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I. General Introduction 

Weakly electric fish offer a unique opportunity to investigate a sensory system specialized 

for active environmental sensing and study the implications of this sensory modality for 

social communication. By generating electric organ discharges (EOD), members of the 

African Mormyridae create their carrier signal for environmental perception (Nelson and 

MacIver, 2006), which makes them mostly independent of visible light in their activity. 

This active electrolocation ability (von der Emde et al., 2008) allowed mormyrids to de-

velop a particular ecological niche that made them one of the most species-rich and abun-

dant families of African freshwater fish. At the same time, electrical signaling opened a 

relatively private channel for elaborate communication displays of extraordinary temporal 

precision. With specialized receptor organs and neural pathways that are dedicated to 

communication, mormyrids can detect even smallest differences in EOD-waveforms and 

analyze signaling patterns generated through the variation of inter-discharge intervals 

(IDI) by other individuals (Baker et al., 2013a). While the EOD itself provides identity in-

formation about the sender, temporal patterns of successive signals enable mormyrids to 

communicate behavioral states. Hence, IDI-variation provides essential information dur-

ing aggressive encounters, courtship displays, or in group settings (Carlson, 2002a; 

Hopkins, 1986). Because active electrolocation and electrocommunication rely on the very 

same signals to serve their respective purposes, the two functions are closely linked and 

provide a fruitful but challenging research area to understand how animal communication 

arises from a sensory system designed for environmental monitoring and object detection. 

This thesis is structured along three main research topics that are connected on several 

levels. After exploring the mechanisms of electroreception and electrogenesis, and their 

implications for the sensory ecology of weakly electric fishes, in Part One, the general 

principles of electrocommunication will be discussed and systematically investigated in 

playback experiments with the mormyrid weakly electric fish Mormyrus rume 

proboscirostris. In Part Two, the development of classical ethological studies towards the 

modern field of ethorobotics will be reviewed and experimentally explored by testing the 

potential of a mobile fish robot to replace a conspecific individual based on its biomimetic 

properties. The sensory cues that are provided by this dummy are subsequently reduced 

experimentally to isolate the stimuli that are necessary to induce social behaviors in M. 

rume, and to identify behavioral and sensory mechanisms by which these behaviors are 

guided. Part Three of this thesis deals with the mechanisms responsible for collective be-

havior and group dynamics in shoals of fish. Here, the insights from previous sections will 

be employed to investigate the influence of a playback-emitting, mobile dummy fish on 
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small groups of weakly electric M. rume in an interactive study on electrocommunication, 

thus exploring the feasibility of mixed live–artificial experiments with mormyrid weakly 

electric fish.  
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1. Weakly Electric Fish as Model Organisms 

1.1 Electroreception in aquatic vertebrates 

Electroreception is a widespread sensory modality among aquatic vertebrates (Figure 

1.1). It is found in several phylogenetically old fish taxa including sharks and rays 

(Elasmobranchii) (Kalmijn, 1971), ratfish (Holocephali) (Fields and Lange, 1980), coela-

canths (Actinistia) (Northcutt, 1980), lungfish (Dipnoi) (Watt et al., 1999) bichirs 

(Cladistia) (Jørgensen, 1982), sturgeons (Teeter et al., 1980) and paddlefish (Chondrostei) 

(Wilkens et al., 2002), as well as in some amphibians (Apoda and Urodela) (Himstedt et al., 

1982). Electroreception is considered to be an ancient sensory modality that was already 

present in the basal lineage of lampreys (Cyclostomata) (Bodznick and Northcutt, 1981) 

and has been lost in teleost fishes and higher vertebrates (Bullock et al., 1983). It has re-

evolved several times independently in at least two lineages of teleost fishes (Baker et al., 

2013b) and even in some mammalian cetaceans (Czech-Damal et al., 2012) and the 

monotremes (Scheich et al., 1986). Among teleosts, electroreception occurs in catfish 

(Siluriformes) (Dijkgraaf, 1968) and the South American weakly electric Gymnotiformes, 

as well as in the not directly related African weakly electric Mormyriformes (Szabo, 1965) 

 

Figure 1.1: Phylogenetic distribution of electroreception in fishes. Electroreception was presumably 

already present in the most basal fish lineages that gave rise to all extant fish and higher vertebrates 

(black branches). It was lost in the neopterygian fishes comprising holosteans and modern teleosts 

(white branches). Among teleosts, it re-evolved at least twice. Electroreceptive species are found within 

the basal group of bony-tongued Osteoglossomopha (a), including all Mormyriformes and the 

Xenomystinae as well as within the Ostariophysi (b), of which the Gymnotiformes and their sister taxon, 

the Siluriformes, are electroreceptive. Modified after von der Emde (2013). 
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and some African knife fish (Xenomystinae) in their sister group, the Notopteridae 

(Bullock and Northcutt, 1982). 

Elasmobranch electroreceptor organs have long been known as Ampullae of Lorenzini, 

named after the Italian physician who described their occurrence in the Torpedo ray 

(Lorenzini, 1678). Their function as electrosensory organs was, however, not revealed 

before the middle of the 20th Century through electrophysiological (Murray, 1960) and 

behavioral (Dijkgraaf and Kalmijn, 1962; Kalmijn, 1971) experiments. Evidence for the 

existence of electroreceptors was by then also accumulated for mormyriform and 

gymnotiform weakly electric fish (Bullock et al., 1961; Fessard and Szabo, 1961). Although 

the ampullary receptor organs in weakly electric fish and other teleosts are not homolo-

gous to those found in non-teleost fishes, the basic morphological principles are very simi-

lar (Jørgensen, 2005). Ampullae are composed of a dermal cavity that is connected to the 

outside water by a canal pore (Figure 1.2A). These canals are filled with a highly conduc-

tive jelly, whereas tight junctions between flattened epithelial cells cause a high electrical 

resistance of the canal walls (Bennett, 1971b; Jørgensen, 2005). In mormyrids, the sensory 

epithelium at the base of the pore contains three to eight secondary receptor cells that 

form synapses with a single afferent neuron (Szamier and Bennett, 1974). Electrical po-

tential gradients across the sensory epithelium activate voltage-gated calcium channels 

and lead to a modulation of transmitter release from the sensory neurons, which in turn 

modulates the tonic activity of the afferent neuron depending on stimulus polarity 

(Bodznick and Montgomery, 2005). In either case, the resulting sensory systems are very 

sensitive (Peters et al., 2007), reacting to electrical potential differences as low as 5 nV cm-

1 in marine elasmobranchs (Kalmijn, 1982), and 40 µV cm-1 in the weakly electric fish 

Gnathonemus petersii (Engelmann et al., 2010). Electrosensory systems based on 

ampullary receptor organs can thus detect variations in electric DC fields and are tuned to 

low-frequency electrical stimuli (Bodznick and Montgomery, 2005; Engelmann et al., 

2010; Peters et al., 2007). Such weak electric fields are generated by sources external to an 

electroreceptive animal in the environment. They emanate from aquatic organisms and 

are modulated for example by their respiratory, osmoregulatory or neuromuscular activi-

ty, and also result from differences in physical or geochemical properties of the environ-

ment (Kalmijn, 1974; Peters and Bretschneider, 1972). In the ampullary canal systems of 

marine elasmobranchs, movements relative to the earth's magnetic field can generate in-

duction voltages, which may enable these animals to use geomagnetic cues for orientation 

(Kalmijn, 1982; Meyer et al., 2005; Peters et al., 2007). Passive electroreception thus aids 

in prey detection, predator avoidance, finding mates, orientation, and navigation (Wilkens 

and Hofmann, 2005). 
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Figure 1.2: Morphology of mormyrid electroreceptor organs. (A) Ampullary receptor organs are sensi-

tive to low-frequency electric stimuli from the environment. Receptor cells within the dermal cavity are 

connected to the outside water via a jelly-filled canal of a high conductance (grey) and are innervated by 

a single afferent neuron. (B) Mormyromasts are tuberous receptor organs and detect the self-generated 

EOD during active electrolocation. They consist of an outer chamber that connects to the apical end of 

amplitude-sensitive type A receptor cells (yellow), and an inner chamber that contains type B receptor 

cells, which are sensitive to both amplitude and waveform changes of the local EOD. (C) Knollenorgans 

are tuberous receptor organs that respond to the high frequencies contained in pulse-type EODs and are 

time-coders dedicated to electrocommunication. Their large receptor cells are very sensitive and re-

spond to stimuli with a single spike that is transmitted with a high temporal precision that allows detect-

ing characteristics in EOD-waveforms and IDI-patterns of other fish. RC = receptor cell; b.m. =  basement 

membrane; n = afferent neuron. Modified after Hopkins (2009). 

1.2 Electrogenic fishes 

Electroreception via ampullary receptor organs is a passive sensory system and relies on 

electric signals generated by external sources. Several lineages of fish taxa have also 

evolved the capability to actively generate electricity by using specialized electric organs 

(Bennett, 1971a). Electrogenic fishes can be divided into strongly and weakly electric fish, 

based on the strength of the generated signals and the purposes for which they are em-

ployed. The effect of the electric organ discharges of strongly electric fish species has been 

known to humans long before they had established any concept of electricity (Finger and 

Piccolino, 2011b; Moller, 1995). Indeed, early observations made on electric eels and rays 

contributed significantly to our scientific understanding of electricity and physiology 

(Catania, 2015b; Piccolino and Bresadola, 2002). By constructing an 'artificial electric or-

gan,' which was inspired by the strongly electric Torpedo ray, Alessandro Volta (1800) 

famously invented the electric battery in an attempt to refute Luigi Galvani's concepts of 

animal electricity (Finger and Piccolino, 2011a). Electric eels (Electrophorus electricus) 
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produce discharges of several hundred volts to stun prey (Catania, 2014; Catania, 2015a) 

and in self-defense (Catania, 2016). Prey capture aided by strong electrical discharges has 

also been studied in the electric ray Torpedo marmorata (Belbenoit and Bauer, 1972) and 

the electric catfish Malapterurus electricus (Bauer, 1968). The function of the electric or-

gan discharges generated by the perciform marine stargazers (Uranoscopidae) remains 

speculative (Baron, 2009; Pickens and McFarland, 1964).  

The anatomical resemblance of the electric organs of weakly electric fish species to those 

of strongly electric fishes had long been noticed. However, the apparent uselessness of the 

weak impulses produced by weakly electric Mormyrus, or by the electric ray Raja clavata, 

has puzzled scientists, including Charles Darwin, for a long time. To Darwin, the existence 

of such organs constituted a mystery he was not yet able to explain with his theory of nat-

ural selection (Moller, 1995). The continuous presence of such weak electric discharges 

was, however, first discovered in Gymnarchus niloticus by Lissmann (1951). It was later 

established that these animals, as well several other species of weakly electric fish, can use 

distortions of their self-generated electric field for object detection (Lissmann and Machin, 

1958) during the process of active electrolocation (Bastian, 1986; Heiligenberg, 1977; 

von der Emde, 1999). It was soon suggested that electric signals also have a social signifi-

cance (Lissmann, 1958; Möhres, 1957) and electrocommunication has since been recog-

nized as an important function of electric signaling (Kramer, 1990; Moller, 1995). 

Electric organs evolved multiple times independently in several lineages of teleost fishes 

(Alves-Gomes, 2001), and the capabilities of active electrolocation and electro-

communication developed within two separate orders, the South American 

Gymnotiformes and the African Mormyriformes. With a few exceptions (Kirschbaum, 

1983), all electric organs are derived from muscle precursors that lost their contractibility 

over evolutionary times but retained their ability to generate electrical potentials (Bass, 

1986). Electric organs that are capable of producing weak discharges also developed in 

synodontid catfish (Baron et al., 1994; Hagedorn et al., 1990) and marine skates (Rajidae), 

where they are employed during intraspecific communication (Bratton and Ayers, 1987). 

The signals that are emitted by electric organs can be classified into pulse-type and wave-

type EODs based on their discharge mode (Figure 1.3). Wave-type EODs are generated by 

several families of South American knife fish and by the African weakly electric 

Gymnarchus niloticus (Hopkins, 1988). Their discharges are produced continuously at 

rates as low as 24 Hz in Sternopygus, and up to 2200 Hz in Apteronotus (Albert and 

Crampton, 2005). Wave-type EODs and are mainly composed of single component fre-

quencies and their higher harmonics, often resulting in almost sinusoidal waveforms 
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(Heiligenberg, 1977). Mormyrids exclusively produce pulse-type EODs, which are emitted 

at variable rates and are separated by inter-discharge intervals (IDI) that are considerably 

longer than the signal itself (Hopkins, 1988). Pulse-type EODs are short, often biphasic, 

and are composed of a higher bandwidth of component frequencies (Heiligenberg, 1977). 

 

Figure 1.3: Types of electric organ discharges. (A) Pulse-type EOD of Gnathonemus petersii (left). The 

signal is short and biphasic and emitted by the fish at variable intervals that are several times longer 

than the duration of the EOD. The component frequencies contained in pulse-type EODs are relatively 

high and have a broad power spectrum (right). (B) The wave-type EOD of Eigenmannia sp. (left) is emit-

ted continuously at a single and relatively constant frequency. This discharge frequency and its harmon-

ics constitute the main components of the power spectrum due to the almost sinusoidal nature of the 

wave-type EOD (right). Modified after von der Emde (1999). 

1.3 The electric sense of mormyrid weakly electric fish 

Electric organs in mormyrids are located within the caudal peduncle and are composed of 

four columns of stacked electrocytes (Harder et al., 1964) (Figure 1.4A). Electrocytes are 

flattened, disc-like cells that are unilaterally and individually innervated, each by a single 

electromotor neuron through a stalk, which depolarizes their caudal membrane (Bennett, 

1971a; Westby, 1984) (Figure 1.4B). Electric organ discharges are initiated by a command 

nucleus (CN) in the medulla, which generates a command signal that is sent via a relay 

nucleus to the electromotor neurons that innervate the electric organ (Bell et al., 1983; 

Grant et al., 1999). Upon activation, electrocytes depolarize unilaterally and generate a 

small potential difference that can be measured between the anterior and the posterior 
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face of the cell. These voltages add up to the final strength of the EOD due to synchronous 

activation of electrocytes representing a series connection within the electric organ 

(Bennett, 1971a). The final amplitude of the signal amounts to just a few volts in weakly 

electric fish (Bell et al., 1976). Biphasic signals result from subsequent depolarization of 

the opposite faces of the electrocytes (Westby, 1984). The final waveform (Figure 1.4C) 

can be more complex, and its characteristics depend on the morphology of electrocytes, 

their repertoire of ion-channels and their kinetics, as well as their innervation patterns 

and the complexity of stalks (Caputi et al., 2005). 

 

Figure 1.4: Electric organ discharge generation in mormyrids. (A) Location of the electric organ in the 

caudal peduncle of a mormyrid fish. The organ is composed of four columns of electrocytes, and each 

column represents a series connection of biogenic voltage sources. (B) Series connection of three 

electrocytes magnified from a single column in (A). Each electrocyte is innervated by a single electromo-

tor neuron (EMN) via a perforating stalk, which passes through the electrocyte and connects to its cau-

dal face. Central activation of EMNs leads to a depolarization of the stalks (i) and causes a small negative 

pre-phase of the EOD (C, blue). Depolarization of the stalks activates the caudal membranes of the 

electrocytes (ii), which generate the primary positive phase of the EOD (red), and eventually the rostral 

faces (iii), which generates the main negative phase (green). All electrocytes are activated simultaneous-

ly, and their voltages add up to the final strength of the EOD. (C) Waveform of the EOD with colors cor-

responding to the description of sequential activation in (B). Modified after Westby (1984), based on 

Caputi (2011). 
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Each discharge of the electric organ instantaneously generates a non-propagating, approx-

imately dipole-shaped electric field around the fish (Hopkins, 1999) (Figure 1.5), and the 

resulting signal is mainly composed of frequencies way higher than those detected by 

ampullary receptor organs during passive electroreception. To detect EODs during active 

electrolocation and electrocommunication, weakly electric fish have additional receptor 

organs that are tuned to the high frequencies contained in their self-generated EOD 

(Hopkins, 1981a). These tuberous receptor organs (Figure 1.2B, C) are covered by an epi-

thelial plug, which serves as a capacitor between the outside water and the receptor cells, 

and therefore renders the receptor insensitive to low-frequency and DC electric fields 

(Bennett, 1971c). While both electrocommunication and active electrolocation are medi-

ated by the same types of receptors in Gymnotiformes (Caputi et al., 2002; Caputi and 

Nogueira, 2012), each of the two functions is mediated by a specialized type of tuberous 

electroreceptor organ in mormyrids. 

Mormyromast electroreceptor organs (Figure 1.2B) are specialized to detect the self-

generated electric field during active electrolocation in mormyrids (Bell et al., 1989). They 

are distributed across large areas of the fish's skin (Amey-Özel et al., 2012; Harder, 1968; 

Hollmann et al., 2008) and contain two different types of sensory cells (Szabo and Wersäll, 

1970). Type A cells respond to local changes in EOD-amplitude, whereas type B cells are 

additionally sensitive to time-shifts, which represent waveform changes of the EOD 

(von der Emde and Bleckmann, 1992). Nearby objects with an impedance different from 

the surrounding water are detected and discriminated by the fish during active 

electrolocation. This is because these objects modulate the self-generated electrical field 

due to their resistive and capacitive properties (Figure 1.5A), thus generating a two-

dimensional electric image on the fish's skin (Caputi et al., 1998; von der Emde and 

Schwarz, 2002). Parameters extracted from the electric image enable the fish to distin-

guish objects based on distance (von der Emde et al., 1998), size and shape (von der Emde 

and Fetz, 2007), as well as material composition (von der Emde and Ringer, 1992). The 

discrimination of material composition relies on the detection of amplitude and waveform 

modulations of the local EOD caused by the complex impedances of objects that can be 

assigned an 'electric color' depending on their resistive and capacitive properties. This 

electric color is retained independently of distance or size of an object (Budelli and Caputi, 

2000; Gottwald et al., 2017a). Because capacitive properties are a commonality of living 

organisms, this provides mormyrids with a general capability to distinguish animate from 

inanimate objects and facilitates prey detection in complex environments (von der Emde, 

1990; von der Emde, 1994; von der Emde and Bleckmann, 1998). Although electric images 

cannot be focused on the fish's electroreceptive skin by mechanisms analogous to those of 
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visual systems, active electrolocation provides weakly electric fish with a three-

dimensional representation of their immediate surrounding (von der Emde et al., 2010). It 

also allows them to detect and discriminate between behaviorally relevant features of the 

environment (Fechler et al., 2012; Fechler and von der Emde, 2013). Consequently, active 

electrolocation is also used for orientation and navigation (Cain et al., 1994; Walton and 

Moller, 2010). The active nature of electrolocation in mormyrids  is further emphasized by 

 

Figure 1.5: General principles of active electrolocation and electrocommunication. (A) During active 

electrolocation, discharges of the electric organ generate an electric field around the fish. This field is 

detected by electroreceptor organs, the mormyromasts, which cover large areas of the fish's skin. Ob-

jects with electrical properties different from the surrounding water distort the electric field and there-

by modulate the amplitude of the local EOD that is detected by individual mormyromasts. Objects with 

a conductivity higher than that of the surrounding water (C) will focus the field vectors of the electric 

field onto the electroreceptive skin, thereby increasing the amplitude of the EOD. Objects that are resis-

tive compared with the surrounding water (R) will spread the field lines, thus leading to a local decrease 

in EOD amplitude. Objects with capacitive properties will additionally distort the waveform of the EOD. 

Modified from Stoddard (2002a). (B) Electrocommunication is based on the perception of a signaler's 

EOD by a recipient via the knollenorgan pathway (Figure 1.7). Information about a signaler's identity is 

contained in the waveform of his EOD (a), whereas current behavioral states and motivations can be 

communicated through variations of inter-discharge intervals (IDI). The IDI represents the duration be-

tween successive EODs of an individual (b) and can lead to distinct discharge patterns. Communication 

can also arise from interactive signaling, which is characterized by fixed latencies between the EODs of 

signaler (red) and recipient (black). Inspired by Hopkins (2005). 
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the display of stereotypical motor patterns that accompany explorative behaviors 

(Hofmann et al., 2014; Toerring and Belbenoit, 1979). Morphological pre-receptor adapta-

tions facilitate active sensing by focusing the electric field onto electroreceptive foveae 

with higher receptor densities in the head region of the fish (Bacelo et al., 2008; Pusch 

et al., 2008). Additionally, discharge rates are dynamically regulated to adapt electro-

sensory sampling rates according to the current requirements of environmental sensing 

(Post and von der Emde, 1999; Toerring and Moller, 1984; von der Emde, 1992). Never-

theless, the detection range of active electrolocation is restricted to approximately one 

standard length of the fish, and the capability to discriminate between objects is usually 

confined to a distance below 5 cm in G. petersii (von der Emde et al., 2010). 

One reason for the limited range of active electrolocation is that the sensory threshold of 

mormyromasts is relatively high (Bennett, 1971c). Together with the axons of the 

ampullary receptor organs, mormyromast afferents project exclusively to the 

electrosensory lateral line lobe (ELL) of the hindbrain. Here, somatotopic representations 

are formed in three separate layers for inputs from passive electroreception, as well as 

those of type A cells and type B cells of the mormyromasts (Bell and Maler, 2005). A 

somatotopic map of the active electrosensory system is also retained in the nucleus 

lateralis of the torus semicircularis in the midbrain, which receives input from the ELL and 

where phase and amplitude information are likely to be processed (Hollmann et al., 2016). 

The electrosensory input to the central nervous system is refined by an intricate corollary 

discharge system, which enhances the sensitivity to reafferent input from the self-

generated EOD by mormyromast afferents in the ELL (Bell, 1989). This corollary discharge 

system also regulates IDI-duration by inhibiting the mesencephalic precommand nucleus 

(PCN) and the thalamic dorsal posterior nucleus (DP) of the electromotor system, both of 

which provide excitatory input to the command nucleus, which initiates the EOD (Carlson, 

2002b; 2003; von der Emde et al., 2000). Corollary discharges are initiated by activity in 

the command nucleus and eventually activate the dorsal region of the ventroposterior 

nucleus (VPd) of the torus semicircularis, which provides inhibitory input to DP and PCN 

(Carlson, 2003; Carlson and Hopkins, 2004a). This prevents excitatory input of these nu-

clei to the command nucleus, thus forming a central pattern generator in the mormyrid 

electromotor system that regulates discharge activity via recurrent inhibition provided by 

the corollary discharge (Carlson, 2003; von der Emde et al., 2000) (Figure 1.6). In 

Brienomyrus brachyistius, selective stimulation of neurons in DP and PCN induced distinct 

signaling patterns that typically occur during social interactions, while excitatory stimula-

tion of neurons in VPd caused elongated IDIs indicative of resting behavior (Carlson and 

Hopkins, 2004a; b). These findings demonstrate the significance of central pattern genera-
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tion in the electromotor system for active sensing and electrocommunication (Carlson, 

2002a). 

 

Figure 1.6: Central pattern generator of the mormyrid electromotor system. Activation of the medul-

lary command nucleus (CN) initiates the EOD as well as a corollary discharge that provides excitatory 

input to the dorsal ventroposterior nucleus (VPd) in the midbrain. Activity in VPd inhibits the dorsal 

posterior nucleus (DP) and the precommand nucleus (PCN), thus preventing them from activating the 

command nucleus. Excitatory stimulation of DP and PCN initiates EOD patterns used during 

electrocommunication, whereas inhibition of DP and PCN via activation of VPd leads to IDI-sequences 

that are typical of resting behavior. Direct connections are represented by solid lines, indirect connec-

tions by dashed lines. Modified from Carlson (2003). 

Electrocommunication in mormyrids is based on their second type of tuberous electrore-

ceptor, the so-called knollenorgan (Figure 1.2C). Knollenorgans are composed of 1–9 rela-

tively large secondary sensory cells, each mounted on a subsensory platform within a sen-

sory chamber, and innervated by branches of a single afferent neuron (Derbin and Szabo, 

1968; Szabo, 1965). Several lines of evidence unequivocally link knollenorgans to the per-

ception of signals generated by other individuals, thus proving the function of these recep-

tor organs during communication. The overall sensitivity of knollenorgans (0.2-0.5 mV) 

exceeds that of mormyromasts by more than one order of magnitude (Bennett, 1971c). 

This makes them ideally suited for the detection of EODs emitted by other weakly electric 

fish, whose signals can consequently be detected from distances far beyond the range of 

active electrolocation (Moller et al., 1989). 

Knollenorgan receptor cells respond to stimulation with a single spike, which is generated 

with a short latency of 0.2 ms at the inner face of a sensory cell and transmits electrically 
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to the afferent nerve fiber innervating the receptor organ. At the same time, the outer face 

of a receptor cell serves as a capacitor that blocks low-frequency signal components 

(Bennett, 1965). The preservation of timing information during signal transmission is very 

accurate but comes at the expense of intensity and spatial information (Bell, 1989; Bell 

and Grant, 1989). Knollenorgan afferents project to the nucleus of the electrosensory lat-

eral line lobe (nELL), where their input is inhibited through a corollary discharge during 

the animal’s EOD. Thus, mormyrids effectively prevent their own signals from being pro-

cessed beyond the hindbrain (Bell and Grant, 1989). Temporal information about the sig-

nals of other fish is passed on to the nucleus exterolateralis of the mesencephalic torus 

semicircularis (Szabo et al., 1979), where lesions abolished signaling responses to conspe-

cific individuals in G. petersii (Moller and Szabo, 1981). Mormyrids belonging to a sub-

group termed clade A, show a functional division of the nucleus exterolateralis into nucle-

us exterolateralis pars anterior (ELa), and nucleus exterolateralis pars posterior (ELp). 

This neuroanatomical differentiation enables these species to distinguish EOD-waveforms 

(Baker et al., 2013a; Xu-Friedman and Hopkins, 1999). Because knollenorgans on opposite 

sides of the fish's body respond to opposing slopes of an external EOD due to their AC-

coupling (Bennett, 1965), responses from knollenorgans on different body regions provide 

the information necessary to differentiate between EOD-waveforms (Hopkins and Bass, 

1981). On a neural level, such waveform discrimination is implemented by a delay-line 

anticoincidence detection mechanism that processes signals transmitted from 

knollenorgans on different sides of the body in ELa (Baker et al., 2013a; Lyons-Warren 

et al., 2013; Xu-Friedman and Hopkins, 1999). At low stimulus intensities, waveform dif-

ferences are discriminated based on a population code of knollenorgans with different 

sensory properties (Lyons-Warren et al., 2012).  

Discharge patterns emitted by other fish are detected through successive activation of the 

same knollenorgans and are analyzed by sensory neurons in ELp, which receives the out-

put of ELa (Baker et al., 2013a). ELp contains neurons that have low-pass, high-pass, or 

band-pass filter properties and selectively respond to short, long, or intermediate stimulus 

IDIs, respectively (Baker and Carlson, 2014; Carlson, 2009). This enables the fish to detect 

even smallest variations within specific communication patterns (Baker et al., 2016). 

Knollenorgans and the corresponding neural pathways can thus simultaneously decode 

the temporal aspects of EOD-waveforms and IDI-patterns, both of which contain behavior-

ally relevant information (Baker et al., 2013a). The central neuroanatomy of electro-

communication in the mormyrid brain is summarized in Figure 1.7. The functional rela-

tionship of the knollenorgan pathway to the central pattern generator of the electromotor 

system described above is currently unresolved. 
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Figure 1.7: Central neuroanatomy of electrocommunication in the mormyrid brain. The mormyrid 

electromotor system (blue) consists of a medullary command nucleus (CN) that initiates the generation 

of an EOD via a medullary relay nucleus (MRN), which activates the spinal electromotor neurons that 

innervate the electric organ (Figure 1.4). Activation of CN also induces a corollary discharge that shapes 

both electromotor output and sensory perception by recurrent inhibition through dedicated neural 

pathways (purple). Corollary discharges are relayed via the bulbar command-associated nucleus (BCA) to 

the mesencephalic command-associated nucleus (MCA), which provides excitatory input to the dorsal 

ventroposterior nucleus (VPd). VPd belongs to the central pattern generator of the electromotor system 

(Figure 1.6) and blocks activity in the dorsal posterior nucleus (DP) and the precommand nucleus (PCN). 

Both DP and PCN provide excitatory input to CN and play an essential role in regulating IDI-duration. Via 

the sublemniscal nucleus (slem), the corollary discharge pathway provides recurrent inhibition to the 

nucleus of the electrosensory lateral line lobe (nELL). The nELL is the first central relay that receives 

sensory input from the peripheral knollenorgans (red). Reafferent signals from the fish's EOD are thus 

blocked at the level of the nELL. Signals of other fish are relayed to the nucleus exterolateralis, of which 

the anterior part (ELa) processes EOD-waveform information, while IDI-patterns are decoded in the 

posterior region (ELp) of this nucleus. ELL: electrosensory lateral line lobe; val: valvula cerebelli; 

tel: telencephalon; OB: olfactory bulb. Arrows represent excitatory connections; inhibitory connections 

are marked with circles. Modified from Baker et al. (2013a). 

1.4 Habitat and sensory ecology of weakly electric fishes 

Weakly electric fishes inhabit African, as well as South and Central American tropical 

freshwater ecosystems. Gymnotiform species are widely distributed throughout the major 

hydrogeographic regions of the humid Neotropics from northern Argentina to southern 

Mexico (Albert and Crampton, 2005) (Figure 1.8A). Mormyriformes are mainly riverine 

species that inhabit the majority of African river systems and lakes and are distributed 
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throughout the main ichthyofaunal regions from the Nile basin and south of the Sahara to 

north of the Cape (Hopkins, 1986; Hopkins et al., 2008) (Figure 1.8B). 

On both continents, the habitats of weakly electric fishes are frequently associated with 

turbid water conditions (Lissmann, 1958; 1961). Several species tend to display nocturnal 

activity patterns with hiding or shoaling behavior during the day, and foraging migrations 

into open waters at night when there is no risk from visual predators (Lissmann, 1961; 

Moller et al., 1979). A nocturnal lifestyle is also implied by circadian variation of electric 

discharge activity (Moller, 1995; Stoddard et al., 2007) and retinal adaptations that trade 

off spatial resolution for improved detection of low-contrast stimuli, such as large, fast-

moving predators, under dim light conditions (Francke et al., 2014). 

 

Figure 1.8: Geographical distribution of weakly electric fishes. (A) Neotropical habitats of South and 

Central American Gymnotiformes based on hydrogeographic regions. Adapted from Albert and 

Crampton (2005). (B) Geographical distribution of mormyrids based on the main African ichthyofaunal 

regions. Mormyrids are absent from the southern Cape and the northern Maghreb regions. Modified 

after Moller (1995). 

 

Electric organ discharges of both gymnotiform and mormyriform weakly electric fishes 

are highly diverse in discharge type, waveform, and frequency (Hopkins, 1988). A possible 

explanation for such specifications are environmental constraints related to the specific 

habitat of a species. In a comparative study on the habitats of several Gymnotiformes, 

Lissmann (1961) noticed that species with a high-frequency wave-type EOD (> 800 Hz) 

were only encountered in fast-flowing waters, mostly among rocks and sandy grounds 



1. WEAKLY ELECTRIC FISH AS MODEL ORGANISMS 
 

16 
 

without dense vegetation, whereas no such preference was observed in species with lower 

frequency discharge modes. Exempt from this rule were those fish with the lowest-

frequency wave-type EOD (< 100 Hz), which preferred calm and stagnant waters. Pulse-

type species generally exhibited rather sedentary and sluggish behaviors and were associ-

ated with calm waters featuring dense vegetation and complex root systems (Lissmann, 

1961). This relationship was contested by Hopkins and Heiligenberg (1978), who suggest-

ed that EOD-types represent a behavioral rather than an ecological adaptation, with wave-

type fish being more active and agile in their behavior, thus requiring a higher resolution 

during active electrolocation of fast moving objects compared with the more sedentary 

pulse-type fish. The correlation between habitat and discharge mode was later confirmed 

by Crampton (1998), who also found that the EOD-repetition rates of pulse-type species in 

habitats with water flow is higher than in standing water bodies. He suggested that in par-

ticular wave-type species with high discharge rates need a high temporal resolution to 

detect objects, such as prey that move fast in relation to the fish in simple environments, 

whereas pulse-type species specialized in detecting capacitances in complex environments 

with dense vegetation and relatively static prey (Crampton, 1998). High-frequency wave-

type Apteronotus can efficiently capture small Daphnia in open water in the dark using 

active electrolocation (MacIver et al., 2001). Crampton (1998) demonstrated that high-

frequency species tend to feed on such planktonic prey, whereas lower frequency and 

pulse-type fish rely on stationary prey, such as chironomid larvae. However, wave-type 

fish are in principle also able to discriminate resistive from capacitive objects 

(von der Emde, 1998). 

Except for piscivorous Mormyrops (Arnegard and Carlson, 2005), mormyrids mainly feed 

on invertebrates (Lauzanne, 1988). Chironomid larvae constitute a major food source for 

many mormyrid species, which can, therefore, be classified as benthic invertivores 

(Kouamélan et al., 2006; Kouamélan et al., 1999). All mormyrids emit pulse-type EODs, 

and their capability to discriminate capacitive objects is inversely correlated with EOD-

duration (von der Emde and Ringer, 1992). Shorter pulse-durations were observed mainly 

in more gregarious species and were hypothesized to be an adaptation that reduces the 

probability of EOD overlaps in groups (Hopkins, 1980), thereby aiding to prevent jamming 

during active electrolocation (Heiligenberg, 1976; Schuster, 2001). 

Mormyrids are frequently preyed upon by electroreceptive catfish (Hanika and Kramer, 

2000; Merron, 1993). The evolution of short, biphasic electric signals in both gymnotiform 

and mormyriform species may have served in cloaking weakly electric fish from such 

predators because of a reduction of the lower component frequencies of the signal, to 
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which passive electrosensory systems are most sensitive (Stoddard, 1999; 2002b). EOD-

waveforms of many mormyrids are sexually dimorphic, especially during spawning, and 

males tend to emit EODs with longer duration (Carlson et al., 2000; Hopkins, 1986), which 

is considered to be a dominance marker that effectively makes them more vulnerable to 

predation (Hanika and Kramer, 2000; 2005). Evolutionary adaptation of EOD-waveforms 

to predation pressure may thus have initiated sexual selection based on signal recognition 

and thereby triggered the extensive speciation in both groups of weakly electric fishes 

(Stoddard, 2002b). 

Indeed, the Mormyridae are the most abundant group within the otherwise species-poor 

Osteoglossomorpha, comprising more than 200 species in 21 genera (Miller and Sullivan, 

2017). Sexual selection based on EOD-diversification is considered to be the primary driv-

ing mechanism behind this relatively recent and ongoing speciation of mormyrids 

(Arnegard et al., 2010a; Feulner et al., 2008; Sullivan et al., 2002). For instance, differential 

expression of genes that code for voltage-gated ion channels may play a role in shaping 

EOD-waveforms and consequently contribute to speciation by mate choice based on EOD 

characteristics in mormyrids (Nagel et al., 2017). Hence, new species and even genera of 

mormyrids have recently been described based on EOD-waveform (Kramer and van der 

Bank, 2000) and molecular data (Maake et al., 2014; Sullivan et al., 2016). 

Lissmann's discovery sparked considerable interest in the investigation of active 

electrolocation, and a great deal of advance has been made unveiling the morphological, 

physiological, and behavioral parameters and principles that underlie this ability. Weakly 

electric fish even inspired attempts to translate their sensory capabilities into technical 

applications (Bleckmann et al., 2004; Caputi, 2017; von der Emde et al., 2009) (see also 

Part Two). Several strategies for electrocommunication have been described for both 

mormyriform and gymnotiform species and will be dealt with in more detail in Part One. 

However, little is known about the behavior of weakly electric fishes in their natural habi-

tats, especially concerning how they interact and communicate with other individuals or 

in social groups of different sizes. Several authors have addressed geographical distribu-

tion, species diversity, food habits, and the influence of anthropogenic impact on popula-

tions of weakly electric fishes in ecological field studies (Blake, 1977; Kouamélan et al., 

2006; Sullivan et al., 2002). Such studies have demonstrated that some mormyrids are 

gregarious and form schools (Hopkins, 1981b), while others, such as Brienomyrus, are 

territorial and occupy individual shelters (Friedman and Hopkins, 1996; Hopkins and 

Bass, 1981). Breeding in mormyrids is induced by the environmental changes that occur 

during the rainy season (Kirschbaum, 1975). During this time, many mormyrid species 
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were observed to migrate from their river habitats into smaller streams and flooded areas 

to spawn, and from there the juveniles migrate back to the rivers in large schools when the 

dry season begins (Hopkins, 1986; Kirschbaum, 1995). Social behavior of mormyrids is 

thus versatile. Whether individuals are gregarious and aggregate in shoals or display terri-

torial and agonistic behavior, may depend not only on species, sex, and age, but may also 

vary seasonally or depending on the time of day (Carlson, 2016; Hopkins, 1986; Moller 

et al., 1979). Detailed behavioral observations of mormyrids during their nocturnal activi-

ty in the wild were only reported for Mormyrops anguilloides, who gather in small groups 

to hunt for cichlids in Lake Malawi (Arnegard and Carlson, 2005). Observations of riverine 

mormyrids under semi-natural conditions revealed complex interaction patterns and 

electrocommunication even among different species (Scheffel and Kramer, 2006). 

Recordings of electrocommunication behavior with high spatial and temporal resolution 

from a natural habitat have only recently been accomplished for gymnotiform Apteronotus 

rostratus. These observations suggested that data obtained from the laboratory need not 

necessarily represent what happens under natural conditions (Henninger et al., 2017). 

Laboratory studies have documented a multitude of signaling strategies that mormyrids 

engage in during active electrolocation and social interactions. Social signaling occurs for 

instance during aggressive encounters (Bell et al., 1974; Kramer and Bauer, 1976; Terleph, 

2004; Werneyer and Kramer, 2002), courtship and spawning (Baier and Kramer, 2007; 

Bratton and Kramer, 1989; Werneyer and Kramer, 2005; Wong and Hopkins, 2007), as 

well as during group activities like resting, swimming, and foraging (Gebhardt et al., 

2012a; Gebhardt et al., 2012b; Scheffel and Kramer, 1997). Apart from IDI-variations that 

result in characteristic modulations of discharge frequencies and behavior-specific signal-

ing patterns, mormyrids can also generate so-called echo responses with a fixed latency of 

only a few milliseconds to EODs of nearby individuals (Kramer, 1974; Russell et al., 1974). 

Prolonged episodes of mutual echoing lead to interactive electric signaling patterns that 

are characterized by synchronized discharge sequences between two individuals. This 

may serve in jamming avoidance (Heiligenberg, 1976), but it is also assumed to have a 

communicative function, possibly by facilitating group cohesion (Arnegard and Carlson, 

2005; Gebhardt et al., 2012a). 
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2. Study Aims and Objectives: Mobile Dummy Fish for the 

Investigation of Electrocommunication 

A major challenge when studying electrocommunication is the correct assignment of EODs 

to individual fish in groups of two or more unrestrained animals, which can be time-

consuming and difficult. Such difficulties may in part be overcome by playback experi-

ments, which can evoke stereotypical communication behavior in mormyrids (Kramer, 

1979). Such tests have been used to demonstrate the capability of mormyrids to differen-

tiate EOD-waveforms (Graff and Kramer, 1992; Hanika and Kramer, 2005; Machnik and 

Kramer, 2008a) and IDI-patterns of other fish (Kramer and Kuhn, 1994). However, play-

back electrodes usually lack the locomotor behavioral component that is important during 

interactive communication displays involving mutual feedback between signaler and re-

cipient (Crockett, 1986). In other words, a stationary playback source does often not be-

have according to the signals it emits. Besides, responses with communicative intent by 

the receiving fish do not affect the agent that initiated communication. This may induce a 

perceptual mismatch between what is communicated by a playback, and what is acted 

upon by the receiving animal. This mismatch may jeopardize the validity of an observed 

behavioral reaction as an appropriate response to the original communication signal. 

In the present thesis, the potential of using mobile fish dummies to overcome such limita-

tions during the investigation of electrocommunication will be explored in playback expe-

riments with the pulse-type weakly electric mormyrid Mormyrus rume, mainly represent-

ed by the subspecies proboscirostris. Mormyrus rume proboscirostris originates from the 

middle Congo River (Kirschbaum, 1995) and can be reliably bred in captivity (Schugardt 

and Kirschbaum, 2004). This thesis is based on the work of Gebhardt (2012), who provid-

ed detailed descriptions of signaling patterns and strategies occurring during various be-

havioral situations in groups of up to five individuals of M. rume, including their reactions 

to electrical playback of such signaling patterns. In the present work, electrical playbacks 

of IDI-patterns were systematically extended, and their presentation was refined by 

mounting playback electrodes on mobile fish dummies. This allowed behavioral control 

and repeatability of stimuli across experimental trials, as well as including spatial aspects 

of social interactions into the analysis of behavioral responses. 

Part One of this thesis focuses on strategies employed by M. rume during electro-

communication. From an electromotor perspective, such strategies can rely on variations 

in overall discharge frequency, the emission of distinct temporal discharge patterns, or on 

interactive signaling behavior based on fixed temporal relationships between the dis-

charge activity of two fish. Locomotor strategies include the display of stereotyped motor 
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patterns and spatial relationships between the playback source and the receiving fish. In 

the first series of experiments, a behavioral setting based on following-behavior was cre-

ated that allowed to systematically investigate the influence of electrical playback of natu-

rally occurring discharge patterns that were prerecorded from freely behaving fish during 

various behavioral contexts. Natural discharge sequences were characterized either by a 

certain average discharge frequency or by a particular IDI-pattern. Responses of M. rume 

to natural patterns were contrasted with those to artificial sequences of constant frequen-

cy discharge patterns. The behavioral implications of differential expression of response 

patterns are discussed and interpreted with respect to the behavioral contexts implied by 

the playback signal and the hierarchical relationships of the fish. In a second setup, the 

role of interactive signaling was tested by contrasting responses to static playbacks of 

naturally occurring but randomly arranged IDIs with responses to an interactive playback 

that dynamically responded to signals emitted by the fish by mimicking the mormyrid 

echo-response. Implications of echoing for social communication in mormyrids are dis-

cussed. 

Part Two explores the contributions of different sensory modalities of M. rume in a second 

set of experiments to identify the sensory basis of the following-behavior observed in Part 

One. In a combination of classical ethological experiments and a state-of-the-art etho-

robotic design, single individuals and small groups of M. rume were confronted with a bio-

mimetic robotic dummy fish mimicking live fish in morphology, size, and motility cues, 

additionally to electric playback generation. In a subsequent test series, sensory cues from 

vision, the lateral line system, and active electrolocation were experimentally excluded, 

narrowing down the perception of the signal source to passive electric sensing, probably 

mediated by the knollenorgan pathway. Actively generated electrical signals were thus 

identified as the critical stimuli that are both necessary and sufficient to initiate and medi-

ate the social interactions displayed by M. rume. 

Based on the conclusions from previous sections, Part Three inquires the significance of 

electrocommunication during social interactions in small groups of different sizes with the 

long-term goal of establishing mixed societies of live fish and interactive dummies based 

on electric signal generation. By closing the feedback loop between the behavior of live 

fish and the mobile dummy on the two levels of locomotor behavior and electrical signal-

ing, the general feasibility of such an approach was evaluated for a mormyrid weakly elec-

tric fish. Through detailed analysis of behavioral observations and simultaneously record-

ed signaling interactions, a possible function of interactive signaling for addressing indi-

viduals within a group via electrocommunication could be identified. 
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3. Introduction to Animal Communication 

3.1 Definitions and the evolution of communication systems 

Communication is a universal feature of living organisms, ranging in its complexity and 

dimensions from molecular interactions on a subcellular level to the use of recursive lan-

guage in human societies and the transmission of digital information around the globe. 

This omnipresence of communication processes substantiates the importance to delineate 

and define animal communication systems in a way that allows formulating hypotheses 

that can be tested in experimental studies. Watzlawick et al. (2007) may be right in noting 

that all behavior is essentially communication, and hence not to communicate is as impos-

sible as not to behave. This understanding, however, does not provide an operational defi-

nition for hypothesis-driven research on animal communication. 

Generally speaking, communication can be defined as a transfer of information (Hurd and 

Enquist, 2005). By defining communication in a comprehensive sense that includes all 

procedures by which two mechanisms affect each other, Shannon and Weaver (1998) 

point out a sequence of three levels of problems that need to be solved during communica-

tion. These include the accuracy of the transmission of communication symbols, the preci-

sion with which these symbols convey the desired meaning, and the effectiveness with 

which the perception of that meaning affects a receiver's behavior (Shannon and Weaver, 

1998). From a technical point of view, communication signals generated by a signaler need 

to be coupled to a medium and then propagate to the location of the receiver, who in turn 

needs to detect, decode, and classify the signal (Bradbury and Vehrencamp, 2011). De-

tailed knowledge about the effectors that generate communication signals, the receptors 

that perceive such signals, and the influence of environmental conditions that affect their 

transmission, is thus essential for the study of animal communication systems. 

Animal communication systems, however, require a shared repertoire of signs, as well as 

semantic and pragmatic rules to transport context-specific information, and such features 

cannot emerge from one-way interactions during evolution (Witzany, 2013). Wilson 

(1975) defines communication as actions of an organism that influence the probability of 

occurrence of another organism's behavior patterns adaptively. From an evolutionary 

point of view, it then becomes clear that communication systems can only evolve to the 

net-benefit of both sender and receiver (Bradbury and Vehrencamp, 2000). Empirically, 

the existence of animal communication systems can be identified where a sender's signal 

modifies the response of a receiver, and where different signals lead to varying responses 

by that receiver. Therefore, a simple 'action-response game,' where the sender selects a 

signal, and the receiver chooses an appropriate response (Figure 3.1), is the minimum 
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requirement for an operational definition of animal communication (Hurd and Enquist, 

2005). 

 

Figure 3.1: Schematic illustration of animal communication. Communication involves a sender, who 

generates a signal, and a receiver, who reacts to that signal. The sender selects an appropriate signal 

from his repertoire based on a behavioral context or an internal motivation to communicate. The signal 

is coupled to a medium via the transmitting effector organ chosen by the sender. It is then propagated 

through the medium to the receiver and may be affected by environmental noise in the process. The 

receiver will detect the signal with a dedicated sensory system that is responsive to stimuli in the senso-

ry modality the sender chose for communication. The signal is then decoded and classified by the re-

ceiver and evokes an adaptive response based on the receiver's internal decision rules. Ultimately, this 

response also affects the sender. Inspired by Shannon and Weaver (1998) and Bradbury and 

Vehrencamp (2011). 

Communication is often directly associated with human language. In a narrow sense, how-

ever, the faculty of language requires recursion, i.e., the capability to use a finite amount of 

expressions to generate an infinite amount of meanings (Hauser et al., 2002). The hierar-

chical syntactic structure necessary to accomplish this task has not been identified in any 

animal communication system other than human language so far (Bolhuis et al., 2014). 

Thus, while language can represent, and, if necessary, communicate complex and arbitrary 

concepts in past, present or future independently of the modality used for its externaliza-

tion (Fitch, 2000), communication needs to be interpreted in the context of the respective 

environment and does not necessarily depend on a conscious intent to communicate 

(Watzlawick et al., 2007). 

The study of animal communication is concerned with the nonverbal, or rather prelingual 

aspects of communication, which humans share with other animals. For instance, visual 

communication can convey basic emotions such as happiness, anger, sadness, fear, sur-
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prise, and disgust via facial expressions that are understood by humans across different 

cultures (Ekman, 1970). Similarly, dominance relationships can be inferred from the dis-

play of gestures and postures humans adopt during interactions (Bente et al., 2010). Inde-

pendently of the verbal content of a conversation, a speaker's emotional state can be in-

ferred from variations in speaking rate, intensity, fundamental frequency and other spec-

tral parameters of the voice (Scherer, 2003). Especially olfactory communication can be 

entirely subliminal. The evidence is accumulating that mate choice also in humans is influ-

enced by the unconscious olfactory perception of a potential partner's Major Histocompat-

ibility Complex (MHC I). This leads to increased physical attraction to individuals with an 

MHC I that differs from one's phenotype and thus ensures protective variability in the im-

mune system of prospective offspring (Jaworska et al., 2017). 

Comparative studies on animal communication systems can, therefore, shed light not only 

on nonverbal human communication but also on the evolution of human language, be-

cause they can identify the ecological constraints that led to the evolution of prerequisites 

for language in other animals (Hauser et al., 2002). These include the capability for vocal 

imitation as a precondition for speech, which is absent in nonhuman primates (Fitch, 

2000) but common for instance in cetaceans (Janik, 2000). Similarly, ontogenetic parallels 

between language acquisition in humans and vocal learning in birds offer the possibility to 

study neuroanatomical and developmental principles in an analogous vertebrate commu-

nication system (Wilbrecht and Nottebohm, 2003). Finally, the discovery of 'mirror neu-

rons' has interesting implications for communication. These neurons were identified in 

the premotor cortex of monkeys, where they are active both when the animal acts, as well 

as when it observes a similar action in another individual (Rizzolatti and Arbib, 1998). 

This finding, led to the hypothesis that the communication of intentions by use of spoken 

language might have evolved from gestural communication via the mirror neuron system. 

In this context, mirror neurons could establish a link between actor and observer, who 

then become sender and receiver of communication signals (Rizzolatti and Arbib, 1998). 

Such considerations also stress the potentially multimodal or even crossmodal nature of 

communication. 

The fact that almost all sensory modalities play a role during communication gives reason 

to ask the question if there are universal principles that underlie the evolution of commu-

nication signals in different sensory systems. Through careful observations of animal be-

havior, ethologists like Konrad Lorenz and Nico Tinbergen inferred that signaling displays 

evolved from displacement and intention movements via ritualization (Tinbergen, 1952b). 

Complex and innate behavioral sequences displayed for instance during courtship behav-
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ior of three-spined sticklebacks (Gasterosteus aculeatus) (Tinbergen, 1952a) and contests 

between male fighting fish (Betta splendens) (Lissmann, 1932) have been identified and 

described in many animals. 

Communication systems can emerge from behavioral or sensory pre-adaptations. All ani-

mals use their sensory systems to monitor their environment for cues that provide infor-

mation relevant to survival and reproduction and evolve decision rules that enable them 

to react to such information in adaptive ways. If a particular behavior offers useful cues to 

a receiver and is thus favored by the receiver's decision rules, this behavior may become 

ritualized into a signal if both parties benefit from communication (Bradbury and 

Vehrencamp, 2011). On the other hand, senders may evolve signals that exploit pre-

existing sensory preferences and decision rules in receivers. There is, therefore, a mini-

mum of reliability that a potential signal must have before either sender or receiver bene-

fit by engaging in communication (Bradbury and Vehrencamp, 2000). 

Communication is of particular importance in reproductive and competitive behavioral 

contexts. Sexual selection by female choice lies at the heart of many communication sys-

tems and can, for instance, evolve if males generate signals that appeal to female percep-

tual biases, which initially evolved to serve other purposes such as food detection or pred-

ator avoidance (Ryan and Cummings, 2013). Intrasexual competition, especially male-

male competition for resources, is another important context where communication sys-

tems are expected to occur. Males of many species establish and defend territories that 

grant them access to food and females and thus increase the fitness payoffs for a territory 

holder, but energy intensive and potentially harmful territorial fights will diminish such 

payoffs. The capability to assess one's resource holding power (RHP) in relation to a con-

testant is thus essential to avoid fitness costs associated with unnecessary fights (Parker, 

1974). 

Based on game-theoretical considerations, Maynard Smith and Price (1973) derived the 

concept of the evolutionary stable strategy (ESS) to explain why so many male-male con-

tests are resolved without serious injury, even though the contestants are often equipped 

with weaponry suitable for escalated fighting and would undoubtedly maximize their fit-

ness in case of winning. According to this concept, behavioral strategies are evolutionary 

stable if a population that behaves accordingly cannot be 'invaded' by individuals adopting 

a 'mutant' strategy with higher fitness payoffs for these individuals (Maynard Smith and 

Parker, 1976). Such strategies are adaptive because, in situations where there is a conflict 

of interest between individuals, the best strategy to maximize one's fitness depends on 

what strategies other individuals adapt (Maynard Smith, 1976). An ESS for fighting behav-
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ior would thus predict that competitions over resources between contestants with asym-

metric RHP are settled 'conventionally' and that escalated fights occur only where such 

differences are not obvious, for instance, when opponents are similar in size (Maynard 

Smith and Parker, 1976). 

Based on these considerations, Enquist and Leimar (1983) predicted the existence of se-

quential assessment strategies for conflict resolution. Sequential assessment involves mul-

tiple stages of repetitive, ritualized behavioral displays, which allow each contestant to 

sample information about the opponents fighting abilities in successive rounds of increas-

ingly costly displays. Based on this information, each contestant can evaluate his probabil-

ity to win an escalated fight and will decide to either leave the contest and give up the re-

source, or to stay in the competition, proceed to the next level, and risk an escalated fight 

(Enquist and Leimar, 1983). The existence of sequential assessment strategies during ag-

gressive encounters between males was confirmed in behavioral experiments with the 

cichlid fish Nannacara anomala (Enquist et al., 1990). 

3.2 Classification of communication signals 

Several approaches can be used to classify communication signals (Bradbury and 

Vehrencamp, 2011). One way is to categorize signals based on the information they pro-

vide about the sender, who conveys information either about his identity or concerning 

his current motivation. Identity information may reveal a signaler's species, but also his 

membership of a social group, for instance through vocal dialects in humans, cetaceans 

(Strager, 1995; Weilgart and Whitehead, 1997), and birds (Rothstein and Fleischer, 1987). 

Individual identity can be determined for instance through facial or voice recognition, and 

individual identification based on auditory cues has been demonstrated for the calls of 

ravens (Corvus corax) (Boeckle and Bugnyar, 2012) and the signature whistles of bottle-

nose dolphins (Tursiops truncatus) (Tyack, 1997). In addition, senders convey information 

about their sex, which is most apparent in sexually dimorphic species (Owens and Hartley, 

1998). Furthermore, identity information may concern an individual's reproductive state 

(Semple and McComb, 2000) and social status (Maynard Smith and Harper, 1988), the 

latter of which is of particular importance in group-living animals that establish social 

hierarchies. 

Motivational signals communicate emotional or intentional information that can relate to 

different contexts. Examples are courtship and mating signals in the context of reproduc-

tion, as well as aggressive threats and dominance signals during competition for mates, 

territories, and food. Social integration signals maintain bonds between partners (Young 

et al., 2011), parents and their offspring (Iacovides and Evans, 1998), as well as group co-
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hesion in herds, flocks, and schools of animals (Parrish and Hamner, 1997). Environmental 

signals are concerned with food sources and predator avoidance. Examples are the waggle 

dance of honey bees (Apis mellifera), which provides other workers with information 

about distance and direction to a nectar source (von Frisch, 1965), and the alarm calls of 

vervet monkeys (Cercopithecus aethiops), who have different codes for different types of 

predators (Seyfarth et al., 1980). 

Communication signals can also be classified based on the mechanisms that guarantee 

signal reliability and thereby assure mutual benefit for sender and receiver (Hurd and 

Enquist, 2005) (see Figure 3.2). For a communication system to be evolutionary stable, 

receivers require some form of assurance that reacting to a signal increases their fitness 

payoffs and not merely tricks them into behaviors that only serve the interest of the sig-

naler. Such reliability guarantees are essential if there is a conflict of interest between the 

two parties (Maynard Smith, 1991). This means that in cases where there is no direct 

causal relationship between a signal and the quality a sender intends to communicate 

about himself, either the signaler needs to prove he is not cheating, or receivers need 

strategies to call a bluff. Hurd and Enquist (2005) subdivided adaptive signals into 

'performance signals,' which cannot be faked and can only be produced by senders with a 

certain quality directly related to the signal, and 'strategic signals,' which can in principle 

be produced by anyone and are therefore vulnerable to cheating. Performance signals do 

not need to provide a reliability guarantee because there is a direct causal relationship 

between the signal and the signaled quality that reserves the signal for individuals who 

have that quality. Performance signals are therefore 'honest' by default. Such signals are 

'index signals' if the physical condition of the sender constrains their expression. Classic 

examples are the relationship between dominant croak frequency and size of male toads 

(Bufo bufo), which cannot be faked by smaller individuals (Davies and Halliday, 1978), and 

the roaring activity of red deer (Cervus elaphus), which indicates the body condition of a 

harem holder (Clutton-Brock and Albon, 1979). Performance signals may also be con-

strained by information that the signaler holds (Hurd and Enquist, 2005). They can, for 

instance, be used by prey to deter a predator by signaling that its approach has been de-

tected, or by demonstrating the ability to escape a potential attack (Leal, 1999). 

Signals that are not directly constrained by some inherent property of a sender are strate-

gic. For strategic signals to be evolutionary stable, senders must be willing to bear costs as 

a reliability guarantee (Hurd and Enquist, 2005). 'Handicap signals' are costly to senders 

and thereby demonstrate that the signaler can afford to generate the signal (Grafen, 1990; 

Zahavi, 1975). Signaling costs thereby either incur during signal production, because 
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senders must be willing to expend resources for signal generation, or they arise as a con-

sequence of signal display, for instance, due to increased predation risk (Hurd and 

Enquist, 2005). 'Conventional' signals do not underlie such constraints. Their meaning is 

not necessarily associated with any property of the signal itself and may thus easily be 

produced by any individual (Guilford and Dawkins, 1995; Hurd and Enquist, 2005). Con-

ventional signals are therefore vulnerable to cheating (Dawkins and Guilford, 1991). How-

ever, costs are imposed on senders of conventional signals by the reaction of receivers, 

who may challenge the sender and retaliate upon detection of dishonest signaling 

(Dawkins and Guilford, 1991). 

 

Figure 3.2: Taxonomy of signal types. A signaling system that is beneficial to both sender and receiver is 

expected to attain a state of evolutionary equilibrium (a). Signals from evolutionary stable communica-

tion systems (b) can be subdivided into performance signals and strategic signals. Performance signals 

(c) are reliable because they are constrained by a sender's physical properties or by information held by 

the sender. Any individual may use strategic signals (d). Their reliability is only guaranteed by the send-

er's ability to bear costs that arise as a consequence of signaling. Signaling costs can be inflicted through 

handicaps and vary depending on the senders quality because only high-quality individuals can afford 

strong handicaps (e). The costs of conventional signaling are not dependant on either the message or 

the signaler's condition. The reliability of conventional signals is guaranteed by receiver probing and 

retaliation in case of dishonest signaling. Modified from Hurd and Enquist (2005). 
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3.3 Communication in fishes 

Fishes have a multitude of very sensitive sensory systems that enable them to acquire in-

formation through several sensory modalities. In many species, some sensory systems are 

highly specialized and constitute adaptations to very particular habitats and ecological 

niches. Sensory information is used for long and short range orientation and navigation, 

food detection, and predator avoidance. Most senses are, however, also used for communi-

cation. While visual communication among fishes is most apparent to the human observer, 

responses to chemical and acoustic communication signals are very common as well. 

Both mormyriform and gymnotiform weakly electric fishes make use of all the standard 

sensory systems during their natural behavior (Moller, 2002; Schuster, 2006). Additional-

ly, their active electrosensory systems not only allow them to acquire sensory information 

about the environment (see section 1.3) but also open communication channels with sig-

nificant implications for their lifestyle and social behavior. 

3.3.1 Visual communication 

Vision is the dominant sensory system for prey detection, orientation, and navigation, as 

well as social communication for a large number of fish species, many of which possess big 

eyes and devote large areas of their brains to the processing of visual information 

(Kotrschal et al., 1998). The importance of visual signals for social communication is ap-

parent from the vast amount of colorful displays that are characteristic for many species, 

particularly among teleosts. Fish visual systems have adapted to photic environments with 

visual conditions as different as the high lighting intensities of tropical coral reefs and the 

virtual absence of sunlight in deep-sea habitats (Douglas, 2001). Many fishes have excel-

lent color vision, a trait that dates back at least 540 million years to the agnathan verte-

brate lineages represented only by lampreys and hagfish among extant species (Collin and 

Trezise, 2006). Several teleosts, such as the goldfish (Carassius auratus), possess four 

types of photoreceptor cones (Bowmaker et al., 1991) and have tetrachromatic color vi-

sion (Neumeyer, 1992). The spectral sensitivity of various fishes exceeds the range of light 

that is visible to humans. Some species can use the relatively private channel of short-

wavelength ultraviolet radiation for social communication (Siebeck, 2013). Others rely on 

red fluorescent light in marine habitats below 10 meters, where the long-wavelength 

components of ambient sunlight become attenuated (Anthes et al., 2016). 

Visual communication displays may consist of behavioral elements, such as ritualized pos-

tures and movement patterns, as well as morphological features, like elongated fins, or of 

conspicuous color patterns. All these attributes allow specific and goal-directed signaling. 

Coloration can result from structural elements that cause refraction of light and selective 
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reflection of particular wavelengths, and from pigment cells that selectively absorb wave-

lengths based on the chemical properties of pigment molecules. Especially pigment-based 

coloration allows for active regulation of color displays (Shawkey and D'Alba, 2017). Con-

sequently, coloration can vary according to dominance relationships (Howard, 1974; 

O'Connor et al., 1999), stress levels (Backström et al., 2015), and visual background condi-

tions of the environment (Kelley et al., 2016). Additionally, various social contexts cause 

specific color changes (Rodrigues et al., 2009), and especially males of many species adopt 

intense nuptial colorations for courtship displays (Allender et al., 2003; Bakker and 

Milinski, 1993; Gumm et al., 2011). Color patterns can be designed to camouflage individ-

uals from a distance, while simultaneously serving in social signaling at closer ranges 

(Marshall et al., 2003). Visual signals are essential for recognizing species (Siebeck et al., 

2010) and even individuals (Kohda et al., 2015; Satoh et al., 2016). They are important 

during mate choice and play a crucial role in the species radiation of African cichlids, 

which is based on female selection for male nuptial coloration (Seehausen et al., 2008). 

During agonistic and territorial interactions, aggressive behavior can be induced by color-

ation (Tinbergen, 1948), ornaments like black stripes (Bachmann et al., 2016; Morris et al., 

1995) or eye-spots (Beeching, 1993), as well as by postures like erected fins and gill co-

vers (Simpson, 1968). Visual information is also crucial for the formation of large schools 

(Partridge and Pitcher, 1980) and can influence the decision to join a shoal based on simi-

larities between individuals (Rosenthal and Ryan, 2005). It has also been hypothesized 

that visual perception of stripes and banded patterns in mackerel (Scomber scombrus) 

mediates the optimal spatial relationship between individuals in large schools of fish 

(Denton and Rowe, 1998). 

Visual signals may manipulate behavior by way of similarity with behaviorally relevant 

objects such as eggs in mouthbrooding African cichlids (Amcoff et al., 2013) or eyes in the 

cichlid oscar (Astronotus ocellatus) (Beeching, 1993). They can emphasize or exaggerate a 

signaler's body size, e.g., through extended fin appendages in male swordtails 

(Xiphophorus hellerii) (Rosenthal and Evans, 1998). Red coloration often results from ca-

rotenoid pigments that animals can only acquire through ingestion. Thus the intensity of 

red signals provides reliable information concerning the nutritional state and thereby the 

quality of a sender (Sefc et al., 2014). Negative correlations between male red coloration 

and parasite infestation have been observed in the Lake Victoria cichlid (Pundamilia 

nyrerei) (Maan et al., 2006) and the three-spined stickleback (Gasterosteus aculeatus) 

(Bakker and Milinski, 1993). 
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A particular case of visual communication exists among mesopelagic lanternfishes 

(Myctophidae). These animals generate bioluminescent light through ventral photophores 

for counter-illumination that provides camouflage against downwelling light in their oth-

erwise featureless habitat. However, they also produce bioluminescent signals with lateral 

photophores that may serve in species recognition and could give an explanation for spe-

ciation via sexual selection in a deep-sea habitat devoid of obvious reproductive barriers 

(Davis et al., 2014). 

Mormyrids are rather inconspicuous regarding coloration, and their visual system is as-

sumed to be reduced in favor of the electrosensory system (Wullimann and Northcutt, 

1990). Consistent with their nocturnal lifestyle, mormyrids are adapted to dim light condi-

tions and posses a grouped retina that provides a relatively poor spatial resolution 

(Landsberger et al., 2008). However, the ability of Gnathonemus petersii to discriminate 

visual patterns under low light conditions has been demonstrated (Schuster and Amtsfeld, 

2002) and vision was shown to play a role during various behaviors including social inter-

actions among conspecifics (Moller et al., 1982). It has been suggested that the character-

istic vertical white stripes of G. petersii serve a function in group cohesion (Moller, 2002), 

but other species, such as M. rume, lack such characteristics altogether. Whether the few 

visually detectable sexual dimorphic traits, such as anal fin expansion in mature males of 

M. rume proboscirostris, have any bearing on communication, or merely functional implica-

tions during spawning, has never been addressed experimentally (Brown et al., 1996; 

Moller et al., 2004). Consequently, electrosensory discrimination of EOD-waveforms has 

taken over as the sensory basis for species recognition and mate choice in mormyrids 

(Carlson and Gallant, 2013). However, the characteristic subdivision of the nucleus 

exterolateralis that allows such waveform discriminations (see section 1.3) is absent in 

most members of the mormyrid subfamily Petrocephalinae (Carlson et al., 2011). In these 

species, eye size and the optic tectum are enlarged, and it has been suggested that vision 

may play an important role in their social behavior due to their inability to discriminate 

EODs based on signal waveform (Stevens et al., 2013). 

3.3.2 Acoustic communication 

Unlike terrestrial vertebrates, who rely on periodic pressure differences in the air for au-

ditory perception, fish hearing relies on the linear acceleration that is caused by relative 

movements between a relatively inert otolith organ with high density, and a sensory 

membrane containing directionally sensitive hair cells. This system makes fishes highly 

sensitive to low-frequency acoustic signals and infrasound (Sand and Karlsen, 2000). Fish-

es that are considered to be 'hearing specialists' have additionally developed accessory 
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structures, such as Weberian ossicles, which enhance their hearing capabilities and extend 

the sensitivity of the auditory system to higher frequencies by connecting the inner ear to 

the gas-filled and therefore compressible swim bladder (Popper and Lu, 2000). The pri-

mary function of hearing in fishes may be to monitor the 'acoustic landscape' for objects 

like predators or prey, as well as for cues for orientation and navigation (Popper and Fay, 

1993; Sand and Karlsen, 2000). Still, many species have developed mechanisms to pro-

duce sound for social communication, mainly in the context of either agonistic interac-

tions, courtship, or distress (Ladich, 2004). 

Prominent examples of vocalizing fishes are the croaking gouramis of the genus Trichopsis, 

who produce double pulses of 'croaks' during male agonistic encounters and courtship by 

using modified pectoral fins (Ladich et al., 1992). Male toadfishes, like the midshipman 

(Porichthys notatus), use sonic swim bladder muscles to produce continuous 'hum' sounds 

at night to advertise for females (Feng and Bass, 2016). In Nile tilapia (Oreochromis 

niloticus), both males and females vocalize while guarding their territory (Longrie et al., 

2013). In some cichlids, vocalizations, in addition to visual signaling, may provide species 

information during multimodal courtship displays (Escobar-Camacho and Carleton, 2015). 

In general, associations between signal parameters, such as dominant frequency and body 

mass or size of a sender, may provide fertile females or rivaling males with reliable infor-

mation about the quality of a potential mate or opponent (Bertucci et al., 2012; Ladich 

et al., 1992). A particular case of sound production occurs in herring (Clupea pallasii and 

C. harengus), who generate fast, repetitive tick sounds through gas-bubble expulsion from 

the anal duct. This has been hypothesized to play a role as contact signals for the media-

tion of social cohesion during shoaling at night (Wilson et al., 2004). 

Mormyrids are hearing specialists that are unique in having swim bladder-derived, gas-

filled sacs associated with their inner ear (Stipetić, 1939). This adaptation makes 

Gnathonemus petersii sensitive to frequencies of up to at least 2.5 kHz (McCormick and 

Popper, 1984; Werns and Howland, 1976). Gnathonemus also vocalizes by generating 

acoustic 'click' sounds during agonistic interactions with conspecifics (Rigley and 

Marshall, 1973). Characteristic tonal 'hoot' vocalizations, emitted during agonistic territo-

rial interactions, were reported for mormyrids of the genera Marcusenius (Lamml and 

Kramer, 2007) and Petrocephalus (Crawford, 1997; Lamml and Kramer, 2008). 

An especially prominent role play the vocalizations of 'strongly acoustic' mormyrid spe-

cies of the genus Pollimyrus during social communication (Crawford, 1997). While 'click' 

sounds ('pops') and 'hoots' were observed during agonistic encounters of both sexes in 

Pollimyrus, their vocal repertoire also includes sounds that are generated by males during 
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courtship behavior (Crawford et al., 1986). Males produce alternations of characteristic 

'grunts' and 'moans' while courting females that enter their territory, as well as 'growls' in 

response leaving females and while patrolling the territory (Crawford, 1997; Crawford 

et al., 1986). Male courtship signals are generated by a drumming muscle that connects to 

the swim bladder (Crawford and Huang, 1999) and are elicited by female inter-discharge 

interval patterns (Crawford, 1991). Qualitative variations in vocalization between individ-

uals may provide information that influences a female's decision to spawn (Crawford, 

1997), and differences between the vocalizations of closely related species suggest that 

vocalizations may enable species recognition (Lamml and Kramer, 2006), a task that is 

usually attributed to EOD-waveform discrimination in mormyrids. The communication of 

identity information may be assumed by vocalizations in Pollimyrus because the duration 

of their EOD might be too short to mediate this task (Crawford and Huang, 1999). 

3.3.3 Chemical communication 

Chemical compounds are behaviorally highly relevant for fishes during food detection and 

predator avoidance. But chemicals are also involved in social behaviors such as individual, 

sex and species recognition, territorial interactions, courtship displays and mating, parent-

offspring interactions, schooling, and migration (Liley, 1982). The behavioral significance 

of chemical cues was highlighted by von Frisch's (1941) discovery that chemicals released 

from the skin of injured minnows (Phoxinus phoxinus) serve as an alarm substance for 

conspecifics and evoke predator avoidance responses. Behaviors mediated by the olfacto-

ry perception of this 'Schreckstoff' include erratic swimming movements, increased shoal-

ing tendencies, bottom-dwelling, hiding, and fleeing (von Frisch, 1941). As with many 

chemosensory guided behaviors, the question whether this reaction represents a true sig-

naling system, evolved to the net-benefit of senders and receivers, or constitutes merely 

an adaptation to environmental cues by receivers, remains debated (Bradbury and 

Vehrencamp, 2011; Liley, 1982). 

Olfaction relies on specific binding of odor molecules to the odorant receptors of primary 

sensory neurons in the olfactory epithelium (Buck and Axel, 1991). The olfactory system 

of fish is morphologically and functionally subdivided to detect information relevant to all 

vital aspects of fish behavior. In the crucian carp (Carassius carassius), microvillous cells 

detect food odorants, ciliated cells mediate the alarm response, and sensory crypt cells 

respond to sex pheromones, while the primary sensory afferents of all of these morpho-

logically different cell types project to defined regions of the olfactory bulb (Hamdani and 

Døving, 2007). This functional organization is maintained by fibers of the secondary mitral 

cells, which form distinct bundles of the olfactory tract that connects the olfactory bulb to 
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the telencephalon. Stimulation of individual bundles of the olfactory tract in Atlantic cod 

(Gadus morhua) induced behavioral responses typical of feeding, alarm reaction, or court-

ship, thus demonstrating the close connection between olfactory sensory perception and 

adaptive behavioral reactions in response to odorants (Døving and Selset, 1980). 

Pheromones play an essential role in social behavior and reproduction of fishes. Numer-

ous studies with various species have demonstrated the capability of male fish to identify 

receptive females based on olfactory perception (Liley, 1982). The abundance of sensory 

crypt cells, which detect sex pheromones in crucian carp, varies seasonally and peaks dur-

ing the spawning season (Hamdani et al., 2008). Female goldfish (Carassius auratus) re-

lease steroid-derived maturation hormones as pre-ovulatory sex pheromones. These hor-

mones induce sperm maturation in males and synchronize spawning, which is ultimately 

stimulated by the receptive female's release of prostaglandin derived pheromones 

(Sorensen, 1992). Male goldfish respond with different behavior patterns to the distinct 

components of female sex pheromones (Poling et al., 2001). In the olfactory bulb of males, 

but not females, of the closely related crucian carp, single neurons were shown to respond 

selectively to individual pheromones. This demonstrates how precisely the reproductive 

behavior of these fish is tuned to olfactory signals (Lastein et al., 2006). 

Pheromones not only provide cues regarding reproductive state, but they can also signal 

an individual's social status and thereby provide information about dominance relation-

ships or the quality of a potential mate. For instance, male Mozambique tilapia 

(Oreochromis mossambicus) excrete urine pulses with odorant signals during aggressive 

interactions. This allows them to signal dominance to other males in social hierarchies 

(Barata et al., 2007) and to advertise to females, who prefer dominant males for spawning 

(Barata et al., 2008). Odorants allow fish to identify members of their species (Plenderleith 

et al., 2005), discriminate kin from unrelated conspecifics (Thünken et al., 2014), and even 

recognize individuals (Keller-Costa et al., 2015). Such abilities are of particular importance 

for parent-offspring relationships, for instance in cichlids that engage in parental care 

(Keller-Costa et al., 2015). 

Outside the reproductive context, the behavioral preference that many fishes exhibit to-

wards water that contained conspecifics suggests that chemical cues play a role in social 

cohesion, schooling, and migration (Liley, 1982). Anadromous salmonids imprint on the 

odor composition of their natal river habitat (Scholz et al., 1976) and use olfactory guid-

ance for homing in river systems (Wisby and Hasler, 1954) and potentially even at sea 

(Døving and Stabell, 2003). According to the pheromone hypothesis of migration 

(Nordeng, 1977), homing salmons could use odorant cues emitted by descending smolts to 
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guide them back to their spawning grounds. Possible odorant cues to mediate such behav-

ior are bile acids, which are released by fish into the water. These chemicals are structural-

ly highly diverse and evoke responses of the salmonid olfactory system at extremely low 

concentrations (Døving et al., 1980). This mechanism has been shown to underlie the 

anadromous migrations of sea lamprey (Petromyzon marinus) (Sorensen et al., 2005). 

