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A B S T R A C T

Underwater robots play a critical role in the marine industry. Object perception is the foundation for the au-
tomatic operations of submerged vehicles in dynamic aquatic environments. However, underwater perception
encounters multiple environmental challenges, including rapid light attenuation, light refraction, or back-
scattering effect. These problems reduce the sensing devices’ signal-to-noise ratio (SNR), making underwater
perception a complicated research topic. This paper describes the state-of-the-art sensing technologies and
object perception techniques for underwater robots in different environmental conditions. Due to the current
sensing modalities’ various constraints and characteristics, we divide the perception ranges into close-range,
medium-range, and long-range. We survey and describe recent advances for each perception range and suggest
some potential future research directions worthy of investigating in this field.
1. Introduction

Although subsea technology has progressed much, 80 percent of
the ocean remains unexplored. The deep sea is the last unknown
frontier on our planet for humanity. With the increasing oil price
and decline in land deposits, there is a rising demand for offshore
exploration and mining, infrastructure installation, maintenance, and
repair. The development of electric vehicles recently also contributed
to the increasing interest in extracting rare minerals in the seabed.
Therefore, it is a critical mission to develop sustainable solutions to
explore and exploit this massive, cold, dark, and intense environment.
The biggest challenge of ocean exploration comes down to its physical
properties. The harsh ocean is characterized by extremely low visibility,
severe temperatures, and excessive pressure. It is difficult, dangerous,
and costly to send human divers to such an environment. Therefore,
underwater robotic platforms naturally become decent solutions for
these tasks. These submersible vehicles provide robust solutions to
survey, explore and exploit ocean areas unreachable by human divers.
According to The Global Underwater Robotics Market report by Data
Bridge Market Research, the submersible vehicle market was worth
2.685 Billion USD in 2020 and is projected to reach 6.719 Billion
USD in 2028. Remotely Operated Vehicles (ROVs) and Autonomous
Underwater Vehicles (AUVs) accounts for the two most prominent type
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of segment. The market is expected to grow at a Compound Annual
Growth Rate (CAGR) of 12.15 percent from 2021 to 2028. The demand
for underwater robots comes from four main areas, including military
and defense, marine research, offshore industries, and rescue and repair
services, in which offshore industry and military concerns are the key
market drivers.

Underwater robots such as Remoted Operational Vehicles (ROVs)
were initially developed for military missions. ROVs offer a telepres-
ence robotic solution for the operator to perform submersible tasks
while remaining comfortable on the water surface. The human–robot
interaction is accomplished via an umbilical cable. In the past, many
ROVs were deployed to perform multiple rescue and recovery tasks,
including retrieval of torpedoes, mines, and weapons, such as the
Cable Controlled Undersea Recovery Vehicle (CURV)-I (Fig. 1(a)) and
its upgraded version CURV-III (Fig. 1(b)). Nowadays, many countries
are investing heavily in underwater robotics for military applications.
In 2021, The US Navy was allocated 1.76 Billion USD for research,
development, testing, and evaluation of unmanned underwater vehi-
cles. Military ROVs are usually deployed to observe and assess the
situation in many submersed tasks before sending any military divers
into the ocean. ROVs are also highly effective in helping military officer
vailable online 10 December 2022
029-8018/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.oceaneng.2022.113202
Received 16 August 2022; Received in revised form 28 October 2022; Accepted 16
 November 2022

https://www.elsevier.com/locate/oceaneng
http://www.elsevier.com/locate/oceaneng
mailto:qhdinh@ntu.edu.sg
mailto:myycai@ntu.edu.sg
https://doi.org/10.1016/j.oceaneng.2022.113202
https://doi.org/10.1016/j.oceaneng.2022.113202
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2022.113202&domain=pdf


Ocean Engineering 267 (2023) 113202Q.H Dinh et al.
Fig. 1. Early development of underwater robots for military applications with the Cable Controlled Undersea Recovery Vehicles.
Source: Pike (1999).
(a) Swordfish (b) Bluefin-12S (c) Boeing Echo Ranger

