2,457 research outputs found

    How Visualization Supports the Daily Work in Traditional Humanities on the Example of Visual Analysis Case Studies

    Get PDF
    Attempts to convince humanities scholars of digital approaches are met with resistance, often. The so-called Digitization Anxiety is the phenomenon that describes the fear of many traditional scientists of being replaced by digital processes. This hinders not only the progress of the scientific domains themselves – since a lot of digital potential is missing – but also makes the everyday work of researchers unnecessarily difficult. Over the past eight years, we have made various attempts to walk the tightrope between 'How can we help traditional humanities to exploit their digital potential?' and 'How can we make them understand that their expertise is not replaced by digital means, but complemented?' We will present our successful interdisciplinary collaborations: How they came about, how they developed, and the problems we encountered. In the first step, we will look at the theoretical basics, which paint a comprehensive picture of the digital humanities and introduces us to the topic of visualization. The field of visualization has shown a special ability: It manages to walk the tightrope and thus keeps digitization anxiety at bay, while not only making it easier for scholars to access their data, but also enabling entirely new research questions. After an introduction to our interdisciplinary collaborations with the Musical Instrument Museum of Leipzig University, as well as with the Bergen-Belsen Memorial, we will present a series of user scenarios that we have collected in the course of 13 publications. These show our cooperation partners solving different research tasks, which we classify using Brehmer and Munzner’s Task Classification. In this way, we show that we provide researchers with a wide range of opportunities: They can answer their traditional research questions – and in some cases verify long-standing hypotheses about the data for the first time – but also develop their own interest in previously impossible, new research questions and approaches. Finally, we conclude our insights on individual collaborative ideas with perspectives on our newest projects. These have risen from the growing interest of collaborators in the methods we deliver. For example, we get insights into the music of real virtuosos of the 20th century. The necessary music storage media can be heard for the first time through digital tools without risking damage to the old material. In addition, we can provide computer-aided analysis capabilities that help musicologists in their work. In the course of the visualization project at the Bergen-Belsen memorial, we will see that what was once a small diary project has grown into a multimodal and international project with institutions of culture and science from eight countries. This is dedicated not only to the question of preserving cultural objects from Nazi persecution contexts but also to modern ways of disseminating and processing knowledge around this context. Finally, we will compile our experience and accumulated knowledge in the form of problems and challenges at the border between computer science and traditional humanities. These will serve as preparation and assistance for future and current interested parties of such interdisciplinary collaborative project

    3D Information Technologies in Cultural Heritage Preservation and Popularisation

    Get PDF
    This Special Issue of the journal Applied Sciences presents recent advances and developments in the use of digital 3D technologies to protect and preserve cultural heritage. While most of the articles focus on aspects of 3D scanning, modeling, and presenting in VR of cultural heritage objects from buildings to small artifacts and clothing, part of the issue is devoted to 3D sound utilization in the cultural heritage field

    Worldwide Infrastructure for Neuroevolution: A Modular Library to Turn Any Evolutionary Domain into an Online Interactive Platform

    Get PDF
    Across many scientific disciplines, there has emerged an open opportunity to utilize the scale and reach of the Internet to collect scientific contributions from scientists and non-scientists alike. This process, called citizen science, has already shown great promise in the fields of biology and astronomy. Within the fields of artificial life (ALife) and evolutionary computation (EC) experiments in collaborative interactive evolution (CIE) have demonstrated the ability to collect thousands of experimental contributions from hundreds of users across the glob. However, such collaborative evolutionary systems can take nearly a year to build with a small team of researchers. This dissertation introduces a new developer framework enabling researchers to easily build fully persistent online collaborative experiments around almost any evolutionary domain, thereby reducing the time to create such systems to weeks for a single researcher. To add collaborative functionality to any potential domain, this framework, called Worldwide Infrastructure for Neuroevolution (WIN), exploits an important unifying principle among all evolutionary algorithms: regardless of the overall methods and parameters of the evolutionary experiment, every individual created has an explicit parent-child relationship, wherein one individual is considered the direct descendant of another. This principle alone is enough to capture and preserve the relationships and results for a wide variety of evolutionary experiments, while allowing multiple human users to meaningfully contribute. The WIN framework is first validated through two experimental domains, image evolution and a new two-dimensional virtual creature domain, Indirectly Encoded SodaRace (IESoR), that is shown to produce a visually diverse variety of ambulatory creatures. Finally, an Android application built with WIN, filters, allows users to interactively evolve custom image effects to apply to personalized photographs, thereby introducing the first CIE application available for any mobile device. Together, these collaborative experiments and new mobile application establish a comprehensive new platform for evolutionary computation that can change how researchers design and conduct citizen science online