In addition to the olfactory sense, the gustatory system, which is responsible for taste per-

ception, also processes chemical information. In contrast to olfaction, the sense of taste is a 

close-range sensory system that mainly evaluates food items, which have been detected or 

tracked using far-range sensory systems like vision or olfaction (Valentinčič, 2004). It is 

mediated by taste buds, which are sensory organs containing several secondary chemo-

sensitive receptor cells (Hansen and Reutter, 2004). Communication is not a primary func-

tion of the gustatory sense. However, in many fishes, taste buds are not exclusively devel-

oped within the oral cavity. They are also distributed externally on the body surface 

(Gomahr et al., 1992), as well as on appendages like the barbels of catfish (Finger and 

Böttger, 1990) or the elongated pelvic fins of anabantid Trichogaster (Scharrer et al., 1947; 

Weber, 1963). Such appendages may be used for food detection in combination with tac-

tile cues (Bisazza et al., 2001; Kasumyan, 2011; Weber, 1963), but especially for the elon-

gated pelvic fins of the Anabantidae, social functions through taste perception have been 

proposed (Picciolo, 1964; Vierke, 1978). However, a negative effect of the removal of these 

fins on mating success could not be confirmed (Pollak et al., 1978). Gustatory cues are 

conceivably also important for parent-offspring relationships in mouthbrooding species 

(Liley, 1982). 

The chemoreceptive sensory systems of mormyrids have hardly been investigated (Moller, 

2002; Schuster, 2006). Chemosensory information has been shown to play a role in food 

detection in Gnathonemus petersii (von der Emde and Bleckmann, 1998), and odorants 

derived from food items like tubifex worms and chironomid larvae caused an increase in 

EOD-frequency (Jäger, 1974). However, the specialized cells that contain the alarm sub-

stance in many fishes are absent from the skin of mormyrids (Pfeiffer, 1977), and social 

responses to odorants have not been investigated. 

3.3.4 Communication through tactile stimuli and the lateral line 

At close distances, fishes can obtain mechanosensory information about their environ-

ment through touch perception and the mechanosensory lateral line system. The lateral 

line consists of superficial neuromasts for the detection of weak water movements, and of 

canal neuromasts that react to small pressure differences between adjacent pores of the 

lateral line canals (Bleckmann and Zelick, 2009). The lateral line enables behaviors such as 
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rheotactic orientation to water currents (Montgomery et al., 1997), prey detection by fol-

lowing hydrodynamic trails (Pohlmann et al., 2001), and, in the case of blind Mexican 

cavefish (Astayanax fasciatus), the detection of objects in an active sensing process (von 

Campenhausen et al., 1981). The lateral line also mediates communicative functions, for 

instance for the synchronization of spawning, during aggressive behavior, and for the co-

ordination of schooling fish (Montgomery et al., 2014). In cichlids, male quivering displays 

during courtship may stimulate the superficial neuromasts of the female's lateral line 

(Escobar-Camacho and Carleton, 2015) and vibrational signals exchanged between the 

sexes were shown to induce spawning in red salmon (Oncorhynchus nerka) (Satou et al., 

1994). During agonistic lateral display behavior of the cichlid Nannacara anomala, con-

testing fish generate water movements directed at each other. The mechanosensory lat-

eral line senses the strength of the resulting water displacements and thereby samples 

information to assess the opponent's fighting ability. This information enables contestants 

to decide whether or not to escalate the fight to a more aggressive level (Butler and 

Maruska, 2016; Enquist et al., 1990). 

Tactile perception in fishes is mediated by free nerve endings and Merkel cells, but tactile 

communication appears to be relatively uncommon (Kasumyan, 2011). A haptic function 

similar to that of the fingers of primates or mammalian whiskers has been proposed for 

the Schnauzenorgan of G. petersii based on the trigeminal innervation of this characteristic 

chin appendage (Amey-Özel et al., 2015). 

Even though all types of electroreceptors have their origin in the lateral line system, both 

the electrosensory and the mechanosensory lateral line are present in weakly electric 

fishes (Szabo, 1965). However, in the mormyrid G. petersii, the peripheral sensory struc-

tures and receptors of the mechanosensory lateral line are reduced in comparison to other 

teleosts (Schumacher, 2017). Nevertheless, parallel and antiparallel displays are frequent-

ly observed in contesting mormyrids (Bell et al., 1974; Crockett, 1986; Terleph, 2004) and 

are likely to generate mechanosensory information that helps to assess opponents. In ju-

venile Mormyrus rume proboscirostris, mechanosensory information obtained through 

touch or the lateral line appears to be important for group cohesion (Khait et al., 2009). 

3.4 Electrocommunication  

Electrocommunication occurs in both mormyriform and gymnotiform weakly electric fish, 

as well as in electrogenic skates (Rajidae) (Bratton and Ayers, 1987) and catfish 

(Synodontis) (Baron et al., 1994). 
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3.4.1 Communication via pulse-type electric signals in Gymnotiformes 

In Gymnotiformes, both pulse-type and wave-type species have signaling strategies to 

communicate electrically in addition to active electrolocation. Black-Cleworth (1970) ana-

lyzed social interactions in pulse-type Gymnotus carapo and established that unmodified 

discharge production serves as an identification signal that indicates species, location, and 

size of the sender. She also described discharge modifications such as SIDs (sharp increas-

es decreases in EOD rate) that she interpreted as aggressive threat signals. Discharge ces-

sations were associated with submissive behavior and were interpreted as appeasement 

signals of subdominant individuals (Black-Cleworth, 1970). The capability of G. carapo to 

discriminate individuals based on the waveform of their EOD could be demonstrated in 

electric playback experiments (McGregor and Westby, 1992) and the function of SIDs as 

aggressive threat signals was confirmed for Gymnotus omarorum (Batista et al., 2012). 

Additionally, Gymnotus produces 'chirps,' which are noisy, high-frequency electric field 

modulations with an amplitude much smaller than that of the regular EOD. These chirps 

indicated subsequent submission in competitive contests in G. carapo (Guariento et al., 

2016). In G. omarorum, chirps were emitted by the subordinate individual after a dyadic 

contest was resolved. They were proposed to be a more unambiguous signal of submission 

than complete discharge cessations because the latter might also be interpreted as electric 

hiding attempts (Batista et al., 2012). Once the dominance relationship between two indi-

viduals was established, the subordinate individual adopted a higher average discharge 

rate, while that of the dominant individual remained unchanged (Guariento et al., 2016). 

In addition, dominant individuals engage in a jamming avoidance strategy that benefits 

their electrolocation ability while tending to jam that of the subordinate individual 

(Westby, 1979). 

3.4.2 Communication via wave-type electric signals in Gymnotiformes 

In contrast to pulse-type fish, wave-type species cannot dynamically modify their dis-

charge behavior by context-dependent variation of IDI-duration. Consequently, wave-type 

weakly electric fish can be characterized by their discharge frequency, which is remarka-

bly constant in individuals and varies between individuals within the frequency range 

characteristic of a given species. Additionally, there is a large variety of species-specific 

EOD-waveforms (Crampton and Albert, 2006), which fish could use for species discrimina-

tion during electrocommunication (Fugère and Krahe, 2010). Eigenmannia lineata can 

discriminate male and female electric signals based on the waveform of the EOD (Kramer 

and Otto, 1988). However, Fugère and Krahe (2010) found the production of communica-

tion signals in brown ghost knifefish (Apteronotus leptorhynchus) to be affected only by 
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signals within the species-specific frequency range, but independent of the EOD-waveform 

used to generate that frequency. 

The performance of active electrolocation in wave-type weakly electric fish is impaired by 

amplitude modulations that are caused by the interference of EODs with similar discharge 

frequency. Wave-type fish like Eigenmannia, therefore, show a characteristic jamming 

avoidance response (JAR) that maximizes the frequency difference between their own and 

a nearby conspecific's discharge frequency (Heiligenberg, 1980; Watanabe and Takeda, 

1963). Characteristic asymmetries in JAR behavior of male and female, as well as adult and 

juvenile Eigenmannia, led Kramer (1987) to propose that the JAR may have implications 

for social communication. Jamming may, however, also occur intentionally, like in 

Apteronotus leptorhynchus, where individuals with lower discharge rates may rise their 

EOD frequency to actively jam an opponent during aggressive encounters (Tallarovic and 

Zakon, 2005). 

In several species, dominance relationships correlate with discharge frequency, and males 

and females may utilize different frequency ranges. In Apteronotus leptorhynchus, males 

discharge at higher rates than females, and social dominance among males is positively 

correlated with discharge frequency (Zakon et al., 2002). On the contrary in Eigenmannia 

virescence, dominant males use the lowest frequencies, while dominant females have the 

highest discharge rates (Hagedorn and Heiligenberg, 1985). The most prominent social 

signals generated by wave-type fish are 'chirps,' which are transient increases in EOD-

frequency that can be classified according to their duration and to the extent of their fre-

quency excursion. Short duration chirps are aggressive signals that only last about 20 ms, 

whereas long duration chirps can last hundreds of milliseconds and serve as courtship 

signals (Zakon et al., 2002). Other signaling behaviors include frequency modulations and 

complete interruptions of the EOD (Hagedorn and Heiligenberg, 1985; Zakon et al., 2002). 

Based on the observation that the winners of dyadic contests between male Apteronotus 

leptorhynchus emitted more 'chirps,' while losers produced more gradual frequency rises, 

Triefenbach and Zakon (2008) suggested that these displays are conventional signals in 

this species, and that they are used during sequential assessment by opponents competing 

over a resource. Outside an aggressive context, 'chirping' is also engaged in by male and 

female wave-type weakly electric fish during courtship (Henninger et al., 2017) and is of 

particular importance to initiate spawning (Hagedorn and Heiligenberg, 1985). 

3.5 Electrocommunication in Mormyriformes 

Among the Mormyriformes, the sole representative of the Gymnarchidae, Gymnarchus 

niloticus, is the only African wave-type species of weakly electric fish. Gymnarchus uses 
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short interruptions of its discharge activity to signal aggression, while long cessations in-

dicate appeasement by submissive individuals (Hopkins, 1974). Characteristic 'singing' 

displays, which manifest in regular frequency modulations of variable duration, were de-

scribed by Bullock et al. (1975), who were, however, reluctant to conclude on social signal-

ing behavior, because 'singing' occurred in solitary individuals. 

3.5.1 Communication via EOD-waveform information in mormyrids 

All mormyrids are pulse-type fish and can potentially use waveform information of the 

EOD, as well as information encoded in the temporal sequence of inter-discharge intervals 

(IDI) for electrocommunication. The members of most mormyrid lineages can discrimi-

nate EOD-waveforms with a submillisecond temporal resolution, and the peripheral and 

central mechanisms that underlie this capability are relatively well understood (Baker 

et al., 2013a). On shorter timescales, EOD-waveforms remain constant and provide identi-

ty information about a sender on several levels from species identification (Feulner et al., 

2009a; Hopkins and Bass, 1981) to individual recognition (Graff and Kramer, 1992; 

Hanika and Kramer, 2005; Paintner and Kramer, 2003). Mormyrid EODs vary in duration 

from 85 µs in Pollimyrus (Crawford, 1992) to 8 ms in Paramormyrops gabonensis and are 

characteristic for a given species with respect to shape, the number of positive and nega-

tive phases, as well as their polarity (Hopkins, 1980). Identity information conveyed via 

the waveform of the EOD is thus considered to be one of the main factors responsible for 

the species radiation based on sexual selection among mormyrids (Arnegard et al., 2010a; 

Feulner et al., 2009b). In many species, EOD-waveforms are also sexually dimorphic, at 

least during the breeding season, when especially male signals are affected by hormonally 

induced changes of the electric organ (Bass, 1986; Bass and Hopkins, 1983). In species 

with sexually dimorphic signals, male EODs tend to be of longer duration than those of 

females, thus providing information about a sender's sex and reproductive state (Hopkins, 

1999). EOD-duration is positively correlated and varies dynamically with social domi-

nance and may thus communicate the relative status of an individual within a social con-

text (Carlson et al., 2000; Terleph and Moller, 2003). Again, such changes appear to be 

under hormonal control (Carlson et al., 2000). The lower frequency components of longer 

EODs go hand in hand with higher energetic costs (Hopkins, 1999) and a higher risk of 

predation by electroreceptive predators such as catfish (Hanika and Kramer, 2000). The 

costs that increased predation imposes on males with longer EODs make this trait a relia-

ble indicator of a signaler's quality that can be used by females for mate selection 

(Machnik and Kramer, 2008a). 
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Apart from waveform information, the amplitude of the EOD may provide reliable infor-

mation about a sender. Because EOD-amplitude correlates positively with a fish's size, 

anti-parallel displays, during which contestants mutually position their electric organ 

close to the opponents head, may be used to determine relative fighting ability based on 

the strength of the generated signal (Bell et al., 1974; Crockett, 1986; Terleph, 2004; 

Terleph and Moller, 2003). 

3.5.2 Communication via IDI-variation in mormyrids  

The second way for mormyrids to engage in electrocommunication is to encode infor-

mation into the temporal sequence of their discharges by varying IDI-duration. In contrast 

to the constant nature of the EOD itself, the resulting discharge patterns are highly varia-

ble and depend heavily on the current behavior of the fish.  

Vast amounts of electrical signaling behaviors have been documented and can be associat-

ed with context-specific behavior in mormyrids. Such signaling patterns can be classified 

according to the behavioral contexts in which they are observed, as well as by the strate-

gies the fish use to encode information into communication sequences. These strategies 

can be based on general discharge frequency and overall distribution parameters, on dis-

tinct and stereotypical discharge patterns, as well as on interactive signaling that depends 

on the discharge activity of other individuals. The use of such signaling strategies by 

Mormyrus rume will be the subject of chapters 4 and 5. 

Resting individuals consistently discharge at lower rates compared to foraging or swim-

ming ones (Bauer, 1974; Gebhardt et al., 2012a; Gebhardt et al., 2012b; Sänger, 1967), 

potentially allowing eavesdropping individuals to monitor the ongoing behavior of nearby 

conspecifics. Additionally, regularizations of an individual's IDI-pattern occur frequently 

in response to electric signals (Moller, 1970). The transition from variable to regular in-

tervals may be a means to uncloak electrical communication signals from the random 

background noise of lightning in the tropics (Hopkins, 1973). Regularized discharge pat-

terns are reliably observed during aggressive interactions in Gnathonemus petersii (Bell 

et al., 1974; Terleph, 2004) and are part of the courtship displays of female Pollimyrus 

(Baier and Kramer, 2007) and Marcusenius macrolepidotus (Werneyer and Kramer, 2005). 

The significance of discharge regularizations during electrocommunication and active 

electrolocation in Mormyrus rume will be investigated and discussed in chapter 4, and a 

potential function for mutual assessment during agonistic encounters will be considered 

in chapter 6. 



3. INTRODUCTION TO ANIMAL COMMUNICATION 
 

42 
 

Distinct discharge patterns occur in a variety of behavioral contexts. Overt aggression dur-

ing agonistic interactions is often expressed through head butts and chasing. In several 

species, these agonistic behaviors are accompanied by discharge accelerations, which are 

often preceded by short discharge cessations (Bell et al., 1974; Carlson and Hopkins, 

2004b; Gebhardt et al., 2012a; Kramer and Bauer, 1976; Terleph, 2004). These discharge 

patterns can, therefore, be classified as aggressive threat signals and seem to be mutually 

understood by different species of mormyrids (Kramer, 1976b). 

Outside an overtly aggressive context, Brienomyrus brachyistius generates 'scallops,' which 

are brief accelerations of only 8–12 EODs. They likely function as territorial dominance 

signals and potentially even provide an individual signature of the sender (Baker et al., 

2016; Carlson and Hopkins, 2004b). Similarly, male Pollimyrus emit highly regular double 

pulses, i.e., alternating long and short IDIs, as threat signals during visitations of their 

nests (Baier and Kramer, 2007). M. rume frequently produces such double pulses in re-

sponse to electrical signals (Gebhardt, 2012), and it will be argued in chapter 4 that double 

pulses may serve as a conventional signal that expresses aggressive motivation in this 

species. 

Characteristic electrical display patterns are especially prominent in the context of repro-

duction. Male Brienomyrus brachyistius produce 'rasps' during the breeding season to at-

tract females into their territory (Carlson and Hopkins, 2004b; Hopkins and Bass, 1981). 

After prolonged courtship interactions, partners engage in 'rasp matching' and produce 

'creaks' exclusively during spawning (Wong and Hopkins, 2007). Electric signaling dis-

plays during courtship and spawning were also described for Marcusenius macrolepidotus 

(Werneyer and Kramer, 2005) and several members of the genus Pollimyrus, where they 

occurred in addition to acoustic courtship displays (Baier and Kramer, 2007; Bratton and 

Kramer, 1989). 

Electric signaling has also been associated with flight in attacked individuals (Kramer, 

1976c), and especially animals that turn out to be submissive often stop discharging for 

extended periods of time (Bell et al., 1974; Wong and Hopkins, 2007). The resulting 'social 

silence' could constitute an attempt to hide electrically, but may also allow silent individu-

als to 'listen in' on a conspecific's signaling (Moller et al., 1989). 

Interactive discharge sequences can lead to discharge synchronizations between individu-

als that are mediated by the mormyrid echo response, and to episodes of fixed-order sig-

naling, during which individuals of a group discharge in a specific sequence after each oth-

er for some time (Gebhardt et al., 2012a; Gebhardt et al., 2012b). The echo response is 
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characterized by a very brief, fixed latency of only a few milliseconds between the signals 

of two fish (Kramer, 1974; Russell et al., 1974). Interactive signaling via artificially gener-

ated echo responses will be the subject of chapter 5. Although echoing was initially pro-

posed to be a jamming avoidance response (Heiligenberg, 1976), communicative functions 

of this peculiar electromotor behavior will be considered, and a potential role of the echo 

response as a strategy that allows addressing specific individuals in a group will be pro-

posed (see also chapter 11). 

Compared to the information conveyed by the waveform of the EOD, the adaptive nature 

of specific IDI-patterns for electrocommunication is less well understood. This lack of un-

derstanding is in part due to the dual function of electrical signaling during active 

electrolocation and electrocommunication, which makes it difficult, if not impossible, to 

unequivocally assign certain discharge characteristics exclusively to either of the two 

functions. This problem will be addressed in chapter 4. For investigations aiming beyond a 

mere description of signaling behavior in animals, two approaches have proven to be val-

uable for experimental testing of hypotheses on animal communication. Communication 

strategies for conflict resolution and hierarchy formation can be investigated by staging 

dyadic contests over an indivisible resource and subsequently interpreting signaling dis-

plays with respect to the outcome of the contest (Hardy and Briffa, 2013). However, the 

game-theoretical considerations that proved to be valuable tools to explain the evolution 

and adaptive nature of signaling systems in other animals have hardly been applied to the 

study of IDI-based communication systems in mormyrids (see Terleph (2004) for an ex-

ception). 

The second strategy is to use playback of communication signals and observe the behav-

ioral responses of focal individuals to artificial signals (McGregor, 2000). Playback has 

been particularly useful to uncover communication properties of acoustic signal displays 

such as vocal duets in bird song (Douglas and Mennill, 2010) and the advertisement calls 

of amphibians (Gerhardt, 1994), but can in principle be generated for any sensory modali-

ty. Electrical playbacks have been used in many studies to investigate behavioral respons-

es to the properties of EOD-waveform and IDI-pattern in both mormyrid and gymnotiform 

weakly electric fish. Playback studies that specifically address potential information con-

tent in mormyrid IDI-sequences, and systematically compare behavioral responses to arti-

ficial sequences, are relatively rare. Electrical playbacks were used to investigate the ca-

pability of mormyrids to recognize species-specific discharge patterns (Hopkins, 1981b; 

Kramer, 1990; Kramer and Kuhn, 1994; Teyssedre and Serrier, 1986), a sender's sex 

(Crawford, 1991), and information concerning its behavioral state (Gebhardt, 2012; 
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Kramer, 1979). Other playback studies addressed female preference for behaviorally rele-

vant discharge patterns (Machnik and Kramer, 2008b; 2011) and the precision with which 

fish can resolve the temporal structure of specific communication patterns (Baker et al., 

2016). Chapter 4 will deal with static playbacks reproducing discharge sequences ob-

served in freely behaving Mormyrus rume. The effect of interactivity in a playback se-

quence, achieved by mimicking the mormyrid echo response, will be the subject of chap-

ter 5. 

One advantage of playback experiments is that they allow the systematic manipulation of 

communication signals, which can then be tested under standardized experimental condi-

tions. A particular difficulty when investigating social communication in weakly electric 

fish is to distinguish EODs of more than one freely moving individual (Bell et al., 1974; 

Gebhardt et al., 2012a; Guariento et al., 2016; Jun et al., 2013; Wong and Hopkins, 2007). 

The use of electrical playback signals can circumvent this problem because the playback 

sequence is known to the experimenter. However, communication displays that are based 

on interactivity, or involve senses other than the electrosensory modality, may not be 

faithfully displayed in response to a stationary electric dipole emitting a static playback 

sequence. In this thesis, a solution to this problem is approached by using mobile dummy 

fish as a source of electrical playback sequences of communication signals. 
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4. Project 1: Social Interactions between Live and Artificial 

Weakly Electric Fish: Electrocommunication and Locomotor 

Behavior of Mormyrus rume towards a Mobile Dummy Fish 
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4.1 Introduction 

Communication is an integral component in coordinating interactions between individu-

als, spanning a wide range of social contexts from agonistic behavior to the formation of 

groups and collective decision making. Communication systems have developed within all 

of the main sensory modalities used by animals including active sensory systems, such as 

sonar in bats (Altringham and Fenton, 2003) and cetaceans (Tyack, 2000), and the percep-

tion of electrostatic fields in weakly electric fishes (Hopkins, 1974). 

Mormyrid weakly electric fish have evolved a unique electrosensory capability: by emit-

ting pulse-type electric organ discharges (EOD) they use the same signals both for actively 

probing their environment, i.e. active electrolocation (von der Emde, 1999; von der Emde 

and Fetz, 2007), and for communication with conspecifics (Hopkins, 1988). Active electro-

location is based on the perception of these self-generated signals through mormyromast 

electroreceptor organs (Bell et al., 1989; von der Emde et al., 2008), which are specialized 

for detecting object evoked amplitude and waveform modulations of the local EODs and 

are distributed over large areas of the animals’ skin (Harder, 1968; Hollmann et al., 2008). 

Electrocommunication is mediated by a different type of electroreceptor organ, the so-

called knollenorgans (Derbin and Szabo, 1968), which are time-coders that respond very 

sensitively to the EODs of other electric fish. The input of knollenorgans to the brain is 

inhibited centrally by a corollary discharge signal during the production of the self-

generated EOD (Bell and Grant, 1989), demonstrating that the knollenorgan pathway me-

diates electrocommunication between individuals (Baker et al., 2013a). The EOD itself is 

an all or nothing signal, whose waveform reveals information about the signaler’s identity, 

such as species and gender (Hopkins, 1981b), its reproductive state (Bass and Hopkins, 

1983) and relative rank in a social hierarchy (Carlson et al., 2000). However, the EOD-

waveform remains stable on a short to medium duration time scale. In contrast, the inter-

discharge intervals (IDI) are highly variable in duration, and their temporal sequence can 

be related to an animal’s current behavioral state (Carlson, 2002a). 

Social interactions among mormyrids are accompanied by stereotypical motor patterns 

(Crockett, 1986), many of which are reminiscent or even identical to those observed dur-

ing active electrolocation (Toerring and Belbenoit, 1979). Activity-dependent EOD produc-

tion may vary in overall frequency, with active animals usually discharging at higher rates 

compared to resting ones (Bauer, 1974; Gebhardt et al., 2012a; Moller, 1970). In addition, 

regularizations of interval distributions (Moller, 1970) occur in the context of active 

electrolocation (von der Emde, 1992) and during social encounters (Moller and Bauer, 

1973). Apart from general variations in overall discharge rate, distinctive temporal IDI-
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patterns, occurring in specific behavioral situations, have been described in several 

mormyrid species. These include accelerations during aggressive encounters (Bell et al., 

1974; Carlson and Hopkins, 2004b; Kramer, 1976a), double-pulse patterns during territo-

rial behavior (Baier and Kramer, 2007), as well as 'rasps,' which serve as courtship signals 

(Hopkins and Bass, 1981). Furthermore, electrocommunication can also result from inter-

active discharge patterns. In certain situations, mormyrids tend to respond to the signals 

of a conspecific by discharging at a preferred latency of a few milliseconds (Kramer, 1974; 

Russell et al., 1974; Schuster, 2001). This so-called 'echo response' has been assigned a 

function selectively in social contexts (Arnegard and Carlson, 2005; Lücker and Kramer, 

1981) and active sensing (Heiligenberg, 1976), and although its occurrence is very stereo-

typical, its functional implications are still unresolved. Prolonged periods of time-locked 

discharge activity were shown to lead to sequences of mutual EOD synchronizations that 

can switch between individuals within a group (Gebhardt et al., 2012b). 

Since the emergence of classical ethology as a research discipline, so-called ‘dummies’ 

have been widely used in behavioral biology to identify the essential components of vari-

ous releasing mechanisms that can trigger stereotypical behavior patterns (Tinbergen, 

1948). In contrast to using living animals as a stimulus, such an approach guarantees re-

peatability and allows for a standardized experimental protocol. Analogous to the study of 

acoustic communication, playbacks of electric signals have, e.g., been used to relate EOD 

properties to male fighting potential (Hanika and Kramer, 2005), mate recognition 

(Feulner et al., 2009a), and to decode the communicative value associated with stereotypi-

cal IDI-sequences (Kramer, 1979; Kramer and Kuhn, 1994; Moller, 1970; Teyssedre and 

Serrier, 1986). 

Reproducing central features of living conspecifics by constructing biomimetic fish dum-

mies has made it possible to investigate personality traits and individual preferences in a 

variety of fish species (Abaid et al., 2012; Abaid et al., 2013; Donati et al., 2016; Kopman 

et al., 2013; Marras and Porfiri, 2012; Phamduy et al., 2014; Ruberto et al., 2017). On a 

group level, mobile fish dummies have been used to study cohesion and collective decision 

making in small shoals of three-spined sticklebacks (Faria et al., 2010; Ward et al., 2012) 

and zebrafish (Butail et al., 2013), as well as dynamic interactions in shoals of guppies 

(Landgraf et al., 2014). Weakly electric fish may be particularly suited for studying social 

behavior in such an approach since a central feature of their communication—the emis-

sion of electrical signals—is easily manipulated by electrical playback experiments (Donati 

et al., 2016; Worm et al., 2014). 
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By presenting a mobile dummy fish, which is capable of producing EOD playbacks with 

naturally occurring or artificially generated IDI-sequences of different temporal patterns 

and overall frequencies to single individuals of the weakly electric fish Mormyrus rume, 

this study combines classical dummy experiments with the active production of communi-

cation signals in a standardized experimental setup. In a previous study, (see chapter 8) 

evidence was provided that the presence of electrical playback signals is the primary de-

terminant for the initiation of following-behavior when compared with visual cues and 

naturalistic motion patterns (Donati et al., 2016). Here, the question remained whether 

different IDI-sequences influence the likelihood of individual M. rume to follow after a mo-

bile dummy fish and whether such sequences can account for different interaction pat-

terns between the mobile dummy and a live fish, both electrically and with respect to 

locomotor behavior. It was hypothesized that if different IDI-sequences contain varying 

information, which is registered by the receiving animal, it would also be possible to ob-

serve different reactions of the fish to the mobile dummy during electrical signaling and by 

corresponding motor patterns. It was found that the animals' following-reactions in-

creased when the dummy emitted electrical playbacks, but this was largely independent of 

the particular playback pattern which was presented. However, certain stereotypical sig-

naling responses occurred in all cases and some electrical response patterns of the ani-

mals varied when the dummy produced different IDI-sequences. In particular, the number 

of double pulses and regularization displays depended on the playback pattern. Interest-

ingly, no adoption of the dummy's overall IDI-distribution was observed in response to 

playback of naturally occurring discharge patterns, whereas animals reliably time-locked 

their signaling activity to constant discharge frequencies in the range of the average IDI-

distributions that are usually observed during active behavior in M. rume. In addition, 

M. rume followed the dummy in a differing spatial relationship when playback was pre-

sented compared to an electrically silent control, and specific motor patterns were almost 

exclusively displayed in response to electric signal presentations. These findings support 

the idea that electrical IDI-patterns convey information and can play a role in spatial inter-

actions and social cohesion of individuals within groups of weakly electric fish (Khait et al., 

2009; Moller, 1976). 

 



II. PART ONE: COMMUNICATION 
 

49 
 

4.2 Materials and methods 

4.2.1 Animals 

Eight individuals of Mormyrus rume proboscirostris (standard length: 9.8–17.0 cm) were 

used in the experiments. Animals were bred in captivity (F. Kirschbaum, Humboldt Uni-

versity of Berlin) and were approximately six years of age at the time of experimentation. 

Sex (5 males, 3 females) was determined by anal fin morphology (Kirschbaum and 

Schugardt, 1995), but none of the animals had previously been in a reproductive state. 

Therefore, a slight possibility remains that some of the females were male, but did not yet 

express male characteristics. All fish were kept in pairs in tanks under tropical conditions 

(water temperature ~25°C, light/dark periods 12/12 h), where they were physically iso-

lated by a water permeable barrier, which prevented physical contact but allowed electro-

communication between the individuals. Food was provided in the form of defrosted 

chironomid larvae at least five times a week. 

Additional eight M. rume (standard length: 14–18 cm) were obtained from Aquarium 

Glaser GmbH (Rodgau, Germany) and were kept under the same conditions. These animals 

were used in a subset of experiments performed by Toma (2014b) that involved constant 

frequencies of electrical playback sequences. Sex and age of these animals were not de-

termined. 

All experiments were approved by the Ministry for Environment, Agriculture, Conserva-

tion and Consumer Protection of the State North Rhine-Westphalia (MULNV) and were 

carried out in accordance with the guidelines of German law, with the animal welfare 

regulations of the University of Bonn, and with the 'Guidelines for the treatment of animals 

in behavioural research and teaching' (ASAB, 2006). 

4.2.2 Experimental setup and electrical playback generation 

Animals were individually transferred to an experimental tank with a ground area of 

200 cm x 50 cm and a water level of 20 cm at least one day before testing. Water tempera-

ture and conductivity were kept constant at 25 ± 2°C and 100 ± 5 µS cm-1 during all exper-

iments. The experimental tank (Figure 4.1) was subdivided into a 90 cm long testing area 

and a 110 cm living area, which were connected through a gate that was 10 cm in width. 

The living area was subdivided into a sheltered area with hiding places in the rear and an 

open area in front of the gate. 
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Figure 4.1: Top view of the experimental tank. S) shelter, M) focal fish, TR) trigger electrodes, TT) ap-

proximation of the spatial trigger threshold, G) gate, Dstart) dummy fish at the start position, Dstop) dum-

my fish at the end position, TL) target line defining the following-criterion, Exa–Exb) Electrode pairs. Fig-

ure not drawn to scale. Base area: 200 cm x 50 cm. 

Playbacks consisted of IDI-sequences that had previously been recorded from freely be-

having M. rume. They were concatenated from a pre-recorded EOD waveform of a live 

specimen and presented at a sampling rate of 48 kHz. A total of seven playback sequences 

were used (compare Figure 4.4A–G and Table A.1 in Appendix A for more detailed descrip-

tions). Playbacks were characterized as either being based on patterns (P) or average fre-

quencies (F), with numbers indicating increasing IDI-duration. They were recorded from 

fish that were foraging (F1), hiding (F4) or displaying aggressive behavior in a group (PA) 

(Gebhardt et al., 2012a), following an electrically silent dummy fish (F2), slowly swimming 

(F3), in a subordinate position displaying periods of electrical silence (PS), as well as emit-

ting a double-pulse pattern containing alternations of long and short IDIs (PD). A subset of 

experiments featuring electrical playback of constant frequencies was performed with the 

second group of animals (Toma, 2014b). Playback EODs were assembled to sequences 

resulting in discharge rates of 5, 10, 15, 25, 40, and 80 Hz. These frequencies corresponded 

approximately to the average discharge rates of playbacks F4 (4.9 Hz), F3 (11.1 Hz), F2 

(15.8 Hz), and F1 (31.0 Hz). The playback frequency of 40 Hz represented the upper limit 

of discharge rates observed in M. rume, which is usually not sustained by the fish for ex-

tended periods of time. Frequencies as high as 80 Hz were never observed in M. rume and 

constituted an exaggerated stimulus. 

A dummy fish was made from a 12 cm black fishing lure (Kopyto-Relax) that was endowed 

with a pair of carbon electrodes separated by a distance of 9 cm along its longitudinal axis. 

The dummy was attached to a white plastic rod that was connected to a slide, which could 

be moved along a track above the testing area of the experimental tank. To establish 

standardized experimental conditions with a similar relationship of the fish's initial behav-

ior and the activity of the mobile dummy, the onset of every experimental trial was trig-
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gered by an EOD of the tested fish. This was accomplished by burying a pair of trigger elec-

trodes within the open area of the living compartment (TR in Figure 4.1). Differential am-

plification (Brownlee Precision Model 440, Palo Alto, CA) of the signal measured between 

these electrodes defined an area between the hiding area and the gate (TT in Figure 4.1), 

where an EOD exceeding a predefined threshold value initiated the start of an experi-

mental trial (see below) via a TTL pulse, which was generated by a digital oscilloscope 

(Yokogawa DL1620, Yokogawa Electric Corp., Tokyo, Japan). The threshold was adjusted 

for each fish by adjusting the amplification according to the magnitude of the fish's EOD. 

This configuration started an experimental trial when the fish produced an EOD after leav-

ing the hiding area. The TTL pulse initiated the execution of an experimental sequence via 

Spike2 (Version 5.21, Cambridge Electronic Design, Cambridge, UK) starting both move-

ment and electric signal generation of the dummy fish. The respective playback sequences 

were sent to the dummy via a D/A-converter (CED Power 1401, Cambridge Electronic 

Design, Cambridge, UK) and an analog stimulus isolator (model 2200, A-M Systems Inc., 

Carlsborg, WA) capable of reproducing the natural EOD-waveform of M. rume. The result-

ing electric field (see Donati et al. (2016) and Figure 8.4 for a characterization in a similar 

dummy), measured head-to-tail very close to the dummy, had an amplitude of 19.05 Vp-p 

and thus was slightly stronger than that produced by the largest test fish (13.87 Vp-p). A DC 

motor was used to move the slide with the dummy via a cord linkage, thus moving the 

dummy fish through the testing area at a speed of 0.11 m s-1. Two control conditions were 

performed without electrical playback. In one, only the moving dummy was presented 

(C1), while in the other (C2) the dummy remained motionless at the end position Dstop 

(compare Figure 4.1). Only the moving dummy was presented as a silent control (0 Hz) 

during the test series involving constant playback frequencies. 

All experiments were performed in complete darkness with only infrared light illumina-

tion (850 nm, IR Illuminator Model SA1-60-C-IR, Itakka, Wattens, Austria), which is invisi-

ble for the fish (Ciali et al., 1997). Both the living area and the testing area were monitored 

with infrared-sensitive video cameras (DBK 21AF04 FireWire Camera with Vari Focal 

T4Z2813CS-IR CCTV Lens, The Imaging Source, Bremen, Germany) from above. 

4.2.3 Experimental protocol 

The trigger mechanism for starting an experimental trial was activated only when the test 

fish sojourned in the hiding area. Once the test fish initiated an experimental sequence, the 

dummy moved across the testing area for 7.5 s while either emitting one of the playback 

patterns or remaining silent during controls (C1). No movement was induced during con-

trol condition C2. 
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For each animal, two experimental sessions were conducted on non-consecutive days, 

during which a total of ten successful presentations of each playback sequence were given 

in random order to each animal. For all but the second control condition (C2), a presenta-

tion was defined to be a successful following-trial, if the test fish followed the dummy 

across an imaginary target line perpendicular to the rear end of the dummy fish at its end 

position (TL in Figure 4.1) within 15 seconds after the trial was initiated. Playback condi-

tions were presented in randomized order with inter-trial intervals of at least 10 minutes. 

Non-successful presentations were repeated. To get the test fish accustomed to the treat-

ment and avoid the possibility of ceiling effects (Martin and Bateson, 2007), each experi-

mental session was preceded by a series of ten trials during which a regular 20 Hz play-

back sequence was used as a stimulus. This frequency was within the range of natural dis-

charge frequencies displayed by M. rume, but differed from all the natural playback pat-

terns used during the actual experimental trials. 

Relative following-scores were calculated for the eight fish that were used during the ex-

periments with natural playback sequences, by dividing the number of presentations, dur-

ing which the following-criterion was met, by the total number of trials of the respective 

experimental condition. 

The experimental protocol for the test series involving constant-frequency electric play-

backs was slightly modified. Here, playback presentation was reduced to a duration of ten 

seconds, and only eight successful presentations were obtained per fish and playback con-

dition. 

4.2.4 Data acquisition 

Electric signals were recorded via an array of five pairs of silver electrodes mounted in the 

experimental tank, which were arranged orthogonally to account for all EODs inde-

pendently of the fish’s position in the tank. All signals were amplified, digitized and 

recorded in Spike2 for subsequent analysis as time series. Simultaneously, all activity in 

the testing area was recorded to disk at 15 fps. Data were recorded during 30 seconds 

following the trigger signal for the experiments with natural playback sequences, and dur-

ing 15 seconds for the experiments with constant playback frequencies. 

4.2.5 Hierarchy determination 

To determine the relative hierarchy of all individuals, animals were transferred pairwise 

into an illuminated tank with a white ground area of 60 cm x 30 cm. The single shelter 

provided was a 20 cm x 5 cm transparent red plastic tube. The animal that acquired own-

ership over the tube after 20 minutes was considered to rank higher than its opponent. 
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Ownership was expressed either by occupying the tube or by aggressively preventing the 

opponent from doing so (compare Terleph (2004)). Each fish was tested against all other 

fish in successive contests. Individuals were not tested more than once per day to mitigate 

potential effects of the outcome of previous contests on the following encounter (Chase 

et al., 1994). Standard length and body weight of all animals were subsequently deter-

mined by placing each on laminated scale paper and weighing them wrapped in moist tis-

sue. Hierarchy relationships were not determined for the test fish that participated in the 

constant-frequency playback experiments. 

4.2.6 Locomotor behavior 

A total of seven different motor-behavior patterns were quantified from the video record-

ings, which were randomized to rule out observer bias during the analysis. A 'cut off' oc-

curred when the test fish intercepted the dummy's swimming trajectory and crossed its 

pathway during the first 7.5 seconds after the onset of the experiment. 'Circling' (Kramer, 

1976a) was defined as a full circle by the test fish around the dummy during the first 15 

seconds of an experiment. Incomplete circles within the same time frame were counted as 

'lateral probing' (Crockett, 1986; Toerring and Belbenoit, 1979). 'Lateral va-et-vient' com-

prised short forward and backward swimming movements at a constant distance to the 

dummy, and 'radial va-et-vient' consisted of small tail strokes directed towards the dum-

my after a turn of 180° (Toerring and Belbenoit, 1979). 'Lateral va-et-vient' was only 

quantified between seconds 7.5 and 15 when the dummy had already stopped moving. A 

'head butt' occurred when the test fish hit the dummy by a strike with its head (Bell et al., 

1974; Kramer, 1974) and instances of 'touch' lead to a visible deflection of the dummy fish 

by physical contact without obvious aggressive intent. A link to a video demonstration of 

these behaviors can be found in Appendix A. Locomotor behavior was not analyzed during 

the constant-frequency playback experiments. 

4.2.7 EOD data analysis 

Recorded EOD data were reduced to time series, and the signals of the fish and the play-

back were separated for further analysis. Data from the ten replicated trials per experi-

mental condition of the same individual were pooled for histogram representation and 

averaged for subsequent statistical analysis of distribution parameters. This was done to 

avoid pseudo-replication due to repeated experimental conditions with the same individ-

uals (Hurlbert, 1984). 

Histograms of relative IDI-occurrence for the test series with constant frequencies were 

obtained from data that were pooled for all eight trials per experimental condition and 

tested fish for the ten seconds of playback presentation. Similar histograms were pro-
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duced for the five seconds after the playback had stopped. Modal IDI-duration was deter-

mined from the histograms of each fish and translated to instantaneous frequencies before 

data were pooled again to obtain a single IDI-histogram per playback condition. All histo-

grams were prepared with a bin size of 2 ms. 

Adaptive cross-correlations between playback signals and EOD responses were calculated 

to quantify electric discharge synchronizations of M. rume with the mobile dummy fish 

during the experiments with natural playback sequences. These analyses were performed 

according to the procedure described in (Gebhardt et al., 2012a). In short, IDI-sequences 

of fish and playback were transformed to high-resolution time series using exponential 

filtering. Pearson’s correlation coefficients were then determined over the experiment's 

time for a ‘response time’ of 100 ms between the two time series. The maximum cross-

correlation value within this 100 ms time window was then extracted for the electrical 

reaction of M. rume to the playback sequence from seconds one to 14. Data were averaged 

over a duration of 1/15 seconds to obtain a single value per video frame. The relative 

amount of correlation between the fish's signals and the playback signals was then com-

pared for the different playback conditions. In addition, the duration of sequences of video 

frames with correlation coefficients greater than 0.3 was quantified. The amount of ran-

dom cross-correlations between playbacks and fish responses was assessed by running 

the same analysis using IDI-sequences emitted by the fish during the moving control con-

dition C1 for each playback. A generalized linear mixed model (GLMM) using repeated 

measures of each playback and individual fish as fixed factors was used to assess the over-

all statistical difference between random correlations and those resulting from discharge 

interactions with electrical playback patterns. 

The autocorrelation of a fish's discharge sequence was used to quantify the amount of dis-

charge regularization. Autocorrelation was analyzed within a 200 ms response-time frame 

based on the same high-resolution time series used for the cross-correlation analysis de-

scribed above. For the responses of M. rume to natural discharge sequences, the average 

amount of autocorrelation was calculated per fish and experimental condition. In addition, 

the duration of sequences with an autocorrelation coefficient greater than 0.3 was quanti-

fied. For the responses of M. rume to the constant frequency playbacks, the mean duration 

per experimental trial during which autocorrelation coefficients exceeded 0.5 was extract-

ed for statistical comparison. 

Double-pulse patterns were defined as sequences of alternating long and short IDIs. The 

minimum definition used for the quantification of a double-pulse pattern in this study was 

a sequence of at least five consecutive IDIs, where intervals 1, 3, and 5 were ≥ 60 ms and 
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intervals 2 and 4 were ≤ 50 ms. This analysis was performed automatically using a 

custom-written Matlab script (Version R2013b, The MathWorks Inc. Natick, MA) and was 

only performed for the experiments with natural playback sequences. 

Echo-responses were analyzed by quantifying the relative occurrence of latencies with 

which each playback EOD was followed by EODs of the fish. These latencies were com-

pared to the distribution that would be expected if the IDI-sequences of playback and fish 

were two independent time series. Echo responses were quantified according to Kramer 

(1974) by calculating the ratio of observed to expected latencies at the mode of the ob-

served latency distribution. 

Statistical comparisons between experimental conditions were performed in IBM SPSS 

Statistics for Windows (Version 22.0, IBM Corp., Armonk, NY) using repeated measures 

ANOVA if data were assumed to be normally distributed as assessed by the Shapiro-Wilk 

test. In cases where the assumption of sphericity was violated according to Mauchly's test, 

epsilon (ε) was used to adjust the degrees of freedom according to Greenhouse and 

Geisser (1959). Data not meeting the criterion of normality were analyzed using the non-

parametric Friedman's two-way analysis of variance by ranks. Associations with hierarchy 

rank were determined based on Spearman rank correlations (ρ). Statistical significance 

was accepted at the α = 0.05 level. 

4.2.8 Video tracking 

For comparison of swimming-trajectories dependant on the presence or absence of elec-

trical playback signals, all videos recorded for playback condition F2 and the control C1 

were rectified to correct for radial distortion and subsequently tracked to obtain trajecto-

ries and spatial orientations for both the dummy and the focal fish. Tracking was per-

formed using Ctrax (Branson et al., 2009) including the provided Matlab toolboxes for 

subsequent correction and analysis of tracking data. The distance between test fish and 

the dummy was determined for each frame as the shortest connection between the snout 

of the test fish and any point on the ellipse representing the dummy's current position 

(compare inset of Figure 4.21A). The angular relationship between dummy and fish was 

determined from the dummy's coordinate system by calculating the absolute angle be-

tween the dummy’s orientation and the line connecting the centers of the ellipses repre-

senting fish and dummy (compare inset of Figure 4.21B). The average cross-correlation 

coefficients between electric signal sequences and the temporal occurrence of double 

pulses were then assigned to each frame. To guarantee synchronicity between EOD- and 

video recordings, an infrared LED was activated simultaneously with playback presenta-

tion and recorded on video. 



4. SOCIAL INTERACTIONS BETWEEN LIVE AND ARTIFICIAL FISH 
 

56 
 

4.3 Results 

4.3.1 Dominance hierarchy 

Based on the hierarchy experiments, all animals could be unequivocally assigned to a rela-

tive dominance rank within the group of test fish, with fish #1 being the highest and 

fish #8 the lowest ranking individual. Increase in hierarchy rank was correlated with an 

increase in the animals' standard length (ρs = −0.93, p = 0.001), weight (ρs = −0.93, 

p = 0.001) and peak-to-peak EOD amplitude (ρs = −0.71, p = 0.047) (Figure 4.2). 

4.3.2 Following-behavior 

Analysis of relative following-scores (Figure 4.3A) revealed a statistically significant dif-

ference between the treatments (χ²(7) = 30.52, p < 0.001) with all conditions involving nat-

ural electrical playback forming a homogenous subgroup (χ² = 3.44, p = 0.75). Single indi-

viduals of M. rume were, therefore, less likely to be recruited into the testing area by an 

electrically silent dummy compared to a dummy emitting EODs (median score = 0.48). 

However, there was no overall effect on following-behavior in response to the different 

playback sequences (median scores: 0.87–1). To test whether animals would enter the 

testing area and meet the following-criterion independently of the experimental condi-

tions, no stimuli were presented after activation of the trigger during control condition C2. 

Statistical analysis (paired-samples t-test, t(7) = 3.27, p = 0.014) confirmed a significant 

difference of relative following-scores between the control conditions C1 (mean ± s.e.m. 

= 0.51 ± 0.08) and C2 (mean ± s.e.m. = 0.21 ± 0.07) (Figure 4.3B). This indicates that follow-

ing-behavior did not occur spontaneously, but was instead triggered by the movement of 

the dummy, even when the dummy was electrically silent. 

There was a statistically significant effect of experimental condition on the animals' laten-

cy to enter the testing area (F(2.912, 20.385) = 11.21, p < 0.001, ε = 0.42) (Figure 4.3C). Without 

playback, animals took on average 0.79 ± 0.17 (mean ± s.e.m) seconds longer to enter the 

testing area as indicated by a Bonferroni adjusted comparison (p = 0.014) between the 

control C1 (mean ± s.e.m. = 2.85 s ± 0.16 s) and the average of all conditions featuring natu-

ral electrical playback sequences. Latencies for the conditions featuring electrical playback 

did not differ statistically (F(6, 42) = 1.83, p = 0.12).

A positive correlation between hierarchy rank and relative following-scores was observed 

in all eight individuals (Table 4.1), which was significant for the control condition C1 

(ρs = 0.98, p < 0.001) and the low frequency playback F4 (ρs = 0.78, p < 0.022). This means 

that in the latter situations, higher-ranking individuals were more likely to follow the 

dummy than lower-ranking fish. 
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Figure 4.2: Associations between hierarchy rank and fish characteristics. EOD-amplitude (), weight 

() and standard length () increased with increasing position within the hierarchy. #1 is the highest- 

and #8 the lowest-ranking individual. 

 

 

Figure 4.3: Following-behavior based on playback presentation. Different playbacks are given on the 

abscissa. (A) Box plots of relative following-scores for single M. rume following a mobile dummy. Ani-

mals followed more often during playback presentation compared to the control condition (C1). (B) 

Comparison of relative following-scores (mean ± s.e.m.) between the control conditions. Animals 

crossed the target line more often if the electrically silent dummy moved across the testing area (C1). (C) 

Latency (mean ± s.e.m.) of fish to enter the testing area after the onset of the experiment, i.e., after the 

dummy started moving. 
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Table 4.1: Associations between dominance rank and following-score. Spearman rank correlations (ρs) 

and corresponding p-values are listed for each playback condition. 

Playback ρs p-value 

C1 0.98 < 0.001 

F1 0.12 0.77 

F2 0.32 0.45 

F3 0.52 0.18 

F4 0.78 0.022 

PS 0.44 0.28 

PA 0.36 0.39 

PD 0.48 0.23 

 

4.3.3 Electrical responses 

Electrical responses varied considerably between the experiments with natural playback 

sequences (Figure 4.4) and those with constant-frequency playbacks (Figure 4.6). The 

electrical responses to the different natural playbacks and control conditions are summa-

rized in Figure 4.4. In the central column, IDI-duration is plotted versus trial duration for 

all playbacks (red), as well as a typical response of fish #2 (black), to demonstrate the pat-

terning of the respective signal sequences. The relative occurrence of interval lengths and 

their distributions are depicted on the left-hand side of Figure 4.4 for the presented play-

backs (red) and the summed electrical responses of all eight M. rume to the respective 

experimental conditions (black). Statistical comparison of IDI-distribution parameters for 

15 s sequences, averaged over the ten trials performed with each individual fish per ex-

perimental condition, revealed significant differences between IDI mean (χ²(8) = 36.17, 

p < 0.001), IDI median (χ²(8) = 29.47, p < 0.001), IDI mode (χ²(8) = 21.38, p = 0.006), and the 

inter-quartile difference (q75–q25, χ²(8) = 26.93, p = 0.001, Figure 4.5). The same data are 

plotted for each fish separately as relative cumulative sums (RCS) on the right-hand side of 

Figure 4.4. These diagrams allow assessing the contributions of individual fish to the over-

all IDI-distribution in each category. Evidently, animals did not adopt the overall IDI-

distribution that was emitted by the dummy. Instead, distribution modes were approxi-

mately the same for the electrical responses to all playbacks, including the silent control 

C1, and were most reminiscent of the IDI-distribution in playback F2, with a mode at 64 ms 

(Figure 4.4B). The motionless control condition C2 represents an exception (Figure 4.4I; 

compare Figure 4.5). Here, animals discharged less regularly and with longer intervals, 

leading to a broader IDI-distribution. From the cumulative histograms in Figure 4.4 it be-

comes evident that electrical discharge responses were not uniform across individual fish. 

Particularly for the highest ranking individual fish #1, a second turning point in the histo-
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gram indicates a bimodal IDI-distribution (indicative of double pulses, see below) in re-

sponse to all but the low-frequency playbacks F4 and PS (Figure 4.4D, E) and the controls 

C1 and C2 (Figure 4.4H, I). 

Electric signaling responses of M. rume to playback of constant discharge frequencies are 

summarized in Figure 4.6 and Table 4.2. On the left-hand side of Figure 4.6, histograms of 

relative IDI-distributions characterize the responses of fish to different playback condi-

tions. For all but the electrically silent control condition (Figure 4.6A), histograms are dis-

played separately for IDIs observed during the first 10 seconds when electrical playback 

was presented (black line), and the five seconds after the playback had stopped (grey ar-

ea). The IDIs that correspond to the respective playback frequencies are indicated by blue 

bars. The right-hand side of Figure 4.6 depicts IDI-sequences corresponding to the differ-

ent playback frequencies (blue) and exemplary responses to each frequency by an indi-

vidual fish (black). The diagrams show a strong and frequency dependent reaction of the 

test fish to the signals emitted by the mobile dummy. During the silent control condition 

(Figure 4.6A), the IDI-distribution of the signaling fish with a mode at 60 ms was compa-

rable to the distributions obtained during the experiments with natural playback frequen-

cies (compare Figure 4.4). In the given example, the fish clearly regularized its discharge 

activity while following the electrically silent dummy (indicated by the grey shaded area). 

During the 5 Hz electrical playback sequence (Figure 4.6B), which corresponds to an IDI of 

200 ms, the IDI-distribution of the responding fish was mostly unaffected, except for a few 

short sequences of similar discharge activity. At a playback frequency of 10 Hz (Figure 

4.6C), many adoptions of this discharge rate by the following fish caused an additional 

mode at 100 ms, which corresponds to the playback frequency. In response to playback 

presentations of 15 Hz (IDI of 66 ms, Figure 4.6D) and 25 Hz (IDI of 40 ms, Figure 4.6E), 

M. rume locked their discharge activity almost entirely to the playback frequencies at 

which the mobile dummy emitted EODs. During the presentation of the even higher play-

back frequencies of 40 Hz (IDI of 25 ms, Figure 4.5F) and 80 Hz (IDI of 12.5 ms Figure 

4.5G), fish were unable to sustain discharge activity at corresponding rates. Instead, they 

signaled with relatively regular intervals of twice the playback-IDI duration (50 ms) in 

response to the 40 Hz playback (IDI of 25 ms), and approximately three times the play-

back-IDI duration (38 ms) in response to the 80 Hz playback (IDI of 12.5 Hz). Almost im-

mediately after the end of playback presentation, all fish returned to more irregular dis-

charge activity with longer IDIs. This is evident both from the exemplary signaling re-

sponses between seconds 10 to 15 (right-hand side of Figure 4.6) and the corresponding 

IDI-histograms (grey, left-hand side of Figure 4.6), which closely resemble the IDI- 

 



4. SOCIAL INTERACTIONS BETWEEN LIVE AND ARTIFICIAL FISH 
 

60 
 

 



II. PART ONE: COMMUNICATION 
 

61 
 

Figure 4.4 (previous page): Representation of natural playback conditions and the electrical responses 

of M. rume. Left: Relative IDI-distribution of playbacks (red) and M. rume (black) pooled for all individu-

als per condition. Middle: Time course of electrical playback IDIs (red) with an exemplary response of 

fish # 2 (black). Right: Relative cumulative sums (RCS) of IDI-distributions of playbacks (red) and M. rume 

(grey, graded to distinguish between different ranks. Darker graphs represent more dominant individu-

als). Each curve represents data from ten trials that were recorded from an individual fish within the 

respective condition. The shaded area represents the duration of dummy movement. Note the different 

scaling in D and E. 

 

 

 

Figure 4.5: IDI-distribution patterns in response to natural electrical playback sequences. Box plots 

indicating means, medians, modes and inter-quartile differences (q75–q25) of the IDI-distributions of 

eight M. rume in response to different electrical playback conditions and controls. 

 

distribution of the fish during the electrically silent control (Figure 4.6A). The adoption of 

discharge activity by M. rume in response to constant-frequency playback is summarized 

for individual fish in Table 4.2. It shows that the median IDI-modes of animals that were 

responding to constant-frequency playback of 10 Hz, 15 Hz, and 25 Hz, corresponded to 

the respective IDI-durations of 100 ms, 66 ms, and 40 ms, for the majority of fish. At higher 

playback frequencies, all but one individual discharged preferably at half the playback rate 

(IDI of 50 ms in response to the 40 Hz playback, which corresponds to an IDI of 25 ms) or 

a third of the playback rate (IDI of 38 ms in response to the 80 Hz playback, which corre-

sponds to an IDI of 12.5 ms). 
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Figure 4.6: Electrical signaling responses of M. rume to constant-frequency playback presentation. 

Left: Relative IDI-distributions of playback presentations (blue bar) and the electrical signaling responses 

of M. rume pooled for all individuals per experimental condition. Histograms are separately displayed 

for intervals observed during the first ten seconds of the trial featuring electrical playback (black line) 
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and the five seconds after the playback had stopped (grey area). Playback frequencies and IDI-modes 

are given in the insets. Right: Time course of electrical playback IDIs (blue) with an exemplary response 

of a single fish (black) for each experimental condition. The shaded area represents the duration of the 

dummy fish's movement. Based on data from Toma (2014b). 

Table 4.2: IDI-modes of single M. rume in response to constant-frequency electrical playback 

sequences. The table lists the presented playback frequencies in Hertz with the corresponding IDI-

duration in milliseconds in the row below. For all eight fish that participated in this set of experiments, 

IDI-modes are given in milliseconds for all experimental conditions. Median IDI-modes demonstrate that 

most fish adopted playback frequencies of 10 Hz, 15 Hz, and 25 Hz, whereas they signaled at multiples 

of the playback IDI-duration in response to the higher-frequency playback presentations of 40 Hz and 

80 Hz. Based on data from Toma (2014b). 

 Playback [Frequency and IDI] 

 0 Hz 5 Hz 10 Hz 15 Hz 25 Hz 40 Hz 80 Hz 

Fish [#] Control 200 ms 100 ms 66 ms 40 ms 25 ms 12.5 ms 

1 68 34 100 66 40 50 38 

2 60 58 100 66 40 50 38 

3 52 62 100 66 40 50 38 

4 48 74 100 66 80 56 46 

5 58 50 42 66 40 50 38 

6 60 44 42 66 40 50 38 

7 70 56 100 66 40 50 38 

8 74 48 44 66 40 50 38 

Median [IDI] 60 ms 53 ms 100 ms 66 ms 40 ms 50 ms 38 ms 

 

A particular discharge pattern was represented by double pulses, which were sequences 

of alternating long and short IDIs. Figure 4.7A shows an exemplary double-pulse pattern 

displayed by fish #5 in response to playback PD, which also featured double pulses (Figure 

4.4G). The temporal occurrence of double pulses in response to all experimental trials fea-

turing playback PD is summed over the recording period of 30 s in Figure 4.7B and demon-

strates a steep decline of this pattern within a few seconds after the end of playback 

presentation. The number of double pulses varied between the different playbacks. They 

were most numerous in response to the double-pulse playback PD, differing significantly 
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from all but the response to playback F3 based on Fisher's LSD (F(3.070, 21.488) = 18.35, 

p < 0.001, ε = 0.44 on arcsine-square-root transformed data). A functional role of double 

pulses as a communication signal is supported by the fact that this pattern was virtually 

absent during the electrically silent control condition C1 (Figure 4.8). 

 

Figure 4.7: Double-pulse responses over time. (A) Exemplified electrical response of fish #5 to the dou-

ble-pulse playback PD (see Figure 4.4G) with intervals belonging to double-pulse sequences marked by 

blue circles. (B) The total amount of double-pulse related IDIs is pooled per second for the time course 

of all experimental trials with playback PD. The shaded area represents the duration of the playback. 

Dummy fish movement stopped at the time point indicated by black arrows. 

 

Figure 4.8: Double pulses in response to natural electrical playbacks. Relative amount (mean ± s.e.m) 

of double pulses emitted in response to different playback conditions and the electrically silent control 

(C1). Categories not sharing a common superscript letter differ significantly based on Fisher’s LSD 

(α = 0.05). 
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Apart from differences in the number of double-pulse discharges in response to different 

electrical playbacks, there was also variation in double-pulse displays among individual 

fish. Figure 4.9A sums the total number of double pulses over time that was emitted by 

each M. rume in response to all trials featuring natural electrical playback sequences. Simi-

lar to the data presented in Figure 4.7B, double-pulse production increased in most fish 

over the time course of playback presentation, peaking shortly after its offset (see also 

Figure 4.13A) and declined to virtually zero within a few seconds afterward. 

The total amount of double pulses that was displayed by an individual fish was further-

more correlated with its rank within the hierarchy. Higher-ranking individuals produced 

more double pulses than lower-ranking ones (ρs = −0.71, p = 0.047, Figure 4.9B). Also, the 

number of double pulses produced per trial decreased with the number of tests performed 

with an individual in an experimental session (Figure 4.10), indicating that this signaling 

pattern was subject to habituation. In response to playback F2, the highest amount of dou-

ble pulses was emitted at a distance of approximately 100 mm between M. rume and the 

dummy, and none were observed at a distance greater than 287 mm. 

 

Figure 4.9: Double pulses and hierarchy rank. (A) The number of double pulses emitted per second of 

trial duration by each fish is summed for all trials involving electrical playback. Individual fish are color-

coded according to their hierarchy rank. The shaded area represents the duration of the playback. (B) 

Association between double-pulse display and hierarchy rank for all tested individuals of M. rume. 
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Figure 4.10: Habituation of double-pulse displays. Data show negative correlations between the num-

ber of consecutive trials performed with an individual and the number of double pulses this individual 

emitted in response to electrical playback. Spearman rank correlation coefficients (ρs) are given for each 

fish in the inset of the diagram. 

 

Autocorrelation coefficients of discharge sequences were calculated to quantify discharge 

regularizations, with higher coefficients pointing to more regular discharge activity in 

M. rume. The average maximum amount of autocorrelation within a time frame of 200 ms 

over the recording period of 30 seconds was highest for playback F1 (mean = 0.352, 

95% CI [0.299, 0.405]) and lowest for the stationary control C2 (mean = 0.265, 95% CI 

[0.233, 0.296]). No experimental category differed significantly from the moving control C1 

(mean = 0.327, 95% CI [0.272, 0.382]), based on Bonferroni adjusted p-values (Figure 

4.11). Autocorrelation varied more clearly in response to constant frequency playback 

presentation (repeated measures ANOVA, F(6, 42) = 25.26, p < 0.001; Figure 4.12). The long-

est sequences of strong regularization with autocorrelation coefficients ≥ 0.5 were ob-

served in response to the 15 Hz playback (mean ± s.e.m. = 4.16 ± 0.59 s) and the 25 Hz 

playback (mean ± s.e.m. = 4.47 ± 0.54 s), whereas the shortest sequences occurred in re-

sponse to the electrically silent control (mean ± s.e.m. = 0.32 ± 0.09 s) and the 5 Hz play-

back (mean ± s.e.m. = 0.55 ± 0.14 s). 
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Figure 4.11: Autocorrelation of IDI-sequences in response to natural playback sequences. Average of 

the maximum autocorrelation within a time frame of 200 ms over a 15 s recording period for each ex-

perimental condition (mean ± s.e.m.). Categories sharing a common superscript differ based on 

Bonferroni adjusted p-values. 

 

 

Figure 4.12: Autocorrelation of IDI-sequences in response to constant-frequency playback. Average 

duration (mean ± s.e.m.) of sequences with a maximum autocorrelation coefficient ≥ 0.5 extracted for 

each fish and playback condition from a 200 ms response-time frame. Categories sharing a common 

superscript letter differ based on Bonferroni corrected p-values. Based on data from Toma (2014b). 

 
 

Figure 4.13 summarizes the quantification of autocorrelation within a signal sequence 

over time. An exemplary IDI-sequence of fish #3 (black) with strong regularization in re-

sponse to playback F2 (red) is depicted in Figure 4.13A. The animal responded to the offset 

of the playback stimulus with a short sequence of double pulses and continued to dis-

charge with longer, less regular intervals for the rest of the recording. For the sequence 

depicted in Figure 4.13A, autocorrelation is quantified over time in Figure 4.13B, with cor-

relation coefficients color-coded from −0.75 to 0.75 for the timeframe analyzed. Autocor-

relation of the discharge activity of fish #3 was strong during playback presentation, and 

during the short sequence of double pulses that followed, and decreases abruptly after 

that. 
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Figure 4.13: Autocorrelation of electrical discharge activity in M. rume. (A) Exemplary demonstration of 

a regular discharge pattern with high autocorrelation (compare B) of fish #3 (black) in response to play-

back F2 (red). Note the typical double-pulse pattern short after stimulus offset. IDIs were longer and 

more variable in the second half of the recording when the dummy was silent. (B) Autocorrelation dia-
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gram for the sequence shown in (A), with a color-coded representation of the correlation between the 

fish's current discharge activity with its own signal within the previous 200 ms. (C–E) Maximum autocor-

relation for all trials averaged for all individuals of M. rume depicted over a period of 30 seconds. (C) 

Frequency-based playback trials F1–F4; (D) pattern-based playbacks PA,D,S; (E) controls C1 and C2. Shaded 

areas represent the standard error of the mean. 

 

Average time courses of regularization of all fish in response to natural playback sequenc-

es and control conditions are depicted in Figure 4.13 C–E. Data are mean values of the av-

erage autocorrelation displayed per frame by all fish in the respective experimental cate-

gory, with shaded areas representing standard errors of the mean. During electrical play-

back presentation, correlation coefficients steadily increased, peaking shortly after the 

offset of the stimulus and then declined to a baseline level of approximately 0.3, similar to 

the value of the motionless control C2. This effect was weaker or even absent in response 

to the low-frequency playbacks F4 and PS (Figure 4.13C, D). The moving control C1 caused 

an initial short increase in regularization that declined a few seconds afterward and 

reached baseline levels after the dummy fish stopped moving. Quantification of the dura-

tion of coherent sequences of autocorrelation exceeding the baseline level of 0.3 revealed 

longer sequences in response to higher frequency playbacks as compared to the low-

frequency playbacks F4 and PS and the controls (Figure 4.14). 

 

 

Figure 4.14: RCS of temporal sequences with an autocorrelation coefficient ≥ 0.3. Graphs indicate the 

proportion of sequences with high autocorrelation for a given duration depending on the playback con-

dition. 
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4.3.4 Electrical discharge interactions and synchronizations 

All animals showed preferred latency responses as well as latency avoidance responses to 

the natural electrical playback signals, i.e., the fish responded to a certain proportion of the 

playback EODs by emitting time-locked EODs of their own (Figure 4.15). The preferred 

latency, or 'echo response,' ranged from 19 to 25 ms and occurred in response to all elec-

trical playbacks (Figure 4.16). The same was true for latency avoidance responses, which 

directly preceded echo responses at around 15 ms after the playback EOD (Figure 4.15). 

No consistent differences in the ratio between observed and expected latencies were 

found based on the different playback IDI-patterns, although the different shapes of the 

latency diagrams suggest that fish may show some individual characteristics in their echo 

response (Figure 4.15). Preferred latencies of the fish during the constant-frequency play-

back experiments were longer and lasted for 25 to 32 ms (Figure 4.17). The strongest echo 

responses were observed in response to the presentations of 15 Hz (Figure 4.17C) and 

25 Hz (Figure 4.17D) playback sequences. Echo responses to the 40 Hz and 80 Hz playback 

sequences could not be faithfully displayed because the corresponding playback IDIs of 

25 ms and 12.5 ms were shorter than the response latencies of the fish. This demonstrates 

that the echo response is well adjusted to the frequency range within which the fish are 

usually signaling. 

Adaptive cross-correlations between the signal sequences of the playback and the fish 

revealed that animals frequently synchronized their discharge activity to the playback 

signals. This occurred preferably at a response time of approximately 20 ms, which corre-

sponds to the latency of the echo response (Figure 4.18). The relative amount of maximum 

cross-correlation was on average significantly higher (F(1, 97) = 171.03, p < 0.001) when 

IDI-sequences of fish and dummy were recorded in the same trial (mean = 0.204, 95% CI 

[0.199, 0.210]) compared to randomly occurring correlations, which were calculated from 

fish IDI-sequences and playback patterns that were recorded during independent experi-

mental trials (mean = 0.151, 95% CI [0.146, 0.157]). However, the differences in the rela-

tive amount of maximum correlation, which were detected between the responses to the 

different playbacks after subtraction of randomly occurring correlations in each of the 

playback conditions, account at most for a statistical trend (χ²(6) = 11.57, p = 0.07). No mat-

ter which playback sequence was used, fish always synchronized a certain fraction of their 

EODs to the signals emitted by the dummy. This indicates that M. rume synchronized its 

discharge behavior largely independently of the current playback sequence and without 

adopting the actual patterns or frequency distributions of the particular playback. The 

duration of sequences with correlations between the signals of M. rume and the electrical 
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playback exceeding 0.3, however, varied depending on the presented playback sequence 

(Figure 4.19). Longer runs of high correlation were elicited by playbacks F2 (red) and PA 

(dark-blue), whereas the low-frequency playbacks F4 (green) and PS (purple) accounted 

for fewer long sequences of high correlation. The influence of playback condition on the 

duration of periods of high correlation was statistically significant at a relative cumulative 

sum (RCS) of 0.75 (χ²(6) = 22.39, p = 0.001, dotted line in Figure 4.19). 

 

 

Figure 4.15: Echo responses of individual M. rume to all natural electrical playback sequences. A com-

bination of preferred latencies and latency avoidance occurred in all eight individuals. Overall responses 

to all natural playback sequences are pooled for each individual. Insets identify individual fish according 

to their rank within the hierarchy. N = number of response-EODs the respective diagram is based on. 

Mode = duration of the most abundant latency in milliseconds. Grey lines indicate the expected latency 

distribution based on the playback EOD-distribution. Bin size: 1 ms. 
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Figure 4.16: Echo responses of all M. rume to the different natural electrical playback sequences.  

A combination of preferred latencies and latency avoidance occurred in response to all natural electrical 

playback sequences. Overall responses of all eight fish are pooled for each playback. Insets identify the 

different playbacks. N = number of response-EODs the respective diagram is based on. Mode = duration 

of the most abundant latency in milliseconds. Grey lines indicate the expected latency distribution based 

on the playback EOD-distribution. Bin size: 1 ms. 

4.3.5 Motor interactions with the dummy fish 

To analyze the influence of electrical playbacks on interactive behaviors of M. rume, seven 

different motor patterns were quantified (Figure 4.20, see video link in Appendix A). Sta-

tistically significant differences between the experimental conditions were detected for 

'cut off' (Figure 4.20A, χ²(7) = 14.97, p = 0.036) and 'circling' (Figure 4.20B,  χ²(7) = 15.82, p = 

0.027). In both cases, almost no instances of the respective motor patterns occurred in 
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Figure 4.17: Echo responses to the constant-frequency electrical playback sequences. Preferred laten-

cies occurred in response to all constant-frequency electrical playback sequences and were particularly 

abundant during the presentation of 15 Hz (C) and 25 Hz (D) playbacks. Echo responses to 40 Hz and 

80 Hz could not be faithfully displayed because the IDI-duration that corresponds to these frequencies 

was shorter than the preferred latency with which the fish responded to the playback EODs. Insets iden-

tify the different playback frequencies. N = number of response EODs the respective diagram is based 

on. Mode = duration of the most abundant latency in milliseconds. Grey lines indicate the expected 

latency distribution based on the playback EOD-distribution. Bin size: 1 ms. Based on data from Toma 

(2014b). 

 

response to the silent control condition C1, and the vast majority was performed by the 

most dominant fish #1. A similar overall response pattern was detected for 'lateral 

probing' (Figure 4.20C), although these differences were not statistically significant 

(χ²(7) = 7.31, p = 0.40). Both 'lateral-' (Figure 4.20D) and 'radial va-et-vient' (Figure 4.20E) 

were performed by all tested individuals, and occurred independently of the experimental 

condition (χ²(7) = 11.19, p = 0.13; χ²(7) = 7.52, p = 0.38). 'Head butts' directed at the dummy 

fish (Figure 4.20F) came almost exclusively from the most dominant fish #1, and most 

instances were observed in response to playback PA, which featured discharge accelera-

tions associated with aggressive behavior. Interestingly, most instances of touching the 

dummy fish were observed during the silent control C1, although the overall model for 

'touch' (Figure 4.20G) was not significant (χ²(7) = 11.14, p = 0.13). 
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Figure 4.18: Adaptive cross-correlation analysis between pulse-sequences of playback and M. rume. 

(A) IDI-sequences of playback F2 (red) and an exemplary response of fish #2 (black). (B) Cross-correlation 

diagram for the sequence shown in (A). Correlation coefficients are plotted color-coded for response 

times of M. rume ± 100 ms in relation to the playback signals over time. The red band at a response time 

of about 20 ms in the upper part of the diagram in (B) demonstrates a relatively high correlation be-

tween the discharges of fish #2 and the dummy at this latency and indicates that the fish synchronized 

its discharge activity to the playback for a period of several seconds. 

 

Figure 4.19: Sequences of electrical discharge interactions. Relative cumulative sums (RCS) of time 

periods with a cross-correlation coefficient ≥ 0.3. The graphs illustrate the proportions of sequences of a 

given length based on playback condition for temporal correlations between EODs of M. rume and the 

dummy. Statistical comparisons between the effects of the different playbacks were performed at an 

RCS of 0.75. At this value, 75% of all sequences were shorter than the x-axis intersection of their respec-

tive graph with the dashed line. 
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Figure 4.20: Motor behaviors in response to the dummy. (A) cut off, (B) circling, (C) lateral probing, (D) 

lateral va-et-vient, (E) radial va-et-vient, (F) head butt and (G) touch. The number of instances per trial 

depending on the test condition is shown on the left. On the right, the same number is resolved for all 

animals according to their hierarchy rank for all playback conditions (black) and the control C1 (grey). 
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Distance and angular relationship between the dummy and the following M. rume were 

analyzed framewise over the time course of all experiments with the silently moving con-

trol C1 and for playback F2. The distance between the snout of the test fish and the closest 

point on the dummy is plotted for both conditions on the upper panel of Figure 4.21A. On 

average, fish followed faster (see Figure 4.3C) and closer during playback presentation 

compared to the control condition. Without playback presentation, the distance between 

fish and dummy was larger and consistently more variable, as indicated by the mean dif-

ference of standard errors in the lower panel of Figure 4.21A. After the dummy stopped 

moving, fish approached closer but swam away quicker during the control, whereas they 

stayed nearer to the dummy when it emitted electrical playback signals. 

The position of the following fish from the dummy's coordinate system is visualized in 

Figure 4.21B by plotting the absolute angle between the dummy's direction of movement 

and the line connecting the centers of dummy and fish against the time course of a trial. 

While test fish tended to swim behind the dummy during the control condition, they fol-

lowed on average more lateral and with a higher variability during playback presentation. 

The mean differences of means and standard errors depicted for both treatments in the 

lower panel suggest that these difference in following-behavior were consistent and de-

pended on whether electrical playback signals were present or not. 

Similarities and differences in following-behavior between individual fish are further em-

phasized by the trajectories shown in Figure 4.22. During playback presentation, the most 

dominant fish #1 (Figure 4.22A) showed numerous instances of circling the dummy both 

while it was moving and at its terminal position. Fish #1 always entered the testing area in 

parallel to the dummy's trajectory during the playback condition but moved along the tra-

jectory when the dummy did not emit electrical playback. This latter behavior was particu-

larly obvious in fish #3 (Figure 4.22B), which reproduced the dummy's trajectory quite 

closely during the control condition, but turned away and swam back to the living area 

soon after the dummy stopped moving. The lowest ranking fish #8 kept a larger distance 

to the dummy but approached closer during playback presentation than during the control 

condition (Figure 4.22C). 