Fig. 2. Different types of AUV.
Source: Autonomous Undersea
Vehicle Application Center (AU-
VAC)
in the battle against contraband, where the smuggling products is
hidden under the ship’s hull while reducing the risks of using soldier
divers. Other ROV’s military tasks include security scanning of ports for
anomaly objects and underwater criminal investigation. On the other
hand, AUVs are the new weapons added to the naval force in the last
two decades. The tetherless vehicles can move with higher movement
speed than ROVs, have low energy consumption, and have reliable
data capture capability. The platforms can operate in inaccessible ocean
areas independently without receiving commands from an operator,
making them perfect weapons for surveillance and reconnaissance tasks
in controversial areas. The US Navy classifies military AUVs into four
main types using their size and weight: man-portable, lightweight,
heavyweight, and extra-large. Man-portable AUVs weigh around 10 to
50 kg and usually have a torpedo-shaped design. An example of this
type of AUV is the Swordfish (Fig. 2(a)). Man-portable AUVs are usually
launched from small vessels for reconnaissance, sea exploration, seabed
mapping, and mine countermeasure missions. The robots can travel to
a depth of 40 ft with speeds of up to 5 knots. Lightweight AUVs are
slightly bigger than man-portable AUVs. They can weigh up to 277 kg
and usually be deployed using a crane system. An example of this type
of AUV is the 213-kg Bluefin-12S (Fig. 2(b)). Compared to man-portable
AUVs, the vehicle features a longer operation time of 26 h and a higher
payload with a slightly slower speed (3 knots). Mine detections, mine
disposal operations, and countermeasure are their typical applications.
Heavyweight AUVs can be 5000 kg to 10000 kg in weight. They are
specially designed for longer and larger missions whose operating time
can range from 40 h to 80 h. A famous example of this AUV class is
the 5000-kg Boeing Echo Ranger (Fig. 2(c)). The vehicle can operate
at a depth of 10000 ft to perform similar tasks as the smaller classes.
2

Extra-large AUVs are vehicles that weigh more than 10000 kg. They
can be considered as an autonomous version of the submarine. The
main tasks of the massive mechanisms are to detect and destroy the
submarine, support surface military ships, mine countermeasures, and
strike missions. A typical extra-large example is the Cutthroat LSV-2
and Boeing’s Orca.

The oil and gas industry is in massive demand of underwater robots.
With the dwindling of these fossil fuels beneath the land, harvesting oil
and gas on the ocean floor becomes indispensable. Almost 30 percent
of current oil and gas production comes from the offshore industry.
Since the location for extracting oil as gas can be extremely deep
inside the ocean, it is risky and even impossible for human divers to
perform site exploration, infrastructure inspections, intervention, and
repairs. The divers sometimes must pull the equipment out of the
water for repair, which is time-consuming and costly. On the other
hand, robotic platforms for the offshore industry are designed to endure
extreme pressure and temperature while maintaining a stable operation
in numerous dynamic conditions. Most vehicles have optical, acoustic,
and robust light systems to deal with poor visibility conditions. ROVs
for the offshore industry can be categorized into two main classes:
observational ROVs and work-class ROVs. Observational ROVs are
small vehicles equipped only with cameras, sonars, and light systems.
They can record and transmit real-time visual data for pure observation
tasks such as surveying and inspection. Work-class ROVs are larger and
more powerful, with additional sensors and even strong manipulators
for lifting capabilities. ROVs and AUVs are becoming indispensable in
the gas and oil industry. They can get involved in seabed surveying
and acoustic mapping before and after cable and pipeline installation.
They can also perform nondestructive inspections for the pipeline and
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Fig. 3. Example of using ROV for offshore infrastructure maintenance and repair.
Source: Oceaneering,Charalambides (2016))
umbilical cable system or physical intervention tasks such as debris
removal, valve actuation connection, and disconnection. These robots
can work independently or with human divers in various functions,
including oil survey, drill support, construction support, inspection,
maintenance, and repair (see Fig. 3).

Marine research is another field that is significantly beneficial from
the development of the underwater robot. Marine science provides
human answers to a vast number of topics such as biodiversity, sub-
merged physics, seabed topography, climate changes, carbon cycle,
invasive and endangered species, or natural evolution. Marine research
is constrained by the challenging underwater environment requiring
sophisticated equipment for complex and time-consuming experiments.
Underwater robots allow marine scientists to overcome these limita-
tions and improve the quality and efficiency of this research. Many
researchers use an ROV with a high-resolution camera and a long-
duration battery to closely monitor and record invasive species’ impact
on the local species. Aquaculture researchers use ROVs to monitor the
behavior of specific species, such as fish farms and sea cucumbers, in
their habitats. One significant advantage of ROVs in species monitoring
is the capability of minimizing unfavorable alteration of surrounding
environments for the species. Many ROVs can be customized with
additional sensors to perform oceanographic sampling to obtain sam-
ples from the seabed. Reef monitoring for coral bleaching is another
example of using underwater robots for marine research. The robot can
capture high-resolution images of the reef to be analyzed by marine
scientists to identify any health problem. Sea floor survey using ROVs
equipped with multi-beam sonar is also a very active research issue
where a robot with beam-forming sonar is deployed to reconstruct the
digital map of an area of the ocean floor. AUVs have also become
more common in marine research with advanced sensing modalities
such as high-resolution cameras, multi-beam sonar, MEMS (microelec-
tromechanical system), and advanced acoustic positioning systems.
Researchers can program the robot’s trajectory before the mission,
launch the vehicle, recover the robot after the journey and collect the
data. There is no need for a surface vessel during the AUV’s mission
which is a much more cost-effective solution for researchers. AUVs with
advanced sensors can travel deeper into the ocean, close to the seafloor
while maintaining a close distance from underwater organisms. This
feature dramatically enhances the quality of data captured by the robot,
resulting in more efficient ocean explorations. One major disadvantage
of AUVs usage is the difficulty retrieving the robot if a problem occurs
during its missions (see Fig. 4).

