directed acyclic graph is shown in Figure 2.10. MATLAB® and 

XILINX® ISE are used to simulate the hardware implementation (shown in Table 

2.3 and Figure 2.11).  

The complexity comparison using the number of adders is listed in Table 

2.4. Hcub based design is compared with the traditional 2’s complement 

implementation for which 55 adders and 65 shifters are needed and CSD which 

uses 30 adders and 40 shifts. The best technique uses an Hcub MCM method to 

achieve an average improvement of 72.73% over 2’s complement representation 

and 50% improvement over CSD in terms of the number of adders required. Table 

2.5 lists the FPGA implementation comparison with multiplier based design, CSD 

based design and Hcub method design. The results show that the Hcub design is the 

best in terms of the area. 

z-1 

( )x n  

( )y n  
z-1 z-1

0h  
ym(198) 

V197 

h197 h196 h1 

ym(197) ym(196) ym(0) ym(1) 

V196 V1 V0 

h198 

20 bits 

40 bits



 

38 

 

 

Figure 2.10 Hcub algorithm implementation of example loop filter with 
nonzero coefficients set {262144, 344064, 49215, -56441, 33016, 13787, 6840, 

-3969, 2726, and -1120}.  
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TABLE 2.3 THE FIRST 13 SAMPLES MATLAB® SIMULATION RESULTS 
FOR LOOP FILTER 

 
 

x(n) y(n) 

0 0 

2.2522e+005 5.904e+010 

-1.3176e+005 -3.454e+010 

1.0737e+005 1.0564e+011 

-1.142e+005 -7.527e+010 

-1.3381e+005 1.8632e+009 

2.6214e+005 2.9428e+010 

-1.0596e+005 -7.3815e+010 

21908 9.5937e+010 

27069 -2.9361e+010 

-1.9787e+005 -4.4333e+010 

2.3228e+005 7.0205e+010 

-35502 -7.7387e+010 
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Figure 2.11 The ISE simulation results of loop filter (the first 13 samples from 
200).  

 

 
TABLE 2.4 COMPLEXITY COMPARISON OF EXAMPLE LOOP FILTER 

WITH WORDLENGTH OF 20 BITS 
 

 
Number of 

adders/subtractors

Number 

of shifts 

Number of 

negations 

Improvement over 

2’s complement by 

counting adders in 

% 

2’s 

complement 
55 65  0 

CSD 30 40  45.45% 

Hcub 15 21 3 72.73% 
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TABLE 2.5 FPGA IMPLEMENTATION COMPARISON OF EXAMPLE LOOP 
FILTER WITH WORDLENGTH OF 20 BITS 

 
Xilinx Selected 

Device : 

4vlx15sf363-12 

Multiplier based 

design 

CSD multiplierless 

based design 

Hcub MCM 

method design 

Number of Slices 
4758 out of 

6144 
77%

4826 out of 

6144 
78%

4786 out of 

6144 
77%

Number of Slice Flip 

Flops 

7736 out of 

12288 
62%

7752 out of 

12288 
63%

7848 out of 

12288 
63%

Number of 4 input 

LUTs 

1109 out of 

12288 
9% 

1077 out of 

12288 
8% 

767 out of 

12288 
6%

Number of bonded 

IOBs 
62 out of 240 25% 62 out of 240 25%

62 out of 

240 
25%

Number of DSP48s 6 out of 32 18%     
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Chapter 3 
 

A NOVEL MULTIPLIERLESS HARDWARE 

IMPLEMENTATION METHOD FOR ADAPTIVE 

FILTER COEFFICIENTS  

 

3.1 Introduction 

 “Implementation is everything” in the construction of practical adaptive 

filters [49]. These practical hardware implementations typically require high 

throughput, low power consumption and small area. For fixed coefficient filters, 

multiplierless implementation approaches are used. However, since the coefficients 

of an adaptive filter are not fixed, general multipliers are needed. Multipliers are 

expensive in terms of chip area, power consumption, and operation time. For 

practical high performance adaptive filters, this limitation must be overcome.  

Multipliers are often implemented in hardware using shift-and-add 

techniques. The number of add operations depends on the number of 1’s in the 

binary multiplier. The number of add/shift operations is directly related to the 

power consumption and area required. Array techniques are used to achieve high 
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throughput, at the cost of significant increases in power and area. 

One effective method to reduce the number of shift/add operations in 

multiplier hardware is to reduce the wordlength of the multipliers (e.g. filter 

coefficients). However, reducing the wordlength can significantly degrade the 

performance of the implemented algorithm. 

When the value of the multiplier is known, multiplication can be 

implemented using alternate number representations for the multiplier, such as the 

CSD [39] or SPT representation [8]. CSD representation has proven to be useful for 

implementing multipliers with less complexity, because the cost of multiplication 

is a direct function of the number of nonzero bits in the multiplier. It is shown in [9] 

that for a n-bit 2’s complement multiplier the number of add/subtract operations 

never exceeds n/2  and can be reduced to n/3 on average, as the wordlength of 

multiplier grows.  

Many researchers have addressed the question of how to convert 2’s 

complement to CSD numbers. Some of these approaches are from the point of view 

of reducing computational complexity [50], [51], but are not suitable for 

implementation into hardware. Other approaches try to improve the 

implementation efficiency by limiting the area and power consumption [10], [11]. 

However, some introduce errors, and others are still complex. 
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If the multiplier is known a priori, as is the case for most FIR and IIR filter 

implementations, the CSD expression can be calculated offline and the 

implementation can be further improved via computational techniques such as 

Dempster-Macleod’s algorithm [15]. Using this technique, more adders can be 

saved. However, when the multiplier is unknown or can change over time, as is the 

case for adaptive filters, these techniques are not applicable. To benefit from the 

CSD implementation advantages, the conversion of numbers from 2’s complement 

to CSD format must be implemented in hardware. Unfortunately, the cost of 

conversion using methods such as those based on Look-Up-Table (LUT) [29] or 

canonical recoding techniques [40] often outweighs the implementation advantages 

of CSD. 

In this chapter, I introduce a new hardware implementation method to 

convert 2’s complement numbers to CSD numbers; we call it FastCSD [18].  My 

method has several advantages. First, unlike LUT methods, my technique does not 

require a fixed word length to be known a priori. In addition, the proposed method 

uses a limited number of shift and logic operations, instead of the overlap and 

scanning used for methods like Booth’s recoding [12] and canonical recording. 

This allows the number of computational cycles to be fixed and independent of the 

wordlength of the multiplier, k . So, the time required is constant. Furthermore, 

because all the CSD bits are produced simultaneously, the conversion speed, and 
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thus the throughput, is improved. 

FastCSD can be applied to efficiently implement digital filters with 

non-fixed coefficients, such as adaptive filters. The implementation can be further 

improved through the use of parallel processing with a reasonable sacrifice in the 

area consumption using FPGAs. 

 

3.2 New 2’s complement to CSD conversion method (FastCSD) 

The new method to convert a 2’s complement number to CSD 

representation is a simple series of shift and logic operations, which are 

implemented in six processing steps as shown in Figure 3.1 and described in the 

following paragraphs. 

Step 1: Transform x to difference form: x = 2x - x .  To reduce the many 

additions arising from a string of ones, we use the simple concept that 2x x x= − to 

convert x to another form we refer to as the difference form signed (DFS) number 

[19], [20]. In the DFS representation, a number may contain instances of the digit 

pairs “ 11” and “1 1 ,” but sequences of two consecutive ones or two consecutive 

negative one digits cannot occur. DFS conversion is illustrated in the following 

example: 
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The DFS number is a signed binary representation that can be written as two 

binary numbers: the magnitude of x and the sign of x, which together represent the 

signed binary number. The ones in ( )sign x indicate which digit positions have a 

negative weight. This form can be computed simply with an arithmetic shift left by 

one bit 1x <<  and bitwise logic operations: 

Magnitude of x: 1 .x x x= << ⊕   

Sign of x: ( ) 1& .sign x x x= <<  

A closer look at the DFS number reveals that the DFS representation of x 

exactly coincides with the Booth’s recoding representation of x. However, the 

notation in our discussion here will be simplified by the use of the term DFS. 

Additionally, the concept of the DFS representation provides a new insight into 

Booth’s recoding [12]. We now summarize some of the key properties of the DFS 

number representation. 

Theorem 1: No two consecutive nonzero bits in the difference form of x 

have the same sign. 
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Figure 3.1 Block diagram for FastCSD. 
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Proof: If two consecutive nonzero bits in the difference form of x have the 

same sign, i.e. “11” or “ 11 ”, then the corresponding positions of 2x and x should 

be either “11” and “ 00 ” or “ 00 ” and “11”. However since 2 1x x= << , then the 

(i+1)th bit of  2x must be the same as the ith bit of x which cannot be the case. Hence, 

the difference form cannot contain a sequence “11” or “ 11 ”.                                  ■ 

Theorem 2: To convert a 2’s complement number x to the CSD 

representation, we only need to replace occurrences of the bit pair “ 11” with “ 01 ” 

and/or the bit pair “1 1 ” with “ 01 ” in the difference form of x starting from the 

least significant bit (LSB). 

Proof: Let DFSx  be a DFS number and let M ∈ be the number of 

sequences of two or more consecutive nonzero digits that occur in DFSx , where 

0.M ≥  If 0,M = then DFSx  is already a valid CSD representation. Therefore, it is 

sufficient to consider only cases where 1.M ≥  Let 1 2, , , MΓ Γ Γ… denote the 

sequences of two or more consecutive nonzero digits that occur in DFSx  in order of 

decreasing length (so that 1Γ is the longest such sequence) and let mk denote the 

length in digits of the sequence .mΓ  It follows immediately from Theorem 1 that 

mΓ is an alternating sequence of mk  occurrences of the digits “1” and “ 1 ”, where 

2.mk ≥  If the low-order digit pair of mΓ  is “1 1 ”, then it may be replaced by the 
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equivalent digit pair “01”; alternatively, if the low order digit pair is “ 11”, then it 

may be replaced by the equivalent pair “0 1 ”. This replacement converts mΓ  from 

a sequence of mk  consecutive nonzero digits to a sequence of 2mk −  consecutive 

nonzero digits and may be repeated until the length of mΓ  is reduced to zero.  The 

desired result follows immediately by repeating this argument for all .m M≤        ■ 

Step 2: Locating “ 11 ” and “ 11 ”s.  To locate the positions of the “ 11” 

and “1 1 ” strings, I find the digits that are ‘ 1 ’ from the ‘1’s in ( )sign x , then use 

“shift/and” operation to get two vectors A and B. 

A= 1& ( )x sign x<<  

where each ‘1’ in A corresponds to a string “ 11”. 

B= 1& ( )x sign x>>  

where each ‘1’ in B corresponds to a string “11 ”. 

Note that 1x >> denotes a logical right shift by one bit. 

Theorem 3: Each ‘1’ in A denotes the position of a “ 11” string in the 

difference form, and each ‘1’ in B corresponds to a string “11 ” in the difference 

form. 
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Proof: 

1      11
      11 & ( )   10if  11 { , after 1 ,

              010( ) 10

      11 1       11if  11 { , after 1 
( ) 01 & ( )  01 ,

              0

      0
if  0 {

i

x
x sign x sx x

sign x

x xx x
sign x sign x

x
x

s

A

A

<< ×
=

= ⇔ << ⇒
=

= << ×= ⇔ << ⇒
= ×

× ×

=
= ⇔ 1       0, after 1 

( ) 0 & ( )    0 ,
              00

xx
ign x sign x

A

<< ×<< ⇒
= ×

 

where × indicates don’t care (can be either ‘1’ or ‘0’),  and is  can not be ‘1’, based 

on Theorem 1. Since if '1'is = and 1 '1'is + = , that means the difference form of x 

has a consecutive “ 11 ” in the corresponding position, which is impossible. Thus, 

each ‘1’ in A stands for a pair of “ 11”.                                                                           ■ 

Similarly,  
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2

1    11
      11 & ( )      01if  11 { , after 1 ,

              010( ) 01

      11 1    11if  11 { , after 1 
( ) 10 & ( )   10 ,

             0

      0
if  0 {

i

x
x sign x sx x

sign x

x xx x
sign x sign x

x
x

sig

B

B

+

>> ×
=

= ⇔ >> ⇒
=

= >> ×= ⇔ >> ⇒
= ×

× ×

=
= ⇔ 1       0, after 1 

( ) 0 & ( )    0 ,
              00

xx
n x sign x

A

>> ×>> ⇒
= ×

 

where 2is + can not be ‘1’, for the same reason as above. So each ‘1’ in B stands for 

a pair “11 ”.                                                                                                                            ■ 

After the proof, the following additional corollary is immediate: 

Corollary 3A: There are no consecutive ‘1’s in A or B. 

