19 research outputs found

    Design and Implementation of Bio-inspired Underwater Electrosense

    Get PDF
    Underwater electrosense, manipulating underwater electric field for sensing purpose, is a growing technology bio-inspired by weakly electric fish that can navigate in dark or cluttered water. We studied its theoretical foundations and developed sophisticated sensing algorithms including some first-introduced techniques such as discrete dipole approximation (DDA) and convolutional neural networks (CNN), which were tested and validated by simulation and a planar sensor prototype. This work pave a solid way to applications on practical underwater robots

    Underwater robots equipped with artificial electric sense for the exploration of unconventional aquatic niches

    Get PDF
    International audienceThis article presents different use of the electric field perception in the context of underwater robot navigation. To illustrate the developed navigation behaviours we will introduce a recently launched european project named subCULTron and will show some simulation and experimentation results. The project sub- CULTron aims at achieving long-term collective robot exploration and monitoring of underwater environments. The demonstration will take place in the lagoon of Venice, a large shallow embayment composed of salt turbib water that represents a challenging environment for underwater robots as common sensor like vision or acoustic are difficult to handle. To overcome turbidity and confinement problems our robots will be equipped with artificial electric sensors that will be used as the main sensorial modality for navigation. Electric sense is a bio-inspired sense that has been developed by several species of fish living in turbib and confined underwater environment. In this paper, many different robotic behaviours based on the electric field perception will be presented, in particular we will address reactive navigation, object/robots detection, and object localization and estimation

    Omnidirectional Sensory and Motor Volumes in Electric Fish

    Get PDF
    Active sensing organisms, such as bats, dolphins, and weakly electric fish, generate a 3-D space for active sensation by emitting self-generated energy into the environment. For a weakly electric fish, we demonstrate that the electrosensory space for prey detection has an unusual, omnidirectional shape. We compare this sensory volume with the animal's motor volume—the volume swept out by the body over selected time intervals and over the time it takes to come to a stop from typical hunting velocities. We find that the motor volume has a similar omnidirectional shape, which can be attributed to the fish's backward-swimming capabilities and body dynamics. We assessed the electrosensory space for prey detection by analyzing simulated changes in spiking activity of primary electrosensory afferents during empirically measured and synthetic prey capture trials. The animal's motor volume was reconstructed from video recordings of body motion during prey capture behavior. Our results suggest that in weakly electric fish, there is a close connection between the shape of the sensory and motor volumes. We consider three general spatial relationships between 3-D sensory and motor volumes in active and passive-sensing animals, and we examine hypotheses about these relationships in the context of the volumes we quantify for weakly electric fish. We propose that the ratio of the sensory volume to the motor volume provides insight into behavioral control strategies across all animals

    Underwater robots equipped with artificial electric sense for the exploration of unconventional aquatic niches

    Get PDF
    This article presents different use of the electric field perception in the context of underwater robot navigation. To illustrate the developed navigation behaviours we will introduce a recently launched european project named subCULTron and will show some simulation and experimentation results. The project sub- CULTron aims at achieving long-term collective robot exploration and monitoring of underwater environments. The demonstration will take place in the lagoon of Venice, a large shallow embayment composed of salt turbib water that represents a challenging environment for underwater robots as common sensor like vision or acoustic are difficult to handle. To overcome turbidity and confinement problems our robots will be equipped with artificial electric sensors that will be used as the main sensorial modality for navigation. Electric sense is a bio-inspired sense that has been developed by several species of fish living in turbib and confined underwater environment. In this paper, many different robotic behaviours based on the electric field perception will be presented, in particular we will address reactive navigation, object/robots detection, and object localization and estimation

    Localization, Mapping and SLAM in Marine and Underwater Environments

    Get PDF
    The use of robots in marine and underwater applications is growing rapidly. These applications share the common requirement of modeling the environment and estimating the robots’ pose. Although there are several mapping, SLAM, target detection and localization methods, marine and underwater environments have several challenging characteristics, such as poor visibility, water currents, communication issues, sonar inaccuracies or unstructured environments, that have to be considered. The purpose of this Special Issue is to present the current research trends in the topics of underwater localization, mapping, SLAM, and target detection and localization. To this end, we have collected seven articles from leading researchers in the field, and present the different approaches and methods currently being investigated to improve the performance of underwater robots