Underwater vehicles are excellent solutions for underwater search
and rescue processes. These operations require urgent actions with a
well-prepared and safe operational plan. The operations may happen
in arduous submersed areas, which puts the rescuer in many life-
3

threatening situations. The first step of any rescue operation is to
identify if there is a chance to save a life. Well-trained and specialized
divers must execute this process. However, there is always a risk
of sending human divers to such cold, low visibility, and uncertain
conditions. Underwater robots such as ROVs can be highly beneficial
in such contexts. With the development of aquatic perception systems,
many search and rescue operations send underwater robots to inspect,
evaluate the situation, or locate the target or critical areas before
sending any divers. The operational change reduces risk factors for
the divers and saves them a lot of time and effort. Human divers also
cannot stay underwater long and must take breaks between dives. An
underwater robot can work longer and in deeper areas. Some robots
can be equipped with a grasping arm to retrieve objects and pull them
to the water’s surface. One recent example of this application is the
search and rescue campaign for the Malaysia Flight MH370. The US
Navy deployed the Bluefin-21 AUV to search the seabed to find the
missing airplane.

The development of underwater robotics depends on the advances
of perception, planning, and control systems which correspond to the
‘‘see, think, act’’ cycle of a robot’s operation. Perception is associated
with a robot’s capabilities to sense and understand its environment. The
process requires various advanced sensors to capture environmental
information, which is processed using sophisticated sensing algorithms
to extract meaningful information. Underwater perception is crucial
and much more complex compared to the terrestrial perception. The
ocean environment is a highly dynamic unconstrained scenario. There-
fore, the robot must possess an advanced perception system to improve
situational awareness that can help it to comprehend and react to any
uncertain events that can happen accidentally. Also, as most ocean
areas still need to be explored and seawater attenuation effects limit
large continent remote-sensing techniques, there is a lack of maps
and data for deep ocean navigation comparing land navigation. The
deployed autonomous robot relies on its perception sensors and sensing
algorithms to accomplish essential tasks such as localization, mapping,
navigation, or trajectory planning. Underwater perception is also vital
for joint operations, requiring the robot to perceive and reason about
the relative relationship between itself and its partners, sharing the
same work for efficient collaboration results.

So, perception is a critical prerequisite for underwater robots, es-
pecially in deep-sea scenarios. Various sensors and sensing algorithms
have been developed to achieve automation capability for submersible
platforms. While there have been survey articles on navigation and
localization (Jalal and Nasir, 2021), planning and control (Guo et al.,
2021), obstacle avoidance (Cheng et al., 2021), object tracking (Kumar
and Mondal, 2021), communication (Sozer et al., 2000), and machine
learning (Christensen et al., 2022) for underwater robotics, a sur-
vey paper that cover a comprehensive understanding of underwater
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(a) ROV Deep Discover for ocean exploration and research (b) CoralAUV autonomously following reef contours and slopes

Fig. 4. Examples of using ROV and AUV for marine research.
Source: NOAA Office of Ocean Exploration and Research,
Australian Institute of Marine Research.
modalities and sensing algorithms still needs to be included. This has
motivated us to write this survey paper to provide an overview of
state-of-the-art underwater perception technology. The article presents
sensing modalities and algorithms using the perception range to offer
an intuitive understanding of the methods. The rest of the paper is
organized as follows. Section 2 explains the challenges of underwater
perception in detail and summarizes the current state of the art of sens-
ing devices. Section 3 describes methodologies for sensing algorithms.
We provide some insights for future field developments in Section 4.
We conclude the paper with a summary exemplifying the evolution of
underwater robot perception and future results in Section 5.