Step 3: Generate mask vector M. (Note that steps 2 and 3 can be 

computed concurrently.) Step 2 replaces strings of ones with pairs of “ 11”s and 

“11 ”s. To achieve a CSD representation, I want to replace the strings “ 11” with 

“ 01 ” and “11 ” with “ 01 ” to eliminate consecutive nonzero bits. However, I 

cannot do both “ 11” to “01 ” and “11 ” to “01” transformations at the same time 

using simple logic operations; also, I cannot do the two operations sequentially. For 
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example, if “111 ” and “ 111 ” exist in the same sequence, no matter which 

replacement I do first the result has consecutive nonzero bits, such as “011” or 

“ 011 ”. 

So an alternative approach is needed. This leads to Theorem 4 as follows:  

Theorem 4: The zero bits in the difference form of x correspond to zero 

digits in the CSD form. 

Proof: It follows from Theorem 2 that, to convert the DFS representation of 

x to CSD, it is required only to replace occurrences “ 11 ” with “ 01 ” and 

occurrences “11 ” with “ 01 ”. These replacements will never generate a carry. 

Moreover, the resulting two-bit segments will never propagate a carry. Therefore, 

zero bits in DFS representation will always remain unchanged in the CSD 

representation.                                                                                                                ■ 

Based on Theorem 4, it can be observed that the zeros in the difference form 

of x separate the sequence into several parts. We want to transform “ 11” to “ 01 ” 

and “11 ” to “01” separately beginning with the nonzero bit adjacent to the ‘0’ 

(working from right to left). We form a mask vector M to separate the 

subsequences. M has the same length as x, whenever the subsequence begins with 

‘1’, the corresponding subsequence in M is all ones, otherwise it is all zeros. For 
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example, if 01100110111,x =  then 01100110000.=M  

Table 3.1 shows the truth table of mask generator and its hardware 

implementation is shown in Figure 3.2. 

 
TABLE 3.1. THE TRUTH TABLE FOR MASK GENERATOR  

 

1iM −  1ix −  ix  ( )isign x  iM  

×  ×  0 0 0 

×  0 1 0 1 

×  0 1 1 0 

0 1 1 ×  0 

1 1 1 ×  1 

Note: × indicates don’t care, it can be either ‘1’ or ‘0’. 

The characteristic equation, derived from the truth table in Table 3.1 is: 

1 1
( )  i i ii i i i

x sign x x x x
− −

= +M M                                    (3.1) 

where |x| is the magnitude of the difference form of a binary number x, sign(x) is the 

sign of x. 
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Figure 3.2 The implementation of the mask generator. 

 

Step 4: Separate two types of subsequences. Using C= &A M we 

determine the subsequence “ 11”s since each ‘1’ in C stands for the pair “ 11”, at 

the corresponding position of ‘ 1 ’. Note that there are no consecutive ‘1’s in C 

because of the inherited property of A. Similarly, using D= & B M , we can 

determine the location of the “11 ” sequences. Also, there are no consecutive ‘1’s 

in D. 

Step 5: Convert 11  to 01 . I use C to convert the substrings “ 11” to “ 01 ” 

as follows:    
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( ) ( ) ( 1)

new

new

x x

sign x sign x

C

C | C >>

= ⊕

= ⊕ .

                                (3.2) 

The following display illustrates the technique schematically.  

new i-1

         11 ( )      10
          01      11            10    11
      01                   00     10( ) 10 ( ) 01 01 | ( 1)  110

( )

new

new

new

ne

x sign x
xx x
x

sign x sign x x c
sign x

C

C

C        C

⎧ =
⎧⎪ == ⊕⎪ ⎪

⇔ = ⇒ ⇒⎨ ⎨ ⊕=⎪ ⎪ =⎩⎪ >>=⎩
  01w

  

where 1ic − can not be ‘1’, based on Theorem 1. 

Step 6: Convert 11  to 01 . Similar to Step 5, I convert “1 1 ” to “ 01 ” using 

D as follows: 

                            
( ) ( )

( 1)

new

new

sign CSD sign x

CSD x

D

D

= ⊕

= << ⊕ .

                                (3.3) 

Example: Figure 3.3 shows the conversion of x=101110110101 to CSD. 

Note that the double dash lines separate the steps enumerated above. 
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Figure 3.3 An example of new 2’s compliment to CSD conversion process.  
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3.3 Comparison with Booth’s recoding and LUT techniques  

The radix-4 modified Booth’s recoding algorithm has been widely used in 

modern high-speed multiplication circuits [27]. Using a modified Booth algorithm, 

adjacent 3-bit segments of 2’s complement numbers are converted into the digit 

set { }2, 1, 0± ± . Although modified Booth’s recoding reduces a k-bit 2’s 

complement multiplier to 2k⎡ ⎤⎢ ⎥  digits, it is based on overlapped multiple-bit 

scanning schemes. So, no matter how large the radix is, the number of scan cycles 

is a function of the multiplier word length k. As k increases, the number of scan 

cycles increases as well. Booth’s recoding can be used for parallel multipliers if 

duplicated recoding logic and multiple selection circuits are used, however, that 

requires huge area consumption. 

FastCSD is a fully parallel process; it reduces the number of add/subtract 

operations to the minimum. Unlike the modified Booth’s recoding algorithm, the 

number of operations of FastCSD is fixed as well as the total delay time. So, the 

time is constant regardless of the word length k. The detailed performance analysis 

is given in Table 3.2. Compared with the modified Booth’s recoding algorithm 

whose operation time is a function of multiplier word length k, FastCSD requires a 

delay of only 4 shifts and 8 logic gates for the worst case. Furthermore, the 

throughput can be further improved by incorporating parallel processing. My 

method is attractive in terms of both throughput and computational complexity. 
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TABLE 3.2 PERFORMANCE ANALYSIS OF FASTCSD ( × INDICATES THE 
MOST COSTLY OPERATIONS IN EACH STEP. NOTE: STEP 2 AND STEP 3 

CAN BE DONE SIMULTANEOUSLY) 
 

 Operations # of 
Shifts

# of logic 
operations

A/M= 
all{0}

B=all{0}/ 
M=all{1} 

The 
worst 
case 

Step 
1 

1

( ) 1&

x x x

sign x x x

= << ⊕

= <<
 

1 

1 

1 

2 

 

×  

 

×  

 

×  

Step 
2 

1& ( )

1& ( )

x sign x

x sign x

A

B

= <<

= >>
 

1 

1 

1 

1 

×  ×  ×  

Step 
3 

1

1

( )  i ii i

ii i

x sign x x

x x
−

−

=

+

M

M
  3    

Step 
4 

C= &A M  

D=  & B M  

 1 

2 
  

 

×  

Step 
5 ( ) ( ) ( 1)

new

new

x x

sign x sign x

= ⊕

⊕ >>

C

= C C

 

1 

1 

2 
 

 

×  

 

×  

Step 
6 

( ) ( )

( 1)

new

new

sign CSD sign x

CSD x

D

D

= ⊕

= << ⊕
 

 

1 

1 

1 

 

×   

 

×  

Total cost of delay   
3 shifts 

+ 4 
logics

3 shifts  + 
5 logics 

4 shifts 
+ 8 

logics
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Another commonly used technique for FPGA-based hardware is 

Look-Up-Table (LUT) [29], [52]. Many algorithms used in DSP, such as filters, are 

based on constant coefficient values. So, a Look-Up-Table can be used to 

implement the multiplier by storing pre-computed partial products of the fixed 

coefficient in distributed ROM to reduce the logic content. An advantage of this 

approach is that the delay is just a memory access; so it is fast. However, a 

disadvantage is that the table size grows exponentially with the input, so it is 

space-intensive. So, a LUT approach requires the multiplier’s word length to be 

fixed and the value of multiplier to be known prior to implementation. 

The proposed method does not have the disadvantages of the LUT 

implementation. It does not require a fixed multiplier word length, nor is it required 

for the multiplier value to be known a priori. Thus, my method can be applied to 

efficiently implement digital filters with non-fixed coefficients, such as adaptive 

filters. In addition, my method is simple, requiring only several shifts and logic 

operations. Since my method produces all of the CSD digits simultaneously, the 

conversion speed, and thus the throughput, is improved. 
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Chapter 4 

 

A MULTIPLIER STRUCTURE BASED ON A NOVEL 

REAL-TIME CSD RECODING 

 

4.1 Introduction 

Adaptive filters have achieved widespread acceptance and are included in 

many digital signal processing application areas such as communications and 

signal preconditioning [3]. The coefficients of an adaptive filter change with time, 

based on the adaptation (learning) algorithm. Many researchers have addressed the 

question of how to implement the multiplications for fixed-coefficient filters, but 

these techniques are not applicable to adaptive filters and other inner-product 

computations in which the multipliers are not know a priori. Recently there has 

been a renewed interest in adaptable-coefficient filters [3], [6], [8], [13], [17]. My 

previous work with adaptive filter implementations has focused on the 

development of an efficient multiplier [21], [53]. 

In general, there is a tradeoff between the hardware complexity and the 

filter performance associated with the wordlength of the multipliers (usually 
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coefficients). Increased coefficient wordlength increases implementation 

complexity, and decreased coefficient wordlength results in greater filter response 

error. This tradeoff is fundamental to the implementation of all filters. 

In fixed coefficient filters, multiplierless techniques are typically 

implemented by encoding the coefficients in CSD [39] or SPT representations [8]. 

If the multiplier is known a priori, the CSD expression can be calculated offline 

and it can be further improved by Dempster-Macleod’s algorithm [15] or similar 

techniques [16], [41], [44], which can save additional adders. However, when the 

multiplier is unknown or non-fixed, these techniques cannot be applied. In this case, 

the conversion of numbers from 2’s complement to CSD format can be 

implemented in hardware to simplify the multiplications. The conversion can be 

implemented with look-up tables [29] or canonical recoding techniques [40], but 

these all are costly in terms of the additional implementation overhead. 

In this chapter, I introduce a new iterative multiplier structure which is 

based on a novel real-time CSD recoding [19], [20]. Since this structure does not 

require a fixed value for the multiplier input to be known a priori, it has broad 

applications. The real-time CSD recoding multiplier has several advantages. First, 

since it converts 2’s complement numbers to CSD numbers in real time, it requires 

less shift/add/subtract operations compared to traditional modified (radix-4) Booth 

recoding. As a result, the power consumption and area requirements in the 
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hardware implementation of DSP algorithms can be greatly reduced. In addition, 

unlike modified Booth’s recoding [12], only three possible multiples of 

multiplicand a (-a, 0, a) are used. So, the overhead for the multiple generation part 

of the structure can be reduced. Furthermore, the proposed multiplier can be 

applied to efficiently implement digital filters with non-fixed coefficients, such as 

adaptive filters [3]. The implementation efficiency can be further improved by 

properly incorporating parallel processing with a reasonable sacrifice in the area 

consumption of FPGAs.  

 

4.2 Real-time CSD Multiplier Structure 

Instead of converting a binary number into its CSD representation, in the 

proposed design, the CSD recoder only generates corresponding control signals. 

Controlled by these signals, the multiplier actually operates based on the CSD logic. 

For better understanding of my method, in this section, I use the Difference Form 

Signed (DFS) number system introduced in Chapter 3, which has two main 

properties:  

Property 1: No two consecutive nonzero bits in the difference form of x 

have the same sign. 

Property 2: To convert a 2’s complement number x to the CSD 
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representation, we only need to replace occurrences of the bit pair “ 11” with “ 01 ” 

and/or the bit pair “1 1 ” with “ 01 ” in the difference form of x starting from the 

least significant bit (LSB). 

The proofs for these two properties are given in Chapter 3.  

The DFS number is not encoded directly in the hardware circuit, since each 

DFS number needs twice as much memory space compared to a binary number. 

However, it serves as a tool to understand my real-time CSD recoding.  

As a DFS number DFSx  is scanned in 2-bit segments from right to left (least 

to most significant), whenever a pair of nonzero digits is encountered, I convert the 

bits based on property 2. Whenever there are 2-bit segments which begin with a ‘0’ 

bit (such as “ 01 ”, “00” or “01”), then I leave them unchanged. If the 2-bit 

segments end with a ‘0’ bit (such as “10” or “ 10 ”), I leave the ‘0’ bit unchanged 

and continue scanning the remaining part by 2-bit segments. 

