
 
 
 
 

 
Department of Mechanical Engineering 

 
 
 
 
 

 
 
 

Design and Implementation of Bio-inspired Underwater 
Electrosense 

 
 

 
 
 
 
 
 
 

Ke Wang 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This thesis is presented for the Degree of 
Doctor of Philosophy  

of 
Curtin University 

 
 
 
 

November 2017 
 





Acknowledgements

Studying for a Ph.D. degree is a long way with many hard works and many thanks

to all the people connected to me on this journey.

I would first like to thank Dr. Lei Cui, who has always been an encourager

and a thoughtful leader. I would also like to thank Prof. Khac Duc Do, who

informed me with literature in research and broadened my eyes in many scientific

areas. They consistently allowed papers to be my own works but steered me in

the right direction by reviewing them patiently.

I would like to acknowledge the undergraduate students and experts in the

mechatronic laboratory who were involved in the building prototypes for this

research project. Without their participation and input, the experiment could

not have been successfully conducted.

I would also like to thank my peer Ph.D. students: Hamed, Zefang, and

Thibault. We had many interesting and inspiring talks, and we spent much

memorable time together.

Finally, I would like to express my sincere gratitude to my family for their

tireless support and constant encouragement in my years of study and research.

Without them, this accomplishment is impossible.

i



Abstract

As humans are moving forward to the deep ocean for resource and adventure,

building more flexible, robust and energy-saving sensory systems for future un-

derwater robots is an urgent challenge. Underwater electrosense, manipulating

underwater electric field for sensing purpose, is a fast developing technology that

is bio-inspired by weakly electric fish. Compared to widely used computer vision

and sonar systems, the omnidirectionality and feasibility in turbid and cluttered

water enable it to be a significant complementary sensing technology.

In this thesis, we aimed to develop active underwater electrosense for close-

range sensing in turbid waters. To achieve this aim, we proposed the following

specific objectives: (1) Model the underwater field using proper physical theory

and formulate the sensing problem; (2) Design sensing algorithms to localize an

object in a 3-dimensional underwater space and to identify objects with simi-

lar volume but different edges; (3) Implement the sensor with simulations and

prototypes to evaluate sensing algorithms.

We formulated the underwater electric field using electroquasistatic theory

and divided the sensing problem into forward and inverse procedures. The en-

vironmental impedance distribution is the system parameter, whereas measure-

ments taken on the sensor boundary are observations. To predict observations

from parameters is a physically well-posed forward problem. But to infer the pa-

rameters of the model from observations is an ill-posed inverse problem, which can

be formulated using a probabilistic way that allows for a unified and consistent

view.

The first approach used techniques from electrical impedance tomography

(EIT) for sensing modeling. The EIT uses versatile finite element method (FEM)

as a forward model to calculate observations and representing the environment.

An eel-like electrosensor was designed and simulated using proposed techniques.

This work explored the feasibility of EIT methods for electrosensor.

The second approach targets on reducing the computational burden of the
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forward problem by introducing the method of discrete dipole approximation

(DDA). Techniques in light scattering problems were for the first time expanded

to active underwater electrosense. We found that only DDA was suitable for

conductive mediums. The connection between DDA and a well-known sphere

perturbation formula was further established. DDA was found to perform more

than 100 times faster than FEM with only a 10% relative difference in underwater

electrosense problems.

Based on the fast DDA solution of the forward problem, two types of sensing

algorithms, unscented Kalman filters (UKF) and neural networks (NN), were de-

signed to localize and identify an object in front of the sensor. The convolutional

neural network (CNN) was for the first time used in underwater electrosense to

identify objects with similar volumes but different edges. We built two editions

of prototypes to test and validate the planar sensor design and algorithms, in-

cluding a 5 × 5 sensor with electronics from National Instrument and a 16 × 16

sensor driven by a self-made analog signal chain. Experimental results of the first

sensor showed that the detection and localization of our prototype were quick

and accurate, with the error of around 10 mm using neural network mapping. In

the second experimental test, the prototype with 16×16 electrode array achieved

an overall success rate of 95.0% on identifying the specified cube, sphere and rod.

Through investigations in this thesis, we found the vast potential of un-

derwater electrosense and laid a solid foundation for applications on practical

robots. By further shrinking the electronics and adapting sensing algorithms,

artificial electrosense emulating the biological sensing system can be deployed on

autonomous underwater robots for monitoring and supervising ecological envi-

ronment of rivers, lakes or oceans.
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Chapter 1

Introduction

1.1 Active Sensing Techniques

A robot or an intelligent agent (IA) has three functional parts: sensor, processor,

and actuator. By collecting environment information and incorporating tasks,

actuators are executed following the processing results. Robot’s sensors and ac-

tuators are coordinated by processing unit that together builds up a sensorimotor

loop. The sensing ability, more specifically, is the ability to detect physical enti-

ties or their changes in the environment. The physical entities can be sound, light,

electric, pressure, heat or other phenomena. But eventually, they are mechanical

or electromagnetic waves and can be converted to electrical signals (current or

voltage) for processing in electrical circuits.

The IA sensing overview is illustrated in Fig. 1.1, indicating the sensing

relationship between IAs and the environment. The IA can passively listen the

signal from the environment, or it can actively transmit energy that appeared

as some physical entities to the environment and listen to the feedback signal.

Two IAs actively transmitting energy between each other create a communication

channel through the environment.
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Figure 1.1: Overview of the IA sensing.

Active sensing widely exists in animal behaviors. Teleceptive active sensing

collects information by propagating energy and detecting objects using cues such

as time-of-flight, return signal strength, etc. For example, bat echolocation is

an active perceptual system in which ultrasonic sounds are emitted for listen-

ing echoes. By comparing the outgoing and the returning signals, bats can get

detailed images of its surrounding environment, which allows them to detect,

localize, and identify prey in darkness. Whales and dolphins can also use echolo-

cation for hunting and navigation but with a much lower sound frequency to

adapt to the underwater conditions. Weakly electric fish uses a self-created elec-

tric field to find and localize near-range preys, which will be described in detail

later. Contact active sensing uses physical contact between organism and stimuli

with examples such as whiskers and insect antennae.

When a man holds a torch to illuminate the road, he is actively using the

visionary system for navigation and detection. Modern active sensing technologies

include radar in the air, underwater sonar, medical ultrasonography, etc. In this

chapter, we first reviewed some active sensing techniques using electromagnetic

(EM) field, and we mainly reviewed electric field for sensing purpose in detail.
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Then the project topic ’underwater electrosense’ was proposed and reviewed with

state of the art.

1.2 Electric Field for Sensing

From the vision to radar, electromagnetic wave has been the first-rank sensing

medium used by humanity. We are interested in properties of the electromagnetic

wave in the liquid water by looking at the diagram of absorption spectrum [96]

across a wide wavelength range in Fig. 1.2. Visible light is almost transparent

to water perfectly, a property which is good for photosynthesis and production

of both oxygen and biomass. Or conversely, the evolution of mechanism of pho-

tosynthesis and the ocular system was determined by the electromagnetic wave

absorption in the liquid water.

Radar uses radio waves in the air to detect objects and determine their range,

angle, or velocity. However, radio waves suffer considerable attenuation in the

water, especially in salt water, making them unsuitable for underwater sensing.

Currently, fast developing Lidar (light detection and ranging) uses a visible laser

to determine a target distance by sending pulsed laser light, and at the same

time measuring the time-of-flight and strength of the reflected pulses. There

were successful applications of Lidar in underwater environment [62, 42].

Maxwell’s equations indicate wherever a magnetic field is propagated then an

electric field is presented. Modern smartphones and computers rely on informa-

tion encoded into the magnetic field (the B field), and many mechatronic devices

use Hall Effect sensors to detect positions of metal objects. In this section, we will

review some typical applications using the electric field (the E field) for sensing

purpose.
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Figure 1.2: Liquid water absorption spectrum across a wide wavelength range.

1.2.1 Sensing Applications of Electric Field

Capacitive touchscreens used on modern mobile phones or tablets are the most

common implementation of the human hand sensing through the electric field.

Same principles were also pursued by Theremin, a type of fancy musical instru-

ment dates back to 1921, which used distortion of the electric field caused by the

human body to generate different tones and pitches [83].

The work from MIT Media lab studied using the electric field to track the 3-

Dimensional position of two hands without contact, using electric field generated

and received by elaborately designed apparatus [76], and they applied it to a

robotic hand for pre-touching [77]. These applications make use of the electric

field change that is detectable by displacement current, induced by a polarization

of the dielectric or charges redistribution of conductors.

Comparably, electrical impedance tomography (EIT) is another example of

sensing a self-created electric field, mainly based on the conductive current stim-
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ulated by active sources [16]. In the 1920s, resistivity imaging was started to be

commonly used by geophysicists who used arrays of electrodes inserted into the

earth to estimate a resistive map of the subsurface [29]. It is also a fast develop-

ing technology in medical and industrial applications, where internal activities in

such as human bodies [70] or oil pipelines [59] can be imaged.

We will see in next chapter that electric fields used in hand-tracking and

EIT applications are not a purely static field but a quasi-static field. In other

words, the electric field runs at a low frequency that some material properties like

conductivity and permittivity, which are used for identifying different objects, can

be defined in such situation.

1.2.2 Bio-inspiration of Aquatic Animals

We are interested in looking at nature because some complex problems and their

solutions have already been formulated by thousands of years revolution of bi-

ological systems. About 70% surface of the earth is covered by water, and the

species diversity of aquatic animals is significantly greater than any other group

of vertebrates (for example, fish, at 32,000 named species so far) [88]. Living

in the dark, noisy, and the cruel underwater world needs more efficient sensing

methods to survive. There are two types of vision-less sensory systems (lateral

line [26] and electrosensory system [58]) owned by aquatics, among which some

live in the deeply dim ocean or completely dark caves, some live in much brighter

places like quiet lakes, rivers or along the coasts. Therefore, it is not surprising

that the modalities or the organizations of sensors can be quite diverse.

Field sense is a series of sensing ability to acquire information of near-range

surrounding environment represented by vector field (flow field or electric field).

The lateral line is a hair cell-based sensing system for most fishes or amphibious
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to feel the low frequency (less than 200 Hz) flow field caused by turbulent or

steady water motion [64]. Electric field sensing system that can feel the low-

frequency electric field, however, is much more specialized than the lateral line.

Only limited aquatic species hold the ability to passively perceive the electric

field and even fewer species called weakly electric fish can actively perceive the

self-generating electric field [93, 87]. These signals will be processed by nerves

system to instruct different behavioral activities, such as preying, orientation and

navigation, communication and schooling.

The examples of aquatic animals here mainly consist of fishes and marine

mammals. Besides, numerous mammals are living in or relying on the water,

whose ancestors are believed to move into the water from the land by most

scientists. Marine mammals like dolphins and whales completely rely on ocean

environment for all their lifetime, whereas seals feed in the ocean but breed on

land.

The biological sensing mechanism can be divided into several categories ac-

cording to their physical principles: mechanosensory, chemosensory, electromag-

netic sensory and vision system. The reason to classify the vision to a single cat-

egory is that higher mammals like humans or apes living on the ground heavily

rely on their vision for object detection, discrimination, and spatial orientation.

Vision seems to become the most sophisticated form of sense because it is tightly

connected to the intelligence of mammals. Vision is an enhanced electromagnetic

sensory system specifically designed for radiation with a frequency roughly be-

tween 400 THz to 790 THz, and it will cost much energy and material in the

brain to process the image signals.

But some animals, especially those fishes living in the deep dark world, can

survive well without looking at their surroundings, and they even do not waste

precious resources developing eyes. It makes sense as an evolutional strategy
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to living in in an environment where vision is impractical, useless and even im-

possible. Take an example of weakly electric fish, the components of an elec-

tric sensory system are an exciting source and many electroreceptors. Weakly

electric fish evolved an electric organ for to create an active electric field, and

thousands of electroreceptors distributed on the skin to sense the deduced trans-

dermal currents. The current distribution is an electrosensory ’image’ determined

by external objects or other electric fish.

1.2.3 Biological Sensory Systems

Biological sensory systems are sophisticated in energy and materials saving, sensi-

bility and selectivity [88]. Thus, these varied species established excellent sensory

models for us to tackle with challenges in continually moving forward. Although

the attempt of designing engineering projects or artificial systems by using princi-

ples of sensory systems found in nature has existed for a long time, only recently

scientists and engineers started to build some prototypes of biomimetic appara-

tus in the real sense. Due to the advancement of some highly analytical methods

and developed technologies that have become available now, on the one hand,

the modern molecular biology help to analyze the complicated biological sensory

organs and nerves system, and on the other hand the micro- and nano-fabrication

technologies in engineering can help to simulate those systems.

The intrinsic widely interrelated biological systems show that there exist some

universal principles when nature builds the biological sensory systems [26]. Keep-

ing in mind these principles of naturally built sensory systems is helpful when we

study the diversity of biological sensors and think on how to transform them into

artificial works.

a) Energy saving. It is the most important part of the secret of living in the
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harsh environment. Successful foraging is hard and uncertain, so it is better to

evolute the skill of minimizing the energy cost when sensing and hunting.

b) Material saving. Although the sensory systems of animals are varied signif-

icantly, the cell types for building these systems are very conservative and refined.

Evolution tends to redesign the existing system to realize a new function, or to

serve a completely new purpose.

c) Redundancy and Parallelization. There may be hundreds of receptor or-

gans, each of which is built with several receptor cells. These numerous redundant

sensor cells work in parallel, not only in the sensory sampling level but also in

neural processing level, which will improve the signal-to-noise ratio and reduce

the likelihood of errors. The conception of redundancy and parallelization is quite

uncommon in artificial systems as we usually built them in a serial way, just as

we do in contemporary computing architectures.

d) Specificity. There is no universal method to achieve all the sensing tasks

effectively and economically simultaneously; specified sensory function is a rea-

sonable option. Nevertheless, vision system of higher mammals is an exception,

as vision is quite universal and cost considerable energy by processing images

from eyes. That is a trade-off in evolution, because one of the meanings of the in-

telligent is the adaptive ability for the environment, being universal means higher

and smarter. But for fishes, they will not understand images in the same way with

higher mammals, and eyesight is often useless as it is dark under the illimitable

ocean.

1.2.4 Biological Electrosense

Electrosense is a biological ability to receive natural electrical stimuli, which has

been discovered in many underwater animals including aquatic or amphibious
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animals. For example, sharks and catfishes are equipped with the sense of passive

electrolocation, which means they can detect and receive electric signals from the

environment or other fishes and estimate the location of such signal [41]. Shark

has a susceptible electroreception system, which can find preys hidden in sand or

mud by sensing the electricity they produce.

Passive electrosense relies upon ampullary receptors which are sensitive to

low-frequency stimuli (below 50 Hz). These receptors have a jelly-filled canal

leading from the sensory receptors to the skin surface [17].

Living in the dark, noisy, and the cruel underwater world needs more effi-

cient sensing methods to survive. Since Lissmanns discovery [58], experiments

on weakly electric fish show that by manipulating the electric sensory system

they can exact information of objects in surrounding environment, such as lo-

cation [93], geometrical properties (size and shape) [90] and electric properties

(conductivity and permittivity) [87]. Further, the information will be processed

to conduct high-level behaviors such as navigation, prey tracking or hunting, and

communication of interspecies [88].

Figure 1.3: A robotic fish with electrosense. Simulation shows the potential map
of weakly electric fish.
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For weakly electric fish, take black ghost knife fish for example, there is a

specialized electric organ in their tail to emit electric current, which is called

electric organ discharges (EODs). The corresponding self-built electric field, nor-

mally effective in 1-2 body length range, encompassing the fish will be distorted

by nearby objects that hold different impedance (conductivity and permittivity)

other than ambient water, and the perturbations will be perceived by hundreds

of cutaneous electroreceptor organs distributed over the skin of fish [40]. As in

Fig. 1.3, the electric field surrounding the weakly electric fish is represented by

a potential map as in Fig. 1.3.

The term ’weakly’ means that the emitted electric field by EOD is not strong,

typically less than 1 volt in amplitude. Strongly electric fishes like electric eels or

electric rays can generate very invasive electric to stun prey, typically ranged from

10 to 600 volts with the current up to 1 ampere according to the surrounding water

conditions [86]. Evidence shows that to guide an attack on a small prey ( 2 mm)

at a distance about one-quarter of a body length, even only 0.1% transdermal

voltage change through the fish skin can be sensed, which indicates a very high

sensitivity level [66].

Apart from the ampullary electroreceptor organs possessed by all passive elec-

troreceptive fishes, weakly electric fishes have additionally second class of elec-

troreceptor organs, for encoding the phase and amplitude of their EOD signals.

This kind of electroreceptor for active electric fish is most sensitive to the own

EOD dominant frequencies of the fish. In other words, active electroreception

mainly relies upon tuberous electroreceptors which are susceptible to high fre-

quency (20-20,000 Hz) stimuli [97].

In the fishs environment, most objects such as stones and mud are mainly

resistive and only change the amplitude of the EOD signals. But living creatures

usually have capacitive properties, which will shift the phase of the waveform in
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addition to amplitude changes [89]. For an impulse type fish, the detected range

of the electrical capacity rely on the duration of its EODs, i.e., shorter EODs

detect lower capacitances. There is research confirmed that the frequencies of

the EOD signals are related to the range of capacitive values of animated objects

of such fishes natural habitat [30].

1.3 Artificial Underwater Electrosense

Sensing by manipulating electromagnetic field, electric field, and the magnetic

field is an extensive and interconnected field. This section concentrates on re-

viewing the directly related state of the art on artificial underwater electrosense

- manipulating underwater electric field for sensing purpose, which is the center

topic of this thesis. Several technologies have been developed to achieve under-

water sensing, including widely used sonar and vision. However, contemporary

underwater sensory systems cannot be satisfactory in certain circumstances, es-

pecially for those potential applications of future biomimetic fish, as in Fig. 1.3,

which is usually envisaged to monitor the aquatic environment naturally and

execute tasks that cannot be accomplished by present underwater machines.

Electric field sensing technique is supposed to be outstanding in several as-

pects. First, electrosense is omnidirectional and operated in near range, so it is

quite suitable for navigation in a confined environment. Further, compared to

sonar or vision, electrosense can additionally identify the electric properties of

the targets, for instance, the difference between a fish-shape stone and another

real fish in a similar scale. Second, electrosense is unaffected by light attenua-

tion, which is a severe problem in vision. Besides the high cost of computational

energy in processing images, AUVs using vision require tethers for enough power

to illuminate in the dark water. Electrosense, however, naturally consumes much
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less energy, as the electric field (stimulating current) can be weak. Last but not

least, in turbid and cluttered water sonar will fail because of small particles and

numerous obstacles caused interfering reflections and diffraction of the signals,

whereas electric field sensing system still works well in such situations. Addition-

ally compared to sonar, electrosense operates without any delays, which may lead

to some control strategies such like reactive control.

1.3.1 Theoretical Studies

The electric field from the weakly electric fish, considered as perception bubble

encircling the fish body, is their material truck’s prolongation. Physically speak-

ing, the problem for fish to solve is to recover the factual impedance distribution

in that encircling bubble. If the exciting source and the boundary conditions

are well defined, Maxwell equations and constitutive relations of materials will

determine the distribution of the electric field, which states the forward problem.