2. Underwater perception

Underwater object perception can be defined as becoming aware
of the surrounding objects in the environment via different types of
sensors and sensing algorithms. This process allows the robot to detect,
track, and recognize environmental things accurately. In this section,
we first introduce the challenges for underwater robot perception.
Then, we present a summary of state-of-the-art sensing modalities for
different perception ranges.

2.1. Underwater perception challenges

2.1.1. Environmental challenges
The underwater environment strongly absorbs visible lights. The

absorption process happens due to the collisions between photos and
water molecules, which results in water heating. The interaction pre-
vents visible lights from traveling further into the water, strongly
attenuating light in the red and violet spectrum. The attenuation effect
is reduced in the blue and green range. The absorption effect causes red
and violet light to disappear at less than 7 m, yellow and orange color
at 15 m, and blue and green color at around 30 m. The impact explains
why seawater mostly has blue or green color. Additionally, underwater
substances such as biological matter and dissolved organic matter can
further attenuate light and tend to do so more in the blue wavelength.
Other effects that reduce ambient light in underwater environments
include light reflection, light refraction, and light diffusion. Light re-
flection involves the bouncing back of light at the water’s surface, while
light refraction occurs when light beams scatter through the water.
Light diffusion occurs when light is bent away from the target when it
travels through the water. These interaction mechanisms explain why
most visible lights cannot shine intensely into the water, and the deeper
the robot sinks into the water, the darker the surrounding environment
(see Fig. 5).
4

Many researchers address this low visibility issue using an active
light system attached to the robotic platforms. The solution is in-
efficient due to two main reasons. First, the artificial light system
also suffers from energy attenuation effects which prevent light from
entering deeper layers of water. Second, the ‘‘back-scattering’’ effect
frequently occurs in underwater imaging when the active light sys-
tem illuminates the particles between the camera and the object or
the open water space behind the object instead of the object. This
phenomenon results in blurred and noisy images in many underwater
optical systems. While it may help increase the illumination of the
object, back-scattering also reduces the contrast between the object and
the background. The problem is due to back-scatter along the illumi-
nation path, washing out the object and scattering the reflected light
from the object, blurring the image. Increasing the total illumination of
the object will not improve contrast in this case because the scattering
scales with intensity and no net contrast increase will result. The effect
limits the object detection distance in contrast-limited imaging appli-
cations like human vision or film. These perception problems worsen
in a turbid environment as higher turbidity increases light attenuation
and scattering intensity. The dense concentration of clay, silt, algae,
and other organic matter in turbidity water can disable optical vision
systems (see Fig. 6).

2.1.2. Underwater sensor limitations
Underwater contexts are significantly different from terrestrial envi-

ronments. Many sensing modalities such as Light Detection and Rang-
ing (LIDAR), Radio Detecting and Ranging (RADAR), or Global Po-
sitioning System (GPS) do not function underwater due to severe
attenuation of electromagnetic waves, limiting the sensors and sensing
techniques used for sub-sea perception. Optical- and acoustic-based
sensors are two primary sensors for underwater perception that can
operate in these conditions. However, the performance of these devices
also suffers significantly due to some environmental factors. Typical
examples of such parameters are ambient light and turbidity level.

Optical-based sensors can provide very high-resolution images.
However, they can only capture object that is close to the sensor. Also,
the image quality suffers in low visibility underwater conditions due
to the lack of ambient lights. This limitation is further exacerbated in
challenging turbid water environments, as shown in the example in
Fig. 7(b). This decrease in range and visibility usually causes optical
imaging sensors to be used for closer-range perception.

Meanwhile, acoustic-based sensors such as sonars are very robust
in difficult water conditions since acoustic signals are not heavily
attenuated underwater. However, acoustic signals have much lower
bandwidth than optical signals, causing relatively lower resolution
data. This limitation has recently been mitigated with the development
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Fig. 5. Understanding light attenuation in underwater environments.
Source: Tom Morris, Fullerton College.
(b) Back-scattering effect in open area

Fig. 6. Understanding light attenuation in underwater environments.
Source: Brent Durand, Underwater Photography Guide.
(a) Object in turbid water captured by a camera (b) Object in turbid water captured by a forward-looking sonar