For example, consider the following DFS number and its recoded version: 

          0 1 1 0 0 1 1 0 1 1 1 1 0 0 1
          0 0 1 0 0 0 1  0 0 1 0 1 0 0 1

DFS

CSD

x
x . 

Table 4.1 below shows the real-time CSD recoding as digit-set conversion. 
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TABLE 4.1 RECODING SCHEME OF CSD ALGORITHM. 
 

2’s Complement DFS CSD Control Signals* 

1ib +  ib  1ib −  '
1ib +  '

ib  ' '
1ib +  ' '

ib  c1 c2 c3 

0 0 0 0 0 0 0 × 0 1 

0 0 1 0 1 0 1 0 0 0 

0 1 0 1 1  0 1 0 0 0 

0 1 1 1 0 # 0 × 1 1 

1 0 0 1  0 # 0 × 1 1 

1 0 1 1  1 0 1  1 0 0 

1 1 0 0 1  0 1  1 0 0 

1 1 1 0 0 0 0 × 0 1 

 
* × represents don’t care. # represents that no CSD bit is generated and wait till next bits come.  

 

 In the proposed multiplier structure, I do not convert a number explicitly 

into the DFS or CSD representations. Instead, based on the relationship between 

the two’s complement number and its DFS representation, as well as Properties 1 

and 2, I obtain the digit-set relationships between a two’s complement number, its 

DFS representation and its CSD representation, which provides us with the 

corresponding signals that are needed to control the accumulation of partial 
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products in the multiplier. These relationships are shown in Table 4.1, where c1, c2 

and c3 are control signals based on CSD number conversion. Signal c1 is used to 

control the add or subtract operation, i.e. addition is performed if c1=0 and 

subtraction is performed if c1 =1. Signal c2 is used to control the number of bits that 

are shifted in each iteration, i.e. c2 =1 indicates a right shift by 1 bit and c2 =0  

enables right shifting by 2 bits.  Finally, c3 is the bypass control signal, where c3 =1 

enables the bypass operation. These signals (defined in Table 4.1) are given by (4.1) 

and may be efficiently implemented in hardware using the circuits shown in Figure 

4.1. 

1 1

2 1 1

3 1

( )

i

i i i

i i

c b

c b b b

c b b

+

+ −

−

=

= ⊕

= ⊕

                                              (4.1) 

 

Figure 4.1 Implementation of multiple generations and shift control part of 
CSD recoding multiplier in logic gates 
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The block diagram of the proposed iterative multiplier structure based on 

this novel CSD encoding is given in Figure 4.2. The corresponding signal flow 

chart is provided in Figure 4.3. From the flow chart, it is clear that this encoder 

generates directly in hardware the control signals required to realize a multiplier 

based on the CSD representation.  

From Figures 4.2 and 4.3, it can be seen that the number of iterations 

required by the real-time CSD recoding multiplier is data dependent and uses 

shifting by a variable number of bits. Usually, shifting by a variable number of bits 

means that a register-based shifter is needed, which adds to the time and energy 

consumption for each iteration; in contrast, shifting by a constant number of bits 

can be conveniently implemented by direct wire connections and requires very low 

cost of in terms of energy and chip area. 

However, the design proposing here does not in fact require arbitrary shifts, 

but only shifts by one or by two bits.  Thus, the design can be implemented simply 

with a pair of hardwired shifts, where shifting by one bit or by two is selected by the 

control signal c2. This implementation enables us to achieve the advantages of 

variable shifting at the cost of constant shifting. Note that the computation speed of 

the proposed multiplier structure can be further improved through the use of 

advanced adders and asynchronous circuit techniques.  
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Figure 4.2 Real-time CSD multiplication based on our novel CSD recoder. 

 

The proposed structure is very simple compared to radix-4 Booth’s 

recoding, since instead of computing five multiples of the multiplicand 

(0, , 2 )a a± ±  required for radix-4 Booth’s recoding, only a± are required for the 

CSD recoder. As a result, the overhead required for CSD conversion and control 

signal generation can be significantly reduced. Also, only approximately 33% of 

inputs are passed to the sum-of products accumulation process. The other inputs, 

corresponding to zero bits, can be bypassed with the shift register instead. In this 

way, the overall computation speed can be improved. 
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Figure 4.3 Real-time CSD recoder block diagram. 
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4.3 Comparison with Booth’s recoding and other CSD recoding 

techniques 

 Recently many researchers have addressed the question of how to convert 

2’s complement to CSD numbers. Some of these approaches are from the point of 

view of reducing computational complexity [50], [51], but are not suitable for 

implementation into hardware. Other approaches try to improve the 

implementation efficiency by limiting the area and power consumption [10], [11]. 

However, some introduce errors, and others are still complex. 

The radix-4 modified Booth’s recoding algorithm has been widely used in 

modern high-speed multiplication circuits [27]. Using a modified Booth algorithm, 

sequential 3-bit segments of a 2’s complement number are converted into the digit 

set{ }2, 1, 0± ± . This technique reduces an n-bit 2’s complement multiplier to 

2n⎡ ⎤⎢ ⎥  digits. The partial products can be readily calculated by shift/add/subtract 

operations.  

On average, Radix-4 Booth’s recoding results in 50% of the partial products 

being zero. So, although Booth’s recoding reduces the number of 1’s in multiplier, 

the reduction is less than the proposed CSD recoding. Also, after the partial 

products are generated in the Booth’s recoding logic, they are all passed into the 

accumulation operations, even those partial products that are zero. In this way, the 



 

70 

number of arithmetic operations in the carry-save structure is not reduced. So, there 

is no decrease in speed or power consumption with this algorithm. 

The proposed algorithm further reduces the number of add/subtract 

operations. Unlike the modified Booth’s recoding algorithm, once the zero bits in a 

CSD number are detected, there is no accumulation required. So, approximately 

two thirds of the time the accumulation process is bypassed. So, the algorithm 

reduces the latency of the operation, as well as the power consumption of the 

circuit. 

Compared with other CSD recoding techniques, such as the self-timed CSD 

multiplier in [10], the structure is much simpler and faster. In [10], they calculate 

their complexity to be even greater than that of Booth’s recoding because their CSD 

recoder needs to propagate the carry. Also, five multiples of the multiplicand 

(0, , 2 )a a± ±  are required in their recoder – the same as in Booth’s recoding – in 

addition to carry-in and carry-out signals. Thus, their structure is more 

complicated. 

The proposed real-time CSD recoding multiplier eliminates 66.7% of the 

multiple generation operations, on average. For these zero bits, only shifting is 

required, and there is no carry propagation at all. It can be seen that the method 

offers an attractive tradeoff between operation speed and computational 

complexity. The detailed performance analysis is listed in Table 4.2. 
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TABLE 4.2 COMPLEXITY COMPARISON ON AVERAGE PERCENTAGE OF 

DATA IN THE TRADITIONAL MULTIPLIER, RADIX-4 BOOTH’S 
RECODING MULTIPLIER, SELF-TIMED CSD RECODING MULTIPLIER 

AND PROPOSED CSD RECODING MULTIPLIER  
 

 
Total partial 

products 

Nonzero 

partial 

products 

Nonzero 

Multiples 

generated 

Bypassed null 

partial products

2’s complement 

multiplier 
100% 50% 50% 0% 

Radix-4 Booth’s 

recoding 
50%

 
37.5% 75% 0% 

Self-timed CSD 

recoding 
50% 33.3% 66.7% 33.3% 

Proposed CSD 

recoding 
33.3% 33.3% 33.3% 66.7% 
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Chapter 5 
 

EXTENSION TOPICS 

 

In this chapter, I consider two additional topics regarding hardware 

implementation of digital filters that are related to, but distinct from the main 

results of this dissertation given in Chapter 3 and 4. 

 

5.1 A multi-input CSD multiplier unit suitable for DSP algorithm 

implementations  

Fast operation, low power consumption and small area requirements are the 

main objectives of efficient implementation of DSP algorithms in hardware [26]. 

Many efforts have been devoted in this area to achieve these often competing goals 

[26]. Multiplication is widely used in most DSP algorithms. Multipliers are costly 

in terms of chip area, power consumption and operation time [27]. However, it is 

possible to avoid multiplication by using shift-and-add techniques [33]-[36]. Many 

researchers have addressed the question of how to implement the multiplications 

for fixed-coefficient filters to reduce the area required and power consumed [13],  
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[15], [29], [44], [54]-[56]. Some of these approaches are from the point of view of 

hardware fabrication and hardware circuit design [56], for example to reduce the 

short circuit and leakage currents in the CMOS circuit design, which in turn reduce 

the power consumption.  Other approaches try to improve the implementation 

efficiency of a multiplier by reducing the number of shift/add operations [15], [44], 

[55], [56], which leads to a reduction in both the power consumption and area 

requirements. 

One effective method of reducing the number of shift/add operations in a 

multiplier is to reduce the wordlength of the multipliers. However, reducing the 

wordlength can ruin the performance of the implemented algorithm [22]. For 

example, reducing the number of bits in FIR filter coefficients may degrade the 

filter frequency response. Another commonly used method is using alternate 

number representations of the multiplier, such as CSD number system [3], [39] or 

SPT representation [8].  

In this section, I introduce a new multiplier structure: the multi-input CSD 

multiplier unit. Since this unit does not require a fixed value for the multiplier input 

to be known a priori, it has broad applications. The multi-input multiplier has 

several advantages. First, since it uses CSD representation of the multiplier, it 

requires fewer shift/add/subtract operations. In addition, since all the 

multiplications share one CSD conversion unit, the overhead for generating the 
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control signals is reduced. Furthermore, because all the products are produced 

simultaneously, the multiplication speed, and thus the filter throughput, is 

improved. Also, the multiplier can be applied to efficiently implement digital filters 

with non-fixed coefficients, such as adaptive filters. The implementation efficiency 

can be further improved by reducing the wordlength of the input signal with little or 

no sacrifice in the filter performance.  

To the best of the authors’ knowledge, this is the first time that a multi-input 

multiplier has been proposed as a hardware block that is suitable for DSP algorithm 

applications; its advantages and applications are studied in this chapter. 

 

5.1.1 Multi-input CSD multiplier structure 

Figure 5.1 shows the proposed Multiple-input CSD multiplier with N 

multiplicands 1y , 2y , … Ny  and one L-bit multiplier x. This multi-input multiplier 

is suitable for hardware implementation of many multiplications that have the same 

multiplier but different multiplicands.  

The common multiplier x is converted to CSD representation to generate 

control signals by either a Look-Up-Table (LUT) or canonical recoding techniques 

[40] or the new 2’s complement to CSD conversion technique [18] that has been 

described in Chapter 3. The real-time CSD recoding multiplier structure [19] that 
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has been discussed in Chapter 4 is also a good choice. 

 
 

Figure 5.1 Detailed view of the proposed multiple-input 
CSD multiplier unit. 
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The multi-input shifters use the same control signals generated by a CSD 

converter; so all multiplicands are shifted by the same number of bits. Since no two 

adjacent bits in a CSD number are nonzero, as a result, there are less than 2
L⎡ ⎤⎢ ⎥  

control signals [ ]x k  ( 0 2
Lk≤ ≤ ⎡ ⎤⎢ ⎥ ), where k  denotes the thk  nonzero digit of the 

CSD representation of x . Therefore, the CSD number representation can reduce the 

number of add/subtract/shift operations to less than or equal to a number that is 

approximately half the number of bits in the multiplier x. To accommodate the 

maximum number of nonzero digits in the CSD representation of the input sample, 

this multi-input CSD multiplier structure requires 2
L⎡ ⎤⎢ ⎥  shifters. Similarly, 

( )12
LN ⎡ ⎤ −⎢ ⎥  two-input adders (subtractors) are required to add the coefficient bit 

slices. 

Table 5.1 lists the number of shift-and-add operations required for the worst 

case with the proposed multi-input multiplier, for a CSD based multiplier and for a 

traditional binary number representation based multiplier. The shifters in the 

proposed multiplier are multi-input shifters. Because these multi-input shifters 

have the same control signals, some new techniques could be developed to reduce 

the power consumption and area requirements of their hardware implementation. 

Nevertheless, the worst case area requirement and power consumption for these 

multi-input shifters is the number of inputs times the area requirement and power 
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consumption of a regular shifter. From this table, we can see the proposed design 

requires fewer adders, fewer CSD converters and fewer shifters. Other recently 

developed efficient single input and single output multiplier techniques [54] can 

also be applied to the proposed structure to further reduce the number of 

add/subtract/shift operations. 