In forward problems, numerical techniques such as finite element method

(FEM) can be used to solve the partial differential equations (PDEs), i.e., cal-

culating the electric potential on each discrete element with interpolation. An

alternative numerical approach is boundary element method (BEM) [8], which

can improve the computational speed as the number of nodes dramatically de-

creased.

For electric sensing system what needs to be solved is an inverse problem,

given the exciting sources and field distribution over some specified boundary

(fish or robot skin). Due to the ill-posedness character of such inverse problem, it

is challenging to try how much information of the surrounding environment that

the electric sensing system can reveal. Although in biology researched intensely,

the active electric field sensing was infrequently studied in robotic [60].
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Perturbation Method

Perturbation model is the most prevalent method in underwater electrosense that

have been studied by several research groups. An object entering the near-region

is electrically polarized by the original electric field of the sensor. The polarization

in return generates a weaker electric field (called perturbation) that superimposes

to the original field. When we measure the electric field, the perturbation induces

a variation of the measured voltage or current on the electrode.

Different objects have different perturbations regarding their geometrical and

electrical properties. In some simplest cases like a sphere or ellipsoid, the pertur-

bation can be calculated in a closed-form formula.

The group headed by Malcolm Maciver from Northwestern University pub-

lished first paper on the biorobotic electrosensory system in 2001 [61]. This work

proposed a sensor model to emulate the electric fish skin and electric organ dis-

charge. Rasnow [68] in 1996 first applied a sphere perturbation formula to model

the electrolocation of the fish, called U-U mode by using voltage source as ex-

citation and measuring induced voltages on the boundary, and such model was

expended and implemented in later researchers of the same group [80, 79, 73].

The group headed by Frederic Boyer is an energetic player in studying electric

field sensing and applications on underwater robots, whose works were supported

by project ANGELS (ANGuilliform Robot with ELectric Sense) funded by Eu-

ropean Commission [56, 46]. They proposed to measure the current through

electrodes on the skin, which was defined as U-I mode, instead of measuring

the voltages (U-U mode) with high input impedance. The initial design [10]

proposed two theoretical perturbation models of emitter-sensors, including a 2-

spheres model and a 4-hemispheres model. They were used for localization of

wall obstacles using extended Kalman filter. The perturbation model was based
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on the image method.

A sensor composed of several spherical electrodes was designed using poly-

spherical model (PSM) [46]. Some spherical electrodes emitted current whereas

others acted the role of current-receivers. The ambient environment impedance

was described by an analytical formula using voltages and currents measured

on all electrodes. This model was tested on objects for which the perturbation

expression is known (such as sphere and ellipsoid).

Either 2-spheres model or poly-spherical model, only the electrodes were con-

sidered that the sensor body effect (the sensor body that holds electrodes) was

neglected. To obtain a semi-analytical solution for the real sensor concerning sen-

sor body effect, reflective model (RM) that developed in the field of small numbers

hydrodynamics was used [19, 46]. Then the analytical result was compared with

the one came from BEM simulation.

Applications based on perturbation model included studying the obstacle

avoidance in a confined underwater environment [23, 73, 27]. A reflex naviga-

tion method [23] was designed based on a set of reactive control laws to avoid

any ellipsoid made from plastic or metal. In another similar work [73], the sensor

was placed in a water tank filled with plastic tubes, and the sensing task is to

avoid these tubes when moving. This work used a particle filter to estimate the

orientation and an extended Kalman filter to estimate locations. By changing

the sensor form into a circle from a pipe, a work [27] used wide-field integration

methods to avoid obstacles from all directions. It demonstrated navigation in a

straight tunnel.

For object discrimination, the complex impedance can be extracted by mea-

suring both amplitude and phase perturbations due to the presence of objects

[14, 12]. Inspired by EOD signals of fishes, a mathematical model [3] for elec-

trolocation of actual fish is derived and simulated using multifrequency MUSIC
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(MULtiple Signal Classification) algorithms. In such model, given the shape of

targets (disk or ellipse for instance), the size and electric properties can be recon-

structed separately.

EIT-based Method

Electrical impedance tomography (EIT) is a category of techniques in clinical,

industrial or geophysical applications [18, 39]. It shares similar principles of

weakly electric fish to image the inside impedance distribution of the matter

by using the electric field. For example, medical EIT uses an array of electrodes

wrapped around the portion of the body, and two electrodes are used for injection

current and the remaining measure the corresponding voltages. Thorax EIT can

be used to look at the lung perfusion and cardiac cycle [24].

For applications in industrial process monitoring, an array of electrodes can

be bounded around a pipe to observe the resistance or capacitance variation of

the flowing liquid [98]. For geophysical areas, EIT can be used to image the

impedance distribution of sub-surface structures for mineral deposit exploration.

A planar gridded array of electrodes on the surface of the earth or embedded in

boreholes [101].

Methods of EIT are mainly based on the numerical solution using finite el-

ement model [65, 11]. The FEM discretizes the continuous domain into non-

uniform and non-overlapping elements through nodes. The FEM solves the po-

tentials on nodes and further approximate potentials of other points using in-

terpolating functions. The natural advantages of using FEM in EIT problems

come from two aspects: the FEM is a general approach that widely used in solv-

ing partial differential equations; the discretized domain is suitable for sensing

representation like the matter distribution or object location.

The significant difference between usual EIT applications and underwater
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electrosense is whether the sensing domain is open. The work in [78] used an

EIT-based method in electrosense for estimation of object position and velocity,

and the result was compared with a simpler method using cross-correlation in

which a uniform field was assumed. The EIT-based method required heavier

computational effort but provide more accurate estimations. There were other

open domain EIT applications as well such as geophysical exploration from the

surface, breast and skin cancer imaging [49, 38]. In these cases, electrodes are

all arranged on a plane and looking at one side. In this thesis, we will study the

EIT approach to underwater electrosense for sake of improving works in [78] and

evaluate sensing performance under different sensor morphologies.

GPT-based Method

Generalized polarization tensors (GPTs) was proposed and developed by Habib

Ammari based on studies of layer potential theory and small volume expansions

[6, 4]. The GPTs are the basic building blocks for the asymptotic expansions

of the boundary voltage perturbations due to the presence of small conductivity

inclusions inside a conductor. Based on this expansion, efficient algorithms to de-

termine the location and some geometric features of the inclusions can be further

designed.

The GPTs contain important geometrical information on the inclusion. With

each domain, an infinite number of tensors, called the generalized polarization

tensors (GPTs), is associated. The GPTs contain significant information on

the shape of the domain thus can be used for shape description, and they hold

invariance properties under translation, rotation, and scaling [5]. For example,

the perturbation of a sphere with a closed-form formula turns out to the simplest

GPT of an object.

In a recent work [54], the object was localized by MUSIC algorithm (Mul-
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tiple Signal Classification) that was first developed in localization problems of

radio wave emitter. And the GPT was used for shape estimation in numerous

experiments. The system of estimating shape had an average error of 16%, and

self-aligning the sensor with the ellipsoid through a reactive feedback achieves an

estimation error of 10%.

1.3.2 Empirical Studies

Theoretical study of electrosense only concern the calculations or simulations,

which depend on the ideal measurements and other simplifying assumptions.

However, building real underwater electrosensors involves more practical activi-

ties. Empirical studies inspired by electric fishes are more concerning the circuit

nature, i.e., the quantities of voltage and current that can be measured directly

in the circuit.

Artificial electrosensors can be classified by different types of signal (current

or voltage) transmissions and measurements. Some biomimetic electrosensors

hold voltage between active electrodes and measure currents through probing

electrodes (U-I mode) [20, 21, 55, 22], or measure voltages between those probes

(U-U mode) [81, 15, 28]. Some others emit current and measure induced voltages

(I-U mode) using techniques from electric impedance tomography (EIT) [78, 2].

The number of electrodes of current sensors varied from four [81] to sixty-four

[78] and they were much sparser than the biological systems. The biological elec-

trosensory system was found to be sophisticated due to its thousands of extremely

sensitive electroreceptors. It can localize the object, estimate the object size, and

tell the difference between varied shapes [93, 91]. On the contrary, engineering

electrosensors still have a tremendous potential to be improved. Overall, choices

on specific configurations mainly rely on the electronics and sensing algorithms
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that are used.

Several experiments on applying electric sensing models to robots and explor-

ing corresponding control problems have been conducted. Rasnow [68] proposed

a simple method to manufacture the experimental electrode using silver wire and

Bunsen burner, and this method was later utilized in the research [80, 79] on a

setup of four-point electrodes driven by a rigid Cartesian moving robot, which is

a direct implementation of the Rasnow model.

This group then expended such model to a sensor pod, which consists of an

emitter/ground oscillating pair on the front and back that generates the electric

field and 35 voltage sensing electrodes on the pod’s surface to detect the changes of

the perturbation [78]. These sensor described above implemented voltage-sensing

electrodes (U-U mode) with high input impedance.

The ANGELS project created several generations of experimental pod plat-

forms based on U-I mode model [10, 46, 56], and they designed an underwater

reconfigurable robot using this electric field sensing [63]. One such sensor uses

seven electrodes and can perform object identification and localization tasks.

As a further application of the electrosensor, a reconfigurable underwater

robot [72] was designed. It was an anguilliform (eel-like) swimming robot that

can detach into several rigid modules and self-attached using the electric field for

docking. Each rigid module is independent and equipped with three propellers,

and a swarm of modules can either explore confined environment or combine an

eel-like robot to improve perception and locomotion.

Another potential application of underwater electrosense is electric docking

stations [22]. For example, a ship is equipped with a electrosensor that can

detect the electric field. A docking device with several current receiving electrodes

is bounded by insulating walls that shape the electric field. All electric lines

converge to a current emitting electrode which turns to be the docking point.
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The pre-docking vehicle would follow the electric line to touch the docking point

- the current emitting electrode. The is an electric docking process before the

mechanical anchoring, and in other words, before the conventional mechanical

docking, the electric docking station can be used as an intermediate phase.

1.4 Research Objectives and Methods

The research project proposed in this article is an in-depth theoretical and exper-

imental study on underwater bio-inspired electric field sensing technology, which

is aimed to equip the future biomimetic robotic fish or underwater vehicles. Liss-

mann found that electric field actively generated by weakly electric fish is in fact

utilized for spatial visualization and perception, just like vision and sonar (sound

echolocation). Since then abundant biological researches on active electric field

sensing have revealed more details on features and mechanism behind. Recently,

due to the promising applications of electric field sensing system in the severe

underwater environment, scientists and engineers started to rebuild such system

in artificial ways and apply it to autonomous underwater vehicles (AUVs). The

objectives of this research are as follows:

a) Perform the study on the physical mechanism behind the electric field sens-

ing hold by weakly electric fish, and design the feasible artificial model aiming at

achieving similar functions of its biological counterpart, including object location

and discrimination as well as environment reconstruction.

b) Derive analytical (or semi-analytical) solutions and perform numerical sim-

ulations on electric field sensing model. Simultaneously perform studies on the

general approach defined as an inverse problem and engineering approaches using

simplified sensing models. As this artificial sensor is primarily designed to equip

future biomimetic robotic fish, the feasibility of putting into practical application
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and operating in real-time should be considered in both hardware and algorithm

aspects.

c) Design and construct experimental apparatus and platform suitable for

verifying and consummating the production of a) and b).

Several levels of research should be conducted to achieve the goal we antic-

ipate. A complete study on the physical and mathematical mechanism of the

electric field sensing comes the first, in which we need to exploit all the possible

approaches to reconstruct the ambient environment. What makes the problem

more complicated is that electric field sensing is naturally integrated with the

locomotion of the fish both in substantial physical mechanism and biological be-

havior. For instance, black ghost fish evolved into a ventral elongated median fin

to swim agilely but can also keep its body relatively stiff, which is assumed to

maintain a certain stability of electric field. As a result, when we study the sens-

ing mechanism and sensor design, the model of the motion should be considered

as well.

Another level would be an experimental investigation to provide data, with

which we can verify and support the claims made from the aforementioned theo-

retical research. As the close relationship between the sensing principle and the

sensor movement, we plan to build a platform driven by a Cartesian robot with

an additional rotational freedom.

1.5 Contributions

In this thesis, we aimed to develop active underwater electrosense for close-range

sensing in turbid waters. First, we formulated the underwater electric field us-

ing electroquasistatic theory and divided the sensing problem into forward and

inverse procedures. The open-boundary FEM formulation was an improvement
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compared to conventional method in a confined area. The approach of elec-

trical impedance tomography (EIT) to underwater electrosense was successfully

implemented, and compared to previous works this approach was extended to

complicated cases such as an eel-like electrosensor. Second, we developed a new

approach targets on reducing the computational burden of the forward problem

by introducing the method of discrete dipole approximation (DDA). Techniques

in light scattering problems were for the first time expanded to active underwa-

ter electrosense. We found that only DDA was suitable for conductive mediums.

The connection between DDA and a well-known sphere perturbation formula was

further established. DDA was found to perform more than 100 times faster than

FEM with only a 10% relative difference in underwater electrosense problems.

Based on the fast DDA solution of the forward problem, two types of sensing

algorithms, unscented Kalman filters (UKF) and neural networks (NN), were de-

signed to localize and identify an object in front of the sensor. The convolutional

neural network (CNN) was for the first time used in underwater electrosense to

identify objects with similar volumes but different edges.

1.6 Overview

This chapter introduced the background and motivation of the artificial under-

water electrosense. Chapter 2 formulated the underwater electrosense problem

using electroquasistatic equations. The sensing problem was stated as an inverse

problem. As the inverse problem was ill-posed and not determined, a unified

probabilistic approach under a Bayesian view was formulated. Chapter 3 applied

an electrical impedance tomography approach to the underwater electrosense, in

which forward problem was modelled using finite element method, and the inverse

problem was to reconstruct the variations of conductivity on each grid. Chapter
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4 proposed a novel approach to the forward problem of underwater electrosense,

discrete dipole approximation, using principles transplanted from light scatter-

ing problem. This approach has several advantages compared to finite element

method in the context of underwater electrosense, and simulation and experiment

validated it. Chapter 5 designed 1-D and 2-D electrosensors. Two categories of

sensing algorithms, including unscented Kalman filters and convolutional neural

networks, were designed and simulated. Chapter 6 discussed experimental rigs

and electronics that used in this project. More experimental results were pre-

sented and discussed. Chapter 7 recap and concluded the thesis and outlined

future works.
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Chapter 2

Problem Formulation

2.1 Introduction

As a weakly electric fish model, the conductivity of internal body (10,000) is

much higher than the water (200-500). The skin is thin and less conductive, with

conductivity according to different locations on the body. At the tail, the skin is

more conductive (50) and gradually reduced to a small number (0.25). It means

the current flow from the electric organ cannot penetrate the skin directly, but

through the electroreceptors that measure the current spatial distribution on the

skin. The electric organ can be treated as a current source, rather than a voltage

source [7].

The models of common artificial electrosense have a few differences from the

fish. First, the artificial sensor usually uses electrodes as exciting source and

electroreceptors as well, and it can measure the field either by current or voltage

due to the electronics widely used by us. Second, the artificial source can be

controlled regarding current, voltage, or total power.

The classification of current artificial systems can be based on such a voltage-

current configuration. We have seen the biomimetic systems by controlling emit-
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ting voltage and measuring currents through probes, and also systems by hold-

ing emitting voltage and measuring voltages between probes. EIT (Electric

Impedance Tomography), which is tightly related to this topic and intensively

studied in geophysical and medical imaging techniques, usually emitters control

an amount of current into the sensing region and collects the deduced voltages.

This chapter focus on formulating the underwater electrosense problem. Maxwell’s

equations build a standpoint for all the electromagnetic problems. However, as

the field in electrosense has low frequencies, it can be tackled as an electroqua-

sistatic problem. Material’s real electrical properties, interactions between the

field and the matter, are always complex and need to be tackled approximately.

The electroquasistatic field is a simplification of the full electromagnetic wave

when the problem is electrically small, and the main phenomenon is the conduc-

tive current. But the field still has a low frequency that can have a phase shift

due to displacement current effect. For the pure static case, only objects with

different conductivities from water can be sensed; for the electroquasistatic case,

permittivity is another electrical property that can be sensed, and the effects of

conductivity and permittivity twist with each other.

The electrical properties, including conductivity and permittivity, are assumed

to be linear, isotropic, ohmic, and stable with the frequency. This greatly sim-

plifies the problem in the formulation, and it is, in fact, a proper assumption

in electrosense. In the real implementation of electrosense, multiple frequencies

should be used to plot the magnitude-phase diagram.

2.2 Electroquasistatic Field

Maxwells equations (2.1) fully describe the origin and coupling propagation of the

electromagnetic field. Among five equations listed in (2.1), only three of them
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are independent. In order to apply Maxwell’s equations, the relations between

displacement field D and the electric field E, as well as the magnetizing field H

and the magnetic field B need to be specified.

∇× E = ∂B/∂t

∇×H = ∂D/∂t+ Jf

∇ ·D = ρf

∇ · ∂B = 0

∇ · Jf = −∂ρ/∂t.

(2.1)

First, for linear, isotropic, and ohmic materials that are considered in this

section, simple relations (2.2) can be assumed. The relation of free current Jf

and charge ρ is also given as the Ohm’s Law.

D = εE

B = µH

J = σE,

(2.2)

Coefficients are permittivity, permeability and conductivity respectively, describ-

ing the field and material interaction at a microscopical level.

Second, if the ratio between the time of traveling longest length-scale of the

problem and the smallest time that count, for example, the period of the wave,

such case is referred to an electroquasistatic formulation. Which means the field

is not purely static, but the frequency is low enough that some simplifications

can be applied to the full wave equations.

Following the way in [31] we can define a ratio parameter α for scaled time

τ = αt. For static or quasi-static cases, the dynamic process is so fast that a time

period t can be compressed into τ with a small number (compression scale) α,
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and when α approaches to zero the process approaches to static. Then the field

can be Taylor expanded into different orders at variable τ = 0:

E(x, y, z, t) = E(x, y, z, τ, t)

= E0(x, y, z, τ) + αE1(x, y, z, τ) + α2E2(x, y, z, τ) + ...

B(x, y, z, t) = B(x, y, z, τ, t)

= B0(x, y, z, τ) + αB1(x, y, z, τ) + α2B2(x, y, z, τ) + ...,

(2.3)

Where

E0(x, y, z, τ) = [E(x, y, z, τ, t)]α=0

E1(x, y, z, τ) =

[
∂E(x, y, z, τ, t)

∂α

]
α=0

Ek(x, y, z, τ) =
1

k!

[
∂kE(x, y, z, τ, t)

∂αk

]
α=0

, k = 1, 2, ...

(2.4)

For the first equation in (2.1) because ∂B
∂t

= ∂B
∂τ

∂τ
∂t

= α∂B
∂τ

, we have:

∇× E = −α∂B/∂τ , (2.5)

Substitute (2.3) into (2.5) we have:

∇× E0 + α(∇× E1 + ∂B0/∂τ) + α2(∇× E2 + ∂B1/∂τ) + ... = 0, (2.6)

Then each item in brackets equals to zero and they are corresponding to

different orders of dynamic process with respect to compression variable α:

∇× E0 = 0

∇× E1 + ∂B0/∂τ = 0

∇× E2 + ∂B1/∂τ = 0.