Fig. 7. Limitations of underwater sensors.
of high-resolution imaging sonars such as multibeam FLS. However, the
2D image data produced are still of relatively low resolution for objects
at longer ranges. Acoustic signal also has a low signal-to-noise ratio,
making it easily suffer from environmental noise. Another limitation of
acoustic-based imaging sensors is the loss of spatial information from
2D images. This limitation is mainly due to the processing used by the
sonars, as visualized by the example of the FLS model seen in Fig. 8.
Imaging sonars would detect points within its insonification region
formed between its horizontal field-of-view - 𝛼, and vertical field-of-
view - 𝛽. 3D information of objects is then rendered onto the 2D image
plane shaded in blue. Such projection effectively removes the depth
information ℎ1 and ℎ2 of the objects from the final produced image. In
practice, this removal of depth causes underwater acoustic images of
objects with complex shapes to lack clarity and distinctive features, as
shown in Fig. 7(a) where a car submerged in a turbid lake is rendered
5

to be an ambiguous ‘blob’ shape in the FLS image.
2.2. Underwater sensing modalities

Various types of sensor systems have been developed to help robots
adapt to the underwater environment’s challenging conditions. This
surveying paper will review three primary sensors for underwater
perception: sonars, cameras, and acoustic-based positioning systems.

Three types of sonar are prevalent for underwater applications:
multibeam sonar, side-scan sonar, and mechanical sonar. This paper
will not discuss mechanical sonar since it offers no advantages over
the other sonar types. Side-scan sonar is ideal for search and rescue
operations (SAR) since it is lightweight, deploy-friendly, and cost-
effective. Side-scan sonar must be towed behind a boat or mounted
at the side of a ship. Once the equipped boat moves, the device can
generate a sonar image of the areas below, both to the left and right
sides of the sonar. While side-scan sonars provide a convenient solution

to scan a sizeable sea-bed area to produce bird-eye-view images, they
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Fig. 8. FLS model visualizing its image processing. Projection causes depth information
to be lost in the final image produced.

usually lack the object’s details. The reason is that side-scan sonars
manipulate low-frequency components and operate at a high altitude
to quickly check a vast site, limiting their capability to scan small
targets. Another drawback is their limited flexibility. The device must
be moved continuously in one direction and stick to the search pattern
during an operation, even if it detects the target. The operator cannot
reorient the device during the procedure or risk losing area information.
A multibeam sonar, on the other hand, focuses on scanning the fan-
shaped area in front of it. The device can be pointed in different
operations directions and produce sonar images even at stationary. The
feature makes the device more flexible compared to side-scan sonars,
which explains why multibeam sonars are very suitable for mounting
on ROVs or AUVs for object perception tasks. Although multibeam
sonar can only cover a smaller area, it can offer better resolution than
side-scan when looking for small targets. Although integrating data
from multibeam sonar is a bit harder than side-scan sonar, a multibeam
sonar can generate a side-scan image by performing a structured search
as side-scan sonar. Ideally, an underwater operation combines both
sonars in submersible tasks. A side-scan sonar is deployed to cover a
broad ocean area. Once a target is identified, an ROV or AUV equipped
with multibeam sonar is sent to collect more detailed data. An example
of different types of sonar is shown in Fig. 9.

Optical cameras for underwater applications are different from
standard cameras. While traditional camera systems focus more on im-
proving image quality by improving the sensor’s resolution, underwater
cameras turn to improve low-light sensitivity and video latency. The
reason is that high resolution does not matter in low light and turbid
water. Using a built-in light system from the robot will cause a back-
scattering effect blinding the observer or robot’s perception system with
light reflected by many particles in the water. It is preferable to navi-
gate the robot with natural light in such a situation. Generally, a camera
that can generate HD video or images is enough for subsea contexts.
Latency is another critical aspect of the underwater video stream. Low
latency camera allows the robot or human operator to react timely and
effectively to uncertain events, improving the robotic systems’ respon-
siveness and robustness. Examples of underwater camera systems are
shown in Fig. 10.

Acoustic-based positioning systems are methods developed to re-
place GPS in subsea contexts using acoustic-based sensors. These meth-
ods include Long Baseline (LBL), Short Baseline (SBL), and Ultra-short
Baseline (USBL) Systems. Long-baseline (LBL) systems (Fig.) require a
network of transponders mounted at the seafloor before operations. The
network contains at least three transponders for proper positioning.
This transponder system can track an ROV and AUV equipped with
an interrogator. With accurate transponder positioning, LBL systems
can achieve very high accuracy, less than 1 m or even 0.01 m. Short-
baseline (SBL) systems use a set of three or more sonar transducers
6

mounted at different locations of a surface vessel for positioning. The
system accuracy depends on the distance between the transducers and
the mounting method. It can achieve accuracy similar to the LBL system
when the space is wide enough. Ultra-short-baseline (USBL) systems
consist of a transceiver and a transponder. The transceiver is attached
to a pole under a surface vessel while the transponder is equipped on
the subsea equipment, divers, ROVs, or AUVs. An acoustic pulse from
the transponder replies to an acoustic pulse emitted by the transceiver.
The range between the transceiver and the transponder can be inferred
using the time between transmissions. The USBL head also contains
an array of transducers separated by a short baseline. The system uses
a phase-differencing method to obtain the direction or bearing of the
returned acoustic signal. These positioning systems are illustrated in
Fig. 11.