    OBJECT PERCEPTION IN UNDERWATER ENVIRONMENTS: A SURVEY ON SENSORS AND SENSING METHODOLOGIES

    Get PDF
    Underwater robots play a critical role in the marine industry. Object perception is the foundation for the automatic operations of submerged vehicles in dynamic aquatic environments. However, underwater perception encounters multiple environmental challenges, including rapid light attenuation, light refraction, or backscattering effect. These problems reduce the sensing devices’ signal-to-noise ratio (SNR), making underwater perception a complicated research topic. This paper describes the state-of-the-art sensing technologies and object perception techniques for underwater robots in different environmental conditions. Due to the current sensing modalities’ various constraints and characteristics, we divide the perception ranges into close-range, medium-range, and long-range. We survey and describe recent advances for each perception range and suggest some potential future research directions worthy of investigating in this field

    Object Localization in Fluids based on a Bioinspired Electroreceptor System

    Get PDF
    Wolf-Homeyer S. Object Localization in Fluids based on a Bioinspired Electroreceptor System. Bielefeld: Universität Bielefeld; 2019.Weakly electric fish use self-generated electric fields for communication, active electrolocation and navigation. Additionally to visual sense, this ability enables them to detect objects and food even in dark or turbid waters. Specialized muscle cells in the tail region actively generate an electric field in the surrounding fluid, shaped like a dipole between tail and head. This dipole field may be distorted depending on environmental parameters such as the presence of objects of different geometry or material properties in the animal's vicinity. Electroreceptors, distributed all over the fish' skin allow to perceive distortions of the field, caused by objects. Furthermore, fish execute stereotyped scanning behaviors to obtain additional sensory information of detected objects. The development of innovative sensor systems for short-range exploration in fluids is still in its infancy. Also, the use of electric fields in bio-inspired technologies is still at an early stage. Based on the biological model of weakly electric fish, the question has already been examined if an array of electrodes can be used for a contactless object detection and localization and finally for navigation in fluids (Solberg et al. 2008). This examination is performed by analyses of electric field modulations, based on so-called EEVs. An EEV (Ensemble of Electrosensory Viewpoints) is a scalar field representation of the influence of an object on the electric field in the form of potential differences measured between two electrodes for every possible object location. The first part of this thesis explores the characteristics of the electric dipole field and the resulting EEV by means of numerical simulations to determine the influence of an object placed in the emitted field. It will also be investigated how many receptors are required and which arrangement is to be preferred to uniquely identify the positions of spherical objects in the vicinity of the sensor system. For this, a receptor system composed of a simple biomimetic abstraction of an emitter dipole and an orthogonally arranged pair of sensor electrodes is used. Inspired by the scanning movements of the fish, a fixed, minimal scanning strategy, composed of active receptor system movements is developed. The active electrolocation strategy introduced here is based on the superposition of extracted EEV contour-rings in order to find intersections of these contours. The second part of this work focuses on the development of an *application* for active electrolocation which is based on a minimal set of scanning movements as a precursor for the partitioning of the later search area in which sensor-emitter movements take place. In this application, EEVs are also used as major components of two localization algorithms. In order to find points within the search space which are part of several contour-rings, intersection points have to found. Due to numerical inaccuracies intersection points may degrade to contour-segments which lie very close to each other but do not touch. For this case, a nearness metric is used to identify such points. However, in this part of the work the EEVs are based on a simplified analytical representation, which renders the corresponding algorithms suitable for embedded computer systems. In the third part of this thesis, a fitted histogram representation of EEVs is used to compare a large number of different movement sequences to select the optimal composition from this variety. For this, the general shape of an EEV has to be considered, which plays a major role in estimating the best sequence

    Animal-Robot Interactions: Electrocommunication, Sensory Ecology, and Group Dynamics in a Mormyrid Weakly Electric Fish