(2.7)
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Same procedures can be applied to other equations in (2.1). In the electro-

quasistatic case, only zeroth order (2.8) and first order (2.9) we need to deal

with.

∇× E0 = 0

∇×H0 = Jf0

∇ · εE0 = ρf0

∇ · µH0 = 0

∇ · Jf0 = 0,

(2.8)

∇× E1 = −µ∂H0/∂t

∇×H1 = ε∂E0/∂t+ Jf1

∇ · εE1 = ρf1

∇ · ∂H1 = 0

∇ · Jf1 = −∂ρf0/∂t.

(2.9)

Start from the zeroth order free charge density ρf0, which may come from

the electrochemistry reaction or other sources in the real world. Noticing that

zeroth order field E0 is induced by ρf0, if the material is conductive and ohmic,

zeroth order current density is simultaneously induced according to Jf0 = σE0.

However, the divergence of current density is zero until in the first order equations

the movement of free charges gives the current source Jf1. In active underwater

electrosense, Jf1 is the injected current from the electrical organ or electrodes,

and Jf0 is the mediums conductive current.

As only zeroth order field is significant in electroquasistatic formulation, we

can neglect E1 and H1. To establish the relation between current and electric

field, take divergence of second equations in both orders, and due to the divergence
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of curl is zero:

∇ · (∇×H0 +∇×H1) = ∇ · (ε∂E0/∂t + Jf0 + Jf1) = 0. (2.10)

The term Jd = ε∂E0/∂t is the so-called displacement current. Substitute

Jf0 = σE0 into (2.10):

∇ · (ε∂E0/∂t + σE0) = −∇ · Jf1 = ∂ρf0/∂t. (2.11)

Set E0 = Ē0e
iωt, ω is the angular frequency:

∇ · (σ + iωε)E0 = −∇ · Jf1 = ∂ρf0/∂t. (2.12)

As we neglect higher order electric field and∇×E0 = 0 that E0 is irrotational,

electric potential u can be define to be E0 = ∇u:

∇ · (σ + iωε)∇u = −∇ · Jf1 = ∂ρf0/∂t. (2.13)

For the space with no current source or free charges we get Laplace equation:

∇ · (σ + iωε)∇u = 0. (2.14)

It is worth pointing out that in the electroquasistatic case, although we do not

need to consider higher order coupling effect of electric field and magnetic field,

the zeroth order magnetic field caused by the conductive current is significant

according to second equation of the zeroth order in (2.8). It contains information

on current density distribution according to the Biot-Savart Law. Thus, for

an artificial underwater electrosense problem, besides the current and potential
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measurement, we can also measure the magnetic field.

The most significant difference of the underwater electroquasistatic field, com-

pared to the traditional DDA approach situation, is its dominant conductive cur-

rent or volume conduction as the term used in bioelectromagnetism. That is to

say, the conductivity contrast between the invaded object and ambient water is

the first rank parameter we are interested in. The actual conductivity of water

in weakly electric fish can vary from about 0.05 S/m (fresh water) to 5 S/m (sea

water) depending on the water salinity. It can be seen that this conductivity is

moderate among the isolators, metals or other living things.

Only displacement current is considered in pure polarization process like light

scattering problems. Underwater electrosense can also use the information of the

permittivity, which is the macroscopical indication of the polarizability of objects

molecules. Water (H2O) is the most common high polarizability substance with

a relative permittivity of 80 at 20 degrees Celsius, and most solid matter hold

relative permittivity of only below 10, such as stone, concrete, glass or wood.

Biological experiments support the supposition that weakly electric fish can dis-

tinguish the small variance of objects permittivity.

2.2.1 A Dielectric Sphere in a Uniform Field

Solving the partial differential equation in (2.14) needs numerical methods. In

some simple cases, closed-form solutions also exist.

As in Fig. 2.1, consider a passive sphere without net charges of conductivity

and permittivity σs and εs completely immersed in ambient medium of σm and εm

in a uniform electric field Einit = Ēinite
iωt, represented in a spherical coordinate

system. The relation of tangential components of inside sphere electric field Es

and outside sphere electric field Em can be obtained by imaging a rectangular
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Figure 2.1: A dielectric sphere in a uniform field

contour C, partly in sphere and partly in medium. The contour is oriented that

its normal is tangent to the surface. Then Stokess theorem [44] can be applied

to obtain:

n× (Es − Em) = 0. (2.15)

In (2.15) n is the normal vector of the interface. It means that at any point of

the interface tangential components of each sides electric field are equal, otherwise

n× (Es − Em) will not vanish:

Etan
s = Etan

m . (2.16)

The relation of normal components of electric field and on each side can be

obtained in the similar way by imaging a Gaussian pillbox, partly in sphere and

partly in medium. Apply divergence theorem to obtain:

εsE
norm
s − εmEnorm

m = ρ. (2.17)
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In (2.17) ρ is the net charge density on the interface of the Gaussian pillbox.

Taking derivation against time on both sides and referring to charge conservation

law we can obtain:

εs∂E
norm
s /∂t + σsE

norm
s = εm∂E

norm
m /∂t + σmE

norm
m . (2.18)

The problem of a sphere in a uniform electric field remains to solve Laplace

equation (2.14) on both sides of the interface while satisfying boundary conditions

(2.16) and (2.18). Due to the azimuthal symmetry of the problem, azimuth angle

ϕ will be irrelevant when writing the Laplace equation in a spherical coordinate,

giving rise to a Legendre series solution on both sides. We adopt the analytical

scheme using this approach in [44]:

δu(r) = kEinitr(a/r )3, (2.19)

k =
(σs + iωεs)− (σm + iωεm)

(σs + iωεs) + 2(σm + iωεm)
. (2.20)

Eq. (2.19) describes the potential perturbation caused by the sphere of radius

a at a point r originated from the sphere center, and k in (2.20) is a contrast

coefficient (also called polarization coefficient) depending on the electrical prop-

erties of the sphere and ambient medium. Specifically, in the extreme situations

of isolating or perfect conducting objects k hold the limit values of −0.5 and 1

respectively.

It can be replaced by an electric dipole perturbation with the moment p =

4πεka3Einit:

δu(r) =
1

4πε

p · r
r3

. (2.21)

Then the electric field perturbation due to the sphere is the negative gradient
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of the potential perturbation, leading to:

δE(r) =
a3k

r3
(3(Einit · r̂) · r̂− Einit). (2.22)

According to (2.17), there will be opposite net charges on each side of the

spherical surface. These net charges have two different mechanisms, and the

dominant one in underwater electrosense originates from the conductive current

flowing between materials with different conductivities. The other comes from

the ensemble effect of polarized molecules, i.e., the microscopically activities of

permittivity.

2.3 Forward and Inverse Problems

In many engineering or science problems, a system (a robot or any dynamic

system) is described using a set of parameters, and a model (very often, mathe-

matical equations) is used to represent relations between these parameters (model

parameters). To infer information about such a system, because model parame-

ters may not be measured directly, we can use other observable parameters that

have relations with system parameters.

The forward problem is defined as calculating observable parameters from

known system parameters, and the inverse problem is to infer system parameters

using known observations. The model parameters can completely describe the

system. Thus the forward problem is easier to formulate and solve. In another

word, the causality or the nature of physical systems guarantee the well-posedness

of the forward problem. However, the observable parameters usually do not

completely describe the system, and the inverse problem is often ill-posed.

For sensing problems, the collected data is limited, and we always want to
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reveal more about the system from the limited data. Hence, sensing is usually an

inverse problem and ill-posed.

Manipulating electric field on sensing purpose is a challenging task. It is

an inverse problem that the electric field is observed at some boundary points,

electroreceptors on the fish skin for example, and then perturbation sources orig-

inating from the inhomogeneous objects need to be revealed (see Fig. 2.2).

Figure 2.2: Forward and inverse problem of underwater electrosense

Solving the inverse problem is based on solving the forward problems, i.e.,

to predict the observations given the sources. If a forward model is well stud-

ied, some iterative inferring techniques like optimal estimators may be developed

to dynamically minimize the difference between the model predictions and real

observations.

Therefore, a complete solution of the underwater electrosense problem at least

includes a forward model and an inversely inferring method. Unlike visible light

or X-ray that propagate in line-of-sight, the forward problem of static electric field

does not have an easy solution, except in highly simple and symmetric situations

such as an infinite plane or a perfect spherical conductor where image method can

be applied. Otherwise numerical solvers are necessary under general boundary

conditions.
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2.4 Framework of Solutions

Because the inverse problem is usually not a determined problem as most forward

models, the formulation using a probabilistic way allows for a unified and consis-

tent theory of inverse problems. Some proper apriori information is incorporated

to decrease the ill-posedness to tackling an ill-posed problem.

The system described using a vector with M model parameters is defined in

a RM space called model space, and a vector with D observable parameters is

defined in a RD called data space. A specified and static system is a point in the

model space. A set of observations is a point cloud in the data space, due to the

measurement uncertainty.

2.4.1 Probability Basics

A measure over an arbitrary space, for example M ⊂ RM , is that any subset Mi

associates a positive real number P (Mi) and satisfies following axioms:

(a) P (∅) = 0,

(b) If M1,M2, ...,Mn are disjoint sets in M , then

P (
∑
i

Mi) =
∑
i

P (Mi). (2.23)

if P (M ) is finite, P is termed as probability. A function p(m) of a vector

variable m ∈ RM that for any Mi:

P (Mi) =

∫
Mi

p(m)dm, (2.24)

is called probability density function (pdf), or a probability distribution. It can

be normalized by letting P (M ) = 1.

For two vectors m and d of two arbitrary spaces M ⊂ RM and D ⊂ RD, a
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function is called joint probability density function if for any subset Mi and Di:

P (Mi,Di) =

∫
MiDi

p(m,d)dmdd. (2.25)

It can be normalized by letting P (Mi,Di) = 1. The marginal probability

density function for m is defined as:

p(m) =

∫
D

p(m,d)dd. (2.26)

The conditional probability density function for m given d is defined as:

p(m|d) =
p(m,d)∫

M
p(m,d)dm

. (2.27)

From (2.26) and (2.27), the Bayes theorem is deduced:

p(m,d) = p(m|d)p(d) = p(d|m)p(m). (2.28)

2.4.2 Bayesian Formulation

Unlike frequentist probability, the view of Bayesian interpretation assumes the

existence of a ’true’ state of model parameters, and the possibility is defined as a

degree of knowledge (or state of information) about the true state. For example,

the degree of knowledge of a system is described by a possibility density over the

model space RM . The extreme case is a determined system whose state m equals

to m0:

p(m) = δ(m−m0). (2.29)

In (2.29) δ is the Dirac delta function. For general cases, there is a dispersion

of the density, for example, Gaussian normal distribution. There are also more
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complicated cases that the distribution may be multimodal. The lowest state of

knowledge is the state of the non-informative probability density, for a Cartesian

and finite space, in which density is uniform:

p(m) = constant. (2.30)

From the Bayesian view, solving the inverse problem is to reveal the condi-

tional probability distribution in model space given the probability distribution

in data space Γ(m|d). The Bayesian formulation of inverse problem is expression

as follows:

Γ(m|d) =
Θ(d|m)ΠM(m)

ΠD(d)
, (2.31)

According to Bayesian formulation (2.31), there are three sources of informa-

tion for solving inverse problem: forward model Θ(d|m), observations ΠD(d),

and a priori information ΠM(m).

In a general Bayesian terminology, Γ(m|d) is the posterior probability, Θ(d|m)

is the likelihood, ΠM(m) is the prior probability ,and ΠD(d) is the marginal like-

lihood or ”model evidence”.

The forward model is used to predict the values of observations d given the

model parameters m. This prediction strictly should be a probability distribution

due to the uncertainty (or errors) of the model. However, the forward problem

is often taken as a determined case in (2.29) if we have confidence. But we can

endow some uncertainties to the forward model as well, or the forward model can

naturally be a probability model.

Measurements reflect the probability distribution ΠD(d) over the data space.

In Bayesian words, measurements give a certain degree of information about the

true values of observable parameters.
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Prior ΠM(m) is an independent source of information from the forward model

and observations. It is a probability distribution defined in the model space. If

nothing is known, it will be the case of (2.30). Constraints on acceptable values

for the model parameters are common prior information. For example, mass in

the real physical system is always positive.

The Bayesian formulation is a general framework for solving inverse problems.

In the following chapters, the EIT approach is based on inverse formulation of

FEM method. And the sensing algorithms including Kalman filters are also based

on this formulation, in which the forward problem is solved by DDA method.

2.5 Conclusion

This chapter first formulated the underwater electrosense problem using elec-

troquasistatic equations. This formulation, though significantly simplified the

full wave equations, is still a partial differential equation and numerical methods

should be considered. The simplest case of a dielectric sphere surrounded by the

medium in a uniform field has a closed-form result.

Second, the sensing problem was stated as an inverse problem. The forward

and inverse problems in underwater electrosense were illustrated. As the most

inverse problem is ill-posed and not determined, a unified probabilistic approach

under a Bayesian view was formulated.
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Chapter 3

An Electrical Impedance

Tomography Approach

3.1 Introduction

The approach of EIT follows a general framework for solving inverse PDE prob-

lems. As formulated in the previous chapter, the forward problem of underwater

electrosense is to solve the Laplace equation in an open domain. EIT approach

solves the forward problem using finite element method which consists in dis-

cretizing the domain into some non-uniform, non-overlapping elements connected

via nodes. The finite element method is very versatile with regards to bound-

ary conditions, to the domain geometry and to the heterogeneity of the domain

where each element can be assigned a value indicating conductivity. Given the

stimulating current and conductivities on meshes, FEM calculates the potential

and current field, including the voltage between electrodes which predict real

measurements. The inverse problem is to assign a proper conductivity value to

each element, which is called reconstruction in EIT, to make the calculations

best fit the real measurements. The meaning of ’best fit’ can be expressed in an
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optimization problem based on the probabilistic formulation.

This chapter first proposed a FEM model for underwater electrosensor. By

considering electrodes and boundary conditions, including a far-field virtual bound-

ary, a linear algebra system was deduced to calculate voltages on electrodes. This

is a determined forward model of the problem. Second, several solutions of the

inverse problem (or sensing problem) were proposed, including linear, non-linear,

and dynamic formulations of the inverse problem. The inverse reconstruction can

be processed on the same mesh with the forward FEM model, or on a uniform and

fixed mesh that are independent of FEM model. Simulations of EIT approach to

the underwater electrosense problem were conducted in both cases.

3.2 Forward Problem

3.2.1 Electrodes and Boundary Conditions

From the previous chapter, the underwater electroquasistatic field is formulated

as:

∇ · (σ + iωε)∇u = −∇ · Jf1 = ∂ρf0/∂t. (3.1)

For the space with no current source or free charges we get Laplace equation:

∇ · (σ + iωε)∇u = 0. (3.2)

The underwater electrosense or EIT problems are inverse problems of partial

differential equations using space and time as variables. Environment represen-

tation is a discrete and non-overlapping domain. In this case, given the current

injections through the electrode boundaries and the conductivities assigned to
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each grid, a forward model is derived to predict the voltage measurements on

other electrodes.

Figure 3.1: A FEM model of underwater electrosensor.

An underwater electrosense FEM model is illustrated in Fig. 3.1. An insulated

sensor body with boundary ∂Ωb was surrounded by conductive water. A virtual

boundary ∂Ωv is defined in the far field, and due to the far-field assumption,

there is no current flowing through the virtual boundary ∂Ωv. The sensor body

and virtual boundaries are combined to be boundary ∂Ω, in which the domain Ω

is discretized into non-overlapping triangles.

Electrodes including N electrodes for injecting currents {Ψc
1, ...,Ψ

c
N} and M

electrodes for measuring voltages {Ψv
1, ...,Ψ

v
M} are belong to boundary ∂Ωb. The

overall current injected from electrode Ψc
i is Ii, and the voltage measured on

electrode Ψv
i is Vi, and Ici is the current injected.

Equations formulating the model of Fig. 3.1 using complete electrode model
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(CEM) (cite) are listed in (3.3), where Zv
i and Zc

i are contact impedance of

electrodes, and V v
i and V c

i are predicted measured voltage on electrodes.

∇ · σ∇u = 0, (3.3a)

u+ Zv
i σ
∂u

∂n
= V v

i , i = 1, ...,M (3.3b)

u+ Zc
i σ
∂u

∂n
= V c

i , i = 1, ..., N (3.3c)∫
Ψv

i

σ
∂u

∂n
= 0, i = 1, ...,M (3.3d)∫

Ψc
i

σ
∂u

∂n
= Ici , i = 1, ..., N (3.3e)

σ
∂u

∂n
= 0 on ∂Ω \ {{∪Ni=1Ψc

i} ∪ {∪Mi=1Ψv
i }}, (3.3f)

M∑
i=1

V v
i = 0, (3.3g)

N∑
i=1

Ici = 0. (3.3h)

The first equation (3.3a) is electroquasistatic field. Other equations from

(3.3b) to (3.3h) are all boundary conditions, where (3.3b) and (3.3c) consider

contact impedance using CEM, (3.3d) and (3.3e) indicate current flowing through

electrodes, (3.3f) express no current flow through sensor body or vitual boundaries

except electrodes, and (3.3g) and (3.3h) represent overall current and voltage on

electrodes by applying charge conservation law.

3.2.2 Finite Element Formulation

The FE method consists in discretizing the domain into some non-uniform, non-

overlapping elements connected via nodes. The dependent variable is approxi-

mated within each element by an interpolating function, defined by the values of

42



the variable at the nodes of the element. The Galerkin principle is then used to

turn the original PDE into a set of integral equations for each nodal value. By

combining the equations over the domain, the electric potential u at each node

can be expressed in matrix notation Au = b.

For a domain discretized as in Fig. 3.1, let the electric potential on nodes

to be φi. Then the electric potential of the whole domain can be expressed by

a function ũ with variables φi and nodes locations. If each node associates a

nodal basis function ζi (a polynomial interpolating function) that values one at

the node itself and values 0 at other nodes. The function ũ can be expressed as

a linear combination:

ũ =
W∑
i=1

φiζi. (3.4)

In (3.4), W is the number of all nodes. It should be noticed that the potential field

of each element (a triangle) is determined by its nodes due to the non-overlapping

of grids and feature of the nodal basis function. However more generally, elements

can be quadrilateral, and the tent-like nodal basis function may not vanish at its

closest neighbors.

The next step is to solve potentials of nodes, which should satisfy (3.1a) with

a residual r:

∇ · σ∇ũ = r. (3.5)

By composing a weighted average of the residual
∫

Ω
riwi over the entire domain

Ω that vanishes to zero, we can determine W unknown node potentials. The

Galerkin criterion uses the function ζi as the weighting function wi. Further, as

the equation (3.1a) holds for anywhere, we can consider the whole domain Ω and

a single element Ej: ∫
Ω

[∇ · σ∇ũ]ζi = 0, i = 1, ...,W. (3.6)
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∫
Ej

[∇ · σ∇ũ]ζ loci = 0, j = 1, ..., V, i = 1, ..., C. (3.7)

where ζ loci is the local nodal basis function with its index (node number) C = 3 for

a triangular element, and V is the number of elements. Boundary conditions for

elements underneath electrodes ψ can be expressed by applying Gauss’ theorem

to (3.7):

∫
Ej

σ∇ζ loci · ∇ũ−
∫

Ψ

ζ loci σ
∂ũ

∂n
= 0, j = 1, ..., V, i = 1, ..., C. (3.8)

By using boundary conditions (3.3b-e) to the electrode formulation (3.8), the

model will have W+M+N unknown variables (potentials on W nodes and M+N

electrodes) and equations. Substituting ũ and arranging equations in a matrix

form, following linear system can be deduced:

Sp = c. (3.9)

Where p is the potential of nodes and electrodes, S is the system matrix com-

pletely determined by conductivity distribution, domain geometry, and the choice

of nodal basis function, and c is the current injected from the specified electrodes.