 



II. PART ONE: COMMUNICATION 
 

77 
 

 

Figure 4.21: Spatial interactions of M. rume with the mobile dummy. (A) Distance between the focal 

fish's snout and the closest point on the dummy in the time course of all experiments with playback F2 

(red) and the silent control C1 (black). Means and standard errors are depicted for all eight M. rume per-

forming ten trials each. Differences between means (blue) and standard errors (green) between the two 

conditions are depicted in the section below, where 95% confidence intervals indicate that fish stayed 

longer in the vicinity of the dummy during playback presentation compared with the silent control C1. (B) 

Absolute angular difference between the direction from dummy to focal fish and the dummy's orienta-

tion during the time course of all experiments with playback F2 (red) and control C1 (black). Mean values 

and the respective standard errors are depicted framewise. Differences between means (blue) and 

standard errors (green) between the conditions are presented with 95% confidence intervals in the sec-

tion below, indicating that fish followed differently based on whether electrical playback signals were 

present or not. Arrows mark the average time when animals entered the testing area during playback 

presentation (red) and control (black). Shaded areas represent the time frame during which the dummy 

fish was moving. 
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Figure 4.22: Swimming trajectories. Comparison of trajectories of dummy (red) and M. rume for ten 

trials (grey, graded to distinguish trajectories from different trials) per condition in three fish (#1, #3, 

and #8) in response to playback F2 (left) and the electrically silent control C1 (right). 

 

The simultaneous recording of electrical discharges and swimming behavior allowed to 

associate interactive signaling activity during discharge synchronizations with the spatial 

parameters obtained from the swimming trajectories. The relative amount of correlation 

between the signals of M. rume and the mobile dummy was on average highest at a dis-

tance of approximately 90 mm during the presentation of playback F2 (Figure 4.23A). The 

longest distance of 520 mm was recorded between fish #5 and the dummy. Correlation 

coefficients exceeding 0.3 occurred only up to a distance of 419 mm (fish #7, Figure 

4.23B). 
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Figure 4.23: Influence of distance on interactive signaling. (A) Relative amount of correlation between 

discharge events of individual M. rume and playback F2 depending on the distance between the animal's 

snout and the closest point of the dummy. On average (thick black line) correlation was highest when 

fish and dummy were approximately 90 mm apart. (B) The total range of distances kept between each 

fish and the dummy (black) is contrasted with the range of distances where correlations between the 

discharges of M. rume and playback F2 exceeded 0.3 (grey). 

 

4.4 Discussion 

The results presented in this study provide new insights into the relationship between 

motor behaviors and electric signaling strategies in weakly electric fish. It was shown that 

a mobile fish dummy could recruit solitary individuals of Mormyrus rume proboscirostris 

from a shelter into an open area. This following-behavior was reliably observed in re-

sponse to a variety of electrical playbacks with natural and artificial IDI-sequences and 

was, to a much smaller extent, also induced by the electrically silent control (Figure 4.3). It 

occurred despite the fact that visual perception of, and orientation towards the dummy 

were not possible because of the experimental design. During fish–dummy interactions, 
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animals frequently displayed stereotyped motor behaviors towards the dummy, and some 

of these patterns were almost exclusively observed in fish that followed the dummy when 

it emitted electrical playback (Figure 4.20). This suggests that the playback-emitting, mo-

bile dummy fish successfully induced an artificial social context, which can be used by sci-

entists to reveal behavioral principles in standardized and controlled experiments on 

electrocommunication. The presence of electrical playback also affected the spatial rela-

tionship between M. rume and the mobile dummy during following-behavior, thereby 

providing clues concerning the sensory systems involved in the observed behavior. The 

shift towards a lateral following-position in the presence of electrical playback (Figure 

4.21B) indicates that the perception of EODs via the knollenorgan pathway serves not only 

in detecting communication signals of other fish but also as an important sensory basis for 

spatial aspects of social interactions. 

This study also demonstrates the electric signaling strategies based on discharge frequen-

cies, patterns, and interactions that fish use when they follow an electrically signaling mo-

bile dummy. The dummy emitted either natural electrical playback sequences or constant-

frequency playbacks. The natural electric playback sequences used in this study were rec-

orded from freely behaving individuals of M. rume, which were engaged in different behav-

ioral contexts, such as aggressive interactions, hiding, foraging, slowly swimming and oth-

ers. As a consequence, the sequences varied in average discharge frequencies (F1–F4) and 

temporal IDI-patterns (PS, PA, PD). However, since these were exemplary recordings, one 

has to be careful to describe these sequences as typical for a specific behavioral context 

(Kroodsma, 1989; McGregor et al., 1992).  

Different playbacks did not lead to different inclinations of the fish to follow the dummy, 

with the exception of the low-frequency playback F4. With this playback, lower-ranking 

individuals were less likely to be recruited, a correlation that was also observed for the 

electrically silent control C1 (Table 4.1). A possible explanation for this correlation might 

be a potential relationship between dominance and personality traits of the tested indi-

viduals (Kareklas et al., 2016). Hierarchy ranks of the fish were correlated with their size 

(Figure 4.2). Thus, animals with a bolder personality profile might have grown faster in a 

risk-free captive environment, and the same personality trait might have caused them to 

reacted with a stronger tendency to explore the dummy during the more subtle stimula-

tion of the experimental conditions C1 and F4. 

Mormyrids simultaneously employ their electrical signals for active electrolocation and 

electrocommunication, which means that electric signaling responses have to be discussed 

in both contexts. Overall discharge frequencies and IDI-distributions of the following fish 
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were mostly unaffected by the sequence of the presented playbacks, but this was only the 

case during the experiments with natural discharge sequences. Similarly, interactive sig-

naling, such as producing echo responses to the playback EODs, was observed as a re-

sponse to all playbacks. However, context-dependent communication was obvious at the 

level of temporal pattern generation. By associating the electrical responses of the follow-

ing fish with the relative dominance rank between individuals, particularly double pulses 

could be identified as a signaling pattern that was displayed with communicative intent. 

A possible strategy for mormyrids to communicate behavioral states during electro-

communication could be to adopt a similar overall discharge behavior as a conspecific, 

which should become manifest in a shift of an animal's IDI-distribution towards the one 

emitted by the dummy. A multitude of studies on several mormyrid species has estab-

lished that variations in overall IDI-distribution depend on activity level and behavioral 

context of weakly electric (Bell et al., 1974; Gebhardt et al., 2012a; Kramer, 1976a; 1978). 

In a study with the mormyrid Gnathonemus petersii, stationary playback electrodes were 

used to emit sequences that were pre-recorded in different behavioral contexts (aggres-

sion or resting). The receiving fish responded to these electrical playbacks with IDI-

sequences of varying overall discharge frequencies (Kramer, 1979). In the current study, 

this was not the case when natural discharge sequences of varying average frequencies 

were presented but reliably occurred in response to playback of constant EOD frequencies 

within a naturally occurring range.  

During the experiments with natural sequences, different playbacks did not lead to pre-

dictable differences in overall IDI-distribution of the following fish. Although individual 

differences in IDI-distribution occurred between individual M. rume, the resemblance of 

the overall distribution patterns for all fish was always closest to playback F2, which was 

originally recorded from an M. rume following an electrically silent dummy fish (Figure 

4.4). Only in the stationary control condition C2 (Figure 4.5), there was a tendency of the 

fish to use longer IDIs and a broader interval distribution, suggesting a general effect of 

the moving dummy on discharge frequency and regularization that persisted inde-

pendently of electric playback presentation during all experimental conditions involving 

the moving dummy. It therefore appears unlikely that in these experiments intentional 

communication of a particular behavioral context occurred at the level of overall discharge 

frequency. In all experiments, the dummy displayed a stereotypical, constant behavior of 

swimming in a straight line within 7.5 s from the starting to the end position and always at 

the same speed, regardless of the playback condition. After stopping, it continued emitting 

the particular playback sequence. As a consequence, a discrepancy might have occurred 
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between the dummy's behavior and its EOD-signaling: even if the playback sequences con-

tained information about the original behavioral context during the recordings, the behav-

ior of the dummy was always just straight line swimming. 

If the dummy were a real fish, and if its locomotor behavior corresponded to its signaling, 

the test fish might have also adjusted their overall discharge frequencies. Instead, they 

followed the dummy and emitted a typical 'following pattern,' which resembled the pat-

tern F2. They thus would have communicated their current behavioral state, which was 

'following.' The results, therefore, suggest that IDI-distributions of the following fish were 

mainly determined by other needs, such as active electrolocation when following the 

dummy. Nevertheless, changes in overall discharge frequency may still provide eaves-

dropping individuals with information concerning a conspecific's current activity, which 

was invariable during the experiments. 

Contrary to the experiments with natural playback sequences, constant playback frequen-

cies of 10 Hz or higher had a strong influence on the IDI-modes of responding fish. IDIs 

corresponding to these discharge frequencies, or multiples thereof, were reliably adopted 

by M. rume, who either directly discharged at the same rate or responded with intervals 

corresponding to multiples of the playback frequency (Figure 4.6). This was especially 

apparent at frequencies of 15 and 25 Hz (Table 4.2), which is well within the range of av-

erage discharge frequencies emitted by active M. rume during swimming or feeding 

(Gebhardt, 2012). This range also corresponds to frequencies where regularizations of 

discharge activity occur in socially interacting M. rume (Kersten, 2017a; Kupschus, 2017; 

Pannhausen, 2017). Constant discharge frequencies between 15 and 25 Hz can thus be 

considered to be artificial examples of extremely strong discharge regularization and will 

be discussed as a potential signaling pattern (see below). 

A second possible strategy in electrocommunication involves interactive signaling pat-

terns for example in the form of echo-responses or discharge synchronizations, which 

could in turn also result in a similar IDI-distribution of the playback and the tested fish. All 

playback types elicited such interactive signaling responses in the recruited fish. The 

analysis of cross-correlations between playback pulses and the timing of EOD responses in 

M. rume showed that animals interacted electrically with the dummy largely independent-

ly of similarities between the IDI-distributions of fish and playback (Figure 4.18). While no 

differences between treatments remained after subtraction of randomly occurring corre-

lations, and overall correlation coefficients were not very high in general, some playback 

patterns elicited on average longer periods of relatively high correlation compared to oth-

ers (Figure 4.19). It is, therefore, possible to visualize the time course of EOD-
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synchronization and thereby conclude on the behavioral situations where they occurred. 

Most correlations were prominently found at a response time of approximately 20 ms af-

ter a playback EOD, which corresponds to previous descriptions of the latency of the echo 

response in M. rume (Gebhardt et al., 2012b). In this study, preferred latency responses 

were observed in all tested individuals and in response to all presented playback patterns, 

although the degree of pronunciation was variable. In addition, all animals showed pre-

ferred latency avoidance within an interval directly preceding the echo response (Figure 

4.15). This effect was not sex-specific and therefore stands in contrast to results by Lücker 

and Kramer (1981), who found that male and female Pollimyrus isidori reacted differently 

by displaying either a preferred latency response or preferred latency avoidance. Exhibi-

tion of preferred latency response and preferred latency avoidance has been reported to 

occur in both male and female Mormyrus kannume, although not within the same individu-

als (Orlov et al., 2009). 

The third and most obvious electrocommunication strategy in mormyrid weakly electric 

fish is to encode communicative intent into specific patterns within discharge sequences. 

Such patterns were represented in this study by discharge regularizations and double-

pulse patterns. Regularizations of electric discharge activity have been suggested to in-

crease the spatiotemporal resolution of active sensing and lead to constant sensory input 

at the receptor level, thus improving the performance of active electrolocation (Hofmann 

et al., 2013; von der Emde, 1992). Regularizations have, however, also been described in a 

communicative context as a response to electrical stimuli (Moller, 1970) and as a reaction 

to stimulation with conspecific signals (Bauer, 1974; Moller and Bauer, 1973). While 

Moller (1970) hypothesized that regularizations improve active electrolocation, reports of 

regularized intervals during antagonistic behavior (Kramer and Bauer, 1976; Terleph, 

2004) and during courtship and spawning (Baier and Kramer, 2007; Machnik and Kramer, 

2011) suggest that this pattern may also have communicative value. IDI-regularizations 

were quantified using autocorrelation of intervals within a 200 ms time frame. With the 

exception of playback F1, M. rume displayed stronger regularization in response to higher 

discharge frequencies contained in the natural playback sequences, which is similar to the 

findings by Moller (1970). The observations during the constant-frequency playback ex-

periments, which elicited much stronger regularization compared with natural discharge 

sequences, emphasize this result. The fact that regularizations were strongest in response 

to 15 Hz and 25 Hz playbacks (Figure 4.12) suggests that fish regularized their IDIs in re-

sponse to perceived regularization by a conspecific within a behaviorally relevant range. 
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Quantification of regularization over time allowed distinguishing between the effects of 

the dummy's movement and the presentation of various electrical playbacks on the pro-

pensity of M. rume to regularize IDIs. Since the strength of regularization peaked after the 

offset of playback presentation, it seems unlikely that the observed behavior is solely per-

formed to improve active sensing. It appears therefore plausible to presume communica-

tive intent associated with strong regularization patterns in a social context. A possible 

social function of discharge regularization could be an overt assessment of a potential op-

ponent through active electrolocation (Terleph, 2004). It should be noted in this context 

that the presented playbacks did not include a natural regularization pattern. 

The communicative nature of double pulses is less ambiguous than that of simple dis-

charge regularizations. Double-pulse patterns have been described as alternating long and 

short IDIs in several mormyrid species and can be classified as a form of regularization 

themselves (Bauer, 1974). They have mainly been observed within antagonistic contexts 

and during aggressive behavior in G. petersii (Bauer, 1972; Bell et al., 1974; Kramer and 

Bauer, 1976), and are considered to be aggressive threat signals, which were also dis-

played by nest-guarding males in two Pollimyrus species (Baier and Kramer, 2007). In 

M. rume, it has previously been observed that solitary individuals emitted double-pulse 

patterns only in response to electrical playback presentation (Gebhardt, 2012). The pre-

sent study confirms this result by demonstrating that double pulses were virtually absent 

in response to the electrically silent control condition (Figure 4.8). Additionally, most dou-

ble pulses were emitted in response to the playback pattern PD, which also contained dou-

ble pulses. Since the emission of double pulses was subject to habituation (Figure 4.10), 

and there appears to be no obvious advantage for active electrolocation, it is suggested 

that this pattern serves as a threat signal in M. rume as well. However, the function of this 

threat signal may rather relate to claiming dominance at the beginning of a sequential as-

sessment strategy (Enquist and Leimar, 1983) than to overt aggression. This assumption 

is supported by the observation that higher-ranking individuals produced more double 

pulses than lower-ranking fish (Figure 4.9). Although the observation periods in this study 

were too short to observe the processes underlying hierarchy formation, these results 

open the opportunity to test the communicative value of this signal pattern by systematic 

variation of its properties in controlled playback experiments or dyadic contests. 

Such experiments have in the meantime been performed by Kersten (2017a), who staged 

dyadic contests between similarly sized M. rume and quantified the animal's locomotor 

behavior and electric signaling activity during successive stages of agonistic encounters. In 

these experiments, animals competed over a single shelter for 15 minutes, which were 
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subdivided into three periods of equal duration for analysis. Electric signaling, including 

regularization, discharge cessations, and double pulses were quantified for 15 seconds at 

the beginning of each evaluation period. In agreement with the predictions of a sequential 

assessment strategy, Kersten (2017a) found that the number of lateral displays engaged in 

by the opponents declined during the contest, whereas more aggressive displays like chas-

ing and head butts increased in number. Electric signaling displays also changed in the 

course of the contest situation. Regularizations were frequent at the beginning of an en-

counter, whereas the number of short cessations, which were almost exclusively produced 

by the winner of a contest, increased towards the end. Double pulses were most frequently 

produced at the beginning of a contest, and the abundance of this signaling pattern de-

clined during later stages (Figure 4.24). Interestingly, individuals who later won the con-

test produced significantly more double pulses in the first phase of the competition, com-

pared with those who later emerged as losers (Figure 4.24). The number of double pulses 

generated at the beginning of a conflict could thus predict which individual was going to 

win the contest. Taken together, these findings support the hypothesis that double pulses 

are a conventional treat display that is used by M. rume to signal aggressive motivation at 

the beginning of the sequential assessment of a competitor. 

 

Figure 4.24: Double-pulse signaling in dyadic contests. Box plots depicting the number of double pulses 

generated by n = 9 pairs of similarly sized M. rume that were competing for a shelter during three phas-

es of equal duration. The number of double pulses decreased in the course of the encounter. Individuals 

who later won the contest (dark boxes) generated significantly more double pulses at the beginning of 

the contest than those who later lost (light boxes). Wilcoxon signed-rank test, Z = −2.31; p = 0.021. 

Modified from Kersten (2017a). 
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Communication displays ultimately aim at triggering behavioral responses of the receiving 

party and may thereby initiate some form of physical interaction between signaler and 

receiver. The motor patterns displayed by M. rume towards the mobile dummy fish lend 

further support to the idea that interactive behaviors between live fish and a playback 

emitting dummy can be used as a proxy for the investigation of social behavior in 

mormyrids under controlled experimental conditions (see also Moller and Serrier (1995)). 

Trajectory 'cut offs,' complete 'circling,' and 'head butts' were hardly directed at the elec-

trically silent dummy. This shows that appropriate locomotor communication behaviors 

are only provoked by dummies emitting EODs (Figure 4.20). Both 'head butts' and 

'circling' have previously been described in social interactions between mormyrids 

(Kramer, 1976a). The results of this study thus provide a framework for further studies 

involving interactive playback patterns, as well as more complex trajectories (Worm et al., 

2014) (see chapters 5 and 11). 

The inter-individual distance at which weakly electric fish produce a signal may also allow 

to conclude on whether its function relates to active electrolocation or electrocommuni-

cation. The active range of electrocommunication has been inferred from experiments 

(Moller and Bauer, 1973; Moller et al., 1989) and extends beyond the limits of active 

electrolocation due to the high sensitivity of the knollenorgan receptors (Bennett, 1971c). 

Double pulses and high correlations with the playback signals emitted by the mobile 

dummy occurred up to a distance of 287 and 419 mm (Figure 4.23), respectively, which is 

approximately within the range where discharge cessations were observed in response to 

an approaching conspecific in Brienomyrus niger (Moller et al., 1989) (see chapter 9 for 

similar results involving double pulses in M. rume). The highest amount of both signaling 

types, however, was most prominent at a distance of 90–100 mm, which corresponds to 

the outer limit of active electrolocation (Moller, 1980). 

The ability to locate the source of a signal is crucial if the objective of communication is to 

initiate social interactions. Similar studies aiming at manipulating the behavior of other, 

non-electric fish species by using mobile dummy fish have mainly relied on visual cues, or 

at least made no explicit assumption concerning the sensory systems involved in trigger-

ing the observed behavior (Butail et al., 2013; Faria et al., 2010; Ruberto et al., 2016; Ward 

et al., 2008) (see Bierbach et al. (2018) for a recent exception). Since all experiments with 

M. rume in this study were performed in darkness with only infrared illumination, vision 

can be excluded to have mediated following-behavior (Ciali et al., 1997; Kreysing et al., 

2012). 
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Although not much is known about its efficiency, mormyrids also possess a functional lat-

eral line system (Szabo, 1965) (see Schumacher (2017) for anatomical evidence for a re-

duced functionality in G. petersii). However, the fact that M. rume tended to follow right 

behind the mobile dummy during the silent control C1, often reproducing the dummy's 

trajectory (Figure 4.22), suggests an involvement of hydrodynamic cues in following-

behavior (Pohlmann et al., 2001). Lateral line information has been demonstrated to play 

a role in shoaling behavior (Partridge and Pitcher, 1980; Pitcher, 1979), and hydrody-

namic cues produced by robotic fish have been shown to influence swimming preferences 

in individual fish (Marras and Porfiri, 2012; Polverino et al., 2013). In the present study, 

animals also had their active electric sense at their disposal, which could have been used 

to detect the dummy within the range of active electrolocation (von der Emde et al., 2010). 

The fact that fish were following the EOD-emitting dummy mainly in a lateral position 

(Figure 4.21B) suggests that electric signals may be a natural determinant of spacing be-

tween mormyrids (Moller et al., 1982), and that passive electroreception, i.e., the percep-

tion of the EODs of a conspecific, may be more relevant for following than hydrodynamic 

sensing and active electrolocation. This assumption is supported by the findings of 

Schluger and Hopkins (1987), who demonstrated that weakly electric fish navigate along 

the electrical field lines to approach an electrical dipole source such as a conspecific indi-

vidual emitting EODs. This ability will be investigated in greater detail in chapter 9. 

Given the many overlaps of electric signaling behaviors and motor response patterns that 

are directed either at inanimate objects during active electrolocation or towards conspe-

cific individuals during social encounters, it may on many occasions be neither possible 

nor reasonable to attempt assigning a particular behavior exclusively to either active 

electrolocation or electrocommunication. Lateral probing during active electrolocation 

and circling during social interactions may not be fundamentally different behaviors 

(Crockett, 1986), and it is easy to conceive how regularization patterns, which may have 

evolved to improve active sensing, take over some communicative function (see also sec-

tion 6.2). A similar transition from a pure electrolocation feature to a system involving a 

communicative function could have occurred for interactive signaling patterns. Echoing, 

which can be a means to avoid the jamming of an animal's sensory perception during ac-

tive electrolocation (Heiligenberg, 1976), also leads to synchronized bursts between indi-

viduals and thus may serve in mutual recognition and group coherence (Arnegard and 

Carlson, 2005). Synchronization of EOD timing with a conspecific may, therefore, be a 

means to address another individual without impairing the functionality of active 

electrolocation in the process. In section 6.3, this argument will be expanded based on the 

results of chapters 5 and 11. 



4. SOCIAL INTERACTIONS BETWEEN LIVE AND ARTIFICIAL FISH 
 

88 
 

Communication systems can develop over evolutionary time when sensory cues, inadvert-

ently generated by animals without communicative intent, allow conspecific individuals to 

predict the behavior of the animal generating the cue by exploiting pre-existing sensory 

systems (Bradbury and Vehrencamp, 2011). Although encoding 'conventional signals' 

(Guilford and Dawkins, 1995; Maynard Smith and Harper, 1988) into IDI-sequences ap-

pears plausible from a theoretical point of view, the actual amount of distinct signal pat-

terns that can be produced may be limited due to the properties of the nuclei involved in 

central pattern generation in the mormyrid brain (Carlson and Hopkins, 2004a). The diffi-

culty in isolating unequivocal communication features from overall IDI-distributions, as 

well as the sometimes gradual transition between electrolocation and electro-

communication signals, emphasize the dual nature of electrical signaling in weakly electric 

fish. Similarly, in bats, dual functions of vocalization for both echolocation and social 

communication have recently been reported (Bohn and Smotherman, 2015; Jones and 

Siemers, 2011; Knörnschild et al., 2012). Between simple eavesdropping, during which 

individuals could deduce a conspecifics behavior by monitoring its discharge rate and en-

coding conventional information into stereotyped IDI-patterns with communicative intent, 

electrocommunication may rely on more subtle interactions whose true significance has 

yet to be uncovered. 
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5. Project 2: Evidence for Mutual Allocation of Social Attention 

through Interactive Signaling in a Mormyrid Weakly Electric 

Fish 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter, as well as some of the arguments outlined in section 6.3, are the basis for: 

Worm, M., Landgraf, T., Prume, J., Nguyen, H., Kirschbaum, F. and von der Emde, G. (2018). 

Evidence for mutual allocation of social attention through interactive signaling in a 

mormyrid weakly electric fish. Proceedings of the National Academy of Sciences (Accepted).  
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5.1 Introduction 

Mormyrid weakly electric fish produce series of electric organ discharges (EOD) for active 

electrolocation of their environment (von der Emde, 1999) and electrocommunication 

with nearby conspecific individuals (Hopkins, 1988). Inter-discharge intervals (IDI) be-

tween EODs are variable and can be modified to spontaneously improve the temporal res-

olution during active sensing (Post and von der Emde, 1999) and to encode signaling pat-

terns into discharge sequences that are associated with characteristic behavior patterns 

and serve in intra-specific communication (Carlson and Hopkins, 2004b). 

Apart from spontaneous changes in discharge frequency and temporal patterning, 

mormyrids can also produce interactive IDI-sequences. By responding to a conspecific's 

EODs with a preferred latency of only a few tens of milliseconds, they generate so-called 

echo responses, which, if mutually engaged in by two individuals, lead to synchronization 

episodes with time-locked signaling sequences between individuals (Gebhardt et al., 

2012a; Kramer, 1974; Russell et al., 1974). Although echoing is a behavior consistently 

observed across mormyrid species, the underlying neural pathways are unresolved, and 

its behavioral significance remains speculative. Echo responses have been interpreted 

either as a form of jamming avoidance behavior during active electrolocation 

(Heiligenberg, 1976; Schuster, 2001) or as a communication strategy, possibly by func-

tioning as a social signal enhancing group integration and affirmative interactions 

(Arnegard and Carlson, 2005; Gebhardt et al., 2012b; Russell et al., 1974).  

Systematic investigation of the implications of echoing for social communication is imped-

ed by the difficulty to assign EODs to the respective sender individual in experiments in-

volving more than a single freely moving fish, as well as by the lack of control over the 

behavior of the fish that invokes echo responses from a conspecific. Here, both problems 

were solved by using a freely moving, mobile dummy fish capable of emitting predefined 

or dynamic sequences of electrical playback EODs in an interactive behavioral experiment 

with single individuals of the weakly electric fish Mormyrus rume proboscirostris. 

Robotic fish dummies have been successfully employed to investigate the features deter-

mining attraction between individual fish (Abaid et al., 2012; Landgraf et al., 2016; Marras 

and Porfiri, 2012; Polverino et al., 2013), as well as collective decision making and internal 

dynamics in shoals of different sizes (Bonnet et al., 2018; Bonnet et al., 2016; Butail et al., 

2013; Cazenille et al., 2018; Faria et al., 2010; Kruusmaa et al., 2016; Landgraf et al., 2014; 

Swain et al., 2012). Similar experiments have demonstrated that mormyrids are attracted 

to follow and interact with a mobile dummy fish based on playback of electric signaling 

sequences (Donati et al., 2016; Worm et al., 2017) (see chapters 4 and 8). Such interac-
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tions can in principle rely solely on passive electroreception (Worm et al., 2018) (see 

chapter 9). Electrical playback signals are a convenient way to experimentally control 

electric signaling properties with respect to EOD-waveform, temporal discharge patterns 

and latency relationships. This allows to assign such signaling attributes to a behavioral 

context, and thus to uncover the significance of electrical signaling for communication 

(Hanika and Kramer, 2005; Kramer, 1979; Schuster, 2001; Teyssedre and Serrier, 1986). 

In this study, a freely moving dummy was used, which could not only interact physically 

with live fish but was also able to produce echo responses to the fish’s EOD. Closing the 

feedback loop at the two levels of spatial interactions and electrical signaling made it pos-

sible to isolate the effect of electrical signaling on attraction and interactive behavior. On 

the spatial level, following-behavior was primarily mediated by electrical signaling but 

occurred independently of playback type. However, electric signaling interactions of 

M. rume with the mobile dummy were enhanced when the playback allowed synchroniza-

tion of discharge sequences through artificial echo responses, indicating that interactivity 

has some intrinsic communicative value as a signal. Based on the observation that such 

synchronizations were associated with following-behavior and approach configurations, it 

is suggested that echoing provides a relatively simple electromotor mechanism to address 

another individual electrically. Synchronizing discharges through mutual echo responses 

in mormyrids may thus serve a communicative function in integrative behavioral contexts, 

and constitute a strategy to mutually allocate of social attention. 

 

5.2 Materials and methods 

5.2.1 Animals 

A total of 23 Mormyrus rume proboscirostris were kept in 50–200 L holding tanks under 

tropical conditions with temperatures around 25°C, a water conductivity of approximately 

100 µS cm-1, and a light/dark cycle of 12/12h. Animals measured between 6.4 and 11.4 cm 

(standard length) and had previously been used in the experiments described in (Worm 

et al., 2018) (chapter 9). Within each holding tank, two or more individuals were confined 

to separate compartments providing a shelter. These compartments were divided by wa-

ter permeable barriers that prevented physical contact but allowed electro-

communication. Food was provided at least five times a week in the form of defrosted 

chironomid larvae. All experiments were carried out in accordance with the guidelines of 

German law, with the animal welfare regulations of the University of Bonn, and with the 

'Guidelines for the treatment of animals in behavioural research and teaching' (ASAB, 

2006). 
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5.2.2 Experimental setup 

Experiments were performed in a 120 cm x 100 cm x 20 cm tank, which was mounted on 

top of a metallic support frame, leaving the base area accessible from below (Figure 5.1). 

The tank walls were covered from all sides with white cardboard, and the base plate was 

covered with white self-adhesive foil on the inside. The water within the tank was filtered 

and heated to a temperature of 26 ± 1°C, and water conductivity was adjusted to 

100 ± 5 µS cm-1 for all experiments. Filter and heater were removed before every experi-

mental session, and the water level within the tank was kept at 15 cm. The frame support-

ed a second plane 16 cm below the tank, which was made from a 10 mm Plexiglas board. A 

wheeled robot (Figure 5.2A) (Landgraf et al., 2012a) was placed on the level below the 

tank, where it could be manually steered from a PC to move on arbitrary trajectories using 

custom-written software (Hai Nguyen, Freie Universität Berlin) via a wireless connection. 

A dummy fish was made from an 8 cm fishing bait that was mounted on a small base plate 

with a small magnet glued underneath. The dummy was provided with a pair of carbon 

electrodes inserted into the rubber at the snout and the rear end, as well as a pair of silver 

electrodes, which stuck out dorsally along the longitudinal axis (Figure 5.2B). From the 

center of the robot, a neodymium magnet was held up to the bottom of the tank, where it 

coupled to the magnet glued underneath the base plate of the dummy. Thus, the dummy 

fish within the tank reproduced the trajectories of the remote controlled moving robot 

underneath the tank. 

A multi-electrode array consisting of five pairs of carbon electrodes was evenly distributed 

inside the tank and recorded all electrical activity independently of fish position. Signals 

were recorded using differential amplification (Brownlee Precision Model 440, Palo Alto, 

CA), digitized (CED Power 1401, Cambridge Electronic Design, Cambridge, UK), and 

recorded to disk using Spike2 software (Version 5.21, Cambridge Electronic Design, Cam-

bridge, UK). All behavior within the tank was simultaneously recorded at 15 fps using an 

infrared sensitive video camera (DMK 23FM021 FireWire Camera with Vari Focal 

T4Z2813CS-IR CCTV Lens, The Imaging Source, Bremen, Germany) and the Spike2 Video 

Recorder. Illumination was provided indirectly using a LED floodlight resulting in 1.5 lux 

of visible light intensity (Light ProbeMeterTM, 403 125, Extech Instruments) at the water 

surface in the center of the tank. Camera vision was enhanced by additional illumination 

with infrared spotlights (850 nm, IR Illuminator Model SA1-60-C-IR, Itakka, Wattens, Aus-

tria). 
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Figure 5.1: Illustration of the experimental setup and technical components. The robot moved on the 

level underneath the tank, thus defining the trajectory of the dummy via a magnetic coupling. Electric 

signals and motor behavior were recorded by an array of five pairs of electrodes in the tank and a video 

camera from above. MEA: Multi-electrode array. AMP: differential amplifier. ADC: analog to digital con-

verter. TTL: Trigger box generating a TTL pulse for each EOD registered at the dummy's recording elec-

trodes. CAM: video camera. PC: computer for data acquisition, playback output and control of the robot. 

WIFI: wireless control of the robot's trajectory. DAC: digital to analog converter. dB: attenuator. SI: ana-

log stimulus isolation unit powering the electrical playback signal. 

 

 

Figure 5.2: Components of the mobile dummy fish. (A) Remote controlled robot on the plain under-

neath the experimental tank. (B) Dummy fish mounted on a magnetic base plate, incorporating a pair of 

playback electrodes (thick arrows) and a pair of trigger electrodes (thin arrows). Wires connect the elec-

trodes to the battery-driven SI-unit (red) and the trigger box (white). 
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The silver electrodes of the dummy were used to record signals of the fish when it came 

into close range of the dummy. These signals were amplified differentially using a custom 

build trigger-box (University of Regensburg), which generated a TTL pulse for each signal 

exceeding a threshold determined by amplification. The TTL-output of the trigger-box was 

connected to the event input of the CED 1401 and signals were used to generate interac-

tive electrical playback involving the mormyrid echo response in real-time via the Spike2 

sequencer (see below). 

The dummy's carbon electrodes were used for playback generation and were connected to 

a stimulus-isolation unit (model 2200, A-M Systems Inc., Carlsborg, WA) as a power sup-

ply. Playback signals were output via the Spike2 sequencer, converted from digital to ana-

log using the CED 1401, and attenuated (dB-attenuator, University of Regensburg) to 

match the EOD-amplitude of a living fish of medium size. The key components of the ex-

perimental setup are illustrated in Figure 5.1. 

5.2.3 Playback sequences 

Two types of electrical playback sequences were generated using a pre-recorded template 

EOD that was averaged from 50 EODs of an M. rume, which were recorded head-to-tail 

(high-pass: 1 Hz) and digitized at a sampling rate of 50 kHz. Static random playback se-

quences were generated using a custom-written script for Matlab (Version R2013b, The 

MathWorks Inc. Natick, MA), which concatenated template EODs to sequences of 15 se-

conds. IDIs were randomly selected within two standard deviations around the mean 

(67 ms) of a distribution with a mode of 60 ms that was obtained from a similar experi-

ment and contained a total of 17644 IDIs. Random playbacks were repeated three times to 

obtain a 45-second stimulus protocol, and a new sequence was designed for every trial. 

Dynamic echo playbacks were generated by programming the Spike2 sequencer to pro-

duce playback signals at intervals greater than 60 ms in the absence of a trigger signal but 

respond with a latency of 21 ms to the detection of a fish's EOD by the trigger electrodes of 

the dummy. A refractory period was included to prevent the program from echoing to its 

own signals. The flowchart (Figure B.1) in Appendix B illustrates the routine for dynamic 

playback generation. 

5.2.4 Experimental protocol  

Individual fish were fetched from their holding tanks and placed inside a 22 cm x 14 cm 

opaque start box inside the experimental tank. The dummy was then moved on random 

trajectories within the tank for 3 minutes to habituate the fish to any disturbances associ-

ated with the movement of the dummy and the robot on the level below. Test fish were 

then released from the start box and confronted with the mobile dummy in three consecu-
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tive trials featuring either static playback with random intervals, dynamic playback imitat-

ing the mormyrid echo response, or no playback as a control. The order in which these 

conditions were presented were pseudo-randomized. The dummy was moved by the ex-

perimenter on arbitrary trajectories that were designed to approach the fish and entice it 

to follow into the open area of the tank. Each presentation started with a 10 s period with-

out electrical playback, followed by three 15 s episodes where the respective condition 

was repeated, resulting in a total of 55 s of recorded data. Episodes were marked by a 

100 ms infrared light flash that assured synchrony between video recording and wave-

form data. Alternatively, the mobile dummy was removed after the habituation period, and 

the behavior of the fish after release from the start box was recorded according to the time 

points defined for playback presentation without any interference. This second control 

was performed with all individuals in a separate experimental session on a non-

consecutive day. Half of the animals were subjected to this control in the first session, 

while the other half were first confronted with the moving dummy. The experimental pro-

tocol also involved trials with groups of two, three, and four individuals of M. rume. The 

results of these experiments will be presented in chapter 11. 

5.2.5 Data analysis 

Videos were rectified to compensate for radial distortion and tracking was performed us-

ing Ctrax (The Caltech Multiple Walking Fly Tracker, version 5.0, (Branson et al., 2009)) as 

well as the provided FixErrors GUI for Matlab. Real world distances were calculated from 

pixel differences using a known distance within the tank as a reference. The center dis-

tance between fish and dummy, their difference in orientation, as well as the relative posi-

tion of the fish from the dummy's coordinate system (and vice versa) were calculated us-

ing the BehavioralMicroarray toolbox for Matlab provided with the Ctrax software. This 

relative position was defined by the angular deviation between the dummy's direction of 

movement and the connecting line between the centers of dummy and fish. Swimming 

speeds of dummy and fish were calculated from the real world coordinates and smoothed 

using a sliding average of three adjacent values to mitigate artifacts from tracking at a rela-

tively low frame rate of 15 fps. A characterization of swimming speeds can be found in 

Appendix B (Figure B.2). Distances from the snout of the fish to the closest wall of the tank, 

as well as the closest distance to the dummy were manually assessed every three seconds 

using ImageJ (version 1.46r, National Institutes of Health, USA). The resulting 15 values 

were averaged to obtain a single value per fish for further statistical analysis. The number 

of turns performed by the dummy was counted manually from video recordings, and the 

proportion of turns that were followed by the fish was calculated for each condition. Fish 

were counted as following a turn only if they had been swimming in the same direction as 
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the dummy both before and after the latter changed its direction of movement. All videos 

were renamed and randomized for this analysis to leave the experimenter blind to the 

experimental condition in question. 

Spike2 waveform data were transformed into time series by marking the occurrence of all 

EODs, which were subsequently assigned to either the playback sequence or the tested 

fish. IDIs were calculated separately for the two resulting time series to visualize the re-

spective signaling sequences and for comparison of interval distributions across experi-

mental conditions. IDIs of all fish were pooled into a single histogram per condition for 

visualization, using a bin size of 2 ms. Distribution modes were extracted for each fish and 

test condition for further statistical analysis. 

Echo responses displayed by the fish were analyzed by using the EOD-sequence of the 

playback as a reference and calculating the latencies with which the fish generated EODs 

in response to the stimulus until the occurrence of the next playback EOD. Results were 

visualized by plotting the relative occurrence of all observed latencies. The latency distri-

bution that would be expected if both IDI-sequences were independent time series was 

obtained by inverting the relative cumulative histogram of the stimulus IDI-distribution. 

The definition of stimulus and response signals was also switched to check for echo re-

sponses of the playback sequence to the fish's signals. Echo responses were quantified 

according to (Kramer, 1974) by calculating the ratio of observed latencies at the mode of 

the latency distribution to the amount of EODs that would be expected at that latency if 

assuming no dependency between the IDI-sequences of playback and fish. This ratio was 

obtained for all fish and compared statistically between the two playback conditions. 

Adaptive cross-correlations for a response window of ± 100 ms were calculated between 

two IDI-sequences each, using the playback signals as reference values. Calculations were 

performed according to the procedure described in Gebhardt et al. (2012a) (see also sec-

tion 4.2.7). The IDI-sequences of playback and fish were transformed into high-resolution 

time series comprising a value for each millisecond of a trial. The intensity of temporal 

synchronization between IDI-sequences was quantified over the time course of the exper-

iment via correlation coefficients and was visualized using color-coded contour plots. For 

each of the high-resolution time points, the maximum correlation value within the 100 ms 

response-time frame was extracted for correlations of the fish's signals with the IDI-

sequence of the playback, as well as for correlations of the playback signals with the IDI-

sequence of the fish. The average of these maximum values over the 45-second period was 

calculated for each experiment and used for further statistical analysis. As a control for 

randomly occurring correlations, cross-correlation analysis was performed for both play-
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back types by using the IDI-sequence the fish had emitted independently of the playback 

during the control trial involving the electrically silent dummy in the same session. 

Values of maximum correlation from the high-resolution time series were averaged to 

obtain single values matched to the corresponding video frames. For both the static ran-

dom playback and the dynamic echo playback, sequences of successive frames, for which 

the assigned value of correlation of the fish's electric signaling response reached or ex-

ceeded 0.3, were quantified and used to calculate the length of synchronization episodes. 

Relative cumulative histograms were used to determine the duration of synchronization 

sequences at a proportion of 0.75 for statistical comparison of the effect of the two play-

back conditions on the duration for which the fish synchronized their electrical discharge 

activity to the respective playback. 

Simultaneous tracking and electric signaling data were used to associate the linear and 

directional relationships between M. rume and the dummy to the amount of discharge 

synchronization the ish engaged in at a given time defined by the frame rate of video re-

cording. This analysis was only performed for the static random playback because electric 

signaling sequences of the dummy during the dynamic echo playback cannot be consid-

ered independent of the signaling activity of the fish. 

Statistical analyses were performed using IBM SPSS (Version 22.0, IBM Corp., Armonk, 

NY). Normality of the data was assessed by Shapiro-Wilk's test, and parametric or non-

parametric tests for repeated measurements were used accordingly. Circular-linear corre-

lations between the magnitude of EOD-synchronization and the angular relationships of 

fish and dummy were calculated using the CircStat toolbox for Matlab provided by Berens 

(2009). Statistical significance was accepted at the α = 0.05 level. 

 

5.3 Results 

All animals were highly attracted by the mobile dummy fish and showed interactions both 

by following the dummy's trajectories, as well as by synchronizing their electrical dis-

charge activity to the playback sequences through echo responses to the playback EODs. 

The attraction was particularly strong when the dummy emitted electrical playback. 

Swimming behavior of M. rume in the absence of the mobile dummy was very stereotyped. 

After the start box was removed, animals spent the majority of time closely following the 

tank walls (Figure 5.3A), inspecting the multi-electrode array, and frequently swam back-

ward during the whole 45-second observation period. Wall-following was also observed 

during the control trials with the electrically silent dummy, but animals occasionally also 
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approached and followed the dummy (Figure 5.3B). During electrical playback presenta-

tion of static random IDI-patterns (Figure 5.3C) and interactive echo responses (Figure 

5.3D), M. rume virtually abandoned wall-following behavior and instead followed closely 

on trajectories resembling those of the moving dummy. 

 

Figure 5.3: Swimming trajectories and following-behavior. Exemplary trajectories of the mobile dummy 

(black) and a single individual of M. rume (red) covering 45-second experimental trials. (A) With no 

dummy present, fish spent most of the time in proximity to the tank walls. (B) Control trials with an 

electrically silent dummy evoked occasional interest and following of the dummy fish trajectory by the 

test fish in addition to wall-following. Wall-following was virtually absent during trials with the static 

random playback (C) and the dynamic echo playback (D). Here, animals mostly followed the mobile 

dummy and roughly reproduced its trajectories. 

 

The attractiveness of the moving dummy to individual M. rume could thus be quantified by 

the willingness of the fish to abandon wall-following behavior, the distance they kept to 

the dummy, and the accuracy with which they followed the dummy's  trajectories (Figure 
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5.4). The influence of the dummy on wall-following behavior was highly significant (re-

peated-measures ANOVA with Greenhouse-Geisser correction: F(1.837, 40.422) = 247.26; 

p < 0.001, ε = 0.61, Figure 5.4A). Without the dummy, the average distance between 

M. rume and the closest tank wall was 49 ± 3 mm (mean ± s.e.m.). The introduction of the 

dummy resulted in an increased average distance between fish and tank wall, indicating a 

decrease in wall-following behavior. Based on Bonferroni-corrected pairwise compari-

sons, the effect of the electrically silent dummy significantly increased the distance to 

150 ± 11 mm (mean ± s.e.m.). This was still significantly closer than during the presenta-

tion of the static random playback (mean ± s.e.m = 260 ± 6 mm) and the dynamic echo 

playback (mean ± s.e.m. = 259 ± 5 mm). Playback type did not influence the distance be-

tween fish and tank walls. The distance between dummy and fish was strongly influenced 

by electrical playback (repeated-measures ANOVA: F(2, 44) = 144.44; p < 0.001), showing 

that electrical signaling was the main attractive feature of the dummy (Figure 5.4B). Based 

on Bonferroni-corrected pairwise comparisons, electrical playback led to a significant de-

crease in distance from an average of 301 ± 14 mm (mean ± s.e.m.) during the electrically 

silent control condition to 104 ± 10 mm (mean ± s.e.m.) during the static random playback, 

and 89 ± 8 mm (mean ± s.e.m.) during the interactive echo playback, respectively. Evalua-

tion of the relative amount of the dummy's turns that were followed by the fish confirmed 

this pattern (Figure 5.4C). The absolute amount of turns performed by the dummy during 

the 45 second experimental period ranged from 9 to 18 (median: 14). While the fish only 

followed a ratio of 0.16 ± 0.03 (mean ± s.e.m.) of these turns during the silent control con-

dition, the relative amount of followed turns was considerably higher in response to the 

static random playback (0.80 ± 0.05; mean ± s.e.m.) and the dynamic echo playback 

(0.84 ± 0.03; mean ± s.e.m.; Friedman test: χ²(2) 34.795; p < 0.001). Again, adjusted pairwise 

comparisons revealed significant differences between both playback conditions and the 

control, but not between the two playback conditions. 

Electrical playback was thus crucial to attract individual M. rume to the mobile dummy, 

especially with respect to following-behavior, but the type of playback did not influence 

spatial interactions of the fish with the dummy. This was not the case for electric signaling 

responses and interactions with the different playbacks. Figure 5.5 shows the IDI-

distributions pooled for all fish for the four experimental conditions with box plot insets 

depicting the range of IDI-modes exhibited by individual fish during each condition. Medi-

an IDI-modes differed significantly across different test conditions (Friedman test: 

χ²(2) = 31.05; p < 0.001). Both the static random playback (Figure 5.5A) and the interactive 

echo playback (Figure 5.5B) evoked significantly shorter IDIs from the fish compared with 

the control condition without the dummy, where median IDIs were longest (62 ms; Figure 
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5.5D). The static random playback led with a median IDI-mode of 30 ms to the strongest 

decrease in interval length by the fish, but there was no sign of adjustment to the IDI-

distribution of the playback (Figure 5.5A). This contrasts with the results from the dynam-

ic echo playback, which led to a leveling of intervals resulting in median IDI-modes of 

52 ms for both playback and (Figure 5.5B). Here, playback IDIs were subdivided into a 

distribution at 60 ms and higher for the randomly emitted signals, and one with shorter 

IDIs for signals triggered by EODs of the fish. 

 

Figure 5.4: Influence of the mobile dummy on swimming behavior. (A) Mean distance between the fish 

and the closest tank wall. (B) Mean distance between the snout of the fish and the nearest point of the 

dummy. Error bars represent the standard error of the mean. (C) Relative amount of the dummy's turns 

that were reproduced by the fish. Categories not sharing a common superscript letter differ based post 

hoc adjusted p-values. Random: static random playback; Echo: dynamic echo playback; Control: electri-

cally silent control; No dummy: trial in which fish were observed without interference from the dummy. 

 

Echo responses represent an interactive signaling strategy and occur when a fish responds 

with an EOD at a preferred latency more often than would be expected by chance. All test-

ed fish produced echo responses with preferred latencies ranging from 15 to 19 ms both 

to the static random playback and to the dynamic echo playback. Exemplary results from 

fish 9 for the four possible latency relationships are shown in Figure 5.6.  This  fish showed 
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Figure 5.5: IDI-distributions in response to different experimental conditions. Histograms (black) repre-

sent the relative occurrence of interval lengths displayed by all fish in response to (A) the static random 

playback, (B) the dynamic echo playback, (C) the electrically silent control and (D) the control condition 

without the mobile dummy fish. Grey shaded histograms in (A) and (B) represent playback intervals of 

the respective conditions. Box plot insets summarize the distribution of IDI-modes observed across indi-

viduals. Shared superscript letters indicate a difference in IDI-distribution between the conditions based 

on distribution modes. Bin size: 2 ms. 

 

distinct echo responses to the static random playback with a mode at a preferred latency 

of 15 ms (Figure 5.6A), as well as a slightly more pronounced response to the dynamic 

echo playback with a mode at a preferred latency of 16 ms (Figure 5.6B). The static ran-

dom playback generated EODs at intervals independent of the test fish's signals. Conse-

quently, the latencies with which the playback followed after the fish's EODs conformed to 

the expected distribution of random latencies (Figure 5.6C). During the dynamic echo 

playback, EODs emitted within the sensitivity range of the dummy's trigger electrodes 

elicited echo responses at a latency of 21 ms (Figure 5.6D). 

To quantify the relative amount of echo responses produced by M. rume in response to the 

two playback conditions, the ratio of the relative occurrence of observed latencies at the 

preferred latency, and the corresponding value of the random distribution at that latency 

was calculated as an echoing quotient for each fish (Figure 5.7). The average echoing quo-

tient in response to the static random playback was 4.53 ± 0.20 (mean ± s.e.m.), indicating 

an increase of responses at the preferred latency by that factor. The interactive echo play-

back evoked more echoing responses, resulting in a quotient of 5.31 ± 0.21 (mean ± s.e.m.) 

that was significantly higher than for the static random playback (paired-samples t-test: 

t(22) = −5.38; p < 0.001). This suggests that echo responses induce echoing by fish who re-

ceive echoes to their EODs. 
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Figure 5.6: Echo responses by M. rume and interactive playback generation. Exemplary depiction of 

the relative occurrence of EOD response latencies displayed by M. rume and the dummy in the experi-

ments with fish 9. Observed latencies are represented by black bars, while the grey line delineates the 

latency distribution that would be expected if there was no dependency between the reference IDI-

sequence and the analyzed IDI-sequence. (A) Response latencies of the fish to the static random play-

back with a prominent mode at a preferred latency of 15 ms. (B) Response latencies of the fish to the 

dynamic echo playback with a prominent mode at a preferred latency of 16 ms. (C) Latencies of the 

static random playback to the fish's EODs conform to the expected random distribution. (D) Echo re-

sponses with a latency of 21 ms were generated during the interactive echo playback, which was trig-

gered by EODs of the test fish in proximity to the mobile dummy. N = number of latencies evaluated for 

the trial. Bin size: 1 ms. 

 

Analysis of simultaneously recorded IDI-sequences of the test fish and their interactions 

with the respective playback sequence over time demonstrated that interactive signaling 

does not necessarily require complete time-locking to entire signaling patterns, and al-

lowed a more detailed characterization of electric signaling responses by M. rume to the 

different playback conditions. Figure 5.8 and Figure 5.9 depict exemplary results of com-

plete 45-second experimental trials with the static random playback and the dynamic echo 

playback, respectively. Sections A1 each show plots of overlaid IDI-sequences of the 



II. PART ONE: COMMUNICATION 
 

103 
 

 

Figure 5.7: Ratio of observed to expected latencies at the echo response. The quotient allows assessing 

how many times more often than expected a preferred latency occurs during echoing. This proportion 

was higher in response to the dynamic echo playback for almost all of the n = 23 tested individuals 

(5.31 ± 0.21; mean ± s.e.m.) compared with the static random playback (4.53 ± 0.20; mean ± s.e.m.), 

suggesting that echo responses induce echoing by fish who receive echoes to their EODs. 

 

respective playback condition and the responding fish. Adaptive cross-correlations calcu-

lated between both of the two pairs of sequences are shown in the panels A2 below. Corre-

lation coefficients for a response time of ± 100 ms are color-coded, with higher values at 

positive response times representing synchronization of the fish's discharges to the play-

back sequence, and high values at negative response times representing synchronization 

of the playback sequence to the fish's discharges. Maximum correlation coefficients within 

the 100 ms response time, representing responses of M. rume to the playback and vice 

versa, are plotted in panels A3 of Figure 5.8 and Figure 5.9. 

The IDI-sequence emitted by fish 1 in response to the static random playback (Figure 

5.8A1) illustrates the general observation that animals consistently discharged at shorter 

intervals in response to this playback type (compare Figure 5.5A). The cross-correlation 

analysis in Figure 5.8A2 reveals consistent synchronization of electrical discharge activity 

by the fish to the static random playback that occurred at the response time representing 

the echo response. Maximum correlations frequently exceed the 0.3 correlation threshold 

indicative of relatively strong synchronization (see below). Since the static random play-

back generated artificial EODs by default independently of the signals emitted by the test-

ed fish, all synchronizations between the random playback sequence and the electrical 

signaling behavior of the fish have to be considered to occur at random. Consequently, 

maximum  correlations  of this  comparison  hardly  reach  the  0.3  threshold  for relatively  
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Figure 5.8: Synchronization of electrical discharge activity with the static random playback. Exemplary 

trial performed with fish 1. (A1) IDI-sequences of the random playback (black) and the fish (blue) over 

the 45-second time course of the experiment. (A2) Cross-correlation diagram calculated for the two IDI-

sequences displayed in (A1). Correlation coefficients of the fish's signals with the playback signals are 

color-coded for response times of ± 100 ms over the time course of the experiment. High correlation 

coefficients at positive response times thus represent synchronization of the animal's signaling behavior 
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to the playback at a latency defined by that response time. High correlation at negative response times 

would represent synchronization of the playback with the signaling behavior of the fish. This can only 

occur randomly in response to a static playback pattern. (A3) Maximum correlation values indicating 

synchronization of the fish with the playback signal (red) as well as for the playback signal with the fish 

(black). These values were extracted from the data underlying subplot A2. The dotted grey line repre-

sents the 0.3 threshold indicative of relatively high correlation. (B1–B2) Magnification of the section 

outlined by the dashed grey rectangle in (A1–A2). 

 

strong synchronization. Magnifications in Figure 5.8B1 and B2 demonstrate that discharge 

synchronization does not necessarily require exact copying of discharge sequences. Signal-

ing interactions of fish 1 with the dynamic echo playback led to more regular IDI-

sequences with intervals around 50 ms (Figure 5.9A1, compare Figure 5.5B). The cross-

correlation analysis of fish 1's response to the interactive echo playback again shows syn-

chronizations at the response time corresponding to the echo response, persisting over 

the majority of the time course of the experiment (Figure 5.9A2). Since the echo playback 

was designed to dynamically respond to EODs emitted close to the dummy with an echo 

latency of 21 ms, correlations at that response time before the fish's EOD represent syn-

chronization of the electrical playback sequence to the signaling sequence of the fish. Con-

sequently, maximum correlations of both comparisons exceeded the 0.3 threshold and 

discharge synchronization by the fish extended to even higher values compared with the 

response to the static random playback (Figure 5.9A3). How the adjustment of time-locked 

IDI-duration leads to mutual discharge synchronization is illustrated in more detail by the 

magnification in Figure 5.9B1 and B2. 

The maximum correlation calculated for the 100 ms response time was averaged over the 

trial period to quantify discharge synchronizations between M. rume and the IDI-

sequences of the two playback conditions (Figure 5.10). The same analysis was additional-

ly performed for correlations of the playback sequences with signaling sequences of the 

fish that were acquired independently during the electrically silent control condition as a 

control for randomly occurring correlations. Averaged maximum correlations varied sta-

tistically highly significantly (repeated-measures ANOVA with Greenhouse-Geisser correc-

tion: F(2.152, 47.349) = 192.0; p < 0.001; ε = 0.31) and confirmed the general observation from 

exemplary trials as well as the general conclusions derived from the analysis of echo re-

sponses. Responses of M. rume to the static random playback (i) resulted in an average 

correlation coefficient of 0.31 ± 0.011 (mean ± s.e.m.), thus justifying the 0.3 threshold set 

to define relatively strong synchronization. The occurrence of incidental correlations of 

the static random playback with the IDI-sequence of the fish (ii) was with 0.16 ± 0.002 
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(mean ± s.e.m.) significantly lower than that of the fish with the playback. These incidental 

correlations were statistically indifferent to the randomly occurring correlations (both 

0.16 ± 0.002; mean ± s.e.m.) observed for the independently recorded control sequences to 

the random playback (iii) and vice versa (iv). 
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Figure 5.9 (previous page): Synchronization of electrical discharge activity with the dynamic echo 

playback. Exemplary trial performed with fish 1. (A1) IDI-sequences of the echo playback (black) and the 

fish (blue) over the 45-second time course of the experiment. (A2) Cross-correlation diagram calculated 

for the two IDI-sequences displayed in (A1). Correlation coefficients of the fish's signals with the play-

back signals are color-coded for response times of ± 100 ms over the time course of the trial. High corre-

lation coefficients at positive response times represent synchronization of the animals signaling behav-

ior to the playback at a latency defined by that response time. High correlation at negative response 

times represents synchronization of the playback with the signaling behavior of the fish through an 

interactive echo playback triggered by EODs of the fish, which were emitted in proximity to the dummy. 

(A3) Maximum correlation values are indicating synchronization of the fish with the playback signal (red) 

as well as for the playback signal with the fish (black). These values were extracted from the underlying 

data of subplot (A2). The dotted grey line represents the 0.3 threshold indicative of relatively high corre-

lation. (B1–B2) Magnification of the section outlined by the dashed grey rectangle in (A1–A2). 

 

Figure 5.10: Synchronization of electrical discharge sequences. Mean of the averaged maximum cross-

correlation values for trials with all fish during the static random playback (black) and the dynamic echo 

playback (grey). High correlation coefficients indicate stronger synchronization of electrical discharge 

behavior to the corresponding IDI-sequences of either playback or fish. (i) Synchronization of the electri-

cal discharge behavior of M. rume to the playback sequence. (ii) Synchronization of the playback se-

quence to the electrical discharge behavior of M. rume. (iii) Synchronization of electrical signaling activi-

ty of M. rume during the silent control condition to the playback IDI-sequence used in the same session. 

(iv) Synchronization of the playback sequence to the IDI-sequence generated by M. rume during the 

silent control condition of the same session. Analyses of (iii) and (iv) were performed as a control for 

randomly occurring correlations and to establish a baseline value for synchronization between inde-

pendent IDI-sequences. Error bars represent the standard error of the mean. Categories not sharing a 

common superscript letter differ significantly based on Bonferroni corrected p-values. 



5. EVIDENCE FOR MUTUAL ALLOCATION OF SOCIAL ATTENTION 
 

108 
 

Responses of M. rume to the dynamic echo playback (i) resulted on average in significantly 

more discharge synchronization (correlation coefficient: 0.37 ± 0.012; mean ± s.e.m.) than 

during the static random playback, confirming the results obtained for the echo quotient 

(Figure 5.7). The respective synchronization response of the echo playback to the signals 

of M. rume (ii) was with 0.29 ± 0.009 (mean ± s.e.m.) statistically indifferent to the fish's 

response to the static random playback (i). This confirms the comparability of the dum-

my's interactive echo playback with the interactive signaling behavior of live fish. The in-

dependent control responses to the dynamic echo playback (iii and iv) were statistically 

indifferent to those obtained for the static random controls (both correlation coefficients: 

0.17 ± 0.002). This confirms that statistical differences in synchronization responses to the 

playbacks were not due to general differences between the two playback types. 

Temporal aspects of synchronization were further analyzed by quantifying the duration of 

sequences with correlation coefficients of 0.3 or higher. Relative cumulative histograms 

pooled for all fish (Figure 5.11) show that more extended sequences of relatively strong 

synchronization occurred in response to the dynamic echo playback compared with the 

static random playback. At a proportion of 0.75, the median sequence length of high-

synchronization episodes to the dynamic echo playback (1.68 s) significantly exceeded the 

duration of high-correlation sequences during the static random playback (1.17 s, 

Wilcoxon signed-rank test: Z = 2.42; p = 0.016; see box plot inset of Figure 5.11). 

Simultaneous recording of electrical signals and the motor behavior displayed by the fish 

allowed to associate the two components of interactive behavior in M. rume at any given 

time during an experiment. Tracking data allowed to analyze linear distances as well as 

directional relationships with regard to discharge synchronization of M. rume with the 

static random playback, and to identify the constellations they most frequently occurred 

in. Averaging maximal correlation values across the distances observed during all trials 

with the static random playback revealed that fish synchronized most strongly at a range 

of around 100 mm (Figure 5.12A). This range corresponds approximately to the maximum 

distance up to which fish are able to perform active electrolocation, i.e., the distance up to 

which they can detect objects by using their active electric sense (von der Emde, 1999). 

The median distance where relatively strong synchronizations of 0.3 or higher were ob-

served was with 289 mm considerably shorter compared to the median maximum dis-

tance of 473 mm observed in all trials (Figure 5.12B). 
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The average intensity of electrical discharge synchronization was also affected by direc-

tional interrelations between the mobile dummy and the fish. Figure 5.13 illustrates three 

such angular relationships and summarizes their influence on discharge synchronizations 

engaged in by M. rume. These were the position of the dummy from the perspective of the 

fish (Figure 5.13A(i)), the position of the fish from the dummy's coordinates (Figure 

5.13B(i)), and the angular difference between dummy and fish (Figure 5.13C(i)). Discharge 

synchronizations are expressed in Figure 5.13A–C(ii) by absolute values of maximum cor-

relation per video frame, plotted into polar coordinates representing the angular relation-

ships illustrated in line (i). Mean vectors express central tendencies for each fish (green) 

as well as for the whole group (magenta). In conjunction with the relative correlation coef-

ficients calculated per degree (Figure 5.13A–C(iii)), these data suggest that the fish spent 

most of the time oriented towards the dummy (Figure 5.13A(iii)), swimming behind it 

(Figure 5.13B(iii)), and adopted the same orientation (Figure 5.13C(iii)). When the data 

were made independent of the total frequency of occurrence by averaging correlation co-

efficients into bins of 1° (Figure 5.13A–C(iv)), the magnitude of synchronization engaged 

in by M. rume was correlated with the dummy's position relative to the perspective of the 

fish (ρp = 0.64; p < 0.001), the fish's location relative to the coordinates of the dummy 

 

Figure 5.11: Duration of synchronization episodes. Relative cumulative sums of the lengths of se 

quences during which fish synchronized their EODs to the IDI-sequences of the random playback (black) 

and the echo playback (red) with a cross-correlation coefficient of 0.3 or higher. A statistical comparison 

between the effect of both playback types on the duration of synchronization episodes by M. rume was 

made at a proportion of 0.75 (dashed line). At this value, echo playback led to a significantly longer du-

ration of synchronization events compared with the random playback (box plot inset). 
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(ρp = 0.43; p < 0.001), and the difference in orientation between the two (ρp = 0.68; 

p < 0.001). The direction of mean vectors of averaged correlation data within polar coor-

dinates, therefore, suggest that animals synchronized their discharge activity most in-

tensely when swimming towards the dummy (Figure 5.13A(iv)), approaching it from be-

hind (Figure 5.13B(iv)) with a similar orientation (Figure 5.13C(iv)). These observations 

are consistent with a situation where the following fish addresses a conspecific by engag-

ing in synchronization with the discharge sequence of the individual swimming ahead. 

 

Figure 5.12: Influence of distance on electrical discharge synchronization. (A) Cross-correlation coeffi-

cients of the IDI-sequences of M. rume with the static random playback for all n = 23 animals plotted 

against the distance between dummy and fish observed at the respective time (grey dots). Average 

values per distance (black dots) show that synchronization was strongest at approximately 100 mm. Bin 

size: 1 mm. (B) Box plots summarize the upper limit synchronizations with cross-correlation coefficients 

of 0.3 or higher were observed (upper plot) and the maximum observed distance the fish kept to the 

dummy during the presentation of the electrical playback (lower plot). 
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Figure 5.13: Dependency of electrical discharge synchronization on angular relationships between 

dummy and fish. (A) Position of the dummy from the fish's perspective. (B) Position of the fish from the 

dummy's coordinates. (C) Difference in orientation between dummy and fish. (i) Illustration of angular 

relationships between fish and dummy for angles of 30°. (A(i)) Illustration of the angle between the 

fish's swimming direction and the connecting line between the centers of fish and dummy. At 0°, the fish 

would swim towards the dummy, whereas at 180° it would swim away from the dummy. (B(i)) Illustra-
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tion of the angle between the dummy's swimming direction and the connecting line between the cen-

ters of dummy and fish. At 0° the fish would swim in front of the dummy, whereas at 180° it would be 

positioned behind. (C(i)) A difference of 0° represents the parallel orientation of dummy and fish, 

whereas anti-parallel orientation represents a 180° orientation difference. (ii) Polar plots of cross-

correlation coefficients as a function of the angular relationship between dummy and fish. Higher coeffi-

cients are plotted further away from the circle center. Green arrows depict the mean vector for each 

fish. The magenta arrow represents the mean vector for the data obtained from all fish. (iii) Relative 

amount of correlation per 1° for all observed angular relationships. (iv) Average cross-correlation coeffi-

cients per 1° for all observed angular relationships. The black arrow represents the mean vector. 

5.4 Discussion 

Determination of the key stimuli that trigger the release of social behaviors lies at the 

heart of behavioral biology (Tinbergen, 1948) and is a crucial prerequisite for using robot-

ic dummies for the investigation of behavioral responses in controlled experimental de-

signs (Mondada et al., 2013). Ethorobotical experiments with various fish species have 

shown that mainly visual and hydrodynamic cues mediate interactions between real ani-

mals and mobile fish dummies. These include size and aspect ratio, coloration and pattern-

ing, morphological features such as realistic eyes, swimming speed and dynamics, as well 

as tail-beat movement and hydrodynamic wake generation (Abaid et al., 2012; Kruusmaa 

et al., 2016; Landgraf et al., 2016; Marras and Porfiri, 2012; Phamduy et al., 2014; 

Polverino et al., 2013; Ruberto et al., 2016). In mormyrids, the importance of electrical 

signaling for mediating social behaviors is well established (Khait et al., 2009; Moller, 

1976; Moller et al., 1982). Studies using mobile dummies, which emit electrical playbacks, 

suggest that the EOD is a critical stimulus, which allows using dummies as a proxy for con-

specifics in controlled experiments on electrocommunication (Donati et al., 2016; Worm 

et al., 2017; Worm et al., 2018). The present study supports this interpretation by demon-

strating locomotor and electromotor interactions of M. rume with a mobile dummy moving 

on arbitrary trajectories while emitting different types of electrical playback sequences. 

In this study, locomotor and electromotor responses of individual M. rume to a mobile 

dummy, which emitted electrical playback EODs either as a static random IDI-sequence or 

in a dynamically interacting echo paradigm, were investigated. Social interactions and 

following-behavior were reliably induced in all individuals by electric playback genera-

tion. Following-behavior was quantified by examining the animals’ willingness to abandon 

wall-following behavior, by measuring fish–dummy distances, and by counting the num-

ber of the dummy's turns that were followed by the fish (Figure 5.4). While the electrically 

silent dummy had some influence on wall-following behavior, the effect of the playback 
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emitting dummy was much more pronounced, and the evaluation of turns suggested that 

real following-behavior was mainly a response to electrical playback. It turned out that 

attraction was not influenced by the type of playback which the dummy emitted. In con-

trast, the fish’s electromotor behavior was strongly influenced by playback type. 

Mormyrids are capable of encoding distinct signaling patterns into IDI-sequences (Carlson 

and Hopkins, 2004b) and behavior related signaling patterns have previously been de-

scribed in M. rume (Gebhardt et al., 2012a; Worm et al., 2017). In addition, it has been sug-

gested that the general sequence of intervals may be of importance for communication 

(Teyssedre and Serrier, 1986). Teyssedre and Serrier (1986) found Gnathonemus petersii 

to be more attracted to original IDI-sequences compared to randomly rearranged se-

quences, and Kramer and Kuhn (1994) demonstrated that Campylomormyrus 

rhynchophorus preferred its own species' IDI-sequences over those of related C. tamandua, 

although vice versa this was not the case. 

Both playback types presented in the current study were of artificial nature. A preference 

for either of the two types of sequences based on locomotor behavior could not be ob-

served, and interactive signaling responses were also exhibited by M. rume towards the 

unpredictable random IDI-sequences. At the level of electric signaling interactions, the 

fish's reaction depended on whether the playback sequence was static or dynamic, i.e., 

whether the dummy responded to the electromotor behavior of the fish. While the static 

playback caused an increase in discharge frequency by M. rume and led to an IDI-mode 

that was shorter compared with the control condition, a common IDI-mode at an interme-

diate value was assumed during interactive signaling with the dynamic playback sequence 

(Figure 5.5). Echo responses were reliably elicited by the random playback (Figure 5.6A), 

but the relative amount of playback pulses that were responded to by echoing was higher 

in response to the interactive playback (Figure 5.7). This led on average to a higher degree 

of discharge synchronization (Figure 5.10) sustained over longer periods of time (Figure 

5.11). Although it was not possible to design an interactive playback sequence that 

matched the random sequence regarding variability and average frequency whether or 

not the fish chose to interact with the dummy, the observed difference in interactive sig-

naling by the fish did not depend on general differences between the playback types. This 

was demonstrated using independently recorded sequences as a control (Figure 5.10). 

The higher amount of interactive signaling by M. rume seems, therefore, to result from the 

interactivity of the dynamic playback sequence, which means that an animal that receives 

echoes reacts by responding with more echoes of its own. This in turn leads to more in-

tense discharge synchronization between individuals. Similar findings were reported for 
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G. petersii, who generated echo responses to playback signals from both resting and ag-

gressively behaving conspecifics, but synchronized their discharges more intensely to an 

interactive playback sequence that responded with echoes to the EODs of the test fish 

(Prume, 2015a). Since there was no obvious effect on locomotor behavior in the current 

study, these results support the notion that echoing the EODs of conspecifics serves as an 

important function during electrocommunication in mormyrids. 

Echoing may, however, also serve as a jamming avoidance strategy. Heiligenberg (1976) 

demonstrated that Brienomyrus niger needed at least 4–8 successive EODs that were un-

disturbed by overlapping conspecific EODs for optimal performance during active 

electrolocation of an approaching object. Schuster (2001) proposed a mechanism by 

which an after-effect is caused in the command nucleus by the first EOD of a train of for-

eign signals, which can cause mormyrids to echo preferentially to the last pulse within a 

sequence. This mechanism may help to avoid signal overlaps caused by echoing in groups 

of more than two fish. The jamming-avoidance hypothesis stands in contrast to the obser-

vation by Schumacher et al. (2016b) that G. petersii was not impaired in the ability to per-

form an object discrimination task during jamming conditions, neither by a conspecific nor 

by high-frequency electric playback of EODs. These fish did not respond with echoes to the 

jamming EODs. Instead, the jamming fish echoed the test fish. 

Jamming avoidance strategies are also known from other active sensory systems such as 

active electrolocation in gymnotiform pulse-type (Westby, 1979) and wave-type electric 

fishes (Heiligenberg, 1980; Watanabe and Takeda, 1963), and echolocation in bats (Gillam 

et al., 2007; Takahashi et al., 2014; Ulanovsky et al., 2004), but see Götze et al. (2016). The 

necessity for a jamming avoidance strategy is more apparent in gymnotiform weakly elec-

tric fish because they lack a reafferent neuronal pathway, which enables mormyrids to 

distinguish between their own EODs and those generated by other individuals (Bell, 1981; 

Bell and Grant, 1989; Zipser and Bennett, 1976). Nevertheless, also in gymnotiforms jam-

ming avoidance strategies have been linked to social communication, in particular con-

cerning identity information and dominance relationships. The otherwise very stereotypi-

cal jamming avoidance response in wave-type Eigenmannia lineata was found to vary be-

tween male and female, as well as between juvenile and adult individuals (Kramer, 1987). 

Westby (1979) demonstrated that the more dominant of two resting Gymnotus carapo 

adopted the more efficient jamming avoidance strategy, and thereby more likely jammed 

the subordinate individual. Gymnotus carapo exhibits a strongly increased threshold for 

electroreception for about 12.5 ms after an EOD, thus limiting sensitivity to the time win-

dow where their own discharge will occur (Westby, 1975). In an interactive electrical 
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playback protocol, G. carapo preferentially discharged after half of the average playback 

IDI, i.e., within the time window during which the receptors of the conspecific represented 

by the playback would have been sensitive to the response of the fish. This observation led 

Forlim and Pinto (2014) to hypothesize that these animals may choose to discharge within 

or outside the refractory period of a conspecific, depending on whether they intend to 

communicate. 

Jamming avoidance can serve an essential function during communication by providing 

signaling individuals with a strategy to emphasize their signals and reduce obstructing 

overlaps with the signals of competitors. Strategic adjustments of signal generation have 

been described in calling insects (Murphy et al., 2016), frogs (Zelick, 1986), and songbirds 

(Benichov et al., 2016), and a dual role of echoing is also conceivable for mormyrids. 

A third reason why the sensory perception of mormyrids may benefit from echoing is that 

it ensures compatibility of active and passive electrolocation during social interactions. 

Mormyrids were shown to use the information provided by knollenorgan electroreceptors 

to approach a dipole source, representing a conspecific, from outside the range of active 

electrolocation (Hopkins, 2005; Schluger and Hopkins, 1987). Thus, a conspecific's EODs 

also provide spatial information during social interactions (Worm et al., 2018) (chapter 9). 

Since afferent information generated by the stimulation of knollenorgans is inhibited at 

the level of the hindbrain by a corollary discharge during the generation of an animal's 

own EOD (Bell and Grant, 1989), echoing the EOD of a conspecific would guarantee that 

active electrolocation does not impair passive sensing performance in a social context. 

Echoing will be perceived by the individual that is approached, and could have ritualized 

into a communication display where the approached individual echoes as well and thereby 

signals that it is aware that it has been detected. In the current study, the median value of 

the largest distance, at which relatively strong synchronization of M. rume with the dum-

my's playback occurred, corresponded to the 30 cm range for echoing determined by 

Russell et al. (1974). Additionally, synchronization was strongest at the outer limit of ac-

tive electrolocation at around 10 cm (Figure 5.12) (von der Emde, 1999). At this distance, 

passive sensing may be the most reliable source of information available about conspecif-

ics during the nocturnal activity period of mormyrids (Moller et al., 1979). 

Echoing of the EODs of conspecifics has been observed in several mormyrid species, but 

reports of associations between behavioral displays and echo responses do not point to-

wards a specific behavioral context. Echo responses have been observed during agonistic 

encounters in G. petersii (Bell et al., 1974; Terleph, 2004) and their occurrence was nega-

tively correlated with aggressiveness (Kramer, 1974). However, an unambiguous depend-
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ency between echoing and a subsequently established dominance relationship could not 

be confirmed (Bell et al., 1974). Observations from other species reported a reduction or 

even absence of echo responses during aggressive encounters compared with other be-

haviors like foraging or resting (Gebhardt et al., 2012b). Echo responses by resting indi-

viduals are consistent with the proposition of Russell et al. (1974) that echoing may mark 

the intrusion of a territory by a conspecific. However, echoing is not confined to resting 

individuals, and M. rume generated echo responses as a reaction to a variety of playback 

sequences that differed in pattern and average discharge frequency (Worm et al., 2017). 

The finding of Lücker and Kramer (1981) that preferred latency responses and preferred 

latency avoidance constitute a sex difference in Pollimyrus isidori could not be confirmed 

for other species (Orlov et al., 2009; Worm et al., 2017). The fact that echo responses can 

be observed in a variety of behavioral contexts as diverse as agonistic encounters, forag-

ing, and resting suggests that echoing may serve a more general signaling purpose, which 

is not necessarily linked to an activity-dependent behavioral context. Arnegard and 

Carlson (2005) described discharge synchronizations through mutual generation of echo 

responses in group-hunting Mormyrops anguilloides and interpreted echoing as a pack-

cohesion signal promoting mutual acknowledgment of individual recognition. 