    Get PDF
    Mormyrid weakly electric fish possess a specialized electrosensory system. During the process of active electrolocation, these animals perceive self-generated electric organ dis-charges (EOD) and are thereby able to detect objects in their nearby environment. The EOD is a short, biphasic pulse, which is simultaneously used to communicate with conspe-cifics. There are two principles according to which information exchange occurs during electrocommunication. The waveform of the EOD constitutes a relatively stable identity marker that signals species, gender, and status of an individual. In contrast, the temporal sequence of inter-discharge intervals (IDI) is highly variable and encodes context-specific information. Modifications of IDI-duration not only alter the instantaneous discharge fre-quency but also enable the generation of specific signaling patterns and interactive dis-charge sequences. One such interactive discharge behavior is the so-called echo response, during which a fish responds with a constant latency of only a few milliseconds to the EOD of a conspecific. Animals can synchronize their signaling sequences by mutually generating echoes to each other's signals over a coherent period. Although active electrolocation and electrocommunication are mediated by different types of electroreceptor organs and neural pathways, an unambiguous assignment of electromotor behavior to only one of the two functions is often problematic. In this thesis, the significance of IDI-based signaling sequences during motor and electro-motor interactions of the mormyrid fish Mormyrus rume proboscirostris were investigated. To this end, different electrical playback sequences of species-specific EODs were generated via mobile fish dummies, and the motor and electromotor responses of live fish were analyzed. In Part One of this thesis, electrocommunication strategies of the fish were analyzed, and particularly the functions of double pulses, discharge regularizations, and echo responses were examined in an adaptive context. Double pulses were classified as an aggressive mo-tivation signal, whereas regularizations may have a communicative function during the early stages of the sequential assessment of a potential opponent. In this context, discharge synchronization by means of echo responses may enable a mutual assessment for the net benefit of both contestants. Because echo responses occur in various behavioral contexts, and artificial echoes of the dummy evoked increased echoing by the fish, it was hypothesized that the echo response serves a more general purpose by enabling mutual allocation of social attention between two fish. In Part Two of this thesis, a biomimetic robotic fish was designed to investigate the senso-ry basis on which fish followed the dummy. It was shown that electrical playback signals induced following-behavior in live fish, whereas biomimetic motility patterns had no ef-fect. By subsequently reducing the mobile dummy to only the electric signaling sequence from the perspective of the fish, it could be shown that passive perception of electrical communication signals is also involved in mediating the spatial coordination of social in-teractions. This passive perception is likely mediated by the same electroreceptor organs that are used during electrocommunication. The EOD can therefore be considered to be an essential social stimulus that makes it possible to integrate a dummy into a group of weak-ly electric fish as an artificial conspecific. The influence of an interactively signaling mobile dummy fish on small groups of up to four individuals was investigated in Part Three of this thesis. Typical schooling behavior was a rare occurrence in this context. However, EOD-synchronizations through mutual echo responses between two fish, or between a fish and the interactive dummy, were fre-quently observed during social interactions in small groups. Motor interactions during synchronization episodes supported the hypothesis that mormyrids may use discharge synchronizations between individuals to allocate social attention, and the echo response may thus adopt a particularly useful function during communication in groups.Schwach elektrische Fisch aus der Familie der Mormyriden verfügen über ein spezialisier-tes elektrosensorisches Sinnessystem. In einem Prozess, der als aktive Elektroortung be-zeichnet