ROVs and AUVs mainly use optical cameras and multibeam sonars
for underwater perception tasks. Optical cameras are suitable for cap-
turing objects with high resolution at short distances from the sensor.
On the other hand, Multibeam sonars are solutions for object per-
ception at a longer distance. We will summarize the utilization of
these sensors in the current underwater perception tasks using Fig. 12,
which demonstrates a current methodological framework for underwa-
ter perception task. First, suppose the robot is far from the target, as
demonstrated by the blue circle. In that case, it can obtain the target’s
range and heading using an underwater positioning system, given that
the system can track the location of the docking station. At a distance
of approximately 30 m from the docking station (green circle), the
robot enters a long-range scenario where the sonar sensor starts to
see the docking target. However, due to the sonar limitation and the
low SNR (signal-to-noise ratio), the target resolution is still meager,
which makes it impossible to recognize the target using geometrical
features such as the object’s size or object’s shape. The robot can
identify the station’s correct location using special features such as the
target’s motion or the target trajectory. Once the robot reaches the
orange circle (medium range), the sonar and camera sensor can start
seeing the target depending on the water condition. The robot could
perform some data fusion algorithms by complementing optical and
acoustic data. Finally, at a very close range (red circle), the perception
tasks become more comfortable with the accessibility of high-resolution
captured data from optical and acoustic sensors. The robotic platform
can afford many sophisticated perception algorithms, such as 3D point
cloud reconstruction and pose estimations. We summarize the sensor
utilization for underwater perception in different ranges in Table 1.
In the next section, we describe underwater perception algorithms of
three different ranges, including long-range 5m – 30m, medium-range
1m – 5m, and close-range (<1m). We will skip the very long range
30m – 10km since the robot’s perception at this range is mainly
performed through an underwater positioning system such as SBL or
USBL without using any sensing algorithms.

3. Underwater object perception

3.1. Long range object perception

While AUVs are very efficient and safe solutions for various under-
water tasks, the limitations of equipped sensing modalities make un-
derwater perception difficult. In long-range object perception, acoustic-
based sensors are the only sensor type that provides reliable results,
especially in turbid conditions. Early research focused on using classical
sector scanning sonars with a fast update rate to perform perception
tasks for AUV platforms. The sensor returns each resulting scan as an
image display where the received acoustic energy from detected obsta-
cles is converted into pixel brightness. These sequences of images will
be the input to different perception algorithms. A completed algorithm
for object perception using forward-looking sonar (FLS) in long-range
contexts using sonar images includes multiple steps: data preprocessing,
object detection, object tracking, and object classification. We will
summarize some of the work in the field, focusing on different parts
of the framework.
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Fig. 9. Different types of sonar for underwater tasks.
Source: Tritech.
Fig. 10. Some examples of optical cameras developed for underwater applications.
Source: Nautic Expo, Reach Robotics
Fig. 11. Different underwater positioning system.
Source: Xiang et al. (2009).
Table 1
A summary of sensors for robot’s underwater perception at different ranges.
Range Sensing modalities Available data Robot perception capability

30m – 10km USBL, Acoustic
modems

Range, heading Approach the target using heading
information

5m – 30m Sonar Acoustic Data Detection, tracking and recognition
using motion features

1m – 5m Sonar, Camera Acoustic Data, Optical Data Detection, tracking and recognition
using data fusion approaches

<1m Sonar, Camera Acoustic Data, Optical Data Pose estimation, 3D point cloud
reconstruction
7
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Fig. 12. Automatic docking process demonstration with different ranges.
3.1.1. Data preprocessing
Data preprocessing deals with image quality enhancement, remov-