Due to the form of this equation, S is also called the system admittance matrix.

Given the specified grid, the potential p can be calculated using g(σ) = S(σ)−1c,

where σ is the discrete conductivity assigned to each grid.

3.2.3 Ansys Simulation

ANSYS was used to simulate an underwater electrosensor with two electrodes on

each side, as in Fig. 3.2. The simulation was conducted in 2-D, where the sensor

length is 300 mm and width is 40 mm with a semicircle electrode (diameter 40

mm) on each side. As for conductivity and relative permittivity, water was set
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to be 0.05 s/m, and 80, the sensor body and a sphere object were set to be 0

s/m and 2.5. The stimulating voltage between two electrodes was 24 V. Fig. 3.2

illustrated how current flow and potential fields were distorted by an insulating

sphere. The current density field in such sensor is extremely not uniform, where

the closer to the electrode the stronger the current density is. As a result, the

sensor is only sensitive to those objects nearby.

ANSYS is a commercial software in which basic electric field simulation can

be conducted. We use ANSYS to fast validate the field morphology of electrosen-

sor. The following NETGEN+EIDORS simulation is a MATLAB based software

package which is the main tool used in this work. Using such a tool we can

quantitatively study electric field of electrosensor designed with electrodes.

3.3 Optimization Based Inverse Problem

The forward problem solved by FEM is well-posed according to the formulation in

the previous section. There is a determined forward model h(σ) that can calculate

predictions of observations d of the system given the conductivity σ. However,

the simple classical solution of h(σ) − d = 0 often does not exist. Practically,

the modeling and measurement errors may make the data out of the function

range. Mathematically, the inverse problem is often ill-posed in the Hadamard

sense [84]. The common approach defining the solution of the inverse problem is

the least squares method (LSM).

3.3.1 Linear Inverse Problem

If the forward model is linearisable by Tyler expansion at a specified reference

point σ1, for ∆σ = σ2 − σ1 is small. And he differential inverse can be used to

45



Figure 3.2: (a) FEM simulation of a pod using ANSYS, indicating a current
flow with an intruding insulated sphere. (b) Potential field distribution based on
FEM simulation.
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reconstruct a change from that point with a linear formulation:

h(∆σ) = J(σ1)∆σ, (3.10)

∆σ′ = argmin ‖J(σ1)∆σ − d‖2 + αL∆σ. (3.11)

The matrix J is calculated as the Jacobian at σ1, which is also called sensitive

matrix because it relates the perturbation of data and change of conductivity.

The regularization item αL∆σ is used, and α called hyperparameter is a small

positive number. The solution of problem (3.11) is:

∆σ = (JTJ + αLTL)−1JT∆d. (3.12)

Where (JTJ)−1JT is a pseudo-inverse and the item αLTL is the regularization.

In this case, regularization adds a perturbation to JTJ to reduce the condition

number of the matrix and make it less singular. The rationale of using differential

inversion is to lessen the effect of measurement errors by taking the difference

between two measurements with same system errors.

3.3.2 Non-linear Inverse Problem

The absolute inverse is attempting to reconstruct the real value of conductivity.

Following formulation is satisfied:

σ′ = argmin ‖h(σ)− d‖2 + αF (σ). (3.13)

Where F (σ) ≥ 0 is the Tikhonov regularization functional that endow a pri-

ori to σ. For example, for l2 norm regularisation, F (σ) = ‖Lσ‖2 or F (σ) =

‖L(σ − σ0)‖2 where σ0 is a known prior estimate.
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The absolute inverse is a non-linear problem and can be solved by iterative

techniques like Newton’s method. In each iteration, a linear formulation and

solution like (3.12) is calculated to approach the non-linear solution.

3.3.3 Dynamic Formulation

In either linear or non-linear inverse formulations, the system is assumed to not

change when acquiring a single set of data d. However, this assumption is not

proper when the sensor is moving fast. In dynamic formulation [51], the conduc-

tivity changes between different stimulating patterns but remains stable during

a single pattern acquisition. The sensing problem is formulated as a state esti-

mation problem, where the conductivity is the state and subject to location and

time:

σt+1 = F tσt + wt, (3.14)

dt(σt)− dt(σt0) = J t(σt0)(σt − σt0) + νt. (3.15)

In state evolution model (3.14), where F is the transition matrix that can be

deduced from the sensor motion. And w is a noise process. In observation model

(3.15), dt is the part of data collected at time t, and J t is the Jacobian of that

part of data. νt is the measurement noise.

3.4 Simulations and Discussions

In this section, we designed an underwater electrosensor and simulated its sens-

ing ability by applying principles of EIT. We adopted NETGEN [71] as a mesh

generator and the framework of forward and inverse solvers in EIDORS [2].
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3.4.1 A Simple Sensor

A simple electrosensor as shown in Fig. 3.1 was implemented to sense a disk in

conductive water. The forward and inverse problems were both simulated in 2-

dimension. The virtual boundary was a circle with diameter 2 m, and the sensor

was centered in the sensing domain with length 0.6 m and width 0.2 m. The disk

was insulated (conductivity 10−15 S/m) with a radius of 0.1 m, and the water

conductivity was set to be 1 S/m. The stimulating current was 0.01 A. There are

overall 36 electrodes distributed evenly along the sensor boundary, including 10

on each straight side and 8 on each semi-circular curve.

The forward calculating model and the inverse sensing model are not necessary

to be the same. It is a ’dual model’ to avoid so-called ’inverse crime’ in simulations

if we use a denser forward model and a coarser inverse model [57]. For example

as shown in Fig. 3.3, the reconstruction of a fly-by disk was conducted on a fixed

grid using GREIT method [1]. In this approach, FEM meshes illustrated in Fig.

3.1 was used for the forward calculation, but the meshes in reconstruction were

uniform with a 64× 64 grid and kept unchanged.

Figure 3.3: A simple sensor applies the GREIT approach to reconstruct an
insulated disk. The red circle indicates the true disk location, and blue color
indicates the reconstructed object.

The reconstructed image is a bitmap where each pixel has a real value rep-
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resenting the strength of conductivity. As in Fig. 3.3, the blue color indicates

lower conductivity whereas the red represents higher conductivity. As a linear

inverse solver, the reconstructed bitmap values are not real conductivity but just

the result of the first step of iteration using non-linear solution. However, for

sensing purpose, it is the relative strength of conductivity that matters to tell

apart objects from the background medium.

The first and second row in Fig. 3.3 show sensing images when the disk has dif-

ferent locations relative to the sensor. For disks near the sensor, the reconstructed

images were correctly located and concentrated. Otherwise, the reconstructed im-

ages were dispersed and closer to the sensor relative to their real locations. The

reconstructed disk position was evaluated by calculating the barycentre of the

sensing domain, and the reconstructed artifacts around the sensor were filtered

by setting a threshold value for counting pixels.

3.4.2 An Electric-eel

An eel-like sensor was designed to simulate on how the body curvature affects the

sensing ability. As the 3-dimensional FEM model of the sensor in Fig. 3.4(a),

each section was an insulated cuboid with 3 electrodes attached to the same side,

and 10 sections combined the whole sensing body through a linkage joint (overall

30 electrodes). The bending action was simulated by using the same angular

between adjacent sections.

The virtual boundary is a cuboid with length 2 m, width 1.5 m, and height 1

m. As in Fig. 3.4, the sensor has 10 cuboid sections (red) with each length 0.06

m, width 0.04 m, and height 0.06 m. The joint (black) length is 0.022 m, and the

electrode (green) size is 0.01 × 0.01 m. The electrodes were specifically meshed

using the refinement techniques in [36] while the overall computational burden
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was controlled within the ability of a regular desktop. In the forward simulation,

the conductive sphere was located at [1, 0.5] m with radius 0.01 m. The forward

simulation was conducted using a 3-dimensional FEM model whereas the sensing

domain was defined at one side of the sensor and on a 2-dimensional center plane.

As in Fig. 3.6 and Fig. 3.7, two types of reconstructing grid were evaluated: the

first grid was a projection of the forward model on a plane, and the second was

a uniform 64× 64 GREIT grid.

Figure 3.4: FEM model of an eel-like sensor. A red cuboid represents a section,
and a black trapezoid represents a joint whose shape changes with the bending
angle between two adjacent sections. The mesh of square electrodes are zoomed
in for inspection in detail.

Fig. 3.5 is the sensibility of the sensing domain when the sensor is straight,

and two end electrodes are used for current injection. The bottom of the figure

is the boundary of the sensor and electrodes. The color of each grid indicates its

sensitivity, which is the change of average perturbation on electrodes when a single

unit of conductivity changes as the Jacobian J(σ) in (3.10). The blue represents

the higher sensitive area, and the red represents lower sensitivity as the color

bar by the side. According to the sensitivity distribution, the principal sensing
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Figure 3.5: Domain sensibility when the body is straight.

area is a sector-shaped domain with two narrower and smaller wings beside it.

The sensitive range depends on the signal-to-noise rate, which is expressed by the

perturbation strength over background noise.

In Fig. 3.6, the sensor curved from 0 to 180 degrees and a sphere (indicated

by a sky blue disk in the figure) was fixed in the domain. In each state of

curvature, the whole domain was re-meshed. The reconstruction was conducted

on the grid projected from the 3-dimensional model in the forward calculation,

where a refinement area was defined in front of the sensor. As the reconstruction

was conducted in the whole virtual domain, the image intended to disperse to

everywhere when the sensor was straight and located far from the object. Initially,

the sensor can only identify the direction of the object, but by bending the body

to that direction, it can gradually localize the object.

In Fig. 3.7, the GREIT method was used to reconstruct domain with a fixed

and uniform grid. In this case, the reconstruction was conducted in fixed meshes,

and the only changeable variables were locations of electrodes. The reconstructed

area was constrained to a sector-shaped domain in front of the sensor because the

far field elements created irrelevant artifacts according to Fig. 3.6. This method

reduced the dispersive effect, but when the sensor was straight, the reconstructed
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Figure 3.6: Irregular FEM grids for reconstruction which projected from the 3-
dimensional forward model. The true sphere positions are illustrated by sky blue.
The whole body curving angles in sub-figures are 10, 80, 110, 170 degrees.

Figure 3.7: Uniform GREIT grids for reconstruction. The whole body curving
angles in sub-figures are 0, 30, 80, 160 degrees.
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Figure 3.8: Position errors of reconstructed object using irregular FEM grids
and GREIT grids.

image was still blurred. By curving the sensor, the reconstructed image indicated

the more precise location of the object, which was always closer than its real

position when the sensor was straight and located far from the object. And at

the same time, the blurred effect reduced that the reconstructed image focused

to the object.

By comparing results in Fig. 3.6 and Fig. 3.7, the position errors of the

reconstructed object were calculated and presented in Fig. 3.8. The calculation

combined the centroid method and peak detection, which first filtered irrelevant

artifacts and reserved the peaked area then calculated the center of the mass. The

filtering process was determined by a parameter θ representing the percentage of

image wiped. The result shows a better error performance of the whole domain

reconstruction, especially when the curving angle is small. But when the sensor is

closer and surrounding the object both methods can accurately sense the target.

The EIT methods to an underwater open-domain electrosensor can roughly

detect the direction of the object without curving body and approach to the

object. The process of curving and approach is a continuous process that can

be integrated into a sensorimotor loop. The whole domain reconstruction can

cover a further object but disperse more as well, whereas GREIT reconstruction

can constrain the dispersion at the cost of worse localizing errors. In practical
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applications, the computational effort should be considered that reconstruction

in a larger space is a disadvantage.

3.5 Conclusion

This chapter formulated the underwater electrosense problem using a frame-

work from electrical impedance tomography. A method of decomposing orders of

Maxwell’s equations was used to deduce the electroquasistatic field. By combing

boundaries and electrodes models, finite element method was formulated to solve

the forward problem. The open-boundary FEM formulation was an improvement

compared to conventional method in a confined area. Inverse problem, or sens-

ing problem, was further formulated using optimization methods. In simulations,

two sensors, including a simple cylinder sensor and a bendable eel-like sensor,

were designed and evaluated. This work helps us to evaluate the performance of

underwater electrosensor using EIT approach.
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Chapter 4

A Light Scattering Approach

4.1 Introduction

Rasnow [69] first applied a small sphere perturbation formula (4.1) in a uniform

electric field, which can be found in classical electrodynamic literatures [45, 25],

to weakly electric fish studies.

u(r) = E0 · r(
a

r
)3 (σ1 + jωε1)− (σ2 + jωε2)

(σ1 + jωε1) + 2(σ2 + jωε2)
. (4.1)

In (4.1), E0 is the uniform field at the small sphere with radius a, σ1, ε1 and σ2,

ε2 are electrical properties of ambient medium and the small sphere respectively.

Potential perturbation due to the sphere at an observation point r is u(r). This

formula became well-known and was applied in many engineering studies. For

sensing in front of a wall or into a tunnel, image method can be applied [45].

The dominant phenomenon in underwater electrosense is the conductive cur-

rent, but permittivity contrast between objects and background water (displace-

ment current) was proved to be an important factor in identification for weakly

electric fish [92]. Thus, the problem is usually simplified to an electroquasistatic
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formulation as (4.2), but also take both conductivity and permittivity into con-

sideration [3, 2, 33]. In (4.2), electric field E is considered in a frequency domain,

where σ and ε are mass properties distributions, and Js is the source current.

∇(σ + jωε)E = −∇ · Js. (4.2)

A scattering formulation for underwater electrosense expanded from theories

was mainly developed in light scattering communities. In those problems, [99,

48, 53], an incident electromagnetic field is fired to an object and scattered by it,

where theories are established to calculate the resulting field. The incident and

scattering model has been extensively used in other sensing techniques such as

radar and sonar. When formulating the underwater electrosense into a scattering

model, we shoot the current to a sensing region and measure scattering signals

like electric potentials or magnetic fields.

Numerical solution of the scattering formulation is based on the discretization

of volume integral equations. Such a numerical method was heuristically proposed

in [67] before the formal scattering formulation. The basic idea is to replace a

continuous object with an ensemble of many small and homogeneous cells (spheres

for example), then one can analytically formulate the behavior of the cell under

the local homogeneous field. The ensemble effect approaches to the continuous

object as the number ofcells going to infinite.

In this chapter, based on a formal formulation of the method of moment

(MoM) and discrete dipole approximation (DDA) [99, 48, 53, 52], we proposed

rigorous DDA theory of underwater electrosense and corresponding implementa-

tion. A sensing application using a simplified underwater robot was presented,

and we also made a 1-dimensional sensor in an experiment for validating numer-

ical calculations.
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4.2 Scattering Formulation

4.2.1 Problem Statement

Consider the situation as in Fig. 4.1: in a isotropic and homogeneous background

medium Ob with permittivity εb and conductivity σb, several isotropic but not

necessarily homogeneous objects (scatterers) Oi with εi(x) and σi(x), where i =

1, ..., N is the number of objects, are illuminated by an incident electromagnetic

field Einc(x) and Hinc(x) from a source region Os. The regions of Oi are bounded

but the background medium extends out to infinity. The scattered field Esca and

Hsca need to be determined. The final field is expressed as E = Einc + Esca and

H = Hinc + Hsca.

Os

O3

Ob

Figure 4.1: Illustration of the underwater electrosense scattering problem.

We took the following assumptions in this work. First, assume the magnetic

permeability of the whole region to be the same with vacuum permeability µ0,

i.e. B = µ0H to neglect the magnetic scattering. Second, assume the constitutive

relations of the field in isotropic material to be D = εE and conductive current

Jc = σE. Third, assume the incident field is harmonic and with a low frequency

that can be represented as Ēejωt, H̄ejωt.
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4.2.2 Integral Equations

To formulate the scattering form of the underwater electrosense, we first went

through with the wave equation to emphasize the electromagnetic scattering na-

ture of such process. Then simplifications and approximations to the specific

problem were made accordingly. Also, the significant scattered magnetic field,

which is not explicitly given in electroquasistatic formulation (4.2), was deter-

mined at the same time.

Consider Maxwell’s curl equations [45] using B = µ0H and D = εE in fre-

quency domain:

∇× E = −jωµH, (4.3)

∇×H = jωεE + J. (4.4)

In underwater electrosense, for the space outside the source region (as in

Fig. 4.1), J in (4.4) is the conductive current induced by electric field that

J = σE. Define a complex permittivity to consider the displacement current and

conductive current together:

ε̂ = ε− j σ
ω
, (4.5)

Then (4.4) can be rewritten as:

∇×H− jωε̂E = 0. (4.6)

For the field in the background medium region Ob:

∇× E + jωµ0H = 0, (4.7)

∇×H− jωε̂bE = 0, (4.8)
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Similar equations in objects regions Oi are obtained by replace the the ε̂b by ε̂i.

Combining these equations gets:

∇× E + jωµ0H = L(x), (4.9)

∇×H− jωε̂bE = K(x), (4.10)

For x ∈ Ob, magnetic current L(x) = 0 and electric current K(x) = 0, and for

x ∈ Oi, L(x) = 0 and K(x) = −jω(ε̂b − ε̂i)E(x).

Using the Gauss’s law for magnetic field ∇ ·H = 0 and vector identity ∇ ·

∇ ×A = 0, define a vector potential A:

H = ∇×A, (4.11)

Substitute (4.11) into (4.9) and notice L(x) = 0 everywhere:

∇× (E + jωµ0A) = 0, (4.12)

Use the vector identity ∇×∇u = 0 to define a scalar potential u:

E + jωµ0A = ∇u. (4.13)

Substitute potential definitions (4.13) and (4.11) into (4.10), and apply vector

identity ∇×∇×A = ∇(∇ ·A)−∇2A:

∇(∇ ·A)−∇2A− k2A− jωε̂b∇u = K, (4.14)

where k2 = ω2µ0ε̂b. The arbitrary of potential selection allows the specific Lorenz
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condition ∇ ·A = jωε̂bu, from which the Helmohltz equations are obtained:

(∇2 + k2)A = −K, (4.15)

(∇2 + k2)u =
1

jωε̂b
∇ ·K. (4.16)

The (4.15) contains three scalar Helmohltz equations. The Green’s func-

tion or the fundamental solution for solving the scalar Helmohltz equation in

3-dimensional free space is:

g(x,x′) =
e−jk|x−x

′|

4π|x− x′|
, (4.17)

The solution of the sourced vector Helmohltz equation is:

A(x) =

∫
⋃
Oi,i=1,...,N

K(x′)g(x,x′)dx′, (4.18)

And the scalar potential is obtained by Lorenz condition:

u = − 1

jωε̂b

∫
⋃
Oi,i=1,...,N

∇ · [K(x′)g(x,x′)]dx′. (4.19)

Substituting (4.18) and (4.19) into (4.13) and (4.11) solves the scattered field

due to the electric current K(x) = −jω(ε̂b− ε̂i)E(x) in the object regions Oi (the

union set of object regions is discarded for brevity):

Esca(x) = −(k2 +∇∇·)
∫
Oi

(1− ε̂i
ε̂b

)E(x′)g(x,x′)dx′, (4.20)

Hsca(x) = −∇×
∫
Oi

jω(ε̂b − ε̂i)E(x′)g(x,x′)dx′. (4.21)

The representation of the electric field in (4.20) has continuous current across
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the boundary, i.e. the boundary condition εb∂Eb/∂t+ σbEb = εi∂Ei/∂t+ σiEi is

satisfied.