 
TABLE 5.1 COMPLEXITY OF THE TRADITIONAL MULTIPLIER, 

CSD-ENCODED MULTIPLIER, AND MULTI-INPUT CSD MULTIPLIER 
 

 
Number of 

adders/subtractors

Number of CSD 

converters 
Number of shifters

Traditional 

Multiplier 
( 1)N L −  — NL 

CSD-recoded 

coefficients 
( )12

LN ⎡ ⎤ −⎢ ⎥  N 2
LN ⎡ ⎤
⎢ ⎥  

Multi-input 

multiplier ( )12
LN ⎡ ⎤ −⎢ ⎥  1 2

L⎡ ⎤
⎢ ⎥ * 

*These shifters are multi-input shifters.  

 

From Figure 5.1 and Table 5.1, it can be seen that one obvious benefit of 

this structure is that many control signals can be shared in one multi-input 

multiplier instead of performing multiplications one at a time using many 

multipliers in hardware. As a result, the overhead required by CSD conversion and 
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control signal generation can be significantly reduced. Also several multiplications 

are performed simultaneously, so the overall computation speed can be improved. 

The greater the number of inputs in the multi-input multiplier, the greater 

the savings in hardware implementation this multiplier will achieve. Although the 

advantages of this structure depend on the assumption that all these multiplications 

have the same multiplier, this multi-input multiplier could have broad applications 

in DSP algorithms implementation, which is illustrated in the following discussion 

of applications. 

 

5.1.2 Application to implementation of digital filters 

Because digital filters have been and continue to be one of the fundamental 

building blocks of many signal processing systems, the design of an efficient, 

low-power FIR filter and its implementation is extremely important. It is known 

that the major bottleneck of low-power FIR, or IIR, filter implementation is in the 

coefficient multipliers. In addition to the studies of fixed-coefficient filters, there 

has been a increasing interest in adaptable-coefficient filters or digital filters with 

unknown coefficients [3], [6], [8], [13], [17]. Since the proposed multi-input 

multiplier does not require a known or fixed multiplicand value, the multiplier is a 

good candidate structure for efficient implementation of these digital filters. 
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To implement digital filters with the proposed multi-input CSD multiplier, I 

use the fact that in both the transposed form FIR and the canonical structure IIR 

digital filters, each input signal (and the output of the IIR filter) needs to multiply 

all the coefficients at the same time. If we consider the input signal to be the 

multiplier and the coefficients to be the multiplicands, then the proposed 

multi-input multiplier structure can be applied directly.  As a result, I first describe 

the transposed form of the FIR filters and the canonical structure of IIR filters, and 

then based on these structures, I propose a novel efficient implementation of FIR 

and IIR filters using the proposed multi-input multiplier unit. The implementation 

cost could be further reduced by incorporating quantization techniques into the 

proposed designs. 

 

5.1.2.1 Transposed form FIR and IIR filter structures  

A variation of the direct FIR structure, shown in Figure 5.2, is called the 

transposed form [2], in which the input is first multiplied by the filter coefficients, 

and then the internal results are appropriately accumulated and delayed.  

The output of the filter is given by 

 ( ) ( ) ( )
1 1

0 0

M M
k

k k
k k

y n h x n k H z h z
− −

−

= =

= − ⇔ =∑ ∑                             (5.1) 
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          Figure 5.2 Transposed form FIR filter structure. 

 

where M is filter length and the kh  are the filter coefficients. 

Similarly the canonical IIR structure, which is called the transposed direct 

II realization [2], is shown in Figure 5.3.  

The output ( )y n  is given by: 

    

( ) ( ) ( )
1 0

1
0 1( ) 11 1

N M
y n a y n j b x n kj kj k

Mb b z b zMH z Na z a zN

= − − + −∑ ∑
= =

− −+ + +
⇔ =

− −+ + +

                      (5.2) 

where M is the maximum input delay, the bk  are the numerator coefficients; N is 

the maximum output delay, and the aj are the denominator coefficients. 
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          Figure 5.3 Direct form IIt IIR filter structure. 

 

5.1.2.2 Multiple-input CSD multiplier based implementation 

From the transposed form filter structures, it can be observed that each input 

(and output for the IIR filter) will multiply the input (output) by all the coefficients 

simultaneously. So, the proposed multi-input multiplier can be applied directly to 

efficiently implement these digital filters. As I mentioned previously, the proposed 

multiplier can work with a non-fixed multiplicand, so the implementation of digital 

filters based on this multiplier structure can also be applied to hardware 
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implementation of adaptive filters. In Figure 5.4, I give the diagram of the hardware 

implementation of an adaptive FIR filter based on the proposed multiplier. 

 

 

Figure 5.4 Adaptive Transposed Form FIR filter using multiple-input CSD 
multiplier unit. 

 

5.1.2.3 Further improvement 

The implementation of digital filters using the proposed multi-input CSD 

multiplier can greatly reduce the implementation cost, which also in turn reduces 
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the area requirement and power consumption. It is well-known that the 

implementation cost of multiplication can be greatly reduced by limiting the 

wordlength of the multiplier. However, in a traditional filter implementation, a 

reduction in the wordlength of multipliers (usually the filter coefficients) could 

perturb the realized frequency response to the extent that the filter design 

specification is no longer satisfied. Thus, the reduction is limited by filter 

specifications [22]. 

However, in the proposed implementation, increasing the width of the 

adders corresponds to increasing the filter coefficient wordlength. So the frequency 

response error can be reduced merely by increasing the width of the adders ( which 

have typically been reduced in number during the design of the frequency response 

by determining the theoretical minimum filter order that is required to meet the 

specification). To reduce the multiplication cost, we need to restrict the wordlength 

of the filter input signals, which corresponds to Analog-to-Digital (A-D) 

conversion noise. However, compared to the filter response error, the A-D noise 

contributes less to the final filter output error [57]. This is the significant advantage 

of the design since the number of adders that are required is equal to the number of 

nonzero digits in the CSD representation of the input sample, which cannot exceed 

n/2 for n-bit inputs. As a result, by increasing the width of the adders and reducing 

the wordlength of the filter input signals in my implementation, implementation 

cost of the digital filter can be greatly reduced with little or no sacrifice in filter 
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performance, which is confirmed by my simulation results given in Section 5.1.4.  

 

5.1.3 Other applications 

In addition to the applications of digital filter implementations, the 

developed multi-input multiplier can be applied to other DSP algorithms. In Figure 

5.5, I present an efficient hardware implementation of FIR filter banks using the 

multi-input multiplier.  

The ( )x n  is the input data; ( )H j
i represents the jth coefficient of ith filter; 

( )iy n represents the ith filter output. The developed multi-input CSD multiplier 

unit can also be applied to implement matrix multiplications, such as a matrix 

multiplied by a vector or a vector times a constant. Other possible applications 

include implementing digital image processing algorithms and nonlinear 

polynomial filters. 

 

5.1.4 Simulation Results 

Here, I provide an FIR filter implementation example, which confirms the 

techniques I introduced in Section 5.1.2.3. Consider a low-pass FIR filter with 
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pass-band frequency of 0.6π , stop-band frequency of 0.72π  and stop-band ripple 

of -50 dB. These specifications are met by a 28th order filter with coefficients: 

. 

 

Figure 5.5 Using the proposed multi-input multiplier unit to efficient 
implement FIR filter banks. 

 

[0.0166 0.0195 -0.0113 -0.0056 0.0207 -0.0143 -0.0148 
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Using 18 bits for intermediate values, simulations are performed for h with 

4, 6, 8, 9, 10, 12, and 14 bits; and [ ]x n with 14, 12, 10, 9, 8, 6, and 4 bits, in turn. I 

measure the filter performance by computing the output error power 

approximation: 

                        1 2( ) ( )
1 0

K

K
E y n y n

K n
= −∑

+ =
                                    (5.3) 

As shown in Table 5.2, the best combination is 10 bits for h and 8 bits 

for [ ]x n . Using this combination to implement this FIR filter by the proposed 

multiplier, I only need one 8 bit CSD converter, 4 multi-input shifters (with 28 

inputs and wordlength of 10 bits), and 111 adders (with wordlength 18 bits). From 

Table 5.2, it can also be inferred that the implementation cost could be further 

reduced with small sacrifice of filter performance, for example, if h takes 12 bits 

and [ ]x n  takes 6 bits.  

TABLE 5.2 QUANTIZATION AND FILTER OUTPUT ERROR POWER 
COMPARISON 

 
Number of bits for 

filter coefficients h 
4 6 8 9 10 12 14 

Number of bits for 

input signals 
14 12 10 9 8 6 4 

Output error power 

(dB) 
-26 -42 -55 -60 -65 -55 -41 
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5.2 Optimizing filter order and coefficient length in the design of 

high performance filters for high throughput FPGA 

implementations 

For a given filter design specification, there is generally a minimum order 

that is required to meet the specification with an FIR filter; for a given specification 

and order, increased quantization generally degrades performance relative to the 

ideal specification. There is generally a minimum word length that is required for 

the quantized filter implementation to still meet the design specification 

The idea following is: compared to the filter with minimum order and 

maximum quantization that meets the specification, can we increase the order and 

increase the quantization simultaneously to obtain a more efficient filter that still 

meets the specification?   

The answer appears to be YES. 

The efficiency of a hardware filter design utilizing FastCSD and the 

real-time CSD recoding multiplier structure that I developed in Chapter 3 and 

Chapter 4 can often be further improved reducing the required multiplier 

wordlengths through an increase of the filter order beyond the minimum order that 

is needed to meet the design specification. 

First of all, I look at this with regard to filters having fixed coefficients that 
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are known a priori. 

 

5.2.1 Optimizing filter order and coefficient length in the design of FIR filters 

When implementing a filter using VLSI hardware, we must consider 

quantization of the coefficients that make up the filter, as well as the quantization of 

internal computations (both multiplications and additions) [57]. These will directly, 

along with the communications or wiring diagrams, specify the hardware 

requirements. The definition of the quantization function affects not only the 

hardware requirements, but also the performance of the filter. The quantization of 

the fixed-point coefficient values directly influences the area required by the 

implementation. Quantization of the input, output and internal computations also 

affects the required area. Of course, filter performance is also affected [22]. 

Quantization can be viewed as a many-to-one function that maps a set of real 

numbers to a single value. 

This way of defining quantization leads to the idea of further limiting the 

range of the quantization function. For example, in filter implementations, one 

could use the quantization function so that only “good” filter coefficients are 

allowed. By “good,” it would mean in this case that the implementations could only 

realize coefficients that are limited combinations (sums and differences) of 
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powers-of-two [35].  

Some level of quantization can be imposed on the coefficients that still 

allows the filter specifications to be met. However, for long filters, a savings of a 

single bit can be significant and worth an increase in the order. In this section, the 

order of the filter is increased to improve the filter implementation without a loss in 

the performance of the filter. Similar approaches have been considered for lattice 

wave digital filters [58] and much smaller filters [59].  

Recently, multiplierless techniques, such as CSD number representations 

[14] and dependence-graph algorithms [41] have been widely used for 

implementing FIR filters in Field Programmable Gate Arrays (FPGAs). In these 

implementations, rather than implementing multiplication of inputs by coefficients 

using multipliers, the multiplication takes advantage of the a priori knowledge of 

the coefficient values to implement the multiplication by a limited number of shifts 

and adds/subtracts. To implement the shifts, a simple rewiring can be used rather 

than a sequential shift register. In this way, FIR filters with known coefficients can 

be implemented to operate with high-throughput and low area requirements. 

Typically transpose form filters are used to achieve high-throughput because of 

pipelining advantages. 
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5.2.1.1 Quantization effects on example FIR filter implementation 

Usually one effective method to reduce the number of shift/add operations 

in a multiplication implementation is to reduce the wordlength of the multipliers, 

which are typically the coefficients in filter implementation. However, reducing the 

coefficients wordlength can ruin the performance of the implemented filter 

algorithm [22].  

Example 5.1: Consider a non-minimum order FIR filter designed using a 

generalized remez technique (firgr in MATLAB®) with the following 

specifications: ωp = 0.43; ωs=0.5; Ap=0.2 dB and As=50 dB. Based on the 

MATLAB® results, we find that an order of 90 with coefficients quantized 

uniformly with at least 19 bits (not including the sign bit) can achieve this 

specification. 

Figure 5.6 shows the frequency response effects of quantizing the filter 

coefficients from 19 bits to 8 bits (not including the sign bit). It can be observed that 

with the decrease in the number of bits in the coefficient, the errors get bigger and 

bigger. 