The corollary discharge, which is generated by the command nucleus in the mormyrid 

brain each time the EOD is initiated, results in inhibitory postsynaptic potentials of up to 

10 ms. Theses potentials are measurable in the cells of the nucleus of the electrosensory 

lateral line lobe, where the afferent fibers of the knollenorgans project to (Bell and Grant, 

1989). Thus, the echo response might assure that the sender places its EOD between the 

end of this refractory period and before of the next EOD of the receiver. The EOD will, 

therefore, be registered by the receiver and may thereby signal notification of the sender 

and eventually mutual attention through discharge synchronization in a variety of behav-

ioral contexts. The observation that the correlation of the directional relationships be-

tween M. rume and the mobile dummy with the amount of synchronization engaged in by 

the fish was most pronounced when fish attended to the dummy by following its trajectory 

supports this integrative interpretation of the purpose of echoing. 

In summary, there are three possible and mutually not exclusive functions of the echo re-

sponse in mormyrids. Echoing may have originally been a strategy for jamming avoidance 

during active electrolocation of the environment, as well as during passive electrolocation 

of conspecifics via the knollenorgan pathway. Based on these functions, it may have ritual-

ized into a communication display that ensures signal transmission between individuals 

and allows them to affirm mutual attention during social interactions. 
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6. Discussion: Communication 

Animals communicate to coordinate behaviors that are relevant to many vital aspects of 

their lives. Adaptive signaling strategies have evolved for the net benefit of senders and 

receivers all across the animal kingdom, resulting in intricate communication systems and 

behavioral displays that become particularly evident during the contexts of intraspecific 

competition and reproduction (see chapter 3). Fishes, especially teleosts, are no exception 

to this rule. While many fishes communicate primarily using vision and olfaction, most 

modalities from their rich repertoire of sensory systems can also assume some function 

during communication (see section 3.3). This is also the case with the active electro-

sensory systems that evolved independently in South American gymnotiform and African 

mormyriform weakly electric fish. In fact, communication may have been the key innova-

tion for which active signal generation evolved in these two teleost lineages, whose ances-

tors had previously reacquired a passive electrosensory system (Arnegard et al., 2010b). 

Electrocommunication in mormyrids is based on the waveform of their EOD and the tem-

poral variation of intervals within series of successive EODs (see section 3.5 and Figure 

1.5B). While the adaptive potential of waveform-based communication in weakly electric 

fishes is relatively well understood (see sections 1.4 and 3.5.1), this is not the case with 

IDI-based electrocommunication in mormyrids. Few authors have given much considera-

tion to precise and objectively quantifiable definitions of signaling displays (see Carlson 

and Hopkins (2004b) for an exception). Although the link between mormyrid behavior 

and IDI-variation is undeniable and has been investigated many times both in solitary fish 

and socially interacting individuals (see section 3.5.2), most work on pattern-based 

electrocommunication is rather descriptive with respect to the actual information content 

of such signaling displays. Especially the mechanisms that make these signals reliable 

sources of information for conspecifics (Maynard Smith and Harper, 1995) have not re-

ceived adequate attention. This situation encourages anthropocentric interpretations of 

the observed signaling displays but explains very little of their adaptive value. 

This lack of knowledge, persisting in spite of a vast number of studies on electro-

communication, can in part be explained by the fact that electrical signals from solitary 

mormyrids are easily recorded and interpreted, while the assignment EODs from two or 

more individuals to the respective sender is time-consuming and prone to errors. This 

assignment problem is particularly challenging if the signals result from unrestrained so-

cial interactions. However, such unrestrained interactions are required if one intends to 

observe the full repertoire of signals used by a species to communicate (Guariento et al., 

2016). 
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In Part One of this thesis, mobile dummy fish that can generate playback of electric signal-

ing sequences were introduced as experimental tools for the investigation of IDI-based 

electrocommunication. This approach allowed to circumvent the difficulty in assigning 

EODs to their respective sender because the playback sequence is easily subtracted from 

the data to obtain the response sequence emitted by the fish. Additionally, a mobile dum-

my can be a closer mimic of a conspecific individual when compared with a stationary 

playback electrode, and may, therefore, provoke more natural behavior displays by the 

responding fish. 

Two different setups were designed to investigate electromotor and locomotor behaviors 

of M. rume in response to playback of natural and artificial IDI-sequences that varied in 

overall discharge rate, patterning, or interactivity with the EODs emitted by the test fish. 

The setup that was developed and introduced in chapter 4 permitted only linear move-

ment of the dummy. It allowed exact replication of test conditions, but, although the fish 

initiated the experimental trials, the dummy's movement and playback generation pro-

ceeded in an open loop that was not affected by the subsequent behavior of the fish. The 

setup used in chapter 5 allowed to close the feedback loop between the electro-

communicating dummy and the test fish on two levels. The experimenter was able to mod-

ify the swimming trajectories of the dummy in real-time based on live video recordings of 

the experiment, and the dummy was able to emit playback EODs with a latency that corre-

sponded to the echo response of M. rume each time the fish generated an EOD in proximity 

to the dummy. 

In both cases, the mobile dummy reliably induced following-behavior in M. rume (Figure 

4.3, Figure 5.3, and Figure 5.4). This behavior was maintained even after several turns and 

despite the fact that the dummy moved into open areas of the tank, which would usually 

be avoided by the fish. Following-behavior was to a significantly lesser extent also induced 

by the electrically silent dummy, partly even under non-visual conditions. The sensory 

cues a mobile dummy must provide to attract live M. rume, as well as the sensory systems 

mediating their behavioral responses, will be investigated in more detail in Part Two of 

this thesis. 

Differential attraction of M. rume towards the mobile dummy based on variations of elec-

tric signaling sequences was, with a single exception (Table 4.1), hardly observed during 

the experiments. This invariance suggests that electrical communication signals already 

constituted a strong social stimulus independent of the exact sequence of their presenta-

tion (but see Teyssedre and Serrier (1986)). Unrewarded alternative-choice experimental 

designs, which require that the tested fish express a preference for one of two alternative 
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signaling sequences, may, therefore, be better suited to uncover how subtle differences in 

IDI-patterning provide meaningful information about a signaling individual (Machnik and 

Kramer, 2008b). 

Nevertheless, the analysis of the electromotor responses of the fish to the mobile dummy 

made it possible to identify electrical signaling strategies used by M. rume during electro-

communication. The results of the studies presented herein, as well as other work that has 

meanwhile been done on this subject, allow a better understanding of electric signaling 

strategies and enable interpretations concerning their potential function in an evolution-

ary adaptive context. The most apparent electrocommunication strategies of M. rume ob-

served in this study were based on discharge regularization and double-pulse IDI-

patterns, as well as on interactive discharge synchronizations mediated by the mormyrid 

echo response. 

6.1 Double-pulse patterns 

In Mormyrus rume proboscirostris, double pulses were first described as a social display by 

Gebhardt (2012), who interpreted them as a 'peaceful signal.' The social nature of double-

pulse sequences in M. rume could be confirmed several times. Double pulses were gener-

ated only in response to either conspecifics or playback of electrical communication sig-

nals (Figure 4.8 and Figure 9.7) (Kersten, 2017a; b; Worm et al., 2017; Worm et al., 2018). 

However, the results presented in this thesis advocate an alternative explanation concern-

ing the function of double pulses during electrocommunication. In response to playback of 

electrical communication signals, individuals with a higher rank within the social hierar-

chy responded by generating more double pulses (Figure 4.9), and most double pulses 

were produced in response to a double-pulse playback (Figure 4.8). The latter result could 

not be reproduced by Kersten (2017b), who did not observe higher amounts of double 

pulses in response to long duration double-pulse playbacks, possibly due to a research 

design that did not compare within-subject variation between the playback conditions. 

Kersten (2017a) provided evidence that agonistic encounters between similarly sized 

pairs of M. rume were resolved in agreement with the predictions of the sequential as-

sessment model for conflict resolution (Enquist and Leimar, 1983; Enquist et al., 1990) 

and that they involve successive rounds of increasingly costly fighting displays. Here, dou-

ble pulses were most abundant during the first phase of an encounter, and individuals that 

later won the contest produced significantly more double pulses at the beginning (Figure 

4.24) (Kersten, 2017a). Double pulses are therefore suggested to be conventional signals 

of aggressive motivation that are displayed at the beginning of the sequential assessment 

of two opponents and have no additional signaling costs associated with their production 
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(Guilford and Dawkins, 1995). Behaviorally, they should be differentiated from discharge 

accelerations, which signal overt aggression in many mormyrids including M. rume (Bell 

et al., 1974; Carlson and Hopkins, 2004b; Gebhardt et al., 2012a; Kramer, 1976b). Acceler-

ations were associated with direct attacks that occurred during later stages of a competi-

tive encounter (Kersten, 2017a; Kupschus, 2017). 

During noncompetitive encounters in groups of three individuals, Kupschus (2017) found 

no significant differences in double-pulse generation, neither at different time points of 

the encounter nor in relation to the relative dominance ranks of the group members. Simi-

larly, in a comparison of natural and mixed groups of M. rume, there was no significant 

difference in the number of double pulses produced by individuals that differed in relative 

size or the order in which they left a shelter. There was, however, a tendency that larger 

individuals generated more double pulses in mixed groups, in which the formerly ahead 

swimming fish was replaced by a mobile, playback-emitting dummy (Pannhausen, 2017). 

The criterion that was introduced to quantify double pulses in section 4.2.7, and which has 

been used during the analysis performed in all subsequent studies, is based on a simple 

threshold and thus cannot provide an in-depth characterization of double-pulse se-

quences. Double-pulse displays can take a variety of forms, and a more detailed analysis of 

this variation should provide further insights into the functions of this signal during elec-

tro-communication. For instance, if there is a correlation between the longer of the two 

alternating intervals and the size of the signaling fish, double pulses could contain reliable 

information concerning the relative fighting ability of the individual that generates the 

signal. Double pulses can be messy and appear somewhat uncoordinated (Figure 9.4B), 

but also highly regular with both the long and the short IDIs being remarkably constant 

over time (Figure 9.4A). Preliminary observations suggest that regular double pulses are 

generated by individuals approaching a stationary playback source (chapter 9, Kersten 

(2017b)), whereas double pulses of individuals that follow a mobile playback source or 

are engaged in agonistic interactions are more irregular (chapter 9, Kersten (2017a)). If 

the generation of regular double-pulse patterns during physical interactions is more diffi-

cult to coordinate for an individual, regularity of double-pulse sequences during social 

interactions could provide reliable information concerning a senders quality and might be 

perceived to be more attractive to reproductive females than irregular double-pulse dis-

plays. Finally, the duration of both long and short IDIs of a double-pulse sequence can be 

modulated dynamically, generating a higher-order pattern in the process (Figure 4.13A). 

Such patterns could have more subtle functions during electrocommunication and have 

not been differentiated by the broad definition of double pulses used in research studies 
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so far. Additionally, information may also be contained in, or even be dependent on, the 

order of distinct social signaling patterns, particularly also regularizations, accelerations 

or discharge cessations. The order in which acoustic playbacks were presented to Japa-

nese great tits (Parus minor) influenced the reaction of these birds to communication pat-

terns that each contain a distinct message when presented independently, which led the 

authors to suggest the presence of compositional syntax in this animal communication 

system (Suzuki et al., 2016). 

Similar to the function proposed for double pulses in M. rume, 'scallops' have been sug-

gested to be an IDI-pattern that is used by Brienomyrus brachyistius during electro-

communication in dominance-related situations (Carlson and Hopkins, 2004b). It would, 

therefore, be interesting to find out whether double pulses are generated centrally by the 

same neuronal nuclei that were shown to be responsible for the initiation of 'scallops' in 

B. brachyistius (Carlson and Hopkins, 2004a) (see section 1.3, Figure 1.6 and Figure 1.7). It 

would also be conceivable that individual M. rume differ in their style of double-pulse sig-

naling, which could provide identity information analogous to the function proposed for 

'scallops' in B. brachyistius (Baker et al., 2016). Functional similarity of two signaling dis-

plays that differ among mormyrid species is also supported by behavioral observations by 

Worm et al. (2018) (chapter 9) in M. rume, and Moller et al. (1989) in B. niger. In both cas-

es, fish that were approaching a source of electric communication signals fell electrically 

silent for several seconds before engaging in characteristic electrical 'rebound activity,' 

which was represented by very regular double-pulse patterns in the case of M. rume. 

6.2 Regularization of discharge sequences 

A sensory function of discharge regularizations during active electrolocation has been 

demonstrated several times (Arnegard and Carlson, 2005; Hofmann et al., 2014; Toerring 

and Moller, 1984; von der Emde, 1992). Regularizations were, however, also interpreted 

as an important discharge pattern in the context of electrocommunication, because they 

occur in social situations and in response to electrical signals (Bell et al., 1974; Moller and 

Bauer, 1973; Moller et al., 1989; Terleph, 2004). The results presented in the preceding 

two chapters support this interpretation for M. rume. Figure 4.6 and Figure 4.12 show that 

discharge regularizations by the fish were particularly strong in response to playback of 

constant discharge frequencies within a range that corresponds to the discharge rates of 

freely behaving M. rume during social interactions (Kersten, 2017a; Kupschus, 2017; 

Pannhausen, 2017). The fact that animals regularized their intervals at the exact frequency 

of these exaggerated, artificial regularization patterns (or multiples thereof), and did not 

regularize at some individual discharge rate, suggests an involvement of echoing in the 
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production of regularization displays. Indeed, long sequences of discharge synchroniza-

tions were observed at a response latency corresponding to the echo response in M. rume 

(Toma, 2014b) (Figure 4.17). It also suggest that both regularizations and echoing are 

important signaling strategies during electrocommunication. In Gnathonemus petersii, who 

displays a very sharply delineated echo response at a preferred latency of 12 ms (Russell 

et al., 1974), artificially generated echoes resulted in strongly regularized discharge pat-

terns at an IDI of 24 ms (Prume, 2015a). While this may have resulted from an innate 

preference of G. petersii to regularize their discharge activity at the corresponding fre-

quency, experiments with modified echo latencies suggested that echoing is involved in 

mutually synchronized regularization displays of two fish (Kersten, 2016). 

During the experiments with M. rume, fish always responded with a certain degree of dis-

charge synchronization that exceeded correlations that would be expected for independ-

ent IDI-series. On the other hand, constant playback frequencies led to an almost mechani-

cal locking of discharges by the fish to the playback. Echoing of a conspecific's EOD might 

therefore be of special importance during discharge regularizations that are displayed 

during the assessment of a potential opponent. The idea that discharge regularizations are 

important during an early stage of sequential assessment is supported by their association 

with lateral displays, and by the observation that both discharge regularizations and lat-

eral displays occurred significantly more often at the beginning of a dyadic contest in 

M. rume compared with later stages of the encounter (Kersten, 2017a). A similar decline of 

the two displays was also observed in noncompetitive encounters in groups of three 

M. rume (Kupschus, 2017). Discharge regularizations may thus have ritualized from a 

mechanism that guarantees a high temporal resolution during active electrolocation into a 

social assessment strategy (Terleph, 2004). They may in this respect be compared with 

the assessment of dominance relationships through visual staring in humans (Kalma, 

1991), which also gathers information while simultaneously sending a signal. 

During discharge regularizations in mormyrids, the high temporal resolution of active 

electrolocation should facilitate the assessment of an opponent's size and fighting ability. 

Since discharge regularizations are frequently observed in association with lateral dis-

plays (Bell et al., 1974; Terleph, 2004), competing individuals are likely close enough to 

impair each other's active electrolocation ability through jamming (Heiligenberg, 1977). 

Mutual synchronization of regularized discharges mediated by the echo response would 

therefore not only facilitate mutual assessment through active electrolocation, but also 

ascertain that the respective other individual is aware that it is being assessed (see section 

6.3). The duration of regularized discharge sequences during confrontations with a poten-
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tial opponent could thereby reflect the confidence of a signaling individual to win an esca-

lated fight over a resource. It is therefore suggested, that discharge regularizations repre-

sent an advanced, but still early stage of sequential assessment. This hypothesis would be 

supported, if more dominant individuals maintained discharge regularizations for longer 

periods of time, or if the duration of regularization periods could predict the outcome of a 

contest, which was not the case during the contest experiments performed by Kersten 

(2017a). However, in the second phase of these experiments the designated winner of the 

contest regularized their discharge activity significantly more strongly to the signals of the 

later loser than vice versa. This could have reflected a situation, where the subordinate 

animal already refrained from engaging in discharge synchronizations that lead to mutual-

ly regularized intervals. 

Prolonged periods of regularized discharge activity could also provide clues to another 

individual's physical condition because of the higher energy expenditure required for sig-

naling at higher rates (Markham et al., 2016). This relationship may explain the occur-

rence of discharge regularizations in the context of reproduction in several mormyrids 

(Baier and Kramer, 2007; Bratton and Kramer, 1989; Werneyer and Kramer, 2005), dur-

ing which it could serve as a reliable signal that is constrained by a signaler's physical con-

dition. 

6.3 Echo responses and discharge synchronizations 

During the playback experiments with M. rume in chapter 4, all animals responded with a 

characteristic combination of a preferred latency of about 20 ms and a preceding period of 

latency avoidance (Figure 4.15). This means that the fish generated echoes to the playback 

EOD, and this occurred in response to all playback sequences (Figure 4.16). Consequently, 

echoing could not be assigned unequivocally to a particular behavioral context based on 

the different playbacks that were emitted by the dummy. 

Echoing of a conspecific's EOD has been considered to be a jamming avoidance strategy 

that prevents signal overlap of nearby individuals during active electrolocation 

(Heiligenberg, 1977; Schuster, 2001). However, since the magnitude of electric dipole 

fields diminishes with the third power of distance, active electrolocation is restricted to a 

radius of about one body length around the fish (von der Emde, 1999). The inter-fish dis-

tances at which jamming could occur is thus far shorter than the 30 cm radius that defines 

the range at which echoing starts to occur (Russell et al., 1974). Due to the short duration 

of the EOD in relation to the IDI, extended series of overlapping EODs, which would actual-

ly impair the faculty of active electrolocation (Heiligenberg, 1977), seem rather unlikely. In 

fact, G. petersii was not impaired in its active electrolocation ability when jammed by a 
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conspecific (Schumacher et al., 2016b). Social functions of echoing have therefore been 

considered by several authors (Arnegard and Carlson, 2005; Kramer, 1974; Lücker and 

Kramer, 1981; Russell et al., 1974). Social situations that require a high temporal resolu-

tion of active electrolocation are the competitive lateral displays that are accompanied by 

strongly regularized and mutually synchronized discharge displays (see section 6.2). In 

these situations, competing individuals are spatially close enough to impair each other's 

capability to actively electrolocate, and a correct assessment of each other's fighting po-

tential would be of mutual interest because it allows settling a conflict without an escalat-

ed fight (Maynard Smith and Price, 1973). 

The results presented in this thesis suggest that social functions of echoing and jamming 

avoidance during active electrolocation are not mutually exclusive. An essential feature of 

social signaling is to communicate a sender's location. It was shown by Schluger and 

Hopkins (1987) that mormyrids can use their electrosensory modality to approach a sig-

naling conspecific despite the fact that electric dipole fields do not provide unequivocal 

directional information that could be used by the fish for a direct approach (Hopkins, 

2005). The results presented in chapter 9 of this thesis expand these findings to a moving 

signal source and provide evidence that passive electric sensing via the knollenorgan 

pathway is an important sensory basis also for spatial interactions between mormyrids 

during electrocommunication (Worm et al., 2018). Echoing of a conspecific's EOD may 

consequently not only avoid jamming of the active sensory system but also make sure that 

a conspecific's signals do not coincide with the inhibition of knollenorgan inputs through 

corollary discharges during active signal generation (Bell and Grant, 1989). Echo respons-

es may thus also constitute a strategy to avoid jamming of the passive electrosensory mo-

dality that detects social signals via the knollenorgan pathway. 

At the same time, echoing will also guarantee that a sender, who generates echo respons-

es, places its EOD after the end of the period during which a receiver's knollenorgan affer-

ents are blocked, but before the next signal generated by the receiving individual. In this 

respect, echoing may be very similar to the concept of the 'electrosensory refractoriness 

avoidance response' proposed by Guariento et al. (2014) for South American gymnotiform 

Gymnotus. In addition to jamming avoidance in the sender's active and passive 

electrosensory systems, refractoriness avoidance through echoing might guarantee that 

the other individual will detect the signal generated by the sender. This refractoriness 

avoidance entails the possibility that the receiving individual will notice the fact that it is 

subject to social intentions by the fish that produces echo responses. In other words, echo-

ing avoids jamming of the knollenorgan pathway of an approaching individual, while sim-
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ultaneously assuring that the other individual realizes that it is being approached. Since 

this works in both directions, the approaching individual will also be aware of being de-

tected once the approached individual starts generating echo responses of its own. The 

result would be a closed feedback loop in an electromotor 'action-response' communica-

tion system (compare Figure 3.1, Hurd and Enquist (2005)), which may allow individuals 

to mutually allocate social attention during electrocommunication. 

This interpretation is consistent with the findings from chapter 5, where it was shown that 

artificially generated echo responses evoked more echoes in M. rume compared with elec-

trical playback of random pulse sequences (Figure 5.7). Similar results have also been ob-

tained in experiments with Gnathonemus petersii (Prume, 2015a). Interactions of the elec-

tromotor behavior of two individuals thus seem to be a fundamental signaling strategy 

during electrocommunication. This notion is further supported by the observation that the 

magnitude of electrical discharge synchronizations was correlated with geometric interre-

lations between the synchronizing fish and could be associated with social interactions 

and approach configurations. When M. rume encountered a mobile dummy that emitted 

static playback sequences with random intervals between EODs (chapter 5), the discharge 

synchronizations the fish engaged in were on average strongest when it followed the 

dummy from behind, in a parallel orientation (Figure 5.13), and at a distance correspond-

ing approximately to the outer limit of active electrolocation (Figure 5.12). In experiments 

involving more than one fish in addition to the mobile dummy (chapter 11), episodes of 

relatively strong discharge synchronization by M. rume frequently occurred in behavioral 

situations during which the individual that initiated synchronization approached either 

the dummy or a conspecific in the process (Figure 11.14 to Figure 11.20). It is thus sug-

gested that echoing provides a means to address a particular individual electrically by 

placing EODs into the sensitive window of the designated receiver. This ability might be 

particularly useful during electrocommunication in groups, where electrical noise is im-

posed on dyadic social interactions by the signaling activity of conspecifics. It has, howev-

er, also implications for the complexity of social interactions and their dynamics in electro-

communicating mormyrids. 

Mormyrids have been shown to be capable of individual recognition based on the wave-

form of an individual's EOD (Hanika and Kramer, 2005), and were also shown to possess 

relatively advanced cognitive abilities. This latter assessment is based both on the amount 

of resources devoted to their relatively large brains (Nilsson, 1996; Sukhum et al., 2016), 

as well as their performance during various kinds of discrimination tasks involving associ-

ative learning by conditioning (Schumacher et al., 2016a; von der Emde and Fetz, 2007). 
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While extended brain size can in part be attributed to the requirements of processing ac-

tively acquired electrosensory information (Finger et al., 1981), the ecological constraints 

of navigating complex environments at night (see section 1.4) may also have favored cog-

nitive flexibility in mormyrids. 

Both M. rume and G. petersii are invertivores that mostly prey on insect larvae (Kouamélan 

et al., 1999; Nwani et al., 2011). However, field reports from predatory Mormyrops 

anguilloides have shown that these mormyrids gather in relatively stable groups and hunt 

in packs for small cichlids (Arnegard and Carlson, 2005). Based on their observations, 

Arnegard and Carlson (2005) hypothesized that mutual synchronization of bursts through 

echoing allows 'mutual acknowledgement of recognition' between individuals of the 

group. Jamming avoidance in the knollenorgan pathway could in these situations facilitate 

undisturbed mutual identification of individuals based on differences in EOD-waveform, 

or the exchange of dominance related waveform information (see section 3.5.1) between 

unfamiliar individuals to determine hierarchy ranks without fighting (Parker, 1974). It 

would in this respect be interesting to test whether there is a relationship between domi-

nance and EOD duration in M. rume as well, and if so, whether individual fish are more 

likely to attack a dummy playing back EODs that are shorter than their own signals, com-

pared with a dummy emitting longer EODs. 

Collective, coordinated and collaborative hunting strategies of varying degrees of com-

plexity have been documented for several species of fish (Arnegard and Carlson, 2005; 

Bshary et al., 2006; Herbert-Read et al., 2016; Lönnstedt et al., 2014; Merron, 1993; 

Strübin et al., 2011), and it becomes increasingly evident that such capabilities are no 

unique feature of mammalian predators (Brosnan et al., 2010; Bshary et al., 2014; Dinets, 

2017). The observation of nocturnal pack-hunting in Mormyrops anguilloides involving 

burst synchronization has interesting implications for the significance of echoing during 

mormyrid social behavior. The ability to synchronize electric signals with conspecifics, 

combined with the capability to recognize individuals based on the waveform of their 

EOD, may have served as a foundation for the evolution of cognitive capacities and pro-

moted some form of 'Machiavellian intelligence' (Bshary, 2011) in mormyrids. Echoing 

may thus enable mormyrids to perform social behaviors otherwise restricted to animals 

with more advanced cognitive capacities. One such capacity is vocal imitation, which is 

quite rare among animals (Fitch, 2000; Hauser et al., 2002). Exceptions are dolphins and 

parrots, who are widely believed to possess advanced cognition and can use learned vocal 

labels to address specific individuals by imitating their calls (Balsby et al., 2012; King and 

Janik, 2013). In analogy, mormyrids would need to be able to imitate either EOD-
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waveforms or IDI-sequences specific for different individuals, a behavior for which there 

is no evidence. However, echoing allows to match signaling sequences of another individ-

ual with high temporal precision, and the echo response may thus enable mormyrids to 

address another individual within a group without the necessity of a capacity for imitation. 

Although the neuronal correlates of echoing have not yet been identified in detail, the in-

volvement of more than a few synapses is unlikely because of the short latency between 

stimulus and response EOD (Russell et al., 1974). The echo response may, therefore, be a 

simple mechanism that allowed the evolution of complex social interactions not frequently 

observed at the taxonomic level of fish. 

In conclusion, the preceding sections provided substantial evidence for communicative 

functions of double pulses, regularizations, and discharge synchronizations mediated by 

echoing of a conspecific's EODs. Double pulses may represent the first stage of sequential 

assessment during which they communicate aggressive motivation to a potential competi-

tor. Discharge regularizations, in conjunction with lateral displays, and aided by echo re-

sponses, seem to constitute an advanced but still early stage of a competition, during 

which opponents assess each other's fighting potential through active electrolocation. 

Echoing may also allow performing such interactions within a group by addressing a spe-

cific individual and may thus be an electromotor basis for complex social interactions by 

enabling mutual allocation of social attention in mormyrid weakly electric fish. 
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7. Introduction: Ethorobotics 

Nature has stimulated human creativity for centuries and served as a source of inspiration 

that triggered advances in science and technology. Living organisms evolved specialized 

adaptations and strategies that allowed them to develop ecological niches and survive in 

challenging environments. Many of these adaptations represent natural solutions to spe-

cific problems that organisms had to solve on an evolutionary timescale, and which can be 

applied to technical problems or inspire technological innovation. An early example is 

Leonardo da Vinci's (1505) famous—but unsuccessful—attempt to translate his studies on 

the flight of birds into a flying machine actuated by human muscle power. Nevertheless, 

the systematic investigation of biological principles and adaptations to solve technical 

problems is a relatively recent endeavor, which eventually originated the interdisciplinary 

field of bionics. As a research discipline, bionics aims to apply the results of basic research 

on biological structures, mechanisms, and processes to technical problems by using them 

as an inspiration for innovative technology applications and solutions (Nachtigall, 1998). 

Bionic principles can be applied to the development of structures and mechanisms, senso-

ry systems and information processing, as well as behavioral adaptations and strategies. 

The intense study of the nanostructure of water-repellent biological surfaces has provided 

a detailed understanding of the principles underlying superhydrophobicity, and allowed 

the design of biomimetic self-cleaning and drag-reducing surface materials (Barthlott et 

al., 2016). Similarly, the combination of strong adhesion and easy separation of the gecko's 

feet, which allows these animals to navigate even upside down on smooth surfaces, has 

inspired researchers to understand the structural and mechanic principles underlying this 

ability and to create materials with similar properties (Autumn and Puthoff, 2016). 

Nature has originated a tremendous wealth of sensory systems and information pro-

cessing strategies, many of which allow the detection of stimulus qualities alien to human 

perception. Biological sensory systems are the result of hundreds of millions of years of 

fine tuning by natural selection and have evolved to perform highly specific tasks, thus 

bearing a great potential to be translated into technical applications (Barth et al., 2012). 

Examples are infrared detectors based on the infrared-sensitive sensilla of pyrophilous 

beetles (Schmitz and Bousack, 2012), detection and processing of hydrodynamic infor-

mation by artificial lateral line systems (Bleckmann et al., 2012), and the adaptation of the 

principles of active electrolocation of weakly electric fish (von der Emde et al., 2009). 

Bionics can also utilize various natural behavioral strategies and adaptations. An extensive 

field of research is the investigation of natural locomotion strategies and their control, 

which is frequently studied by constructing biomimetic robots that are designed to navi-
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gate environments on land, in the air, or underwater. Examples are the design and control 

of six-legged locomotion by insect robots (Dürr et al., 2004), and the biomimetic quadru-

ped robot inspired by a running cheetah (Seok et al., 2015). Other robots were designed to 

mimic movement strategies of animals that cope with challenging environments, like 

snakes that master the ascend of sandy slopes (Marvi et al., 2014), or salamanders that can 

walk, crawl, and swim in wetland environments (Crespi and Ijspeert, 2009). In the air, 

flapping wings can today actuate robotic birds (Mackenzie, 2012) and insects (Ma et al., 

2013). Biomimetic underwater locomotion can be driven by carangiform oscillations simi-

lar to swimming fish (Barrett et al., 1999). But roboticists have also adapted the locomo-

tion strategies of floating jellyfish (Guo et al., 2007), anguilliform lampreys (Stefanini et al., 

2012), jetting octopuses (Sfakiotakis et al., 2015), as well as the fin-undulations of manta 

rays (Li et al., 2017) and cuttlefish (Wang et al., 2011) for robotic actuation. Such biomi-

metic and bioinspired research not only considers alternative ways of propulsion and lo-

comotion that are potentially suitable for performing useful tasks in remote and inaccessi-

ble environments, but it also originates innovative and energy efficient technical compo-

nents, materials, and procedures for technical applications. Other behavioral strategies 

with potential for technical implementations are related to communication and group dy-

namics. The study of animal flocks, herds, and swarms (see chapter 11) has inspired ambi-

tious scientific endeavors such as the interdisciplinary CoCoRo-project, which aims at cre-

ating a self-aware swarm of autonomous underwater robots (Schmickl et al., 2011). 

7.1 Electric fish as a source of bioinspiration 

Electric fishes have long been a source of inspiration for technical inventions (Bleckmann 

et al., 2004; Caputi, 2017; von der Emde et al., 2009). While the original invention of the 

electric battery was inspired by strongly electric fish, its design was not based on a real 

understanding of bioelectricity (Finger and Piccolino, 2011a). Today, electric eels (Elec-

trophorus electricus) continue to be a model for biocompatible sources of electricity that 

may power next-generation medical implants (Schroeder et al., 2017). The principles of 

active and passive electrolocation have been adapted to endow mobile robots and sensory 

probes with the capacities for object detection, navigation, and orientation (see section 

8.2.2). Active sensing strategies of weakly electric mormyrid fish Gnathonemus petersii 

have inspired the development of a catheter system that could be used to detect and clas-

sify atherosclerotic plaques in human blood vessels (Gottwald et al., 2017b). The capacity 

to locate moving prey using actively generated electric signals also involves specialized 

locomotion strategies. Gymnotiform knife fish (Apteronotus albifrons) exhibit high maneu-

verability even at low speed due to an undulating ribbon-fin, which may equip robotic 

underwater vehicles with similar locomotor flexibility (MacIver et al., 2004). 
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7.2 From biomimetics and bioinspiration to ethorobotics 

The cooperation of engineers and roboticists with behavioral biologists, enabled by tech-

nological advances in miniaturization and computation, has originated the novel and in-

terdisciplinary research field of ethorobotics. The use of robotic devices in behavioral bi-

ology bears great potential for the study of complex aspects of animal behavior, which 

cannot be reliably controlled in live individuals (Krause et al., 2011). But researchers from 

technological and biological disciplines are confronted with different challenges and may 

approach this collaboration with different motivations. For an engineer, the implementa-

tion of bioinspired mechanisms and the solution of associated technical problems consti-

tute major challenges, whereas biologists may be more interested in understanding the 

biological principles and mechanisms underlying a certain behavior. Engineers may rely 

on knowledge acquired through biological research to adopt a particular capability of a 

model organism and implement this capability into technical devices and applications. On 

the other hand, robotic devices can be useful tools to develop, test, and refine hypotheses 

in behavioral biology (Klein et al., 2012; Webb, 2000). From a scientific point of view, even 

failed attempts to implement a particular bioinspired performance into a technical device 

of similar size as the natural model, can lead to new discoveries and a better understand-

ing of the physical constraints an animal is faced with in its natural habitat, because 

roboticists have to solve similar problems when designing a replica as did evolution 

(Webb, 2000). In this respect, robotics research provides an advantage compared with 

theory-driven research and simulations, because roboticists get the 'laws of physics in-

cluded for free' (Mitri et al., 2013), which provides them with a testing ground for feasibil-

ity and efficiency of their models. Additionally, it is always clear what is hard-wired and 

thus 'innate' in a robot (Webb, 2000). A robot 's behavior is under the experimenter's con-

trol at any time, assuring exact repeatability and standardized conditions, particularly in 

behavioral experiments where robots are used to trigger responses from live animals 

(Krause et al., 2011). Thus, robots can be used to test hypotheses regarding the control of 

animal behavior under realistic conditions (Webb, 2000), but they may also serve as re-

search tools in explorative studies that eventually lead to the development of new hypoth-

eses, which can subsequently be tested using real organisms (Mitri et al., 2013). 

As a biological research discipline, ethology is concerned with the study of animal behav-

ior and aims at unraveling the key stimuli and principles that trigger innate, stereotypical 

behavioral responses in animals. For this purpose, scientists have long used simple lures 

and decoys as dummies to set up behavioral experiments, and the systematic reduction of 

a replica is a well-established method to identify releasing mechanisms for innate behav-

ior patterns (Lissmann, 1932; Tinbergen, 1948). Particularly useful tools for such experi-
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ments are playbacks of behavioral displays, which can be presented for example as acous-

tic, visual, or electrical stimuli, and allow to restrict stimulus presentation to a particular 

sensory channel (Kramer, 1979; McGregor, 2000). Robots offer the opportunity to design 

interactive and multimodal experimental designs, which allow determining how cues from 

different sensory systems contribute to a particular behavior (Krause et al., 2011). 

Robotic animal models have for example been used to study multimodal courtship signals 

in túngara frogs (Engystomops pustulosus) (Taylor et al., 2008), adjustment of male court-

ship displays to the response of female bowerbirds (Ptilonorhynchus violaceus) (Patricelli 

et al., 2006), and to test alternative hypothesis regarding the female preference for syn-

chronous courtship waving in fiddler crabs (Uca mjoebergi) (Reaney et al., 2008). In other 

projects, robotic models were used to study multisensory contributions of visual and 

acoustic signals to the alarm behavior of wild tree squirrels (Sciurus carolinensis) (Partan 

et al., 2009), the cross-modal integration of visual and acoustic cues that elicit aggression 

in male dart-poison frogs (Epipedobates femoralis) (Narins et al., 2005), and to disentangle 

the meaningfulness of visual displays for different receivers with regard to aggression or 

mate choice in southern sagebrush lizards (Sceloporus graciosus) (Martins et al., 2005). 

Fish are popular model organisms in studies on animal-robot interactions because of the 

tendency of many species to form shoals (Pitcher and Parrish, 1993) and the vast amount 

of stereotyped behavioral displays that have already been described (Oehlert, 1958; 

Simpson, 1968; Tinbergen, 1952a). Species such as zebrafish (Danio rerio) or sticklebacks 

(Gasterosteus aculeatus) are widely recognized model organisms and are frequently kept 

in the laboratory (Cianca et al., 2013; Faria et al., 2010). Scientific interest in the behavior 

of other fish species may also be warranted by commercial considerations (Kruusmaa 

et al., 2016). More examples of ethorobotical research projects involving fish are refer-

enced in sections 4.1, 5.1, 8.1, and 11.1.3. 

7.3 Ethorobotical concepts for the manipulation of animal behavior 

The results of ethorobotical research projects can in many instances be used for secondary 

applications involving commercial interests, or to further promote scientific understand-

ing of behavioral principles. Profound knowledge of the mechanisms underlying behavior 

patterns can be exploited to control animal behavior in various contexts, such as fishing or 

farming, conservation, or during scientific experiments. Researchers have proposed inno-

vative ways to manage livestock using robotic sheepdogs (Vaughan et al., 2000), virtual 

fences (Butler et al., 2006), or social control of animal groups by manipulation of individu-

al group members with wearable devices (Correll et al., 2008). Similarly, Rossi et al. 

(2013) explored the potential of using robotic dummies to control the swimming patterns 
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of farmed fish. So-called Robirds, which are remote-controlled models of the peregrine 

falcon, are successfully used for bird control at airports because birds do not habituate to 

the combination of moving silhouette and flapping wings that is exhibited by the robotic 

birds of prey (Folkertsma et al., 2017). Biomimetic aerial or underwater vehicles may also 

provide access to complex or hostile environments, for instance, to gather military intelli-

gence (Mackenzie, 2012; Rufo and Smithers, 2011). In the laboratory, biomimetic robot 

animals may be used to develop standardized behavioral paradigms, for example, to eval-

uate the effects of pharmacologically active substances on zebrafish (Cianca et al., 2013; 

Spinello et al., 2013) and rats (Shi et al., 2010). 

An interesting development from ethorobotics experiments is the concept of a mixed soci-

ety consisting of real animals and artificial agents, the latter of which can infiltrate the 

animal group and are programmed to dynamically interact with the animals (Mondada 

et al., 2013). This methodology enables closed-loop experiments with more sophisticated 

behavioral sequences compared with simple dummies, because robots can react to input 

generated by animals (Mitri et al., 2013). Such mixed systems may then originate emer-

gent behaviors observed in neither of the original systems (Halloy et al., 2013). Establish-

ing mixed societies takes the study of behavior from an individual-based level to the inves-

tigation of collective capabilities in animal groups. This approach is based on the identifi-

cation of local interaction rules between individuals and the formulation of models that 

link these rules to emergent, self-organized behavior patterns at the collective level, e.g., 

via positive feedback mechanisms (Deneubourg and Goss, 1989). Subsequent integration 

of robotic nodes, which comply with these rules, into animal groups then allows to change 

these interaction parameters locally, and thus to observe their effect on global behavior 

patterns at the group level (Mondada et al., 2013). 

Despite keen interest in this area, research projects that have established a mixed society 

in a strict sense are still not very numerous. The most seminal contribution is a study by 

Halloy et al. (2007), who were able to socially integrate mobile robots into groups of cock-

roaches and change the preference of these insects for dark shelters in favor of lighter 

ones. This was achieved by biasing the robots behavioral algorithm in favor of the lighter 

shelters. A major challenge when trying to socially integrate robots into animal groups is 

to design a functional robot that is accepted as a conspecific individual by members of the 

group, and must, therefore, incorporate the critical stimuli for social behavior (Mondada 

et al., 2013). In the cockroach-experiment, this social acceptance was mediated by olfacto-

ry cues and did not presuppose any visual resemblance of the robots to a cockroach 

(Halloy et al., 2007). Other studies have relied on different mechanisms and sensory sys-
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tems for social integration of robots into animal groups. Gribovskiy et al. (2010) exploited 

the innate filial imprinting mechanism of chickens (Gallus gallus domesticus) to integrate a 

mobile robot, which could subsequently influence the animal's behavior. Landgraf et al. 

(2012b) designed a robot that imitated the waggle dance of honey bees (Apis mellifera) to 

investigate how bees decode foraging information from fellow workers. Other studies 

have highlighted the importance of visual cues, such as realistic eyes for social attraction 

in guppies (Landgraf et al., 2016), and it was shown that a mobile rover could infiltrate a 

group of penguins (Aptenodytes patagonicus) when it was disguised as a penguin chick (Le 

Maho et al., 2014). Most recently, Bonnet et al. (2018) established a mixed society with live 

zebrafish using simple fishing baits to attract the animals and manipulate their behavior. 

These studies on animal–robot interaction have shown that exact biomimetic replication is 

not necessarily a prerequisite for a robotic agent to be accepted as a conspecific by live 

animals. Instead, many species appear to rely on key stimuli, which can be identified in 

hypothesis-driven stimulus-response experiments and can subsequently be exploited in 

closed-loop experimental setups. The following two chapters test the assumption that 

mormyrid weakly electric fish might be particularly well suited as model organisms for the 

formation of a mixed society, because of their ability to interact and communicate electri-

cally. Electrical signals can be used to trigger social responses (chapters 4 and 5) and may 

thus serve as the key stimuli that enable a mobile dummy to be accepted as a conspecific 

by live fish. In chapter 8, the design of a biomimetic weakly electric Mormyrus rume will be 

presented to test this hypothesis. The robot mimics live individuals in size, shape, motility, 

and electric signal generation. By combining motility cues with electric signaling displays, 

it will be shown experimentally that the latter are the more important attraction feature of 

the robot, both for single individuals and small groups of live M. rume.  

Based on these results, the mobile robot will be systematically reduced to a moving play-

back source in chapter 9. By experimentally excluding stimuli from vision, the mechano-

sensory lateral line system, and eventually active electrolocation, it will be shown that 

M. rume can rely exclusively on its passive electrosensory system, most likely mediated by 

the knollenorgan pathway (see section 1.3), to track a mobile source of electrical commu-

nication signals. Thus, social interactions among mormyrids can be induced and mediated 

by passive reception of electrical communication signals without the need for direct per-

ception of the location of the signal source through other senses. Electrical playback of the 

mormyrid EOD is, therefore, a powerful tool to socially integrate robotic dummy fish into 

groups of live mormyrids. This makes mormyrid weakly electric fish a unique model for 

the study of social dynamics in mixed societies of live and artificial fish. 
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8. Project 3: Investigation of Collective Behavior and Electro-

communication in the Weakly Electric Fish, Mormyrus rume, 

through a Biomimetic Robotic Dummy Fish 
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weakly electric fish, Mormyrus rume, through a biomimetic robotic dummy fish. 
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8.1 Introduction 

Interactive robots are increasingly used to investigate animal behavior in experimental 

biology (Frohnwieser et al., 2016; Krause et al., 2011). In the classical studies that origi-

nated ethology as a research discipline, animal models were systematically reduced to 

simple stimuli to identify the key features that trigger stereotyped behavior. The observa-

tion that aggressive behavior in male sticklebacks (Gasterosteus aculeatus) is primarily 

triggered by the perception of the red coloration on the ventral side of a supposed oppo-

nent describes one of the most widely regarded examples of a so-called social releaser 

(Tinbergen, 1948). Incorporating such stimuli into robotic devices allows to systematically 

investigate the significance of different stimulus features in elaborated and standardized 

behavioral protocols (Klein et al., 2012), as well as closing the feedback loop between 

stimulus presentation and behavioral reaction (Mondada et al., 2013). Fish are popular 

model organisms in studies on animal–robot interaction because they display a large vari-

ety of stereotyped behavior patterns, and the tendency of many fish species to form shoals 

serves as a good indicator for a dummy's effectiveness in mimicking the relevant traits of a 

conspecific individual (Bartolini et al., 2016; Butail et al., 2013; Faria et al., 2010; 

Kruusmaa et al., 2016; Landgraf et al., 2016; Polverino et al., 2012; Romano et al., 2017; 

Ward et al., 2012). Robotic fish dummies are thus well suited to initiate and manipulate 

behavioral patterns in real animals and to unravel the key elements determining the ex-

pression of such behavior patterns in fish. 

Stereotyped behavior in fish can be elicited by physical appearance, dynamics of move-

ment patterns, and the generation of transient communication signals by a conspecific. 

Size, shape, coloration, and motility of fish dummies have been the subject of many studies 

that aimed to disclose the features that induce social behaviors and cause biomimetic ro-

bot fish to be attractive to live fish from a variety of species (Abaid et al., 2012; Bonnet 

et al., 2016; Kopman et al., 2013; Polverino et al., 2012; Polverino et al., 2013; Polverino 

and Porfiri, 2013b). Biomimetic motility and locomotion were shown to be determinants 

of fish preference in several studies (Cazenille et al., 2018; Landgraf et al., 2016; Marras 

and Porfiri, 2012). These studies demonstrated that to successfully introduce a robot into 

a group of animals with the intention to manipulate natural behavior patterns, it is crucial 

to design the robot around cues that can cause its acceptance as a conspecific. Likewise, it 

must be designed to contain the stimuli that will trigger the behavioral patterns of interest 

(Mondada et al., 2013). While most research, where dummies were used to investigate fish 

behavior, focused on visual or hydrodynamic cues, the current study exploits electrical 

signals as a communication strategy to trigger social responses in the mormyrid weakly 

electric fish Mormyrus rume. 
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Mormyrids communicate using electric signals, which can easily be brought under an ex-

perimenter’s control through electrical playback protocols (Kramer, 1979) (see chapters 4 

and 5). These fish produce short, pulse-type electric organ discharges (EOD), which are 

separated by inter-discharge intervals (IDI) of highly variable duration, resulting in tem-

poral discharge patterns, which are associated with the animal’s current behavior. Electric 

signals in mormyrids serve two purposes: they are used for active electrolocation (von der 

Emde, 1999), and they provide identity information about the sender (Hopkins, 1999) as 

well as behavioral information during electrocommunication (Gebhardt et al., 2012a). The 

active space for electrocommunication thereby exceeds the range for active electro-

location due to the higher sensitivity of the respective receptor organs involved in com-

munication (Bennett, 1971c). Many studies have demonstrated that electrical playback 

experiments are useful tools to study electrocommunication with respect to, e.g., territori-

al behavior (Hanika and Kramer, 2005), mate choice (Feulner et al., 2009a), and the gen-

eral attractiveness of specific signaling features (Kramer, 1979; Teyssedre and Serrier, 

1986). In many fishes, shoaling behavior is mediated by vision and the lateral line system 

(Partridge and Pitcher, 1980), but mormyrids were shown to also rely on their electro-

sensory capabilities for group formation and coherence (Moller, 1976). The imitation of 

electrical signaling through playback experiments can, therefore, enable the acceptance of 

a dummy fish within a group of real fish, and makes mormyrids a novel model for the in-

vestigation of shoaling and group-communication (Worm et al., 2014) (see chapter 11). 

This chapter describes the development of an artificial dummy fish that mimics the weakly 

electric fish M. rume in shape, size, motility, and electric signal generation, and subse-

quently tests the acceptance of the dummy by live individuals in a set of behavioral exper-

iments. The chapter is arranged into a robotic and a biological part. The main challenge 

from the roboticists' perspective was to integrate a tail-beat mechanism and the capability 

for electric signal generation and reception into a fish robot with the same morphology 

and dimensions as a live animal. The influence of tail movements and electric signal gener-

ation on the attractiveness of the dummy fish for single individuals and small groups of 

weakly electric fish is the subject of the second section. The results show that electric sig-

nal generation had a strong influence on the attractiveness of the moving dummy fish to-

wards individuals and small groups of M. rume, but this effect did not depend on a particu-

lar tail-beat movement. This suggests that electrical signaling may be the most important 

stimulus triggering social interactions among mormyrids. 
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8.2 Design and implementation of the robotic dummy fish 

From a biological point of view, the main objective of building a robotic dummy fish was to 

create a tool that allowed to disentangle the effects of morphology, naturalistic motion 

patterns, and electrical signaling on the release of social behaviors during interactive ex-

periments with weakly electric fish. The robotic fish was designed in cooperation with the 

Biorobotics Institute of the Sant'Anna School of Advanced Studies in Pisa, Italy, where it 

was developed and manufactured at the Department of Creative Engineering Design. 

Technical specifications and validations are detailed in Donati et al. (2016). The dummy 

fish was designed around three central cues to (i) match the physical appearance of 

M. rume in size, shape, and color, (ii) exhibit forward movement and a tail-beat mecha-

nism, and (iii) possess an artificial electric sense. The robot (Figure 8.1A) was 

152 x 32 x 16 mm in size and was based on the morphology of a similarly sized specimen 

of Mormyrus rume proboscirostris (Figure 8.1B). It was composed of a rigid head, hosting 

the mechanism for tail oscillation (Figure 8.1D), and an actuated caudal section made of 

soft silicone rubber. The head of the dummy was connected through a rod to a linear stage 

that provided a forward motion to the fish during the behavioral experiments (Figure 

8.1C). The physical appearance of the dummy was not systematically varied, and therefore 

its effect on the behavior of M. rume was not explicitly tested in this study. The tail-beat 

mechanism was designed to achieve oscillation frequencies of up to 3 Hz and deflection 

amplitudes up to 40 mm from the midline, enabling a systematic variation of combina-

tions. The electric sense was implemented through a pair of electrodes, by which the 

dummy generated playback of electrical signaling sequences in the form of electric fields 

around its body. In addition, it was capable of recording electric signals in its surrounding 

in a bioinspired way via pairs of electrodes, which were strategically distributed along the 

body. The following sections describe the design of the dummy, focusing on the tail-beat 

mechanism and the integration of the electric sense. 

8.2.1 Tail-beat mechanism and forward locomotion 

Biomimetic tail-beat mechanisms have been designed with the aim to achieve propulsion 

efficiency and biomimetic locomotion and resulted in elaborate systems requiring a high 

degree of control for operation (Barrett et al., 1999; Kumph, 2000). Here, forward locomo-

tion was accomplished by tethering the dummy to a moving slide outside the tank (Figure 

8.1C). The tail-fin movement was therefore not designed to achieve propulsion, but to 

generate a naturalistic motion pattern. The robotic fish was composed of a soft caudal sec-

tion, actuated by a single DC motor (El Daou et al., 2012) to mimic carangiform swimming 

locomotion. This mechanism resulted in a dummy fish with a simple design, with no joints, 

intrinsically waterproof, and easy to manufacture through silicone casting and 3D printing. 
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The tail-beat mechanism comprised two cables (Dyneema® fiber with a diameter of 

0.26 mm) in an antagonistic configuration (i.e., one for each side of the body), which were 

molded inside the flexible body (Dragon Skin®, Smooth-On©, Pennsylvania, USA). The two 

cables were connected to a distal rib and routed through three intermediate ribs toward a 

pulley that was actuated by a DC motor (DC motor 210-002 from Precision Microdrives™, 

London, UK), which was located in the head of the dummy. The oscillation of the pulley led 

to the alternated pull and release of the two antagonistic cables, thus driving the oscilla-

tion of the caudal fin. 

 

Figure 8.1: Design features of the mobile dummy fish. (A) Final design of the fully assembled dummy 

fish composed of a rigid head and a flexible caudal section, connected to a plastic rod to enable forward 

motion along a linear guide. (B) Live specimen of Mormyrus rume proboscirostris. (C) Schematic of the 

dummy fish connected to the linear guide. (D) Partial section of the main components of the tail-beat 

mechanism inside the dummy; a: antagonistic cables; b: pulley; c: motor; d: distal rib; e: intermediate 

ribs. 

 

Externally to the dummy fish, a custom-built electronic board controlled the initiation of 

the tail-fin movement as well as the settings for tail-beat frequency and amplitude. Ampli-

tude values were measured from the midline of the body to the maximum deflection of the 

tail. Two switches on the board sent input corresponding to the selected oscillation fre-

quency and deflection amplitude to an Arduino ATmEGA microcontroller board, which 

sent an appropriate signal to the driver of the DC motor (L293 driver STMicroelectronics). 

The Arduino received a signal from the digital output of a CED (Power 1401, Cambridge 
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Electronic Design, Cambridge, UK), which was controlled by a computer running Spike2 

(version 5.21, Cambridge Electronic Design, Cambridge, UK). Only when the trigger signal 

was on, the Arduino sent the commands to the driver and the motor was activated. This 

mechanism allowed synchronizing the movement of the dummy with electric playback 

generation within the experimental protocol. The wires of the motor were routed to the 

electronics outside the tank through a non-conductive rod connected to the head of the 

robot. The rod also connected the dummy fish to a linear slide (Schlitten LRF 8 D10 

120 × 160, Item Industrietechnik GmbH, Solingen, Germany) that controlled the forward 

movement of the robot during the experiments (Figure 8.1C). The slide could be moved by 

powering a geared motor (Modelcraft RB350050-2273R, 12 V/50:1, not illustrated in Fig-

ure 8.1), to which it was connected via a cable linkage and a set of pulleys, and which was 

also controlled via the CED 1401. 

8.2.2 Integration of an electric sense 

The electroreceptive capabilities of weakly electric fishes are increasingly well understood 

(Caputi, 2017) and several research projects have been dedicated to the transfer of such 

perception abilities to robotic devices for underwater navigation (Boyer et al., 2015; Boyer 

et al., 2013; Lebastard et al., 2010; Mintchev et al., 2012), object detection and localization 

(Bai et al., 2016; Bai et al., 2015; Lebastard et al., 2016; Lebastard et al., 2012; Solberg 

et al., 2008), as well as communication (Mintchev et al., 2014; von der Emde et al., 2012; 

Wang et al., 2017). Here, an artificial electric sense was implemented into the dummy for 

the sole purpose of generating and receiving EODs. 

As shown in Figure 8.2, the dummy was equipped with two playback electrodes (emitting 

electrodes) and eight sensing electrodes (receiving electrodes). These electrodes were 

made of stainless steel with a diameter of 1.5 mm. Conductive wires were soldered to the 

electrodes and routed from the body of the dummy to outside the tank through the plastic 

connection tube. The output of electrical playback signals occurred via electrodes S1 and 

S2 (Figure 8.2) and allowed approximating the dipole-shaped electric field along the longi-

tudinal axis of the fish (Figure 8.4). Active electrodes S1 and S2 for the generation of elec-

trical playback signals were integrated at the tip of the snout and at the very caudal end of 

the tail of the dummy to mimic the spatial properties of the electric field surrounding a 

weakly electric fish as closely as possible (Figure 8.4). Electrodes R1 to R6 were connected 

to a differential amplifier (Brownlee Precision Model 440, Palo Alto, CA, USA) and were 

designed to record electric signals in the surrounding of the dummy. 

Inspired by a model by Hopkins (2005), four pairs of differentially recording electrodes 

were positioned in an orthogonal configuration as illustrated in Figure 8.3A. According to 
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this model, weakly electric fish find a dipole source by aligning their body axis along the 

local electric field vector, which can be accomplished by turning into the direction of 

stronger stimulation and moving forward once receptors on both sides receive stimulation 

of the same magnitude (Figure 8.3B). The dummy would then find the signaling fish along 

the electric field vector by moving in order to minimize measured amplitude difference 

between electrode pairs R6L–R3L and R6R–R3R, i.e., by turning in the direction of the elec-

trode pair that reports the higher value (Figure 8.3A). For as long as swimming backward 

is not an option, the dummy fish will approach the source when electrodes R1–R2 report a 

higher value than electrodes R4–R5. Recording electrodes should be deactivated during 

signaling via the playback electrodes. In live mormyrids, this is achieved by a corollary 

discharge mechanism in the brain (Baker et al., 2013a). Figure 8.3B shows exemplary re-

cordings by the left (L) and right (R) electrode pairs of a continuous sine wave stimulus 

emitted by the dipole source while continuously moving the dummy fish in parallel align-

ment to the stimulus electrodes on an orthogonal line connecting the positions drawn in 

Figure 8.3A. The dotted line shows the location of the dummy at the central position of 

Figure 8.3A. These results indicate that detection of and movement towards an active di-

pole source, e.g., the EOD of an electric fish, would be possible for a robotic dummy fish. 

The EOD waveform of a specimen of M. rume was sampled as described in Gebhardt 

(2012) and assembled to an IDI-sequence pre-recorded from an animal that was foraging 

in a small group (Gebhardt et al., 2012a). The resulting playback was transferred via a 

D/A-converter (CED Power 1401, Cambridge Electronic Design, Cambridge, UK) and an 

analog stimulus isolation unit (Model 2200, A-M Systems, Carlsborg, WA, USA) to the pair 

of electrodes integrated at the head and the tail of the dummy. To characterize the spatial 

extension of the dummy’s electric field during playback emission, the dummy was placed 

at the center of a 60 cm x 30 cm tank. EODs were recorded with a spot electrode covering a 

2 cm x 2 cm grid of the whole area in the central plane where the playback electrodes were 

located. Signal strength at a given location was calculated from the peak-to-peak voltage of 

the EOD at this position with positive values representing head-positive voltages. For 

comparison, the same measurements were conducted with a live specimen of M. rume, 

measuring 14.0 cm in standard length. The live fish was confined to a porous clay tube at 

the same position as the dummy during the measurements. Results normalized to the 

highest peak-to-peak value from each measurement are shown in Figure 8.4. Results were 

color-coded for the spatial distribution of signal amplitudes for the dummy (A) and the 

fish (B). Local amplitudes were more evenly distributed around the fish due to the resis-

tive nature of its skin. In contrast, field amplitudes decreased more rapidly near the dum-

my, whose electric field essentially consisted of a dipole field emanating from the pair of 
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stainless steel electrodes. The effect of this difference was less apparent with increasing 

distances from the signal source. Reference values of peak-to-peak voltages are reported 

at distances of 10 cm from the snout positions, demonstrating that the electric field gener-

ated around the dummy had about twice the strength of that of the living fish (Figure 8.4). 

 

Figure 8.2: Electrode configuration of the mobile dummy fish. Arrows indicate the distribution of active 

playback electrodes (S) and recording electrodes (R). 

 

Figure 8.3: Schematic illustration of the proposed orientation mechanism towards an electrical dipole 

source. (A) The dummy would approach the dipole along the electric field lines by turning towards the 

lateral electrode pair (red) reporting higher signal amplitudes. (B) Recordings of the left (L) and right (R) 

electrode pairs of the dummy while moving it on a straight line orthogonal to the stimulus source, which 

was emitting a continuous sine-wave signal. 
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Figure 8.4: Electric field characteristics of the dummy and M. rume. Electric potentials measured in a 

horizontal plane around the dummy (A) and a similarly sized specimen of M. rume (B). Insets show the 

respective waveforms of real and artificial EODs. Asterisks mark reference values of peak-to-peak volt-

ages measured at a distance of 10 cm in front of fish and dummy. 

 

8.3 Experimental validation by behavioral experiments 

8.3.1 Materials and methods 

Here, the ability of the dummy to influence the behavior of single individuals and small 

groups of live M. rume was investigated using two types of stimuli: tail oscillations and 

electrical signaling. Behavioral experiments were performed with a total of 44 individuals 

of M. rume ranging from 6.4 cm to 17.6 cm in standard length. Fish were maintained at a 

light/dark cycle of 12/12 h with a water temperature around 25°C, and fed on a daily basis 

with defrosted chironomid larvae. The experimental tank had a base area of 

200 cm x 50 cm with the water level at 20 cm. As illustrated in Figure 4.1, it was divided 

into a testing area and a living area, which were connected by a small gate. The living area 

was subdivided into a hiding area with shelters and an open area, which had to be crossed 

by the fish to reach the testing area. Animals were transferred to the experimental tank 

and acclimatized for at least 1 h before testing. The water temperature was kept at 

25.0 ± 1.0°C and the water conductivity at 100 ± 5 μS cm-1 during all experiments. Experi-

ments were triggered once a pair of electrodes within the open area registered the EOD of 

an animal. The dummy then started moving on a linear trajectory at an average speed of 
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0.11 m s-1 from its starting position at the gate through the entire testing area. All experi-

ments were performed under visible light, which was provided indirectly by a pair of LED-

Illuminators. Lights were regulated to yield an illuminance of approximately 10 lux direct-

ly above the center of the testing area (Light ProbeMeterTM, 403 125, Extech Instruments), 

which was well suited for visual pattern recognition in the mormyrid Gnathonemus 

petersii (Schuster and Amtsfeld, 2002). Additionally, the testing area was illuminated with 

a pair of IR-illuminators (850 nm) to be monitored from above with an infrared-sensitive 

video camera (DBK 21AF04 FireWire Camera with Vari Focal T4Z2813CS-IR CCTV Lens, 

The Imaging Source, Bremen, Germany). Thus, it could be determined whether the dummy 

fish was effective in recruiting animals from the living area into the testing area. A virtual 

target line was defined at the level of the rear end of the dummy at its farthest position in 

the testing area (Figure 4.1). Animals crossing that line within 15 s after the onset of an 

experimental trial were counted as following the dummy. 

Two sets of behavioral experiments were performed to discern the attractiveness of the 

various features of the dummy fish. In the first set, animals were divided among four ex-

perimental conditions that differed with respect to the dummy's tail-beat frequency and 

amplitude. These were: (i) 0 Hz and 0 mm (control), (ii) 0.5 Hz and 30 mm, (iii) 1.5 Hz and 

10 mm, and (iv) 3 Hz and 5 mm. Each condition was performed with n = 11 individual fish. 

Given the constant forward movement of 0.11 m s−1, these values resulted in Strouhal 

numbers of 0.27 for conditions (ii)–(iv), which is well within the range for efficient swim-

ming movements as shown for a variety of fishes (Triantafyllou and Triantafyllou, 1995). 

Each animal was confronted with the respective condition ten times with and without the 

additional presentation of electrical playback. The presentation of different experimental 

conditions alternated in a pseudo-randomized order that allowed no more than three con-

secutive repetitions of the same condition within an experimental session. The succession 

of experimental sessions was randomized, and animals were assigned to the four condi-

tions assuring equal size distribution. For the second set of experiments, the same animals 

were divided into n = 11 groups, each containing four similarly sized individuals. Each 

group was presented with ten repetitions of four different combinations of tail-fin move-

ment and electrical playback emitted by the dummy fish: (i) electrical playback and tail fin 

movement with 1.5 Hz and 10 mm, (ii) electrical playback only, (iii) tail fin movement with 

1.5 Hz and 10 mm without electrical playback, and (iv) no playbacks or tail fin movements 

as a control. Again, all stimuli were presented in pseudo-randomized order. Experimental 

trials in which at least one animal reached the following-criterion were defined to be suc-

cessful. Inter-trial intervals of at least 10 min were maintained between all trials during all 

experimental sessions. 
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Data were analyzed in SPSS (version 22.0, IBM Corp., Armonk, NY, USA) using the non-

parametric Kruskal-Wallis test for non-normally distributed data to compare the effect of 

tail-beat movement on recruitment efficiency for the playback condition and the electrical-

ly silent control condition. Wilcoxon signed-rank comparisons between these conditions 

were subsequently performed for each tail-beat configuration. The number of successful 

experiments during the group experiments was assessed with a non-parametric Friedman 

test followed by Bonferroni-corrected pairwise comparisons between results of the differ-

ent experimental conditions. Statistical significance was accepted at the α = 0.05 level. 

8.3.2 Results 

The tested combinations of cues evoked different attraction responses in individuals of 

M. rume. The attraction score of individual fish was measured for each as the proportion of 

trials during which the fish followed the dummy within 15 seconds. This measure was 

significantly affected by the presence or absence of the electrical playback signal during all 

tail-beat conditions, whereas the different tail-beat parameters during either the playback 

or the control condition had no significant effect. Single M. rume were mainly attracted 

when the dummy generated electrical playback signals, independently of its tail-beat 

movement (Figure 8.5). Concerning the experiments with groups of M. rume, the different 

combinations of cues generated by the dummy evoked significantly different attraction 

responses (χ²(3) = 23.19; p < 0.001). Comparing the relative amount of successful trials 

showed that fish were more attracted by the dummy when it generated electrical playback 

compared with the electrically silent control conditions (Figure 8.6). The condition involv-

ing electrical playback and tail-fin movement was significantly more attractive than the 

electrically silent conditions with (p = 0.002) and without (p = 0.006) tail-fin movement. 
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Figure 8.5: Attractiveness of the mobile dummy fish to single M. rume elicited by different combina-

tions of visual and motility cues. Attraction scores of n = 11 individuals per tail-beat condition were 

always significantly higher in the presence of electrical playback compared to electrically silent controls 

based on related-samples Wilcoxon signed-rank tests for (i): Z = −2.72; p = 0.007; (ii): Z = −2.68; 

p = 0.007; (iii): Z = −2.68; p = 0.007; (iv): Z = −2.94; p = 0.003. Tail-beat movement influenced attraction 

scores neither during playback presentation (χ²(3) = 1.14; p = 0.77) nor during electrically silent controls 

(χ²(3) = 1.75; p = 0.63. 

  

 

Figure 8.6: Attractiveness of the dummy fish to groups of four M. rume elicited by different combina-

tions of cues. Box plots show the relative number of successful trials performed with n = 11 groups of 

four fish based on four experimental conditions featuring different combinations of electrical playback 

presentation and tail-fin movement by the dummy. Categories not sharing a common superscript letter 

differ significantly based on Bonferroni-corrected p-values. 
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8.4 Discussion 

One of the most evident advantages of using robotic devices in behavioral biology is the 

possibility to test complex behavioral patterns in an automated and repeatable process. 

Appearance and behavior of a dummy can thus be brought under the researcher’s control, 

which allows the systematic investigation of cues that determine the dummy's attractive-

ness for live animals and provide experimental validation of the significance of these cues 

also for animal-animal interactions. Weakly electric fish offer a unique opportunity to in-

vestigate the contributions of sensory cues from different modalities on social behavior, 

because the spatial and temporal aspects of electrical signaling are relatively easy to re-

produce experimentally, and behaviorally highly relevant for orientation and intra-specific 

communication. 

The aim of this work was to develop a robotic fish that can be used in behavioral studies 

on weakly electric fish, with the long-term goal of establishing a mixed society (Mondada 

et al., 2013) of real and artificial M. rume. The resulting dummy fish mimicked the charac-

teristics of M. rume on several levels. It was designed to resemble a live specimen as close-

ly as possible in shape, size, and coloration. Although the effects of these properties on the 

robots attractiveness towards M. rume were not systematically investigated, the feasibility 

of integrating the components necessary for tail-fin actuation into a robot within the size-

range of the tested fish could be demonstrated. Robots of considerably larger size than the 

tested fish have been used in behavioral experiments with several fish species (Kopman 

et al., 2013; Marras and Porfiri, 2012; Polverino and Porfiri, 2013a) and it was argued, that 

aspect ratio may be more important as a parameter defining attractiveness than actual 

size (Abaid et al., 2012). Nevertheless, zebrafish replicas of similar size appear to be more 

attractive to live conspecifics than larger ones (Bartolini et al., 2016). Coloration and par-

ticular body features were shown in several studies to positively influence attraction of 

fish towards a replica in a variety of species (Abaid et al., 2012; Landgraf et al., 2016; 

Phamduy et al., 2014; Polverino et al., 2013). Other cues, such as hydrodynamic stimuli, 

were considered to be more important than visual cues by Marras and Porfiri (2012). Vis-

ual cues might be suspected to be of minor importance in M. rume since these animals are 

inconspicuous with respect to coloration and body features. In addition, their nocturnal 

lifestyle, as well as a grouped retina, leading to low spatial resolution in mormyrid vision 

(Landsberger et al., 2008), suggest a more prominent role of electrical signaling for intra-

specific interactions. This notion is supported by the fact that variations in EOD-waveform 

play an important role in the speciation of mormyrids (Feulner et al., 2009b). However, 

electrically silenced G. petersii are, although to a lesser extent, attacked by conspecifics 
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(Kramer, 1976a). It seemed therefore reasonable to keep the visual appearance of the 

dummy fish as realistic as possible. 

A large emphasis was set on the generation of naturalistic movement patterns, resulting in 

a robotic system capable of mimicking carangiform swimming movements in a wide range 

of tail-beat frequencies and amplitudes. The components and the mechanical design of the 

robot were optimized in a minimalist way to ensure reliability and ease of use during the 

experiments. The robot was composed of a flexible caudal fin and a rigid head housing the 

actuation unit. A DC motor controlled the oscillation of the tail through two cables in an 

antagonistic configuration. The robot was, however, not self-propelled and the power 

supplies for playback generation, tail actuation, and forward motion were situated outside 

the tank. The robot thus remained tethered and confined to a linear trajectory. The inte-

gration of receiving electrodes into the dummy potentially enables closing the feedback 

loop between live and artificial fish on two levels. Orthogonal arrangement of electrode 

pairs may allow spatial interactions between signaling fish and a completely mobile dum-

my by using a bioinspired approach algorithm (Hopkins, 2005) instead of visual feedback. 

It also opens the possibility to generate interactive playback patterns, which enables 

closed-loop feedback experiments on electrocommunication (compare chapters 5 and 11). 

The behavioral experiments that were conducted using the dummy fish demonstrated that 

the robot could recruit single individuals and small groups of M. rume from a shelter into 

an exposed area. In the first set of experiments, the influence of different motion patterns 

on the attractiveness of the dummy towards single M. rume was investigated. By keeping 

swimming speed constant, tail-beat frequencies and amplitudes were systematically var-

ied, all resulting in Strouhal numbers of 0.27, except for controls. This value was well with-

in the range of numbers calculated from the motility parameters observed in a variety of 

fish species, where Strouhal numbers ranging from 0.25 to 0.35 were associated with high 

swimming efficiency (Triantafyllou and Triantafyllou, 1995). When implemented in the 

dummy fish, these combinations led to fairly natural movement patterns for frequencies of 

1.5 Hz and 3 Hz, whereas the pattern at 0.5 Hz appeared exaggerated. While the presence 

of electrical playback signals had a highly significant and crucial effect on following-

behavior, there was no significant effect of motion pattern on the attractiveness of the 

dummy (Figure 8.5). In contrast, Polverino et al. (2013) identified an optimum for tail-beat 

frequency on the attractiveness of a golden shiner (Notemigonus crysoleucas) replica. Stud-

ies on golden shiners were performed using stationary fish dummies in constant water 

flow (Marras and Porfiri, 2012; Polverino et al., 2013) and attraction may have in part 

been due to hydrodynamic returns for swimming efficiency. This is unlikely as an explana-
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tion for the spontaneous behavior observed in the placid water of the experiments with 

M. rume. 

The second set of behavioral experiments was performed to disentangle the influences of 

motion pattern and electrical signaling on small groups of M. rume. Again, it did not make a 

difference whether the dummy fish performed a natural movement pattern, while electri-

cal signaling significantly improved recruitment efficiency (Figure 8.6). While the effect of 

swimming speed was not investigated in the current experiments, previous studies 

demonstrated that swimming speed (Butail et al., 2013) and dynamics (Landgraf et al., 

2016) were determinants of a replicas attractiveness towards, zebrafish (Danio rerio) and 

guppies (Poecilia reticulata), respectively. 

Playback experiments with weakly electric fish have traditionally been performed using 

stationary electrodes for signal generation (Feulner et al., 2009a; Hanika and Kramer, 

2005; Kramer, 1979). Incorporation of playback electrodes into a mobile fish dummy al-

lowed to additionally investigate spatial aspects of interactions during electro-

communication in mormyrids (Worm et al., 2014) (see chapters 4, 5, 9 and 11). By con-

structing a realistic model of M. rume, a complex set of cues was generated, and the influ-

ence of different motion patterns and electrical signaling on following-behavior of live fish 

could be systematically tested in behavioral experiments. Selective activation of caudal-fin 

oscillation and electrical signaling suggested that the latter played a more prominent role 

in inducing the observed behavior. The dominant effect of electrical signaling suggests that 

the robot could be reduced in a way analogous to Tinbergen’s (1948) identification of so-

cial releasing mechanisms (see chapter 9). Developing an artificial dummy fish may thus 

help to understand fundamental aspects of collective behavior in weakly electric fishes, 

and the rules and properties necessary to initiate and sustain such behavior in closed-loop 

feedback experiments based on electrocommunication. 
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9. Project 4: Disembodying the Invisible: Electrocommunication 

and Social Interactions by Passive Reception of a Moving 
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9.1 Introduction 

Mormyrid weakly electric fish have a multitude of sensory systems at their disposal, which 

they use to navigate their environment, detect predators and food, and mediate social in-

teractions between individuals. Mormyrids share the ability to passively detect low-

frequency electric signals via ampullary receptor organs with a variety of electroreceptive 

fishes (Engelmann et al., 2010; Kalmijn, 1974). More prominent is their ability to probe 

their immediate environment using self-generated electric organ discharges (EOD) during 

active electrolocation (von der Emde, 1999). These signals are produced by an electric 

organ located within the caudal peduncle and generate an instant, three-dimensional di-

pole field around the fish (Bennett, 1971a). Animals detect their own discharges through 

mormyromast electroreceptor organs (Bell et al., 1989), which are distributed over large 

areas of the body surface (Harder, 1968; Hollmann et al., 2008). Object induced local mod-

ulations of EOD-amplitude and waveform, which are registered by mormyromasts, consti-

tute an electric image that allows the fish to detect and differentiate objects based on their 

size and shape (von der Emde et al., 2010), as well as material composition (von der Emde, 

2006). Active electrolocation is thus used for finding food (Arnegard and Carlson, 2005; 

von der Emde, 1994; von der Emde and Bleckmann, 1998) and for orientation and naviga-

tion in the environment (Cain et al., 1994; Cain and Malwal, 2002; Schumacher et al., 

2017b; Walton and Moller, 2010). 

Electrocommunication relies on a third electrosensory system with its own electrorecep-

tor organs and brain pathways. Like mormyromasts, knollenorgans are electroreceptors 

that respond to the high frequencies contained in an EOD, but their input to the central 

nervous system is inhibited by a centrally evoked corollary discharge each time an animal 

discharges its electric organ (Bell and Grant, 1989). Instead, the knollenorgans relay in-

formation about the timing of EODs emitted by other electric fish to the brain. Through 

their knollenorgan pathway, fish can thus detect variations in waveform and inter-

discharge interval (IDI) of the signals of nearby conspecifics (Baker et al., 2013a). While 

the EOD waveform mainly conveys information about the identity and status of the sender 

(Bass and Hopkins, 1983; Carlson et al., 2000; Graff and Kramer, 1992; Hanika and 

Kramer, 2005; Hopkins, 1980; Terleph and Moller, 2003), immediate changes in IDI-

distribution enable mormyrids to communicate behavioral states and motivations. Instan-

taneous discharge frequencies are also linked to the current needs of active electro-

location in a given behavioral context, such as resting, swimming, or foraging (Bauer, 

1974; Gebhardt et al., 2012a), or the detection and analysis of novel stimuli in the envi-

ronment (Post and von der Emde, 1999; Toerring and Moller, 1984; von der Emde, 1992). 