wird, sind diese Tiere in der Lage, selbstgenerierte elektrische Organentladungen (EOD) wahrzunehmen, und dadurch Objekte in ihrer unmittelbaren Nähe zu detektieren. Das EOD ist ein kurzer bipolarer Puls, der gleichzeitig auch zur Kommunikation mit Artge-nossen dient. Informationsaustausch während der Elektrokommunikation basiert auf zwei verschiedenen Prinzipien: Die Wellenform des EOD stellt einen relativ konstanten Identi-tätsmarker dar, der beispielsweise Art, Geschlecht und Status eines Individuums signali-siert. Die zeitliche Abfolge der Intervalle zwischen den EODs ist hingegen höchst variabel und kodiert kontextspezifische Information. Durch Modifikation der Intervalldauer ändert sich nicht nur die Entladungsfrequenz, sondern es können auch spezifische Signalmuster und interaktive Entladungssequenzen generiert werden. Ein interaktives Entladungsver-halten stellt beispielsweise die Echoantwort dar, bei der ein Fisch mit einer konstanten Latenz von wenigen Millisekunden auf das EOD eines Artgenossen reagiert. Zwei Tiere können ihre Entladungssequenzen synchronisieren, indem sie ihre Signale über einen kohärenten Zeitraum gegenseitig mit Echos beantworten. Obwohl aktive Elektroortung und Elektrokommunikation über unterschiedliche Rezeptororgansysteme und neuronale Pfade vermittelt werden, ist eine eindeutige Zuordnung der elektromotorischen Verhal-tensäußerungen der Fische zu nur einer der beiden Funktionen oft problematisch. In der vorliegenden Arbeit wurde die Bedeutung intervallbasierter EOD-Sequenzen für motorische und elektromotorische Interaktionen des Mormyriden Mormyrus rume proboscirostris erforscht. Hierzu wurden verschiedene elektrische Playbacksequenzen artspezifischer EODs generiert und durch mobile Fischattrappen wiedergegeben. Die mo-torischen und elektromotorischen Verhaltensreaktionen der Fische wurden analysiert. Im ersten Teil der Arbeit wurden Elektrokommunikationsstrategien der Fische analysiert und die adaptive Funktion insbesondere von Doppelpulsen, Entladungsregularisierungen und Echoantworten untersucht. Doppelpulse wurden als aggressives Motivationssignal kategorisiert, wohingegen die Kommunikationsfunktion von Regularisierungen im gegen-seitigen Einschätzen zu Beginn einer kompetitiven Begegnung zu liegen scheint. Entla-dungssynchronisation durch gegenseitige Echoantworten kann dabei eine Einschätzung des Gegenübers zum Vorteil beider Parteien erleichtern. Da Echoantworten in verschiede-nen Verhaltenssituationen auftreten und artifizielle Echoantworten der Attrappe vermehrt zu Echos vonseiten der Fische führten, wurde postuliert, dass die Echoantwort eine generellere Funktion bei der Fokussierung gegenseitiger sozialer Aufmerksamkeit über-nehmen kann. Im zweiten Teil der Arbeit wurde ein biomimetischer Fischroboter konstruiert, um zu untersuchen, auf welcher sensorischen Grundlage die Fische der Attrappe folgen. Es konnte gezeigt werden, dass elektrische Playbacksignale, nicht aber biomimetische Bewe-gungsmuster, Folgeverhalten der Fische induzieren. In einem weiteren Schritt konnte durch die Reduktion der Attrappe auf die elektrischen Signalsequenzen aus der Perspektive der Versuchsfische gezeigt werden, dass passive Wahrnehmung elektrischer Kommu-nikationssignale auch bei der räumlichen Koordination sozialer Interaktionen von Bedeu-tung ist. Dies wird mutmaßlich über die gleichen Rezeptororgane vermittelt, die auch für die Elektrokommunikation verantwortlich sind. Das EOD kann daher als ein soziales Signal betrachtet werden, das es ermöglicht, eine Attrappe als künstlichen Artgenossen in eine Gruppe schwach elektrischer Fische zu integrieren. Der Einfluss einer elektrisch interaktiven mobilen Fischattrappe auf kleine Gruppen von bis zu vier Individuen wurde im dritten Teil der Arbeit getestet. Typisches Schwarmver-halten konnte in diesem Zusammenhang nur selten beobachtet werden. In kleinen Gruppen kam es während sozialer Interaktionen jedoch häufig zu EOD-Synchronisationen durch Echoantworten zwischen zwei Fischen, oder zwischen einem Fisch und der interaktiven Attrappe. Motorische Verhaltensinteraktionen im Zeitraum dieser Synchronisationen stützen die Hypothese, dass Mormyriden durch elektrische Entladungssynchronisation soziale Aufmerksamkeit zwischen Individuen herstellen können, und die Echoantwort somit besonders in Gruppen eine nützliche Kommunikationsfunktion übernehmen kann