The field is scattered from the objects, because only when x ∈ Oi the source

item K of the Helmholtz equation is not zero. In another word, the incident field

Einc is the special solution of the homogeneous Helmholtz equation when K = 0.

Given the field superposition relation E = Einc + Esca and the incident elec-

tric field, the scattered electric field or the final electric field are determined by

(4.20). The scattered magnetic field is further calculated by (4.21). It is seen that

although magnetic permeability of the problem is not considered, the scattered

magnetic field is significant due to the strong conductive current.

4.2.3 Further Approximation

After solving the final field, the solution (4.19) can be directly used in underwater

electrosense forward problems to predict the potential perturbations and their

phase shift at measuring point. Solution (4.21) can also be used if some magnetic

field strength measurements are introduced in the problem. These measurements

contain the information of geometrical and electrical properties of objects as well.

The solution can be further simplified based on low frequency assumption.

When ω approaches zero and then wave number k approaches zero, the approxi-

mated Green function g0(x,x′) and scatted field Esca
0 can be rewritten:

g0(x,x′) =
1

4π|x− x′|
, (4.22)

Esca
0 (x) = −∇∇ ·

∫
Oi

(1− ε̂i
ε̂b

)E(x′)g0(x,x′)dx′, (4.23)

Further approximation in some cases, only conductive current is considered, i.e.
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assume εb = εi = ε0. The (4.23) can be reduced to:

Esca
0 (x) = −∇∇ ·

∫
Oi

(1− σi
σb

)E(x′)g0(x,x′)dx′. (4.24)

4.3 Numerical Solutions

The final field formulation E = Einc + Esca belongs to the Fredholm integral

equation of the second kind with a singular kernel [9]. To solve the equation

numerically, the regions of objects are discretized into non-overlapping subregions.

First, using the equation (4.20), the scattering field from one subregion to another

is linearly approximated. Second, the scattering influence to a subregion itself is

specially evaluated, known as the self-term. This term comes from the singularity

nature of the integral formulation using Green’s function. Finally, the complete

simultaneous algebra equations can be established. MoM is a direct discretization

of the equation solving total field, while DDA is developed based on MoM to solve

the exciting field.

4.3.1 Method of Moments (MoM)

v1v2

vM

vl

vm

Figure 4.2: Illustration of the discretization of objects. Arrow from Vl to Vm
means the scattered field Esca

lm .

64



The object region Oi is divided into M subregions Vm,m = 1, 2, ...,M , as Fig.

4.2. Assume each subregion is electrically small (long wavelength approximation)

and homogeneous that ε̂i(x) = ε̂(xm) = ε̂m for all x ∈ Vm, where xm is a distin-

guish point inside Vm. Further assume E(x) = E(xm) and H(x) = H(xm) for all

x ∈ Vm, denoting E(xm) = Em and H(xm) = Hm. Denote the subregion volume

vm =
∫ ∫ ∫

Vm
dx.

Consider a subregion Vl, in which the electric field is the superposition of the

incident field, the scattered field from all other subregions (mutual-term), and

scattering influence to itself (self-term).

El = Einc
l +

∑
m6=l

Esca
ml + Esca

ll , (4.25)

When applying to (4.20) the second term of right hand side is:

∑
m6=l

Esca
ml = −

∑
m 6=l

vm(1− ε̂m
ε̂b

)(k2 +∇∇·)[Emg(xl,xm)]. (4.26)

Applying to all subregions gives rise to M simultaneous vector algebra equa-

tions, and such direct discretization of volume integral equation called the method

of moment (MoM). The implementation of numerical solutions relies on deciding

how to discretize the scatterer and calculate the mutual-term Esca
ml and self-term

Esca
ll based on the subregion shape.

Noticing that in (4.20), (4.23), or (4.24), the gradient divergence operator

∇∇· is on the x of integrand. After discretization, each subregion has constant

permittivity and conductivity, thus the operator is on Emg(xl,xm), where Em is

assumed to be a constant vector. Denoting r = x− x′, r̂ = r/|r|, and r = |r| in
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Cartesian coordinate, evaluating with g0(r) yields:

∇∇ · [Emg0(r)] =
1

4πr3
(3(Em · r̂)r̂− Em), (4.27)

Denoting cm = r·Em, where r = (xl−xm, yl−ym, zl−zm) and Em = (Em
x , E

m
y , E

m
z ),

evaluating with g(r) yields:

(k2 +∇∇·)[Emg(r)])x =

1

4π

{
−jkE

m
x e

jkr

r2
+
ejkr

r3
[k2cm(xl − xm)− Em

x ]

+
ejkr

r4
ikcm(xl − xm) +

ejkr

r5
3cm(xl − xm)

}
+ k2Em

x g(r),

(k2 +∇∇·)[Emg(r)])y =

1

4π

{
−
jkEm

y e
jkr

r2
+
ejkr

r3
[k2cm(yl − ym)− Em

y ]

+
ejkr

r4
ikcm(yl − ym) +

ejkr

r5
3cm(yl − ym)

}
+ k2Em

y g(r),

(k2 +∇∇·)[Emg(r)])z =

1

4π

{
−jkE

m
z e

jkr

r2
+
ejkr

r3
[k2cm(zl − zm)− Em

z ]

+
ejkr

r4
ikcm(zl − zm) +

ejkr

r5
3cm(zl − zm)

}
+ k2Em

z g(r).

(4.28)

In light scattering problems, (4.27) and (4.28) are usually written into a

matrix-vector form by introducing the dyadic of Green’s function for notation

clearness [53]. Denoting a 3 × 3 dyad R = r̂r̂T (using column vector) and unit

dyad I = diag(3, 3), operators (dyadic Green’s function) can be defined and

evaluated as:

G0(r) := ∇∇ · [g0(r)] = − 1

4πr3
(I − 3R), (4.29)
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G(r) := (k2 +∇∇·)[g(r)]) =

[k2(I −R) + (
jkr − 1

r2
)(I − 3R)]g(r),

(4.30)

Then (4.27) and (4.28) can be compactly represented as G0(r)Em and G(r)Em.

4.3.2 The Self-Term

The integrand contains a singularity point at |x − x′| = 0, which raises the

difficulty of integration. When discretizing the formulation, the problem is how

to evaluate the self-term Esca
ll .

This problem was first solved for k = 0 case by Kellogg [50] with a rigorous

treatment using potential theory, and further solved for k 6= 0 by Fikioris [32] with

a similar procedure. Wang [94] offered a consistent view on tackling singularities

applying either distribution theory or classical potential theory.

We following the treatment in [53], for a electrically small subregion Vm en-

closed by surface Sm, self-term can be calculated as:

Esca
mm = (1− ε̂m

ε̂b
)(M −L)Em, (4.31)

Dyadic operators M and L are:

M =

∫
Vm

[G(x− x0)−G0(x− x0)]dx,

L =

∫
Sm

n(x− x0)T

4π|x− x0|3
dx.

(4.32)

Where n is the unit normal to the surface and x0 is a distinguished point in-

side Vm. Both M and L can be calculated numerically for arbitrary shapes or

analytically for regular shapes. As low frequency approximation and the size of

Vm going to zero, M approaches to zero. However L only depends on the shape
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of Vm. For example, for a regular cubical or spherical subregion with x0 at the

centre, L = 1
3
I can be obtained [52].

4.3.3 Discrete Dipole Approximation (DDA)

MoM calculates the total field E, while another method named discrete dipole

approximation (DDA) offers a different approach. In DDA, the unknown field

that need to be solved is formulated as exciting field Eexc. The exciting field of a

subregion is defined to be the sum of incident field and scattering field from all

other subregions; from (4.25) following is defined:

Eexc
l := Einc

l +
∑
m6=l

Esca
ml = El − Esca

ll , (4.33)

Using (4.31) and (4.33) and setting M = 0 and L = 1
3
I we get:

El = [I + (1− ε̂l
ε̂b

)L]−1Eexc
l =

3ε̂b
2ε̂b + ε̂l

Eexc
l , (4.34)

Then the scattering field from a subregion to another Esca
ml in (4.26) can be re-

expressed due to the exciting field Eexc
m :

Esca
ml = 3vm

ε̂m − ε̂b
ε̂m + 2ε̂b

(k2 +∇∇·)[Eexc
m g(xl,xm)], (4.35)

Or in a dyadic Green’s function form:

Esca
ml = 3vm

ε̂m − ε̂b
ε̂m + 2ε̂b

G(xm,xl)E
exc
m , (4.36)

Substituting (4.36) back to (4.33), the exciting field of DDA formulation can be

solved by M simultaneous vector algebra equations.

The reason of naming discrete dipole approximation is because of a local
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current density:

Kl = −jω(ε̂b − ε̂l)El = 3jωε̂b
ε̂l − ε̂b
ε̂l + 2ε̂b

Eexc
l , (4.37)

This local current density in subregion with size vl gives a dipole moment pl. For

example, assume a spherical subregion with radius a:

pl =
j

ω
vlKl = −4πa3ε̂b

ε̂l − ε̂b
ε̂l + 2ε̂b

Eexc
l . (4.38)

Remarks : First, (4.37) relates the macro current to micro-local current that

can be taken as a generalized Clausius–Mossotti relation. Second, the assumption

of spherical subregion shape in (4.38) gives a well-known result (4.1) in underwater

electrosense problems, which is the perturbation of a small sphere in uniform

electric field.

4.3.4 Implementation Issues

Numerical stability

Theoretically, both MoM (4.25) and DDA formulation (4.33) can be applied,

but in practice of underwater electrosense, DDA is always chosen because of

the numerical instability of MoM. The scattering coefficient in (4.26) is 1 − ε̂i
ε̂b

,

and in complex permittivity ε̂ = ε− j σ
ω

the conductivity can be zero (insulator)

or infinite large (perfect conductor), while the permittivity is a finite number.

Thus the range of scattering coefficient is (−∞, 0) that gives a large conditional

number of algebra equations, leading to numerical instability. In another view,

MoM solves the total field, but for a conductor, the inside total electric field is

nearly zero.

DDA formulation solves the exciting field. The scattering coefficient ε̂l−ε̂b
ε̂l+2ε̂b
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in (4.36) is constrained in (−1
2
, 1) when the conductivity ranges from zero to

infinite. There are several approximated equations that can be used. The strictest

equation should be (4.20), while in underwater electrosense field frequency ranges

from 1−100 kHz and using approximation equation (4.23) is accepted. And DDA

method using (4.36) and (4.33) should choose corresponding Green’s functions.

Discretization Errors

In DDA method of underwater electrosense, the item M in (4.31) can always be

neglected due to two reasons: the low frequency enables G approaches to G0;

the subregion volume approaches to zero. As for discretization, regular subregion

shapes, either spherical or cubical, have same L and scattering equation (4.36).

The different volume effect decreases when it approaches zero. However, the

object boundary can not be exactly matched by discretized subregions. This

error decrease as well when granularity approaches to infinite. In practice, the

region near the object boundary can enjoy a better granularity to suppress this

shape error.

4.4 Implementation and Validation

We adopt the open source FEM solver [2] with complete electrode model (CEM)

to compare the numerical results with DDA. Because the perturbation is relatively

small, it is required to refine the FEM meshes to convergence to get standard and

accurate results. As suggested in [35] that a serious full dimensional FEM model

should contain a million elements with special refinement on electrodes.
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4.4.1 DDA Implementation

To make the formulation explicit, we use (4.36) and (4.29) to build algebra equa-

tions. In this situation, only conductivity is considered. Assume objects are

approximated by a cluster of N identical spheres, which are located at positions

of Si = (xi, yi, zi), i = 1...N , and α is the sphere radius, and k is the scattering

coefficient σ̂l−σ̂b
σ̂l+2σ̂b

.

Set dji =
(
dxji, d

y
ji, d

z
ji

)
to be the distance vector from j to i, and normalized

vector is d̂ji =
(
d̂xji, d̂

y
ji, d̂

z
ji

)
. According to (4.33), the equilibrium of N -spheres

cluster can be expressed as:



I3 −A12 .. −A1N

−A21 I3 .. −A2N

: : . :

−AN1 −AN2 .. I3





Eexc
1

Eexc
2

:

Eexc
N


=



Einc
1

Einc
2

:

Einc
N


, (4.39)

Aji =
a3k

|dji|3


3d̂xjid̂

x
ji − 1

3d̂yjid̂
x
ji

3d̂zjid̂
x
ji

3d̂xjid̂
y
ji

3d̂yjid̂
y
ji − 1

3d̂zjid̂
y
ji

3d̂xjid̂
z
ji

3d̂yjid̂
z
ji

3d̂zjid̂
z
ji − 1

 . (4.40)

This is a Ax = b form a linear system with a dense and symmetric coefficient

matrix, which can be directly solved for small values of N and iteratively solved

to for large N .

4.4.2 Numerical Setup

In this implementation, two parallel-plate electrodes are used to create an inci-

dent uniform electric field in a tank between them, see Fig. 4.3. Additional 25

electrodes are placed in different positions to measure corresponding potentials,
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and they are created to be small compared to the exciting electrodes and object

to the minimum their influence. All the electrode impedance is set to be insignif-

icant. In this FEM model, the ground node the as zero potential references is

defined to be the center node of one edge of the tank.

Two cases of axis-aligned objects are studied. The size of the uniform tank

is set to be 1 m × 1 m × 1 m, and the cuboid is 0.2 m × 0.2 m × 0.2 m, while

dimensions of the ellipsoid are 0.4 m× 0.3 m× 0.2 m. The background medium

conductivity is 1, and the object conductivity is 10. There is a 0.1 A current

flowing from the right emitting electrode to the left. Probes array are organized

in a 0.5 m × 0.5 m planar square and 0.1 m from the left emitting electrode,

whose actual size is set to be 1 mm.

The conventional measuring method is adopted that difference of potentials

between the probes are taken, and the first probe to be the common reference.

The perturbation is defined to be the signal with invading objects subtracting the

signal without objects in FEM, which is the same situation of real measurement.

In DDA model the perturbation is calculated directly through (4.13), and the

incident uniform electric field is calculated using (4.41), where S is the emitting

electrode area.

Ex =
I

σmS
,Ey = 0, Ez = 0. (4.41)

To compare the signals from FEM and DDA, Average relative error (RE) and

overall root mean square error (RMSE) are calculated according to (4.42) and

(4.43). In p(i, j) is the signal of i− th probe at j − th position, and n and m is

the probes number and positions number.

RE =
1

m

√√√√ m∑
j=1

(
n∑
i=1

(pF (i, j)− pD(i, j))2/
n∑
i=1

pF (i, j)2), (4.42)
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RMSE =

√√√√(
m∑
j=1

n∑
i=1

(pF (i, j)− pD(i, j))2)/mn. (4.43)

4.4.3 Case of Cuboid and Ellipsoid

Numerical results using FEM model and DDA model (Fig. 4.3) are compared in

Fig. 4.4, Fig. 4.5 and Fig. 4.6. In DDA model, 172 spheres constitute the cuboid

and 294 spheres constitute the ellipsoid. In FEM models the perturbation signals

come from the object appearance signals subtracting non-object signals, while in

DDA approach the perturbations are directly calculated using (4.1) after solving

the linear system (4.33).

Figure 4.3: FEM model (left) and DDA model (right) of ellipsoid and cube in
parallel-plate electrodes.

To validate the object perturbations at different positions and sizes, they are

first moved along the x−axis and then y−axis from −0.2 m to 0.2 m, and then
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the cuboidal side length varied from 0.03 m to 0.3 m at the tank centre. Overall

RSME for cuboid is 9.64 × 10−4 in Fig. 4.4 and 9.73 × 10−4 in Fig. 4.5, and

average RE is 7.10% in Fig. 4.4 and 10.46% in Fig. 4.5. Overall RSME for

ellipsoid is 1.10 × 10−3 in Fig. 4.4 and 9.16 × 10−4 in Fig. 4.5, and average RE

is 9.62% in Fig. 4.4 and 13.05% in Fig. 4.5.
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Figure 4.4: Cuboid and ellipsoid perturbation moving along y−axis at evenly
distributed positions from −0.2 m to 0.2 m at a step of 0.08 m resp. in FEM and
DDA models. Signals are mutiplied by 100 in figures.

As seen in Fig. 4.6 that perturbations of the varying cuboid using DDA

model are well consistent with FEM model in a tenfold range, with overall RSME

1.50 × 10−3 and average RE 11.82%. It is also noticed that when the object is

relatively small, for example, the first graph of Fig. 4.6 with the object size less

than 5% of the problem scale, FEM results is not as stable as DDA because of

the numerical round-off errors.
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4.4.4 Comparison and Discussion

Table 4.1 gives typical facts of computing time of our implementation. Programs

ran on a common desktop with Intel i5 CPU 3.4GHz and Matlab 2014. Numerical

simulation shows high consistency between DDA and FEM models (around 10%

relative difference), while DDA approach cost less than 1% computational effort

than FEM method.

Table 4.1: Comparison on computing time of implementation

Cuboid Ellipsoid

FEM
(EIDORS Solver)

Element
Quantity

399316 406732

Computing
Time (s)

21.64 22.68

DDA
(Matlab Division Solver)

Sphere
Quantity

172 294

Computing
Time (s)

0.16 0.19

Time Fraction
of FEM

0.74% 0.84%

Average Relative Difference 9.79% 11.34%

The discrepancy comes from following reasons. First, in the DDA model,

we applied a uniform incident field, whereas in FEM model the incident field

cannot be perfectly uniform. The field created by parallel-plate electrodes will

be slightly distorted by the object inside it. The reason of distortion is due to

the re-distribution of charges on the plates. This problem will be eased if we

use point electrodes in electrosensor design. The numerical instability appears

when the object is small in FEM model, as displayed in the first figure of Fig.

4.6. Second, in addition to discretization error, we noticed that peak signals have

larger differences, which can come from the shape approximation that sharp edges

of cuboid and ellipsoid are blurred by spheres [99].

DDA approach is flexible in representing objects and more computationally
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efficient than the universal approaches such as FEM for underwater electrosense.

DDA has several advantages than FEM in underwater electrosense. First, the

scattering formulation only discretizes the object regions, while in FEM the whole

domain needs to be discretized, which is overkill. Second, FEM theoretically

can only deal with the close-region problem without the specifically designed

infinite-far element. Third, in active sensing, it is proper to define a controlled

transmitting energy, such as the modulated radar or sonar transmitting waves.

Defining an incident electric field avoids tackling complex boundary conditions

of the source region, which should be controlled and modulated.

The computational complexity of directly solving linear system (4.39) by LU

decomposition is O(n3), where n = 3N , N is the number of constituting spheres.