Systematic variations in IDI-duration additionally result in specific signaling patterns that 
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can encode intentional information (Baier and Kramer, 2007; Bratton and Kramer, 1989; 

Carlson and Hopkins, 2004b; Kramer, 1976a), and interactive signaling can lead to syn-

chronization of discharge activity between individuals, which is also likely to play a role 

during communication (Arnegard and Carlson, 2005; Gebhardt et al., 2012a; Gebhardt 

et al., 2012b). 

Social communication consists not only of detection and decoding of the senders signal 

and its content by the receiver, but often aims at initiating physical interactions, which 

requires the receiver to also determine its spatial relationship to the signal source. Social 

behaviors in mormyrids are quite versatile and include overt aggression and territorial 

behavior as well as social interactions and shoaling depending on both context and species 

(Carlson, 2016; Gebhardt et al., 2012b; Moller, 1976). A multitude of context-depending 

motor patterns and behavioral sequences during social encounters have been described, 

many of which could be associated with stereotypical displays of electric discharge activity 

(Bell et al., 1974; Kramer and Bauer, 1976; Wong and Hopkins, 2007), or were shown to 

depend on the capability to produce EODs (Crockett, 1986; Moller, 1976). 

Many fishes are highly vision-dominated animals, as apparent from the innumerable 

amount of visual displays of postures, markings, and coloration during agonistic encoun-

ters, mate-choice, or group integration (Bakker and Milinski, 1993; Denton and Rowe, 

1998; Simpson, 1968). Due to their nocturnal lifestyle (Moller et al., 1979), social interac-

tions among mormyrids often cannot rely on their visual system, which is adapted to dim 

light and turbid water conditions (Kreysing et al., 2012; Landsberger et al., 2008). Alt-

hough the pulse-type electric signals emitted by mormyrids are well suited to encode in-

formation into temporal sequences, they do not provide directional information about the 

shortest distance towards the position of the signal source, because they exist as electro-

static dipole fields (Hopkins, 2005). Weakly electric fish therefore approach an electric 

dipole source by describing a curvilinear trajectory along the electric field lines of the 

emitted signal (Schluger and Hopkins, 1987). However, little is known about the relative 

roles of active and passive electrolocation during close-range encounters between 

mormyrids. Can social interactions among weakly electric fish be mediated by passive 

reception of electric communication signals alone? Or do mormyrids require input from 

other sensory modalities as well, to sustain close-range interactions between individuals 

during electrocommunication? These questions can only be addressed by restricting the 

source of the signal to its 'disembodied' electric signaling properties from the perspective 

of an electric fish. 
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Weakly electric Mormyrus rume have been shown to follow a mobile dummy fish emitting 

electrical playback of natural IDI-sequences from a shelter into an open area, apparently 

without relying on visual or motility cues (Donati et al., 2016). Under non-visual condi-

tions, the spatial relationship between the moving dummy and the following fish was af-

fected by the presence of electric playback signals (Worm et al., 2017), raising the ques-

tion of what sensory systems are actually involved when following another individual. In 

that study, it was hypothesized that mormyrids can rely on the spatial information con-

tained in the electrostatic dipole-fields generated by the EODs of a conspecific, and thus 

are capable of spatially interacting with a moving signal source based on information pro-

cessed via the knollenorgan pathway during electrocommunication. In the current study, a 

similar design as in Worm et al. (2017) (chapter 4) was used to confront single individuals 

of M. rume with a mobile dummy electrode emitting EODs to entice the fish to swim out of 

a shelter and into a testing area. All sensory cues from the signal source that could have 

been perceived by vision, the lateral line system, and eventually also active electro-

location, were experimentally excluded. This approach should render all physical proper-

ties of the signal source, except the actively generated electrostatic fields of the playback 

EODs, undetectable for M. rume and allowed concluding on the significance of passive elec-

troreception via the knollenorgan pathway during interactive social behaviors. The signal 

source was thus 'disembodied,' and it was tested whether its characteristics still sufficed 

to induce normal social following behavior. The results show that the presentation of elec-

tric playback signals reliably attracted the tested fish and triggered the emission of stereo-

typical signaling sequences, which usually can be observed during electrocommunication. 

Even animals that were deprived of their ability to generate EODs were still able to locate 

the moving signal source, track its movement throughout the testing area, and orient 

themselves relative to its position during spatial interactions. Thus, passive perception of 

electrocommunication signals was sufficient to initiate following-behavior in M. rume and 

sustained interactions with an otherwise imperceptible signal source. 

 

9.2 Materials and methods 

9.2.1 Experimental animals 

A total of 27 Mormyrus rume proboscirostris were used during the experiments, all of 

which were bred in captivity by F. Kirschbaum (Humboldt University of Berlin) by imita-

tion of rainy season conditions following the method described by Schugardt and 

Kirschbaum (2004). Animals were kept under tropical conditions and a 12/12h light/dark 

cycle, with water temperatures around 26°C. Food was provided at least five times a week 
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in the form of defrosted chironomid larvae. All experiments were carried out in accordance 

with the guidelines of German law and with the animal welfare regulations of the Universi-

ty of Bonn. All procedures and methods were approved by the LANUV NRW (Landesamt 

für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, reference number: 84-

02.04.2015.A444). 

In a first set of experiments, 24 M. rume with standard lengths between 6.4 and 11.4 cm 

were used to test the reaction of intact fish to a mobile dummy dipole that was basically 

reduced to the emitted playback signal (see below). These animals were approximately 

two years of age at the time of experimentation and of undetermined sex. They were kept 

as a group in a communal tank, from where they were individually transferred to the ex-

perimental tank at least one day prior to testing. 

9.2.2 Setup 

The experimental tank had a base area of 200 cm x 50 cm and was subdivided into three 

compartments (Figure 9.1A): The first compartment (closed area) measured approximate-

ly 60 cm in length. It was made inaccessible to the fish using a fly screen and contained the 

inlet and outlet of the water filter, a heater and an aeration device, all of which were 

switched off during the experiments. The second compartment measured around 50 cm in 

length and served as a hiding area, which was connected via a 10 cm wide gate to the test-

ing area, which had a length of 90 cm. The floor of both the hiding and the testing areas 

was covered with gravel. Water level was maintained at approximately 20 cm. In the test-

ing area, an electrically transparent agarose tube was embedded in the ground, which 

served as the track for the moving electric dipole source. During all experiments, water 

temperature and conductivity were kept at 26.0 ± 1°C and 100 ± 5 µS cm-1, respectively. 

The agarose tube had a length of 1000 mm and defined the trajectory of the mobile play-

back electrode inside the third compartment, the testing area. It had a cubic outer cross 

section of 55 x 50 mm and an inner diameter of 15 mm and was made using 20 g l-1 Uni-

versal Agarose ("Seakem® LE", Axon Labortechnik, Kaiserslautern, Germany). Water with 

a conductivity of 100 µS cm-1 was used to manufacture the tunnel to ensure electric trans-

parency during the experiments (Heiligenberg, 1973). The tunnel was embedded in the 

gravel, running in parallel to the longitudinal axis of the tank, through the gate and central-

ly through the testing area. The upper surface of the tunnel was planar with a final layer of 

fine white sand (Sansibar S'now, JBL GmbH & Co. KG, Neuhofen, Germany) which provided 

good contrast for subsequent video tracking, but did not cover the surface of the tunnel. 
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Figure 9.1: Experimental setup. A) Top view of the experimental setup (base area: 200 x 50 cm). Upon 

registration of electric activity by a pair of trigger electrodes (TR), the mobile dummy electrode (DE) 

crossed the testing area through an electrically transparent agarose tube (AT) while emitting playback of 

a natural IDI pattern. Fish that left the shelter (S) and reached the target area (TA) within 15s of onset of 

the experiment were defined as following the dummy electrode. Experiments were videotaped by an 

infrared-sensitive camera and electric activity was recorded by a mulitielectrode array (E) for further 

analysis. B) Schematic illustration of M. rume detecting the mobile dummy electrode emitting a dipole 

field within the elctrically transparent agarose tube at the bottom of the tank. Images are not drawn to 

scale. 

 

The hiding area was provided with a single shelter made from a 20 cm x 5 cm red trans-

parent plastic tube (Bioscape GmbH, Castrop-Rauxel, Germany), with the opening directed 

towards the gate at a distance of 30 cm. The front end of the shelter was endowed with a 

pair of trigger electrodes. Electric activity of the test fish was amplified differentially 

(Brownlee Precision Model 440, Palo Alto, CA) between these electrodes and was used to 

generate a TTL-pulse via a digital oscilloscope (Yokogawa DL1620, Yokogawa Electric 

Corp., Tokyo, Japan) once a certain threshold was passed. This threshold was determined 

for each fish prior to an experimental session. Its sensitivity was set to trigger the onset of 

an experiment once the fish stuck its snout out of the front end of the shelter. 

9.2.3 Electrical playback and EOD recordings 

A playback dipole was made from a 9 cm plastic rod with a diameter of 8 mm, which was 

fitted with a pair of carbon electrodes situated at the front and rear ends of the rod. This 

dummy electrode was placed inside the agarose tunnel (Figure 9.1B) and could be dragged 
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at a speed of 0.11 m s-1 by a wire through the tunnel using a small DC motor (Modelcraft 

RB350050-2273R, 12 V/50:1) to which it was connected via a cable linkage and a set of 

pulleys. The wire also connected the dummy electrode to a stimulus isolator (model 2200, 

A-M Systems Inc., Carlsborg, WA) that also served as a power source for electrical play-

back generation.  

An electrical playback sequence was generated in Matlab (version R2013b, The 

MathWorks Inc., Natick, MA) using a custom-written script to concatenate single EODs to a 

highly regular, but natural pulse-sequence with an average IDI duration of 59 ± 9 ms 

(mean ± s.d.) and a total duration of 14 seconds. This sequence had previously been rec-

orded during a similar experiment. Template EODs were recorded head-to-tail (Brownlee 

Precision Model 440, high-pass: 1 Hz) from a M. rume, digitized at a sampling rate of 

50 kHz (CED Power 1401, Cambridge Electronic Design, Cambridge, UK) and averaged 

from 50 signals using Spike2 (version 5.21, Cambridge Electronic Design, Cambridge, UK). 

The second positive phase of the EOD (Kramer, 2013) was omitted from the playback sig-

nal because it declines 'asymptotically' and arguably contains low-frequency signal com-

ponents. The output of the assembled playback sequence occurred at 50 kHz via the 

Spike2 sequencer, a D/A-converter (CED Power 1401), a dB-attenuator (University of Re-

gensburg, Germany), and the stimulus isolator to the playback electrode inside the agarose 

tube. The stimulus isolator was turned on also during trials without electrical playback to 

control for effects of any low-frequency offsets it may have caused. Signal strength was 

adjusted to match the EOD-amplitude of a living fish of similar size, resulting in a maxi-

mum signal strength of 118 mV cm-1 measured outside the agarose tube. 

The EODs of the fish and the dipole were recorded differentially (Brownlee Precision 

Model 440) via a five-channel multi-electrode array (Figure 9.1A), which included the trig-

ger electrodes to account for all signals irrespective of the test fish's position in the tank. 

Recording electrodes, which consisted of single-wires funneled through 5 mm plastic 

tubes with a short silver wire (AG-8W, Science Products GmbH, Hofheim, Germany) sol-

dered to the tip, were placed closely above the gravel. Waveform data were digitized (CED 

Power 1401) and recorded to disk using Spike2 software. All experiments were performed 

under infrared illumination only (850 nm, IR Illuminator Model SA1-60-C-IR, Itakka, 

Wattens, Austria). They were recorded using Spike2 Video Recorder and monitored re-

motely via a pair of infrared-sensitive cameras (DBK 21AF04 FireWire Camera with Vari 

Focal T4Z2813CS-IR CCTV Lens, The Imaging Source, Bremen, Germany) mounted above 

the hiding compartment and the testing area to avoid the possibility of visible light influ-

encing the behavior of the fish. 
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9.2.4 Experimental protocol 

Single animals were taken from the communal tank and adapted to the experimental tank 

overnight. To establish basic parameters for random swimming, electric communication 

patterns, and communication distances, trials with the moving electrode were preceded by 

a set of baseline experiments, during which the playback electrode was placed stationary 

at the farthest position within the testing area. During these baseline experiments, move-

ment patterns and electric activity of each fish were recorded ten times with and without 

playback presentation for 15 seconds after activation of the trigger by the test fish. The 

presentation order was pseudo-randomized, allowing no more than three consecutive 

repetitions of the same condition. For each trial, it was noted whether the fish entered the 

testing area and whether it subsequently reached the stationary dummy dipole, which was 

defined by a perimeter criterion (see below). 

Following the baseline experiments after a short break, each fish was presented three 

times with the moving dummy electrode emitting the electric playback sequence and three 

times with the silent control condition without playback. The dummy dipole arrived at the 

target positions after seven seconds and remained there motionless while continuing to 

emit electrical playback for another seven seconds. Again, the presentation order was 

pseudo-randomized, allowing no more than two consecutive repetitions of the same con-

dition. Half of the animals were confronted first with the control, and the other half with 

the playback sequence. Inter-trial intervals of at least five minutes were maintained in 

between trials. Again, all movement patterns and electrical activity were recorded to disk 

for 15 seconds after the fish had activated the trigger. 

To investigate a possible influence of active electrolocation for detecting the moving play-

back electrode, three additional fish (standard length: 10.9–12.9 cm) were subjected to the 

same experimental protocol with the only difference that the number of trials with the 

moving electrode was increased to ten repetitions per condition. After this initial experi-

mental session, these animals were then electrically silenced and tested again six to eight 

days later. As after silencing the animals were no longer capable of producing EODs, the 

start of each experimental trial had to be initiated manually by the experimenter once the 

fish stuck its snout out of the front end of the shelter. 

Electric silencing was achieved by sectioning the spinal cord directly in front of the electric 

organ with a needle. Animals were anesthetized with 150 mg l-1 MS 222 (Acros Organics, 

Geel, Belgium) before the procedure. The success of the intervention was verified by an 

audio monitor (RadioShack® mini amplifier-speaker, Tandy Corp., Fort Worth, TX) after 

the operation, and directly before re-testing these animals in the behavioral experiments. 
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9.2.5 Data analysis 

Two criteria were defined to quantify the effectiveness of moving and stationary playback 

presentations on following-behavior and to distinguish the effect of these treatments from 

random swimming. For each condition, the proportion of trials, in which the fish entered 

the testing area completely within 15 seconds of onset of the experiment, was determined. 

For the second criterion, fish had to cross an elliptic perimeter around the dummy dipole 

at its final position (Figure 9.1A) with any part of their body. Ellipses were drawn in 

ImageJ (version 1.46r, National Institutes of Health, USA) with a major axis of 190 mm and 

a minor axis of 110 mm, defining an area extending about 50 mm around the dipole. All 

videos were evaluated manually. The relative proportion of trials in which each fish ful-

filled this perimeter criterion during all experimental conditions was determined seven 

and 15 seconds after onset of the experiment. Additionally, for both the experimental ses-

sions with the stationary and the moving dummy electrode, fish that had fulfilled the pe-

rimeter criterion within 14 seconds of onset of the experiment at least once during play-

back presentation and the control condition were selected for further analysis. Of the 24 

M. rume that were used in these experiments, this was the case in n = 15 animals for the 

stationary and n = 13 animals for the moving condition. For these animals, those trials in 

which they reached the criterion for the first time were used for more detailed analysis of 

electric signaling and swimming trajectories. 

Spike2 waveform data from these experiments were converted into time series by mark-

ing the occurrence of each EOD in time. Signal sequences of playback and fish were then 

separated into individual time series from which IDIs were subsequently calculated. His-

tograms of the relative occurrence of IDI-distributions were calculated for each experi-

mental condition by pooling IDIs into bins of 2 ms. IDI-sequences were then analyzed for 

communicative signaling patterns, in particular double-pulses and long cessations, as well 

as discharge synchronizations with the playback sequence. 

Double-pulses are signaling sequences involving alternations of long and short IDIs. The 

minimal requirement for a double-pulse sequence was defined by setting a lower and an 

upper threshold at 50 and 60 ms, respectively. A double-pulse sequence had to consist of 

at least five pulses, where IDI1, IDI3, and IDI5 had durations of ≥ 60 ms, and IDI2 and IDI4 

had durations of ≤ 50 ms. All signals in that sequence were then treated as double-pulses. 

This analysis was performed automatically using a custom-written Matlab-script. 

Long cessations were characterized by the absence of electric signals and were defined as 

periods of at least 1000 ms without an EOD by the fish. Using ImageJ, the distance between 

the test fish and the dummy electrode was determined within that video frame which was 
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recorded simultaneously with the last EOD before a cessation for each trial involving the 

stationary playback condition. 

Discharge synchronizations were quantified by calculating adaptive cross-correlations 

between the IDI-sequences of playback and fish according to the procedure described in 

Gebhardt et al. (2012a) (see also materials and methods in chapters 4 and 5). Maximum 

correlation values occurring within a 100 ms response time between EODs of the playback 

sequence and the fish were averaged over the time course of a trial for the moving play-

back condition (n = 24) and the stationary playback condition (n = 13). As a control, ran-

domly occurring correlations between the playback and IDI-sequences of M. rume record-

ed independently during the moving control condition (n = 23) were also calculated. 

Detailed swimming trajectories of the fish were obtained by video tracking using Ctrax 

(Branson et al., 2009) for all trials involving the moving dummy electrode. Video tracking 

was also performed for the three fish before and after silencing of their electric organs in 

the trials involving the moving dummy electrode and electrical playback. 

All statistical tests were performed in SPSS (version 22.0, IBM Corp., Armonk, NY). Nor-

mality of data was assessed by a Shapiro-Wilk test, and parametric or non-parametric 

tests were used accordingly. Statistical significance was accepted at the α = 0.05 level. 

 

9.3 Results 

9.3.1 Attraction of the dummy 

Once they detected the electric playback signals, all 24 animals were highly attracted to 

the dummy dipole and responded with communicative signaling patterns and physical 

interactions. In a first set of trials featuring the stationary playback electrode, the active 

space for electrocommunication was determined, and a basic value for explorative behav-

ior into the testing area, as well as for the detection of the dummy dipole based on a pe-

rimeter criterion, was established. For the experiments with the stationary dummy dipole, 

the average ratio of animals entering the testing area was 0.47 ± 0.03 (mean ± s.e.m.) dur-

ing the silent controls compared with 0.50 ± 0.03 (mean ± s.e.m.) during electric playback 

presentations from the target area. This indicates that the intensity of the playback from 

the end position of the dipole was not sufficient to recruit animals from the hiding area 

into the testing area at a rate higher than what would be expected due to normal exploring 

behavior (paired-samples t-test, t(23) = −0.88, p = 0.39; Figure 9.2A). Similarly, the fish 

were not attracted by the moving dummy dipole alone when it did not emit electric play-
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back signals. Median values for the relative number of trials in which animals entered the 

testing area were 0.50 for the silent stationary and 0.33 for the silent moving control, re-

spectively, and did not differ significantly from each other based on a paired-samples 

Wilcoxon signed-rank test (Z = −0.80, p = 0.42; Figure 9.2B). 

Of the 24 M. rume participating in these trials, a total of n = 15 animals reached the perim-

eter criterion at least once both during the stationary playback experiments and during 

the stationary silent control tests. The latency for reaching the criterion did not differ sig-

nificantly between the control condition (9.64 ± 0.84 seconds; mean ± s.e.m.) and electrical 

playback presentation (8.96 ± 1.00 seconds; mean ± s.e.m.; paired-samples t-test, 

t(14) = 0.47, p = 0.64), indicating that the playback signal was not strong enough to recruit 

animals reliably from the hiding area to reach the perimeter criterion (Figure 9.2C). This 

was not the case for the moving conditions, during which n = 13 animals reached the pe-

rimeter criterion at least once both during playback presentation and the silent control 

condition. Here, the latency for reaching the criterion was significantly longer for the silent 

controls (8.58 ± 0.78 seconds; mean ± s.e.m.) compared with when electrical playback was 

emitted (5.96 ± 0.18 seconds; mean ± s.e.m.; paired-samples t-test, t(12) = 3.73, p = 0.003). 

In this case, the fish reliably reached the criterion as soon as the dummy electrode stopped 

at its target position. This reliability is also indicated by the smaller error bars for the 

playback compared with the control (Figure 9.2D). 

To determine the recruitment efficiency of the mobile dummy dipole, the relative number 

of trials where n = 24 fish had reached the perimeter criterion was determined seven and 

15 seconds after onset of a trial for all experimental conditions (Figure 9.3). Most fish had 

already fulfilled the criterion after seven seconds in response to the moving playback (me-

dian = 1), whereas very few animals reached the criterion at that time during all other 

conditions (median values: 0.0–0.1; Friedman test for repeated measures, Χ²(3) = 56.79, 

p < 0.001; post hoc tests p < 0.001 for all comparisons with the moving playback condition; 

Figure 9.3A). After 15 seconds, M. rume had followed the mobile dipole almost without 

exception when it emitted playback (median = 1), still differing significantly from all other 

conditions (Friedman test for repeated measures Χ²(3) = 52.49, p < 0.001; post hoc tests 

p ≤ 0.001 for all comparisons with the moving playback condition; Figure 9.3B). By that 

time, the stationary playback condition (median = 0.35) had, however, also attracted test 

fish at a significantly higher rate than the stationary control (median = 0.1; post hoc com-

parison p = 0.044). The playback dipole was therefore within the active space of the shel-

tered fish when placed at the starting position, but it was only detected at the target posi-

tion if animals were already swimming in the testing area. 
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Figure 9.2: Influence of experimental condition on attraction. A) Relative number (mean ± s.e.m.) of 

trials for n = 24 M. rume where animals entered the testing area during presentation of stationary play-

back and stationary silent control. B) Relative proportion of trials where n = 24 fish entered the testing 

area during stationary and moving silent controls. C) Average time (mean ± s.e.m.) when n = 15 M. rume 

reached the perimeter criterion for the first time during stationary playback presentation and stationary 

silent control. D) Average time (mean ± s.e.m.) when n = 13 M. rume reached the perimeter criterion for 

the first time during moving playback presentation and moving silent control. ** p ≤ 0.01; ns: not signifi-

cant. 

 

Figure 9.3: Recruitment efficiency. Relative number of trials for n = 24 M. rume where animals reached 

the perimeter criterion within seven (A) and 15 seconds (B) of onset of the experiment during the 

presentation of stationary and moving playbacks and controls. * p ≤ 0.05; *** p ≤ 0.001. 



III. PART TWO: BIOMIMETICS, ETHOROBOTICS, AND MIXED SOCIETIES 
 

165 
 

9.3.2 Electric signaling and locomotor behavior 

Signaling sequences by M. rume in response to electrical playback were highly stereotypi-

cal. IDI-distributions during the silent control conditions were irregular, with high varia-

bility resulting in wide distributions and modes at relatively long IDIs between 71 (moving 

control) and 55 ms (stationary control; see upper panels of Figure 9.4A and B). In contrast, 

signaling sequences emitted in response to electrical playback were characterized by long 

cessations, double-pulse patterns and regularizations at higher frequencies (see lower 

panels of Figure 9.4A and B). Typical IDI-sequence of M. rume in response to the moving 

playback dipole (Figure 9.4B, lower panel) started with a cessation upon detection of the 

electric playback signal, continued with a short sequence of double pulses and ended with 

a regularized discharge sequence, synchronized at approximately the same frequency as 

the playback sequence. This pattern is reflected in the overall histogram on the right-hand 

side of the lower panel of Figure 9.4B, with a narrower IDI-distribution around the mode 

at 59 ms, and additional modes at 71 and 27 ms, representing the alternation of long and 

short intervals during double-pulse sequences, compared with the histogram of the mov-

ing control condition in the panel above. 

Fundamentally different reactions based on whether the moving dummy dipole emitted 

electrical playback were also observed in the swimming trajectories of M. rume (Figure 

9.5). During the electrically silent control condition (Figure 9.5A), swimming trajectories 

dispersed throughout the testing area with a tendency of the fish to swim along the walls 

of the tank, but without obvious relation to the trajectory of the moving dummy dipole. In 

contrast, fish stuck close to the dummy's trajectory in case of electric playback presenta-

tion (Figure 9.5B), showed multiple instances of circling and trajectory cut-off, and did not 

leave the dummy electrode after it reached its target destination, as they would do during 

the silent control condition. Instead, animals kept searching the surface of the agarose 

tube at the front end of the dummy dipole until the playback stopped. This difference in 

following-behavior is reflected in a highly significant difference in average distances be-

tween M. rume and the dummy dipole during the two conditions (paired samples t-test, 

t(12) = 8.49, p < 0.001; Figure 9.6A). With an average distance of 250 ± 20 mm 

(mean ± s.e.m.), M. rume spent most of the time out of reach for active electrolocation dur-

ing silent controls, whereas the average distance of 64 ± 3 mm (mean ± s.e.m.) during elec-

tric playback presentation was well within the range of active electrolocation (von der 

Emde, 1999). 
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Figure 9.4: Electric signaling patterns. Exemplary IDI-sequences of individual M. rume reaching the tar-

get area within 15 seconds of onset of the experiment during presentation of electrical playback (lower 

panel) and the silent control (upper panel) for the stationary (A) and the moving (B) dummy electrode. 

Asterisks mark the points in time when the perimeter criterion was met. Histograms to the right repre-

sent pooled IDIs of n = 15 (A) and n = 13 (B) fish that reached the perimeter criterion during the four 

experimental conditions. 
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Figure 9.5: Swimming trajectories of intact fish. Swimming trajectories of n = 13 fish (black) that fol-

lowed the mobile dummy electrode (red) emitting electrical playback (B) and during silent controls (A). 

 

Typical IDI-sequences in response to the stationary playback condition (Figure 9.4A, lower 

panel) started with the same irregular discharge pattern as observed during the silent 

control condition (upper panel). Upon detection of the electric playback stimulus, M. rume 

usually responded with a long cessation of up to several seconds, directly followed by a 

highly regular double-pulse pattern, which is reflected by additional modes at 19 and 

117 ms in the overall IDI-histogram. The onset of the double-pulse pattern usually oc-

curred directly after the test fish had crossed the perimeter criterion (asterisk in the lower 

panel of Figure 9.4A). Long cessations occurred with 87.7% significantly more often dur-

ing the playback trials compared with the control trials with only 20% (exact McNemar's 

test p = 0.002; Figure 9.6B). An evaluation of onset and offset times of long cessations dur-

ing playback trials (Figure 9.6C) demonstrated that long cessations always occurred be-

fore the fish crossed the perimeter criterion (median = -2.02 seconds) and usually stopped 

shortly thereafter (median = 0.34 seconds). The median distance between M. rume and the 

dummy dipole, where n = 20 animals first responded to the detection of the playback sig-

nal with a long cessation, was 355 mm (Figure 9.6D). M. rume thus marked the outer limit 
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of the playback's active space with the onset of a long cessation. It then approached the 

signal source silently and started to discharge double-pulse patterns when it was near it. 

Double pulses were only produced in response to electrical playback (Figure 9.7A and C). 

They were virtually absent during the control conditions (Figure 9.7B and D) and were not 

displayed prior to long cessations during stationary playback presentation (Figure 9.7C), 

suggesting that M. rume attempted to interact socially with the discharging dummy dipole. 

Discharge synchronizations of M. rume to the electric playback sequence were frequently 

observed in response to the moving playback condition (Figure 9.8). In contrast, during 

the stationary playback condition, correlations did not exceed those calculated for an in-

dependently recorded IDI-sequence, suggesting that detection and initial approach of a 

stationary conspecific are not associated with interactive signaling in M. rume. 

 

Figure 9.6: Spatial parameters and electric signaling activity. A) Average (mean ± s.e.m.) of the mean 

distance between test fish and dummy electrode for the trajectories depicted in Figure 9.5. B) Relative 

amount of IDI-sequences featuring at least one discharge cessation ≥ 1000 ms during experiments with 

the stationary dummy electrode; pairwise comparisons for n = 15 individuals that had reached the pe-

rimeter criterion during playback presentation and the control condition. C) Time differences for begin-

ning and end of discharge cessations ≥ 1000 ms in relation to the time when the perimeter criterion was 

met (dotted red line) shown by n = 20 individuals in response to stationary playback presentation. D) 

Distance between test fish and dummy electrode at the time of the last EOD before the discharge cessa-

tions shown in (C). 
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Figure 9.7: Double-pulse patterns. Number of double pulses displayed over the time course of the ex-

periments by n = 13 individuals in response to the moving dummy electrode emitting electrical playback 

(A) and during silent controls (B), and for n = 15 individuals that reached the perimeter criterion during 

the trials with the stationary dummy electrode in response to electrical playback (C) and control (D). 

 

Figure 9.8: Signaling interactions of M. rume with the playback sequence. Averaged maximum cross-

correlation coefficients for a 100 ms response time window over the time course of a trial. Correlations 

represent synchronization of the fish's signaling sequence to the electrical playback during the experi-

ments with the moving playback (red), the stationary playback (black), and an independently recorded 

control using the signals emitted by the fish during the moving control condition (grey). Shaded areas 

represent the standard error of the mean. 
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9.3.3 Silenced fish 

To determine the importance of active electrolocation during social interactions, three 

additional animals were tested before and after silencing of their electric organs. When the 

moving dummy dipole produced electrical playback, all animals reached the perimeter 

criterion in ten out of ten trials both before and after surgery. This was in all cases signifi-

cantly more often than during the silent control condition (Fisher's exact test, α = 0.05; 

Figure 9.9). Animals did not seem to behave differently during the post-surgery trials and 

were similarly active as before the intervention. While following, silenced M. rume re-

mained close to the moving dummy electrode and displayed the same type of circling be-

havior previously observed in intact fish, even though they could not use their active 

electrolocation system. Swimming trajectories of the fish observed during the movement 

period of the dummy electrode are shown on the left-hand side of Figure 9.10. They 

demonstrate that the fish do not require active electrolocation to locate the physical 

source of a communication signal and to determine their position relative to the signaler. 

However, once the playback electrode stopped moving but continued emitting electrical 

playback, intact fish vigorously tried to reach the positive electrode of the dummy dipole 

(Figure 9.10, upper right panels), whereas swimming trajectories after silencing of the 

electric organ described a symmetrical, curvilinear path (Figure 9.10, lower right panels), 

which would be expected if fish followed the field lines along the dipole source. This dis-

tinction in searching strategies was observed in fish #3 and #6, whereas fish #8 employed 

the latter strategy both before and after surgery (Figure 9.10C), suggesting that 

knollenorgans play the major role in spatial interrelations between socially interacting 

mormyrids. 
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Figure 9.9: Comparison of following behavior between intact and electric silenced fish. Number of 

trials out of ten for three fish reaching the target area during playback presentation and controls both 

before and after silencing of their electric organs. Fish followed significantly more often during playback 

presentation, independent of the functionality of their active electrolocation system. Scores differ sig-

nificantly based on Fisher‘s exact test (α = 0.05). * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. 
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Figure 9.10 (previous page): Swimming trajectories before and after electric silencing. Exemplary de-

piction of ten swimming trajectories (black) of fish #3 (A), fish #6 (B) and fish #8 (C) in response to the 

moving dummy electrode emitting electrical playback. Tests were performed before (upper panels) and 

after (lower panels) silencing the electric organs of the fish. Trajectories are split between the first half 

of the trial, where the dummy electrode was moving, and the second half, where it remained motionless 

in the target area. Dummy trajectories are shown in red. On the right-hand side, the size of the dummy 

electrode is indicated by a red bar. 

 

9.4 Discussion 

Like most animals, mormyrids use multiple sensory systems synergistically to perceive 

their environment, and the loss of a particular modality may be compensated for by a dif-

ferent sense to accomplish a specific goal (Rojas and Moller, 2002; Schumacher et al., 

2016a; Schumacher et al., 2017a; von der Emde and Bleckmann, 1998). In the current ex-

periments, the behavior of M. rume, when following the disembodied dummy electrode 

moving along the ground, closely resembled the behavior of single M. rume following an 

EOD-emitting dummy fish moving through the water (Worm et al., 2017) (chapter 4). In 

both cases, the following fish moved at comparable distances from the dummy and com-

municated with it electrically by producing double-pulses and by synchronizing their 

EODs to the playback sequence. By experimentally excluding all sensory cues mediated 

through vision, the lateral line system, and active electrolocation, it was demonstrated that 

only passive electroreception of EODs, probably mediated through the knollenorgan 

pathway, is sufficient to initiate and perpetuate following-behavior and evoke electrical 

signaling typical for electrocommunication in M. rume. 

Based on electrical playback of natural EOD-sequences, fish followed a mobile dummy 

dipole from a shelter into an open area and to a final position, which was outside the 

communication distance from that shelter under non-visual conditions. The active space of 

the playback signal was pre-determined in control trials with a stationary playback source, 

using the onset of long discharge cessations as a means to define the outer limit where fish 

reacted to the signal. Animals then silently approached the dummy electrode and subse-

quently resumed discharge activity by displaying a double-pulse pattern that was only 

observed in response to electrical playback. These behavioral sequences were very similar 

to those observed by Moller et al. (1989) in Brienomyrus niger. Taken together, the combi-

nation of discharge cessations and double-pulse patterns clearly demonstrates that live 

fish attempted to interact socially with the electrically active dummy dipole and engaged 

in electrocommunication. 
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Visual guidance during following was excluded by performing all trials under infrared 

illumination only, which is invisible to the fish (Ciali et al., 1997). Under these non-visual 

conditions, the fish could, in principle, use either active electrolocation or the mechano-

sensory lateral line system (Walton and Moller, 2010) to follow a moving object. In the 

present study, lateral line stimuli were ruled out by moving the playback dipole inside an 

electrically transparent agarose tube. Active electrolocation is a close-range sensory sys-

tem that allows weakly electric fish to detect objects up to a distance of approximately one 

body length, but discrimination performance rapidly drops at distances greater than 4 cm 

in G. petersii (Fechler and von der Emde, 2013; von der Emde et al., 2010) and probably at 

similar distances in M. rume. Given the distance of 30 cm between the shelter and the gate, 

it is unlikely that M. rume detected the moving electrode by active electrolocation from 

within the shelter. The following-distance under the electric playback condition was, how-

ever, well within that detection range. Active electrolocation could, therefore, have been 

used during close-range interactions in all trials with intact fish. The significance of active 

electrolocation for interactive behaviors in M. rume was controlled for by comparing three 

animals before and after surgically silencing their electric organs, making it impossible for 

them to use active electrolocation. The silenced fish showed the same tendency to follow 

the mobile dummy dipole as before the intervention. They also showed the same motiva-

tion to interact with the moving dummy by circling it, a behavior never observed in re-

sponse to the silent controls. Although active electrolocation might, in principle, be used 

synergistically with passive electric sensing during close-range encounters between 

mormyrids, this result demonstrates that active electrolocation is not required to track 

and interact with a signal source mimicking a moving conspecific. Hence, fish only need 

the information contained in the electric fields generated by a conspecific's EODs to posi-

tion themselves with respect to the signaler during close-range interactions. 

A functional electric organ was also no precondition for the searching behavior that the 

fish displayed once the moving electrode had come to a stop but continued producing elec-

trical playback. However, two out of three animals changed their searching strategy after 

silencing (the third animal had used this strategy already before silencing). Instead of 

probing for the positive pole of the dipole, which represents the rostral part of an M. rume 

producing an EOD, they circled the dummy dipole along curvilinear trajectories. This 

should be expected if animals orient themselves along the current lines of the electric di-

pole field established during EOD emission. The application this strategy for approaching a 

signaling conspecific from outside the range of active electrolocation was demonstrated by 

Schluger and Hopkins (1987) for the mormyrid Brienomyrus brachyistius. This behavioral 

response was proposed to be mediated through a directional sensitivity of knollenorgan 
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electroreceptors by analogy to similar behaviors of the gymnotiform weakly electric fish 

Hypopomus, which possesses functionally similar time coding tuberous electroreceptor 

organs with directional sensitivity characteristics (Yager and Hopkins, 1993). 

As other senses could not have mediated recruitment from the shelter, and active electro-

location was apparently not essential for following the moving dipole, it is proposed that it 

was passive electroreception of the electric signals of the dummy dipole, mediated 

through the knollenorgan system, which effectuated these behaviors. However, also 

ampullary receptor organs can be used for passive electroreception in weakly electric fish 

(Engelmann et al., 2010). Due to the experimental design, a significant contribution of the 

low-frequency ampullary receptor system to the recruitment of the fish from the hiding 

area is not very likely, as animals did not follow in the absence of high-frequency EOD-

signals. However, during following-behavior, a combined use of ampullary receptor organs 

and knollenorgans cannot be completely ruled out. Ampullary receptors are tuned to low 

frequencies of < 10 Hz (Engelmann et al., 2010), whereas knollenorgans are broadly tuned 

to the higher frequencies contained in the species-specific EODs (Hopkins, 1981b) that 

were used for playback in this study. It was shown by Bell and Russell (1978) that in 

G. petersii ampullary receptor organs do not respond to EOD-like biphasic positive-

negative signals with phases of equal amplitudes. Thus, if ampullary receptors are in-

volved, they would have to respond to the low-frequency component of the playback EODs 

used in the experiments, which had, however, a significantly lower amplitude than the 

high-frequency components. An involvement of mormyromast electroreceptor organs in 

mediating the observed behavior cannot be ruled out completely but is also rather unlike-

ly. The sensory threshold of mormyromasts is approximately one order of magnitude 

higher compared with that of the knollenorgans (Bennett, 1971c). This probably makes 

the mormyromasts not sensitive enough for the perception of the dummy’s playback 

EODs. Afferent electro-sensory input from mormyromasts is enhanced by a corollary dis-

charge at the level of the electrosensory lateral line lobe in the hindbrain, which makes the 

system most sensitive only when the fish produce their EODs during active electrolocation 

(Bell and Maler, 2005). 

The conditions in this experiment were highly artificial and may have resulted in mis-

matched sensory information that would not usually be encountered in a natural situation. 

Due to their nocturnal lifestyle and reduced neuronal correlates in the visual system, vi-

sion was considered to be of minor importance for mormyrids (Lázár et al., 1984). Never-

theless, they are able to perform visual tasks (Schumacher et al., 2016a; Schumacher et al., 

2017a; Schuster and Amtsfeld, 2002). The loss of vision under dim light conditions re-
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duced group cohesion in G. petersii (Moller et al., 1982), indicating a contribution of vision 

to social behaviors. However, imitation of visual appearance and motility patterns by a 

mobile dummy had no noteworthy effect recruiting individual M. rume from a sheltered 

area, when compared with electrical playback (Donati et al., 2016). This supports the no-

tion that electroreception is the dominant modality during social interactions. In a previ-

ous study (Worm et al., 2017), M. rume also followed a mobile dummy, which did not emit 

any electrical playback, even in complete darkness. Swimming trajectories in these exper-

iments suggested an involvement of the lateral line in following-behavior, as the fish close-

ly reproduced the swimming path of the dummy. Path-following behavior based on lateral 

line information has previously been described in piscivorous catfish tracking their prey 

(Pohlmann et al., 2001). In M. rume, however, such path-following behavior was mainly 

observed in the absence of electrical signals, whereas following-behavior in response to 

electric playback caused a shift of swimming trajectories to a more lateral position in rela-

tion to the dummy (Worm et al., 2017). This supports the hypothesis that passive electro-

reception by knollenorgans constitutes a major determinant of social spacing in M. rume. 

The importance of active electrolocation for detection and characterization of animate and 

inanimate objects is well established. Whether mormyrids make use of active 

electrolocation during intra-specific interactions has rarely been addressed. Evidence that 

mormyrids might be able to recognize conspecifics by active electrolocation comes from 

the observations by Moller et al. (1982), who found blind G. petersii to be still attracted by 

electrically silent conspecifics. Terleph (2004) suggested that regularized discharge pat-

terns during parallel lineups could have been ritualized into a communication signal from 

mutual size estimation during sequential assessment between opponents (Enquist and 

Leimar, 1983). Insights from modeling active and passive electric images in the gymnotid 

Gymnotus omarorum suggest that both active and passive electroreception could be used 

during assessment of an opponent, but passive information is more likely to trigger ag-

gressive interactions (Pedraja et al., 2016). The experiments with M. rume support the 

hypothesis that information from passive electroreception serves in triggering following-

behavior and social interactions in mormyrids. 

In conclusion, it is suggested that passive location via the knollenorgan pathway serves in 

mediating communication not by detecting EOD-waveform differences and variations in 

IDI-sequences. The evidence presented in this study supports the hypothesis that this sen-

sory pathway is also used to mediate spatial interactions between individuals, where it is 

sufficient, although not necessarily exclusively employed, during close-range encounters 

between mormyrid weakly electric fish. 
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10. Discussion: Ethorobotics 

The collaboration between roboticists and biologists holds great potential for joint re-

search projects that aim to implement specialized animal capabilities, like sensory per-

formances or locomotion strategies, into innovative technical devices and applications. 

From a scientific perspective, robotic animal models provide a methodic approach to test 

hypotheses regarding the internal control of behavior (Webb, 2008). For the behavioral 

biologist, ethorobotics is increasingly well positioned to provide the answer to Tinber-

gen's (1963) question: "how does one make an experimental animal which lacks just one 

behaviour pattern and is otherwise normal?" While simple mockups, dummies, and decoys 

have long been used to identify the key stimuli that trigger social responses and innate 

behavior patterns (Tinbergen, 1948), robots offer the possibility to test multimodal and 

cross-modal contributions to such behavior patterns in controlled and repeatable experi-

mental conditions, mainly because all aspects of the robot's behavior are under the exper-

imenter's control at all times (da Silva Guerra et al., 2010; Krause et al., 2011). Additional-

ly, many behavior patterns may rather be considered to be chains of stereotyped behav-

iors, which require a certain amount of interactivity for complete expression (Lissmann, 

1932). The possibility to equip robot models with sensors that monitor animal reactions in 

real-time enables researchers to close the feedback loop between live animals and robotic 

dummies (Caprari et al., 2005; Gribovskiy et al., 2010). This approach allows the investiga-

tion of more complex behaviors in elaborate experimental designs, in which a dummy can 

respond to the reactions it induces (Landgraf et al., 2013). 

The use of interactive robots can also elevate behavioral studies from the level of individ-

uals to group-level interactions by building mixed societies of live and artificial animals 

(Halloy et al., 2013; Schmickl et al., 2013). This methodology requires that researchers 

succeed in building robots that are accepted by animals as conspecifics (Mondada et al., 

2013). This acceptance, however, does not presuppose identical replication of all animal 

features. Instead, only the relevant components that trigger social behavior have to be 

identified and implemented to successfully generate collective behavior (Halloy et al., 

2007). One way to identify such features is by constructing a replica and then systemati-

cally reduce it to determine the relevant cues in behavioral experiments. 

The potential of mormyrid weakly electric fish as model organisms for establishing a 

mixed society, in which the acceptance problem can be solved by using playback of electri-

cal communication signals, was systematically explored in the preceding two chapters of 

this thesis. Since the discovery of the active electric sense (Lissmann, 1951; Lissmann and 

Machin, 1958), it has become increasingly evident that communication is a vital aspect of 
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electrical signaling in mormyrids and that both the waveform and temporal sequence of 

their EODs contain behaviorally relevant information (see section 3.5). Pioneering studies 

have shown that playbacks of electric signals can differentially evoke behavior in 

mormyrids based on EOD-duration (Hopkins and Bass, 1981) and IDI-sequence (Kramer, 

1979). It is therefore not surprising that electric signals are also important during com-

munication in groups, where they may promote coherence among group members 

(Arnegard and Carlson, 2005; Gebhardt et al., 2012a; Gebhardt et al., 2012b; Khait et al., 

2009; Moller, 1976), communicate identity, dominance, motivation, and current activity 

(see section 3.5), but also the location of an individual (Hopkins, 2005; Schluger and 

Hopkins, 1987). Here, the focus was set on the sensory contributions to the behaviors ob-

served in chapters 4 and 5 rather than on the specific 'meaning' of a particular signaling 

pattern. Electrical playback sequences were, therefore, not systematically modified. The 

objective was to isolate the general influence of electrical signaling on behavioral respons-

es of Mormyrus rume proboscirostris and contrast their relevance for induced social behav-

ior with cues from other sensory modalities of the fish. This was done in experiments with 

a biomimetic dummy fish (chapter 8) (Donati et al., 2016), which were contrasted with 

experiments in which the stimulus was reduced entirely to the electric signals (chapter 9) 

(Worm et al., 2018). 

10.1 Experiments with the biomimetic dummy fish 

In chapter 8, a biomimetic dummy fish was designed that resembled a live specimen of 

M. rume morphologically and had realistic size dimensions compared with a real fish. The 

robot contained an actuation mechanism to generate tail-fin oscillations while moving 

forward and could additionally produce playback sequences of pre-recorded EODs. By 

systematically combining motility cues with and without electrical signaling displays, the 

contributions of the robot's features to the attraction of fish were investigated in a behav-

ioral paradigm based on the quantification of following-responses, similar to the experi-

ments in chapter 4. The results were unequivocal and showed that electrical signaling was 

the main attraction feature, whereas the tail-fin oscillations of the dummy had no signifi-

cant effect on fish behavior (Figure 8.5). There was also no convincing evidence for multi-

modal synergy effects. The combination of motility cues and electrical playback was not 

significantly more attractive than electrical signaling alone (Figure 8.6). However, the as-

sessment of social responses of M. rume in chapter 8 was solely based on quantification of 

following-behavior. Electric signaling responses by the fish were not analyzed. 

Compared with the following-responses that were observed with comparable experi-

mental setups in chapters 4 (Figure 4.1) and 9 (Figure 9.1, see section 10.2 below), using a 
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biomimetic robot had no advantage over a simple fishing bait with electrodes, or even a 

'disembodied' dipole electrode, which the fish could only perceive by passive electric sens-

ing. In fact, following-scores were considerably lower in chapter 8, which might have been 

due to some intrinsic properties of the biomimetic robot fish, or caused by general differ-

ences in test conditions and the experimental protocol. In theory, a potential positive ef-

fect of motility cues could have been counteracted by an aversive effect of the acoustic 

noise that was caused by the internal actuation mechanism of the robot. Activation of the 

tail-beat movement caused sound emission at frequencies of 3 kHz and higher (see Figures 

C.1 and C.2 in Appendix C for a more detailed characterization). Mormyrids are 'hearing 

specialists' (see section 3.3.2), and it has been shown that Gnathonemus petersii can hear 

frequencies up to approximately 2500 Hz (McCormick and Popper, 1984). Since there are 

no hearing curves for M. rume in the literature, it cannot be excluded that the animals 

could have heard the acoustic noise generated by the biomimetic dummy and that this 

noise might have had a negative effect on attraction. In this respect, the robot may have 

failed to restrict sensory stimuli to distinct and defined sensory perception channels of the 

fish. 

Nevertheless, the experiment was designed to contrast sensory stimuli that live fish detect 

via different sensory channels, including vision. In a visual discrimination task, G. petersii 

was most successful at an illuminance of 10 lux (Schuster and Amtsfeld, 2002). According-

ly, this illumination level was chosen for the current experiments to allow visual detection 

and discrimination of the stimuli generated by the dummy. However, most mormyrids are 

nocturnal (Moller et al., 1979) and even low light intensities cause immediate shelter seek-

ing. Consequently, attraction scores obtained during the experiments in chapters 4 and 9 

might have been higher because of the absence of visual stimuli, and illumination may 

have made M. rume more reluctant to leave the sheltered area during the experiments in 

chapter 8. Finally, the short acclimatization time of only 1 h may have caused higher anxie-

ty levels and, therefore, a decreased willingness to explore the open area of the experi-

mental tank compared with the studies in chapters 4 and 9, during which the fish were 

acclimatized overnight and tested under infrared illumination. 

10.2 Experiments with the reduced dummy fish 

In a second behavioral study (chapter 9) (Worm et al., 2018), all features of the robot were 

controlled to create a dummy that was reduced to only the electrical signaling stimuli from 

the perspective of the fish. This was accomplished by moving a playback electrode inside 

an electrically transparent agarose tube to exclude hydrodynamic stimuli, and by perform-

ing experiments under non-visual conditions using infrared illumination. Additionally, 
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some fish were electrically silenced to control for active electrolocation. Electrical signal-

ing could thereby be identified as a key stimulus that is sufficient to induce social behavior 

in M. rume. Moreover, it was established that electrical signals could also sustain social 

interactions and guide them spatially, most likely via the knollenorgan pathway (see sec-

tion 1.3). These results emphasize the importance of this sensory channel for electro-

communication. 

Even though the sensory information the fish had about the position of the dummy dipole 

was highly restricted, attraction scores during this experiment were highest compared 

with all other studies. Fish almost always followed the moving dummy dipole, given it 

emitted electrical playback (Figure 9.3). The main improvement to the setup was the pro-

vision of only a single shelter, in which the fish had to assume a defined position within the 

active space of the playback signal before a trial could be triggered (Figure 9.1A). Addi-

tionally, swimming trajectories and electric signaling responses of the fish were analyzed 

in detail to confirm the social nature of the responses evoked by the electrically active 

dummy dipole. The occurrence of social signaling patterns, in particular double pulses 

(Figure 9.7), long cessations (Figure 9.6B), and discharge synchronizations with the elec-

trical playback sequence (Figure 9.8) allow the conclusion that the observed behavior was 

indeed of social nature and not a mere effect of curiosity. Similar behaviors have previous-

ly been observed in socially interacting mormyrids (Gebhardt, 2012; Gebhardt et al., 

2012a; Gebhardt et al., 2012b; Moller et al., 1989), and could not be observed in isolated 

individuals or control trials with electrically silent dummy fish (chapter 4) (Kersten, 

2017a; Worm et al., 2017). 

10.3 Sensory contributions to the observed behavior 

Mormyrids have multiple sensory systems to perceive their environment (Moller, 2002) 

and for communication (Schuster, 2006) (see sections 3.3 and 3.5). The objective of the 

preceding two chapters was to test the hypothesis that electrical communication signals 

can mediate the acceptance of a mobile dummy as a conspecific by mormyrid weakly elec-

tric fish and assess the contributions of multiple sensory modalities to social behavior in 

live M. rume. For this purpose, sensory inputs to all but the passive electrosensory modali-

ties of the fish were experimentally controlled, which allowed addressing the question 

whether the fish ultimately need to directly perceive the morphological body features of 

another individual to communicate. 

Behavioral responses to the visual properties of the various dummy fish that were used 

throughout this thesis were not systematically investigated. However, the visual system in 

mormyrids is highly specialized and very sensitive in dim light conditions (Kreysing et al., 
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2012; Landsberger et al., 2008). It must, therefore, be assumed that the visual appearances 

of the fish dummies used in chapters 5, 8 and 11 were perceived by the fish, and may have 

influenced their behavior, because these studies were performed using visible light. How-

ever, it appeared that animals did not pay much attention to either the morphological fea-

tures of the dummies or to the visible aspects of the motility cues generated by tail-fin 

oscillations in chapter 8. In fact, following-behavior (Figure 4.3) and motor interactions 

(Figure 4.20) were also observed under infrared illumination, which cannot be perceived 

by the fish (Ciali et al., 1997). 

The use of mobile fish dummies under visual conditions did not allow to differentiate be-

tween the potential effects of visual and hydrodynamic stimuli. The question whether the 

visual perception of morphology and motility features influences social responses in 

mormyrids, could, for instance, be investigated by using computer animated fish models 

(Gierszewski et al., 2017). However, M. rume proboscirostris are by default nocturnal ani-

mals that even spawn at night (Schugardt and Kirschbaum, 2004). Visual information was 

no precondition for following-behavior, and the social interactions with moving dummies 

in chapters 4 and 9 were observed under infrared illumination. It is therefore suggested 

that vision should be generally excluded from mixed live-artificial experiments with 

mormyrids (with the possible exception of those members of the subfamily 

Petrocephaline that specialized in visual communication (Stevens et al., 2013)), because it 

introduces a confounding variable that is at best unnecessary with regard to the desired 

behavioral observations, and possibly disturbs the natural behavior of nocturnal fish. 

The active tail-fin oscillations of the biomimetic dummy fish in chapter 8 did provide not 

only visual cues but also generated hydrodynamic effects. Objects that move in relation to 

water generate vortices that fish can perceive via their mechanosensory lateral line sys-

tem (Bleckmann and Zelick, 2009). Consequently, hydrodynamic information may have 

influenced fish behavior in all experiments involving mobile dummies, except the one in 

chapter 9. Here, movement of the dummy dipole was confined to an agarose tube, which 

was transparent for electric signals, but not for water movements that could have stimu-

lated the lateral line neuromasts of the fish. Even though electroreceptor organs have their 

evolutionary origin in the lateral line system (Szabo, 1965), the mechanosensory compo-

nent of the lateral line has hardly been investigated in mormyrids. In G. petersii, both the 

number of superficial neuromasts and the morphology of the head-canal system are re-

duced, possibly in favor of the electrosensory system (Schumacher, 2017). This is likely to 

cause a reduced functionality in comparison with the mechanosensory lateral line of other 

teleosts However, in chapter 4 (Worm et al., 2017), M. rume were able to follow an electri-
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cally silent dummy under non-visual conditions. Since the animals followed the trajecto-

ries of the electrically silent dummy very closely (Figure 4.22), this behavior could have 

been mediated by the lateral line, analogous to the wake-following behavior of predatory 

catfish (Pohlmann et al., 2001). Based on the observation that fish followed in a more lat-

eral position when electrical playback was presented (Figure 4.21B and Figure 4.22), and 

the fact that lateral line information was no precondition for following-behavior in chapter 

9, it is suggested that the electrosensory systems provide mormyrids with more reliable 

information during social interactions than the lateral line. In analogy to the concept of 

electrosensory capture proposed by Schumacher et al. (2017a), electrosensory guidance 

seems to dominate over lateral line information during following-behavior in the presence 

of electrocommunication signals. 

Within a range of approximately one body length, active electrolocation provides weakly 

electric fish with behaviorally relevant information about objects in their environment 

(see section 1.3). Thus, animals could have used actively acquired electrosensory infor-

mation to follow the mobile fish dummies. The shift in following-behavior that was ob-

served in chapter 4 can only be explained by passive electroreception, because the fish 

were at all times able to rely on active electrolocation in these experiments. While vision 

might theoretically fool mormyrids into mistaking a biomimetic fish dummy for a conspe-

cific individual based on morphological features, this is highly unlikely for the active elec-

tric sense. During active electrolocation, living organisms are easily discriminated from 

inanimate objects based on their capacitive nature, which provides fundamentally differ-

ent electrical information compared with the purely resistive properties of nonconductive 

objects (Gottwald et al., 2017a). In behavioral experiments, active electrolocation can be 

controlled for by surgically silencing the electric organ of test fish (Moller et al., 1982; 

Schumacher et al., 2016a). This treatment neither impaired the motivation, nor the ability 

of M. rume to follow the mobile dipole electrode in chapter 9, thus proving the importance 

of passive sensing for social behavior. However, trajectories of silenced animals differed 

from those obtained from intact fish in chapter 4 (fish #3 in Figure 4.22B was the same 

individual as fish #6 in Figure 9.10B). Trajectories obtained from fish that could not rely 

on hydrodynamic stimuli and active electrolocation were way more curvaceous compared 

with those of fish that followed an 'embodied' version of the dummy, which was physically 

represented by a fishing bait of similar size as the test fish. These results are consistent 

with what would be expected if animals relied on passive sensing and navigated along the 

electric field lines of the playback EODs to follow the source of the signal (Hopkins, 2005). 

These findings also expand the results by Schluger and Hopkins (1987), who showed that 

Brienomyrus brachyistius approached a stationary fish along the field lines of its EOD. 
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Here, it was shown for M. rume that also the position of a swimming conspecific may be 

tracked by passive detection of the information contained in the spatial properties of ac-

tively generated electric fields. While this behavior could, in theory, be mediated by either 

mormyromasts, ampullary receptor organs, knollenorgans, or a combination of the three, 

it is argued that knollenorgans are most likely involved. Knollenorgans are more sensitive 

to foreign signals than mormyromasts (Bennett, 1971c) and respond to the high-

frequency signal components contained in the self-generated EOD, whereas ampullary 

receptor organs are sensitive to low-frequency electric signal components (Engelmann 

et al., 2010). 

The fact that there was no necessity for any sensory cues other than the high-frequency 

electric playback EOD to induce following-behavior and social interactions does not imply 

that fish ignore them during normal, unrestrained behavior in their natural habitat. The 

lateral line may not usually be involved in following-behavior among mormyrids, but it 

most certainly plays a role during lateral displays between competing fish (see section 

6.2). Also, there is no reason to classify the tracking of the electrically silent dummy by 

M. rume in chapter 4 as social behavior. The 'embodied' version of the dummy in chapter 4 

was followed on more efficient trajectories than the 'disembodied' dummy dipole used in 

chapter 9. This suggests that at close range, passive sensing might have rather served as a 

backup for active electrolocation than to represent the default sensory strategy for social 

interactions. It is, therefore, reasonable to conclude that mormyrids make the most of all 

their sensory systems during social interactions in their natural habitat. 

For the design of interactive, biomimetic dummy fish, and the possibility of their integra-

tion into mixed societies of live and artificial weakly electric fish, the results obtained so 

far have some useful implications. A major challenge when constructing biomimetic robots 

for interactive behavioral experiments with live animals is to determine the right set of 

cues that will be perceived by the animals (Mondada et al., 2013). Restricting stimuli to as 

few as possible and as many as necessary should be the adequate approach to guarantee 

the expression of the desired behavior by research animals, and enable researchers to 

draw meaningful conclusions from experiments. In chapter 8, it was demonstrated that 

the design of a biomimetic robotic fish that mimics live M. rume in size, morphology, and 

motility is possible, but not necessary for the investigation of mormyrid social behavior. 

Comparing the results with those from chapters 4 and 9 allowed the conclusion that, if 

possible, visual stimuli should be avoided altogether. In chapter 9, it was shown that pas-

sive reception of electric communication signals is sufficient to induce social behavior, but 

animals without a functional electric organ switched to a different searching strategy, 
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which apparently did not represent their normal behavior. An embodied representation of 

the artificial agent as a dummy fish, which cannot only be perceived through passive elec-

tric sensing by live fish, is, therefore, an advantage not only from a methodical perspective. 

An elaborate mechanism to generate biomimetic movement patterns does not appear to 

be significant, and may even introduce disturbances, such as acoustic noise. The hydrody-

namic effects of artificial tail-fin oscillations in chapter 8 were not quantified and could 

therefore not be compared to the vortices generated by swimming M. rume (see for in-

stance Polverino et al. (2013)). However, the results of chapters 4 and 5 have demonstrat-

ed that commercial fishing baits, which are designed to generate body movements and 

vortices when dragged through water, are sufficiently suited to represent the body of an 

artificial mormyrid (also compare Cazenille et al. (2018) and Bonnet et al. (2018)). In con-

clusion, the essential feature of a dummy fish representing an artificial mormyrid is the 

capability to generate playback of electrical communication signals, i.e., sequences of arti-

ficial EODs. Live M. rume displayed both motor and electromotor social behaviors towards 

electrically active mobile dummies, indicating that the presence of electrical communica-

tion signals is behaviorally more relevant than the presumed ability of mormyrids to dis-

tinguish a real fish from a plastic replica by using active electrolocation. Thus, it could be 

shown that electrically active dummy fish were 'accepted' by live mormyrids according to 

the propositions by Halloy et al. (2013). From a sensory perspective, and with regard to 

the behavioral relevance of the information contained in artificial stimulus EODs, the hy-

pothesis that the imitation of electrical communication signals can be used to systemati-

cally induce and manipulate social behavior in M. rume, could be confirmed. The third and 

last part of this thesis will investigate and evaluate the potential of social group-behavior 

in M. rume as a prerequisite for establishing mixed live-artificial experiments that are in-

teractive at the levels of motor behavior and electrical signaling. 
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11. Project 5: Influence of an Interactive Mobile Dummy Fish on 

Small Groups of the Weakly Electric Fish Mormyrus rume 

proboscirostris 

 

In this final chapter, the influence of a mobile dummy on single fish and small groups of 

two, three, and four M. rume will be investigated and discussed in the context of current 

knowledge about mormyrid group behavior. The experiments in this chapter represent an 

extension of those presented in chapter 5. They allowed the experimenter to modify the 

swimming trajectories of the dummy based on real-time video recordings, and the dummy 

was programmed to generate artificial echo responses to EODs of nearby fish. Interactive 

behavior between dummy and test fish could, therefore, be investigated on both the motor 

and the electromotor level. 

The chapter starts with a summary of the general cost and benefits of group-living with an 

emphasis on shoaling behavior in fish. The potential of mobile dummies for investigating 

and influencing group behavior in fish in general, and mormyrids in particular, are then 

summarized and discussed in the context of the results of the experiments. 
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11.1 Introduction 

Many animals are social and live in groups of different sizes and different degrees of com-

plexity. Animal groups can be small with rigid hierarchies (Cafazzo et al., 2016), form 

complex and dynamic fission–fusion societies (Couzin, 2006), or constitute large aggrega-

tions like flocks of birds, herds of ungulates, and shoals of fish. Compared to a solitary ex-

istence, group-living provides several adaptive advantages to social animals, but may also 

incur costs that are context-dependent and have to be traded off by individuals (Krause 

and Ruxton, 2002). In particular, large schools of marine pelagic fish are fascinating phe-

nomena that have captivated both researchers and layman and are also of great commer-

cial and ecological importance. However, animals benefit from group formation also at 

smaller scales. Consequently, it has been estimated that approximately 50% of fish species 

exhibit shoaling tendencies at least during some stages of their lives (Shaw, 1978). Collec-

tive behavior in fishes has been investigated on many levels ranging from global scale mi-

gration patterns (Berdahl et al., 2016; Makris et al., 2009) to the local interactions between 

individuals that are prerequisite for the organization of larger groups (Hunter, 1969; Katz 

et al., 2011; Partridge and Pitcher, 1980; Pitcher, 1979; Pitcher et al., 1976). According to 

Pitcher and Parrish (1993), shoals are groups of fish that stay together due to social attrac-

tion, whereas schools are characterized by synchronous swimming activity and a high de-

gree of polarization, i.e., a similar spatial orientation of group members. This means that 

schooling is a particular form of shoaling. 

11.1.1 Costs and benefits of shoal formation 

Avoiding predation is the most important reason for shoaling in fishes (Pitcher and 

Parrish, 1993) and there are several ways in which group formation can reduce an indi-

vidual's predation risk. According to the 'selfish herd' concept proposed by Hamilton 

(1971), gregarious behavior can be explained as a selfish strategy that minimizes an indi-

vidual's risk of getting caught by predators with a tendency to capture the nearest individ-

ual they encounter. Group formation could thus have evolved as a form of cover-seeking 

that is particularly beneficial in featureless open-water habitats, which do not provide any 

other kind of shelter (Parrish, 1992). The combination of this dilution effect, which mini-

mizes individual predation risk at the cost of everybody else, and a general predator 

avoidance effect, which rests on the assumption that predators are more likely to encoun-

ter dispersed individuals than a locally aggregated group of animals, has been proposed to 

be an adaptive strategy that causes attack abatement (Turner and Pitcher, 1986). 

In addition to individual risk reduction, gregarious behavior may be adaptive because 

group members benefit from effects that cannot be produced by solitary animals and 
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emerge only at the group level. The confusion effect describes the fact that predators have 

a decreased attack success when trying to capture prey from larger aggregations (Landeau 

and Terborgh, 1986). This reduced success is attributed to a higher difficulty in neural 

mapping that leads to a decreased attack rate and an increased spatial targeting error dur-

ing attacks (Ioannou et al., 2007). Fish in larger schools can also perform coordinated es-

cape maneuvers to evade predation (Nøttestad and Axelsen, 1999; Pitcher and Wyche, 

1983) (Figure 11.1). 

 

Figure 11.1: Escape maneuvers of schooling prey. Schematic representation of group-level behavioral 

strategies of herring in response to a killer whale attack. Modified after Vabø and Nøttestad (1997). 

 
 

Animals in groups can further benefit from increased information, which can manifest on 

several levels. In the immediate environment, the many-eyes effect, which is afforded by 

higher corporate vigilance in groups of larger sizes in combination with socially mediated 

flight responses among shoal members (Godin et al., 1988), can contribute to the reduc-

tion of predation risk. Consequently, individuals in groups can allocate more time to forag-

ing instead of monitoring for predators (Magurran et al., 1985). Individuals also benefit 

from shared information when it comes to finding food and the development of new forag-

ing sites. For example, fish in groups have been shown to find a food source faster than 

solitary individuals (Böhme, 2011; Pitcher et al., 1982). 

On a larger scale, shared information can be an advantage during navigation and migra-

tion. Many fishes perform seasonal long-distance migrations that are related to their re-

spective live cycles. Prominent examples are herring and salmon, who repeatedly visit 

traditional spawning areas (McQuinn, 1997) or return to their natal freshwater habitats 
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for reproduction (Quinn, 2005). Irrespective of the sensory information that is acquired 

and used by individual fish during migration (Døving and Stabell, 2003; Hawryshyn, 2010; 

Quinn, 2005), collective movement can increase the precision of homing if school mem-

bers adopt a common mean direction and individual errors are canceled out (Larkin and 

Walton, 1969). Additionally, the combination of taxis and schooling behavior can enable 

large groups to track small gradients, especially in noisy environments where such gradi-

ents cannot be perceived by individual animals (Grünbaum, 1998). Under laboratory con-

ditions, the ability of golden shiners (Notemigonus crysoleucas) to orient to a faint light 

gradient increased with group size and was mediated by social cohesion rather than by 

individual responses to the environment (Berdahl et al., 2013). Collective navigation has 

therefore been suggested to be a strategy for homing in anadromous salmon (Berdahl 

et al., 2016) and a relatively small proportion of experienced individuals could be suffi-

cient to influence the direction of movement in schools of herring (Huse et al., 2002). In 

the context of migratory behavior, the synchronization of reproduction is also an essential 

function of group formation (Makris et al., 2009). 

Group living can also reduce the energetic costs of locomotion (Krause and Ruxton, 2002). 

Based on the assumption that fish in groups can reduce the energetic costs of swimming 

by exploiting vortices generated by other fish, Weihs (1973) proposed that schooling fish 

should adopt a diamond-shaped spatial array to yield the highest possible hydro-

mechanical advantage. While expression of this particular group structure could not be 

confirmed for real schools (Pitcher and Parrish, 1993), more recent experiments demon-

strated energetic benefits of schooling that do not depend on a precise geometric align-

ment of group members (Marras et al., 2015). 

Group living does, however, also involve disadvantages for individual group members. The 

benefits of predator avoidance and enhanced food detection abilities may come at the cost 

of increased competition for resources, which can cause aggressive behavior among con-

specifics, and large groups can be vulnerable to parasites and even attract predators 

(Krause and Ruxton, 2002). This means that there are tradeoffs for individuals, who have 

to outweigh the costs and benefits of joining a group against solitary existence. However, 

this also implies that costs and benefits vary as a function of group size, and with respect 

to an individual's position within a given group (Parrish, 1992). Individual predation risk 

is highest at the front and in the marginal regions of a group, but so is the chance to en-

counter food (Krause, 1993). Individuals may, therefore, adjust their position within the 

shoal according to their current motivation, to find a compromise between hunger levels 

and perceived predation risk (Krause, 1993). But sorting in shoals also occurs with respect 
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to phenotypic traits (Pitcher et al., 1985; Ranta et al., 1994), especially under acute preda-

tion risk (Krause, 1994). Sorting counteracts the oddity effect, which may enable predators 

to focus on individuals that are easy to distinguish from the rest of the group (Landeau and 

Terborgh, 1986). The specific positions that individuals occupy in a group are thus non-

random, and different individuals may benefit differentially from grouping based on size 

and composition of the shoal. Additionally, there are asymmetries between the fitness 

costs for established group members that are joined by additional animals, and the fitness 

benefits for solitary individuals joining the shoal. This conflict may cause naturally occur-

ring groups to be larger than optimal (Krause and Ruxton, 2002). Consequently, the elec-

tive group size an individual prefers to shoal with varies according to current motivation, 

environmental conditions, and the life history traits of its species (Pitcher and Parrish, 

1993). 

Especially large schools of marine fish can attract large numbers of predators like birds, 

cetaceans, larger fish, and fishing vessels (Parrish, 1992; Pitcher and Parrish, 1993). Ba-

leen humpback whales (Megaptera novaeangliae) exploit the schooling tendencies of their 

prey during bubble-net feeding by enclosing and capturing large amounts of fish between 

self-generated walls of air bubbles (Wiley et al., 2011). In this respect, group hunting pro-

vides an advantage for gregarious predators because it constitutes a strategy to counteract 

the shoaling defense of grouping prey. Cooperatively hunting bottlenose dolphins 

(Tursiops truncatus) were shown to divide labor between group members to catch school-

ing fishes (Gazda et al., 2005), but coordinated attacks on schooling prey have also been 

observed in piscivorous fish (Handegard et al., 2012; Herbert-Read et al., 2016; Schmitt 

and Strand, 1982). Predator attack strategies must, therefore, be taken into consideration 

when discussing the evolution of schooling behavior as an adaptation against predation 

(Parrish, 1992). 

11.1.2 Rules and mechanisms underlying collective behavior 

The apparent synchrony and organization of large fish schools are fascinating phenomena 

that are, however, not readily accessible to the experimenter who is interested in the 

physiological and behavioral basis of these larger-scale patterns. Detailed studies, in which 

the dynamic interactions between individuals in large schools were analyzed with high 

temporal resolution over extended periods of time, are challenging and therefore rare 

(Partridge, 1981). Still, several methodological approaches can shed light on the rules and 

mechanisms underlying collective animal behavior. With increasing shoal size, it becomes 

increasingly unlikely that individuals have information concerning the global pattern of 

the group, and how their current position relates to the group structure. Instead, natural 
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selection likely acts on individual interaction rules that allow positioning within the group 

through self-organized sorting, without requiring any knowledge of the global group pat-

tern (Couzin and Krause, 2003). 

In self-organized systems, global patterns emerge as a consequence of local interactions 

among individuals, which act according to local information and without any reference to 

the global structure of the system as a whole (Camazine et al., 2001). Some of the global 

patterns in which animal groups are organized can also be observed in inorganic, particle-

based systems, and may, therefore, represent emergent epiphenomena rather than adap-

tations (Parrish and Edelstein-Keshet, 1999; Parrish et al., 2002). But goal-directed 

movements and coordinated escape responses require that individuals comply with be-

havioral rules to cause global-scale effects. Behavior at the global level must, however, not 

be explicitly encoded to generate these effects. Instead, it emerges as a result of local in-

teractions between individual group members and is based on recursive, nonlinear feed-

back-loops between individual interactions and the collective behavior of the group. Con-

text-dependent modifications of these local interaction rules as a result of changes in envi-

ronmental conditions can then lead to adaptive responses at the group level (Couzin and 

Krause, 2003). In guppies (Poecilia reticulata), predation pressure leads to larger and 

more cohesive shoals because it modifies the decision rules of individuals for social attrac-

tion and repulsion, and changes the dynamics of acceleration and deceleration responses 

(Herbert-Read et al., 2017). Similarly, in Berdahl et al. (2013), a tendency of individual 

golden shiners to slightly increase swimming speed in response to brighter light levels 

caused the entire shoal to turn towards more shaded areas due to social cohesion. 

Decoding such rules requires studying the sensory performance of individuals as well as 

their interactions with the environment and with conspecifics in different contexts. Shoal-

ing behavior in fishes is mainly mediated by vision and the mechanosensory lateral line 

system (Partridge and Pitcher, 1980; Shaw, 1978). By temporally blindfolding individual 

saithe (Pollachius virens), Pitcher et al. (1976) demonstrated that these fish were able to 

school with conspecifics unless the researchers additionally deprived the animals of hy-

drodynamic information by sectioning the lateral line. Based on a set of follow-up experi-

ments, Partridge and Pitcher (1980) concluded on a synergistic use of the two sensory 

systems, with vision being of greater importance for maintaining positions and angular 

orientation in relation to other individuals, and the lateral line for monitoring swimming 

speed and direction of their neighbors in the school.  

But knowledge of the sensory requirements for shoaling does not sufficiently explain the 

interaction rules that are necessary to achieve behavioral synchrony during collective 



IV. PART THREE: COLLECTIVE BEHAVIOR IN GROUPS 
 

193 
 

movements. On the group level, video analysis has been used to quantify response laten-

cies and information transfer in fish schools during directional changes (Shaw, 1978). Sim-

ilarly, social reactions have been measured in individual fish. By selectively startling indi-

vidual jack mackerel (Trachurus symmetricus), Hunter (1969) found that nearby individu-

als reacted with response latencies of 0.15 to 0.25 s to the startled fish, depending on its 

angular position. While sensory contributions and behavioral response latencies can be 

studied in individual fish or by analyzing dyadic interactions, extrapolating such results to 

explain the behavior of larger groups is problematic. This is because shoaling behavior is 

qualitatively different from dyadic interactions and does not depend linearly on the num-

ber of individuals in a group (Partridge, 1980). 

Theoretical approaches to formulate the principles underlying shoal formation while cir-

cumventing such experimental difficulties have been made using individual-based com-

puter simulations (Couzin et al., 2002; Huth and Wissel, 1992; Vabø and Nøttestad, 1997). 

To specify the mechanisms that generate synchronized behavior in fish schools, Huth and 

Wissel (1992) designed a model in which they assigned behavioral response rules to simu-

lated individuals, who were influenced only by the position and orientation of their re-

spective nearest neighbors. Each was programmed to have a concentric zone of repulsion 

to avoid collisions, followed by a zone of alignment, in which individuals assumed parallel 

orientation, and a zone of attraction to approach other individuals (Figure 11.2). By aver-

aging the influence of at least four nearest neighbors per individual, Huth and Wissel 

(1994) were able to simulate schools resembling the behavior of real fish schools with 

respect to group cohesion, polarization, and internal dynamics. In a refined simulation 

model, Couzin et al. (2002) were able to induce behavioral transitions of shoaling behavior 

at the group level by changing the range of the zone of parallel orientation. In a simulation 

of flocking behavior in starlings, using the topological distance to a fixed number of 6–7 

nearest neighbors, independently of their absolute distance, produced better results for 

flock coherence when compared with the use of metric distance, which only accounts for 

interactions within a spatially defined zone (Ballerini et al., 2008). Computer models have 

also been employed to investigate how large groups of animals can make collective deci-

sions, and it has been demonstrated that in theory, only a small subset of individuals needs 

information to influence goal-directed movements of a group (Couzin et al., 2005; Huse 

et al., 2002). These predictions are in line with field observations of herring school for-

mation and spawning that were obtained through large-scale acoustic imaging (Makris 

et al., 2009). 
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Figure 11.2: Interaction rules for an individual-based model of shoaling behavior. (A) Representation of 

an individual fish surrounded by a zone of repulsion (r), a zone of parallel orientation (o), and a zone of 

attraction. Other individuals are not detected within the dead angle (ω). (B) Behavioral reactions of the 

focal fish (black) upon encounter of a conspecific (grey) depending on the interaction zones specified in 

(A). The animal changes its direction of movement (hatched line) by the angle β to obtain a new heading 

(arrow). Modified from Huth and Wissel (1994). 