    Desarrollo de un prototipo de sistema electro-localizador en entornos acuáticos

    Full text link
    En entornos acuáticos ruidosos o fangosos, océanos profundos u otras zonas sumergidas donde algunos sistemas de detección del entorno habituales como las cámaras de vídeo o el sonar pueden no resultar efectivos surge la necesidad de buscar una alternativa que permita reemplazarlos de manera efectiva y fiable. Para solventar esta necesidad, se ha tomado como referencia e inspiración una de las maneras en las que lo resuelve la naturaleza. La evolución ha hecho desarrollar a una serie de especies un sentido muy especial y extraño para el ser humano: el sentido eléctrico. Estos animales, mayoritariamente acuáticos, poseen un sistema muy sofisticado que les permite detectar e incluso en algunos casos generar pequeños pulsos eléctricos y utilizarlos tanto para detectar objetos en sus inmediaciones (“electro-localización”) como para interactuar con otros individuos (“electro-comunicación”). Inspirado en los peces eléctricos, en el laboratorio del Grupo de Neurocomputación Biológica se ha diseñado y construido un sistema robótico de experimentación con el objetivo de analizar y reproducir el proceso de electro-localización de manera replicable y precisa. Por este motivo, todo el sistema está desarrollado y diseñado con herramientas de código libre y tecnologías de impresión 3D, para poder ser fácilmente reproducido. El proyecto, al que se le ha dado el nombre de “AquaRide”, consiste en una plataforma robótica propia que implementa el esquema de movimiento CoreXY y que posee un sensor eléctrico que es capaz de desplazarse por un acuario detectando obstáculos a su alrededor utilizando exclusivamente las fluctuaciones del campo eléctrico emitido por el sensor. AquaRide tiene como objetivo ser el sistema que abra las puertas a la realización de un robot de movimiento autónomo que incorpore un sensor de proximidad eléctrico como el desarrollado y esto le permita realizar una función de exploración en entornos no controlados. A lo largo de esta memoria se explica cómo se han realizado los diseños de las piezas que componen el proyecto, el desarrollo del firmware para la placa Sanguinololu que controla el sistema y los programas en lenguaje Python que permiten el análisis de resultados. Por último, se analizan los experimentos realizados para comprobar el comportamiento del dipolo ante objetos, mostrándose la capacidad del sistema de detectar y reaccionar ante elementos resistivos existentes en su trayectoria.In noisy or muddy underwater environments, deep waters or other submerged zones where some usual environment detection systems such as video cameras or sonars can be useless, a necessity for an alternative solution that can replace those in an effective and trustworthy way arises. To solve this need, the way nature solves this problem has been taken as a reference. Evolution has developed in some species a very special and strange sense from the human species point of view; the electrical sense. These animals, mostly aquatic, posess a very sophisticated system that allows them to detect, (and even in some cases generate) small electrical pulses and use them both to detect objects nearby (electrolocation) and to interact with other individuals (electrocommunication). Inspired by electrical fish, in the Grupo de Neurocomputación Biológica a robotic experimentation system was designed with the objective of analyzing and reproducing the process of electrolocation in a replicable and precise way. For this reason, the whole system was developed and designed with opensource tools and 3D printing techologies, increasing this way the reproducibility. The project, named "AquaRide", consists of a robotic platform of our own design that implements the CoreXY motion technique, and has an electrical sensor that allows it to move through a fish tank detecting obstacles on its surroundings using exclusively the fluctuations of the electric field emitted by the sensor. AquaRide wants to be the system that allows for the creation of an autonomous movement robot that incorporates an electrical proximity sensor similar to the one developed that allows it to explore non-controlled environments. Throughout this document one can find explanations for the designs of the different 3D models that were created for this project, the development of the firmware for the Sanguinololu board that controls the system, and also the Python programs that perform the results analysis. Finally, the results of the experiments are analyzed to check the behavior of the sensor, and the ability of detecting and reacting to resistive objects located in its path
    corecore