We can calculate the filter response error power ( )fE ω for different 

numbers of bits in the coefficients: 
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Figure 5.6 Frequency responses for different coefficient quantization levels 
for the 90th order low pass FIR example filter (not including the sign bit in bit 

counts). 
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Figure 5.7 shows the filter response error power ( )fE ω for different 

quantization levels; it is clear that as the number of bits decreases, the errors 

increase. 
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Figure 5.7 Coefficient quantization effects on the example FIR filter (not 
including the sign bit in bit counts). 

 

How to eliminate or reduce these errors without causing unacceptable 

hardware complexity is the main challenge. Further benefits can be achieved by 

considering alternate number representations, such as CSD number system. This 

representation replaces the additions arising from a string of ones in a binary 

number with a single subtraction, so that the “shift-and-add” algorithm becomes 

“shift-and-add/subtract” [39]. Thus, filter coefficients can be realized by 

incorporating a few adders (or subtractors) and bit shifters. CSD numbers have 
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proven to be useful in implementing multipliers with less complexity, because the 

cost of multiplication is a direct function of the number of nonzero bits in the 

multiplier, which can be reduced by using CSD numbers [37]. 

 

5.2.1.2 Optimizing the example FIR filter design by increasing the order 

In general, there is a tradeoff between the hardware complexity and the 

filter performance associated with the wordlength of the multipliers. Increased 

coefficient wordlength increases implementation complexity, and decreased 

coefficient wordlength results in greater filter response error. However, we can 

increase the order of the filter to further improve the filter implementation without a 

loss in filter performance. For long filters, the results are much more significant 

because of the increased effect of saving a bit in each coefficient. 

 

5.2.1.2.1 FIR filter implementations with non-minimum order designs 

Consider the previous Example 5.1. The specification can be achieved with 

a 90th order filter and coefficients quantized uniformly at 19 bits; however, we can 

reduce the length of the quantized coefficients further by increasing the order of the 

filter design as shown in Table 5.3.  
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TABLE 5.3 THE RELATIONSHIP BETWEEN THE ORDER OF THE FILTER 
DESIGN AND THE LENGTH OF THE QUANTIZED COEFFICIENTS (NOT 

INCLUDING THE SIGN BIT) 
 

Order Number of bits per 
coefficient 

Total number of 
binary bits 

90 19 1729 

92 16 1488 

93 14 1316 

94 14 1330 

95 13 1248 

96 13 1261 

102 13 1339 

103 12 1248 

107 12 1296 

 

Since the filter is long, saving even a single bit in each coefficient can 

achieve a significant savings in the whole filter design. As a result, the total number 

of binary bits (which indicates how complicated the multiplication will be) is 

decreased, as is the hardware complexity. Figure 5.8 shows the effects on 

frequency response. All these designs meet the filter specification.  
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Figure 5.8 The effects on frequency response of the tradeoff between filter 
order and coefficient length. 

 

The hardware complexity can be estimated by using the total number of 

binary bits: 

Total number of binary bits=Number of taps Number of bits per coefficient× (5.5) 
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5.2.1.2.2 FIR filter implementations with increased constraints 

With the same specifications: ωp = 0.43; ωs=0.5; Ap=0.2 dB, Table 5.4 

summarizes the results achieved when the rejection band is lowered. 

The total number of bits required for these example designs is summarized 

in Table 5.4. This measure of complexity is a more generalized approach to area 

requirement that would give insight into general designs. However, more accurate 

area requirements for these particular filters can be determined through 

implementation and/or determining the number of non-zero bits required for a CSD 

implementation which is also listed in Table 5.4. As the rejection band attenuation 

requirement is increased, the filter order and the number of bits per coefficient 

required also increase. The results here are similar to those shown in Table 5.3: 

since the filter is long, saving even a single bit in each coefficient can achieve a 

significant savings in the whole filter design. As a result, when the order increased, 

the total number of binary bits is decreased, as well as the total number of non-zero 

CSD bits and the hardware complexity. For this example, using an increased 

attenuation requirement in the design process and the original attenuation 

requirement for the coefficient quantization led to an increase in the total number of 

bits. It appears that this commonly used approach has significant drawbacks with 

respect to implementation area. 
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TABLE 5.4 THE RESULTS OF FILTER ORDER, WORDLENGTH OF 
COEFFICIENTS REQUIRED, TOTAL NUMBER OF BINARY AND 

NONZERO CSD BITS, WHEN STOPBAND ATTENUATION IS CHANGED 
(NOT INCLUDING THE SIGN BIT) 

 

As (dB) Order Number of bits 
per coefficient 

Total number 
of binary bits 

Total number of 
nonzero CSD 

bits 

178 20 3580 758 

183 18 3312 624 80 

189 17 3230 600 

149 19 2850 626 

152 18 2754 580 70 

155 16 2496 486 

134 18 2430 520 

138 16 2224 450 65 

142 15 2145 430 

105 17 1802 404 

108 14 1526 304 55 

114 13 1495 287 

90 19 1729 430 

95 13 1248 258 50 

103 12 1248 234 
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5.2.2 Optimizing filter order and coefficient length in the design of 

multiplierless adaptive filters 

Similar results can be obtained for adaptive systems, which is more directly 

relevant to the new techniques introduced in Chapter 3 and 4 of this dissertation. 

In this section, I explore the implementation of adaptive finite impulse 

response (FIR) filters using VLSI hardware, such as field programmable gate 

arrays (FPGAs) [53]. Typically, adaptive filters are implemented using 

conventional multipliers because of the need to change the filter coefficients with 

the adaptation algorithm [60]. This approach does not allow the implementation to 

exploit previously existing multiplierless techniques that are appropriate only for 

implementing fixed coefficient filters. The new multiplierless techniques 

introduced in Chapter 3 and 4 can be used for implementing adaptive filters, but 

coefficient quantization effects must be taken into consideration since most 

adaptation algorithms are based on the assumption of infinite precision 

coefficients. 

To implement an adaptive filter using multiplierless approaches, the 

possible coefficients must be significantly limited. The adaptation function must be 

defined to select among this restricted set of possible coefficients. Opportunities 

arise for further restriction of the set to coefficients that are particularly desirable, 

e.g. powers-of-two, sums of two powers-of-two, differences of two powers-of-two. 
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Consider the use of an adaptive filter to identify an 8th order system defined 

by the FIR filter with coefficients: 

w = [0.03501821523157   0.09678782491413   0.18038616802081   0.25365125649930
   0.28292173233290   0.25365125649930  0.18038616802081   0.09678782491413
   0.03501821523157].

 

If the wordlength of the coefficients for the adaptation algorithm is limited, 

it affects the mean-square-error as shown in Figure 5.9. It is possible to compensate 

for limiting the number of bits per coefficient by increasing the order of the 

identified system as shown in Figure 5.10. 

For the example adaptive filter, suppose that I restrict the number of bits 

used for each coefficient of the identified system to 8 – this corresponds to a CSD 

representation that uses four or fewer non-zero ({1,  1})  digits. I find in my 

simulations that using fewer bits results in divergence of the adaptation algorithm, 

i.e. the effective step size is too large. Suppose further, that I also modify the 

gradient calculation and the error signal ( )e n  so that multiplications of ( )e nμ ⋅  

and ( ) ( )e n x nμ ⋅ ⋅  are now replaced only by a shift of bits respectively, where μ is 

given in (1.5). This implies that the step size μ  and ( )e n  must be an exact power 

of two, i.e. we must have 2 νμ −= . In my simulation, I have chosen 52μ −= and I 

use barrel shifters. See Figure 5.11 for this detail in a block diagram form. The 

effects of these restrictions are shown via simulation (Figure 5.12). 
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Figure 5.9 MSE for varying bit lengths used per coefficient (plus the sign bit). 

 

 

Figure 5.10 MSE for varying numbers of filter taps of the identified system 
with 11 bits per coefficient (including the sign bit, 52μ −= ). 
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Figure 5.11  Proposed Structure of N+1 taps FIR adaptable filter. 
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Figure 5.12 MSE for varying filter taps where the multiplication is a shift and 
the coefficients in the identified system have 8 bits (including the sign 

bit, 52μ −= ). 

 

To determine whether this multiplierless approach gives better results in 

terms of area when compared to implementations that employ traditional 

multipliers, one must analyze the design in terms of known parameters. For the 

example, the multiplier-based implementation requires 2N+3 multipliers, 2N+1 

adders, and 1 subtractor where N is the order of the system.  The area complexity of 

traditional multipliers are typically O(b2) where b is the number of bits multiplied. 

The multiplierless approach replaces N+2 multiplies by N+2 shifts, and replaces 
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the other N+1 multiplies by combinations of shifts and additions or subtractions.  

Because the shifts are not known a priori, they must be implemented using shift 

registers, gates (similar to barrel shifter circuits). For a gate implementation, the 

shift circuit has area complexity O(b). CSD multiplies can be implemented using 

FastCSD or real-time CSD recoding multipliers as introduced in Chapter 3 and 4. 

The size of each multiplier is less than or equal to O(b). So, we have replaced the 

O(b2) multiplier circuits with circuits that are linear in the number of bits. Table 5.5 

gives a detailed comparison between multiplier based and multiplierless adaptive 

FIR filter implementation. 

In summary, the area of our proposed multiplierless adaptive FIR filter design 

is O(Nb) compared to the required area of a multiplier-based adaptive filter, which 

is O(Nb2). Additional restrictions in the quantization function can further reduce 

the area required. 

 
TABLE 5.5 COMPLEXITY COMPARISON OF MULTIPLIER-BASED AND 

MULTIPLIERLESS ADAPTIVE FIR FILTERS OF ORDER N 

 
Number of 

b-bit 
multipliers 

Number 
of b-bit 
adders 

Number of 
b-bit 

subtractors 

Number 
of shift 
circuits 

Number of 
CSD 

multiplies 

Multiplier-based 2N+3 2N+1 1 — — 

Multiplierless — 2N+1 1 N+2  N+1 
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Chapter 6 

 

CONCLUSIONS AND FUTURE WORKS 

 

6.1 Conclusions 

I have reviewed current filter implementation techniques and multiplierless 

techniques for high performance FPGA implementation of digital filters in this 

dissertation. Current popular multiplierless techniques have been implemented and 

compared in detail by designing an example loop filter in Delta-Sigma A/D and 

D/A system.  

The implementation of adaptive filters cannot benefit from fast, low area 

filter design techniques that use a priori information about the filter coefficients. I 

propose a novel implementation technique — FastCSD that can be used to 

construct general multipliers which require less area and achieve higher throughput 

rates. The method for converting a number from 2’s complement representation to 

CSD representation can be used to implement adaptive filters in FPGAs or other 

custom hardware. Performance analysis indicates that the design provides better 

results than are currently available considering both the conversion speed and the 
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computational complexity. Since the technique does not require a specific word 

length for the multiplier and does not depend on prior knowledge of the multiplier 

value, it has broad applications. The method only requires several shifts and logic 

operations, so the complexity of the hardware implementation has been effectively 

reduced compared to conventional methods, such as modified Booth’s recoding 

and Look-Up-Table based techniques. The throughput of the implementation can 

be further improved by incorporating parallel processing with only a modest 

increase in area [18]. 

I have presented an efficient iterative multiplier structure based on a novel 

real-time CSD recoding circuit [19], [20]. To the best of my knowledge, this 

structure is the first iterative multiplier based on real-time CSD recoding. Because 

of the iterative multiplier nature, the proposed design requires lower area compared 

with array multipliers. Furthermore, the CSD number property ensures that this 

multiplier has the minimum number of nonzero partial products among all radix-2 

number representation based multipliers. The number of add/subtract operations is 

further reduced through the use of bypass techniques. On average, 66.7% of the 

partial product generation operations are replaced with a simple bypass to the 

shifting structure and carry propagation is totally eliminated as well. Thus, the 

complexity of the hardware implementation is dramatically reduced as compared to 

conventional methods, including modified Booth recoding and competing CSD 

recoding techniques. This approach achieves an overall speed-up as well as reduced 
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power consumption which is particularly critical in mobile multimedia applications. 

Finally, unlike other CSD number based multipliers, the structure proposed here 

uses real time CSD recoding, and does not require a fixed value for the multiplier 

input to be known a priori; as a result, the proposed multiplier can be used for the 

efficient implementation of digital filters with non-fixed filter coefficients, such as 

adaptive filters.  

Also, I have presented a novel multi-input CSD multiplier unit and its 

application to efficient implementation of DSP algorithms, such as the 

implementations of digital filters and filter banks [53].  The developed multi-input 

CSD multiplier requires less shift/add/subtract operations and CSD conversion 

overhead. Consequently, the power consumption and area requirement of the 

implemented hardware can be significantly reduced. The technique does not 

depend on prior knowledge of the coefficients; therefore, it is suitable for adaptive 

filter implementation. The implementation efficiency can be further improved by 

reducing the number of input bits without any or with only a small sacrifice in the 

filter performance. 