 
 

The fact that simple rules in computer simulations can cause behavioral patterns resem-

bling those of living systems does not necessarily mean that living systems follow these 

exact rules (Parrish and Edelstein-Keshet, 1999). Models can not demonstrate whether 

real animal groups are organized according to their assumptions, nor whether their as-

sumed behavioral rules are hard-wired into an animal’s behavioral physiology (Herbert-

Read et al., 2011). By studying schooling dynamics in golden shiners, Katz et al. (2011) 

found no evidence that fish average the headings of their nearest neighbors to adjust their 

own swimming direction. Instead, alignment resulted from attraction-repulsion dynamics 

and the adjustment of swimming speeds. It has therefore been suggested that models of 

shoaling behavior should be developed in a bottom-up approach relying on experimental 

data from individual interactions rather than by specifying parameters that result in quali-

tatively similar behavior patterns at the group level (Lopez et al., 2012). 

11.1.3 Robotic fish for the investigation of group behavior 

Manipulating the behavior of individuals in groups is notoriously difficult, which makes it 

challenging to conduct controlled experiments on social interaction rules with live ani-

mals. One way to test the effect of specific behavioral rules on shoal formation is by intro-

ducing robotic fish dummies into groups of live fish and make them 'behave' according to 

rules that are specified by an experimenter (Landgraf et al., 2013; Landgraf et al., 2014; 

Swain et al., 2012). The general features determining attraction of biomimetic robots, and 

possibly their recognition as conspecific individuals in behavioral studies on communica-
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tion and social interactions, have been discussed in chapters 8 and 9. If live fish accept 

such robotic dummy fish, this approach makes it possible to test hypotheses regarding the 

rules of local interactions on behavior at the group level and to study how these mecha-

nisms are used to achieve collective movement and decisions (Swain et al., 2012). 

By using a remote-controlled fish replica, Faria et al. (2010) investigated recruitment and 

leadership in small groups of sticklebacks (Gasterosteus aculeatus) and provided evidence 

that topological rather than metric distance is likely to be important during directional 

changes of the shoal. To investigate individual differences in shoaling behavior of stickle-

backs, Pearish et al. (2017) replaced an entire shoal of sticklebacks with robotic conspecif-

ics. Collective decisions in groups of sticklebacks were shown to comply with relatively 

simple quorum rules (Sumpter et al., 2008). With increasing group size, additional artifi-

cial dummy fish were necessary to lead the shoal towards or away from a food source 

(Ward et al., 2012). If the number of replica fish exceeded the quorum, even maladaptive 

decisions, like collectively moving into an area with increased predation risk, could be 

triggered experimentally in live fish (Ward et al., 2008). By integrating a robotic fish repli-

ca into small shoals of guppies (Poecilia reticulata), Landgraf et al. (2016) were able to 

demonstrate the influence of realistic eyes and swimming movements on the attraction of 

live fish. They also provided a framework for closed-loop interactive experiments in which 

the robot reacts to the behavior of the fish. Most recently, Bonnet et al. (2018) integrated 

small robotic fish dummies into groups of zebrafish (Danio rerio) in a closed-loop interac-

tive experimental design, and showed that self-organized decisions in these mixed socie-

ties could be modulated by biasing the robot's behavior. 

11.1.4 Electrocommunication and group dynamics in mormyrids 

Due to their electroreceptive capabilities (see section 1.3) and versatile social behavior, 

mormyrids are interesting model organisms for the study of collective behavior. The ac-

tive production of electric organ discharges (EOD) generates transient three-dimensional 

electric fields around these fish, which they use to probe their immediate environment. At 

the same time, mormyrids can exchange identity information based on the waveform of 

their EOD (see section 3.5.1), as well as contextual information through modification of 

inter-discharge intervals (IDI; see section 3.5.2) during electrocommunication. Additional-

ly, electrical signaling provides information that allows individuals to localize and ap-

proach a conspecific (Hopkins, 2005; Schluger and Hopkins, 1987) and to track a mobile 

source of electrocommunication signals (Worm et al., 2018) (see chapter 9). It has been 

shown experimentally, that mormyrids can rely on sensory modalities other than vision 

and the lateral line system for group coherence and shoal formation. Evidently, electric 
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signal generation and perception play important roles in these situations (Khait et al., 

2009; Moller et al., 1982). By silencing the electric organ of Marcusenius cyprinoides, 

Moller (1976) demonstrated that animals that were deprived of their active electric sense 

no longer engaged in 'single file swimming' and 'parallel lineups.' 

Social behavior in mormyrids is highly complex and ranges from territorial and aggressive 

interactions in Brienomyrus (Friedman and Hopkins, 1996) to nocturnal hunting associa-

tions in Mormyrops anguilloides (Arnegard and Carlson, 2005), and the formation of large 

diurnal shoals in Petrocephalus (Carlson, 2016; Kramer, 1990). The analysis of electric 

signaling in grouping mormyrids revealed that these animals frequently engage in epi-

sodes of temporal EOD-synchronizations. These episodes are mediated by mutual echo 

responses to each other's EODs and have been interpreted as a communicative strategy to 

promote group coherence (Arnegard and Carlson, 2005; Gebhardt et al., 2012a). Echo re-

sponses and discharge synchronizations have been introduced earlier (see sections 1.4, 

3.5.2, 4.1, and 5.1) and were investigated in dyadic interactions between M. rume and a 

mobile dummy that generated electrical playback sequences in chapters 4 and 5. In groups 

of mormyrids, these synchronization episodes can switch rapidly between individuals, 

who frequently change their synchronization partner (Gebhardt et al., 2012b) (Figure 

11.3). Similar observations were also made during interactions in small groups of M. rume, 

in which a single group member was replaced with a mobile dummy that generated play-

back of electrical communication signals (Pannhausen, 2017; Toma, 2014a). 

The electrical playback signals used in these experiments were static, i.e., their temporal 

pattern was fixed and did not depend on the signaling activity of the fish. The present 

study expands these findings. By imitating the species-specific echo response latency of M. 

rume, an interactive electrical playback was generated by a dummy that could be moved 

on arbitrary trajectories. This enabled both motor and electromotor interactions with the 

test fish. The effect of this dynamic echo playback on recruitment and following-behavior 

in single individuals and small groups of live M. rume was investigated and contrasted 

with the animal's responses to static random playback patterns. The effect on following 

behavior and shoal formation could thus be tested depending on group size, and social 

constellations—during which electrical discharge synchronizations occur in groups—

were identified. The results corroborate the findings from chapter 5 by demonstrating that 

synchronizations are often initialized by individuals that approach a conspecific or the 

dummy. This observation supports the hypothesis that the echo response provides 

mormyrids with a mechanism to address a particular individual and selectively share so-

cial attention during electrocommunication in groups. 
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Figure 11.3: Switching of synchronization partners during electrocommunication in a group. Short 

behavioral interaction sequence of three Mormyrus rume proboscirostris during feeding. (A) Time series 

of the IDI-sequences of each fish. Line colors correspond to the outlines of the inset drawings, which 

represent behavioral snapshots from the interaction episode. (B) Cross-correlation analyses of all pos-

sible pairs of electric signaling interactions highlight the time course of synchronizations between indi-

viduals. Correlation coefficients are color-coded and represent reactions of the individuals indicated on 

the right-hand side of the diagrams to the respective other fish. Synchronizations were observed at the 

response time corresponding to the latency of the echo response in M. rume. Synchronizing individuals 

are marked in red in the inset drawings of (A). 
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11.2 Materials and methods 

The experiments presented in this section were part of a larger research design that was 

introduced in chapter 5. The same 23 Mormyrus rume proboscirostris were used, and de-

tailed descriptions of animal keeping and handling conditions can be found in sections 

5.2.1 and 9.2.1. The exact design of the experimental setup (section 5.2.2) and the details 

of electrical playback assembly (section 5.2.3) and presentation (section 5.2.4) can also be 

obtained from there. In short, groups of different sizes were confronted with a mobile 

dummy fish (Figure 5.2B) that could be moved on arbitrary trajectories via magnetic cou-

pling from underneath an experimental tank with a base area of 120 cm x 100 cm (Figure 

5.1). The dummy emitted electrical playback with a natural EOD-waveform assembled 

either to static sequences of randomized natural IDI-durations, as an interactive sequence 

that responded to EODs of the fish with a latency characteristic of the echo response in 

M. rume, or remained electrically silent as a control. All groups were also tested without 

the dummy. 

11.2.1 Group sizes and randomization 

Tests were performed with single fish and small groups of two, three, and four individuals. 

For each group size, n = 9 groups were tested. Because all animals were also tested indi-

vidually for the study presented in chapter 5, nine individuals were preselected to also go 

into the analysis of the current study. Since the number of available research animals was 

limited, animals had to be re-used in different group sizes. In groups of three, four animals 

had to be used twice also within that category, although never more than one per group. In 

groups of four, 13 animals were used twice also within that category, and no more than 

two animals were re-used per group. Groups were assembled using similarly sized ani-

mals, and experimental trials were arranged to assure that no animal was tested more 

than once per day. Similar to the randomization procedure described in section 5.2.4, tri-

als were pseudo-randomized with respect to the order in which the static random play-

back, the dynamic echo playback, and the electrically silent control condition were pre-

sented within a session. Whether a given group was confronted with the dummy in the 

first or the second session was also randomized. To assure that groups were composed of 

the same individuals across experimental session, fish were made distinguishable by clip-

ping small parts from their caudal and/or pectoral fins.  

11.2.2 Data analysis 

Cartesian coordinates and angular orientations were obtained for all fish and the dummy 

every three seconds to analyze spatial behavior patterns of M. rume in response to the 

different test conditions. This yielded 15 measurements per fish and trial for each analysis. 
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Also, the shortest distance between the snout of each fish and the closest wall of the tank 

was measured at the same time points. These measurements were performed manually 

using ImageJ (version 1.46r, National Institutes of Health, USA). Because fish could not be 

consistently identified across successive trials based on video recordings, values obtained 

from different individuals were not differentiated. Instead, the analysis was based either 

on mean values or minimum/maximum distances. Nearest neighbor distances (NND) be-

tween dummy and fish, as well as between the fish, were calculated from Cartesian coor-

dinates using Matlab (Version R2013b, The MathWorks Inc. Natick, MA). Group coherence 

was quantified according to Huth and Wissel (1994) by calculating the average mean NND 

of all fish excluding the dummy for the 15 measures per trial. 

Group polarization was quantified in a procedure inspired by Huth and Wissel (1992) by 

averaging the mean vectors of all individuals either with or without the dummy using the 

circ_stat toolbox for Matlab (Berens, 2009). Similar to the analysis by Huth and Wissel 

(1994), mean vectors of 0 represent groups with maximally randomized orientations, 

whereas a mean vector of 1 characterizes a group in which all individuals are perfectly 

aligned in parallel. 

The difference between the orientation of the dummy and the mean orientation vector of 

the remaining group was calculated to quantify the effect of electrical playback presenta-

tion on group behavior. In addition, the number of the dummy's turns that were followed 

by at least one fish in response to the different experimental conditions was quantified 

manually from video recordings. File names were randomized to leave the experimenter 

blind to the playback condition during which the video had been recorded. 

Statistical comparisons were performed using SPSS (version 22.0, IBM Corp., Armonk, NY). 

Within the different group sizes, experimental conditions were compared using repeated-

measures designs. A repeated-measures ANOVA was performed if data were assumed to 

be normally distributed based on Shapiro-Wilk's test. Otherwise, the non-parametric 

Friedman test for non-normally distributed data was used. No inferential statistics were 

performed to compare the results between the different group sizes, because the re-use of 

individuals in groups of similarly sized individuals neither justified the use of repeated-

measures testing procedures, nor the assumption of independent data across different 

group sizes. 

All experiments with a group size of two that involved electrical playback were screened 

for episodes during which both fish showed instances of following the mobile dummy. 

Spike2-waveform data recorded during these episodes were converted to time series 
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marking each EOD that was generated by either fish or playback during these sequences. 

After the identification of the playback signals, the remaining EODs of the test fish were 

assigned to the respective sender according to Gebhardt et al. (2012a). This assignment 

was accomplished by manually associating amplitudes and polarities of EODs that were 

recorded on multiple channels via the multi-electrode array, with the spatial positions the 

fish occupied in relation to the recording electrodes. Adaptive cross-correlations for a re-

sponse time of ±100 ms were calculated over the time course of each episode for the IDI-

sequences of the dummy and each fish, as well as for the two fish. This analysis was per-

formed according to Gebhardt et al. (2012a). The maximum correlation coefficient for all 

possible pairings within the analyzed response time was extracted (see also sections 4.2.7 

and 5.2.5). For correlations of the signals of either fish with the dummy, and with those of 

the other fish, these maximum correlation values were screened for episodes with a corre-

lation coefficient of 0.3 or higher that lasted for at least 500 ms. Behavioral patterns dis-

played during such episodes were further characterized by manual inspection of the cor-

responding video recordings. In particular, spatial relationships between the two syn-

chronizing partners in the video frame corresponding to the time when the 0.3 threshold 

was crossed were analyzed. This was done in ImageJ by determining the angle between 

the line connecting the centers of the communication partners and the orientation of the 

individual that synchronized or was synchronized to, respectively. 

 

11.3 Results  

Creating mixed groups by introducing a mobile dummy fish allowed to reliably influence 

the behavior of single individuals of M. rume, as well as small groups of two, three, and 

four fish. This influence mainly persisted when the dummy emitted electrical playback 

signals. Particularly single fish abandoned their preference for wall-following behavior in 

the presence of the dummy. But the animals, in general, were attracted to follow the 

dummy and interacted with it, both spatially and electrically, even in the presence of other 

live individuals. However, the influence of the playback emitting dummy on the behavior 

of groups was decreased compared with its effect on single fish. This is illustrated in 

Figure 11.4 through the visualization of fish positions recorded at fixed intervals during 

different experimental conditions. In the absence of the dummy, animals responded to the 

new environment with a strong preference for staying close to the tank walls, a behavior 

that persisted independently of group size. The presence of the electrically silent dummy 

could occasionally motivate the fish to explore further towards the center of the tank, but 

only when the dummy emitted playback of electrical signals was wall-following behavior 
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abandoned almost entirely by single fish. With increasing group size, animals increasingly 

resumed their preference for the area close to the walls. 

 

Figure 11.4: Influence of a mobile dummy on fish positions in groups of different sizes. The figure 

shows snapshots of Cartesian coordinates taken every three seconds during different experimental 

conditions to indicate the positions of fish (black) and dummy (red) in the tank. Each panel represents 

consolidated data from trials with n = 9 single individuals or groups, ranging in size from two to four fish. 

During the tests with no dummy present (first column), animals showed a strong preference for staying 

close to the tank walls. This preference was less pronounced in the presence of an electrically silent 

dummy (control) and was almost entirely abandoned by single fish during trials with the static random 

playback (third column) and the dynamic echo playback (fourth column). This influence diminished with 

increasing group size. 

The influence of the mobile dummy on wall-following behavior was quantified and is illus-

trated in Figure 11.5. The distance between the fish and the tank wall was significantly 

influenced by the dummy in groups of all sizes (single fish: χ²(3) = 23.13; p < 0.001; Figure 

11.5A; groups of two: χ²(3) = 17.03; p < 0.001; Figure 11.5B; groups of three: χ²(3) = 21.13; 
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p < 0.001; Figure 11.5C; groups of four: χ²(3) = 18.47; p < 0.001; Figure 11.5D). The overall 

pattern was the same for all group sizes. Animals stayed close to the tank walls during 

trials without the dummy (median distances: 55–96 mm) and increased that distance sig-

nificantly in the presence of the dummy when it emitted either a static random playback 

or a dynamic echo playback (median distances: 209–274 mm). Based on Bonferroni cor-

rected p-values, the two playback conditions never differed significantly. During control 

trials with the electrically silent dummy, recorded distances (median values: 119–

188 mm) were always intermediate to the condition with no dummy and the two playback 

conditions. Only the fish furthest away from the tank wall was incorporated into this anal-

ysis for trials with more than one live individual. 

 

Figure 11.5: Influence of a mobile dummy on wall-following behavior in groups of different sizes. Box 

plots indicate the distance to the tank wall for single individuals (A) and the maximum distance, i.e., the 

distance of the fish closest to the center of the tank, for groups of two (B), three (C), and four (D) fish 

during experimental conditions with no dummy present, the electrically silent control condition, the 

static random playback, and the dynamic echo playback. Results from conditions not sharing a common 

superscript letter differ significantly based on Bonferroni corrected p-values. 
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The attractiveness of the dummy during the different experimental conditions was as-

sessed by calculating nearest neighbor distances (NND). Figure 11.6 contrasts the results 

for all group sizes and confirms a similar general pattern that could be observed in groups 

of all sizes. The experimental condition had a significant influence on the dummy's NND in 

all group sizes (single fish: F(2, 16) = 51.62; p < 0.001; Figure 11.6A; groups of two: 

F(2, 16) = 16.17; p < 0.001; Figure 11.6B; groups of three: F(2, 16) = 33.55; p < 0.001; Figure 

11.6C; groups of four: F(2, 16) = 19.03; p < 0.001; Figure 11.6D). In all cases, distances were 

significantly longer during the electrically silent control conditions compared with the two 

playback conditions, which never differed statistically. The difference between the influ-

ence of the two playback conditions and the control treatment was, however, most pro-

nounced during the trials with single individuals and diminished slightly in the presence of 

other live fish. 

 

Figure 11.6: Influence of playback condition on the dummy's NND. Average distance between the mo-

bile dummy and the test fish (A), and the distance to the dummy's nearest neighbor, respectively, for 

groups of two (B), three (C), and four (D) fish. Comparisons were made for each group size between the 

electrically silent control condition, the static random playback condition, and the dynamic echo play-

back condition. Categories with different superscript letters differ significantly based on Bonferroni 

corrected p-values. 
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Shoals of fish can be characterized by the coherence of individuals within the group. Group 

coherence was quantified by averaging the nearest neighbor distances of all fish excluding 

the dummy (Figure 11.7). The resulting parameter describes how close the animals tended 

to stay together during the trials and was not affected by different experimental condi-

tions (groups of two: χ²(3) = 7.13; p = 0.07; Figure 11.7A; groups of three: χ²(3) = 4.33; 

p = 0.23; Figure 11.7B; χ²(3) = 1.40; p = 0.71; Figure 11.7C). Median values for average 

group cohesion ranged from 123 to 214 mm, corresponding to 1.4 to 2.5 body lengths of 

the test fish based on their median standard length of 85 mm. 

 

Figure 11.7: Group coherence. Box plots indicate the average NND of all fish in n = 9 groups of two (A), 

three (B), and four (C) individuals during experimental conditions with no dummy, the electrically silent 

control, the static random playback, and the dynamic echo playback. The dummy was not counted as 

the nearest neighbor. An extreme outlier at 776 mm was omitted in (A) in the static random playback 

condition. Results from different experimental conditions did not differ significantly. 
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The coherence of the fish with the mobile dummy was analyzed by comparing the nearest 

neighbor distance of the dummy with the distance to the corresponding individuals' near-

est neighbor among the remaining fish (Figure 11.8). During the electrically silent control 

condition, this comparison resulted mostly in positive values, indicating that the dummy's 

nearest neighbor generally stayed closer to the other fish than to the dummy during these 

trials. Confidence intervals for each group size exclude the zero line, at which the two dis-

tances would be precisely the same (group of two: 95% CI, 57 to 277; group of three: 

95% CI, 65 to 264; group of four: 95% CI, 80 to 250). This indicates a statistically signifi-

cant difference between the distances. This relationship was not that unambiguous for the 

two conditions involving electrical playback. Although the inter-quartile range always 

included the zero line during the two playback conditions, a definite statement whether 

the playback-emitting dummy induced a similar coherence as observed among live fish 

cannot be made due to the non-normal distribution of the data. However, median values in 

Figure 11.8 show a stronger coherence during playback presentation compared with the 

electrically silent control condition. 

 

Figure 11.8: Group coherence between test fish and dummy. Box plots showing the difference in dis-

tance between the fish closest to the dummy and the dummy, and the distance to the nearest neighbor 

of that individual among the remaining fish in the group. This analysis was performed for groups of two 

(white), three (light grey) and four (dark grey) individuals for the electrically silent control condition, the 

static random playback condition, and the dynamic echo playback condition. Positive values indicate 

that the distance to the dummy is larger than the distance to the other fish. An extreme outlier at 

−599 mm was omitted in the group of two of the static random playback condition. 
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A second parameter for the characterization of shoaling fish is group polarization. Groups 

with low polarization consist of individuals that are randomly orientated on the horizontal 

plane, whereas individuals in groups with high polarization tend to be aligned in parallel 

to one another. Mean unit vectors of the orientation of dummy and fish were used to rank 

polarization of differently sized groups from zero (random orientation) to one (parallel 

orientation, Figure 11.9). Relatively high polarization values and consistent differences of 

the control condition to both playback conditions were only observed during the response 

of single fish to the mobile dummy (F(2, 16) = 17.98; p < 0.001; Figure 11.9A). Significant 

differences in group polarization were also recorded for groups of two (F(2, 16) = 5.79; 

p = 0.013; Figure 11.9B) and groups of four (F(2, 16) = 4.63; p = 0.03; Figure 11.9D). In either 

case, only one playback condition differed significantly from the electrically silent control 

condition after Bonferroni adjustments for multiple comparisons, and results obtained 

during the static random playback never differed statistically from those obtained during 

the dynamic echo playback. In groups of three, no statistically significant differences in 

group polarization were recorded at all (F(2, 16) = 1.07; p = 0.36; Figure 11.9C). 

 

Figure 11.9: Group polarization in mixed groups. Polarization was quantified considering the dummy's 

orientation for single fish (A) and groups of two (B), three (C), and four (D) fish. A value of 0 indicates 

random orientations, whereas a value of 1 indicates parallel alignment of all group members. Results 

were compared between the electrically silent control condition, the static random playback, and the 

dynamic echo playback. Categories without a common superscript letter differ significantly based on 

Bonferroni corrected p-values. 
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When the dummy's orientation was excluded from the analysis (Figure 11.10), no statisti-

cally significant differences in polarization existed between the different experimental 

conditions at any group size (groups of two: F(3, 24) = 1.71; p = 0.19; groups of three: 

F(3, 24) = 0.29; p = 0.84; groups of four: F(3, 24) = 2.24; p = 0.11). Polarization was not particu-

larly high in general, indicating that M. rume did not spend much time in polarized for-

mations in the group sizes that were investigated in this study. 

 

Figure 11.10: Group polarization excluding the dummy's orientation. Polarization was quantified 

among the test fish by omitting the dummy's orientation for groups of two (white), three (light grey), 

and four (dark grey) individuals. A polarization value of 0 indicates completely random orientations 

within the group, whereas a value of 1 indicates parallel alignment of all group members. Results were 

compared between the experimental condition with no dummy present, the electrically silent control 

condition, the static random playback, and the dynamic echo playback. No statistically significant differ-

ences existed between the results from different experimental conditions within a given group size. 

 

Differences in orientation were also used to investigate whether groups of different sizes 

headed in the same direction as the dummy when they were attracted. Figure 11.11 shows 

the difference between the orientation of the dummy and the mean vector of the orienta-

tion of all fish. This angular difference decreased significantly in response to either of the 

two playback conditions for single fish (F(2, 16) = 21.88; p < 0.001; Figure 11.11A) and partly 

also in groups of two (F(2, 16) = 7.68; p = 0.005; Figure 11.11B), but not in groups of three 

(F(2, 16) = 3.62; p = 0.050; Figure 11.11C) and four, where Bonferroni corrected p-values did 

not confirm any differences between the categories, even though the overall model was 

significant (F(2, 16) = 3.88; p = 0.042; Figure 11.11D). 
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Figure 11.11: Difference in the orientations of the dummy and the group of fish. Angular difference 

between the orientations of the dummy and the test fish (A), or the mean vector of the orientations of 

two (B), three (C), and four (D) test fish, respectively. Results were compared between the electrically 

silent control condition, the static random playback, and the dynamic echo playback. Categories not 

sharing a common superscript letter differ significantly based on Bonferroni corrected p-values. 

 

The relative amount of the dummy's turns, which were followed by at least one fish, was 

calculated for all group sizes to determine whether the fish specifically followed the dum-

my (Figure 11.12). In all cases, electrical playback presentation led to a significant increase 

in the relative amount of turns that were followed by at least one fish (single individuals: 

χ²(2) = 14.11; p = 0.001; Figure 11.12A; groups of two: χ²(2) = 13.56; p = 0.001; Figure 

11.12B; groups of three: χ²(2) = 12.400; p = 0.002; Figure 11.12C; groups of four: 

χ²(2) = 9.77; p = 0.008; Figure 11.12D). The electrically silent control condition induced 

relatively few followed turns in fish (median values: 0–0.13), which was, except for group 

size three, always significantly different from the two playback conditions. In groups of 

three, only the static random playback induced significantly more turns compared with 
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the electrically silent control, but the general pattern remained the same. The dummy al-

ways elicited more turns in the following fish when it emitted either the static random 

playback (median values: 0.29–0.77) or the dynamic echo playback (median values: 0.36–

0.71), but the two playbacks never elicited statistically different responses in M. rume. 

Single fish followed most turns in response to playback, but following-behavior declined in 

larger groups. 

 

Figure 11.12: Following-behavior in response to electrical playback. Box plots show the relative num-

ber of the dummy's turns that were followed by at least one fish during the electrically silent control 

condition, the static random playback condition, and the dynamic echo playback condition in tests with 

single individuals (A) and groups of two (B), three (C), and four (D) fish. Results from categories not shar-

ing a common superscript letter differ significantly based on Bonferroni corrected p-values. 

 

Figure 11.13 summarizes the actual number of fish that followed the dummy's turns in 

differently sized groups, and in response to the different experimental conditions. It 

demonstrates that the dummy was also capable of inducing following-behavior in multiple 

fish, although following-behavior by single fish dominated in groups of three (Figure 

11.13B) and groups of four (Figure 11.13C). Following-behavior by larger groups of fish 

hardly ever occurred in response to the electrically silent control condition. 
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Figure 11.13: Amount of fish following the dummy's turns in groups of different sizes. Box plots indi-

cate the relative number of the dummy's turns that were followed by the fish, broken down to the 

number of following fish in response to the electrically silent control condition, the static random condi-

tion, and the dynamic playback condition for groups of two (A), three (B), and four (C) individuals. 
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Electric discharge synchronizations were investigated in more detail in mixed groups of 

two live fish and the dummy. Results are summarized for the static random playback con-

dition (Table 11.1) and the dynamic echo playback condition (Table 11.2). These episodes 

were specifically chosen to represent events of interactive behavior of both fish with the 

dummy. The duration of these episodes is listed in the columns on the right-hand side of 

Table 11.1 and Table 11.2. In total, 112.4 seconds were analyzed for the static random 

playback (no suitable episode was observed during experiments with group 7) and 

127 seconds for the dynamic echo playback. Discharge synchronizations were quantified 

based on cross-correlation analysis between all possible pairs of IDI-sequences, which 

were recorded during these events. A threshold criterion of a correlation coefficient great-

er than 0.3 for a duration longer than 500 ms was set to isolate and quantify sequences of 

relatively high synchronization. During the experiments with the static random playback, 

this criterion was never met by randomly occurring correlations of the dummy's signals 

with the discharge sequences of either of the two fish. However, both fish synchronized 

their discharges, both to the playback and to the respective other individual (Table 11.1). 

During experiments with the dynamic random playback, synchronizations of the dummy's 

signals with those of live fish were also observed (Table 11.2). 

 

Table 11.1: Number of sequences with relatively strong synchronization in response to the static ran-

dom playback. The table summarizes the number of sequences during which synchronization in n = 9 

mixed groups of two fish and the dummy exceeded a correlation coefficient of 0.3 for at least 500 ms. 

Sequences are specified for the six possible pairings between the dummy (D), fish #2, and fish #3. The 

column on the right-hand side gives the total amount of time in seconds that was analyzed for the re-

spective group. It represents episodes of following-behavior during the experiment with that group. 

Random Sequences with correlation ≥ 0.3 and duration ≥ 500 ms 

 Group  D vs. #2 #2 vs. D D vs. #3 #3 vs. D #2 vs. #3 #3 vs. #2 Analyzed [s] 

1 0 2 0 1 1 3 13.0 

2 0 0 0 1 1 0 12.4 

3 0 2 0 0 2 3 12.0 

4 0 3 0 0 1 0 13.0 

5 0 2 0 0 0 4 12.0 

6 0 4 0 2 1 2 13.0 

7 - - - - - - - 

8 0 4 0 2 0 8 18.0 

9 0 3 0 2 4 2 19.0 

        Sum 0 20 0 8 10 22 112.4 
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Table 11.2: Number of sequences with relatively strong synchronization in response to the dynamic 

echo playback. The table summarizes the number of sequences during which synchronization in n = 9 

mixed groups of two fish and the dummy exceeded a correlation coefficient of 0.3 for at least 500 ms. 

Sequences are specified for the six possible pairings between the dummy (D), fish #2, and fish #3. The 

column on the right-hand side gives the total amount of time in seconds that was analyzed for the re-

spective group. It represents episodes of following-behavior during the experiment with that group. 

Echo Sequences with correlation ≥ 0.3 and duration ≥ 500 ms 

 Group D vs. #2 #2 vs. D D vs. #3 #3 vs. D #2 vs. #3 #3 vs. #2 Analyzed [s] 

1 0 0 0 1 5 2 13.0 

2 1 1 0 1 0 0 14.0 

3 3 4 0 0 2 2 14.0 

4 2 2 1 2 1 1 13.0 

5 0 1 1 1 0 1 6.0 

6 2 4 1 4 0 3 14.0 

7 5 3 0 2 1 3 18.0 

8 2 2 0 0 2 3 15.0 

9 1 2 2 5 4 2 20.0 

        Sum 16 19 5 16 15 17 127 

 

The definition of threshold criteria for relatively high correlations between two IDI-

sequences allowed to analyze the behavioral patterns that had simultaneously been dis-

played by the two synchronizing individuals during that part of an episode. An exemplary 

set of simultaneously occurring pairs of IDI-sequences and the corresponding cross-

correlation diagrams are presented for both playback types in Figure 11.14 and Figure 

11.16. Representations of the behavioral interactions the fish engaged in at the moment 

when synchronizations first exceeded the threshold criteria are drawn to scale in Figure 

11.15 and Figure 11.17, respectively. These illustrations demonstrate that a mobile dum-

my can be introduced into a small group of weakly electric fish and generate behavioral 

patterns similar to those observed among live fish with regard to physical and electric 

signaling interactions. In particular, switching synchronization partners within the mixed 

group frequently included the mobile dummy. 

The episode selected from the experiments with the static random playback (Figure 11.14 

and Figure 11.15) started with fish #2 synchronizing its discharges to those of the mobile 

dummy (Figure 11.14A (a) and (b)) while approaching (Figure 11.15 (a)) and eventually 

following (b) the dummy from behind. Fish #3 approached from a position further away 

and eventually started synchronizing with fish #2, who reciprocated the signaling display, 

culminating in two successive sequences of strong mutual synchronization of accelerated 
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and regular IDI-sequences (Figure 11.14C (c) and (d)). While fish #3 initiated the first se-

quence of mutual synchronization from a position laterally behind fish #2 (Figure 11.15 

(c)), the second sequence was initiated by fish #2, who by that time had fallen back into a 

similar position laterally behind fish #3. Fish #3 in turn had started to swim towards the 

dummy (Figure 11.15 (d)). Fish #3 then caught up with the dummy, followed a turn and 

started synchronizing its discharges to the playback sequence (Figure 11.14B (e)), while 

fish #2 acted as a bystander (Figure 11.15 (e)). After completing the turn, the dummy 

moved away from the fish, and fish #2 started synchronizing discharges to fish #3 (Figure 

11.14C (f)) while approaching it from behind (Figure 11.15 (f)). Fish #3, however, moved 

away from fish #2 and followed the dummy, synchronizing its discharge activity to the 

playback sequence while still being synchronized to by fish #2 (Figure 11.14B and C (g)). 

This episode was reminiscent of the single file swimming behavior described by Moller 

(1976) in Marcusenius cyprinoides (Figure 11.15 (g)). 

The episode selected from the dynamic echo playback experiments (Figure 11.16 and Fig-

ure 11.17) additionally features synchronization sequences of the dummy's playback 

EODs to the signals of the fish, by which they were triggered as an artificial echo response 

when the fish discharged near the dummy. At the beginning of the episode, fish #2 syn-

chronized its discharges from a distance to the playback signals emitted by the dummy 

(Figure 11.16A (a); Figure 11.17 (a)). Fish #2 then approached the dummy more closely 

from behind (Figure 11.17 (b)), thereby triggering a sequence of mutual discharge syn-

chronization with the playback (Figure 11.16A (b)). As the dummy then stopped and 

turned, still being followed by and synchronized to by fish #2, fish #3 approached it from 

the front and also started synchronizing its discharges to the playback signals (Figure 

11.16B (c) and Figure 11.17 (c)). Upon completion of the turn, both fish still synchronized 

with the playback, and synchronization by the dummy was again triggered mainly by 

fish #2 (Figure 11.17 (d)). The dummy then moved away, leaving fish #3 in a position or-

thogonally behind fish #2 (Figure 11.17 (e)) from where it started synchronizing to the 

signals of fish #2 (Figure 11.16C (e)). Fish #2 then turned and began pursuing fish #3 

while initiating a sequence of mutual discharge synchronization that was based on aggres-

sive bursts (Figure 11.16C (f) and Figure 11.17 (f)). 

The two exemplary episodes described above demonstrate electric discharge synchroniza-

tions in a mixed group of two weakly electric fish and a mobile dummy. They provide in-

sight into the behavioral situations this signaling strategy was used in, which is during 

relatively close social interactions, usually when following or approaching another indi-

vidual. 
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Figure 11.14: Exemplary episode of a mixed group responding to the static random playback: Electric 

discharge synchronizations. The upper panels in A, B, and C depict IDI-sequences emitted during the 

same time frame during which a group of two M. rume interacted with the mobile dummy emitting a 

static random playback. (A) IDI-sequences of dummy (black) and fish #2 (blue), (B) IDI-sequences of 

dummy (black) and fish #3 (grey), (C) IDI-sequences of fish #2 (blue) and fish #3 (grey). The lowercase 
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letters in brackets mark time points at the beginning when correlation coefficients first exceed 0.3 for a 

period of at least 500 ms and are referenced in Figure 11.15. The lower panels are cross-correlation 

diagrams of the respective pairs of IDI-sequences with color-coded correlation coefficients for a re-

sponse time of ±100 ms. High correlations at positive response times result from discharge synchroniza-

tions of fish #2 with the dummy (A), fish #3 with the dummy (B), and fish #3 with fish #2 (C). The oppo-

site case is represented by high correlations at negative response times. High correlations of the dum-

my's playback with the discharge sequences of fish #2 (A) and fish #3 (B) can only occur randomly due to 

the non-interactive nature of the static random playback. In (C), high correlations at negative response 

times represent discharge synchronization of fish #2 with fish #3. 

 

 

In total, 127 behavioral episodes were observed during which discharge synchronizations 

by M. rume to either the playback signals or the EODs of the respective other fish exceeded 

the threshold criteria. Of the 60 episodes observed during experiments with the static 

random playback, four were discarded because the response time, at which synchroniza-

tion occurred, did not correspond to the latency at which echo responses occur in M. rume, 

and because the animals did not show any interactions at the time. Of the remaining epi-

sodes, 73% were associated with situations where the synchronizing individual ap-

proached either the dummy or the other fish from behind. Swimming in parallel to the 

trajectory of the dummy or the fish that was being synchronized to was observed in 41% 

of all episodes. Similar behavior was observed during episodes with the dynamic echo 

playback. Here, 61% of all episodes were associated with approaches from behind and 

44% with swimming in parallel to the trajectory of the dummy or the other fish. 
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Figure 11.15: Exemplary episode of a mixed group responding to the static random playback: Spatial 

interactions. Panels are marked by lowercase letters corresponding to the time points in Figure 11.14 

and depict interactions between the dummy (black), fish #2 (blue), and fish #3 (grey). Pictograms are 

drawn to scale and represent the spatial relationship of fish and dummy at the onset of relatively strong 

synchronization episodes (correlation coefficient ≥ 0.3 for at least 500 ms). Black arrows point from 

synchronizing individuals to the respective synchronization partners. 
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Figure 11.16: Exemplary episode of a mixed group responding to the dynamic echo playback: Electric 

discharge synchronizations. The upper panels in A, B, and C depict IDI-sequences emitted during the 

same time frame during which a group of two M. rume interacted with the mobile dummy emitting a 

dynamic echo playback. (A) IDI-sequences of dummy (black) and fish #2 (blue), (B) IDI-sequences of 

dummy (black) and fish #3 (grey), (C) IDI-sequences of fish #2 (blue) and fish #3 (grey). The lowercase 
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letters in brackets mark time points at the beginning when correlations first exceed 0.3 for a period of at 

least 500 ms and are referenced in Figure 11.17. The lower panels are cross-correlation diagrams of the 

respective pairs of IDI-sequences with color-coded correlation coefficients for a response time of 

±100 ms. High correlations at positive response times result from discharge synchronizations of fish #2 

with the dummy (A), fish #3 with the dummy (B) and fish #3 with fish #2 (C). The opposite case is repre-

sented by high correlations at negative response times. High correlations of the dummy's playback with 

the discharge sequences of fish #2 (A) and fish #3 (B) result from the interactive nature of the dynamic 

echo playback. In (C), high correlations at negative response times represent discharge synchronization 

of fish #2 with fish #3. 

 

Figure 11.17: Exemplary episode of a mixed group responding to the dynamic echo playback: Spatial 

interactions. Panels are marked by lowercase letters corresponding to the time points in Figure 11.16 

and depict interactions between the mobile dummy emitting a dynamic echo playback sequence (black), 

fish #2 (blue), and fish #3 (grey). Pictograms are drawn to scale and represent the spatial relationship of 

fish and dummy at the onset of relatively strong synchronization episodes (correlation coefficient ≥ 0.3 

for at least 500 ms). Black arrows point from synchronizing individuals to the respective synchronization 

partners. 
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Two typical behavioral sequences were described in greater detail to illustrate these ob-

servations (Figure 11.18 and Figure 11.19). Relatively strong synchronization episodes 

often occurred in situations during which a synchronizing individual approached its syn-

chronization partner from behind, moved closer, and then into a more lateral position next 

to the other individual, often in parallel to its swimming trajectory. This behavioral se-

quence was frequently also directed towards the dummy and is illustrated in Figure 11.18. 

It shows IDI-sequences of a static random playback and the responding fish (Figure 

11.18A) as well as the corresponding cross-correlation diagram, which reveals discharge 

synchronization of the fish to the playback. Synchronization began approximately at 16.3 

seconds (Figure 11.18B) when maximum correlation values exceeded the 0.3 threshold 

criterion (Figure 11.18C). Detailed interactions between the fish and the dummy are 

drawn to scale in (Figure 11.18D) and represent selected time points referenced in (Figure 

11.18A). At the beginning of the episode, the fish was located at a distance from the dum-

my (a), approached quickly from behind, and started synchronizing its discharges to the 

playback when it was less than one body length away from the dummy (b). This one-sided 

synchronization persisted for the remainder of the whole episode, during which the fish 

first followed directly behind the dummy (c) and eventually caught up into a more lateral 

position next to the dummy, which then slowed down and turned (d). 

Of particular interest were episodes with mutual IDI-synchronization sequences between 

two fish. In total, nine episodes (one of which was discarded because synchronization did 

not occur at the response time characteristic for echoing, and animals did not obviously 

interact) were observed, during which both live fish simultaneously synchronized their 

discharges to one another according to the threshold criteria. The remaining eight epi-

sodes were associated with behavioral situations during which one fish followed right 

after the other (one episode) or eventually caught up to a more lateral position relative to 

the ahead swimming individual (seven episodes). All these episodes were associated with 

situations during which the following fish initiated the mutual sequence of discharge syn-

chronization. 
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Figure 11.18: Exemplary illustration of an episode with discharge synchronization of M. rume to a 

static random playback. (A) IDI-sequences of the fish (blue) and a static random playback (black) emit-

ted by the dummy during a short interaction period. (B) Cross-correlation diagram of the sequences 

depicted in (A) with color-coded correlation coefficients for a response time of ±100 ms. High correla-

tions at positive response times represent discharge synchronizations of the fish (blue) with the dummy 

(black) at that response time. High correlations at negative response times can only occur randomly due 

to the non-interactive nature of the playback. (C) Maximum correlation coefficients within the 100 ms 

response-time window in (B) plotted over the same time frame for correlations of the signal sequences 

of the fish with the dummy (blue) and vice versa (black). The horizontal grey line delineates the 0.3 

threshold indicative of relatively high correlation. (D) Illustrations of the interaction of fish (blue) and 

dummy (grey) drawn to scale along with their trajectories during the same time. Lowercase letters in 

brackets assign drawings from the same video frames and correspond to the time points marked in (A). 

Trajectories marked in red indicate that the fish was synchronizing its discharges to those of the dummy 

with a correlation coefficient of 0.3 or higher as a part of a coherent synchronization sequence of at 

least 500 ms. Black arrows indicate discharge synchronization in a given situation. 
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An example of a mutual synchronization episode between two fish is illustrated in Figure 

11.19. Here, IDI-sequences of two interacting fish are plotted together (Figure 11.19A), 

revealing simultaneous regularization patterns of both fish shortly after the beginning of 

the episode. The corresponding cross-correlation diagram (Figure 11.19B) reveals mutual 

synchronization, initiated by fish #3, simultaneous with the regularized sequences. Maxi-

mum correlation values are plotted in (Figure 11.19C), marking the point in time when the 

0.3 correlation threshold criterion was exceeded. Detailed trajectories and interactions of 

the two fish are drawn to scale at several points in time (Figure 11.19D), and are refer-

enced by lowercase letters in (Figure 11.19A). Before the synchronization episode, fish 

were located more than a body length apart (a). Fish #3 then approached from behind to a 

lateral, almost parallel position and started synchronizing (b). This was reciprocated 

shortly after that by fish #2 and culminated in a short sequence of mutual discharge syn-

chronization between the two fish (c). Synchronization was terminated by fish #3 (d) 

shortly before the trajectories of the two fish crossed and they eventually stopped inter-

acting (e). 

Angular relationships between synchronization partners were determined for the moment 

an individual reached the threshold criterion for relatively strong synchronization. This 

way, quantitative data describing the behavioral interactions during discharge synchroni-

zation in groups could be obtained. Absolute counts of the angular relationship between 

the swimming direction of the synchronizing individual and the direction towards its syn-

chronization partner are presented in Figure 11.20A. Both for interactions between two 

fish and for interactions of fish with the dummy, the higher occurrence of low angles is 

consistent with spatial relationships where the synchronizing fish was headed towards the 

individual (fish or dummy) it synchronized its discharges to at the time. Results of the 

same evaluation are presented in Figure 11.20B for the angle between the swimming di-

rection of the individual (or the dummy) receiving synchronization and the direction to-

wards the synchronizing fish. The higher occurrence of angles close to 180° indicates that 

the synchronizing individual approached the receiver of synchronization from behind in 

the majority of cases. Center distances between individuals at the time the threshold crite-

rion for synchronization was met were 111 ± 43 mm (mean ± s.e.) during experiments 

with the static random playback and 114 ± 59 mm (mean ± s.e.) during experiments with 

the dynamic echo playback. Electric discharge synchronizations thus seemed to occur dur-

ing situations when an individual approached another one from a distance, and were often 

followed by social interactions. Synchronization of EODs trough echoing may thus be used 

to specifically single out and address another individual within a social group and com-

municate an intent to interact with that individual. 
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Figure 11.19: Exemplary illustration of a sequence with mutual discharge synchronization between 

two fish. (A) IDI-sequences of fish #2 (blue) and fish #3 (grey) during a short interaction period. (B) 

Cross-correlation diagram of the sequences depicted in (A) with color-coded correlation coefficients for 

a response time of ±100 ms. High correlations at positive response times represent discharge synchroni-

zations of fish #3 (grey) with fish #2 (blue). High correlations at negative response times represent syn-

chronization of fish #2's discharges with those of fish #3 at that response time. (C) Maximum correlation 

coefficients within the 100 ms response-time window in (B) plotted over the same time frame for corre-

lations of the signal sequences of fish #2 with fish #3 (blue) and vice versa (grey). The horizontal black 

line delineates the 0.3 threshold indicative of relatively high correlation. (D) Illustration of the interac-

tions of fish #2 (blue) and #3 (grey) drawn to scale along with their trajectories during the same time 

frame. Lowercase letters in brackets assign drawings from the same video frames and correspond to the 

time points marked in (A). Trajectories marked in red indicate that the fish was synchronizing its dis-

charges to those of the other individual with a correlation coefficient of 0.3 or higher as a part of a co-

herent synchronization sequence of at least 500 ms. Black arrows indicate which fish engaged in dis-

charge synchronization in a given situation. 
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Figure 11.20: Spatial interactions during electric discharge synchronizations in mixed groups. Angular 

relationship of two fish (black) or a fish and the dummy (white) at the onset of sequences with strong 

discharge synchronizations defined by a cross-correlation coefficient ≥ 0.3 and a duration of at least 

500 ms. (A) Histogram quantifying the frequency of angular values for the angular difference between 

the swimming direction of the synchronizing fish and the connecting line to its synchronization partner. 

The higher incidence of low values indicates that fish synchronized more frequently while they were 

faced towards their synchronization partner. (B) Histogram quantifying the frequency of angular values 

for the angular difference between the connecting line between the synchronizing fish and its synchro-

nization partner, and the swimming direction of the individual whose discharges were being synchro-

nized to by the focal fish. The higher incidence of high values indicates that individuals were being syn-

chronized to more frequently by individuals that approached them from behind. Angular relationships of 

synchronization partners are illustrated for a fish–dummy interaction in the insets of (A) and (B). No 

differentiation was made between the two playback conditions during the quantification of fish–dummy 

interactions. Bin size: 10 degrees. 
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11.4 Discussion 

The results of this section extend the observations made in chapter 5 from single fish to 

small groups of up to four M. rume and demonstrate that the mobile dummy exerted influ-

ence on motor and electromotor behavior of live animals based on electric playback gen-

eration. Similar to the interactions with single fish, the influence of the electro-

communicating dummy on the swimming behavior of individuals in groups was reliable, 

but no significant difference occurred based on the playback pattern that was presented. 

Whether the dummy produced a static random playback sequence or a dynamic echo 

playback did not influence motor behavior in groups. Electrical discharge synchroniza-

tions by individual fish occurred in response to both playback types and were investigated 

in mixed groups of two fish and the dummy. Detailed analyzes of behavioral interactions 

during episodes of strong discharge synchronizations support the idea that mormyrids use 

the echo response to generate a shared social attention framework for the exchange of 

information during electrocommunication. 

The general influence of the dummy on following-behavior and group dynamics was relia-

ble but declined with increasing group size. Although this effect of group size could not be 

explicitly tested statistically due to the limited amount of experimental animals, it was 

observed with regard to the number of followed turns (Figure 11.12), nearest-neighbor 

distances (NND; Figure 11.6) and orientation (Figure 11.11). Independently of what 

measure was used for quantifying the fish's responses to the dummy, the strongest reac-

tions were always observed in single fish. Larger groups of fish hardly followed for ex-

tended time periods (Figure 11.13). This difference may reflect that live fish were more 

attractive than the dummy in experiments with more than a single test fish, but could also 

hint towards a quorum rule for decision-making in groups (Sumpter et al., 2008). Fish 

were more attracted to conspecifics compared with the electrically silent dummy, but this 

preference was less evident during playback presentations (Figure 11.8). Because the ro-

bot never moved as close to the tank wall as the fish, individuals had to weigh the social 

attraction towards the electrically signaling dummy against taking the risk to abandon the 

relative safety of the walls when swimming into the open area. In sticklebacks 

(Gasterosteus aculeatus), risky decisions were only made if they were initiated by a certain 

proportion of fish. Single individuals and pairs of fish readily followed after a stickleback 

replica, whereas collective swimming in groups of four and eight fish could only be in-

duced by introducing a second dummy (Ward et al., 2008). Such quorum rules can prevent 

groups of animals from taking wrong decisions because the probability that misinformed 

behaviors of a sufficiently large number of individuals get amplified into a group response 

decreases with group size (Ward et al., 2008). However, one characteristic of quorum de-
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cision making is that if animals follow, they do so collectively as a group (Sumpter et al., 

2008). This was not often observed during the experiments with M. rume. A definite 

demonstration of quorum rules in mormyrids would require the introduction of additional 

dummies to initiate collective following-behavior. 

Entering an open, featureless, and unfamiliar environment is risky behavior that is avoid-

ed by many animals, including fish (Maximino et al., 2010). From the trials without the 

dummy (Figure 11.4; Figure 11.5; compare also Figure 5.3 and Figure 5.4A), it became 

evident that animals preferred the proximity to the tank walls and frequently grouped in 

the corners. This behavior may have reflected a desire to seek shelter among conspecifics 

(Hamilton, 1971). In a threatening situation, such behavior should be more pronounced 

than the otherwise strong tendency of M. rume to engage in competitive behaviors. 

Although the dummy reliably attracted some fish from groups of all sizes, instances, when 

all members of a group followed in a polarized, school-like formation, were quite rare. A 

high degree of polarization characterizes shoals in which animals adopt a similar orienta-

tion, which is a prerequisite for behavioral synchrony at the global level in large schools of 

fish (Pitcher and Parrish, 1993). Independently of orientation, group coherence can be 

characterized by looking at nearest neighbor distances (NND). Strongly schooling pelagic 

mackerel (Scomber japonicus) kept nearest neighbor distances of 0.4 body lengths and the 

individual deviation from the mean swimming direction of the group was on average 8°, 

whereas in the somewhat less organized schools of silversides (Atherinops affinis), direc-

tional deviations of 17° and an average NND of 1.0 body length were measured (van Olst 

and Hunter, 1970). Compared with these data, the small groups of M. rume did not show 

particularly prominent shoaling tendencies. Group polarization was not particularly high 

in general, and the dummy had no significant influence on the polarization among fish 

(Figure 11.10). The ability of the dummy to recruit fish that then followed with the same 

orientation decreased rapidly with group size (Figure 11.11). When taking the median 

body length of 85 mm as a basis, the median of the mean NND was always greater than one 

body length in groups of M. rume (Figure 11.7). 

These results raise the question to what extent mormyrids in general, and M. rume in par-

ticular, actually shoal in their natural habitat. Can the concept of optimal group size 

(Krause and Ruxton, 2002) be applied to these animals, and, if so, what is their elective 

group size (Pitcher and Parrish, 1993) in different naturally occurring contexts? Unfortu-

nately, there is no knowledge about the social behavior of M. rume proboscirostris in the 

wild, and field reports of shoaling behavior in mormyrids are mostly anecdotal. 

Kirschbaum (1995) and Hopkins (1986) described anadromous behavior in mormyrids, 
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who migrate in large schools into flooded areas to spawn during the rainy season. Accord-

ing to Kramer (1996), mostly the small species below 20 cm gather in schools. Whether 

mormyrids form schools may thus be size or age-dependent, and subject to environmental 

conditions and the life cycle of an animal. But shoaling tendencies are also species-

dependent. Hopkins (1980) reported ecology and EOD-characteristics of 23 mormyrid 

species in Gabon, West Africa, and found that particularly members of the genera 

Marcusenius and Petrocephalus formed mixed species shoals in sheltered areas. Large 

schools of Petrocephalus bovei were also observed by Kramer (1990) during daylight. 

Hopkins (1980) further noted that shoaling species produced short-duration EODs, 

whereas EODs of longer duration were associated with a solitary lifestyle. 

Carlson (2016) systematically compared population density, social behavior and electric 

signaling characteristics of sympatric Petrocephalus degeni and Gnathonemus victoriae and 

found the former to be social, whereas the latter displayed competitive behavior. He at-

tributed these differences in social behavior to neuroanatomical differences in the nucleus 

exterolateralis (EL), which roughly divide mormyrids into two clades. Members of clade A, 

such as Gnathonemus and Mormyrus, have a neuroanatomical differentiation in the EL that 

makes them capable of EOD-waveform discrimination, with important implications for 

social communication (Carlson et al., 2011) (see section 1.3). This specialization is absent 

in non-clade A members like Petrocephalus, for which vision appears to be of higher im-

portance during social behavior (Stevens et al., 2013). This implicates that clade A species 

may not be particularly well suited to observe schooling behavior. However, mormyrid 

social behavior is also likely to vary depending on diel activity patterns. Many mormyrids 

live territorial and cryptic during the day and forage at night (Moller et al., 1979), but it is 

mostly unknown to what extent foraging behavior occurs in group formation. In the case 

of Mormyrops anguilloides, the notion that these larger species, in particular, are solitary 

and territorial (Kramer, 1996), did not provide a complete picture of their behavioral rep-

ertoire because they in fact form hunting groups at night (Arnegard and Carlson, 2005). 

When considering schooling as a strategy against visual predators in featureless open-

water habitats (Parrish, 1992), such behavior seems unlikely to be observed during the 

nocturnal activity period of mormyrids that hide during daylight hours. Whether any of 

the anti-predator benefits of shoaling described in section 11.1.1 would be effective 

against nocturnal predators, like for example electroreceptive catfish (Hanika and Kramer, 

2000; Merron, 1993), remains to be investigated. Interestingly, mormyrids do not produce 

'Schreckstoff' (Pfeiffer, 1977), which is released from the injured skin in many fishes and 

mediates an alarm response that, among other effects, also increases shoaling tendencies 
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(von Frisch, 1941). It would, therefore, be interesting to test whether flight-associated 

electric discharge patterns (Kramer, 1976c) are socially transmitted as signals, and acted 

upon by individuals in the vicinity of a mormyrid that is attacked by a predator. 

In the laboratory, several factors can influence whether group behavior occurs. Khait et al. 

(2009) observed group cohesion in juvenile M. rume proboscirostris and found the param-

eters of spacing to be dependent on group size, light levels, and the ontogenetic develop-

ment of the EOD. However, older individuals were much less social and displayed aggres-

sive behavior to form hierarchies and compete for resources (Kersten, 2017a) (see section 

4.3.1). This transition is a commonly observed phenomenon in fishes. Shoaling during the 

juvenile phase occurs in about half of all fish species, whereas only 25% maintain this be-

havior throughout their entire lives (Shaw, 1978). Which behavior is observed can depend 

on a multitude of conditions such as the availability of shelters, fish density, dominance 

relationships, size differences between individuals, as well as the novelty of the environ-

ment, which may increase stress levels and induce anxiety (Becco et al., 2006; Carlson, 

2016; Kersten, 2017a; Maximino et al., 2010; Moller, 1995). Electrocommunication not 

only adds a layer of complexity to mormyrid social behavior but also to the design of be-

havioral experiments aiming to uncover the significance of communication in groups. In 

laboratory experiments on social behavior of different mormyrid species, group sizes were 

chosen by experimenters to enable the assignment of EODs to individual group members. 

This task increases in difficulty with increasing group size and has consequently not been 

performed for groups of more than five fish (Gebhardt et al., 2012a). While this approach 

provides insights into electric signaling interactions of individuals in small groups 

(Gebhardt et al., 2012b; Kupschus, 2017; Neusel, 2014; Smeets, 2013), it does not allow to 

determine the elective group size of these animals and may therefore not represent their 

natural behavior patterns. 

This methodological dependency on relatively small groups is an important constraint, 

because collective behavior may not be entirely understood by studying individual based 

interactions without feedback from group-level effects (Couzin and Krause, 2003). Both 

the absolute number and the density of fish in a shoal are likely to be relevant parameters. 

By studying minnows (Phoxinus phoxinus), Partridge (1980) found that pairs of fish be-

haved qualitatively different than groups of three or more individuals. This means that it is 

not necessarily possible to conclude from the behavior in dyadic interactions on the be-

havior of larger groups of fish by extrapolation alone. In the field, the formation of oceanic 

herring schools was not triggered before the population density reached a critical value 

(Makris et al., 2009), and similar density-dependent transitions into polarized groups 



11. INFLUENCE OF AN INTERACTIVE MOBILE DUMMY FISH ON GROUP BEHAVIOR 
 

228 
 

were observed in tilapia (Oreochromis niloticus) in the laboratory (Becco et al., 2006). It is, 

therefore, possible that groups of four M. rume were too large to be collectively influenced 

by a single dummy but too small for typical shoaling behaviors to emerge. 

Group sizes in the current experiment were constrained by the availability of experimental 

animals necessary to obtain independent data for valid statistical comparisons, and by the 

aim to analyze motor and electromotor behaviors with high precision and with the highest 

possible degree of automation. Despite the low light levels, animals were seemingly agitat-

ed when transferred to the novel environment of the experimental tank, where they pref-

erentially grouped in the corners. However, an increase in acclimatization time usually led 

to increased levels of competitive behavior and aggression, which were absent when ani-

mals were tested directly after their release from the start box. A simple strategy to pre-

vent animals from aggregating in the corners of the tank is to use a circular testing area 

(Jun et al., 2013). The observation that animals showed a tendency to seek shelter further 

emphasizes the suggestion argued for in section 10.3, which is that experiments should be 

performed in the absence of visible light by relying entirely on infrared illumination for 

video recordings. In chapters 4 and 9 it was shown that M. rume made use of their 

electroreceptive modalities and used actively generated electrical information to mediate 

social coherence under non-visual conditions. Complete elimination of visually perceived 

information could, however, result in qualitatively different behaviors that are governed 

by distinct sets of local interaction rules in groups of M. rume. A hypothesis would be that 

mormyrids that move in groups adjust their inter-individual spacing to keep directional 

information and magnitude of the electrical field vector of a conspecific's EOD constant at 

defined electroreceptive regions of their body. Due to the pulse-type nature of the 

mormyrid EOD and the curvilinear structure of the resulting dipole field, the question how 

animals extract spatial information from electric signaling sequences of a moving conspe-

cific is not trivial (Hopkins, 2005). 

Other influences that should be considered are disturbances generated by the robot's 

movement, and how well the dummy mimicked the behavior of a fish. Electrical playback 

generation by the dummy was validated by demonstrating that fish responded with social 

signaling such as double pulses, regularizations and discharge synchronizations (see chap-

ters 4, 5, and 9). Visual information did not seem to be of particular importance in chapter 

8 and was controlled for experimentally (chapter 9). Although measures were taken to 

dampen the noise generated by the moving robot, and animals were also given time to 

habituate to the acoustic disturbance it caused, the robot (Landgraf et al., 2012a) likely 

affected fish behavior during the experiments. 
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Aspects that were not taken into consideration are the motility patterns of the dummy 

with respect to swimming speed and dynamics. In zebrafish (Danio rerio), swimming 

speed of a mobile robot influenced group cohesion (Butail et al., 2013), and guppies 

(Poecilia reticulata) were more attracted to a mobile fish replica that mimicked the natural 

motion phases of live fish when moving (Landgraf et al., 2016). In groups of both 

mosquitofish (Gambusia holbrooki) and golden shiners (Notemigonus crysoleucas), it was 

found that adjustments of swimming speed were essential determinants of group cohesion 

(Herbert-Read et al., 2011; Katz et al., 2011). The parameters of swimming style should 

therefore be incorporated into models of shoaling behavior (Lopez et al., 2012), as well as 

into the behavioral repertoire of mobile dummy fish for experimental investigation and 

validation of such models in groups of live fish (Bonnet et al., 2016; Landgraf et al., 2016). 

During the experiments with M. rume, linear speed and swimming dynamics could not be 

precisely matched to those of live fish (Appendix B; Figure B.2). The wheels of the robot 

underneath the tank could be actuated neither dynamically nor differentially during for-

ward motion, and the robot, therefore, had to come to a complete stop each time before it 

could initiate a turn. Although the attractiveness of the dummy was mainly determined by 

the presence of electrical playback signals, refining the dynamics of the dummy's swim-

ming behavior may, nevertheless, increase the likelihood to initiate and sustain coordinat-

ed movements in mixed groups of mormyrids and mobile fish robots in interactive exper-

iments on electrocommunication. 

Independently of the exact conditions under which mormyrids may or may not engage in 

shoaling, or even form polarized schools, their social behavior is highly complex. This is 

evident from their elaborate electrocommunication strategies, which are based on both 

EOD-waveform and temporal variations within discharge sequences (see section 3.5). IDI-

based electrocommunication strategies can be based on discharge frequencies, temporal 

patterns, and latency interactions between individuals, and were investigated in great 

detail in pairs of live fish and mobile dummies in chapters 4 and 5. The difficulty to sys-

tematically study electrocommunication based on the temporal signaling sequences of 

different individuals increases with group size, but looking at dyadic interactions is, as 

argued above, likely insufficient to conclude on the significance of electrocommunication 

in groups. Here, electrocommunication was investigated in mixed groups of two live fish 

and a mobile dummy, which generated either a static random playback or a dynamic echo 

playback. By imitating the echo response of M. rume, dynamic playback generation ena-

bled discharge synchronizations between live individuals and the dummy, and thus the 

comparison of artificially synchronized episodes with similar interactions from pairs of 

live fish. The characteristics of echoing and discharge synchronizations have been investi-
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gated in dyadic interactions in chapters 4 and 5, and the implications of these findings for 

electrocommunication were discussed in section 6.3.  

Based on the results of chapter 5, a function of synchronized discharge episodes in selec-

tively allocating social attention between individuals has been proposed. The group exper-

iments in the current chapter support this interpretation. By defining and identifying epi-

sodes of relatively strong correlation between simultaneous signaling sequences, a re-

versed process was used to observe and analyze how fish behaved during EOD-

synchronization. In line with the results of previous experiments (Figure 5.10), synchroni-

zation episodes were considered to be relatively strong if correlation coefficients exceeded 

a value of 0.3 for 500 ms or more. Especially the moments when this threshold was ex-

ceeded were analyzed in more detail (Figure 11.20). Two observations supported the so-

cial attention hypothesis. First, as already indicated by the correlation between spatial 

relationships and the magnitude of EOD-synchronization of fish and dummy in chapter 5 

(Figure 5.13), the onset of relatively strong correlations in the current experiments was 

frequently associated with approach configurations. In these situations, M. rume often 

approached either the dummy or a conspecific in a stereotyped manner by coming from 

behind and then catching up into a lateral position (Figure 11.18). Second, during episodes 

of mutual echoing in pairs of live fish, it was mostly the approaching individual that initi-

ated this synchronization (Figure 11.19). It is thus argued that the ability of mormyrids to 

selectively synchronize their signaling by mutually generating echo responses to each oth-

er's EODs (Arnegard and Carlson, 2005; Gebhardt et al., 2012a), and the observation that 

the resulting episodes of synchronized discharge activity can rapidly switch between 

group members (Gebhardt et al., 2012b), represent a communication strategy that allows 

individual fish to address each other in a wide variety of social contexts (see sections 5.4 

and 6.3). This mechanism is arguably most useful in group constellations, where it may 

enable the exchange of information during electrocommunication by establishing a link 

that depends on very fast and precise time-locking of the EODs of two individuals. 

Behavioral synchronization during signal generation with implications for social commu-

nication occurs within many domains of the animal kingdom and can also be observed in 

visual and acoustic displays (Buck, 1988; Hartbauer, 2008; Reaney et al., 2008). In the 

primate central nervous system, neural synchrony of activity patterns between different 

regions of the brain has been associated with visual attention (Gregoriou et al., 2009). 

Mormyrid weakly electric fish offer the opportunity to study such mechanisms non-

invasively in freely interacting animals, which may allow concluding on more general neu-

robiological principles. 
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V. General Conclusion 

The central theme of this thesis was to explore the feasibility of using mobile fish dummies 

for the investigation of IDI-based electrocommunication in a mormyrid weakly electric 

fish. One of the objectives for using this methodological approach was the hypothesis that 

the embodiment of a source of electrical playback signals as a moving dummy might give a 

more comprehensive account of the communicative repertoire of live mormyrids com-

pared with a set of stationary playback electrodes. The reason for this assumption was the 

rationale that signal generation and behavior of a mobile dummy fish can match, and, ide-

ally, respond to the behavior of live fish. Thus, dummy experiments should provide a 

framework for the study of electrocommunication while simultaneously avoiding the diffi-

culties associated with the assignment of EODs to their respective sender in experiments 

with more than one freely behaving fish. The underlying hypothesis was that playback 

sequences of species-specific EODs are key stimuli that make it possible to integrate a mo-

bile dummy fish socially into a group and make it 'accepted' as an artificial conspecific by 

live individuals. This integration would eventually enable the creation of mixed societies of 

real and artificial mormyrids and open exciting possibilities for research projects in the 

field of animal–machine interaction (Halloy et al., 2013). 

Two setups for behavioral experiments were designed and implemented to test these pos-

sibilities in the weakly electric fish Mormyrus rume. These setups allowed the generation 

of motor and electromotor behavioral output using mobile dummies with different de-

grees of freedom and different levels of interactivity with live fish. It was shown that elec-

tric communication signals are sufficient as stimuli to induce following-behavior in single 

individuals and small groups of M. rume, and that electrical signaling was more relevant 

for behavior than visual stimuli and motility cues. Even after reducing the dummy to only 

the EOD from the fish's perspective, following-behavior and motor interactions persisted. 

The assumption that EODs are key stimuli that trigger social behavior was thus confirmed 

and a dummy could be socially integrated with live fish based on electrical signaling. 

Behavioral interaction occurred at the motor level, but also at the level of electrical signal-

ing. Three types of electrocommunication strategies were studied in more detail and in-

terpreted with respect to their adaptive value. Based on hierarchy relationships, habitua-

tion, and a set of dyadic contest experiments, double-pulse patterns were classified as 

conventional threat signals of aggressive motivation that the fish use at the beginning of a 

sequential assessment strategy during competitive encounters (Enquist and Leimar, 

1983). Discharge regularizations, which facilitate active electrolocation, can also be bene-
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ficial in social contexts, especially during the early stages of mutual assessment. During 

such interactive encounters, the ability of mormyrids to also interact electrically through 

echoing each other's EODs may facilitate the evaluation of physical condition and wave-

form information of another individual, simultaneously (Arnegard and Carlson, 2005; 

Terleph, 2004). Thus, synchronized discharge regularization, mediated by mutual echo 

responses, likely facilitates the assessment of conspecifics and helps to avoid unnecessari-

ly costly conflicts. 

Interactive playback that simulated the echo latency of M. rume provoked more echo re-

sponses from live fish compared with static sequences of random IDIs. Because EOD-

synchronizations were increased during approach configurations, it was hypothesized that 

echoing represents a more general mechanism that can be utilized by mormyrids to allo-

cate social attention between individuals. Such a strategic function of discharge synchroni-

zation is not necessarily restricted to the communication of identity information or behav-

ioral states and context-dependent motivations. Instead, the proposed strategy provides a 

framework in which mormyrids can exchange information by establishing a relatively 

private communication channel between individuals, which would be particularly useful 

in groups of several signaling fish. This strategy could, in principle, be used in a variety of 

behavioral contexts from aggressive to cooperative interactions. 

It was also shown that passive perception of a conspecific's EOD, likely enabled by the 

knollenorgan receptors that mediate electrocommunication, provide spatial information 

during social interactions with a moving playback signal. From an evolutionary perspec-

tive, the echo response could represent a mechanism to avoid jamming of this passive sen-

sory capability. This mechanism could then have ritualized into a communication strategy 

because it ensures that the respective other fish detects that it is subject to social inten-

tions by an individual that locks on to its EODs by echoing. This hypothesis unifies the op-

posing interpretations of the function of echoing as a jamming avoidance mechanism dur-

ing active electrolocation and as a strategy for social communication (Heiligenberg, 1976; 

Kramer, 1974; Russell et al., 1974). 

At the level of individual interactions, mobile dummy fish that emitted electrical playback 

signals reliably induced social behavior in live animals. The influence on groups, however, 

declined rapidly with increasing group size. Possible reasons for this are a quorum deci-

sion mechanism, which means that animals only respond if a certain fraction of individuals 

initiates a particular behavior, and the relatively small group sizes that were investigated. 

Because the problem of assigning EODs to individual fish reemerges in groups and in-

creases rapidly with increasing groups size, this means that there is a tradeoff between the 
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possibility to observe emergent shoaling behaviors and the ability to efficiently analyze 

electric signaling behavior in a group context. Collective behaviors in natural and mixed 

societies emerge as a result of non-linear positive feedback between individuals that fol-

low simple interaction rules and can lead to the solution of complex problems that are 

beyond the capacities of any individual member of the group (Mondada et al., 2013). 

Many instances where solutions of complex problems are collectively solved were ob-

served and investigated in social insects (Deneubourg and Goss, 1989). Ioannou (2017) 

argues that in fish, and vertebrates in general, mechanisms other than self-organized col-

lective intelligence are likely to account for many of the observed group phenomena. He 

claims that this is in part because behavior in vertebrates is more complicated at the indi-

vidual level and because individuals are genetically less similar than social insects, which 

should result in higher competition between members of a group. 

In mormyrids, electrocommunication provides a unique opportunity to integrate an artifi-

cial conspecific with live fish, particularly at the level of individual interactions. But 

electrocommunication also adds complexity to the social behavior in groups of weakly 

electric fish. More needs to be known about the natural shoaling tendencies of different 

mormyrid species, the situations in which schooling occurs, and the adaptive advantages 

of group behavior for individual fish to carry the full potential of a mormyrid mixed socie-

ty into effect. 

 

 

 

 

 

 

 

 

 

 

 



V. GENERAL CONCLUSION 
 

234 
 

 



VI.SUMMARY 
 

235 
 

VI. Summary 

Mormyrid weakly electric fish possess a specialized electrosensory system. During the 

process of active electrolocation, these animals perceive self-generated electric organ dis-

charges (EOD) and are thereby able to detect objects in their nearby environment. The 

EOD is a short, biphasic pulse, which is simultaneously used to communicate with conspe-

cifics. There are two principles according to which information exchange occurs during 

electrocommunication. The waveform of the EOD constitutes a relatively stable identity 

marker that signals species, gender, and status of an individual. In contrast, the temporal 

sequence of inter-discharge intervals (IDI) is highly variable and encodes context-specific 

information. Modifications of IDI-duration not only alter the instantaneous discharge fre-

quency but also enable the generation of specific signaling patterns and interactive dis-

charge sequences. One such interactive discharge behavior is the so-called echo response, 

during which a fish responds with a constant latency of only a few milliseconds to the EOD 

of a conspecific. Animals can synchronize their signaling sequences by mutually generat-

ing echoes to each other's signals over a coherent period. Although active electrolocation 

and electrocommunication are mediated by different types of electroreceptor organs and 

neural pathways, an unambiguous assignment of electromotor behavior to only one of the 

two functions is often problematic. 

In this thesis, the significance of IDI-based signaling sequences during motor and electro-

motor interactions of the mormyrid fish Mormyrus rume proboscirostris were investigated. 

To this end, different electrical playback sequences of species-specific EODs were generat-

ed via mobile fish dummies, and the motor and electromotor responses of live fish were 

analyzed. 

In Part One of this thesis, electrocommunication strategies of the fish were analyzed, and 

particularly the functions of double pulses, discharge regularizations, and echo responses 

were examined in an adaptive context. Double pulses were classified as an aggressive mo-

tivation signal, whereas regularizations may have a communicative function during the 

early stages of the sequential assessment of a potential opponent. In this context, dis-

charge synchronization by means of echo responses may enable a mutual assessment for 

the net benefit of both contestants. Because echo responses occur in various behavioral 

contexts, and artificial echoes of the dummy evoked increased echoing by the fish, it was 

hypothesized that the echo response serves a more general purpose by enabling mutual 

allocation of social attention between two fish. 



VI. SUMMARY 
 

236 
 

In Part Two of this thesis, a biomimetic robotic fish was designed to investigate the senso-

ry basis on which fish followed the dummy. It was shown that electrical playback signals 

induced following-behavior in live fish, whereas biomimetic motility patterns had no ef-

fect. By subsequently reducing the mobile dummy to only the electric signaling sequence 

from the perspective of the fish, it could be shown that passive perception of electrical 

communication signals is also involved in mediating the spatial coordination of social in-

teractions. This passive perception is likely mediated by the same electroreceptor organs 

that are used during electrocommunication. The EOD can therefore be considered to be an 

essential social stimulus that makes it possible to integrate a dummy into a group of weak-

ly electric fish as an artificial conspecific. 

The influence of an interactively signaling mobile dummy fish on small groups of up to 

four individuals was investigated in Part Three of this thesis. Typical schooling behavior 

was a rare occurrence in this context. However, EOD-synchronizations through mutual 

echo responses between two fish, or between a fish and the interactive dummy, were fre-

quently observed during social interactions in small groups. Motor interactions during 

synchronization episodes supported the hypothesis that mormyrids may use discharge 

synchronizations between individuals to allocate social attention, and the echo response 

may thus adopt a particularly useful function during communication in groups. 
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VII. Zusammenfassung 

Schwach elektrische Fisch aus der Familie der Mormyriden verfügen über ein spezialisier-

tes elektrosensorisches Sinnessystem. In einem Prozess, der als aktive Elektroortung be-

zeichnet wird, sind diese Tiere in der Lage, selbstgenerierte elektrische Organentladungen 

(EOD) wahrzunehmen, und dadurch Objekte in ihrer unmittelbaren Nähe zu detektieren. 