ing or reducing interference, and speckle noise to increase the signal-
to-noise ratio (SNR). Multiple approaches have been adopted to im-
prove sonar images’ quality, including using spatial domain or image
domain information such as interpolation techniques including nearest-
neighbor interpolation, bilinear interpolation, and bicubic interpola-
tion. Median filtering (Lane and Stoner, 1994) is also a widely used
method for enhancing sonar images. While time-domain approaches
are simple to implement, they tend to smooth out edges due to the
averaging process. Therefore, transform domain approaches such as
Fast Fourier Transform (Lane et al., 1998a), Discrete Wavelet Trans-
form (Sharmila et al., 2013; Piao et al., 2007), Stationary Wavelet
Transform (Ravisankar et al., 2018) or a fusion of both DWT-SWT (Ra-
jamohan et al., 2018; Demirel and Anbarjafari, 2011) are proposed
for improving sonar image quality. Wavelet-based methods are more
effective in preserving image details since they can decompose the orig-
inal image into different frequency sub-bands, such as high-frequency
and low-frequency. The enhancement techniques can be performed
separately on these sub-bands. Similarly, Wavelet information can be
combined with other domains for hybrid schemes. Some typical ex-
amples are combining Wavelet Domain Processing with New Edge-
Directed Interpolation (NEDI) (Liu et al., 2015), Wavelet Transform
with Karhunen–Loeve (K–L) Transform (Priyadharsini et al., 2015),
or Wavelet transform with Discrete Cosine Transform (DCT) (Lama
et al., 2016). Machine learning-based methodology for sonar image
enhancement is also an active research area. Among them, image
super-resolution based on sparse coding (Rajamohan and Rajendran,
2019; Ma et al., 2011) and image enhancement using Generative
Adversarial Network (GAN) (Sung et al., 2018b; Rixon Fuchs et al.,
2019) are extensively studied in recent years. Image enhancement is
an ill-posed problem where the algorithm must calculate the intensity
values of unknown pixels given the noisy image information. GAN is
particularly useful for dealing with this problem. A GAN’s structure
highlights the deployment of two sub-network, including a generator
and a discriminator. The generator network enhances a noisy image
and produces a high-quality result. On the other hand, the discriminator
will determine if a generator’s output is an actual high-resolution image
or just a synthetic one. The process will end when the discriminator
cannot differentiate the generated images from the real ones. Sparse
coding-based approaches (Wu et al., 2018; Park et al., 2019) can also
recover high-resolution images from low-resolution images using sparse
8

representation. These methods usually require training two dictionaries
from high-resolution and low-resolution image patches. While machine
learning-based methods can provide favorable results, they usually
require high-quality datasets for good training results.

3.1.2. Object detection
Object detection in long-range contexts focuses on separating un-

derwater objects from the environmental background and noise. Long-
range objects appear very small in sonar images with low resolution.
Also, object appearances change significantly between frames due to
the view angle changes between objects and AUVs’ sonar. Thus, detect-
ing the targets using standard geometrical features such as the object’s
shape and size is challenging. Different kind of methodologies has been
developed for this problem. For example, interframe difference (Weng
et al., 2010; Chantler and Stoner, 1997) is a simple method to extract
the moving objects from the static background. While the method is
easy to implement, it not only reduces the object details but also
cannot detect slow-moving objects and is not very effective against ran-
dom noise. Background elimination is another method that estimates
the background model using information from multiple frames. This
method attempts to estimate the background model using information
from multiple frames (Cui et al., 2018). A probability value of each
pixel is calculated to determine if it belongs to the foreground or
background. Objects can also be segmented from the background using
image processing techniques such as adaptive thresholding (Ji et al.,
2021), Otsu’s method (Yuan et al., 2016; Modalavalasa, 2012), or
double segmentation (Petillot et al., 2001). These methods are not
very effective in the case of noisy environments where there is a big
overlapping in intensity distribution between the noise and the objects.
Frequency approaches can also be used to assume that the objects are
moving with different frequencies compared to the noisy components
and the static background. For example, Lane et al. (1998a) proposed
calculating Fast Fourier Transform for a sequence of sonar frames.
Frequency thresholding can then be applied to separate the dynamic
objects from the static background. Constant False Alarm Rate (CFAR)
detectors (Gandhi and Kassam, 1988) are also very popular in sonar
image object detection. These CFAR-based methods assume that the
background clutter or the moving objects follow a particular probability
distribution such as Rayleigh (Maussang et al., 2007), Gaussian (Gao
et al., 2009), K-distribution (Abu, 2020), or Weibull (Li et al., 2017).
An adaptive threshold can be derived from the reverberation noise
in the background using these noise models. The pixel under test is
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compared with the threshold for object detection. If the noise model
is accurate, the CFAR detector can guarantee the objects’ detection
despite the object shapes. Different CFAR-based approaches have been
developed with different adaptive thresholding strategies for trade-offs.
While cell averaging CFAR (CA-CFAR) (Acosta and Villar, 2015; Weiss,
1982) can provide optimal results in uniform clutter environments, its
performance quickly degrades in the presence of interference. Greater
of CFAR (GO-CA-CFAR) (Kronauge and Rohling, 2013) performance is
consistent for the clutter transition region, but it fails to detect two
closely spaced targets. On the contrary, the smallest cell averaging (SO-
CA-CFAR) (Yan et al., 2015) can detect two closely separated targets.
However, the detection quality reduces significantly in the case of more
than two close targets or there are targets in both leading and lagging
windows. Finally, learning-based technology is also considered for solv-
ing this problem. However, while these methodologies are very efficient
in detecting objects in images, they face a big challenge in long-range
scenarios due to the extremely low resolution of the targets, which
greatly reduces the number of features extracted from the images. As a
result, machine learning-based methods are generally applied to detect
underwater objects using optical camera data or high-resolution sonars
in close-range scenarios. However, there are still some attempts to use
neural networks to train a set of geometric, statistical, and textured-
based features such as area size and contrast, shape moment-based
features to detect the low-resolution objects (Perry and Guan, 2004;
Jie and Pingbo, 2020).