Hardware complexity is one of the most important considerations when 

implementing digital filter structures in FPGAs. In my dissertation, the tradeoff 

between filter order and coefficient length in the design and implementation of 

high-performance filters has been presented. Non-minimum order FIR filters are 
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designed for implementation using canonical signed digit (CSD) multiplierless 

implementation techniques. By using non-minimum order designs, the length of the 

coefficients can be reduced, and thus an overall hardware savings can be achieved. 

In addition, I consider the use of overly-stringent specifications combined with 

quantization and increased order to improve the filter implementation [22]. In 

addition, the FPGA implementation of a multiplierless FIR adaptive filter has been 

discussed [53]. Simulations of an adaptive filter were conducted, taking into 

account the wordlength of each coefficient, multiply, and addition/subtraction. 

Also considered is the filter tap length. The results show that one can compensate 

for limiting the number of bits used to represent each coefficient by increasing the 

order of the identified system. Because the proposed method produces a space 

requirement that is linear in the order, rather than the conventional quadratic in the 

order, I have thus effectively reduced the complexity of the hardware 

implementation. 

This dissertation makes the following contributions: 

• Developed the first non-iterative hardware algorithm to convert 2’s 

complement to CSD (FastCSD) [18] which is faster than existing 

techniques with lower space and power consumptions. 

• Leveraged FastCSD [18] to develop a new, high performance iterative 

multiplier structure based on novel real-time CSD recoding [19], [20] 
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which has simpler structure than other competitive techniques with less 

computational complexity and low power consumptions.  

• Developed the first multi-input multiplier unit suitable for adaptive DSP 

algorithm implementations [21]. 

• Optimized filter order and coefficient length for design of high performance 

FIR and adaptive filters [22]. 

 

6.2 Future works 

I plan to incorporate the FastCSD method [18] into the multi-input CSD 

multipliers [53] which requires all the CSD digits to be converted simultaneously. 

This new multi-input CSD multiplier circuit will allow the construction of high 

throughput adaptive filters in FPGAs or other custom hardware under practical 

time, space and power constraints. 

In this dissertation, I introduced a novel radix-2 CSD iterative multiplier 

that implicitly converts 2’s complement to CSD in real-time. However, it would be 

interesting to explore higher radix hardware that might further reduce the power 

consumption while simultaneously increasing the computational bandwidth 

significantly. 
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I would also like to apply FastCSD and real-time CSD recoding multiplier 

to Delta-Sigma systems. Hopefully, it will yield a higher resolution and higher 

throughput D/A converter. 

I also plan to evaluate the new techniques described in this dissertation and 

integrate them with my previous work, such as, adaptive nonlinear filter for 

adaptive nonlinear echo cancellation in [61] or the adaptive filters considered in 

[53], [62], [63], and [64].  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

110 

REFERENCES 

 

[1] G. R. Goslin, "Using Xilinx FPGAs to Design Custom Digital Signal 

Processing Devices,” Proc. of the DSPX, 1995, pp. 565-604.  

[2] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, New 

York: McGraw-Hill Companies, 2000. 

[3] S. Haykin, Adaptive filter theory, 4th ed, New York: Prentice Hall, 2002. 

[4] J. Kang and J. Gaudiot, “A simple high-speed multiplier design, ” IEEE 

Trans. on Computers, vol. 55, No. 10, 2006, pp. 1253-1258. 

[5] A. Efthymiou, W. Suntiamorntut, J. Garside, and L.E.M. Brackenbury, 

“An Asynchronous, iterative implementation of the original Booth 

multiplication algorithm,” in Proc. Int'l. Symp. Asynch. Circuits and Syst., 

2004, pp. 207-215. 

[6] M. A. Soderstrand, "CSD multipliers for FPGA DSP applications," in Proc. 

IEEE Int’l. Symp. Circuits, Syst., vol.5, 2003, pp. V-469 - V-472. 

[7] J. Hensley, A. Lastra, and M. Singh, “An area- and energy efficient 

Asynchronous Booth multiplier for mobile devices,” in Proc. IEEE Int’l. 

Conf. Computer Design, 2004, pp. 18-25.  



 

111 

[8] C.-L. Chen, K.-Y. Khoo, and A. N. J. Willson, "A Simplified signed 

powers-of-two conversion for multiplierless adaptive filters," in Proc. 

IEEE Int’l. Symp. Circuits, Syst., 1996, pp. 364-367. 

[9] G. K. Ma and F. J. Taylor, “Multiplier policies for digital signal 

processing,” IEEE ASSP Mag., 1990, pp. 6-20. 

[10] G.A. Ruiz and M.A. Manzano, "Self-Timed Multiplier Based on Canonical 

Signed-Digit Recoding," IEE Proc. Circuits, Devices, and Systems, vol. 

148, no. 5, 2001, pp. 235-241. 

[11] S. M. Kim, J. G. Chung, and K. K. Parhi, “Design of low error CSD 

fixed-width multiplier,” in Proc. IEEE Int’l. Symp. Circuits, Syst., 2002, pp. 

I-69 - I-72. 

[12] A.D. Booth, “A Signed Binary Multiplication Technique,” Quarterly J. 

Mechanics and Applied Math., vol. 4, 1951, pp. 236-240. 

[13] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson, "A 

novel high performance distributed arithmetic adaptive filter 

implementation on an FPGA," in Proc. IEEE Int’l. Conf. Acoust., Speech, 

Signal Proc., vol.5, 2004, pp. V-161 - V-164.  

[14] K.K. Parhi, VLSI Digital Signal Processing Systems: Design and. 

Implementation, John Wiley, 1999. 



 

112 

[15] A. G. Dempster and M. D. Macleod, "Constant integer multiplication using 

minimum adders," IEE Proceedings: Circuits, Devices and Systems, vol. 

141, 1994, pp. 407-413. 

[16] D. B. Bull and D. H. Horrocks, "Primitive operator digital filters," IEE 

Proceedings, Part G: Circuits, Devices and Systems, vol. 138, 1991, pp. 

401-412. 

[17] D. Li and Y. C. Lim, "Multiplierless realization of adaptive filters by 

nonuniform quantization of input signal," in Proc. IEEE Int’l. Symp. 

Circuits, Syst., 1994, pp. 457-459. 

[18] Y. Wang, L. S. DeBrunner, D. Zhou, and V. E. DeBrunner, "A novel 

hardware implementation method for adaptive filter coefficients," in Proc. 

IEEE Int’l. Conf. Acoust., Speech, Signal Proc., 2007.  

[19] Y. Wang, L. S. DeBrunner, D. Zhou, and V. E. DeBrunner, "A multiplier 

structure based on a novel real-time CSD recoding," in Proc. IEEE Int’l. 

Symp. Circuits, Syst., 2007.  

[20] Y. Wang, L.S. DeBrunner, D. Zhou, V.E. DeBrunner, and J. P. Havlicek, 

“Efficient iterative multiplier structure based on a novel real-time CSD 

recoding,” submitted to IEEE Trans. Circuits and Systems I, 2007. 

[21] Y. Wang, L. DeBrunner, V. DeBrunner, and D. Zhou, “A multi-input 

multiplier unit suitable for adaptive DSP algorithm implementations,” in 

Proc. Asilomar Conf. Signals, Syst., Comput., 2006.  



 

113 

[22] L. S. DeBrunner and Y. Wang, "Optimizing filter order and coefficient 

length in the design of high performance FIR filters for high throughput 

FPGA implementations,” IEEE DSP Workshop, 2006, pp. 608-612. 

[23] Berkeley Design Technology Inc., 2000, white paper, “Choosing a DSP 

Processor”. http://www.bdti.com/articles/choose_2000.pdf 

[24] L. Adams, "Choosing the right architecture for real-time signal processing 

designs," Texas Instruments, 2002.  

[25] Altera Corp., 2007, white paper, "FPGA vs. DSP Design Reliability and 

Maintenance". http://www.altera.com/literature/wp/wp-01023.pdf 

[26] U. Meyer-Baese, Digital Signal Processing with Field Programmable 

Gate Arrays, Springer-Verlag, Berlin, Germany, 2001. 

[27] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. 

London, Oxford Press, 1999. 

[28] I. Koren, Computer Arithmetic Algorithms, 2nd ed., Prentice Hall, 2001. 

[29] K. Chapman, “Building high performance FIR filter using KCM,” Xilinx 

Ltd, 1996.  

[30] G. Goslin, “A guide to using field programmable gate arrays (FPGAs) for 

application-specific digital signal processing performance,” XILINX Inc., 

1995. 

[31] G. Goslin, “Using Xilinx FPGAs to design custom digital signal 

processing devices,” in Proceedings of the DSPX, 1995, pp. 565-604. 



 

114 

[32] O. L. MacSorley, "High Speed Arithmetic in Binary Computers", Proc. of 

IRE, vol.49, no. 1, Jan. 1961. pp. 67-91. 

[33] R. C. Agarwal and R. Sudhakar “Multiplier-Less Design of FIR Filters,” in 

Proc. IEEE Int’l. Conf. Acoust., Speech, Signal Proc, 1983, pp. 209-212. 

[34] N. Benvenuto , L. E. Franks and F. S. Hill “On the Design of FIR Filters 

with Power-of-two Coefficients,” IEEE Trans. on Communications, vol. 

COM-32, 1974, pp. 1299.  

[35] D. Koo and A. Miron “Design of Mulitplierless FIR Digital Filters with 

Two to the N th Power Coefficients,” IEEE Trans. on Consumer 

Electronics, vol. CE-33, Iss. 3, 1987, pp. 109 - 114. 

[36] I. A. Shah and A. K. Bhattacharya, “A Fast Multiplierless Architecture for 

General Purpose VLSI FIR Digital Filters,” IEEE Trans. on Consumer 

Electronics, vol. CE-33,  Iss. 3, 1987, pp. 129 - 135. 

[37] H. Samueli, "The design of multiplierless digital data transmission filters 

with powers-of-two coefficients,"  in Proc. IEEE Int. Telecommunications 

Symp., 1990, pp.425–429. 

[38] A. G. Dempster and M. D. Macleod, “Generation of signed-digit 

representations for integer multiplication,” IEEE Signal Process. Lett., vol. 

11, no. 5, 2004, pp. 663-665. 

[39] P. Pirsch, Architectures for Digital Signal Processing, New York: Wiley, 

1998. 



 

115 

[40] G.W. Reitwiesner, “Binary Arithmetic,” Advances in Computers, vol. 1, 

1960, pp. 231-308. 

[41] Y. Voronenko and M. Püschel, "Multiplierless Multiple Constant 

Multiplication," ACM Transactions on Algorithms. vol. 3, Iss. 2, 2007. 

[42] P. R. Cappello, and K. Steiglitz, "Some complexity issues in digital signal 

processing," IEEE Trans. Acoust., Speech, Signal Proc., vol. 32, no. 5, 

1984, pp. 1037-1041. 

[43] O. Gustafsson, A. G. Dempster, and L. Wanhammar, "Extended results for 

minimum-adder constant integer multipliers," in Proc. IEEE Int’l. Symp. 

Circuits, Syst., vol. 1, 2002, pp. I-73 - I-76. 

[44] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier 

blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II, vol. 42, 1995, 

pp. 569-577. 

[45] P.M. Aziz, H.V.Sorensen, J. vn der Spiegel, "An overview of sigma-delta 

converters," IEEE Signal Processing Magazine, vol. 13, Iss. 1, 1996, pp. 

61 -84.  

[46] D. P. Scholnik, “A parallel digital architecture for delta-sigma 

modulation,” in Proc. IEEE Int'l Midwest Symp. Circuits, Syst., vol.1, 2002, 

pp. I-352 - I-355. 



 

116 

[47] Y. Wang, “Multiplierless implementation of loop filters in parallel 

Delta-sigma D/A converters,” Technical Report, Dept. of Electrical and 

Computer Engineering, U. of Oklahoma, 2007. 

[48] Y. Voronenko, "SPIRAL multiplier block generator," Carnegie Mellon U., 

2006. http://www.ece.cmu.edu/~yvoronen/homepage/mcm/gen.html 

[49] John Treichler, plenary comments, IEEE DSP Workshop, 2006. 

[50] F. Xu, C. Chang and C. Jong, “HWP: a new insight into canonical signed 

digit,” in Proc. IEEE Int’l. Symp. Circuits, Syst., 2004, pp. 201-204. 