Das EOD ist ein kurzer bipolarer Puls, der gleichzeitig auch zur Kommunikation mit Artge-

nossen dient. Informationsaustausch während der Elektrokommunikation basiert auf zwei 

verschiedenen Prinzipien: Die Wellenform des EOD stellt einen relativ konstanten Identi-

tätsmarker dar, der beispielsweise Art, Geschlecht und Status eines Individuums signali-

siert. Die zeitliche Abfolge der Intervalle zwischen den EODs ist hingegen höchst variabel 

und kodiert kontextspezifische Information. Durch Modifikation der Intervalldauer ändert 

sich nicht nur die Entladungsfrequenz, sondern es können auch spezifische Signalmuster 

und interaktive Entladungssequenzen generiert werden. Ein interaktives Entladungsver-

halten stellt beispielsweise die Echoantwort dar, bei der ein Fisch mit einer konstanten 

Latenz von wenigen Millisekunden auf das EOD eines Artgenossen reagiert. Zwei Tiere 

können ihre Entladungssequenzen synchronisieren, indem sie ihre Signale über einen 

kohärenten Zeitraum gegenseitig mit Echos beantworten. Obwohl aktive Elektroortung 

und Elektrokommunikation über unterschiedliche Rezeptororgansysteme und neuronale 

Pfade vermittelt werden, ist eine eindeutige Zuordnung der elektromotorischen Verhal-

tensäußerungen der Fische zu nur einer der beiden Funktionen oft problematisch. 

In der vorliegenden Arbeit wurde die Bedeutung intervallbasierter EOD-Sequenzen für 

motorische und elektromotorische Interaktionen des Mormyriden Mormyrus rume 

proboscirostris erforscht. Hierzu wurden verschiedene elektrische Playbacksequenzen 

artspezifischer EODs generiert und durch mobile Fischattrappen wiedergegeben. Die mo-

torischen und elektromotorischen Verhaltensreaktionen der Fische wurden analysiert. 

Im ersten Teil der Arbeit wurden Elektrokommunikationsstrategien der Fische analysiert 

und die adaptive Funktion insbesondere von Doppelpulsen, Entladungsregularisierungen 

und Echoantworten untersucht. Doppelpulse wurden als aggressives Motivationssignal 

kategorisiert, wohingegen die Kommunikationsfunktion von Regularisierungen im gegen-

seitigen Einschätzen zu Beginn einer kompetitiven Begegnung zu liegen scheint. Entla-

dungssynchronisation durch gegenseitige Echoantworten kann dabei eine Einschätzung 

des Gegenübers zum Vorteil beider Parteien erleichtern. Da Echoantworten in verschiede-

nen Verhaltenssituationen auftreten und artifizielle Echoantworten der Attrappe ver-

mehrt zu Echos vonseiten der Fische führten, wurde postuliert, dass die Echoantwort eine 
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generellere Funktion bei der Fokussierung gegenseitiger sozialer Aufmerksamkeit über-

nehmen kann. 

Im zweiten Teil der Arbeit wurde ein biomimetischer Fischroboter konstruiert, um zu 

untersuchen, auf welcher sensorischen Grundlage die Fische der Attrappe folgen. Es konn-

te gezeigt werden, dass elektrische Playbacksignale, nicht aber biomimetische Bewe-

gungsmuster, Folgeverhalten der Fische induzieren. In einem weiteren Schritt konnte 

durch die Reduktion der Attrappe auf die elektrischen Signalsequenzen aus der Perspekti-

ve der Versuchsfische gezeigt werden, dass passive Wahrnehmung elektrischer Kommu-

nikationssignale auch bei der räumlichen Koordination sozialer Interaktionen von Bedeu-

tung ist. Dies wird mutmaßlich über die gleichen Rezeptororgane vermittelt, die auch für 

die Elektrokommunikation verantwortlich sind. Das EOD kann daher als ein soziales Sig-

nal betrachtet werden, das es ermöglicht, eine Attrappe als künstlichen Artgenossen in 

eine Gruppe schwach elektrischer Fische zu integrieren. 

Der Einfluss einer elektrisch interaktiven mobilen Fischattrappe auf kleine Gruppen von 

bis zu vier Individuen wurde im dritten Teil der Arbeit getestet. Typisches Schwarmver-

halten konnte in diesem Zusammenhang nur selten beobachtet werden. In kleinen Grup-

pen kam es während sozialer Interaktionen jedoch häufig zu EOD-Synchronisationen 

durch Echoantworten zwischen zwei Fischen, oder zwischen einem Fisch und der interak-

tiven Attrappe. Motorische Verhaltensinteraktionen im Zeitraum dieser Synchronisatio-

nen stützen die Hypothese, dass Mormyriden durch elektrische Entladungssynchronisati-

on soziale Aufmerksamkeit zwischen Individuen herstellen können, und die Echoantwort 

somit besonders in Gruppen eine nützliche Kommunikationsfunktion übernehmen kann. 

 

 



REFERENCES 
 

239 
 

References 

Abaid, N., Bartolini, T., Macrì, S. and Porfiri, M. (2012): Zebrafish responds differentially to a 
robotic fish of varying aspect ratio, tail beat frequency, noise, and color. Behavioural 
Brain Research 233 (2): 545-553. 

Abaid, N., Marras, S., Fitzgibbons, C. and Porfiri, M. (2013): Modulation of risk-taking 
behaviour in golden shiners (Notemigonus crysoleucas) using robotic fish. Behavioural 
Processes 100: 9-12. 

Albert, J.S. and Crampton, W.G.R. (2005): Diversity and phylogeny of neotropical electric 
fishes (Gymnotiformes). In Electroreception (ed. T.H. Bullock, C.D. Hopkins, 
A.N. Popper and R.R. Fay), pp. 360-409. New York: Springer New York. 

Allender, C.J., Seehausen, O., Knight, M.E., Turner, G.F. and Maclean, N. (2003): Divergent 
selection during speciation of Lake Malawi cichlid fishes inferred from parallel 
radiations in nuptial coloration. Proceedings of the National Academy of Sciences 100 
(24): 14074-14079. 

Altringham, J.D. and Fenton, M.B. (2003): Sensory ecology and communication in the 
chiroptera. In Bat Ecology (ed. T.H. Kunz and M.B. Fenton), pp. 90-127. Chicago: The 
University of Chicago Press. 

Alves-Gomes, J.A. (2001): The evolution of electroreception and bioelectrogenesis in teleost 
fish: a phylogenetic perspective. Journal of Fish Biology 58 (6): 1489-1511. 

Amcoff, M., Gonzalez-Voyer, A. and Kolm, N. (2013): Evolution of egg dummies in 
Tanganyikan cichlid fishes: the roles of parental care and sexual selection. Journal of 
Evolutionary Biology 26 (11): 2369-2382. 

Amey-Özel, M., Hollmann, M. and von der Emde, G. (2012): From the Schnauzenorgan to the 
back: morphological comparison of mormyromast electroreceptor organs at different 
skin regions of Gnathonemus petersii. Journal of Morphology 273 (6): 629-638. 

Amey-Özel, M., von der Emde, G., Engelmann, J. and Grant, K. (2015): More a finger than a 
nose: the trigeminal motor and sensory innervation of the Schnauzenorgan in the 
elephant‐nose fish Gnathonemus petersii. Journal of Comparative Neurology 523 (5): 
769-789. 

Anthes, N., Theobald, J., Gerlach, T., Meadows, M.G. and Michiels, N.K. (2016): Diversity and 
ecological correlates of red fluorescence in marine fishes. Frontiers in Ecology and 
Evolution 4 (126): 1-19. 

Arnegard, M.E. and Carlson, B.A. (2005): Electric organ discharge patterns during group 
hunting by a mormyrid fish. Proceedings of the Royal Society B: Biological Sciences 272: 
1305-1314. 

Arnegard, M.E., McIntyre, P.B., Harmon, L.J., Zelditch, M.L., Crampton, W.G.R., Davis, J.K., 
Sullivan, J.P., Lavoué, S. and Hopkins, C.D. (2010a): Sexual signal evolution outpaces 
ecological divergence during electric fish species radiation. The American Naturalist 
176 (3): 335-356. 



REFERENCES 
 

240 
 

Arnegard, M.E., Zwickl, D.J., Lu, Y. and Zakon, H.H. (2010b): Old gene duplication facilitates 
origin and diversification of an innovative communication system—twice. Proceedings 
of the National Academy of Sciences 107 (51): 22172-22177. 

ASAB (2006): Guidelines for the treatment of animals in behavioural research and teaching. 
Animal Behaviour 71: 245-253. 

Autumn, K. and Puthoff, J. (2016): Properties, principles, and parameters of the gecko 
adhesive system. In Biological Adhesives (ed. A.M. Smith), pp. 245-280. Cham: Springer 
International Publishing. 

Bacelo, J., Engelmann, J., Hollmann, M., von der Emde, G. and Grant, K. (2008): Functional 
foveae in an electrosensory system. Journal of Comparative Neurology 511 (3): 342-
359. 

Bachmann, J.C., Cortesi, F., Hall, M., Marshall, N.J., Salzburger, W. and Gante, H.F. (2016): 
Social selection maintains honesty of a dynamic visual signal in cichlid fish. bioRxiv: 
http://dx.doi.org/10.1101/039552. 

Backström, T., Heynen, M., Brännäs, E., Nilsson, J., Winberg, S. and Magnhagen, C. (2015): 
Social stress effects on pigmentation and monoamines in Arctic charr. Behavioural 
Brain Research 291: 103-107. 

Bai, Y., Neveln, I.D., Peshkin, M. and MacIver, M.A. (2016): Enhanced detection performance 
in electrosense through capacitive sensing. Bioinspiration & Biomimetics 11 (5): 
055001. 

Bai, Y., Snyder, J.B., Peshkin, M. and MacIver, M.A. (2015): Finding and identifying simple 
objects underwater with active electrosense. The International Journal of Robotics 
Research 34 (10): 1255-1277. 

Baier, B. and Kramer, B. (2007): Electric communication during courtship and spawning in two 
sibling species of dwarf stonebasher from southern Africa, Pollimyrus castelnaui and 
P. marianne (Mormyridae, Teleostei): evidence for a non species-specific 
communication code? Behaviour 144 (1): 115-142. 

Baker, C.A. and Carlson, B.A. (2014): Short-term depression, temporal summation, and onset 
inhibition shape interval tuning in midbrain neurons. Journal of Neuroscience 34 (43): 
14272-14287. 

Baker, C.A., Kohashi, T., Lyons-Warren, A.M., Ma, X. and Carlson, B.A. (2013a): Multiplexed 
temporal coding of electric communication signals in mormyrid fishes. Journal of 
Experimental Biology 216 (13): 2365-2379. 

Baker, C.A., Ma, L., Casareale, C.R. and Carlson, B.A. (2016): Behavioral and single-neuron 
sensitivity to millisecond variations in temporally patterned communication signals. 
Journal of Neuroscience 36 (34): 8985-9000. 

Baker, C.V.H., Modrell, M.S. and Gillis, J.A. (2013b): The evolution and development of 
vertebrate lateral line electroreceptors. Journal of Experimental Biology 216 (13): 
2515-2522. 

Bakker, T.C.M. and Milinski, M. (1993): The advantages of being red: sexual selection in the 
stickleback. Marine Behaviour and Physiology 23: 287-300. 

 



REFERENCES 
 

241 
 

Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., 
Orlandi, A., Parisi, G. and Procaccini, A. (2008): Interaction ruling animal collective 
behavior depends on topological rather than metric distance: evidence from a field 
study. Proceedings of the National Academy of Sciences 105 (4): 1232-1237. 

Balsby, T.J.S., Momberg, J.V. and Dabelsteen, T. (2012): Vocal imitation in parrots allows 
addressing of specific individuals in a dynamic communication network. PLOS ONE 7 
(11): e49747. 

Barata, E.N., Fine, J.M., Hubbard, P.C., Almeida, O.G., Frade, P., Sorensen, P.W. and Canário, 
A.V.M. (2008): A sterol-like odorant in the urine of Mozambique tilapia males likely 
signals social dominance to females. Journal of Chemical Ecology 34 (4): 438-449. 

Barata, E.N., Hubbard, P.C., Almeida, O.G., Miranda, A. and Canário, A.V.M. (2007): Male 
urine signals social rank in the Mozambique tilapia (Oreochromis mossambicus). BMC 
Biology 5 (1): 54. 

Baron, V.D. (2009): Electric discharges of two species of stargazers from the South China Sea 
(Uranoscopidae, Perciformes). Journal of Ichthyology 49 (11): 1065-1072. 

Baron, V.D., Morshnev, K.S., Olshansky, V.M. and Orlov, A.A. (1994): Electric organ discharges 
of two species of African catfish (Synodontis) during social behaviour. Animal 
Behaviour 48 (6): 1472-1475. 

Barrett, D.S., Triantafyllou, M.S., Yue, D.K.P., Grosenbaugh, M.A. and Wolfgang, M.J. (1999): 
Drag reduction in fish-like locomotion. Journal of Fluid Mechanics 392: 183-212. 

Barth, F.G., Humphrey, J.A.C. and Srinivasan, M.V. (2012): Frontiers in Sensing: From Biology 
to Engineering. Wien: Springer-Verlag. 

Barthlott, W., Mail, M. and Neinhuis, C. (2016): Superhydrophobic hierarchically structured 
surfaces in biology: evolution, structural principles and biomimetic applications. 
Philosophical Transactions of the Royal Society A: Mathematical, Physical and 
Engineering Sciences 374: 20160191. 

Bartolini, T., Mwaffo, V., Showler, A., Macrì, S., Butail, S. and Porfiri, M. (2016): Zebrafish 
response to 3D printed shoals of conspecifics: the effect of body size. Bioinspiration & 
Biomimetics 11 (2): 026003. 

Bass, A.H. (1986): Electric organs revisited: Evolution of a vertebrate communication and 
orientation organ. In Electrolocation (ed. T.H. Bullock and W. Heiligenberg), pp. 13-70. 
New York: John Wiley & Sons. 

Bass, A.H. and Hopkins, C.D. (1983): Hormonal control of sexual differentiation: changes in 
electric organ discharge waveform. Science 220 (4600): 971-974. 

Bastian, J. (1986): Electrolocation: Behavior, anatomy and physiology. In Electrolocation (ed. 
T.H. Bullock and W. Heiligenberg), pp. 577-612. New York: John Wiley & Sons. 

Batista, G., Zubizarreta, L., Perrone, R. and Silva, A. (2012): Non-sex-biased dominance in a 
sexually monomorphic electric fish: fight structure and submissive electric signalling. 
Ethology 118 (4): 398-410. 

Bauer, R. (1968): Untersuchungen zur Entladungstätigkeit und zum Beutefangverhalten des 
Zitterwelses Malapterurus electricus Gmelin 1789 (Siluroidea, Malapteruridae, Lacep. 
1803). Zeitschrift für vergleichende Physiologie 59 (4): 371-402. 



REFERENCES 
 

242 
 

Bauer, R. (1972): High electrical discharge frequency during aggressive behaviour in a 
mormyrid fish, Gnathonemus petersii. Experientia 28 (6): 669-670. 

Bauer, R. (1974): Electric organ discharge activity of resting and stimulated Gnathonemus 
petersii (Mormyridae). Behaviour 50 (3/4): 306-323. 

Becco, C., Vandewalle, N., Delcourt, J. and Poncin, P. (2006): Experimental evidences of a 
structural and dynamical transition in fish school. Physica A: Statistical Mechanics and 
its Applications 367: 487-493. 

Beeching, S.C. (1993): Eyespots as visual cues in the intraspecific behavior of the cichlid fish 
Astronotus ocellatus. Copeia 1993 (4): 1154-1157. 

Belbenoit, P. and Bauer, R. (1972): Video recordings of prey capture behaviour and associated 
electric organ discharge of Torpedo marmorata (Chondrichthyes). Marine Biology 17 
(2): 93-99. 

Bell, C.C. (1981): An efference copy which is modified by reafferent input. Science 214 (4519): 
450-453. 

Bell, C.C. (1989): Sensory coding and corollary discharge effects in mormyrid electric fish. 
Journal of Experimental Biology 146 (1): 229-253. 

Bell, C.C., Bradbury, J. and Russell, C.J. (1976): The electric organ of a mormyrid as a current 
and voltage source. Journal of Comparative Physiology A: Neuroethology, Sensory, 
Neural, and Behavioral Physiology 110 (1): 65-88. 

Bell, C.C. and Grant, K. (1989): Corollary discharge inhibition and preservation of temporal 
information in a sensory nucleus of mormyrid electric fish. Journal of Neuroscience 9 
(3): 1029-1044. 

Bell, C.C., Libouban, S. and Szabo, T. (1983): Pathways of the electric organ discharge 
command and its corollary discharges in mormyrid fish. Journal of Comparative 
Neurology 216 (3): 327-338. 

Bell, C.C. and Maler, L. (2005): Central neuroanatomy of electrosensory systems in fish. In 
Electroreception (ed. T.H. Bullock, C.D. Hopkins, A.N. Popper and R.R. Fay), pp. 68-111. 
New York: Springer New York. 

Bell, C.C., Myers, J.P. and Russell, C.J. (1974): Electric organ discharge patterns during 
dominance related behavioral displays in Gnathonemus petersii (Mormyridae). Journal 
of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral 
Physiology 92 (2): 201-228. 

Bell, C.C. and Russell, C.J. (1978): Effect of electric organ discharge on ampullary receptors in a 
mormyrid. Brain Research 145 (1): 85-96. 

Bell, C.C., Zakon, H. and Finger, T.E. (1989): Mormyromast electroreceptor organs and their 
afferent fibers in mormyrid fish: I. Morphology. Journal of Comparative Neurology 286 
(3): 391-407. 

Benichov, J.I., Benezra, S.E., Vallentin, D., Globerson, E., Long, M.A. and Tchernichovski, O. 
(2016): The forebrain song system mediates predictive call timing in female and male 
zebra finches. Current Biology 26 (3): 309-318. 



REFERENCES 
 

243 
 

Bennett, M.V.L. (1965): Electroreceptors in mormyrids. In Cold Spring Harbor Symposia on 
Quantitative Biology, vol. 30, pp. 245-262: Cold Spring Harbor Laboratory Press. 

Bennett, M.V.L. (1971a): Electric organs. In Fish Physiology, vol. 5 (ed. W.S. Hoar and 
D.J. Randall), pp. 347-491. New York: Academic Press. 

Bennett, M.V.L. (1971b): Electrolocation in fish. Annals of the New York Academy of Sciences 
188 (1): 242-269. 

Bennett, M.V.L. (1971c): Electroreception. In Fish Physiology, vol. 5 (ed. W.S. Hoar and 
D.J. Randall), pp. 493-574. New York: Academic Press. 

Bente, G., Leuschner, H., Al Issa, A. and Blascovich, J.J. (2010): The others: universals and 
cultural specificities in the perception of status and dominance from nonverbal 
behavior. Consciousness and Cognition 19 (3): 762-777. 

Berdahl, A., Torney, C.J., Ioannou, C.C., Faria, J.J. and Couzin, I.D. (2013): Emergent sensing of 
complex environments by mobile animal groups. Science 339 (6119): 574-576. 

Berdahl, A., Westley, P.A.H., Levin, S.A., Couzin, I.D. and Quinn, T.P. (2016): A collective 
navigation hypothesis for homeward migration in anadromous salmonids. Fish and 
Fisheries 17 (2): 525-542. 

Berens, P. (2009): CircStat: a MATLAB toolbox for circular statistics. Journal of Statistical 
Software 31 (10): 1-21. 

Bertucci, F., Attia, J., Beauchaud, M. and Mathevon, N. (2012): Sounds produced by the 
cichlid fish Metriaclima zebra allow reliable estimation of size and provide information 
on individual identity. Journal of Fish Biology 80 (4): 752-766. 

Bierbach, D., Lukas, J.A.Y., Bergmann, A., Elsner, K., Höhne, L., Weber, C., Weimar, N., Arias-
Rodriguez, L., Mönck, H.J., Nguyen, H., Romanczuk, P., Landgraf, T. and Krause, J. 
(2018): Insights into the social behavior of surface and cave-dwelling fish (Poecilia 
mexicana) in light and darkness through the use of a biomimetic robot. Frontiers in 
Robotics and AI 5 (3): 1-9. 

Bisazza, A., Lippolis, G. and Vallortigara, G. (2001): Lateralization of ventral fins use during 
object exploration in the blue gourami (Trichogaster trichopterus). Physiology & 
Behavior 72 (4): 575-578. 

Black-Cleworth, P. (1970): The role of electrical discharges in the non-reproductive social 
behaviour of Gymnotus carapo (Gymnotidae, Pisces). Animal Behaviour Monographs 3 
(1): 1-77. 

Blake, B.F. (1977): Food and feeding of the mormyrid fishes of Lake Kainji, Nigeria, with special 
reference to seasonal variation and interspecific differences. Journal of Fish Biology 11 
(4): 315-328. 

Bleckmann, H., Klein, A. and Meyer, G. (2012): Nature as a model for technical sensors. In 
Frontiers in Sensing: From Biology to Engineering (ed. F.G. Barth, J.A.C. Humphrey and 
M.V. Srinivasan), pp. 3-18. Wien: Springer-Verlag. 

Bleckmann, H., Schmitz, H. and von der Emde, G. (2004): Nature as a model for technical 
sensors. Journal of Comparative Physiology A 190 (12): 971-981. 



REFERENCES 
 

244 
 

Bleckmann, H. and Zelick, R. (2009): Lateral line system of fish. Integrative Zoology 4 (1): 13-
25. 

Bodznick, D. and Montgomery, J.C. (2005): The physiology of low-frequency electrosensory 
systems. In Electroreception (ed. T.H. Bullock, C.D. Hopkins, A.N. Popper and R.R. Fay), 
pp. 132-153. New York: Springer. 

Bodznick, D. and Northcutt, R.G. (1981): Electroreception in lampreys: evidence that the 
earliest vertebrates were electroreceptive. Science 212 (4493): 465-467. 

Boeckle, M. and Bugnyar, T. (2012): Long-term memory for affiliates in ravens. Current Biology 
22 (9): 801-806. 

Böhme, M. (2011): Elektrokommunikation und Sozialverhalten des schwach elektrischen Fischs 
Marcusenius altisambesi (Mormyridae, Teleostei). Diploma thesis. Rheinische 
Friedrich-Wilhelms-Universität, Bonn. 

Bohn, K.M. and Smotherman, M. (2015): Audio-vocal feedback in bats and new roles for 
echolocation calls in social communication. Journal of the Acoustical Society of 
America 137 (4): 2249-2250. 

Bolhuis, J.J., Tattersall, I., Chomsky, N. and Berwick, R.C. (2014): How could language have 
evolved? PLOS Biology 12 (8): e1001934. 

Bonnet, F., Gribovskiy, A., Halloy, J. and Mondada, F. (2018): Closed-loop interactions 
between a shoal of zebrafish and a group of robotic fish in a circular corridor. Swarm 
Intelligence: https://doi.org/10.1007/s11721-017-0153-6. 

Bonnet, F., Kato, Y., Halloy, J. and Mondada, F. (2016): Infiltrating the zebrafish swarm: 
design, implementation and experimental tests of a miniature robotic fish lure for 
fish–robot interaction studies. Artificial Life and Robotics 21 (3): 239-246. 

Bowmaker, J.K., Thorpe, A. and Douglas, R.H. (1991): Ultraviolet-sensitive cones in the 
goldfish. Vision Research 31 (3): 349-352. 

Boyer, F., Lebastard, V., Chevallereau, C., Mintchev, S. and Stefanini, C. (2015): Underwater 
navigation based on passive electric sense: new perspectives for underwater docking. 
The International Journal of Robotics Research 34 (9): 1228-1250. 

Boyer, F., Lebastard, V., Chevallereau, C. and Servagent, N. (2013): Underwater reflex 
navigation in confined environment based on electric sense. Journal of IEEE 
Transactions on Robotics 29 (4): 945-956. 

Bradbury, J.W. and Vehrencamp, S.L. (2000): Economic models of animal communication. 
Animal Behaviour 59 (2): 259-268. 

Bradbury, J.W. and Vehrencamp, S.L. (2011): Principles of Animal Communication. Sunderland 
MA: Sinauer Associates. 

Branson, K., Robie, A.A., Bender, J., Perona, P. and Dickinson, M.H. (2009): High-throughput 
ethomics in large groups of Drosophila. Nature Methods 6 (6): 451-457. 

Bratton, B.O. and Ayers, J.L. (1987): Observations on the electric organ discharge of two skate 
species (Chondrichthyes: Rajidae) and its relationship to behaviour. Environmental 
Biology of Fishes 20 (4): 241-254. 



REFERENCES 
 

245 
 

Bratton, B.O. and Kramer, B. (1989): Patterns of the electric organ discharge during courtship 
and spawning in the mormyrid fish, Pollimyrus isidori. Behavioral Ecology and 
Sociobiology 24 (6): 349-368. 

Brosnan, S.F., Salwiczek, L. and Bshary, R. (2010): The interplay of cognition and cooperation. 
Philosophical Transactions of the Royal Society B: Biological Sciences 365: 2699-2710. 

Brown, B., Benveniste, L.M. and Moller, P. (1996): Basal expansion of anal‐fin rays: a new 
osteological character in weakly discharging electric fish (Mormyridae). Journal of Fish 
Biology 49 (6): 1216-1225. 

Bshary, R. (2011): Machiavellian intelligence in fishes. In Fish Cognition and Behavior (ed. 
C. Brown, K. Laland and J. Krause), pp. 277-297. West Sussex: Wiley-Blackwell. 

Bshary, R., Gingins, S. and Vail, A.L. (2014): Social cognition in fishes. Trends in Cognitive 
Sciences 18 (9): 465-471. 

Bshary, R., Hohner, A., Ait-el-Djoudi, K. and Fricke, H. (2006): Interspecific communicative and 
coordinated hunting between groupers and giant moray eels in the Red Sea. PLOS 
Biology 4 (12): e431. 

Buck, J. (1988): Synchronous rhythmic flashing of fireflies. II. The Quarterly Review of Biology 
63 (3): 265-289. 

Buck, L. and Axel, R. (1991): A novel multigene family may encode odorant receptors: a 
molecular basis for odor recognition. Cell 65 (1): 175-187. 

Budelli, R. and Caputi, A.A. (2000): The electric image in weakly electric fish: perception of 
objects of complex impedance. Journal of Experimental Biology 203 (3): 481-492. 

Bullock, T.H., Behrend, K. and Heiligenberg, W. (1975): Comparison of the jamming avoidance 
responses in gymnotoid and gymnarchid electric fish: a case of convergent evolution of 
behavior and its sensory basis. Journal of Comparative Physiology 103 (1): 97-121. 

Bullock, T.H., Bodznick, D.A. and Northcutt, R.G. (1983): Phylogenetic distribution of 
electroreception: evidence for convergent evolution of a primitive vertebrate sense 
modality. Brain Research Reviews 6: 25-46. 

Bullock, T.H., Hagiwara, S., Kusano, K. and Negish, K. (1961): Evidence for a category of 
electroreceptors in the lateral line of gymnotid fishes. Science 134: 1426–1427. 

Bullock, T.H. and Northcutt, R.G. (1982): A new electroreceptive teleost: Xenomystus nigri 
(Osteoglossiformes: Notopteridae). Journal of Comparative Physiology 148 (3): 345-
352. 

Butail, S., Bartolini, T. and Porfiri, M. (2013): Collective response of zebrafish shoals to a free-
swimming robotic fish. PLOS ONE 8 (10): e76123. 

Butler, J.M. and Maruska, K.P. (2016): Mechanosensory signaling as a potential mode of 
communication during social interactions in fishes. Journal of Experimental Biology 219 
(18): 2781-2789. 

Butler, Z., Corke, P., Peterson, R. and Rus, D. (2006): From robots to animals: virtual fences for 
controlling cattle. The International Journal of Robotics Research 25 (5-6): 485-508. 

 



REFERENCES 
 

246 
 

Cafazzo, S., Lazzaroni, M. and Marshall-Pescini, S. (2016): Dominance relationships in a family 
pack of captive arctic wolves (Canis lupus arctos): the influence of competition for 
food, age and sex. PeerJ 4: e2707. 

Cain, P., Gerin, W. and Moller, P. (1994): Short‐range navigation of the weakly electric fish, 
Gnathonemus petersii L. (Mormyridae, Teleostei), in novel and familiar environments. 
Ethology 96 (1): 33-45. 

Cain, P. and Malwal, S. (2002): Landmark use and development of navigation behaviour in the 
weakly electric fish Gnathonemus petersii (Mormyridae; Teleostei). Journal of 
Experimental Biology 205 (24): 3915-3923. 

Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G. and Bonabeau, E. 
(2001): Self-Organization in Biological Systems. Princeton, Oxford: Princton University 
Press. 

Caprari, G., Colot, A., Siegwart, R., Halloy, J. and Deneubourg, J.-L. (2005): Building mixed 
societies of animals and robots. IEEE Robotics & Automation Magazine 12 (2): 58-65. 

Caputi, A.A. (2011): Detection and generation of electric signals: Electric organs. In 
Encyclopedia of Fsh Physiology: From Genome to Environment, vol. 1: The Senses, 
Supporting Tissues, Reproduction, and Behavior (ed. A.P. Farrell), pp. 387-397. San 
Diego: Academic Press. 

Caputi, A.A. (2017): The bioinspiring potential of weakly electric fish. Bioinspiration & 
Biomimetics 12 (2): 025004. 

Caputi, A.A., Budelli, R., Grant, K. and Bell, C.C. (1998): The electric image in weakly electric 
fish: physical images of resistive objects in Gnathonemus petersii. Journal of 
Experimental Biology 201 (14): 2115-2128. 

Caputi, A.A., Carlson, B.A. and Macadar, O. (2005): Electric organs and their control. In 
Electroreception (ed. T.H. Bullock, C.D. Hopkins, A.N. Popper and R.R. Fay), pp. 410-
451. New York: Springer New York. 

Caputi, A.A., Castelló, M.a.E., Aguilera, P. and Trujillo-Cenóz, O. (2002): Electrolocation and 
electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms 
and the electrosensory mosaic. Journal of Physiology-Paris 96 (5): 493-505. 

Caputi, A.A. and Nogueira, J. (2012): Identifying self- and nonself-generated signals: lessons 
from electrosensory systems. In Sensing in Nature (ed. C. López-Larrea), pp. 107-125. 
New York: Springer US. 

Carlson, B.A. (2002a): Electric signaling behavior and the mechanisms of electric organ 
discharge production in mormyrid fish. Journal of Physiology-Paris 96: 405-419. 

Carlson, B.A. (2002b): Neuroanatomy of the mormyrid electromotor control system. Journal of 
Comparative Neurology 454 (4): 440-455. 

Carlson, B.A. (2003): Single-unit activity patterns in nuclei that control the electromotor 
command nucleus during spontaneous electric signal production in the mormyrid 
Brienomyrus brachyistius. Journal of Neuroscience 23 (31): 10128-10136. 

Carlson, B.A. (2009): Temporal-pattern recognition by single neurons in a sensory pathway 
devoted to social communication behavior. Journal of Neuroscience 29 (30): 9417-
9428. 



REFERENCES 
 

247 
 

Carlson, B.A. (2016): Differences in electrosensory anatomy and social behavior in an area of 
sympatry between two species of mormyrid electric fishes. Journal of Experimental 
Biology 219 (1): 31-43. 

Carlson, B.A. and Gallant, J.R. (2013): From sequence to spike to spark: evo-devo-
neuroethology of electric communication in mormyrid fishes. Journal of Neurogenetics 
27 (3): 106-129. 

Carlson, B.A., Hasan, S.M., Hollmann, M., Miller, D.B., Harmon, L.J. and Arnegard, M.E. 
(2011): Brain evolution triggers increased diversification of electric fishes. Science 332 
(6029): 583-586. 

Carlson, B.A. and Hopkins, C.D. (2004a): Central control of electric signaling behavior in the 
mormyrid Brienomyrus brachyistius: segregation of behavior-specific inputs and the 
role of modifiable recurrent inhibition. Journal of Experimental Biology 207 (7): 1073-
1084. 

Carlson, B.A. and Hopkins, C.D. (2004b): Stereotyped temporal patterns in electrical 
communication. Animal Behaviour 68 (4): 867-878. 

Carlson, B.A., Hopkins, C.D. and Thomas, P. (2000): Androgen correlates of socially induced 
changes in the electric organ discharge waveform of a mormyrid fish. Hormones and 
Behavior 38 (3): 177-186. 

Catania, K. (2014): The shocking predatory strike of the electric eel. Science 346 (6214): 1231-
1234. 

Catania, K.C. (2015a): Electric eels concentrate their electric field to induce involuntary fatigue 
in struggling prey. Current Biology 25 (22): 2889-2898. 

Catania, K.C. (2015b): An optimized biological taser: electric eels remotely induce or arrest 
movement in nearby prey. Brain, Behavior and Evolution 86 (1): 38-47. 

Catania, K.C. (2016): Leaping eels electrify threats, supporting Humboldt’s account of a battle 
with horses. Proceedings of the National Academy of Sciences 113 (25): 6979-6984. 

Cazenille, L., Collignon, B., Chemtob, Y., Bonnet, F., Gribovskiy, A., Mondada, F., Bredeche, N. 
and Halloy, J. (2018): How mimetic should a robotic fish be to socially integrate into 
zebrafish groups? Bioinspiration & Biomimetics 13 (2): 025001. 

Chase, I.D., Bartolomeo, C. and Dugatkin, L.A. (1994): Aggressive interactions and inter-
contest interval: how long do winners keep winning? Animal Behaviour 48 (2): 393-
400. 

Ciali, S., Gordon, J. and Moller, P. (1997): Spectral sensitivity of the weakly discharging electric 
fish Gnathonemus petersii using its electric organ discharges as the response measure. 
Journal of Fish Biology 50 (5): 1074-1087. 

Cianca, V., Bartolini, T., Porfiri, M. and Macrì, S. (2013): A robotics-based behavioral paradigm 
to measure anxiety-related responses in zebrafish. PLOS ONE 8 (7): e69661. 

Clutton-Brock, T.H. and Albon, S.D. (1979): The roaring of red deer and the evolution of 
honest advertisement. Behaviour 69 (3): 145-170. 



REFERENCES 
 

248 
 

Collin, S.P. and Trezise, A.E.O. (2006): Evolution of colour discrimination in vertebrates and its 
implications for visual communication. In Communication in Fishes (ed. F. Ladich, 
S.P. Collin, P. Moller and B.G. Kapoor), pp. 303-335. Enfield, Jersey, Plymouth: Science 
Publishers. 

Correll, N., Schwager, M. and Rus, D. (2008): Social control of herd animals by integration of 
artificially controlled congeners. In From Animals to Animats. Lecture Notes in 
Computer Science, vol. 5040 (ed. M. Asada, J.C. T. Hallam, J. A. Meyer and J. Tani), 
pp. 437-446. Berlin, Heidelberg: Springer. 

Couzin, I.D. (2006): Behavioral ecology: social organization in fission–fusion societies. Current 
Biology 16 (5): R169-R171. 

Couzin, I.D. and Krause, J. (2003): Self-organization and collective behavior in vertebrates. In 
Advances in the Study of Behavior, vol. 32 (ed. P.J.B. Slater, J.S. Rosenblatt, 
C.T. Snowdon and T.J. Roper), pp. 1-75. San Diego, London: Academic Press. 

Couzin, I.D., Krause, J., Franks, N.R. and Levin, S.A. (2005): Effective leadership and decision-
making in animal groups on the move. Nature 433 (7025): 513. 

Couzin, I.D., Krause, J., James, R., Ruxton, G.D. and Franks, N.R. (2002): Collective memory 
and spatial sorting in animal groups. Journal of Theoretical Biology 218 (1): 1-11. 

Crampton, W.G.R. (1998): Electric signal design and habitat preferences in a species rich 
assemblage of gymnotiform fishes from the Upper Amazon basin. Anais da Academia 
Brasileira de Ciências 70 (4): 805-848. 

Crampton, W.G.R. and Albert, J.S. (2006): Evolution of electric signal diversity in gymnotiform 
electric fishes. In Communication in Fishes (ed. F. Ladich, S.P. Collin, P. Moller and 
B.G. Kapoor), pp. 647-731. Enfield, Jersey, Plymouth: Science Publishers. 

Crawford, J.D. (1991): Sex recognition by electric cues in a sound-producing mormyrid fish, 
Pollimyrus isidori. Brain, Behavior and Evolution 38 (1): 20-38. 

Crawford, J.D. (1992): Individual and sex specificity in the electric organ discharges of breeding 
mormyrid fish (Pollimyrus isidori). Journal of Experimental Biology 164 (1): 79-102. 

Crawford, J.D. (1997): Hearing and acoustic communication in mormyrid electric fishes. 
Marine & Freshwater Behaviour & Physiology 29 (1-4): 65-86. 

Crawford, J.D., Hagedorn, M. and Hopkins, C.D. (1986): Acoustic communication in an electric 
fish, Pollimyrus isidori (Mormyridae). Journal of Comparative Physiology A: 
Neuroethology, Sensory, Neural, and Behavioral Physiology 159 (3): 297-310. 

Crawford, J.D. and Huang, X. (1999): Communication signals and sound production 
mechanisms of mormyrid electric fish. Journal of Experimental Biology 202 (10): 1417-
1426. 

Crespi, A. and Ijspeert, A.J. (2009): Salamandra robotica: a biologically inspired amphibious 
robot that swims and walks. In Artificial Life Models in Hardware (ed. A. Adamatzky 
and M. Komosinski), pp. 35-64. London: Springer-Verlag. 

Crockett, D.P. (1986): Agonistic behavior of the weakly electric fish, Gnathonemus petersii 
(Mormyridae, Osteoglossomorpha). Journal of Comparative Physiology 100 (1): 3-14. 

 



REFERENCES 
 

249 
 

Czech-Damal, N.U., Liebschner, A., Miersch, L., Klauer, G., Hanke, F.D., Marshall, C., 
Dehnhardt, G. and Hanke, W. (2012): Electroreception in the Guiana dolphin (Sotalia 
guianensis). Proceedings of the Royal Society of London B: Biological Sciences 279: 663-
668. 

da Silva Guerra, R., Aonuma, H., Hosoda, K. and Asada, M. (2010): Semi-automatic behavior 
analysis using robot/insect mixed society and video tracking. Journal of Neuroscience 
Methods 191 (1): 138-144. 

da Vinci, L. (1505): Codice sul volo degli uccelli. Biblioteca Reale di Torino. 

Davies, N.B. and Halliday, T.R. (1978): Deep croaks and fighting assessment in toads Bufo 
bufo. Nature 274 (5672): 683-685. 

Davis, M.P., Holcroft, N.I., Wiley, E.O., Sparks, J.S. and Smith, W.L. (2014): Species-specific 
bioluminescence facilitates speciation in the deep sea. Marine Biology 161 (5): 1139-
1148. 

Dawkins, M.S. and Guilford, T. (1991): The corruption of honest signalling. Animal Behaviour 
41 (5): 865-873. 

Deneubourg, J.-L. and Goss, S. (1989): Collective patterns and decision-making. Ethology 
Ecology & Evolution 1 (4): 295-311. 

Denton, E.J. and Rowe, D.M. (1998): Bands against stripes on the backs of mackerel, Scomber 
scombrus L. Proceedings of the Royal Society of London B: Biological Sciences 265: 
1051-1058. 

Derbin, C. and Szabo, T. (1968): Ultrastructure of an electroreceptor (Knollenorgan) in the 
mormyrid fish Gnathonemus petersii. I. Journal of Ultrastructure Research 22: 469-484. 

Dijkgraaf, S. (1968): Electroreception in the catfish, Amiurus nebulosus. Experientia 24 (2): 187-
188. 

Dijkgraaf, S. and Kalmijn, A.J. (1962): Verhaltensversuche zur Funktion der Lorenzinischen 
Ampullen. Naturwissenschaften 49 (17): 400-400. 

Dinets, V. (2017): Coordinated hunting by Cuban boas. Animal Behavior and Cognition 4 (1): 
24-29. 

Donati, E., Worm, M., Mintchev, S., van der Wiel, M., Benelli, G., von der Emde, G. and 
Stefanini, C. (2016): Investigation of collective behaviour and electrocommunication in 
the weakly electric fish, Mormyrus rume, through a biomimetic robotic dummy fish. 
Bioinspiration & Biomimetics 11 (6): 066009. 

Douglas, R.H. (2001): The ecology of teleost fish visual pigments: a good example of sensory 
adaptation to the environment? In Ecology of Sensing (ed. F.G. Barth and A. Schimid), 
pp. 215-235. Berlin, Heidelberg, New York: Springer-Verlag. 

Douglas, S.B. and Mennill, D.J. (2010): A review of acoustic playback techniques for studying 
avian vocal duets. Journal of Field Ornithology 81 (2): 115-129. 

Døving, K.B. and Selset, R. (1980): Behavior patterns in cod released by electrical stimulation 
of olfactory tract bundlets. Science 207 (4430): 559-560. 



REFERENCES 
 

250 
 

Døving, K.B., Selset, R. and Thommesen, G. (1980): Olfactory sensitivity to bile acids in 
salmonid fishes. Acta Physiologica 108 (2): 123-131. 

Døving, K.B. and Stabell, O.B. (2003): Trails in open waters: sensory cues in salmon migration. 
In Sensory Processing in Aquatic Environments (ed. S.P. Collin and N.J. Marshall), 
pp. 39-52. New York: Springer-Verlag. 

Dürr, V., Schmitz, J. and Cruse, H. (2004): Behaviour-based modelling of hexapod locomotion: 
linking biology and technical application. Arthropod Structure & Development 33 (3): 
237-250. 

Ekman, P. (1970): Universal facial expressions of emotion. California Mental Health Research 
Digest 8 (4): 151-158. 

El Daou, H., Salumäe, T., Toming, G. and Kruusmaa, M. (2012): A bio-inspired compliant 
robotic fish: design and experiments. In International Conference on Robotics and 
Automation, pp. 5340-5345. Saint Paul, MN: IEEE. 

Engelmann, J., Gertz, S., Goulet, J., Schuh, A. and von der Emde, G. (2010): Coding of stimuli 
by ampullary afferents in Gnathonemus petersii. Journal of Neurophysiology 104 (4): 
1955-1968. 

Enquist, M. and Leimar, O. (1983): Evolution of fighting behaviour: decision rules and 
assessment of relative strength. Journal of Theoretical Biology 102 (3): 387-410. 

Enquist, M., Leimar, O., Ljungberg, T., Mallner, Y. and Segerdahl, N. (1990): A test of the 
sequential assessment game: fighting in the cichlid fish Nannacara anomala. Animal 
Behaviour 40 (1): 1-14. 

Escobar-Camacho, D. and Carleton, K.L. (2015): Sensory modalities in cichlid fish behavior. 
Current Opinion in Behavioral Sciences 6: 115-124. 

Faria, J., Dyer, J., Clément, R., Couzin, I., Holt, N., Ward, A., Waters, D. and Krause, J. (2010): 
A novel method for investigating the collective behaviour of fish: introducing 
‘Robofish’. Behavioral Ecology and Sociobiology 64 (8): 1211-1218. 

Fechler, K., Holtkamp, D., Neusel, G., Sanguinetti‐Scheck, J.I., Budelli, R. and 
von der Emde, G. (2012): Mind the gap: the minimal detectable separation distance 
between two objects during active electrolocation. Journal of Fish Biology 81 (7): 2255-
2276. 

Fechler, K. and von der Emde, G. (2013): Figure–ground separation during active 
electrolocation in the weakly electric fish, Gnathonemus petersii. Journal of Physiology-
Paris 107 (1): 72-83. 

Feng, N.Y. and Bass, A.H. (2016): “Singing” fish rely on circadian rhythm and melatonin for the 
timing of nocturnal courtship vocalization. Current Biology 26 (19): 2681-2689. 

Fessard, A. and Szabo, T. (1961): Mise en évidence d'un récepteur sensible à l'électricité dans 
la peau des Mormyres. Comptes Rendus Hebdomadaires des Seances de L´Académi des 
Sciences 253 (17): 1859-1860. 

Feulner, P.G.D., Kirschbaum, F. and Tiedemann, R. (2008): Adaptive radiation in the Congo 
River: an ecological speciation scenario for African weakly electric fish (Teleostei; 
Mormyridae; Campylomormyrus). Journal of Physiology-Paris 102 (4): 340-346. 



REFERENCES 
 

251 
 

Feulner, P.G.D., Plath, M., Engelmann, J., Kirschbaum, F. and Tiedemann, R. (2009a): 
Electrifying love: electric fish use species-specific discharge for mate recognition. 
Biology Letters 5 (2): 225-228. 

Feulner, P.G.D., Plath, M., Engelmann, J., Kirschbaum, F. and Tiedemann, R. (2009b): Magic 
trait electric organ discharge (EOD) dual function of electric signals promotes 
speciation in African weakly electric fish. Communicative & Integrative Biology 2 (4): 
329-331. 

Fields, R.D. and Lange, G.D. (1980): Electroreception in the ratfish (Hydrolagus colliei). Science 
207 (4430): 547-548. 

Finger, S. and Piccolino, M. (2011a): Electric fishes in Volta’s path to the battery. In The 
Shocking History of Electric Fishes: From Ancient Epochs to the Birth of Modern 
Neurophysiology (ed. S. Finger and M. Piccolino). Oxford: Oxford University Press. 

Finger, S. and Piccolino, M. (2011b): The Shocking History of Electric Fishes: From Ancient 
Epochs to the Birth of Modern Neurophysiology. Oxford: Oxford University Press. 

Finger, T.E., Bell, C.C. and Russell, C.J. (1981): Electrosensory pathways to the valvula cerebelli 
in mormyrid fish. Experimental Brain Research 42 (1): 23-33. 

Finger, T.E. and Böttger, B. (1990): Transcellular labeling of taste bud cells by carbocyanine 
dye (DiI) applied to peripheral nerves in the barbels of the catfish, Ictalurus punctatus. 
Journal of Comparative Neurology 302 (4): 884-892. 

Fitch, W.T. (2000): The evolution of speech: a comparative review. Trends in Cognitive Sciences 
4 (7): 258-267. 

Folkertsma, G.A., Straatman, W., Nijenhuis, N., Venner, C.H. and Stramigioli, S. (2017): 
Robird: a robotic bird of prey. IEEE Robotics & Automation Magazine 24 (3): 22-29. 

Forlim, C.G. and Pinto, R.D. (2014): Automatic realistic real time stimulation/recording in 
weakly electric fish: long time behavior characterization in freely swimming fish and 
stimuli discrimination. PLOS ONE 9 (1): e84885. 

Francke, M., Kreysing, M., Mack, A., Engelmann, J., Karl, A., Makarov, F., Guck, J., Kolle, M., 
Wolburg, H., Pusch, R., von der Emde, G., Schuster, S., Wagner, H.-J. and 
Reichenbach, A. (2014): Grouped retinae and tapetal cups in some Teleostian fish: 
occurrence, structure, and function. Progress in Retinal and Eye Research 38: 43-69. 

Friedman, M.A. and Hopkins, C.D. (1996): Tracking individual mormyrid electric fish in the 
field using electric organ discharge waveforms. Animal Behaviour 51 (2): 391-407. 

Frohnwieser, A., Murray, J.C., Pike, T.W. and Wilkinson, A. (2016): Using robots to understand 
animal cognition. Journal of the Experimental Analysis of Behavior 105 (1): 14-22. 

Fugère, V. and Krahe, R. (2010): Electric signals and species recognition in the wave-type 
gymnotiform fish Apteronotus leptorhynchus. Journal of Experimental Biology 213 (2): 
225-236. 

Gazda, S.K., Connor, R.C., Edgar, R.K. and Cox, F. (2005): A division of labour with role 
specialization in group–hunting bottlenose dolphins Tursiops truncatus off Cedar Key, 
Florida. Proceedings of the Royal Society B: Biological Sciences 272 (1559): 135-140. 



REFERENCES 
 

252 
 

Gebhardt, K. (2012): Kommunikation mittels selbst generierter elektrischer Signale innerhalb 
sozialer Gruppen des schwach elektrischen Fisches Mormyrus rume. Dissertation. 
Rheinische Friedrich-Wilhelms-Universität, Bonn. 

Gebhardt, K., Alt, W. and von der Emde, G. (2012a): Electric discharge patterns in group-living 
weakly electric fish, Mormyrus rume (Mormyridae, Teleostei). Behavior 149: 623-644. 

Gebhardt, K., Böhme, M. and von der Emde, G. (2012b): Electrocommunication behaviour 
during social interactions in two species of pulse-type weakly electric fishes 
(Mormyridae). Journal of Fish Biology 81 (7): 2235-2254. 

Gerhardt, H.C. (1994): The evolution of vocalization in frogs and toads. Annual Review of 
Ecology and Systematics 25 (1): 293-324. 

Gierszewski, S., Müller, K., Smielik, I., Hütwohl, J.-M., Kuhnert, K.-D. and Witte, K. (2017): The 
virtual lover: variable and easily guided 3D fish animations as an innovative tool in 
mate-choice experiments with sailfin mollies-II. Validation. Current Zoology 63 (1): 65-
74. 

Gillam, E.H., Ulanovsky, N. and McCracken, G.F. (2007): Rapid jamming avoidance in biosonar. 
Proceedings of the Royal Society of London B: Biological Sciences 274 (1610): 651-660. 

Godin, J.-G.J., Classon, L.J. and Abrahams, M.V. (1988): Group vigilance and shoal size in a 
small characin fish. Behaviour 104 (1): 29-40. 

Gomahr, A., Palzenberger, M. and Kotrschal, K. (1992): Density and distribution of external 
taste buds in cyprinids. Environmental Biology of Fishes 33 (1): 125-134. 

Gottwald, M., Bott, R.A. and von der Emde, G. (2017a): Estimation of distance and electric 
impedance of capacitive objects in the weakly electric fish, Gnathonemus petersii. 
Journal of Experimental Biology 220 (17): 3142-3153. 

Gottwald, M., Matuschek, A. and von der Emde, G. (2017b): An active electrolocation 
catheter system for imaging and analysis of coronary plaques. Bioinspiration & 
Biomimetics 12 (1): 015002. 

Götze, S., Koblitz, J.C., Denzinger, A. and Schnitzler, H.-U. (2016): No evidence for spectral 
jamming avoidance in echolocation behavior of foraging pipistrelle bats. Scientific 
Reports 6:30978. 

Grafen, A. (1990): Biological signals as handicaps. Journal of Theoretical Biology 144 (4): 517-
546. 

Graff, C. and Kramer, B. (1992): Trained weakly‐electric fishes Pollimyrus isidori and 
Gnathonemus petersii (Mormyridae, Teleostei) discriminate between waveforms of 
electric pulse discharges. Ethology 90 (4): 279-292. 

Grant, K., von der Emde, G., Gomez-Sena, L. and Mohr, C. (1999): Neural command of 
electromotor output in mormyrids. Journal of Experimental Biology 202 (10): 1399-
1407. 

Greenhouse, S.W. and Geisser, S. (1959): On the methods in the analysis of profile data. 
Psychometrika 24: 95-112. 



REFERENCES 
 

253 
 

Gregoriou, G.G., Gotts, S.J., Zhou, H. and Desimone, R. (2009): High-frequency, long-range 
coupling between prefrontal and visual cortex during attention. Science 324 (5931): 
1207-1210. 

Gribovskiy, A., Halloy, J., Deneubourg, J.-L., Bleuler, H. and Mondada, F. (2010): Towards 
mixed societies of chickens and robots. In International Conference on Intelligent 
Robots and Systems, pp. 4722-4728. Taipei: IEEE. 

Grünbaum, D. (1998): Schooling as a strategy for taxis in a noisy environment. Evolutionary 
Ecology 12 (5): 503-522. 

Guariento, R.T., Mosqueiro, T.S., Caputi, A.A. and Pinto, R.D. (2014): A simple model for 
eletrocommunication–“refractoriness avoidance response”? BMC Neuroscience 15 
(Suppl 1): P68. 

Guariento, R.T., Mosqueiro, T.S., Matias, P., Cesarino, V.B., Almeida, L.O.B., Slaets, J.F.W., 
Maia, L.P. and Pinto, R.D. (2016): Automated pulse discrimination of two freely-
swimming weakly electric fish and analysis of their electrical behavior during 
dominance contest. Journal of Physiology-Paris 110 (3): 216-223. 

Guilford, T. and Dawkins, M.S. (1995): What are conventional signals? Animal Behaviour 49 
(6): 1689-1695. 

Gumm, J.M., Feller, K.D. and Mendelson, T.C. (2011): Spectral characteristics of male nuptial 
coloration in darters (Etheostoma). Copeia 2: 319-326. 

Guo, S., Shi, L., Ye, X. and Li, L. (2007): A new jellyfish type of underwater microrobot. In 
International Conference on Mechatronics and Automation, pp. 509-514. Harbin: IEEE. 

Hagedorn, M. and Heiligenberg, W. (1985): Court and spark: electric signals in the courtship 
and mating of gymnotoid fish. Animal Behaviour 33 (1): 254-265. 

Hagedorn, M., Womble, M. and Finger, T.E. (1990): Synodontid catfish: a new group of weakly 
electric fish. Brain, Behavior and Evolution 35 (5): 268-277. 

Halloy, J., Mondada, F., Kernbach, S. and Schmickl, T. (2013): Towards bio-hybrid systems 
made of social animals and robots. In Biomimetic and Biohybrid Systems. Living 
Machines 2013. Lecture Notes in Computer Science vol. 8064 (ed. N.F. Lepora, A. Mura, 
H.G. Krapp, P.F.M.J. Verschure and T.J. Prescott), pp. 384-386. Berlin, Heidelberg: 
Springer. 

Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Saïd, I., Durier, V., 
Canonge, S., Amé, J.M., Detrain, C., Correll, N., Martinoli, A., Mondada, F., 
Siegwart, R. and Deneubourg, J.-L. (2007): Social integration of robots into groups of 
cockroaches to control self-organized choices. Science 318 (5853): 1155-1158. 

Hamdani, E.H. and Døving, K.B. (2007): The functional organization of the fish olfactory 
system. Progress in Neurobiology 82 (2): 80-86. 

Hamdani, E.H., Lastein, S., Gregersen, F. and Døving, K.B. (2008): Seasonal variations in 
olfactory sensory neurons—fish sensitivity to sex pheromones explained? Chemical 
Senses 33 (2): 119-123. 

Hamilton, W.D. (1971): Geometry for the selfish herd. Journal of Theoretical Biology 31 (2): 
295-311. 



REFERENCES 
 

254 
 

Handegard, N.O., Boswell, K.M., Ioannou, C.C., Leblanc, S.P., Tjøstheim, D.B. and Couzin, I.D. 
(2012): The dynamics of coordinated group hunting and collective information transfer 
among schooling prey. Current Biology 22 (13): 1213-1217. 

Hanika, S. and Kramer, B. (2000): Electrosensory prey detection in the African sharptooth 
catfish, Clarias gariepinus (Clariidae), of a weakly electric mormyrid fish, the bulldog 
(Marcusenius macrolepidotus). Behavioral Ecology and Sociobiology 48 (3): 218-228. 

Hanika, S. and Kramer, B. (2005): Intra-male variability of its communication signal in the 
weakly electric fish, Marcusenius macrolepidotus (South African form), and possible 
functions. Behaviour 142 (2): 145-166. 

Hansen, A. and Reutter, K. (2004): Chemosensory systems in fish: structural, functional and 
ecological aspects. In The Senses of Fish: Adaptations for the Reception of Natural 
Stimuli (ed. G. von der Emde, J. Mogdans and B.G. Kapoor), pp. 55-89. Dordrecht: 
Springer Netherlands. 

Harder, W. (1968): Die Beziehungen zwischen Elektrorezeptoren, Elektrischem Organ, 
Seitenlinienorganen und Nervensystem bei den Mormyridae (Teleostei, Pisces). 
Zeitschrift für vergleichende Physiologie 59 (3): 272-318. 

Harder, W., Schief, A. and Uhlemann, H. (1964): Zur Funktion des elektrischen Organs von 
Gnathonemus petersii (Gthr. 1862) (Mormyriformes, Teleostei). Zeitschrift für 
vergleichende Physiologie 48 (3): 302-331. 

Hardy, I.C.W. and Briffa, M. (2013): Animal Contests. Cambridge: Cambridge University Press. 

Hartbauer, M. (2008): Chorus model of the synchronizing bushcricket species Mecopoda 
elongata. Ecological Modelling 213 (1): 105-118. 

Hauser, M.D., Chomsky, N. and Fitch, W.T. (2002): The faculty of language: what is it, who has 
it, and how did it evolve? Science 298 (5598): 1569-1579. 

Hawryshyn, C.W. (2010): Ultraviolet polarization vision and visually guided behavior in fishes. 
Brain, Behavior and Evolution 75 (3): 186-194. 

Heiligenberg, W. (1973): Electrolocation of objects in the electric fish Eigenmannia 
(Rhamphichthyidae, Gymnotoidei). Journal of Comparative Physiology 87 (2): 137-164. 

Heiligenberg, W. (1976): Electrolocation and jamming avoidance in the mormyrid fish 
Brienomyrus. Journal of Comparative Physiology A 109 (3): 357-372. 

Heiligenberg, W. (1977): Principles of electrolocation and jamming avoidance in electric fish: a 
neuroethological approach. In Studies of Brain Function, vol. 1 (ed. V. Braitenberg). 
Berlin, Heidleberg, New York: Springer-Verlag. 

Heiligenberg, W. (1980): The jamming avoidance response in the weakly electric fish 
Eigenmannia. A behavior controlled by distributed evaluation of electroreceptive 
afferences. Naturwissenschaften 67 (10): 499-507. 

Henninger, J., Kirschbaum, F., Grewe, J., Krahe, R. and Benda, J. (2017): Sensory tuning does 
not match behavioral relevance of communication signals in free-living weakly electric 
fish. bioRxiv: https://doi.org/10.1101/114249. 



REFERENCES 
 

255 
 

Herbert-Read, J.E., Perna, A., Mann, R.P., Schaerf, T.M., Sumpter, D.J.T. and Ward, A.J.W. 
(2011): Inferring the rules of interaction of shoaling fish. Proceedings of the National 
Academy of Sciences 108 (46): 18726-18731. 

Herbert-Read, J.E., Romanczuk, P., Krause, S., Strömbom, D., Couillaud, P., Domenici, P., 
Kurvers, R.H.J.M., Marras, S., Steffensen, J.F. and Wilson, A.D.M. (2016): Proto-
cooperation: group hunting sailfish improve hunting success by alternating attacks on 
grouping prey. Proceedings of the Royal Society B 283: 20161671. 

Herbert-Read, J.E., Rosén, E., Szorkovszky, A., Ioannou, C.C., Rogell, B., Perna, A., 
Ramnarine, I.W., Kotrschal, A., Kolm, N., Krause, J. and Sumpter, D.J.T. (2017): How 
predation shapes the social interaction rules of shoaling fish. Proceedings of the Royal 
Society B 284: 20171126. 

Himstedt, W., Kopp, J. and Schmidt, W. (1982): Electroreception guides feeding behaviour in 
amphibians. Naturwissenschaften 69 (11): 552-553. 

Hofmann, V., Geurten, B.R.H., Sanguinetti-Scheck, J.I., Gómez-Sena, L. and Engelmann, J. 
(2014): Motor patterns during active electrosensory acquisition. Frontiers in Behavioral 
Neuroscience 8. 

Hofmann, V., Sanguinetti-Scheck, J.I., Künzel, S., Geurten, B., Gómez-Sena, L. and 
Engelmann, J. (2013): Sensory flow shaped by active sensing: sensorimotor strategies 
in electric fish. Journal of Experimental Biology 216 (13): 2487-2500. 

Hollmann, M., Engelmann, J. and von der Emde, G. (2008): Distribution, density and 
morphology of electroreceptor organs in mormyrid weakly electric fish: anatomical 
investigations of a receptor mosaic. Journal of Zoology 276 (2): 149-158. 

Hollmann, V., Hofmann, V. and Engelmann, J. (2016): Somatotopic map of the active 
electrosensory sense in the midbrain of the mormyrid Gnathonemus petersii. Journal 
of Comparative Neurology 524 (12): 2479-2491. 

Hopkins, C.D. (1973): Lightning as background noise for communication among electric fish. 
Nature 242 (5395): 268-270. 

Hopkins, C.D. (1974): Electric communication in fish: certain species of fish produce electric 
signals that are used for identification, aggregation, and dispersal. American Scientist 
62 (4): 426-437. 

Hopkins, C.D. (1980): Evolution of electric communication channels of mormyrids. Behavioral 
Ecology and Sociobiology 7 (1): 1-13. 

Hopkins, C.D. (1981a): The neuroethology of electric communication. Trends in Neurosciences 
4: 4-6. 

Hopkins, C.D. (1981b): On the diversity of electric signals in a community of mormyrid electric 
fish in West Africa. American Zoologist 21 (1): 211-222. 

Hopkins, C.D. (1986): Behavior of mormyridae. In Electroreception (ed. T.H. Bullock and 
W. Heiligenberg), pp. 527-576. New York: John Wiley & Sons. 

Hopkins, C.D. (1988): Neuroethology of electric communication. Annual Review of 
Neuroscience 11 (1): 497-535. 

 



REFERENCES 
 

256 
 

Hopkins, C.D. (1999): Design features for electric communication. Journal of Experimental 
Biology 202 (10): 1217-1228. 

Hopkins, C.D. (2005): Passive electrolocation and the sensory guidance of oriented behavior. In 
Electroreception (ed. T.H. Bullock, C.D. Hopkins, A.N. Popper and R.R. Fay), pp. 264-
289. New York: Springer. 

Hopkins, C.D. (2009): Electrical perception and communication. In Encyclopedia of 
Neuroscience, vol. 3 (ed. L.R. Squire), pp. 813-831. Oxford: Academic Press. 

Hopkins, C.D. and Bass, A.H. (1981): Temporal coding of species recognition signals in an 
electric fish. Science 212 (4490): 85-87. 

Hopkins, C.D. and Heiligenberg, W.F. (1978): Evolutionary designs for electric signals and 
electroreceptors in gymnotoid fishes of Surinam. Behavioral Ecology and Sociobiology 
3 (2): 113-134. 

Hopkins, C.D., Lavoué, S. and Sullivan, J.P. (2008): Mormyridae. In The Fresh and Brackish 
Water Fishes of Lower Guinea, West-Central Africa, vol. 1 (ed. M.L.J. Stiassny, 
G.G. Teugels and C.D. Hopkins), pp. 219-334. Paris: IRD. 

Howard, J.W. (1974): Dominance and relation to coloration in green sunfish, Lepomis 
cyanellus. Behavioral Biology 12 (4): 559-565. 

Hunter, J.R. (1969): Communication of velocity changes in jack mackerel (Trachurus 
symmetricus) schools. Animal Behaviour 17 (0): 507-514. 

Hurd, P.L. and Enquist, M. (2005): A strategic taxonomy of biological communication. Animal 
Behaviour 70 (5): 1155-1170. 

Hurlbert, S.H. (1984): Pseudoreplication and the design of ecological field experiments. 
Ecological Monographs 54 (2): 187-211. 

Huse, G., Railsback, S. and Fernö, A. (2002): Modelling changes in migration pattern of 
herring: collective behaviour and numerical domination. Journal of Fish Biology 60 (3): 
571-582. 

Huth, A. and Wissel, C. (1992): The simulation of the movement of fish schools. Journal of 
Theoretical Biology 156 (3): 365-385. 

Huth, A. and Wissel, C. (1994): The simulation of fish schools in comparison with experimental 
data. Ecological Modelling 75: 135-146. 

Iacovides, S. and Evans, R.M. (1998): Begging as graded signals of need for food in young ring-
billed gulls. Animal Behaviour 56 (1): 79-85. 

Ioannou, C.C. (2017): Swarm intelligence in fish? The difficulty in demonstrating distributed 
and self-organised collective intelligence in (some) animal groups. Behavioural 
Processes 141: 141-151. 

Ioannou, C.C., Tosh, C.R., Neville, L. and Krause, J. (2007): The confusion effect—from neural 
networks to reduced predation risk. Behavioral Ecology 19 (1): 126-130. 

Jäger, U. (1974): Geruchsrezeption und Entladungsaktivität bei dem schwachelektrischen Fisch 
Gnathonemus petersii (Günther, 1862) (Mormyridae, Teleostei). Dissertation. 
Universität des Saarlandes, Saarbrücken. 



REFERENCES 
 

257 
 

Janik, V.M. (2000): Whistle matching in wild bottlenose dolphins (Tursiops truncatus). Science 
289 (5483): 1355-1357. 

Jaworska, J., Rapacz-Leonard, A., Janowski, T.E. and Jezierski, T. (2017): Does the major 
histocompatibility complex influence choice of mate in humans and other mammals? - 
a review. Animal Science Papers & Reports 35 (2): 107-122. 

Jones, G. and Siemers, B.M. (2011): The communicative potential of bat echolocation pulses. 
Journal of Comparative Physiology A 197 (5): 447-457. 

Jørgensen, J.M. (1982): Fine structure of the ampullary organs of the bichir Polypterus 
senegalus Cuvier, 1829 (Pisces: Brachiopterygii) with some notes on the phylogenetic 
development of electroreceptors. Acta Zoologica 63 (4): 211-217. 

Jørgensen, J.M. (2005): Morphology of electroreceptive sensory organs. In Electroreception 
(ed. T.H. Bullock, C.D. Hopkins, A.N. Popper and R.R. Fay), pp. 47-67. New York: 
Springer. 

Jun, J.J., Longtin, A. and Maler, L. (2013): Real-time localization of moving dipole sources for 
tracking multiple free-swimming weakly electric fish. PLOS ONE 8 (6): e66596. 

Kalma, A. (1991): Hierarchisation and dominance assessment at first glance. European Journal 
of Social Psychology 21 (2): 165-181. 

Kalmijn, A.J. (1971): The electric sense of sharks and rays. Journal of Experimental Biology 55 
(2): 371-383. 

Kalmijn, A.J. (1974): The detection of electric fields from inanimate and animate sources other 
than electric organs. In Handbook of Sensory Physiology, vol. III/3: Electroreceptors and 
Other Specialized Receptors in Lower Vertrebrates (ed. A. Fessard), pp. 147-200. Berlin: 
Springer-Verlag. 

Kalmijn, A.J. (1982): Electric and magnetic field detection in elasmobranch fishes. Science 218 
(4575): 916-918. 

Kareklas, K., Arnott, G., Elwood, R.W. and Holland, R.A. (2016): Plasticity varies with boldness 
in a weakly-electric fish. Frontiers in Zoology 13 (22): 1-7. 

Kasumyan, A.O. (2011): Tactile reception and behavior of fish. Journal of Ichthyology 51 (11): 
1035-1103. 

Katz, Y., Tunstrøm, K., Ioannou, C.C., Huepe, C. and Couzin, I.D. (2011): Inferring the structure 
and dynamics of interactions in schooling fish. Proceedings of the National Academy of 
Sciences 108 (46): 18720-18725. 

Keller-Costa, T., Canário, A.V.M. and Hubbard, P.C. (2015): Chemical communication in 
cichlids: a mini-review. General and Comparative Endocrinology 221: 64-74. 

Kelley, J.L., Rodgers, G.M. and Morrell, L.J. (2016): Conflict between background matching 
and social signalling in a colour-changing freshwater fish. Royal Society Open Science 3: 
160040. 

Kersten, A.M. (2016): Die Echo-Response bei Gnathonemus petersii - Versuche mit interaktiver 
Attrappe und variierenden Latenzen. Unpublished lab report. Rheinische Friedrich-
Wilhelms-Universität, Bonn. 



REFERENCES 
 

258 
 

Kersten, A.M. (2017a): Das motorische und elektrische Kommunikationsverhalten von 
Mormyrus rume: Antagonistische Begegnungen in Zweiergruppen. Unpublished project 
thesis. Rheinische Friedrich-Wilhelms-Universität, Bonn. 

Kersten, A.M. (2017b): The dynamics of the behavioural response of the weakly electric fish 
Mormyrus rume to long duration playbacks of electrocommunication signals. 
Bachelor's thesis. Rheinische Friedrich-Wilhelms-Universität, Bonn. 

Khait, V., Tahiraj, E., Seemungal, N., Breakstone, S. and Moller, P. (2009): Group cohesion in 
juvenile weakly electric fish Mormyrus rume proboscirostris. Journal of Fish Biology 75 
(3): 490-502. 

King, S.L. and Janik, V.M. (2013): Bottlenose dolphins can use learned vocal labels to address 
each other. Proceedings of the National Academy of Sciences 110 (32): 13216-13221. 

Kirschbaum, F. (1975): Environmental factors control the periodical reproduction of tropical 
electric fish. Experientia 31 (10): 1159-1160. 

Kirschbaum, F. (1983): Myogenic electric organ precedes the neurogenic organ in apteronotid 
fish. Naturwissenschaften 70 (4): 205-207. 

Kirschbaum, F. (1995): Reproduction and development in mormyriform and gymnotiform 
fishes. In Electric Fishes: History and Behavior (ed. P. Moller), pp. 267-301. London: 
Chapman & Hall. 

Kirschbaum, F. and Schugardt, C. (1995): Vergleichende Daten zur Fortpflanzungsbiologie von 
zwei Nilhecht-Arten (Mormyridae). In Fortpflanzungsbiologie der Aquarienfische (ed. 
H. Greven and R. Riehl), pp. 81-90. Bornheim: Birgit Schmettkamp Verlag. 

Klein, B.A., Stein, J. and Taylor, R.C. (2012): Robots in the service of animal behavior. 
Communicative & Integrative Biology 5 (5): 466-472. 

Knörnschild, M., Jung, K., Nagy, M., Metz, M. and Kalko, E. (2012): Bat echolocation calls 
facilitate social communication. Proceedings of the Royal Society B: Biological Sciences 
279: 4827-4835. 

Kohda, M., Jordan, L.A., Hotta, T., Kosaka, N., Karino, K., Tanaka, H., Taniyama, M. and 
Takeyama, T. (2015): Facial recognition in a group-living cichlid fish. PLOS ONE 10 (11): 
e0142552. 

Kopman, V., Laut, J., Polverino, G. and Porfiri, M. (2013): Closed-loop control of zebrafish 
response using a bioinspired robotic-fish in a preference test. Journal of The Royal 
Society Interface 10 (78). 

Kotrschal, K., van Staaden, M.J. and Huber, R. (1998): Fish brains: evolution and 
environmental relationships. Reviews in Fish Biology and Fisheries 8 (4): 373-408. 

Kouamélan, E.P., Koné, T., N'Douba, V. and Ollevier, F. (2006): Food habits and trophic 
resource partitioning among three mormyrid fishes from man-made Lake Ayame, Ivory 
Coast. African Zoology 41 (2): 266-274. 

Kouamélan, P.E., Teugels, G.G., Gourène, G., Ollevier, F. and Thys van den Audenaerde, 
D.F.E. (1999): The effect of a man-made lake on the diet of the African electric fish 
Mormyrus rume Valenciennes, 1846 (Osteoglossiformes; Mormyridae). Hydrobiologia 
380 (1-3): 141-151. 



REFERENCES 
 

259 
 

Kramer, B. (1974): Electric organ discharge interaction during interspecific agonistic behaviour 
in freely swimming mormyrid fish. Journal of Comparative Physiology A: 
Neuroethology, Sensory, Neural, and Behavioral Physiology 93 (3): 203-235. 

Kramer, B. (1976a): The attack frequency of Gnathonemus petersii towards electrically silent 
(denervated) and intact conspecifics, and towards another mormyrid (Brienomyrus 
niger). Behavioral Ecology and Sociobiology 1 (4): 425-446. 

Kramer, B. (1976b): Electric signalling during aggressive behaviour in Mormyrus rume 
(Mormyridae, Teleostei). Naturwissenschaften 63 (1): 48-49. 

Kramer, B. (1976c): Flight-associated discharge pattern in a weakly electric fish, Gnathonemus 
petersii (Mormyridae, Teleostei). Behaviour 59 (1): 88-94. 

Kramer, B. (1978): Spontaneous discharge rhythms and social signalling in the weakly electric 
fish Pollimyrus isidori (Cuvier et Valenciennes) (Mormyridae, Teleostei). Behavioral 
Ecology and Sociobiology 4 (1): 61-74. 

Kramer, B. (1979): Electric and motor responses of the weakly electric fish, Gnathonemus 
petersii (Mormyridae), to play-back of social signals. Behavioral Ecology and 
Sociobiology 6 (1): 67-79. 

Kramer, B. (1987): The sexually dimorphic jamming avoidance response in the electric fish 
Eigenmannia (Teleostei, Gymnotiformes). Journal of Experimental Biology 130 (1): 39-
62. 

Kramer, B. (1990): Electrocommunication in teleost fishes: behavior and experiments. In 
Zoophysiology, vol. 29 (ed. S.D. Bradshaw, W. Burggren, H.C. Heller, S. Ishii, H. Langer, 
G. Neuweiler and D.J. Randall). Berlin, Heidelberg: Springer-Verlag. 

Kramer, B. (1996): Electroreception and communication in fishes. In Progress in Zoology, 
vol. 42 (ed. W. Rathmayer). Stuttgart, Jena, Lübeck, Ulm: Gustav Fisher. 

Kramer, B. (2013): A morphological study on species of African Mormyrus (Teleostei: 
Mormyridae) and their electric organ discharges. African Journal of Aquatic Science 38 
(1): 1-19. 

Kramer, B. and Bauer, R. (1976): Agonistic behaviour and electric signalling in a mormyrid fish, 
Gnathonemus petersii. Behavioral Ecology and Sociobiology 1 (1): 45-61. 

Kramer, B. and Kuhn, B. (1994): Species recognition by the sequence of discharge intervals in 
weakly electric fishes of the genus Campylomormyrus (Mormyridae, Teleostei). Animal 
Behaviour 48 (2): 435-445. 

Kramer, B. and Otto, B. (1988): Female discharges are more electrifying: spontaneous 
preference in the electric fish, Eigenmannia (Gymnotiformes, Teleostei). Behavioral 
Ecology and Sociobiology 23 (1): 55-60. 

Kramer, B. and van der Bank, F.H. (2000): The southern churchill, Petrocephalus wesselsi, a 
new species of mormyrid from South Africa defined by electric organ discharges, 
genetics, and morphology. Environmental Biology of Fishes 59 (4): 393-413. 

Krause, J. (1993): Positioning behaviour in fish shoals: a cost–benefit analysis. Journal of Fish 
Biology 43 (Supplement A): 309-314. 

 



REFERENCES 
 

260 
 

Krause, J. (1994): The influence of food competition and predation risk on size‐assortative 
shoaling in juvenile chub (Leuciscus cephalus). Ethology 96 (2): 105-116. 

Krause, J. and Ruxton, G.D. (2002): Living in Groups. Oxford, New York: Oxford University 
Press. 

Krause, J., Winfield, A.F.T. and Deneubourg, J.-L. (2011): Interactive robots in experimental 
biology. Trends in Ecology & Evolution 26 (7): 369-375. 