If the size and shape of object do not vary, the decomposition A = LU is fixed and

only the incident field b changes. In such case, the computational complexity by

forward and back substitution is O(n2). For dynamic applications where objects

move continuously, the iterative method that generally converges in m� n steps

can also be applied, and each iterative computation time is O(n2). Our imple-

mentation of a 1688 dipoles system typically shows a convergence to 10−9 order

at around 50 steps using Biconjugate Gradient (BG) or Quasi-Minimal Resid-

ual(QMR) methods. Further, by taking the advantage of the regular structure of

the dipole cluster, techniques like FFT (Fast Fourier Transform) can be utilized

to accelerate the matrix-vector multiplication in iterative methods to O(n log n),

which has proved to be effective in light scattering problems [99]. The hierarchy

techniques like FMM (Fast Multipole Method) [34] are also promising to make

the matrix-vector multiplication in such specific problems faster.
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4.5 Application

4.5.1 General Inverse Problem

In forward problem, the sensing domain is discretized into M pieces of parameters

vector m. Data d are observed at several points of amount N. The DDA solver

use parameters m to establish system matrix AM×M , which maps the excited

field to the incident field. Observation matrix BN×M maps the excited field to

the data d.

A(m)Eexc = Einc, (4.44)

B(m)Eexc = d, (4.45)

According to (4.36) and (4.33):

A(m) = HAdiag(m) + I, (4.46)

B(m) = HBdiag(m), (4.47)

HA =



03 −G12 .. −G1M

−G21 03 .. −G2M

: : . :

−GM1 −GM2 .. 03


, (4.48)

HB =



G1d1 G1d2 .. G1dN

G2d1 G2d2 .. G2dN

: : . :

GM1 GM2 .. GMdN


, (4.49)

Where items of parameters vector m are mi = 3vi
ε̂i−ε̂b
ε̂i+2ε̂b

, items of HA and HB

are dyadic Green’s functions defined by (4.29) or (4.30).
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The forward problem is to calculate d, given HA, HB, m and Einc. This is

well-posed as A is invertible, so d = B(m)A−1(m)Einc.

The inverse problem is to find an optimal m∗, given HA, HB, d and Einc, to

minimize the cost function for a given metric µ in Hilbert space:

Φ(m∗) =
∥∥B(m∗)A−1(m∗)Einc − d

∥∥
µ
. (4.50)

This is a nonlinear, high-dimensionality optimization problem. Many tech-

niques, such as the method of steepest descent, conjugate gradient method and

Newton method, can be applied [100]. The inverse problem of EIT is based on

a similar formulation in (4.50). To enable optimization techniques, a Frechet

derivative matrix of f(m) needs to be calculated, which is called sensitive or

Jacobian matrix in EIT [2].

One of the difficulties of inverse problem is the solution instability that par-

tially comes from the huge parameter space (high dimensionality). Regularization

is able to introduce constrains to parameters, or in a probabilistic view it intro-

duces a priori to the problem. For example, Tikhonov regularization technique

introduces a priori model mapr and a hyperparameter α [2, 100] to the cost func-

tion:

Φ(m∗) = ‖f(m∗)− d‖µ + α ‖m∗ −mapr‖µ , (4.51)

Where f(m∗) = B(m∗)A−1(m∗)Einc. Intuitively the priori model limits the

solution not far from it in some metric sense, and the hyperparameter indicates

how strong the constraint is.
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4.5.2 A Simplified Robot with Electrosense

The underwater electrosense is an inverse problem: given the incident field and

the observations at some finite points of the final field, we need to infer the

information about scatterers properties. A simplified underwater robot equipped

with electrosense was extensively designed to test the DDA approach on detecting

invading objects within robot’s sensing range and estimating their features. Two

spherical conductors acted as current emitting electrodes, as Fig. 4.7(a), and

along the center line of emitting electrodes was a group of evenly distributed

probing electrodes for potential measurements.

Figure 4.7: (a) The simplified robot model with electrosense for sensing a cube.
(b) A 1-dimensional sensor. Frame was made by very slender plastical pipes, and
electrodes used stainless steal. The handmade sensor had 11 electrodes locating at
[-8.6 -7.1 -5.5 -3.6 -1.7 0 2.0 3.8 5.7 7.4 8.8] cm along the axis.

The incident electric field can be determined and controlled by injecting cur-

rent from emitting point electrodes. Assume the emitting electrode to be a perfect

conductor, i.e. electric field is zero inside, taking a Gaussian volume encircling the

electrode surface and excluding the feeding wire: as Q = εm
∫
s
Eds =εm

∫
s

J
σm
ds,

thus we have Q = Iεm
σm

. It means whole net charges on the emitting electrode

is determined if the overall current is given. This can be used to calculate the

incident electric field at any point in the sensing space. When the emitting elec-
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trodes are designed small or the distance from the object is large, the field can

be calculated as:

E =
Q

4πεm

r

r3
=

I

4πσm

r

r3
. (4.52)

If the object is very close to the emitting electrode, making the size of elec-

trode significant, the equation (4.52) may be inaccurate. In a microscopical view,

although the whole charge always stays the same, the new distribution of charges

will change the near field. From this point of view, a smaller emitting electrode

is better.

Fig. 4.8 shows the perturbation signals between adjacent probing electrodes

amplified by 100 in DDA model and FEM model, and the probes number is 30,

and the emitting current is 0.1 A using the simplified configuration. The robot

is under the fly-by from −0.1 m to 0.1 m of a conductive cube from one emitting

electrode to the other, axis-aligned and 0.05 m far from the robot center axis.

Cube size is 0.04 m× 0.04 m× 0.04 m and its conductivity is 10.
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Figure 4.8: Perturbation signals comparison under a cube fly-by from −0.1 m
to 0.1 m in robotic electrosense configuration
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4.5.3 Experiment

We further made a 1-dimensional sensor, as in Fig. 4.7(b), according to the

design of the simplified robot to validate the results from DDA approach. Emit-

ting electrodes are two balls of diameter 4 mm and 9 smaller nail-like probing

electrodes are arranged in the line between them. All electrodes used stainless

steel to reduce electrochemical corrosion. The sensor frame was made by slender

plastic pipes.

For current injection and signal acquisition, we used commercially available

CompactRIO plus modules of voltage meter (NI 9265) and current source (NI

9205) from National Instruments. These modules are fully configurable in Lab-

view and can be seamlessly interfaced to Matlab through build-in script node.

The output range of current source is ±20 mA with a maximum load of 600 Ω.

When operating at the finest scale ±200 mV of the potential meter, the absolute

accuracy is 150 µV, and the sensitivity is 4 µV.

To reject noise and reduce chemical reaction between electrodes and water,

the current was modulated into a square wave at 1kHz. Receiving signals on

probing electrodes were synchronously demodulated into in-phase and quadrature

components. Before the demodulation, a high-pass filter was utilized to remove

the underwater DC field, and the synchronous demodulation itself acted as a

super narrow band pass filter that rejects all AC noise.

The sensor was held in a tank with salty waters (salt added tap water), as

Fig. 4.9(a), and the conductivity of the water was not determined. As a cal-

ibration process, by injecting 20 mA current through emitting electrodes, we

first measured the potentials of probing electrodes when no objects exist. Then

simulations with same sensor model and injecting current were conducted with

different conductivity. We could find the best match of probe potentials between
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Figure 4.9: (a) Sensor tested in a tank with salty water. (b) Testing platform
overview. Electrodes were connected to the NI instruments.
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experiment and simulation in the least square sense. Because the incident elec-

tric field is uniquely determined by the potential field, the match of potentials

leads to the match of the perturbation signals which can be calculated by DDA

approach.

Due to the tank effect, the signal was stronger than the simulation. Insulated

tank walls can be modeled as mirrors of the source. For example, if the tank is

1 meter-wide and the sensor is 10 centimeter-long centered in the tank, two tank

walls increase the perturbation by approximately 2% for the object is at a body-

length away. This effect was partially compensated by the calibration. When the

object was closing the emitting electrode, the discrepancy between experimen-

tal signal and simulation increased, because we used a relatively large emitting

electrode to reduce surface current density (less electrochemical corrosion), which

was actually not a point electrode in the near field.

In this experiment, the simulating conductivity that found was 0.285 s/m, and

the corresponding potential match is shown in Fig. 4.10(a). An insulating sphere

(diameter 4.2 cm) was moved from one emitting electrode to the other along the

parallel line of the sensor at distance of 5 cm, as in Fig. 4.9(b), and corresponding

perturbation comparison between experiment, DDA and FEM were shown in

Fig. 4.10(b). From the experiment, we confirmed the effectiveness of numerical

calculations.

4.6 Conclusion

We provided a scattering formulation, which was expanded from light scattering

theories, for underwater electrosense. Corresponding numerical solutions includ-

ing MoM and DDA were formulated and implemented, and we explained that only

DDA method was suitable. Compared to other formulations, scattering model
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has several advantages in active sensing problems by controlling the transmitting

signals. These works laid a solid foundation for developing more sophisticated

underwater electrosensors.

This chapter provides a novel approach targets on reducing the computational

burden of the forward problem by introducing the method of discrete dipole ap-

proximation (DDA). It is found to perform more than 100 times faster than FEM

in previous chapter with only a 10% relative difference in underwater electrosense

problems. Based on the fast DDA solution of the forward problem, two types of

sensing algorithms to tackle the inverse problem in following chapters, unscented

Kalman filters (UKF) and neural networks (NN), can be designed to localize and

identify an object.
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Chapter 5

Sensor Design and Sensing

Algorithms

5.1 Introduction

The idea of electrical impedance tomography is the whole domain reconstruction.

This approach comes across with many problems like environment representation,

unaffordable computational burden, and the large-dimension problem of the in-

verse problem. In this chapter, we tackle an easier problem using a stronger

constraint: given a single object in the water, how to use the electrosensor to

infer its shape, size, and location.

We formulate the shape identification as a classification problem, in which

many specified shapes are potential options, and after a procedure, the closest one

shall be recognized. After shape identification, the object can be parameterized

by its boundary dimensions, orientations, and locations.

We introduced 1-D and 2-D sensor design using I-U mode. A known current

was injected through small electrodes and deduced potentials were measured by

an array of electrodes. DDA approach can be applied to I-U mode sensors.
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First, given the parameterized object and DDA solution of the forward problem,

unscented Kalman filter was used to estimate its size and location using both 1-D

and 2-D sensor. Second, a simple back-propagation neural network was proved

to be useful to directly map the measurements to the state space after proper

training.

Enlarging the number of electrodes of the 2-D sensor made the conception

of electrical image meaningful, and statistic learning method like convolutional

neural network (CNN), which is widely used in digital image recognition, could

be applied for object identification.

5.2 Sensor Design

5.2.1 1-D and 2-D Sensor

The simplest way of building an electrosensor is all electrodes aligned in a line,

which is a 1-D sensor widely used in previous studies. As in Fig. 5.1, N probing

electrodes are all set between two emitting electrodes, which means to measure

the inner field perturbations (electrical voltages). This design was tested and

validated in the previous chapter.

We can also design the underwater electrosensor morphology in an intuitive

way, which was a membrane emulating the electric fish skin. As an analogy be-

tween ’retina vision’ and ’electroreceptor vision’, the electric organ acts like a

lightning source that illumines the near-range space. Just like the projection on

the retina, the electrical image on the fish skin can be interpreted as a trans-

form from a 3-dimensional space to a 2-dimensional surface, but with a complex

projecting law.

The sensor consists of emitting electrodes to establish the electric field and
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Current

Object

Figure 5.1: Sensor design with coordinate frame. Black dots are probing elec-
trodes measuring potentials and red dots are emitting electrodes conducting cur-
rents.

probing electrodes to sense the perturbations. I-U mode is adopted, where a

controlled current is injected into the water by point emitting electrodes, and

corresponding measurements are potentials taken from probing electrodes. The

I-U mode enables the application of fast DDA method in the forward problem.

It also offers a higher sensibility compared to U-I or U-U mode.

Probes are arranged into a two-dimensional array on the surface, where corre-

sponding potentials build up an electrical image. Emitters are set into pairs that

each pair conducts a channel of controlled current. As Fig. 5.2, the N × N dot

matrix represents the probing electrodes, and M pairs of opposite dots represent

emitting electrodes (current channels). In practical application, the sensor can

be two-side that probes and emitters are exposed to both sides of the water, and

also can be one-side that electrodes are only set on a single side of the surface.

5.2.2 DDA Approach

Applying DDA approach to the forward problem, a known incident electric field

is presupposed. Objects are discretized into small particles (dipoles) and the final

field is calculated from the interaction between dipoles and the incident field.

89



..
.

..
.

..
. ..

.N

N

Current-2

C
u
rr

en
t-

M
C

u
rr

en
t-

M

Current-2

Object

Figure 5.2: Sensor design with coordinate frame. Black dots are probing elec-
trodes measuring potentials and red dots are emitting electrodes conducting cur-
rents.

The incident electric field can be determined and controlled by injecting cur-

rent from emitting point electrodes. Assume the emitting electrode to be a perfect

conductor, i.e. electric field is zero inside, taking a Gaussian volume encircling the

electrode surface and excluding the feeding wire: as Q = εm
∫
s
Eds =εm

∫
s

J
σm
ds,

thus we have Q = Iεm
σm

. It means whole net charges on the emitting electrode

is determined if the overall current is given. This can be used to calculate the

incident electric field at any point in the sensing space. When the emitting elec-

trodes are designed small or the distance from the object is large, the field can

be calculated as:

E =
Q

4πεm

r

r3
=

I

4πσm

r

r3
. (5.1)

If the object is very close to the emitting electrode, making the size of elec-

trode significant, the equation (5.1) may be inaccurate. In a microscopical view,

although the whole charge always stays the same, the new distribution of charges

will change the near field. From this point of view, the smaller emitting electrode

90



is better.

The calculated signals using DDA approach are potential perturbations δU

of objects, while direct measurements are potentials Us, therefore we need to

establish a base signal Ub when no objects present that δU = Us − Ub. As a

reference electrode (potential zero) is needed in voltage measurement, a N × N

probing matrix will generate N2 − 1 measurements.

5.2.3 Sensibility

By injecting controlled current, the system can self-adjust the output power. In

other words, the output power is proportional to the resistance of the environ-

ment. This feature increases the sensibility compared to the U-I mode [72]. For

example, in the situation of the sensor facing to an insulating wall (a large object),

as Fig. 5.3(a), for the central probing electrode its base signal is determined by

two real emitting electrodes, while its perturbation signal is determined by two

imagery emitting electrodes with same charges.

d

L

Q

-Q

Q

-Q

d

L/2

Wall
Object

QQ

-Q-Q

(a) (b)

Figure 5.3: (a) Schematic diagram for sensibility calculation. (b) Sensing model
for one-side design.

The relative signal perturbation is:

δU

Us

=
L/2

L/2 +
√

(L/2)2 + (2d)2
(5.2)

where L is the largest length of the sensor and d is the distance to the wall.
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Defining d = L we get δU
Us

= 1
1+
√

17
≈ 19.5%. This reletive perturbation is much

larger than U-I mode in [72], where to achieve a body-length sensing to a wall

the sensitivity need to be 0.2%.

To further increase the SNR, one-sided design can be used due to the image

principle, as Fig. 5.3(b). First, the field strength is doubled compared to the two-

side case using (5.1) with the same amount of current. Second, perturbations from

objects are doubled as well. As a result, its signal is four times of two-side sensor

or pure-electrode sensor as tested in [81].

5.3 Unscented Kalman Filter for Localization

Kalman filters are step-by-step signal matching approaches to state estimation

problems that can tackle measurement or system evolution uncertainties. If the

shape of an object is identified, it can be parameterized by its position and

dimensions. These parameters compose the state space of the Kalman filter.

The unscented Kalman filter is chosen because it needs no analytical relationship

between the state and the observation [74]. Thus we can use numerical methods

for observation prediction.

State space representation (5.3) includes a system evolution model and an

observation model, where x is the system state representing the geometry pa-

rameters; f is the relative moving pattern of the sensor; u is the input; h is the

mapping from state x to observation y; v and n are the system noises with white

Gaussian of covariance Q = E[vkv
T
k ] and R = E[nkn

T
k ].

xk = f (xk−1,uk−1) + vk−1, vk ∼ (0, Qk)

yk = h (xk) + nk, nk ∼ (0, Rk)

(5.3)

A constrained unscented Kalman filter (CUKF) was designed. x̂0 and P0 are
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initial state and covariance that can be obtained from coarse estimation of neural

network; χk is called sigma points that spread from state and covariance, and

they are used for time updating and calculating Kalman gain Kk.

Initialize:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T ]

(5.4)

Calculate the sigma points: χk−1 = [x̂k−1 x̂k−1 ±
√

(M + λ)Pk−1]

Time update:

χ−k|k−1 = f (χk−1,uk−1)

x̂−k =
2M∑
i=0

W
(m)
i χ−i,k|k−1

P−k =
2M∑
i=0

W
(c)
i [χ−i,k|k−1 − x̂−k ][χ−i,k|k−1 − x̂−k ]

T

(5.5)

Calculate the sigma points and measurement prediction:

χk−1 = [x̂k−1 x̂k−1 ±
√

(M + λ)Pk−1]

Yk|k−1 = h(χ−k)

ŷ−k =
2M∑
i=0

W
(m)
i y−i,k|k−1

(5.6)

Calculate the Kalman Gain:

Pyy =
2M∑
i=0

W
(c)
i [Y−i,k|k−1 − ŷ−k ][Y−i,k|k−1 − ŷ−k ]

T

Pxy =
2M∑
i=0

W
(c)
i [χ−i,k|k−1 − x̂−k ][Y−i,k|k−1 − ŷ−k ]

T

Kk = Pxy(Pyy)
−1

(5.7)
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Observation update:

rk = ỹk − ŷ−k

x̂k = x̂−k + Kkrk

Pk = P−k −KkPyyK
T
k

(5.8)

If:

Dx̂k< d (5.9)

Only consider active row:

Dactx̂k,act = dact (5.10)

Solution to the linear equality constrain problem:

K
′
k = Kk −DT

act(DactD
T
act)
−1

(Dactx̂k,act − dact)(r
T
kP
−1

yyrk)
−1

rT kP
−1

yy

(5.11)

Fixed measurement update:

x̂
′

k = x̂−k + K
′
krk

P
′
k = P−k −K

′
kPyyK

′T
k

(5.12)

One of the practical problems applying unscented Kalman filter is that the

state may exceed the reasonable range, for example, the distance to the object or

the object size may be less than zero or exceed the largest range in the problem.

In such case, state constraints should be considered. We fixed the Kalman Gain

using Active Set Method or Gain Projection [75].

Algorithm step 7 is the state constraints check, where Dx̂k= d is the expres-

sion of critical state. When such a critical state is broken, rows of active states
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(broken states) Dactx̂k,act = dact will be used to fix the Kalman gain K
′
k. Pa-

rameters in the algorithm are chosen according to formulas in (5.13) and can also

refer to paper [47].

λ = α2(M + κ)−M

W
(m)
0 = λ/(M + λ)

W
(c)
0 = λ/(M + λ) + (1− α2 + β)

W
(m)
i = W

(c)
i = λ/{2(M + λ)}, i = 1, ..., 2M

(5.13)

5.3.1 Simulations with CUKF

Figure 5.4: (a) DDA model of a 5-by-5 planar sensor with a sphere. (b) FEM
model of a 5-by-5 planar sensor with a sphere.