[51] R. Hashemian, “A new method for conversion of a 2's complement to 

canonic signed digit number system and its representation,” in Proc. 

Asilomar Conf. Signals, Syst., Comput., 1997, pp.904-907. 

[52] Bill Allaire and Bud Fischer, “Block adaptive filter,” Xilinx Application 

Note, XAPP 055, version 1.1, 1997.  

[53] L. S. DeBrunner, Y. Wang, V. DeBrunner, and M. Tull, "Multiplierless 

implementations of adaptive FIR filters," in Proc. Asilomar Conf. Signals, 

Syst., Comput., 2003, pp. 2232-2236.  

[54] K. Dabbagh-Sadeghipour and A. Aghagolzadeh, “A new hardware 

efficient, low power FIR digital filter implementation approach,” in Proc. 

IEEE Int'l Conf. Electronics, Circuits and Syst., vol.3, 2003, pp. 1144 - 

1147.  



 

117 

[55] D. Li, “Minimum number of adders for implementing a multiplier and its 

application to the design of multiplierless digital filters,” IEEE Trans. 

Circuits and Systems, vol. 42, Iss. 7, 1995, pp.453 – 460. 

[56] H. R. Mehrvarz and C. Y. Kwok, “ A novel multi-input  floating-gate MOS 

four-quadrant analog multiplier,” IEEE J. of Solid-State Circuits, vol. 31, 

no. 8, 1996, pp. 1123-1131. 

[57] D. Chan and L. Rabiner, "Analysis of quantization errors in the direct form 

for finite impulse response digital filters," IEEE Trans. on Audio and 

Electroacoustics , vol. 21, 1973, pp. 354-366. 

[58] Pontus Åström, Peter Nilsson and Mats Torkelsson, “Low Power 

Optimization of Bit-Serial Digital Filters,” ASIC Conference and Exhibit, 

1997, pp. 229 – 232. 

[59] K. Tan, W. F. Leong, S. Kadam, M.A. Soderstrand, and L. G. Johnson, 

“Public-domain MATLAB program to generate highly optimized VHDL 

for FPGA Implementation,” in Proc. IEEE Int’l. Conf. Acoust., Speech, 

Signal Proc., 2001, pp. 514 – 517. 

[60] D. T. Franco and L. Carro, "A FPGA Version of a Non-Linear Adaptive 

Filter," XII Symp. Integrated Circuits and Systems Design, 1999, 

pp.128-131. 



 

118 

[61] D. Zhou, Y. Wang, V. DeBrunner, and L. DeBrunner, “Sub-band 

Implementation of Adaptive Nonlinear Filter for Adaptive Nonlinear Echo 

Cancellation,” J. Multimedia, vol. 2, Iss. 2, 2007, to appear.  

[62] Y. Wang, L.S. DeBrunner, J. P. Havlicek and D. Zhou, "Signal Exclusive 

Adaptive Average Filter in Impulse Noise Suppression," IEEE Southwest 

Symp. Image Analysis and Interpretation, 2006. pp. 51-55.  

[63] Y. Wang, L. S. DeBrunner, V. E. DeBrunner, and D. Zhou, "Quantization 

effect on phase response and its application to multiplierless ANC," in Proc. 

IEEE Int’l. Conf. Acoust., Speech, Signal Proc., vol. 5, 2004, pp. 65-68.  

[64] D. Zhou, V. DeBrunner, L. DeBrunner and Y. Wang, "Geometric Based 

analysis of FXLMS algorithm," IEEE Statistic Signal Processing 13th 

Workshop, July, 2005, pp. 127-132. 

 

 

 

 

 

 

 

 

 



 

119 

APPENDIX A 

 

NOMENCLATURES AND ABBREVIATIONS 

 

⎡ ⎤⎢ ⎥  

IIt 

ΔΣ  

A/D 

D/A 

Ap 

As 

ANC 

ASICs 

BHA 

BHM 

Round towards positive infinity  

The transpose of direct form II  

Delta-sigma 

Analog to digital  

Digital to analog 

Pass band Attenuation 

Stop band Attenuation 

Active Noise Control 

Application Specific Integrated Circuits  

Bull-Horrocks’ algorithm 

Bull-Horrocks’ algorithm Modified 
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CM 

CMOS 

CSD 

DA 

DAG 

DFS 

DSP 

FFT 

FIR 

IIR 

FPGA 

IOBs 

KCM 

LMS 

LSB 

Constant Multiplication  

Complementary Metal Oxide Silicon 

Canonical Signed Digit  

Distributed Arithmetic 

Directed Acyclic Graph 

Difference Form Signed 

Digital signal processing 

Fast Fourier Transform 

Finite Impulse Response 

Infinite Impulse Response 

Field Programmable Gate Array 

Input Output Blocks 

Constant Coefficients Multiplier 

Least Mean Square  

Least Significant Bit 
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LUT 

MAC 

MAG 

MCM 

MSD 

MSE 

NRL 

RAG-n 

RAM 

SCM 

SNR 

SPT 

VLSI 

ωp 

ωs 

Look Up Table 

Multiply-Accumulator 

Multiplier Adder Graph 

Multiple Constant Multiplication 

Minimal Signed Digit 

Mean Squared Error 

Naval Research Laboratory  

n-Dimensional Reduced Adder Graph 

Random Access Memory  

Single Constant Multiplication 

Signal-to-noise ratio  

Signed Powers-of-Two 

Very Large Scale Integration 

Pass band Frequency 

Stop band Frequency 
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APPENDIX B 

SELECTED MATLAB® CODES  

1. Codes that generate Figure 3.8 
 
init 
fc=0.25; % center frequency 
B=0.015; % one-sided bandwidth 
fL=fc-B/2; fH=fc+B/2; % edge frequencies 
[hopt, delta]=SDfilter_l1([1 0 1.3125 repmat(NaN,1,197)],[fc-B/2, fc+B/2],2.95,'sedumi'); 
h_n0=[]; 
N_n0=[]; 
for i=1:length(hopt) 
    if hopt(i)~=0 
        h_n0=[h_n0 hopt(i)]; 
        N_n0=[N_n0 i]; 
    end 
end 
h_n0 
N_n0 
h1= dfilt.dffir(hopt); 
hopt1=copy(h1); 
wl=20; 
set(hopt1,'Arithmetic','fixed') 
set(hopt1,'CoeffWordLength',wl); 
H_1=get(hopt1,'Numerator'); 
figure 
freqz(H_1,1) 
N1=hopt1.CoeffWordLength 
hopt2=copy(h1); 
wl2=input ('Coefficients Wordlength w2='); 
set(hopt2,'Arithmetic','fixed') 
set(hopt2,'CoeffWordLength',wl2); 
H_2=get(hopt2,'Numerator'); 
figure 
freqz(H_2,1) 
N2=hopt2.CoeffWordLength; 
  
hopt3=copy(h1); 
wl3=input ('Coefficients Wordlength w3='); 
set(hopt3,'Arithmetic','fixed') 
set(hopt3,'CoeffWordLength',wl3); 
H_3=get(hopt3,'Numerator'); 
N3=hopt3.CoeffWordLength; 
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hopt4=copy(h1); 
wl4=input ('Coefficients Wordlength w4='); 
set(hopt4,'Arithmetic','fixed') 
set(hopt4,'CoeffWordLength',wl4); 
H_4=get(hopt4,'Numerator'); 
N4=hopt4.CoeffWordLength; 
  
H_1max=max(abs(H_1)); 
np=ceil(log2(H_1max)); 
H1_shift=ceil(H_1*2^(N1-2)) 
H1_n0=[]; 
N1_n0=[]; 
for i=1:length(H1_shift) 
    if H1_shift(i)~=0 
        H1_n0=[H1_n0 H1_shift(i)]; 
        N1_n0=[N1_n0 i]; 
    end 
end 
H1_n0 
N1_n0 
hopt1_csd=zeros(length(H1_n0),N1+1); 
r=[]; 
  
for ii=1:length(H1_n0) 
    [hopt1_csd(ii,:),r(ii)]=real2csd(H1_n0(ii),N1,0); 
end; 
non0=sum(sum(abs(hopt1_csd))) 
hopt1_csd 
  
href1 = reffilter(h1);% Reference double-precision floating-point filter. 
hfvt1 = fvtool(href1,hopt1,hopt2,hopt3,hopt4); 
set(hfvt1,'ShowReference','off'); % Reference already displayed once 
legend(hfvt1, ['H double-precision'], ['H ' num2str(N1) ' bits'],['H ' num2str(N2) ' bits'],['H ' 
num2str(N3) ' bits'],['H ' num2str(N4) ' bits']) 
set(hfvt1, 'Color', [1 1 1]) 
 
 
 
 
2. Codes that generate Figure 5.6-5.7 
 
Wp = 0.43; 
Ws = 0.5; % Fc = (Fp+Fst)/2;  Transition Width = Fst - Fp 
Ap = 0.2; 
As = 50; 
min_order=90; 
deltp=1-10^(-Ap/20); 
delts=10^(-As/20); 
pass= 0:1/512:Wp; 
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stop= Ws:1/512:1; 
[b_m,err_m]=firgr('minorder',[0 Wp Ws 1], [1 1 0 0], [deltp delts]); 
[H_m,W_m]=freqz(b_m,1); 
[b,err]=firgr(min_order,[0 Wp Ws 1], [1 1 0 0], [deltp delts]); 
[H_inf,W]=freqz(b,1); 
if sum(abs(H_inf(1:round(512*Wp)))> (1+deltp))|sum(abs(H_inf(1:round(512*Wp)))< (1-deltp)) 
   error('(H_inf passband does not satisfy the design specification)') 
end 
tt=sum(abs(H_inf(ceil(512*Ws)+1:512))> delts); 
if tt>0 
    error('(H_inf stopband does not satisfy the design specification)') 
end 
h0 = dfilt.dffir(b); 
h=copy(h0); 
set(h,'Arithmetic','fixed') 
h.CoeffWordLength=19; 
hh=get(h,'Numerator'); 
[h16,W16]=freqz(hh,1); 
h1 = copy(h); 
h1.CoeffWordLength = 14; 
h_1=get(h1,'Numerator'); 
[H1,W23]=freqz(h_1,1); 
h2 = copy(h);  
h2.CoeffWordLength = input ('Estimated h coefficeints wordlength (1) ='); 
%h2.CoeffWordLength = 21; 
h_2=get(h2,'Numerator'); 
[H2,W21]=freqz(h_2,1); 
h3 = copy(h);  
h3.CoeffWordLength = input ('Estimated h coefficeints wordlength (2) ='); 
%h3.CoeffWordLength = 22; 
h_3=get(h3,'Numerator'); 
[H3,W22]=freqz(h_3,1); 
h4 = copy(h);  
h4.CoeffWordLength = input ('Estimated h coefficeints wordlength (3) ='); 
  
h_4=get(h4,'Numerator'); 
[H4,W24]=freqz(h_4,1); 
href = reffilter(h0); % Reference double-precision floating-point filter. 
hfvt = fvtool(href,h,h1,h2,h3,h4); 
set(hfvt,'ShowReference','off'); % Reference already displayed once 
legend(hfvt, 'Reference filter', 'h 19 bits', ['h ' num2str(h1.CoeffWordLength) ' bits'],['h ' 
num2str(h2.CoeffWordLength) ' bits'],['h ' num2str(h3.CoeffWordLength) ' bits'],['h ' 
num2str(h4.CoeffWordLength) ' bits']) 
set(hfvt, 'Color', [1 1 1]) 
  
diff_h19=H_inf-h16; 
diff_h14=H_inf-H1; 
diff_h2=H_inf-H2; 
diff_h3=H_inf-H3; 
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diff_h4=H_inf-H4; 
  
figure(2) 
plot(W,diff_h19) 
hold on 
plot(W,diff_h14,'y--') 
hold on 
plot(W,diff_h2,'g-.') 
hold on 
plot(W,diff_h3,'k:') 
hold on 
plot(W,diff_h4,'m') 
  
xlabel('Frequency') 
ylabel('Amplitude(dB)') 
legend('E_f19 bits','E_f14 bits','E_f12 bits','E_f10 bits','E_f8 bits'); 
 
 
 