Kreysing, M., Pusch, R., Haverkate, D., Landsberger, M., Engelmann, J., Ruiter, J., Mora-
Ferrer, C., Ulbricht, E., Grosche, J., Franze, K., Streif, S., Schumacher, S., Makarov, F., 
Kacza, J., Guck, J., Wolburg, H., Bowmaker, J.K., von der Emde, G., Schuster, S., 
Wagner, H.-J., Reichenbach, A. and Francke, M. (2012): Photonic crystal light 
collectors in fish retina improve vision in turbid water. Science 336 (6089): 1700-1703. 

Kroodsma, D.E. (1989): Suggested experimental designs for song playbacks. Animal Behaviour 
37: 600-609. 

Kruusmaa, M., Rieucau, G., Montoya, J.C.C., Markna, R. and Handegard, N.O. (2016): 
Collective responses of a large mackerel school depend on the size and speed of a 
robotic fish but not on tail motion. Bioinspiration & Biomimetics 11 (5): 056020. 

Kumph, J.M. (2000): Maneuvering of a robotic pike. Master's thesis. Massachusetts Institute of 
Technology, Cambridge, MA. 

Kupschus, D. (2017): Electro-communication & dynamics in different sized groups of the 
weakly electric fish Mormyrus rume (Mormyridae, Teleostei). Master's Thesis. 
Rheinische Friedrich-Wilhelms-Universität, Bonn. 

Ladich, F. (2004): Sound production and acoustic communication. In The Senses of Fish: 
Adaptations for the Reception of Natural Stimuli (ed. G. von der Emde, J. Mogdans and 
B.G. Kapoor), pp. 210-230. Dordrecht: Springer Netherlands. 

Ladich, F., Bischof, C., Schleinzer, G. and Fuchs, A. (1992): Intra-and interspecific differences in 
agonistic vocalization in croaking gouramis (genus: Trichopsis, Anabantoidei, 
Teleostei). Bioacoustics 4 (2): 131-141. 

Lamml, M. and Kramer, B. (2006): Differentiation of courtship songs in parapatric sibling 
species of dwarf stonebashers from southern Africa (Mormyridae, Teleostei). 
Behaviour 143 (6): 783-810. 

Lamml, M. and Kramer, B. (2007): Allopatric differentiation in the acoustic communication of a 
weakly electric fish from southern Africa, Marcusenius macrolepidotus (Mormyridae, 
Teleostei). Behavioral Ecology and Sociobiology 61 (3): 385-399. 

Lamml, M. and Kramer, B. (2008): Sound production in the territorial behaviour of the 
Churchill Petrocephalus catostoma (Mormyridae, Teleostei) from the Upper Zambezi 
River. Bioacoustics 18 (2): 151-158. 

Landeau, L. and Terborgh, J. (1986): Oddity and the ‘confusion effect’ in predation. Animal 
Behaviour 34 (5): 1372-1380. 

Landgraf, T., Akkad, R., Nguyen, H., Clément, R.O., Krause, J. and Rojas, R. (2012a): A multi-
agent platform for biomimetic fish. In Biomimetic and Biohybrid Systems. Living 
Machines 2012. Lecture Notes in Computer Science, vol. 7375 (ed. T.J. Prescott, 
N.F.Lepora, A. Mura and P.F.M.J. Verschure), pp. 365-366. Berlin, Heidelberg: Springer. 



REFERENCES 
 

261 
 

Landgraf, T., Bierbach, D., Nguyen, H., Muggelberg, N., Romanczuk, P. and Krause, J. (2016): 
RoboFish: increased acceptance of interactive robotic fish with realistic eyes and 
natural motion patterns by live Trinidadian guppies. Bioinspiration & Biomimetics 11 
(1): 015001. 

Landgraf, T., Nguyen, H., Forgo, S., Schneider, J., Schröer, J., Krüger, C., Matzke, H., 
Clément, R.O., Krause, J. and Rojas, R. (2013): Interactive robotic fish for the analysis 
of swarm behavior. In Advances in Swarm Intelligence. Lecture Notes in Computer 
Science, vol. 7928 (ed. Y. Tan, S. Y. and M. H.), pp. 1-10. Berlin, Heidelberg: Springer. 

Landgraf, T., Nguyen, H., Schröer, J., Szengel, A., Clément, R.J.G., Bierbach, D. and Krause, J. 
(2014): Blending in with the shoal: robotic fish swarms for investigating strategies of 
group formation in guppies. In Biomimetic and Biohybrid Systems. Living Machines 
2014. Lecture Notes in Computer Science, vol. 8608 (ed. A. Duff, N.F. Lepora, A. Mura, 
T.J. Prescott and P.F.M.J. Verschure), pp. 178-189. Cham: Springer. 

Landgraf, T., Oertel, M., Kirbach, A., Menzel, R. and Rojas, R. (2012b): Imitation of the 
honeybee dance communication system by means of a biomimetic robot. In 
Biomimetic and Biohybrid Systems. Living Machines 2012. Lecture Notes in Computer 
Science, vol. 7375 (ed. T.J. Prescott, N.F. Lepora, A. Mura and P.F.M.J. Verschure), 
pp. 132-143. Berlin, Heidelberg: Springer. 

Landsberger, M., von der Emde, G., Haverkate, D., Schuster, S., Gentsch, J., Ulbricht, E., 
Reichenbach, A., Makarov, F. and Wagner, H.-J. (2008): Dim light vision – 
morphological and functional adaptations of the eye of the mormyrid fish, 
Gnathonemus petersii. Journal of Physiology-Paris 102 (4): 291-303. 

Larkin, P.A. and Walton, A. (1969): Fish school size and migration. Journal of the Fisheries 
Research Board of Canada 26 (5): 1372-1374. 

Lastein, S., Hamdani, E.H. and Døving, K.B. (2006): Gender distinction in neural discrimination 
of sex pheromones in the olfactory bulb of crucian carp, Carassius carassius. Chemical 
Senses 31 (1): 69-77. 

Lauzanne, L. (1988): Les habitudes alimentaires des poissons d'eau douce africains. In Biologie 
et Écologie des Poissons d'Eau Douce Africains (ed. C. Lévêque, M.N. Bruton and 
G.W. Ssentongo), pp. 221-242. Paris: O.R.S.T.O.M. 

Lázár, G., Libouban, S. and Szabo, T. (1984): The mormyrid mesencephalon. III. Retinal 
projections in a weakly electric fish, Gnathonemus petersii. Journal of Comparative 
Neurology 230 (1): 1-12. 

Le Maho, Y., Whittington, J.D., Hanuise, N., Pereira, L., Boureau, M., Brucker, M., 
Chatelain, N., Courtecuisse, J., Crenner, F., Friess, B., Grosbellet, E., Kernaléguen, L., 
Olivier, F., Saraux, C., Vetter, N., Viblanc, V.A., Thierry, B., Tremblay, P., Groscolas, R. 
and Le Bohec, C. (2014): Rovers minimize human disturbance in research on wild 
animals. Nature Methods 11 (12): 1242-1244. 

Leal, M. (1999): Honest signalling during prey–predator interactions in the lizard Anolis 
cristatellus. Animal Behaviour 58 (3): 521-526. 

Lebastard, V., Boyer, F. and Lanneau, S. (2016): Reactive underwater object inspection based 
on artificial electric sense. Bioinspiration & Biomimetics 11 (4): 045003. 

 



REFERENCES 
 

262 
 

Lebastard, V., Chevallereau, C., Amrouche, A., Jawad, B., Girin, A., Boyer, F. and Gossiaux, 
P.B. (2010): Underwater robot navigation around a sphere using electrolocation sense 
and kalman filter. In International Conference on Intelligent Robots and Systems, 
pp. 4225-4230. Taipei: IEEE. 

Lebastard, V., Chevallereau, C., Girin, A., Boyer, F. and Gossiaux, P.B. (2012): Localization of 
small objects with electric sense based on kalman filter. In 2012 IEEE International 
Conference on Robotics and Automation (ICRA), pp. 1137-1142. Saint Paul, MN: IEEE. 

Li, T., Li, G., Liang, Y., Cheng, T., Dai, J., Yang, X., Liu, B., Zeng, Z., Huang, Z. and Luo, Y. (2017): 
Fast-moving soft electronic fish. Science Advances 3 (4): e1602045. 

Liley, N.R. (1982): Chemical communication in fish. Canadian Journal of Fisheries and Aquatic 
Sciences 39 (1): 22-35. 

Lissmann, H.-W. (1932): Die Umwelt des Kampffisches (Betta splendens Regan). Zeitschrift für 
vergleichende Physiologie 18 (1): 65-111. 

Lissmann, H.W. (1951): Continuous electrical signals from the tail of a fish, Gymnarchus 
niloticus Cuv. Nature 167 (4240): 201-202. 

Lissmann, H.W. (1958): On the function and evolution of electric organs in fish. Journal of 
Experimental Biology 35 (1): 156-191. 

Lissmann, H.W. (1961): Ecological studies on gymnotids. In Bioelectrogenesis (ed. C. Chagas 
and A. Paes de Carvalho), pp. 215-226. Amsterdam: Elsevier. 

Lissmann, H.W. and Machin, K.E. (1958): The mechanism of object location in Gymnarchus 
niloticus and similar fish. Journal of Experimental Biology 35 (2): 451-486. 

Longrie, N., Poncin, P., Denoël, M., Gennotte, V., Delcourt, J. and Parmentier, E. (2013): 
Behaviours associated with acoustic communication in Nile Tilapia (Oreochromis 
niloticus). PLOS ONE 8 (4): e61467. 

Lönnstedt, O.M., Ferrari, M.C.O. and Chivers, D.P. (2014): Lionfish predators use flared fin 
displays to initiate cooperative hunting. Biology Letters 10 (6): 20140281. 

Lopez, U., Gautrais, J., Couzin, I.D. and Theraulaz, G. (2012): From behavioural analyses to 
models of collective motion in fish schools. Interface Focus 2 (6): 693-707. 

Lorenzini, S. (1678): Osservazioni intorno alle torpedini. Florence. 

Lücker, H. and Kramer, B. (1981): Development of a sex difference in the preferred latency 
response in the weakly electric fish, Pollimyrus isidori (Cuvier et Valenciennes) 
(Mormyridae, Teleostei). Behavioral Ecology and Sociobiology 9 (2): 103-109. 

Lyons-Warren, A.M., Hollmann, M. and Carlson, B.A. (2012): Sensory receptor diversity 
establishes a peripheral population code for stimulus duration at low intensities. 
Journal of Experimental Biology 215 (15): 2586-2600. 

Lyons-Warren, A.M., Kohashi, T., Mennerick, S. and Carlson, B.A. (2013): Detection of 
submillisecond spike timing differences based on delay-line anticoincidence detection. 
Journal of Neurophysiology 110 (10): 2295-2311. 

Ma, K.Y., Chirarattananon, P., Fuller, S.B. and Wood, R.J. (2013): Controlled flight of a 
biologically inspired, insect-scale robot. Science 340 (6132): 603-607. 



REFERENCES 
 

263 
 

Maake, P.A., Gon, O. and Swartz, E.R. (2014): Descriptions of three new species of 
Marcusenius Gill, 1862 (Teleostei: Mormyridae) from South Africa and Mozambique. 
Zootaxa 3780 (3): 455-480. 

Maan, M.E., van der Spoel, M., Jimenez, P.Q., van Alphen, J.J.M. and Seehausen, O. (2006): 
Fitness correlates of male coloration in a Lake Victoria cichlid fish. Behavioral Ecology 
17 (5): 691-699. 

Machnik, P. and Kramer, B. (2008a): Female choice by electric pulse duration: attractiveness 
of the males' communication signal assessed by female bulldog fish, Marcusenius 
pongolensis (Mormyridae, Teleostei). Journal of Experimental Biology 211 (12): 1969-
1977. 

Machnik, P. and Kramer, B. (2008b): A male’s playback signal turns female Marcusenius 
pongolensis receivers on or off depending on his behavioral state. Communicative & 
Integrative Biology 1 (2): 128-131. 

Machnik, P. and Kramer, B. (2011): Novel electrosensory advertising during diurnal resting 
period in male snoutfish, Marcusenius altisambesi (Mormyridae, Teleostei). Journal of 
Ethology 29 (1): 131-142. 

MacIver, M.A., Fontaine, E. and Burdick, J.W. (2004): Designing future underwater vehicles: 
principles and mechanisms of the weakly electric fish. IEEE Journal of Oceanic 
Engineering 29 (3): 651-659. 

MacIver, M.A., Sharabash, N.M. and Nelson, M.E. (2001): Prey-capture behavior in gymnotid 
electric fish: motion analysis and effects of water conductivity. Journal of Experimental 
Biology 204 (3): 543-557. 

Mackenzie, D. (2012): A flapping of wings. Science 335 (6075): 1430-1433. 

Magurran, A.E., Oulton, W.J. and Pitcher, T.J. (1985): Vigilant behaviour and shoal size in 
minnows. Zeitschrift für Tierpsychologie 67 (1-4): 167-178. 

Makris, N.C., Ratilal, P., Jagannathan, S., Gong, Z., Andrews, M., Bertsatos, I., Godø, O.R., 
Nero, R.W. and Jech, J.M. (2009): Critical population density triggers rapid formation 
of vast oceanic fish shoals. Science 323 (5922): 1734-1737. 

Markham, M.R., Ban, Y., McCauley, A.G. and Maltby, R. (2016): Energetics of sensing and 
communication in electric fish: a blessing and a curse in the anthropocene? Integrative 
and Comparative Biology 56 (5): 889-900. 

Marras, S., Killen, S.S., Lindström, J., McKenzie, D.J., Steffensen, J.F. and Domenici, P. (2015): 
Fish swimming in schools save energy regardless of their spatial position. Behavioral 
Ecology and Sociobiology 69 (2): 219-226. 

Marras, S. and Porfiri, M. (2012): Fish and robots swimming together: attraction towards the 
robot demands biomimetic locomotion. Journal of The Royal Society Interface 9 (73): 
1856-1868. 

Marshall, N.J., Jennings, K., McFarland, W.N., Loew, E.R. and Losey, G.S. (2003): Visual 
biology of Hawaiian coral reef fishes. III. Environmental light and an integrated 
approach to the ecology of reef fish vision. Copeia 3: 467-480. 

Martin, P. and Bateson, P. (2007): Measuring Behavior: An Introductory Guide. Cambridge: 
Cambridge University Press. 



REFERENCES 
 

264 
 

Martins, E.P., Ord, T.J. and Davenport, S.W. (2005): Combining motions into complex displays: 
playbacks with a robotic lizard. Behavioral Ecology and Sociobiology 58 (4): 351-360. 

Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R.L., Mendelson, J.R., 
Choset, H., Hu, D.L. and Goldman, D.I. (2014): Sidewinding with minimal slip: snake 
and robot ascent of sandy slopes. Science 346 (6206): 224-229. 

Maximino, C., De Brito, T.M., de Mattos Dias, C.A.G., Gouveia Jr, A. and Morato, S. (2010): 
Scototaxis as anxiety-like behavior in fish. Nature Protocols 5 (2): 209-216. 

Maynard Smith, J. (1976): Evolution and the theory of games: in situations characterized by 
conflict of interest, the best strategy to adopt depends on what others are doing. 
American Scientist 64 (1): 41-45. 

Maynard Smith, J. (1991): Honest signalling: the Philip Sidney game. Animal Behaviour 42 (6): 
1034-1035. 

Maynard Smith, J. and Harper, D.G.C. (1988): The evolution of aggression: can selection 
generate variability? Philosophical Transactions of the Royal Society of London. Series 
B, Biological Sciences 319: 557-570. 

Maynard Smith, J. and Harper, D.G.C. (1995): Animal signals: models and terminology. Journal 
of Theoretical Biology 177 (3): 305-311. 

Maynard Smith, J. and Parker, G.A. (1976): The logic of asymmetric contests. Animal 
Behaviour 24 (1): 159-175. 

Maynard Smith, J. and Price, G.R. (1973): The logic of animal conflict. Nature 246 (5427): 15-
18. 

McCormick, C.A. and Popper, A.N. (1984): Auditory sensitivity and psychophysical tuning 
curves in the elephant nose fish, Gnathonemus petersii. Journal of Comparative 
Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 155 (6): 753-
761. 

McGregor, P.K. (2000): Playback experiments: design and analysis. Acta Ethologica 3 (1): 3-8. 

McGregor, P.K., Catchpole, C.K., Dabelsteen, T., Falls, J.B., Fusani, L., Gerhardt, H.C., 
Gilbert, F., Horn, A.G., Klump, G.M., Kroodsma, D.E., Lambrechts, M.M., 
McComb, K.E., Nelson, D.A., Pepperberg, I.M., Ratcliffe, L., Searcy, W.A. and 
Weary, D.M. (1992): Design of playback experiments: the Thornbridge Hall NATO ARW 
consensus. In Playback and Studies of Animal Communication, vol. 228 (ed. 
P.K. McGregor), pp. 1-9. New York, London: Plenum Press. 

McGregor, P.K. and Westby, G.W.M. (1992): Discrimination of individually characteristic 
electric organ discharges by a weakly electric fish. Animal Behaviour 43 (6): 977-986. 

McQuinn, I.H. (1997): Metapopulations and the Atlantic herring. Reviews in Fish Biology and 
Fisheries 7 (3): 297-329. 

Merron, G.S. (1993): Pack‐hunting in two species of catfish, Clavias gariepinus and 
C. ngamensis, in the Okavango Delta, Botswana. Journal of Fish Biology 43 (4): 575-
584. 

 



REFERENCES 
 

265 
 

Meyer, C.G., Holland, K.N. and Papastamatiou, Y.P. (2005): Sharks can detect changes in the 
geomagnetic field. Journal of The Royal Society Interface 2 (2): 129-130. 

Miller, S. and Sullivan, J.P. (2017): Mormyridae. In Mormyridae - African Weakly Electric 
Fishes. http://cite.scratchpads.eu/mormyrids.myspecies.info/2017-09-
08/Mormyridae.pdf: Accessed: 08 Sep 2017 16:18:10 +0100. 

Mintchev, S., Donati, E., Marrazza, S. and Stefanini, C. (2014): Mechatronic design of a 
miniature underwater robot for swarm operations. In International Conference on 
Robotics and Automation, pp. 2938-2943. Hong Kong: IEEE. 

Mintchev, S., Stefanini, C., Girin, A., Marrazza, S., Orofino, S., Lebastard, V., Manfredi, L., 
Dario, P. and Boyer, F. (2012): An underwater reconfigurable robot with bioinspired 
electric sense. In International Conference on Robotics and Automation, pp. 1149-
1154. Saint Paul, MN: IEEE. 

Mitri, S., Wischmann, S., Floreano, D. and Keller, L. (2013): Using robots to understand social 
behaviour. Biological Reviews 88 (1): 31-39. 

Möhres, F.P. (1957): Elektrische Entladungen im Dienste der Revierabgrenzung bei Fischen. 
Naturwissenschaften 44 (15): 431-432. 

Moller, P. (1970): ‘Communication’ in weakly electric fish, Gnathonemus niger (Mormyridae) I. 
Variation of electric organ discharge (EOD) frequency elicited by controlled electric 
stimuli. Animal Behaviour 18 (4): 768-786. 

Moller, P. (1976): Electric signals and schooling behavior in a weakly electric fish, Marcusenius 
cyprinoides L. (Mormyriformes). Science 193 (4254): 697-699. 

Moller, P. (1980): Electroreception and the behaviour of mormyrid electric fish. Trends in 
Neurosciences 3 (5): 105-109. 

Moller, P. (1995): Electric Fishes: History and Behavior. London: Chapman & Hall. 

Moller, P. (2002): Multimodal sensory integration in weakly electric fish: a behavioral account. 
Journal of Physiology-Paris 96 (5): 547-556. 

Moller, P. and Bauer, R. (1973): ‘Communication’ in weakly electric fish, Gnathonemus petersii 
(Mormyridae) II. Interaction of electric organ discharge activities of two fish. Animal 
Behaviour 21 (3): 501-512. 

Moller, P., Schugardt, C. and Kirschbaum, F. (2004): Permanent and seasonal expressions of 
sexual dimorphisms in a weakly electric fish, Mormyrus rume proboscirostris Boulenger 
1898 (Mormyridae, Teleostei). Environmental Biology of Fishes 70 (2): 175-184. 

Moller, P. and Serrier, J. (1995): Controlled interactions in pairs of fish. In Electric Fishes: 
History and Behavior (ed. P. Moller). London: Chapman & Hall. 

Moller, P., Serrier, J., Belbenoit, P. and Push, S. (1979): Notes on ethology and ecology of the 
Swashi River mormyrids (Lake Kainji, Nigeria). Behavioral Ecology and Sociobiology 4 
(4): 357-368. 

Moller, P., Serrier, J. and Bowling, D. (1989): Electric organ discharge displays during social 
encounter in the weakly electric fish Brienomyrus niger L. (Mormyridae). Ethology 82 
(3): 177-191. 



REFERENCES 
 

266 
 

Moller, P., Serrier, J., Squire, A. and Boudinot, M. (1982): Social spacing in the mormyrid fish 
Gnathonemus petersii (Pisces): a multisensory approach. Animal Behaviour 30 (3): 641-
650. 

Moller, P. and Szabo, T. (1981): Lesions in the nucleus mesencephali exterolateralis: Effects on 
electrocommunication in the mormyrid fish Gnathonemus petersii (Mormyriformes). 
Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral 
Physiology 144 (3): 327-333. 

Mondada, F., Halloy, J.I., Martinoli, A., Correll, N., Gribovskiy, A., Sempo, G., Siegwart, R. and 
Deneubourg, J.-L. (2013): A general methodology for the control of mixed natural-
artificial societies. In Handbook of Collective Robotics - Fundamentals and Challenges 
(ed. S. Kernbach): Pan Stanford Publishing. 

Montgomery, J., Bleckmann, H. and Coombs, S. (2014): Sensory ecology and neuroethology of 
the lateral line. In The Lateral Line System (ed. S. Coombs, H. Bleckmann, R.R. Fay and 
A.N. Popper), pp. 121-150. New York: Springer New York. 

Montgomery, J.C., Baker, C.F. and Carton, A.G. (1997): The lateral line can mediate rheotaxis 
in fish. Nature 389 (6654): 960-963. 

Morris, M.R., Mussel, M. and Ryan, M.J. (1995): Vertical bars on male Xiphophorus 
multilineatus: a signal that deters rival males and attracts females. Behavioral Ecology 
6 (3): 274-279. 

Murphy, M.A., Thompson, N.L. and Schul, J. (2016): Keeping up with the neighbor: a novel 
mechanism of call synchrony in Neoconocephalus ensiger katydids. Journal of 
Comparative Physiology A 202 (3): 225-234. 

Murray, R.W. (1960): Electrical sensitivity of the ampullae of Lorenzini. Nature 187 (4741): 
957-957. 

Nachtigall, W. (1998): Bionik. Grundlagen und Beispiele für Ingenieure und 
Naturwissenschaftler. Berlin, Heidelberg: Springer-Verlag. 

Nagel, R., Kirschbaum, F. and Tiedemann, R. (2017): Electric organ discharge diversification in 
mormyrid weakly electric fish is associated with differential expression of voltage-
gated ion channel genes. Journal of Comparative Physiology A 203 (3): 183-195. 

Narins, P.M., Grabul, D.S., Soma, K.K., Gaucher, P. and Hödl, W. (2005): Cross-modal 
integration in a dart-poison frog. Proceedings of the National Academy of Sciences 102 
(7): 2425-2429. 

Nelson, M.E. and MacIver, M.A. (2006): Sensory acquisition in active sensing systems. Journal 
of Comparative Physiology A 192 (6): 573-586. 

Neumeyer, C. (1992): Tetrachromatic color vision in goldfish: evidence from color mixture 
experiments. Journal of Comparative Physiology A 171 (5): 639-649. 

Neusel, G. (2014): Electrocommunication and social behaviour in groups of the weakly electric 
fish Gnathonemus petersii (Mormyridae, Teleostei). Master's thesis. Rheinische 
Friedrich-Wilhelms-Universität, Bonn. 

Nilsson, G. (1996): Brain and body oxygen requirements of Gnathonemus petersii, a fish with 
an exceptionally large brain. Journal of Experimental Biology 199 (3): 603-607. 



REFERENCES 
 

267 
 

Nordeng, H. (1977): A pheromone hypothesis for homeward migration in anadromous 
salmonids. Oikos 28: 155-159. 

Northcutt, R.G. (1980): Anatomical evidence of electroreception in the coelacanth (Latimeria 
chalumnae). Anatomia, Histologia, Embryologia 9 (4): 289-295. 

Nøttestad, L. and Axelsen, B.E. (1999): Herring schooling manoeuvres in response to killer 
whale attacks. Canadian Journal of Zoology 77 (10): 1540-1546. 

Nwani, C.D., Odoh, G.E., Ude, E.F. and Okogwu, O.I. (2011): Food and feeding habits of 
Gnathonemus petersii (Osteichthyes: Mormyridae) in Anambra River, Nigeria. 
International Aquatic Research 3: 45-51. 

O'Connor, K.I., Metcalfe, N.B. and Taylor, A.C. (1999): Does darkening signal submission in 
territorial contests between juvenile Atlantic salmon, Salmo salar? Animal Behaviour 
58 (6): 1269-1276. 

Oehlert, B. (1958): Kampf und Paarbildung einiger Cichliden. Zeitschrift für Tierpsychologie 15 
(2): 141-174. 

Orlov, A.A., Baron, V.D. and Golubtsov, A.S. (2009): Responses of the electric generator 
system of the African freshwater elephantfish Mormyrus kannume (Mormyridae, 
Mormyriformes) to electrical stimuli. Doklady Biological Sciences 426 (1): 225-227. 

Owens, I.P.F. and Hartley, I.R. (1998): Sexual dimorphism in birds: why are there so many 
different forms of dimorphism? Proceedings of the Royal Society of London B: 
Biological Sciences 265: 397-407. 

Paintner, S. and Kramer, B. (2003): Electrosensory basis for individual recognition in a weakly 
electric, mormyrid fish, Pollimyrus adspersus (Günther, 1866). Behavioral Ecology and 
Sociobiology 55 (2): 197-208. 

Pannhausen, S. (2017): Group dynamics, electric behaviour and motor-interactions in natural 
and mixed groups of the weakly electric fish Mormyrus rume (Mormyridae, Teleostei). 
Master's thesis. Rheinische Friedrich-Wilhelms-Universität, Bonn. 

Parker, G.A. (1974): Assessment strategy and the evolution of fighting behaviour. Journal of 
Theoretical Biology 47 (1): 223-243. 

Parrish, J.K. (1992): Do predators 'shape' fish schools: interactions between predators and 
their schooling prey. Netherlands Journal of Zoology 42 (2-3): 358-370. 

Parrish, J.K. and Edelstein-Keshet, L. (1999): Complexity, pattern, and evolutionary trade-offs 
in animal aggregation. Science 284 (5411): 99-101. 

Parrish, J.K. and Hamner, W.M. (1997): Animal Groups in Three Dimensions: How Species 
Aggregate. Cambridge: Cambridge University Press. 

Parrish, J.K., Viscido, S.V. and Grünbaum, D. (2002): Self-organized fish schools: an 
examination of emergent properties. The Biological Bulletin 202 (3): 296-305. 

Partan, S.R., Larco, C.P. and Owens, M.J. (2009): Wild tree squirrels respond with multisensory 
enhancement to conspecific robot alarm behaviour. Animal Behaviour 77 (5): 1127-
1135. 



REFERENCES 
 

268 
 

Partridge, B.L. (1980): The effect of school size on the structure and dynamics of minnow 
schools. Animal Behaviour 28 (1): 68-77. 

Partridge, B.L. (1981): Internal dynamics and the interrelations of fish in schools. Journal of 
Comparative Physiology A 144 (3): 313-325. 

Partridge, B.L. and Pitcher, T.J. (1980): The sensory basis of fish schools: relative roles of 
lateral line and vision. Journal of Comparative Physiology A 135 (4): 315-325. 

Patricelli, G.L., Coleman, S.W. and Borgia, G. (2006): Male satin bowerbirds, Ptilonorhynchus 
violaceus, adjust their display intensity in response to female startling: an experiment 
with robotic females. Animal Behaviour 71 (1): 49-59. 

Pearish, S., Hostert, L. and Bell, A.M. (2017): A standardized method for quantifying consistent 
individual differences in schooling behaviour. Journal of Fish Biology 90 (1): 443-450. 

Pedraja, F., Perrone, R., Silva, A. and Budelli, R. (2016): Passive and active electroreception 
during agonistic encounters in the weakly electric fish Gymnotus omarorum. 
Bioinspiration & Biomimetics 11 (6): 065002. 

Peters, R.C. and Bretschneider, F. (1972): Electric phenomena in the habitat of the catfish 
Ictalurus nebulosus LeS. Journal of Comparative Physiology A: Neuroethology, Sensory, 
Neural, and Behavioral Physiology 81 (4): 345-362. 

Peters, R.C., Eeuwes, L.B.M. and Bretschneider, F. (2007): On the electrodetection threshold 
of aquatic vertebrates with ampullary or mucous gland electroreceptor organs. 
Biological Reviews 82 (3): 361-373. 

Pfeiffer, W. (1977): The distribution of fright reaction and alarm substance cells in fishes. 
Copeia 4: 653-665. 

Phamduy, P., Polverino, G., Fuller, R.C. and Porfiri, M. (2014): Fish and robot dancing 
together: bluefin killifish females respond differently to the courtship of a robot with 
varying color morphs. Bioinspiration & Biomimetics 9 (3): 036021. 

Picciolo, A.R. (1964): Sexual and nest discrimination in anabantid fishes of the genera Colisa 
and Trichogaster. Ecological Monographs 34 (1): 53-77. 

Piccolino, M. and Bresadola, M. (2002): Drawing a spark from darkness: John Walsh and 
electric fish. TRENDS in Neurosciences 25 (1): 51-57. 

Pickens, P.E. and McFarland, W.N. (1964): Electric discharge and associated behaviour in the 
stargazer. Animal Behaviour 12 (2): 362-367. 

Pitcher, T. (1979): Sensory information and the organization of behaviour in a shoaling cyprinid 
fish. Animal Behaviour 27 (1): 126-149. 

Pitcher, T.J., Magurran, A.E. and Edwards, J.I. (1985): Schooling mackerel and herring choose 
neighbours of similar size. Marine Biology 86 (3): 319-322. 

Pitcher, T.J., Magurran, A.E. and Winfield, I.J. (1982): Fish in larger shoals find food faster. 
Behavioral Ecology and Sociobiology 10 (2): 149-151. 

Pitcher, T.J. and Parrish, J.K. (1993): Functions of Shoaling Behaviour in Teleosts In Behaviour 
of Teleost Fishes (ed. P.T. J.), pp. 363-439. London: Chapman & Hall. 

 



REFERENCES 
 

269 
 

Pitcher, T.J., Partridge, B.L. and Wardle, C.S. (1976): A blind fish can school. Science 194 
(4268): 963-965. 

Pitcher, T.J. and Wyche, C.J. (1983): Predator-avoidance behaviours of sand-eel schools: why 
schools seldom split. In Predators and Prey in Fishes (ed. D.L.G. Noakes, D.G. Lindquist, 
G.S. Helfman and J.A. Ward), pp. 193-204. The Hague: Dr W. Junk Publishers. 

Plenderleith, M., van Oosterhout, C., Robinson, R.L. and Turner, G.F. (2005): Female 
preference for conspecific males based on olfactory cues in a Lake Malawi cichlid fish. 
Biology Letters 1 (4): 411-414. 

Pohlmann, K., Grasso, F.W. and Breithaupt, T. (2001): Tracking wakes: the nocturnal 
predatory strategy of piscivorous catfish. Proceedings of the National Academy of 
Sciences 98 (13): 7371-7374. 

Poling, K.R., Fraser, E.J. and Sorensen, P.W. (2001): The three steroidal components of the 
goldfish preovulatory pheromone signal evoke different behaviors in males. 
Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 
129 (2): 645-651. 

Pollak, E.I., Becker, L.R. and Haynes, K. (1978): Sensory control of mating in the blue gourami, 
Trichogaster trichopterus (Pisces, Belontiidae). Behavioral Biology 22 (1): 92-103. 

Polverino, G., Abaid, N., Kopman, V., Macrì, S. and Porfiri, M. (2012): Zebrafish response to 
robotic fish: preference experiments on isolated individuals and small shoals. 
Bioinspiration & Biomimetics 7 (3): 036019. 

Polverino, G., Phamduy, P. and Porfiri, M. (2013): Fish and robots swimming together in a 
water tunnel: robot color and tail-beat frequency influence fish behavior. PLOS ONE 8 
(10): e77589. 

Polverino, G. and Porfiri, M. (2013a): Mosquitofish (Gambusia affinis) responds differentially 
to a robotic fish of varying swimming depth and aspect ratio. Behavioural Brain 
Research 250 (0): 133-138. 

Polverino, G. and Porfiri, M. (2013b): Zebrafish (Danio rerio) behavioural response to 
bioinspired robotic fish and mosquitofish (Gambusia affinis). Bioinspiration & 
Biomimetics 8 (4): 044001. 

Popper, A.N. and Fay, R.R. (1993): Sound detection and processing by fish: critical review and 
major research questions. Brain, Behavior and Evolution 41 (1): 14-38. 

Popper, A.N. and Lu, Z. (2000): Structure–function relationships in fish otolith organs. Fisheries 
Research 46 (1): 15-25. 

Post, N. and von der Emde, G. (1999): The “novelty response” in an electric fish: response 
properties and habituation. Physiology & Behavior 68 (1): 115-128. 

Prume, J. (2015a): Elektrische Reaktionen des freischwimmenden schwach elektrischen Fisches 
Gnathonemus petersii auf interaktive 'Echo Responses' und statische Playbacks einer 
elektrokommunizierenden Attrappe. Bachelor's thesis. Rheinische Friedrich-Wilhelms-
Universität, Bonn. 



REFERENCES 
 

270 
 

Prume, J. (2015b): Elektrische und motorische Reaktionen des freischwimmenden, schwach 
elektrischen Fisches Gnathonemus petersii auf aggressive Signale und interaktive "Echo 
Antworten" einer elektrokommunizierenden Attrappe. Unpublished project thesis. 
Rheinische Friedrich-Wilhelms-Universität, Bonn. 

Pusch, R., von der Emde, G., Hollmann, M., Bacelo, J., Nöbel, S., Grant, K. and Engelmann, J. 
(2008): Active sensing in a mormyrid fish: electric images and peripheral modifications 
of the signal carrier give evidence of dual foveation. Journal of Experimental Biology 
211 (6): 921-934. 

Quinn, T.P. (2005): The Behavior and Ecology of Pacific Salmon and Trout. Seattle, London: 
University of Washington Press. 

Ranta, E., Peuhkuri, N. and Laurila, A. (1994): A theoretical exploration of antipredatory and 
foraging factors promoting phenotype-assorted fish schools. Ecoscience 1 (2): 99-106. 

Reaney, L.T., Sims, R.A., Sims, S.W.M., Jennions, M.D. and Backwell, P.R.Y. (2008): 
Experiments with robots explain synchronized courtship in fiddler crabs. Current 
Biology 18 (2): R62-R63. 

Rigley, L. and Marshall, J.A. (1973): Sound production by the elephant-nose fish, 
Gnathonemus petersi (Pisces, Mormyridae). Copeia 1: 134-135. 

Rizzolatti, G. and Arbib, M.A. (1998): Language within our grasp. Trends in Neurosciences 21 
(5): 188-194. 

Rodrigues, R.R., Carvalho, L.N., Zuanon, J. and Del-Claro, K. (2009): Color changing and 
behavioral context in the Amazonian Dwarf Cichlid Apistogramma hippolytae 
(Perciformes). Neotropical Ichthyology 7 (4): 641-646. 

Rojas, R. and Moller, P. (2002): Multisensory contributions to the shelter-seeking behavior of a 
mormyrid fish, Gnathonemus petersii Günther (Mormyridae, Teleostei): the role of 
vision, and the passive and active electrosenses. Brain, Behavior and Evolution 59 (4): 
211-221. 

Romano, D., Benelli, G., Donati, E., Remorini, D., Canale, A. and Stefanini, C. (2017): Multiple 
cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting 
fishes. Scientific Reports 7 (1): 4667. 

Rosenthal, G.G. and Evans, C.S. (1998): Female preference for swords in Xiphophorus helleri 
reflects a bias for large apparent size. Proceedings of the National Academy of Sciences 
95 (8): 4431-4436. 

Rosenthal, G.G. and Ryan, M.J. (2005): Assortative preferences for stripes in danios. Animal 
Behaviour 70 (5): 1063-1066. 

Rossi, C., Coral, W. and Barrientos, A. (2013): Robotic fish to lead the school. In Swimming 
Physiology of Fish (ed. A.P. Palstra and J.V. Planas), pp. 407-421. Berlin, Heidelberg: 
Springer-Verlag. 

Rothstein, S.I. and Fleischer, R.C. (1987): Vocal dialects and their possible relation to honest 
status signalling in the brown-headed cowbird. The Condor 89 (1): 1-23. 

Ruberto, T., Mwaffo, V., Singh, S., Neri, D. and Porfiri, M. (2016): Zebrafish response to a 
robotic replica in three dimensions. Royal Society Open Science 3 (10): 160505. 



REFERENCES 
 

271 
 

Ruberto, T., Polverino, G. and Porfiri, M. (2017): How different is a 3D-printed replica from a 
conspecific in the eyes of a zebrafish? Journal of the Experimental Analysis of Behavior 
107 (2): 279-293. 

Rufo, M. and Smithers, M. (2011): GhostSwimmer™ AUV: applying biomimetics to underwater 
robotics for achievement of tactical relevance. Marine Technology Society Journal 45 
(4): 24-30. 

Russell, C.J., Myers, J.P. and Bell, C.C. (1974): The echo response in Gnathonemus petersii 
(Mormyridae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, 
and Behavioral Physiology 92 (2): 181-200. 

Ryan, M.J. and Cummings, M.E. (2013): Perceptual biases and mate choice. Annual Review of 
Ecology, Evolution, and Systematics 44: 437-459. 

Sand, O. and Karlsen, H.E. (2000): Detection of infrasound and linear acceleration in fishes. 
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 
355: 1295-1298. 

Sänger, K. (1967): Änderungen der Entladungsfrequenzen des elektrischen Organs bei 
verschiedenen Verhaltensweisen eines Nilhechtes (Gnathonemus petersii). Experientia 
23 (10): 868-869. 

Satoh, S., Tanaka, H. and Kohda, M. (2016): Facial recognition in a discus fish (Cichlidae): 
experimental approach using digital models. PLOS ONE 11 (5): e0154543. 

Satou, M., Takeuchi, H.A., Nishii, J., Tanabe, M., Kitamura, S., Okumoto, N. and Iwata, M. 
(1994): Behavioral and electrophysiological evidences that the lateral line is involved in 
the inter-sexual vibrational communication of the himé salmon (landlocked red 
salmon, Oncorhynchus nerka). Journal of Comparative Physiology A: Neuroethology, 
Sensory, Neural, and Behavioral Physiology 174 (5): 539-549. 

Scharrer, E., Smith, S.W. and Palay, S.L. (1947): Chemical sense and taste in the fishes, 
Prionotus and Trichogaster. Journal of Comparative Neurology 86 (2): 183-198. 

Scheffel, A. and Kramer, B. (1997): Electrocommunication and social behaviour in Marcusenius 
senegalensis (Mormyridae, Teleostei). Ethology 103 (5): 404-420. 

Scheffel, A. and Kramer, B. (2006): Intra-and interspecific electrocommunication among 
sympatric mormyrids in the Upper Zambezi River. In Communication in Fishes (ed. 
F. Ladich, S.P. Collin, P. Moller and B.G. Kapoor), pp. 733-751. Enfield, Jersey, 
Plymouth: Science Publishers. 

Scheich, H., Langner, G., Tidemann, C., Coles, R.B. and Guppy, A. (1986): Electroreception and 
electrolocation in platypus. Nature 319 (6052): 401-402. 

Scherer, K.R. (2003): Vocal communication of emotion: a review of research paradigms. 
Speech Communication 40 (1): 227-256. 

Schluger, J.H. and Hopkins, C.D. (1987): Electric fish approach stationary signal sources by 
following electric current lines. Journal of Experimental Biology 130 (1): 359-367. 



REFERENCES 
 

272 
 

Schmickl, T., Bogdan, S., Correia, L., Kernbach, S., Mondada, F., Bodi, M., Gribovskiy, A., 
Hahshold, S., Miklic, D., Szopek, M., Thenius, R. and Halloy, J. (2013): ASSISI: Mixing 
animals with robots in a hybrid society. In Biomimetic and Biohybrid Systems. Living 
Machines 2013. Lecture Notes in Computer Science 8064, vol. 8064 (ed. N.F. Lepora, 
A. Mura, H.G. Krapp, P.F.M.J. Verschure and T.J. Prescott), pp. 441-443. Berlin, 
Heidelberg: Springer. 

Schmickl, T., Thenius, R., Möslinger, C., Timmis, J., Tyrrell, A., Read, M., Hilder, J., Halloy, J., 
Campo, A. and Stefanini, C. (2011): CoCoRo the self-aware underwater swarm. In Fifth 
IEEE Conference on Self-Adaptive and Self-Organizing Systems Workshops, pp. 120-
126. Ann Arbor, MI: IEEE. 

Schmitt, R.J. and Strand, S.W. (1982): Cooperative foraging by yellowtail, Seriola lalandei 
(Carangidae), on two species of fish prey. Copeia 3: 714-717. 

Schmitz, H. and Bousack, H. (2012): Designing a fluidic infrared detector based on the 
photomechanic infrared sensilla in pyrophilous beetles. In Frontiers in Sensing: From 
Biology to Engineering (ed. F.G. Barth, J.A.C. Humphrey and M.V. Srinivasan), pp. 301-
311. Wien: Springer-Verlag. 

Scholz, A.T., Horrall, R.M., Cooper, J.C. and Hasler, A.D. (1976): Imprinting to chemical cues: 
the basis for home stream selection in salmon. Science 192 (4245): 1247-1249. 

Schroeder, T.B.H., Guha, A., Lamoureux, A., VanRenterghem, G., Sept, D., Shtein, M., Yang, J. 
and Mayer, M. (2017): An electric-eel-inspired soft power source from stacked 
hydrogels. Nature 552 (7684): 214-218. 

Schugardt, C. and Kirschbaum, F. (2004): Control of gonadal maturation and regression by 
experimental variation of environmental factors in the mormyrid fish, Mormyrus rume 
proboscirostris. Environmental Biology of Fishes 70 (3): 227-233. 

Schumacher, S. (2017): From perception to cognition: multisensory object recognition and 
navigation in the weakly electric fish Gnathonemus petersii. Dissertation. Rheinische 
Friedrich-Wilhelms-Universität, Bonn. 

Schumacher, S., Burt de Perera, T., Thenert, J. and von der Emde, G. (2016a): Cross-modal 
object recognition and dynamic weighting of sensory inputs in a fish. Proceedings of 
the National Academy of Sciences 113 (27): 7638-7643. 

Schumacher, S., Burt de Perera, T. and von der Emde, G. (2016b): Object discrimination 
through active electrolocation: Shape recognition and the influence of electrical noise. 
Journal of Physiology-Paris. 

Schumacher, S., Burt de Perera, T. and von der Emde, G. (2017a): Electrosensory capture 
during multisensory discrimination of nearby objects in the weakly electric fish 
Gnathonemus petersii. Scientific Reports 7: 43665. 

Schumacher, S., von der Emde, G. and Burt de Perera, T. (2017b): Sensory influence on 
navigation in the weakly electric fish Gnathonemus petersii. Animal Behaviour 132: 1-
12. 

Schuster, S. (2001): Count and spark? The echo response of the weakly electric fish 
Gnathonemus petersii to series of pulses. Journal of Experimental Biology 204 (8): 
1401-1412. 

 



REFERENCES 
 

273 
 

Schuster, S. (2006): Integration of the electrosense with other senses: implications for 
communication. In Communication in Fishes (ed. F. Ladich, S.P. Collin, P. Moller and 
B.G. Kapoor), pp. 781-804. Enfield, Jersey, Plymouth: Science Publishers. 

Schuster, S. and Amtsfeld, S. (2002): Template-matching describes visual pattern-recognition 
tasks in the weakly electric fish Gnathonemus petersii. Journal of Experimental Biology 
205 (4): 549-557. 

Seehausen, O., Terai, Y., Magalhaes, I.S., Carleton, K.L., Mrosso, H.D.J., Miyagi, R., 
van der Sluijs, I., Schneider, M.V., Maan, M.E. and Tachida, H. (2008): Speciation 
through sensory drive in cichlid fish. Nature 455 (7213): 620. 

Sefc, K.M., Brown, A.C. and Clotfelter, E.D. (2014): Carotenoid-based coloration in cichlid 
fishes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative 
Physiology 173: 42-51. 

Semple, S. and McComb, K. (2000): Perception of female reproductive state from vocal cues in 
a mammal species. Proceedings of the Royal Society of London B: Biological Sciences 
267: 707-712. 

Seok, S., Wang, A., Chuah, M.Y.M., Hyun, D.J., Lee, J., Otten, D.M., Lang, J.H. and Kim, S. 
(2015): Design principles for energy-efficient legged locomotion and implementation 
on the MIT Cheetah robot. IEEE/ASME Transactions on Mechatronics 20 (3): 1117-
1129. 

Seyfarth, R.M., Cheney, D.L. and Marler, P. (1980): Monkey responses to three different alarm 
calls: evidence of predator classification and semantic communication. Science 210 
(4471): 801-803. 

Sfakiotakis, M., Kazakidi, A. and Tsakiris, D.P. (2015): Octopus-inspired multi-arm robotic 
swimming. Bioinspiration & Biomimetics 10 (3): 035005. 

Shannon, C.E. and Weaver, W. (1998): The Mathematical Theory of Communication: 
University of Illinois Press. 

Shaw, E. (1978): Schooling fishes: the school, a truly egalitarian form of organization in which 
all members of the group are alike in influence, offers substantial benefits to its 
participants. American Scientist 66 (2): 166-175. 

Shawkey, M.D. and D'Alba, L. (2017): Interactions between colour-producing mechanisms and 
their effects on the integumentary colour palette. Philosophical Transactions of the 
Royal Society B 372: 20160536. 

Shi, Q., Miyagishima, S., Konno, S., Fumino, S., Ishii, H., Takanishii, A., Laschi, C., Mazzolai, B., 
Mattoli, V. and Dario, P. (2010): Development of the hybrid wheel-legged mobile 
robot WR-3 designed to interact with rats. In 3rd IEEE RAS and EMBS International 
Conference on Biomedical Robotics and Biomechatronics, pp. 887-892. Tokyo: IEEE. 

Siebeck, U.E. (2013): Communication in the ultraviolet: unravelling the secret language of fish. 
In Biocommunication of Animals (ed. G. Witzany), pp. 299-320. Heidelberg, New York, 
London: Springer. 

Siebeck, U.E., Parker, A.N., Sprenger, D., Mäthger, L.M. and Wallis, G. (2010): A species of 
reef fish that uses ultraviolet patterns for covert face recognition. Current Biology 20 
(5): 407-410. 



REFERENCES 
 

274 
 

Simpson, M.J.A. (1968): The display of the Siamese fighting fish, Betta splendens. Animal 
Behaviour Monographs 1: 1-73. 

Smeets, M. (2013): Social behavior and electrocommunication in Campylomormyrus elephas. 
Master's thesis. Rheinische Friedrich-Wilhelms-Universität, Bonn. 

Solberg, J.R., Lynch, K.M. and MacIver, M.A. (2008): Active electrolocation for underwater 
target localization. The International Journal of Robotics Research 27 (5): 529-548. 

Sorensen, P.W. (1992): Hormonally derived sex pheromones in goldfish: a model for 
understanding the evolution of sex pheromone systems in fish. The Biological Bulletin 
183 (1): 173-177. 

Sorensen, P.W., Fine, J.M., Dvornikovs, V., Jeffrey, C.S., Shao, F., Wang, J., Vrieze, L.A., 
Anderson, K.R. and Hoye, T.R. (2005): Mixture of new sulfated steroids functions as a 
migratory pheromone in the sea lamprey. Nature Chemical Biology 1 (6): 324. 

Spinello, C., Macrì, S. and Porfiri, M. (2013): Acute ethanol administration affects zebrafish 
preference for a biologically inspired robot. Alcohol 47 (5): 391-398. 

Stefanini, C., Orofino, S., Manfredi, L., Mintchev, S., Marrazza, S., Assaf, T., Capantini, L., 
Sinibaldi, E., Grillner, S. and Wallén, P. (2012): A novel autonomous, bioinspired 
swimming robot developed by neuroscientists and bioengineers. Bioinspiration & 
Biomimetics 7 (2): 025001. 

Stevens, J.A., Sukhum, K.V. and Carlson, B.A. (2013): Independent evolution of visual and 
electrosensory specializations in different lineages of mormyrid electric fishes. Brain, 
Behavior and Evolution 82 (3): 185-198. 

Stipetić, E. (1939): Über das Gehörorgan der Mormyriden. Journal of Comparative Physiology 
A: Neuroethology, Sensory, Neural, and Behavioral Physiology 26 (5): 740-752. 

Stoddard, P.K. (1999): Predation enhances complexity in the evolution of electric fish signals. 
Nature 400 (6741): 254-256. 

Stoddard, P.K. (2002a): Electric signals: predation, sex, and environmental constraints. 
Advances in the Study of Behavior 31: 201-242. 

Stoddard, P.K. (2002b): The evolutionary origins of electric signal complexity. Journal of 
Physiology-Paris 96 (5): 485-491. 

Stoddard, P.K., Markham, M.R., Salazar, V.L. and Allee, S. (2007): Circadian rhythms in electric 
waveform structure and rate in the electric fish Brachyhypopomus pinnicaudatus. 
Physiology & Behavior 90 (1): 11-20. 

Strager, H. (1995): Pod-specific call repertoires and compound calls of killer whales, Orcinus 
orca Linnaeus, 1758, in the waters of northern Norway. Canadian Journal of Zoology 
73 (6): 1037-1047. 

Strübin, C., Steinegger, M. and Bshary, R. (2011): On group living and collaborative hunting in 
the yellow saddle goatfish (Parupeneus cyclostomus). Ethology 117 (11): 961-969. 

Sukhum, K.V., Freiler, M.K., Wang, R. and Carlson, B.A. (2016): The costs of a big brain: 
extreme encephalization results in higher energetic demand and reduced hypoxia 
tolerance in weakly electric African fishes. Proceedings of the Royal Society B 283: 
20162157. 



REFERENCES 
 

275 
 

Sullivan, J.P., Lavoué, S. and Hopkins, C.D. (2002): Discovery and phylogenetic analysis of a 
riverine species flock of African electric fishes (Mormyridae: Teleostei). Evolution 56 
(3): 597-616. 

Sullivan, J.P., Lavoué, S. and Hopkins, C.D. (2016): Cryptomyrus: a new genus of Mormyridae 
(Teleostei, Osteoglossomorpha) with two new species from Gabon, West-Central 
Africa. ZooKeys 561: 117-150. 

Sumpter, D.J.T., Krause, J., James, R., Couzin, I.D. and Ward, A.J.W. (2008): Consensus 
decision making by fish. Current Biology 18 (22): 1773-1777. 

Suzuki, T.N., Wheatcroft, D. and Griesser, M. (2016): Experimental evidence for compositional 
syntax in bird calls. Nature Communications 7: 10986. 

Swain, D.T., Couzin, I.D. and Leonard, N.E. (2012): Real-time feedback-controlled robotic fish 
for behavioral experiments with fish schools. Proceedings of the IEEE 100 (1): 150-163. 

Szabo, T. (1965): Sense organs of the lateral line system in some electric fish of the 
Gymnotidae, Mormyridae and Gymnarchidae. Journal of Morphology 117 (2): 229-249. 

Szabo, T., Enger, P.S. and Libouban, S. (1979): Electrosensory systems in the mormyrid fish, 
Gnathonemus petersii: special emphasis on the fast conducting pathway. Journal de 
Physiologie 75 (4): 409-420. 

Szabo, T. and Wersäll, J. (1970): Ultrastructure of an electroreceptor (mormyromast) in a 
mormyrid fish, Gnathonemus petersii. II. Journal of Ultrastructure Research 30 (5-6): 
473-490. 

Szamier, R.B. and Bennett, M.V.L. (1974): Special cutaneous receptor organs of fish. VII. 
Ampullary organs of mormyrids. Journal of Morphology 143 (4): 365-383. 

Takahashi, E., Hyomoto, K., Riquimaroux, H., Watanabe, Y., Ohta, T. and Hiryu, S. (2014): 
Adaptive changes in echolocation sounds by Pipistrellus abramus in response to 
artificial jamming sounds. Journal of Experimental Biology 217 (16): 2885-2891. 

Tallarovic, S.K. and Zakon, H.H. (2005): Electric organ discharge frequency jamming during 
social interactions in brown ghost knifefish, Apteronotus leptorhynchus. Animal 
Behaviour 70 (6): 1355-1365. 

Taylor, R.C., Klein, B., Stein, J. and Ryan, M.J. (2008): Faux frogs: multimodal signalling and the 
value of robotics in animal behaviour. Animal Behaviour 76 (3): 1089-1097. 

Teeter, J.H., Szamier, R.B. and Bennett, M.V.L. (1980): Ampullary electroreceptors in the 
sturgeon Scaphirhynchus platorynchus (Rafinesque). Journal of Comparative 
Physiology 138 (3): 213-223. 

Terleph, T.A. (2004): The function of agonistic display behaviours in Gnathonemus petersii. 
Journal of Fish Biology 64 (5): 1373-1385. 

Terleph, T.A. and Moller, P. (2003): Effects of social interaction on the electric organ discharge 
in a mormyrid fish, Gnathonemus petersii (Mormyridae, Teleostei). Journal of 
Experimental Biology 206 (14): 2355-2362. 

Teyssedre, C. and Serrier, J. (1986): Temporal spacing of signals in communication, studied in 
weakly-electric mormyrid fish (Teleostei, Pisces). Behavioural Processes 12 (1): 77-98. 



REFERENCES 
 

276 
 

Thünken, T., Bakker, T.C.M. and Baldauf, S.A. (2014): “Armpit effect” in an African cichlid fish: 
self-referent kin recognition in mating decisions of male Pelvicachromis taeniatus. 
Behavioral Ecology and Sociobiology 68 (1): 99-104. 

Tinbergen, N. (1948): Social releasers and the experimental method required for their study. 
The Wilson Bulletin 60 (1): 6-51. 

Tinbergen, N. (1952a): The curious behavior of the stickleback. Scientific American 187 (6): 22-
27. 

Tinbergen, N. (1952b): "Derived" activities: their causation, biological significance, origin, and 
emancipation during evolution. The Quarterly Review of Biology 27 (1): 1-32. 

Tinbergen, N. (1963): On aims and methods of ethology. Zeitschrift für Tierpsychologie 20 (4): 
410-433. 

Toerring, M.-J. and Moller, P. (1984): Locomotor and electric displays associated with 
electrolocation during exploratory behavior in mormyrid fish. Behavioural Brain 
Research 12 (3): 291-306. 

Toerring, M.J. and Belbenoit, P. (1979): Motor programmes and electroreception in mormyrid 
fish. Behavioral Ecology and Sociobiology 4 (4): 369-379. 

Toma, R. (2014a): Auswirkungen eines elektrischenelektrischen Playbacks auf das motorische 
und elektrische Verhalten einer mixed society Mormyrus rume (Mormyridae, 
Teleostei). Unpublished project thesis. Rheinische Friedrich-Wilhelms-Universität, 
Bonn. 

Toma, R. (2014b): Auswirkungen verschiedener Dummy-generierter Playbacks auf die 
motorische und elektrische Antwort von Mormyrus rume (Mormyridae, Teleostei). 
Bachelor's thesis. Rheinische Friedrich-Wilhelms-Universität, Bonn. 

Triantafyllou, M.S. and Triantafyllou, G.S. (1995): An efficient swimming machine. Scientific 
American 272 (3): 64-71. 

Triefenbach, F.A. and Zakon, H.H. (2008): Changes in signalling during agonistic interactions 
between male weakly electric knifefish, Apteronotus leptorhynchus. Animal Behaviour 
75 (4): 1263-1272. 

Turner, G.F. and Pitcher, T.J. (1986): Attack abatement: a model for group protection by 
combined avoidance and dilution. The American Naturalist 128 (2): 228-240. 

Tyack, P.L. (1997): Development and social functions of signature whistles in bottlenose 
dolphins Tursiops truncatus. Bioacoustics: The International Journal of Animal Sound 
and its Recording 8 (1-2): 21-46. 

Tyack, P.L. (2000): Functional aspects of cetacean communication. In Cetacean Societies - Field 
Studies of Dolphins and Wales (ed. J. Mann, R.C. Connor and P.L. Tyack), pp. 270-307. 
Chicago, London: The University of Chicago Press. 

Ulanovsky, N., Fenton, M.B., Tsoar, A. and Korine, C. (2004): Dynamics of jamming avoidance 
in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences 
271: 1467-1475. 



REFERENCES 
 

277 
 

Vabø, R. and Nøttestad, L. (1997): An individual based model of fish school reactions: 
predicting antipredator behaviour as observed in nature. Fisheries Oceanography 6 (3): 
155-171. 

Valentinčič, T. (2004): Taste and olfactory stimuli and behavior in fish. In The Senses of Fish: 
Adaptations for the Reception of Natural Stimuli (ed. G. von der Emde, J. Mogdans and 
B.G. Kapoor), pp. 90-108. Dordrecht: Springer Netherlands. 

van Olst, J.C. and Hunter, J.R. (1970): Some aspects of the organization of fish schools. Journal 
of the Fisheries Research Board of Canada 27 (7): 1225-1238. 

Vaughan, R., Sumpter, N., Henderson, J., Frost, A. and Cameron, S. (2000): Experiments in 
automatic flock control. Robotics and Autonomous Systems 31 (1): 109-117. 

Vierke, J. (1978): Labyrinthfische und verwandte Arten. Wuppertal-Elberfeld: Engelbert Pfriem 
Verlag. 

Volta, A. and Banks, J. (1800): I. On the electricity excited by the mere contact of conducting 
substances of different kinds. The Philosophical Magazine 7 (28): 289-311. 

von Campenhausen, C., Riess, I. and Weissert, R. (1981): Detection of stationary objects by 
the blind cave fish Anoptichthys jordani (Characidae). Journal of Comparative 
Physiology 143 (3): 369-374. 

von der Emde, G. (1990): Discrimination of objects through electrolocation in the weakly 
electric fish, Gnathonemus petersii. Journal of Comparative Physiology A 167 (3): 413-
421. 

von der Emde, G. (1992): Electrolocation of capacitive objects in four species of pulse-type 
weakly electric fish: II. Electric signalling behaviour. Ethology 92 (3): 177-192. 

von der Emde, G. (1994): Active electrolocation helps Gnathonemus petersii to find its prey. 
Naturwissenschaften 81 (8): 367-369. 

von der Emde, G. (1998): Capacitance detection in the wave-type electric fish Eigenmannia 
during active electrolocation. Journal of Comparative Physiology A: Neuroethology, 
Sensory, Neural, and Behavioral Physiology 182 (2): 217-224. 

von der Emde, G. (1999): Active electrolocation of objects in weakly electric fish. Journal of 
Experimental Biology 202 (10): 1205-1215. 

von der Emde, G. (2006): Non-visual environmental imaging and object detection through 
active electrolocation in weakly electric fish. Journal of Comparative Physiology A 192 
(6): 601-612. 

von der Emde, G. (2013): Electroreception. In Neurosciences - From Molecule to Behavior - a 
University Textbook (ed. C.G. Galizia and L.P. M.), pp. 405-419. Berlin Heidelberg: 
Springer-Verlag. 

von der Emde, G., Amey, M., Engelmann, J., Fetz, S., Folde, C., Hollmann, M., Metzen, M. and 
Pusch, R. (2008): Active electrolocation in Gnathonemus petersii: behaviour, sensory 
performance, and receptor systems. Journal of Physiology-Paris 102 (4–6): 279-290. 

von der Emde, G., Behr, K., Bouton, B., Engelmann, J., Fetz, S. and Folde, C. (2010):                 
3-Dimensional scene perception during active electrolocation in a weakly electric pulse 
fish. Frontiers in Behavioral Neuroscience 4: 1-13. 



REFERENCES 
 

278 
 

von der Emde, G. and Bleckmann, H. (1992): Extreme phase sensitivity of afferents which 
innervate mormyromast electroreceptors. Naturwissenschaften 79 (3): 131-133. 

von der Emde, G. and Bleckmann, H. (1998): Finding food: senses involved in foraging for 
insect larvae in the electric fish Gnathonemus petersii. Journal of Experimental Biology 
201 (7): 969-980. 

von der Emde, G., Bousack, H., Huck, C., Mayekar, K., Pabst, M. and Zhang, Y. (2009): Electric 
fishes as natural models for technical sensor systems. In Proceedings of SPIE - The 
International Society for Optical Engineering vol. 7365 (ed. Á.B. Rodríguez-Vázquez, 
R.A. Carmona-Galán and Liñán-CembranoGustavo), pp. 73650B-1-11. 

von der Emde, G. and Fetz, S. (2007): Distance, shape and more: recognition of object features 
during active electrolocation in a weakly electric fish. Journal of Experimental Biology 
210 (17): 3082-3095. 

von der Emde, G., Gebhardt, K. and Behr, K. (2012): Non-visual orientation and 
communication by fishes using electrical fields: A model system for underwater 
robotics. In International Conference on Robotics and Automation, pp. 1143-1148. 
Saint Paul, MN: IEEE. 

von der Emde, G. and Ringer, T. (1992): Electrolocation of capacitive objects in four species of 
pulse‐type weakly electric fish I. Discrimination performance. Ethology 91 (4): 326-338. 

von der Emde, G. and Schwarz, S. (2002): Imaging of objects through active electrolocation in 
Gnathonemus petersii. Journal of Physiology-Paris 96 (5): 431-444. 

von der Emde, G., Schwarz, S., Gomez, L., Budelli, R. and Grant, K. (1998): Electric fish 
measure distance in the dark. Nature 395 (6705): 890. 

von der Emde, G., Sena, L.G., Niso, R. and Grant, K. (2000): The midbrain precommand 
nucleus of the mormyrid electromotor network. Journal of Neuroscience 20 (14): 5483-
5495. 

von Frisch, K. (1941): Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. 
Zeitschrift für vergleichende Physiologie 29: 46-145. 

von Frisch, K. (1965): Die Tänze der Bienen. In Tanzsprache und Orientierung der Bienen (ed. 
K. von Frisch), pp. 3-330. Berlin, Heidelberg: Springer. 

Walton, A.G. and Moller, P. (2010): Maze learning and recall in a weakly electric fish, 
Mormyrus rume proboscirostris Boulenger (Mormyridae, Teleostei) Ethology 116 (10): 
904-919. 

Wang, W., Liu, J., Xie, G., Wen, L. and Zhang, J. (2017): A bio-inspired electrocommunication 
system for small underwater robots. Bioinspiration & Biomimetics 12 (3): 036002. 

Wang, Y., Wang, Z. and Li, J. (2011): Initial design of a biomimetic cuttlefish robot actuated by 
SMA wires. In Third International Conference on Measuring Technology and 
Mechatronics Automation, pp. 425-428. Shanghai: IEEE. 

Ward, A.J.W., Krause, J. and Sumpter, D.J.T. (2012): Quorum decision-making in foraging fish 
shoals. PLOS ONE 7 (3): e32411. 



REFERENCES 
 

279 
 

Ward, A.J.W., Sumpter, D.J.T., Couzin, I.D., Hart, P.J.B. and Krause, J. (2008): Quorum 
decision-making facilitates information transfer in fish shoals. Proceedings of the 
National Academy of Sciences 105 (19): 6948-6953. 

Watanabe, A. and Takeda, K. (1963): The change of discharge frequency by AC stimulus in a 
weak electric fish. Journal of Experimental Biology 40 (1): 57-66. 

Watt, M., Evans, C.S. and Joss, J.M.P. (1999): Use of electroreception during foraging by the 
Australian lungfish. Animal Behaviour 58 (5): 1039-1045. 

Watzlawick, P., Beavin, J.H. and Jackson, D.D. (2007): Menschliche Kommunikation. Formen 
Störungen Paradoxien. Bern: Verlag Hans Huber. 

Webb, B. (2000): What does robotics offer animal behaviour? Animal Behaviour 60 (5): 545-
558. 

Webb, B. (2008): Using robots to understand animal behavior. Advances in the Study of 
Behavior 38: 1-58. 

Weber, H. (1963): Die Sinnesfunktion der freien Bauchflossenstrahlen der Labyrinthfische 
(Anabantidae) und ihr Zusammenwirken mit den Augen. Journal of Comparative 
Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 47 (1): 77-
110. 

Weihs, D. (1973): Hydromechanics of fish schooling. Nature 241 (5387): 290-291. 

Weilgart, L. and Whitehead, H. (1997): Group-specific dialects and geographical variation in 
coda repertoire in South Pacific sperm whales. Behavioral Ecology and Sociobiology 40 
(5): 277-285. 

Werneyer, M. and Kramer, B. (2002): Intraspecific agonistic interactions in freely swimming 
mormyrid fish, Marcusenius macrolepidotus (South African form). Journal of Ethology 
20 (2): 107-121. 

Werneyer, M. and Kramer, B. (2005): Electric signalling and reproductive behaviour in a 
mormyrid fish, the bulldog Marcusenius macrolepidotus (South African form). Journal 
of Ethology 23 (2): 113-125. 

Werns, S. and Howland, H.C. (1976): Size and allometry of the saccular air bladder of 
Gnathonemus petersi (Pisces: Mormyridae): implications for hearing. Copeia 1: 200-
202. 

Westby, G.W.M. (1975): Has the latency dependent response of Gymnotus carapo to 
discharge-triggered stimuli a bearing on electric fish communication? Journal of 
Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 
96 (4): 307-341. 

Westby, G.W.M. (1979): Electrical communication and jamming avoidance betwen resting 
Gymnotus carapo. Behavioral Ecology and Sociobiology 4 (4): 381-393. 

Westby, G.W.M. (1984): Electroreception and communication in electric fish. Science Progress 
69 (274): 291-313. 

Wilbrecht, L. and Nottebohm, F. (2003): Vocal learning in birds and humans. Developmental 
Disabilities Research Reviews 9 (3): 135-148. 



REFERENCES 
 

280 
 

Wiley, D., Ware, C., Bocconcelli, A., Cholewiak, D., Friedlaender, A., Thompson, M. and 
Weinrich, M. (2011): Underwater components of humpback whale bubble-net feeding 
behaviour. Behaviour 148 (5): 575-602. 

Wilkens, L.A. and Hofmann, M.H. (2005): Behavior of animals with passive, low-frequency 
electrosensory systems. In Electroreception (ed. T.H. Bullock, C.D. Hopkins, 
A.N. Popper and R.R. Fay), pp. 229-263. New York: Springer. 

Wilkens, L.A., Hofmann, M.H. and Wojtenek, W. (2002): The electric sense of the paddlefish: a 
passive system for the detection and capture of zooplankton prey. Journal of 
Physiology-Paris 96: 363-377. 

Wilson, B., Batty, R.S. and Dill, L.M. (2004): Pacific and Atlantic herring produce burst pulse 
sounds. Proceedings of the Royal Society of London. Series B: Biological Sciences 271 
(Suppl 3): S95-S97. 

Wilson, E.O. (1975): Sociobiology. The Abridged Edition. Cambridge, London: Belknap Press. 

Wisby, W.J. and Hasler, A.D. (1954): Effect of olfactory occlusion on migrating silver salmon 
(O. kisutch). Journal of the Fisheries Board of Canada 11 (4): 472-478. 

Witzany, G. (2013): Biocommunication of Animals. Heidelberg, New York, London: Springer. 

Wong, R.Y. and Hopkins, C.D. (2007): Electrical and behavioral courtship displays in the 
mormyrid fish Brienomyrus brachyistius. Journal of Experimental Biology 210 (13): 
2244-2252. 

Worm, M., Kirschbaum, F. and von der Emde, G. (2017): Social interactions between live and 
artificial weakly electric fish: Electrocommunication and locomotor behavior of 
Mormyrus rume proboscirostris towards a mobile dummy fish. PLOS ONE 12 (9): 
e0184622. 

Worm, M., Kirschbaum, F. and von der Emde, G. (2018): Disembodying the invisible: 
electrocommunication and social interactions by passive reception of a moving 
playback signal. Journal of Experimental Biology 221 (5): jeb-172890. 

Worm, M., Landgraf, T., Nguyen, H. and von der Emde, G. (2014): Electro-communicating 
dummy fish initiate group behavior in the weakly electric fish Mormyrus rume. In 
Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer 
Science, vol. 8608 (ed. A. Duff, N.F. Lepora, A. Mura, T.J. Prescott and 
P.F.M.J. Verschure), pp. 446-448. Cham: Springer. 

Wullimann, M.F. and Northcutt, G.R. (1990): Visual and electrosensory circuits of the 
diencephalon in mormyrids: an evolutionary perspective. Journal of Comparative 
Neurology 297 (4): 537-552. 

Xu-Friedman, M.A. and Hopkins, C.D. (1999): Central mechanisms of temporal analysis in the 
knollenorgan pathway of mormyrid electric fish. Journal of Experimental Biology 202 
(10): 1311-1318. 

Yager, D.D. and Hopkins, C.D. (1993): Directional characteristics of tuberous electroreceptors 
in the weakly electric fish, Hypopomus (Gymnotiformes). Journal of Comparative 
Physiology A 173 (4): 401-414. 

 



REFERENCES 
 

281 
 

Young, K.A., Gobrogge, K.L., Liu, Y. and Wang, Z. (2011): The neurobiology of pair bonding: 
insights from a socially monogamous rodent. Frontiers in Neuroendocrinology 32 (1): 
53-69. 

Zahavi, A. (1975): Mate selection - a selection for a handicap. Journal of Theoretical Biology 53 
(1): 205-214. 

Zakon, H., Oestreich, J., Tallarovic, S. and Triefenbach, F. (2002): EOD modulations of brown 
ghost electric fish: JARs, chirps, rises, and dips. Journal of Physiology-Paris 96 (5): 451-
458. 

Zelick, R. (1986): Jamming avoidance in electric fish and frogs: strategies of signal oscillator 
timing. Brain, Behavior and Evolution 28 (1-3): 60-69. 

Zipser, B. and Bennett, M.V.L. (1976): Interaction of electrosensory and electromotor signals 
in lateral line lobe of a mormyrid fish. Journal of Neurophysiology 39 (4): 713-721. 

  



REFERENCES 
 

282 
 

 

 



ABBREVIATIONS 
 

283 
 

Abbreviations 

CN  medullary command nucleus 

DC  Direct current 

DP  Thalamic dorsal posterior nucleus 

ELa  Nucleus exterolateralis pars anterior 

ELL  Electrosensory lateral line lobe 

ELp   Nucleus exterolateralis pars posterior 

EMN  Electromotor neuron 

EOD  Electric organ discharge 

ESS  Evolutionary stable strategy 

fps  Frames per second 

IDI  Inter-discharge interval 

JAR  Jamming avoidance response 

MHC   Major Histocompatibility Complex 

nELL  Nucleus of the electrosensory lateral line lobe 

NND  Nearest neighbor distance 

PCN  Mesencephalic precommand nucleus 

RCS  Relative cumulative sum 

RHP  Resource holding power 

SIDs  Sharp increases decreases in EOD rate 

TTL  Transistor-transistor logic 

VPd  Dorsal region of the ventroposterior nucleus 

Vp-p  Peak-to-peak voltage 
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Appendix A 

Table A.1: Properties of the seven IDI-sequences that were used during the playback exper-

iments in chapter 4. 

Playback Context IDI 

min 

[ms] 

IDI 

max 

[ms] 

IDI 

mode 

[ms] 

IDI 

mean 

[ms] 

IDI  

var 

[ms] 

Freq. 

mean 

[Hz] 

Freq. 

var 

[Hz] 

Special 

F1 Foraging in a 

group 

17 80 31 34 91 31.0 53.6 --- 

F2 Following after a 

moving fishing 

lure 

33 93 64 65 127 15.8 8.6 --- 

F3 Slowly swimming 44 150 94 94 329 11.1 5.4 --- 

F4 Resting 67 308 260 239 1924 4.5 2.9 --- 

PS Subordinate 63 1356 149 --- --- --- --- Cessations 

PA Aggressive inter-

action 

17 101 26/ 50 --- --- --- --- Accelerations 

PD Reaction to play-

back signals 

20 109 22/ 

44/ 91 

--- --- --- --- Double pulses 

 

Video examples of experimental trials from chapter 4 featuring typical instances of the 

quantified motor interactions 'cut off,’ ‘circling,’ ‘lateral probing,’ ‘lateral va-et-vient,’ ‘radi-

al va-et-vient,’ ‘head butt,’ and ‘touch’ (compare Figure 4.20) can be found online: 

https://doi.org/10.1371/journal.pone.0184622.s007 

https://doi.org/10.1371/journal.pone.0184622.s007
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Appendix B 

 

Figure B.1: Dynamic echo playback generation. Flowchart illustrating the generation of the dynamic 

echo playback sequence used in chapters 5 and 11. Artificial echoes were triggered by EODs that were 

emitted by M. rume close to the receiving electrodes of the mobile dummy fish. 

 

Figure B.2: Distributions of swimming speed. Relative occurrence of speeds of the dummy (black) and 

all fish (grey) during the presentation of the static random playbacks. Bin size: 2 mm s
-1

. 
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Appendix C 

Characterization of the acoustic noise that was generated by the tail-fin oscillation of the 

biomimetic robot fish used in chapter 8. Figure C.1 represents a short period of oscillation 

with a frequency of 1.5 Hz. Sound was recorded underwater with a hydrophone (Brüel & 

Kjær Type 8103; charge sensitivity 97 x 10-3 pC/Pa) and a charge amplifier (Type 2635, 

Brüel & Kjær, Nærum, Denmark; lower frequency limit: 1 m/s²; upper frequency limit: 

30 kHz) via an MME sound card at 88200 Hz using Audacity version 2.1.2. The power 

spectrum of the same sequence is shown in Figure C.2. 

 

Figure C.1: Acoustic noise made by the biomimetic robotic dummy fish. (A) Waveform data showing 

relative amplitude and periodicity of the sound of the dummy's the tail-fin oscillation. (B) Spectrogram 

of the sequence shown in (A). Sound levels are color-coded with lighter colors representing higher in-

tensities. Most noise was generated at frequencies between 4 and 10 kHz. 
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Figure C.2: Characterization of acoustic noise. Power spectrum of the data shown in Figure C.1.  
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