As the first example, Fig. 5.5(a) illustrates an example of simulating CUKF

to estimate positions of an insulating sphere given its radius using a 2-D planar

sensor. The measurements were generated from FEM model, while DDA model

was used as the forward model in CUKF, as seen in Fig. 5.4. It can be seen that

the constraints cause the states to be truncated at 0.03 m on x−axis and -0.06

m on y−axis. Because of the discrepancy between the DDA and FEM results,

the estimated positions have steady-state errors of 0.13 cm and 0.08 cm on x and

y. Fig. 5.5(b) gives more details on how CUKF estimates the state step-by-step
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to approach an optimal signal matching. This inverse inferring process further

demonstrates the consistency between FEM and DDA models.
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Figure 5.5: (a) CUKF on position estimation. x−axis is the distance to the
sensor, and y−axis is the direction parallel to sensor plane. (b) Details of step-
by-step signal matching using CUKF. Real line is the perturbation signal generated
by FEM model, while dashed line is signal generated by DDA model of each es-
timating step. Step numbers of initial several steps are labelled. Simulation used
injected current 2 mA and insulated sphere radius 0.0275 m and signal amplified
by 100.

As the second example, the axis-aligned 1-D robot was at the origin, and a

cube with side length 0.04 m was fixed at (x, y, z) = (0.05, 0.05, 0). Solution by

UKF was a static optimization problem to minimize the signal difference between

the measurements and model predictions. Initializing the state at a random point

within the sensing range, the localization and identification process is illustrated

in Fig. 5.6(a). The measurement signals were mixed with zero mean Gaussian

noise of SNR = 30. In the second simulation, a cube with side length 0.03 m was

moved from (−0.05, 0.05, 0) to (0.05, 0.05, 0) with a fixed velocity. This motion

was corrupted with 2% noise, and the measurement signals were mixed with zero

mean Gaussian noise of SNR = 30. The tracking and identification process by
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CUKF is illustrated in Fig. 5.6(b).
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Figure 5.6: (a) CUKF searches for a static cube and estimate its size by a
simplified robot model with electrosense. (b) CUKF tracks the fly-by and estimate
the size of a cube by a simplified robot model with electrosense.

Simulation of both cases estimates the correct states with convergence in

about 20 steps, demonstrating the effectiveness of UKF with constraints in un-

derwater active electrosense problems. This further validates the consistency of

DDA and FEM approach on the forward problem calculations.

5.4 Back-Propagation Neural Network for Lo-

calization

Given the shape of the object, a traditional BPNN can be used for regressing its

position and size. A small probing matrix (5 × 5 pixels, 6 × 6 cm) was used to

infer the position and size of a sphere. Training spheres were randomly sampled

and simulated using DDA for 2000 times (within the predefined sensing area: x ∈
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[3,12] cm, y ∈ [-6,6] cm, z ∈ [-6,6] cm and sphere diameter d ∈ [1,6] cm).

Fig. 5.7 illustrates the sensing ability using a four-layer BPNN ([20 16 12 8])

with 25 inputs and 4 outputs. Each electrode generates a potential through the

DDA simulation, and 25 electrodes form the whole input space. Whereas three

positions and the size of the sphere form the out output space.

The second coordinate axis attached to figure is the one used by the sensor

in Fig. 5.2. Figures in the left column are error distributions of x, y, r using

simulating signals without noise (y and z are symmetric with same features).

Error distributions are almost uniform within the whole sensing area, with average

error 0.3835, 0.4077, and 0.2973 cm of x, y and r respectively.

Figures in the right column are error distributions using inputs with 1% white

Gaussian noise, with average error 0.9853, 1.2933, and 0.3461 cm of x, y and

r respectively. It can be seen that the localizing performance is not uniform,

where far-field sensing is more easily affected by the noise because signals decrease

quickly with the increasing range. However, the size mapping r is more immunized

from noise, even in the far field.

5.5 Convolutional Neural Network for Identifi-

cation

5.5.1 Electrical Images

Electrical images composed of perturbation signals can be generated by DDA

simulation. Assuming a uniform electric field normal to the plane, images in

Fig. 5.8 were generated using a large probing matrix (100 × 100 pixels). A

spherical object has simplest electrical images because its full symmetry makes

it independent from the orientation. Using the coordinate frame in Fig. 5.2, Fig.
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Figure 5.7: Error distributions on x, y, r of a four-layer BPNN ([20 16 12 8])
with none-noisy and noisy simulating inputs. Unit is centimeter.
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Figure 5.8: (a) Image of a flying-by insulating sphere on a plane sensor. (b)
Image of a leaving sphere on a plane sensor. (c) Signal comparison between the
cube and sphere with same volume and position. The upper figure is the cube
perturbation, which is stronger than the bottom sphere one.

5.8(a) shows the perturbations on the electrical image evolve when the sphere

moves along the y axis. In Fig. 5.8(b), the imaging region becomes flat and

blurred when the spherical object moves away along the x axis.

Simulating signals from a sphere and a cube with same volume and position

are compared in Fig. 5.8(c). As discussed in [81, 13, 15], electrical images are de-

termined by both geometric and electric properties. Under the large conductivity

contrast, volume, position and aspect ratio prove to be the most significant geo-

metric factors. One of the intriguing questions about the ability of electrosense

is to distinguish objects with similar volumes but different edges [15]. It can be

seen that electric images from objects with varied edges (cube and sphere) are

quite similar, which indicates a high sensitivity requirement of the sensor for such

object identification problem.

Figure 5.9: Typical electrical images of cube, sphere, and rod. Signals were
linearly mapped to [-1 1] that in image 1 is the lightest and -1 is the darkest.
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5.5.2 CNN for Identification

Traditional BPNN simply using stacked fully connected layers do not perform

well on shape identification mainly because it lacks utilizing 2D spatial relations

between pixels of an image. Convolutional neural network (CNN) modifies the

BPNN with additional convolution layers which are proved to be essential in

conventional digital image recognition. We applied this technique on electrical

image identification of underwater electrosense by using a modern deep learning

framework MatConvNet [85].

We used a probe matrix 6×6 cm as the coordinate in Fig. 5.2. Three categories

of electrical images of sphere, cube, and rod were generated by DDA simulations

with random positions, orientations, and sizes. Each shape had 2000 samples

for training (80%) and testing (20%). Objects were put within the predefined

sensing area: x ∈ [3,6] cm, y ∈ [-3,3] cm, z ∈ [-3,3] cm and minimum enclosed

sphere diameter d ∈ [1,5] cm.

We first used a dense image with 28 × 28 pixels. Fig. 5.9 showing 9 typical

electrical images of each group. In this simulation, a pair of point emitting

electrodes at opposite corner of the sensor was used. Hence the field in front of

the sensor was not as uniform as in Fig. 5.8, which made the electrical images

(Fig. 5.9) more confusing for us. However, by training a convolutional neural

network we found these images are distinguishable.

The network was composed of an image input layer, three convolutional layers,

two fully connected layers (the latter one was used for classification output), as

Fig. 5.10. Other layers included rectified linear units and pooling for subsampling.

Before input layer, signals in each image were linearly mapped to [-1 1]. A fully

connected layer with 256 nodes and 0.5 dropout rate were set before the output

layer [82], and batch normalization technique was further applied to reduce over-
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ferent noise levels with 28× 28 image.
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Figure 5.12: Training and Testing confusion table of identification using CNN
with different electrical image densities. Number representation: 1-Cube, 2-
Sphere, 3-Rod.
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fitting and accelerate training process [43].

The network was trained using stochastic gradient descent and a logarithmic

descending learning rate starting from 0.01. Each mini training batch had 128

samples, and maximum epoch is 2000. In actual training, data was augmented by

flipping images up and down, right and left. The training convergence of batch

error is illustrated in Fig. 5.11(a) (train-28 and test-28). We also trained a BPNN

(stacked fully connected layers) with three fully connected layers of 128, 64, and

32 nodes respectively. The final testing accuracy for CNN was up to 92.6% while

BPNN can only achieve an accuracy around 70%.

We further down-sampled the electrical images to 14×14 and 7×7, represent-

ing a coarser probing matrix, to investigate their identifying abilities with same

training and testing data set. We used similar network structures: for 14 × 14

images, the net was composed of three convolutional layers and a fully connected

layer; for 7× 7 images, two convolutional layers and a fully connected layer were

used without pooling. The training convergence of batch error is illustrated in

Fig. 5.11(a) (train-14, test-14 train-7 and test-7). The overall accuracy using

coarser probe matrix degraded to 90.7% and 88.2% respectively.

To evaluate the noise tolerance of object identification using CNN. It is rea-

sonable to add noisy samples in training set to enforce the network learning noisy

features, but the noise should not be too strong to submerge main features. We

added specified noise (SNR = 500) to the training set and tested the network

using a sample set with different noise levels, as Fig. 5.11(b). It can be seen

that denser probe matrix is more immunized from noise. To achieve an ideal

identification rate, probe matrix 28 × 28 requires a minimum SNR around 120,

while 14× 14 and 7× 7 need higher SNR, 210 and 290 respectively.

Fig. 5.12 is the confusion table without injecting noise, where results were

evaluated by removing the dropout layer. For images with 28×28 pixels, the dis-
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crepancy between the classification performance on training dataset (96.4%) and

testing dataset (92.6%) indicated over-fitting still existing. Interestingly, spheres

were the easiest to be identified, and only 0.4% spheres were incorrectly recog-

nized to be other shapes. There were 16.1% misclassified cubes, in which most

of them were recognized as spheres. This result again validated the conclusion

in [15] that sphere and cube have the same aspect ratio and similar projection

shapes, as in Fig. 5.8(c), therefore to distinguish them using edge information

is more difficult. Actually, some small and far-field cubes lost their shape edge

information and acted as spheres. Rod has a long aspect ratio that is easier to

be identified, and only 5.7% rods were misclassified.

Instead of saying spheres are easier to be identified, it is better to say they have

least distinguishable features, no edge or long aspect ratio. Objects are identified

by features, and if they lose feature information on sensing images due to the

small size or far range, they will be classified into a sphere. This can be validated

from identification using images with 14 × 14 and 7 × 7 pixels, misclassification

rate dramatically increased for cubes and rods, while for spheres it kept stable,

0.4% to 0.5% and 0.6%. Coarser probe matrix loses more information on object

features.

5.6 Conclusion

This chapter describes the sensor design and corresponding sensing algorithms.

For both 1-D and 2-D sensor case, unscented Kalman filters can be used to es-

timate the size and location given the object shape. On sensing algorithms of

underwater electrosense using proposed 2-D design, we have following conclusions:

(1) Object projection on a sensing plane (electrical image) can be used for shape

identification by training a deep convolutional neural network. Its identifying
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ability is determined by the accuracy and density of signals (pixels). Some geom-

etry features such as aspect ratio are easy to distinguish, while some others such

as edge difference are more difficult. (2) Given the object shape to be a sphere,

we can train a neural network for position and size estimation. The size esti-

mation is more immunized from the system noise than other properties. (3) On

object localization, the neural network has the advantage over unscented Kalman

filter which requires forward calculation for each sigma point in each iteration.

However, this computational burden can be overcome by parallel computing.
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Chapter 6

Prototypes and Experiments

6.1 Introduction

Theoretical studies in previous chapters demonstrate principles and algorithms of

underwater electrosense. Applying these techniques on real underwater robots de-

pends on further implementations and experimental tests. This chapter explored

active underwater electrosense in the laboratory environment. Three basic points

shall be considered before building prototypes. First, the underwater electric field

is complexed by environmental conditions. Due to the power line effect, a 50 Hz

noise (Australian standard) is easily coupled to the electronics. There is also a

near-ground static field as a result of atmosphere activities. Thus a simple static

field implementation is not plausible as well. The active sensing system should

run between 1 KHz to 100 KHz to achieve a best adaptive performance. Second,

the electrodes data acquisition demand a fast, stable, accurate, and multi-input

measurement system. These system requirements and indicators usually conflict

with each other that we need a higher level trade-off based on overall system

design. Third, experimental study of the sensor in the laboratory is still far

from robotic applications. In most robotic computing and electronics system, the
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hardware resources are limited, but the performance and reliability still cannot

be sacrificed.

6.2 A 5× 5 Planar Sensor

6.2.1 Prototypes and Electronics

The 5 × 5 Sensor consists of emitting electrodes to establish the electric field

by injecting current and probing electrodes to sense the potential perturbations.

According to the DDA theory of underwater electrosense, each small emitting

electrode with controlled injecting current can be seen as a point source with

controlled electric charges. Thus the incident field is completely determined and

controlled. The electric potential is taken between a pair of probing electrodes,

rather than between the electrode and system earth, to suppress common mode

noises.

To make the electric field more uniform, we can arrange the number of the

pairs of the emitting electrodes and their locations. A quadrate sensing plate

is designed, and each corner has a spherical emitting electrode fastened. More

probing electrodes tell more information about the environmental variation, but

it is hard to increase the amount because of the prototype electronics limitation

(more wires and circuits). Here we design a 5 × 5 probing matrix, which will

generate a 5× 5 pixels electrical image representing the sensing region projection

on such plane.

Fig. 6.1 shows the model and prototype of the electrosensor, and the func-

tional diagram is shown in Fig. 6.4. The whole size of the probing matrix is

6cm×6cm. In simulating the model using DDA approach, we only consider pure

electrodes, neglecting the electrode carrier or sensor base itself. However the ac-
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tual prototype is made from PCB board and wires and connectors, even though

we have hollowed out several parts to reduce the effect (left one in Fig. 6.1).

For applications that the body, sensor or sensor carrier (such as a robotic fish)

cannot be neglected, we can use a successive reflection method [20] to model the

interaction between the objects and the sensor body itself, which can be applied

in DDA approach as well.

Figure 6.1: Prototypes of membrane sensor. Left figure is a two-side sensor
whose electrodes are exposed to water on both side, reacting to objects from each
side symmetrically. Right figure is a one-side sensor whose electrodes are insulated
from water on the other side. White material is silicon sealant for protecting
connectors and via holes on PCB board.

Another design is only to sense one side of the membrane (right one in Fig.

6.1), which means the electric field will not propagate to the other side. The

probing electrodes are also set on one side only. Theoretically, this requires the

membrane to be insulated and infinitely large, and in that case, we can simply

utilize the image method to obtain the consequence that the field strength will be

doubled compared to the original design. While in practical application, the field

will inevitably leak to the other side. As a result, the field strength on sensing
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Figure 6.2: (a)Top (red line) and bottom (blue line) view of the pcb board design
of the 5× 5 sensor. (b) Connector pin instructions.
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side will be less than twice of the original design. The real fish skin is nearly a

surface of a long and narrow ellipsoid, which is apparently a single side sensor.

A PCB board design is illustrated in Fig. 6.2(a). The 25 electrodes are

directly lead to three connectors as pin showed in Fig. 6.2(b). These connected

are further wired to a current source and a multi-input voltage meter.

As the prototype showed in Fig. 6.3, a three degree-of-freedom platform is in-

house designed and manufactured for translating and rotating the sensor. Each

freedom is driven by a step motor controlled with Arduino and motor driver

board, which offers a serial port interface to Matlab on PC. We use commercial

stimulating and measuring modules from National Instruments. These modules

are fully configurable in Labview and can be seamlessly interfaced to Matlab

through build-in script node. The output range of current source is ±20mA with

a maximum load of 600Ω. While operating at the finest scale ±200mV of the

potential meter, the absolute accuracy is 157µV and the sensitivity is 4µV .

Figure 6.3: (a) Tank and motion platform with three degrees of freedom, with
experimental rubber spheres of different sizes. (b) Sensor action in the water,
with stimulating and measuring electronics from Nation Instruments.

The overview of the signal processing is illustrated in Fig. 6.4. For simplic-

ity, only a pair of diagonal emitting electrodes is used to inject a current signal
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from stimulating source. To reject noise and reduce chemical reaction between

electrodes and water, the current is modulated into a square wave at 1kHz. For

this processing system, the signal is mostly digitally processed by software except

for the high-speed sampling hardware. The square wave is easily generated by

the program, and receiving signals on probing electrodes are synchronously de-

modulated into in-phase and quadrature components. Before the demodulation,

a high pass filter is utilized to removing the DC part, and the synchronous de-

modulation itself acts as a super narrow band pass filter which will reject all AC

components of the noise. After the demodulation, a low pass filter is set to get

the final attenuation value.

Current Update

_

High-pass 
Filter

Synchronous 
Demodulation

Low-pass 
Filter

SamplingSampling

Attenuation

Signal
Generator

Ref

Figure 6.4: Signal processing flowchart. The hardware works including sampling
and signal update are illustrated in blue blocks, while other procedures are digitally
conducted in software.

In addition to the resistant assumption of the theory, for real application,

we need to consider the reactants of the water, the cables and the environment
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like the tank. Also, there will be contact impedance between the electrode and

the water. Further, the water impedance will change with the temperature and

is hard to precisely determined without special instruments. And the geometry

and electrical properties of the actual prototype will be slightly different from

the simulating model. These practical influences will lead to signal mismatch

between numerical simulation and experiments.

The strategy on solving these problems is by adjusting the simulation param-

eters to match the electric field when no object appears. Because the electric field

is uniquely determined by the potential distribution, if the simulating potentials

on probing electrodes are matched to the experimental ones, then the electric

field is believed to be matched. Consequently, perturbation signals of the object,

which are used in the sensing algorithms, are believed to be consistent.

More specifically, two parameters including the injecting current and the water

conductivity are referred. The experimental and simulating current are set to be

the same, but the water conductivity is a variable in the simulation. After the

experimental potentials are collected, we run a series of simulations to search

for the best value of the simulating water conductivity, which will minimize the

mean square error between experimental and simulating potentials. After that,

the perturbation signals are also matched, and we can use these parameters in

sensing algorithms.

6.2.2 Empirical Results

In the experiment of object sensing, we simply combine the data-driven neural

network and signal-matching unscented Kalman filter in order. The first algo-

rithm is used for coarse detection while the second one is used for further precise

localization integrated with the sensor motion. Four insulated rubber spheres
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with radius 5.5 cm, 4.2 cm, 3.2 cm and 2.5 cm are used. The task is to detect

the sphere and determine its size and position.

By running the signal matching process parameters of the simulation are cho-

sen, with injecting current 2 mA and water conductivity 0.218 s/m. Fig. 6.5

shows the comparison of the matched simulating and experimental potentials

and according to perturbation signals under the same electric field. The refer-

ence electrode of the sensor that potential equals to zero is illustrated in Fig. 6.5.

The precise signal matching between experiment and simulation is crucial for the

algorithms proposed here because it will ensure the success of sensing experiment.
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Figure 6.5: (a) Potentials of simulation and experiment. (b) Potential perturba-
tions comparison under specific potentials matching, with different distances from
the sphere centre to sensor plane along the midperpendicular line.

A 4-layer neural network [20 16 12 8] is trained to map the perturbations

to object properties directly. To evaluate the performance of this algorithm,

we test the experimental results along the midperpendicular (x-axis) and parallel

direction (y-axis) of the sensor at several positions (Fig. 6.6). The aforementioned

simulation performance, which is the best expectation in the experiment when

the perturbations are exactly same with simulating ones, is around 5 mm. While

the average empirical performance is around 10 mm base on the testing points.
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The results are more coherent and consistent along the y-axis because the

underwater electrosense is near-range effective, and we can see that errors become

significant when the object is going further. However, due to manufacturing flaws,

errors distribution along the y-axis were not symmetric. This is mainly because

the 25th electrodes were incorrectly connected to the nearby emitting electrode.