3. Codes that generate Figure 5.8 
 
Wp = 0.43; 
Ws = 0.5; % Fc = (Fp+Fst)/2;  Transition Width = Fst - Fp 
Ap = 0.2; 
As = 50; 
min_order=95; 
deltp=1-10^(-Ap/20); 
delts=10^(-As/20); 
[b,err]=firgr(min_order,[0 Wp Ws 1], [1 1 0 0], [deltp delts]); 
[H_inf,W]=freqz(b,1); 
h0 = dfilt.dffir(b); 
h=copy(h0); 
set(h,'Arithmetic','fixed') 
h1 = copy(h);  
h1.CoeffWordLength = 19; 
H_1=get(h1,'Numerator') 
H_1max=max(abs(H_1)); 
np=ceil(log2(H_1max)); 
if np<0 
    np=0; 
end 
p1=92; 
[bp1,errp1]=firgr(p1,[0 Wp Ws 1], [1 1 0 0], [deltp delts]); 
hp1= dfilt.dffir(bp1); 
set(hp1,'Arithmetic','fixed') 
Ht(1)=copy(hp1); 
set(Ht(1),'CoeffWordLength',16); 
p2=93; 
[bp2,errp2]=firgr(p2,[0 Wp Ws 1], [1 1 0 0], [deltp delts]); 
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hp2 = dfilt.dffir(bp2); 
set(hp2,'Arithmetic','fixed') 
Ht(2)=copy(hp2); 
set(Ht(2),'CoeffWordLength',14); 
p3=95; 
[bp3,errp3]=firgr(p3,[0 Wp Ws 1], [1 1 0 0], [deltp delts]); 
hp3 = dfilt.dffir(bp3); 
set(hp3,'Arithmetic','fixed') 
Ht(3)=copy(hp3); 
set(Ht(3),'CoeffWordLength',13); 
p4=103; 
[bp4,errp4]=firgr(p4,[0 Wp Ws 1], [1 1 0 0], [deltp delts]); 
hp4 = dfilt.dffir(bp4); 
set(hp4,'Arithmetic','fixed') 
Ht(4)=copy(hp4); 
set(Ht(4),'CoeffWordLength',12); 
hfvt1 = fvtool(h1,Ht(1:4)); 
set(hfvt1,'ShowReference','off'); % Reference already displayed once 
legend(hfvt1,  '90 order with 19 bits', '92 order with 16 bits ' ,'93 order with 14 bits','95 order with 13 
bits','103 order with 12 bits') 
set(hfvt1, 'Color', [1 1 1]) 
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APPENDIX C 

SELECTED VHDL CODES 

1. VHDL code that generate the multiplier based design in Table 2.5 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_SIGNED.ALL; 
 
entity run8_18 is 
port(xt   : in std_logic_vector(19 downto 0); 
     yt   : out std_logic_vector(39 downto 0); 
   clk,reset: in std_logic); 
end run8_18; 
 
architecture Behavioral of run8_18 is 
      constant L:integer:=198; 
  constant o20:std_logic_vector(19 downto 0):="00000000000000000000"; 
  constant o40:std_logic_vector(39 downto 

0):="0000000000000000000000000000000000000000";  
  constant H0:std_logic_vector(19 downto 0):="01000000000000000000";--    

262144              
  constant H2:std_logic_vector(19 downto 0):="01010100000000000000";--    

344064      
    constant H12:std_logic_vector(19 downto 0):="00001100000001000000";--   49216       
  constant H14:std_logic_vector(19 downto 0):="11110010001110000111";--  

-56441    
  constant H38:std_logic_vector(19 downto 0):="00001000000011111001";--   

33017    
    constant H72:std_logic_vector(19 downto 0):="00000011010111011100";--   13788              
    constant H110:std_logic_vector(19 downto 0):="00000001101010111001";--  6841    
    constant H150:std_logic_vector(19 downto 0):="11111111000001111111";-- -3969   
    constant H182:std_logic_vector(19 downto 0):="00000000101010100111";--  2727     
    constant H198:std_logic_vector(19 downto 0):="11111111101110100000";-- -1120  
 
      type vect is array (0 to L) of std_logic_vector(19 downto 0); 
  type vec1 is array (0 to L-1) of std_logic_vector(39 downto 0); 
  type vec is array (0 to L) of std_logic_vector(39 downto 0);  
   
begin 
 
 PROCESS(clk) 
  variable H : vect:=(0=>H0,2=>H2,12=>H12,14=>H14,38=>H38,72=>H72, 
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110=>H110,150=>H150,182=>H182,198=>H198,others=>o20);   
  variable x : std_logic_vector(19 downto 0); 
 
  variable ym:vec; 
  variable v:vec1; 
 begin 
  if reset='1' then 
   x:=o20; 
   ym:=(others=>o40); 
   v:=(others=>o40); 
   yt<=o40; 
 
   elsif clk'event and clk='1' then 
     x:=xt; 
               ym(0):=x*H(0); 
     ym(2):=x*H(2); 
     ym(12):=x*H(12); 
     ym(14):=x*H(14); 
     ym(38):=x*H(38); 
     ym(72):=x*H(72); 
     ym(110):=x*H(110); 
     ym(150):=x*H(150); 
     ym(182):=x*H(182); 
     ym(198):=x*H(198); 
     yt<=v(0)+ym(0); 
    for k in 0 to L-2 loop  
     v(k):=v(k+1)+ym(k+1); 
    end loop; 
     v(L-1):=ym(L); 
    end if; 
 end process; 
end Behavioral; 
 
 
 
2. VHDL code that generate the CSD based design in Table 2.5 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
 
entity run8_CSD_18 is 
port(xt   : in std_logic_vector(19 downto 0); 
     yt   : out std_logic_vector(39 downto 0); 
   clk,reset: in std_logic); 
end run8_CSD_18; 
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architecture Behavioral of run8_CSD_18 is 
 constant L:integer:=198; 
 constant o20:std_logic_vector(19 downto 0):="00000000000000000000"; 
 constant o40:std_logic_vector(39 downto 

0):="0000000000000000000000000000000000000000";  
 type vec is array (0 to L) of std_logic_vector(19 downto 0); 
   type vec1 is array (0 to L) of std_logic_vector(39 downto 0); 
 type vect1 is array (0 to L-1) of std_logic_vector(39 downto 0);  
  
 function multi_block(data_in: std_logic_vector(19 downto 0)) 
    return vec1 is 
  VARIABLE Y: vec1;  
  VARIABLE 

w1,w262144,w344064,w49215,w56441m,w33016,w13787,w6840,w3969m,w2726,w112
0m:std_logic_vector(39 downto 0);  

 begin 
    w1:= SXT(data_in,40); 
  w262144:= SHL(w1,"10010");  
  w344064:= (SHL(w1,"10010"))+(SHL(w1,"10000"))+(SHL(w1,"1110")); 
  w49215:= (SHL(w1,"10000"))-(SHL(w1,"1110"))+(SHL(w1,"110")); 
  w56441m:= 

(SHL(w1,"1101"))-(SHL(w1,"10000"))+(SHL(w1,"1010"))-(SHL(w1,"111"))+(SHL(w1,
"11"))-(SHL(w1,"0")); 

  w33016:= 
(SHL(w1,"1111"))+(SHL(w1,"1000"))-(SHL(w1,"11"))+(SHL(w1,"0")); 

  w13787:= 
(SHL(w1,"1110"))-(SHL(w1,"1011"))-(SHL(w1,"1001"))-(SHL(w1,"101"))-(SHL(w1,"1
0")); 

  w6840:= 
(SHL(w1,"1101"))-(SHL(w1,"1010"))-(SHL(w1,"1000"))-(SHL(w1,"110"))-(SHL(w1,"1
1"))+(SHL(w1,"0")); 

  w3969m:=(SHL(w1,"111"))-(SHL(w1,"1100"))-(SHL(w1,"0")); 
  w2726:= 

(SHL(w1,"1011"))+(SHL(w1,"1001"))+(SHL(w1,"111"))+(SHL(w1,"101"))+(SHL(w1,"
11"))-(SHL(w1,"0")); 

  w1120m:=(SHL(w1,"101"))-(SHL(w1,"1010"))-(SHL(w1,"111")); 
   
  Y :=(0=>w262144,2=>w344064,12=>w49215,14=>w56441m,38=>w33016,72=>w13787, 
        

110=>w6840,150=>w3969m,182=>w2726,198=>w1120m,others=>o40); 
     return Y; 
   END multi_block; 
 
begin 
 PROCESS(clk) 
   
  variable x : std_logic_vector(19 downto 0); 
  variable ym:vec1; 
  variable v:vect1; 
 begin 
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  if reset='1' then 
   x:=o20; 
   ym:=(others=>o40); 
   v:=(others=>o40); 
   yt<=o40; 
   elsif clk'event and clk='1' then 
     x:=xt; 
     ym:=multi_block(x); 
     yt<=v(0)+ym(0); 
    for k in 0 to L-2 loop  
     v(k):=v(k+1)+ym(k+1); 
    end loop; 
     v(L-1):=ym(L); 
    end if; 
 end process; 
end Behavioral; 
 
 
 
3. VHDL code that generate the Hcub design in Table 2.5 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
 
entity run8_Hcub_18 is 
port(xt   : in std_logic_vector(19 downto 0); 
     yt   : out std_logic_vector(39 downto 0); 
   clk,reset: in std_logic); 
end run8_Hcub_18; 
 
architecture Behavioral of run8_Hcub_18 is 
 constant L:integer:=198; 
 constant o20:std_logic_vector(19 downto 0):="00000000000000000000"; 
 constant o40:std_logic_vector(39 downto 

0):="0000000000000000000000000000000000000000";  
 type vec is array (0 to L) of std_logic_vector(19 downto 0); 
   type vec1 is array (0 to L) of std_logic_vector(39 downto 0); 
 type vect1 is array (0 to L-1) of std_logic_vector(39 downto 0);  
  
 function multi_block(data_in: std_logic_vector(19 downto 0)) 
    return vec1 is 
  VARIABLE Y: vec1;  
  VARIABLE 

w1,w4,w5,w16,w21,w40,w35,w1024,w1023,w168,w855,w4092,w4127,w128,w127,w50
8, 
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 w1363,w4096,w3969,w20,w107,w13680,w13787,w320,w193,w49408,w49215,
w49601,w6840,w56441, 

  
 w262144,w344064,w56441m,w33016,w3969m,w2726,w1120,w1120m:std_logi
c_vector(39 downto 0);  

 begin 
    w1:= SXT(data_in,40); 
  w4:= SHL(w1,"10"); 
  w5:= w1 + w4; 
  w16:= SHL(w1,"100"); 
  w21:= w5 + w16; 
  w40:= SHL(w5,"11"); 
  w35:= w40 - w5; 
  w1024:= SHL(w1,"1010"); 
  w1023:=w1024 - w1; 
  w168:= SHL(w21,"11"); 
  w855:= w1023 - w168; 
  w4092 := SHL(w1023,"10"); 

w4127 := w35 + w4092; 
  w128 := SHL(w1,"111"); 
  w127 := w128 - w1; 
  w508 := SHL(w127,"10"); 
  w1363 := w855 + w508; 
  w4096 := SHL(w1,"1100"); 
  w3969 := w4096 - w127; 
  w20 := SHL(w5,"10"); 
  w107 := w127 - w20; 
  w13680 :=SHL(w855,"100"); 
  w13787 := w107 + w13680; 
  w320 :=SHL(w5,"110"); 
  w193 := w320 - w127; 
  w49408 :=SHL(w193,"1000"); 
  w49215 := w49408 - w193; 
  w49601 := w193 + w49408; 
  w6840 := SHL(w855,"11"); 
  w56441 := w49601 + w6840; 
  w262144 :=SHL(w1,"10010");  
  w344064 := SHL(w21,"1110");  
  w56441m := o40- w56441; 
  w33016 :=SHL(w4127,"11"); 
  w3969m := o40- w3969; 
  w2726 := SHL(w1363,"1"); 
  w1120 :=SHL(w35,"101"); 
  w1120m :=o40- w1120; 
   
  Y :=(0=>w262144,2=>w344064,12=>w49215,14=>w56441m,38=>w33016,72=>w13787, 
        

110=>w6840,150=>w3969m,182=>w2726,198=>w1120m,others=>o40); 
     return Y; 
   END multi_block; 
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begin 
 PROCESS(clk) 
   
  variable x : std_logic_vector(19 downto 0); 
  variable ym:vec1; 
  variable v:vect1; 
 begin 
  if reset='1' then 
   x:=o20; 
   ym:=(others=>o40); 
   v:=(others=>o40); 
   yt<=o40; 
   elsif clk'event and clk='1' then 
     x:=xt; 
     ym:=multi_block(x); 
     yt<=v(0)+ym(0); 
    for k in 0 to L-2 loop  
     v(k):=v(k+1)+ym(k+1); 
    end loop; 
     v(L-1):=ym(L); 
    end if; 
 end process; 
end Behavioral; 
 

  