    Spatialising Photographic Archives

    Get PDF
    Recent computer research allows previously unforeseen analysis of photographic archives. For multiple shots of a scene, new digital techniques permit (1) the recovery of the location and angle, in 3D, of the camera that took each shot and (2) the reconstruction, in 3D, of much of the geometry of the original location. While the underlying algorithms of this approach are open source, the only available front-end to them is closed and proprietary. In this project, we will develop an open-source platform for experimentation with archives not previously thought of as 3D data-sets. As a constructive proof, we will analyze and re-interpret a key historical event as documented by a photojournalist, tying the spatial and visual components of the resulting data-set to contemporaneous text sources (news articles, etc) to form a uniquely hybrid form of scholarship. We will express these results in forms available to the computer science, visual arts, and photo-journalistic communities

    Visualizing Music Collections Based on Metadata: Concepts, User Studies and Design Implications

    Get PDF
    Modern digital music services and applications enable easy access to vast online and local music collections. To differentiate from their competitors, software developers should aim to design novel, interesting, entertaining, and easy-to-use user interfaces (UIs) and interaction methods for accessing the music collections. One potential approach is to replace or complement the textual lists with static, dynamic, adaptive, and/or interactive visualizations of selected musical attributes. A well-designed visualization has the potential to make interaction with a service or an application an entertaining and intuitive experience, and it can also improve the usability and efficiency of the system. This doctoral thesis belongs to the intersection of the fields of human-computer interaction (HCI), music information retrieval (MIR), and information visualization (Infovis). HCI studies the design, implementation and evaluation of interactive computing systems; MIR focuses on the different strategies for helping users seek music or music-related information; and Infovis studies the use of visual representations of abstract data to amplify cognition. The purpose of the thesis is to explore the feasibility of visualizing music collections based on three types of musical metadata: musical genre, tempo, and the release year of the music. More specifically, the research goal is to study which visual variables and structures are best suitable for representing the metadata, and how the visualizations can be used in the design of novel UIs for music player applications, including music recommendation systems. The research takes a user- centered and constructive design-science approach, and covers all the different aspects of interaction design: understanding the users, the prototype design, and the evaluation. The performance of the different visualizations from the user perspective was studied in a series of online surveys with 51-104 (mostly Finnish) participants. In addition to tempo and release year, five different visualization methods (colors, icons, fonts, emoticons and avatars) for representing musical genres were investigated. Based on the results, promising ways to represent tempo include the number of objects, shapes with a varying number of corners, and y-axis location combined with some other visual variable or clear labeling. Promising ways to represent the release year include lightness and the perceived location on the z- or x-axis. In the case of genres, the most successful method was the avatars, which used elements from the other methods and required the most screen estate. In the second part of the thesis, three interactive prototype applications (avatars, potentiometers and a virtual world) focusing on visualizing musical genres were designed and evaluated with 40-41 Finnish participants. While the concepts had great potential for complementing traditional text-based music applications, they were too simple and restricted to replace them in longer-term use. Especially the lack of textual search functionality was seen as a major shortcoming. Based on the results of the thesis, it is possible to design recognizable, acceptable, entertaining, and easy-to-use (especially genre) visualizations with certain limitations. Important factors include, e.g., the used metadata vocabulary (e.g., set of musical genres) and visual variables/structures; preferred music discovery mode; available screen estate; and the target culture of the visualizations

    Semantic Interaction in Web-based Retrieval Systems : Adopting Semantic Web Technologies and Social Networking Paradigms for Interacting with Semi-structured Web Data

    Get PDF
    Existing web retrieval models for exploration and interaction with web data do not take into account semantic information, nor do they allow for new forms of interaction by employing meaningful interaction and navigation metaphors in 2D/3D. This thesis researches means for introducing a semantic dimension into the search and exploration process of web content to enable a significantly positive user experience. Therefore, an inherently dynamic view beyond single concepts and models from semantic information processing, information extraction and human-machine interaction is adopted. Essential tasks for semantic interaction such as semantic annotation, semantic mediation and semantic human-computer interaction were identified and elaborated for two general application scenarios in web retrieval: Web-based Question Answering in a knowledge-based dialogue system and semantic exploration of information spaces in 2D/3D

    Emerging Informatics

    Get PDF
    The book on emerging informatics brings together the new concepts and applications that will help define and outline problem solving methods and features in designing business and human systems. It covers international aspects of information systems design in which many relevant technologies are introduced for the welfare of human and business systems. This initiative can be viewed as an emergent area of informatics that helps better conceptualise and design new world-class solutions. The book provides four flexible sections that accommodate total of fourteen chapters. The section specifies learning contexts in emerging fields. Each chapter presents a clear basis through the problem conception and its applicable technological solutions. I hope this will help further exploration of knowledge in the informatics discipline
    • …
    corecore