This problem was fixed in the next edition of electrosensor with 256 electrodes

(16× 16).

After the neural network detection, the mapped sphere radius and positions

are used as the initial guess in unscented Kalman filter. This will inversely match

the simulating signal to the collected experimental signal by searching for the best

state. As an example, Fig. 6.7 illustrates the process of decreasing the localization

error by applying constrained unscented Kalman filter at the position of 5 cm. In

this case, there is no sensor motion to introduce other uncertainties. But for the

current prototype this process is only ensured when the object is very close to

the sensor. Otherwise, the noise will submerge the precision as the perturbation

signal reduces quickly.
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Figure 6.6: (a) Actual and sensed positions comparison along the midperpen-
dicular direction (x-axis) using a rubber sphere with radius 5.5 cm. (b) Actual
and sensed positions along the parallel direction (y-axis) using the same sphere
at a distance of 5 cm.

Both algorithms introduce some assumptions about the object to be sensed,

115



0 10 20 30
0.03

0.04

0.05

0.06

D
is

ta
nc

e 
(c

m
)

 Real State
 Estimated State

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Steps

C
ov

ar
ia

nc
e

Figure 6.7: Further precise distance recognition using constrained unscented
Kalman filter when the object is within the close near-range.

which is different from the whole-domain imaging methods used in EIT. This

indeed adds constraints to the problem and make the precise detection and local-

ization possible by only using a limited number of probes. The one-step neural

network can introduce some systematic errors that we can notice from the Fig.

7, where the mapping results tend to overate the distance to the sensor on x-axis

and underestimate the distance to the center on y-axis. However, the method

of step-by-step Kalman filter can ease this systematic error and search for the

best state of signal matching, and the residual errors only come from the data

acquisition chain or manufacturing defects of the prototype.

6.3 A 16× 16 Planar Sensor

6.3.1 Prototypes and Electronics

We further made a 16 × 16 electrosensor prototype to capture electrical images

underwater in a tank. The neural network inherited parameters that were ob-

tained from simulation data set as initialization, and it was further trained using

experimental data. This section first explained the considerations in building

prototype, choosing electronics, and acquiring data. Then the procedure of col-
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lecting electrical images of three kinds of insulating objects - sphere, rod, and

cube - was presented in detail.

The designed electronics works in following way. The signal generator creates

10 kHz voltage signal, which is converted to a bi-directional current with the same

waveform using Howland current pump. The current excites the water through

emitting electrode and establishes a controlled underwater electric field. Probing

electrodes were connected to an instrumental amplifier through multiplexers, and

incident voltages between probing electrodes and a reference (specific one of the

probing electrodes) need to be measured. The voltage signal from signal generator

acts as a reference in a lock-in demodulator for acquiring in-phase and quadrature

portions of the incident voltages.

Electrosense signal is modulated to sinusoid wave with frequencies between

1 kHz to 100 kHz because dc or low-frequency signal is highly contaminated by

power line networks. Another reason as studied in [72] is due to the neutral

impedance of water at these frequencies. The waveform could also be square [15],

but as a square wave was combined by sinusoid waves with increasing orders,

the corresponding water impedance is different. In this work, we modulated the

signal with the sinusoid wave around 10 kHz.

It is possible to acquire the incident voltage in its original sinusoidal form using

a fast and accurate analog-to-digital converter (ADC). Then all the filtering and

demodulation can be solved in software. However, as the amplitude of the signal

is relevant, the sampling frequency should be high. According to the formula on

maximum amplitude error emax and sampling frequency N times of the signal

[37]:

emax = 1− cos( π
N

), (6.1)
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There is an about 120 ppm error when N = 200, i.e., the sampling frequency is 2

MHz when the signal is 10 kHz. Fast ADC with high resolution makes the direct

digitalization of original sinusoidal signal non-economical. An alternative method

is organizing an analog chain for signal processing. By using an analog lock-

in amplifier, the AC signal is converted to DC corresponding to its amplitude.

The electronics overview is illustrated in Fig. 6.8. Due to the strong drift of

analog multipliers, they actually cannot be used in lock-in amplifiers. Instead, IC

AD630 uses a reference signal to control a switch of the signal, whose effect is the

multiplication of the sinusoidal signal and a square wave. Because a band-pass

filter was applied before the demodulation, effects of higher-order components

of the square wave could be eliminated. Thus we can get the desired lock-in

amplifier.

A digital-to-analog converter (16 bits DAC) was used to offset the DC output

from lock-in amplifier and low-pass filter, as the perturbation was far smaller

than the base signal. The 24 bits ADC could sample at maximum 30 kSPS. The

design was implemented using separated modules and interconnections of coaxial

cables as illustrated in Fig. 6.9(a).

The sensor was manufactured using a single piece of PCB board, as in Fig.

6.9(b). The 16×16 probing electrodes constituted a 9cmcm matrix. Each 16-to-1

multiplexer was connected to a column of the matrix, and an extra multiplexer

finally routed outputs of 16 ones to the electronics using shield cables. The MCU

sent digital controlling signals to the multiplexer, and the Howland current pump

supplied current to two emitting electrodes, through Dupont wires. The PCB

board designs on both sides are showed in Fig. 6.10.

The electrodes were made by soldering tin balls to bonding pads on PCB

board. The entire sensor was protected by waterproof paint (clear epoxy resin).

It is important to use relatively large probing electrodes when measuring voltage
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Figure 6.8: Overview of electronics. The functional block contains the main IC
name used in the circuit. Solid blue circles represent electrodes, in which two left
ones indicate emitting electrodes and two right ones are probing electrodes cor-
responding to current injection and voltage measurement. Processing of sinusoid
signals with noise are shown beside instrumental amplifier, lock-in amplifier and
low-pass filter.
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Figure 6.9: (a) Electronics prototype was a combination of analog modules.
Analog signals were transmitted between them using coaxial cables with SMA con-
nectors (gold). Main functional ICs of each module are listed. (b) The sensor pro-
totype was made from PCB board with a two-layer multiplexer that maps 16× 16
electrodes to a single output port.
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Figure 6.10: (a) Top view of the pcb board design of 16×16 sensor. (b) Bottom
view of the pcb board design of 16× 16 sensor.
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underwater because small air bubbles or impurities attached to the electrodes

will significantly affect the results if using small electrodes. In this prototype, the

diameter of electrodes is approximately 5 mm.

The image was captured in a scanning manner by multiplexing 256 electrodes

to the processing electronics. One disadvantage of using lock-in demodulation in

a multiplexing manner is the settling time of the low-pass filter. When connecting

the channel from one electrode to another, the ADC can only start sampling after

a rise time. For a simple first-order RC low-pass filter, the rise time from 10% to

90% is about 2.2RC or 0.35/Fc. As in Fig. 6.11, the rise time of a low-pass filter

with cutoff frequency 7 Hz is about 50 ms. The lower cutoff frequency, the longer

rise time. The trade-off in this prototype was using a higher cutoff frequency,

sampling the output of the analog low-pass filter and conducting a digital low-

pass filter (average) by software. When used a 1 kHz cutoff frequency (rise time

0.35 ms) and used the same sampling time (0.35 ms) on each electrode, we could

capture maximum five images per second.

Figure 6.11: Rise time of the low-pass filter. Channel 2 is the output of syn-
chronous demodulator, and channel 1 is the output of following low-pass filter.
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6.3.2 Empirical Results

The moving platform with two degrees of translational freedom and a degree of

rotational freedom, as in Fig. 6.12, drove the object in a plane. The automated

data collecting program first drove the object to a random location and orienta-

tion in front of the sensing plate; then it controlled electronics to take an electrical

image of the object.

Three insulating objects were also specified, including a sphere of radius 1.5

cm, a cylinder of radius 1 cm and height 3 cm and a cube of edge 2 cm. These

objects were driven randomly within a confined space of [-4, 4] cm on the y-

axis, [0, 6] cm on the x-axis, and the orientation [0, 360] degrees. Thus the

gathering of the experimental data set was not the same with the simulation. In

the simulation data set, the size and six degrees of freedom of the object were

changed simultaneously, whereas in the experiment only three degrees of freedom

were changed. Electrical images were taken at two manually specified level planes

to expand the data set at a different depth (z-axis), and 3469 images for each

object at each depth were collected.

Figure 6.12: (a) Three degrees of freedom moving platform for driving the object.
(b) Take electrical images of the object in different positions and orientations.

Training neural network for experimental data shared a similar structure for

simulation data as seen in Fig. 5.10. It has an image input layer, three convolu-

tional layers with 3× 3 filters, and a fully-connected layer with 0.5 dropout rate.
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The training convergence of batch error is shown in Fig. 11(a). The network

training was convergent at fifth epoch, which was dramatically faster than train-

ing simulation data. Moreover, the final testing accuracy of object recognition

was up to 95.0% while in simulation this value was 92.6%.
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Figure 6.13: Training convergence and confusion table of empirical identifica-
tion. 1-sphere, 2-cylinder, 3-cube.

The training and testing confusion table were illustrated in Fig. 6.13. In the

test, 95.6% cylinder images, 95.1% sphere images, and 95.7% cube images were

correctly classified. Compared to simulation in which objects have different sizes,

the error rate on classifying other objects to the sphere was significantly decreased.
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The sensor can distinguish the perturbation images created by a specified cube,

a sphere or a cylinder. The experiment demonstrated the potential of object

identification with real underwater electrosensor.

A simple back-propagation neural network was further trained to directly map

the perturbation of the insulated sphere (radius = 1 cm) to its locations. The

training data was collected at the center depth plane of the sensor (z = 0) within

the range [-4.5 4.5] cm on the y-axis and [2, 10] cm on the x-axis.

To evaluate the performance of this method, we tested the experimental results

along the midperpendicular (x-axis) and parallel direction (y-axis) of the sensor at

several positions (Fig. 6.14). The testing points in the figure were collected within

a range [-4 4] cm on the y-axis and [3, 8] cm on the x-axis. The aforementioned

simulation performance, which was the best expectation in the experiment, is

around 4 mm. The average empirical performance is around 5 mm base on the

testing points, and this result was much better than a previous prototype [95].
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6.4 Discussion

One of the difficulties on manufacturing high-performance underwater electrosen-

sor lays in designing sensitive and stable electronics. As discussed in previous

sections, the field perturbation bears information of object’s location and shape.

First, the perturbation is quite small relative to the base signal (generally 1% to

10%). To achieve a good resolution of perturbation, for example, 1% resolution,

the overall sensitivity of electronics should be controlled within 100 ppm (parts

per million). Second, signals on the probing matrix have a large dynamic range

because the perturbation reduces linearly with the square of the distance.

Improving the data acquisition speed and stability is the key to the successful

design of electrosense electronics. First, making the image capture faster enables

a better record of perturbations of moving object. This is crucial to the robotic

application. Inspired by the event-based camera, we are building similar elec-

tronics that only record the change of the electrode voltage (differential circuit).

This technique can sense the object moving faster.

Second, data acquisition stability is more important than absolute accuracy

of voltage measurements. As feed-in images of neural network were normalized

to [-1 1], it is the measurement consistency of all electrodes that matters. We

found small electrodes (less than 1 mm) were subject to significant noises by

small bubbles and impurities. The analog signal chain also has an inevitable and

variable drift during the measurement. However, as the entire image needs to be

centered and normalized before feed into the neural network, the electronic drift

does not affect if the drift changes slowly or the sensor captures fast.
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6.5 Conclusion

This chapter presents electrosensors that can operate in a full 3-dimensional

mode. Algorithms on the object localization were designed and tested based

on numerical methods of electric field forward simulation. We combined the

statistic learning method by training a multi-layer neural network and a prob-

abilistic approach by applying a constrained unscented Kalman filter (CUKF).

This exploits the merits of fast estimation and precise signal marching process. To

tackle object identification using underwater electrosense, we further proposed a

planar electrosensor with dense electrodes, and an analog signal processing chain

was designed and implemented to acquire electrical images of an underwater ob-

ject. The convolutional neural network was trained first with simulation data to

identify sphere, cube, and cylinder. Results demonstrated the sensor ability of

identification changed with electrodes density and data accuracy. Our empirical

studies showed that the real sensor was able to identify the specified sphere, cube,

and cylinder.
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Chapter 7

Conclusion and Future Works

7.1 Recap and Conclusion

The thesis first reviewed the important literature of the biological and artificial

electrosense in detail. Four basic principles of biological sensing system were

concluded to be energy saving, material saving, specificity, and redundancy and

parallelization. The study of engineering underwater electrosense has two related

aspects, theoretical and empirical studies. Several technologies manipulating

electric field for sensing purpose were introduced for inspiration and compari-

son. After an in-depth review of the related technologies, the sensing problem

was modeled using the theory of electric-quasistatic field and was classified as

a forward problem and inverse problem. The environment electrical property

(impedance distribution) is the system parameter along with the sensor bound-

ary and exciting source, and the measurements taken on the sensor boundary are

system observations. To predict the system observations from the parameters is a

forward problem, which should be physically well-posed, but to infer the parame-

ters of the model from observations is an ill-posed inverse problem. The solution

of the inverse problem was formulated using a probabilistic way, which allows for
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a unified and consistent theory.

The first approach proposed to use techniques from electrical impedance to-

mography (EIT) for sensing modeling. The EIT uses finite element method

(FEM) as a forward model for calculating observations and representing the en-

vironment. Given the stimulating current and conductivities on meshes, FEM

calculates the potential and current field, including the voltage between elec-

trodes which predict real measurements. In sensing problems, linear and nonlin-

ear inverse methods were formulated. The inverse problem is to assign a proper

conductivity value to each element, which is called reconstruction in EIT, to

make the calculations best fit the real measurements. The meaning of ’best fit’

can be expressed in an optimization problem based on the probabilistic formula-

tion. An eel-like electrosensor was further designed and simulated using proposed

techniques. This work explored the feasibility of EIT methods for electrosensor.

Another approach targets on reducing the computational burden of the for-

ward problem by introducing the method of discrete dipole approximation (DDA).

Techniques in light scattering problems were for the first time expanded to active

underwater electrosense. Numerical solutions of the volume integral equation

were formulated, including a method of moment and discrete dipole approxima-

tion (DDA). We found that only DDA was suitable for conductive mediums and

the connection between DDA, and a well-known sphere perturbation formula was

further established. DDA was found to perform more than 100 times faster than

FEM with only a 10% relative difference in underwater electrosense problems.A

DDA-based unscented Kalman filter was proposed for inferring object size and

location, and a one-dimensional sensor was made for further experimental vali-

dation.

The sensor design and the sensing algorithms applied in electrosense are

tightly related. It has been a challenge in identifying objects with similar vol-
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umes but different edges. We built a planar sensor that was motivated by the

analogy between retina vision and electroreceptor vision. Just like the vision on

a retina, the electrical image on the planar sensor can be interpreted as a projec-

tion from a 3D space to a 2D surface, but with a more complicated projecting

law. Based on the planar sensor design, we first demonstrated the usage of the

back-propagation neural network (BPNN) and unscented Kalman filter (UKF)

on localizing an object. Further a convolutional neural network (CNN), which is

widely used in digital image recognition, was for the first time applied for object

identification in underwater electrosense. In the simulation, the overall success

rate using CNN on identifying arbitrary spheres, cubes, and rods is 92.6% by a

28× 28 electrode array.

We built two editions of planar underwater electrosensor to test and validate

the design and algorithms, including a 5×5 sensor with electronics from National

Instrument and a 16 × 16 sensor driven by a self-made analog signal chain. Ex-

perimental results of the first sensor showed that the detection and localization

of our prototype were quick and accurate, with the error of around 10 mm using

one-step neural network mapping and about 5 mm in close-range using Kalman

filter. In the second experimental test, the prototype with 16×16 electrode array

achieved an overall success rate of 95.0% on identifying the specified cube, sphere

and rod.

7.2 Limitations and Future Works

Through investigations in this thesis, we found a vast potential of applying un-

derwater electrosense to practical robots. The sensing algorithms of electrosense

stand firmly based on electric-quasistatic field and probabilistic view of the inverse

problem. In addition to the intuitive method transplanted from EIT community,
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we also found a new DDA method for the forward problem calculation. Sensing

algorithms including unscented Kalman filters and convolutional neural networks

proved effective in the inverse problems. However, the goal of successfully apply-

ing artificial electrosense to practical underwater robots requires further studies.

Future work within the horizon of author includes two aspects.

There are some limitations of this research in term of theoretical assumptions,

algorithms and hardware implementation issues to be addressed, and based on

them we propose possible directions of future works.

There are several assumptions of the theoretical study of underwater elec-

trosense. First, the conductivity contrast between the invaded object and ambi-

ent water is the main parameter we considered. However, the theory of FEM and

DDA can take full impedance into account, which demands multiple frequency

implementations of hardware. Second, the DDA approach only considers incident

field generated by electrodes using image method. Whereas in more general cases,

the sensor itself has special shapes and the incident field need to be recalculated.

In term of sensing algorithms, we need to consider multiple objects identifi-

cation and localization problems. The EIT approach can theoretically deal with

multiple objects identification problem because the whole domain can be recon-

structed. However, due to the natural dispersive feature of EIT method, the

localization precision may be low. The electrical image of two objects is twisted

projections with each other, which does not obey the simple superposition law.

More sophisticated sensing algorithms shall be studied.

Current hardware implementation is a combination of separated electronic

units, which are sometimes bulk and redundant. In future studies, a compact

and efficient electronic system is demanded. The electronic system requires accu-

rate and simultaneous data acquisition from several channels. Current prototype

design has a great bulk that is not suitable for implementation in underwater
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robots, which usually have limited space and computing resources. Future works

should consider designing the electronics using system-on-chip implementations

like AD5933 or ADUCM350. These integrated devices may significantly shrink

the sensor dimension and enable practical robotic applications.
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Appendix A

List of Publications Arisen From

This PhD Study

A.1 Journal Papers

Wang, Ke, Khac Duc Do, and Lei Cui. ”Underwater Active Electrosense: A

Scattering Formulation and its Application.” IEEE Transactions on Robotics 33,

no. 5 (2017): 1233-1241.

Wang, Ke, Khac Duc Do, and Lei Cui. ”Identifying and Localizing Underwa-

ter Objects with Planar Active Electrosensor.” IEEE/ASME Transactions on

Mechatronics. (submitted)

A.2 Conference Papers

Wang, Ke, Khac Duc Do, and Lei Cui. ”An Underwater Electrosensor for Iden-

tifying Objects of Similar Volume and Aspect Ratio Using Convolutional Neural

Network.” Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
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Conference on.

Wang, Ke, Lei Cui, and Khac Duc Do. ”An underwater electrosensory membrane

bio-inspired by weakly electric fish.” Intelligent Robots and Systems (IROS), 2016

IEEE/RSJ International Conference on, pp. 4951-4956. IEEE, 2016.

Wang, Ke, Lei Cui, and Khac Duc Do. ”A discrete dipole approximation ap-

proach to underwater active electrosense problems.” Intelligent Robots and Sys-

tems (IROS), 2016 IEEE/RSJ International Conference on, pp. 1305-1312.

IEEE, 2016. (Best Paper Finalist)
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