3.1.3. Object tracking
Object tracking is the technique of associating or matching detec-

tions between consecutive frames. In long-range perception settings,
several factors complicate the tracking problem. One of the critical
reasons is the lack of tracking features of these low-resolution minia-
ture objects. Also, there is no consistency in objects’ appearances
between frames due to the relative positions and orientation changes
between the objects and the AUV’s sonar. The robustness of the track-
ing algorithm can also degrade significantly due to occlusion effects
when multiple neighboring observations merge or split. Furthermore,
detections can also disappear and return randomly because of the
shadowing effects or sidelobe pickup at short ranges effects. Finally,
since sonar imagery suffers terribly from noisy turbid environments
despite denoising algorithms, it is difficult for the tracking algorithm
to differentiate between the small objects and the surrounding noisy
components. Consequently, many research projects decided to replace
traditional geometrical features with other features such as motion
estimates for predicting objects’ positions in consecutive frames during
the tracking process. Optical flow-based methods naturally become
the technique for tracking multiple objects in sector-scan sonars (Lane
et al., 1998a,b). These methods can calculate the motion vector for
objects using the recorded sonar data in consecutive image frames.
While they can provide motion information at pixel-level accuracy,
optical flow-related techniques usually require extensive computational
power that small AUVs cannot afford. Two different categories of
filtering algorithms subsequently solved the problem. The first set of
algorithms assigns an independent single-target stochastic filter for
each object in the scene. The tracking paths can be generated by
combining the prediction data with the measurement data for each
target. These algorithms usually require accurate sensor measurements
to improve the data association process. Tracking algorithms using
Kalman filter (Ruiz et al., 1999), extended Kalman filter (Petillot et al.,
2001) or Particle filter (Doucet et al., 2003) are the most common
representations. For example, different versions for object tracking
with Kalman filter were developed for tracking moving objects in the
open water column (Trucco et al., 2000), static objects lying on the
seabed (Quidu et al., 2010), both dynamic and still objects (Karoui
et al., 2015), or for map matching (Mallios et al., 2014). While tracking
the underwater object in long-range scenes with the Kalman filter
9

showed promising results, there are still some limitations. The state
transition and observation models of tracking underwater objects can
be extremely non-linear, breaking the Kalman filter assumption. Track-
ing with Particle filter (Zhang et al., 2020) is proposed for solving
this problem. By representing the posterior density of the object state
using many particles, the Particle filter can improve the object position
tracking accuracy using the sonar measurements. However, the algo-
rithm also suffers from high computational complexity. Recently, some
research has been trying to solve this problem, such as using particle
swamp optimization (Wang et al., 2018). The second set of algorithms
involves using multiple-target filtering instead of single-target filtering
to recursively estimate the number and state of multiple underwater
targets given multiple sonar observations. These algorithms are very
robust in long-range scenarios with false alarms and miss-detections
by propagating the target’s intensity in temporal dimensions instead
of the total multi-target posterior density. Many results are obtained
with performances that vary depending on clutter, noise, and model
uncertainties. The sequential Monte Carlo PHD filter (SMC-PHD) (Vo
et al., 2003) not only suffers from high computational particles but
also from the added inaccuracy from clustering techniques to estimate
object states. Gaussian Mixture PHD (GM-PHD) (Vo and Ma, 2006)
fixed the inaccuracy problem by replacing the clustering algorithm with
Kalman filter equations. However, the approach constraints the track-
ing problem with linear dynamical models. A solution for this problem
is to implement the non-linear version of the Kalman filter, such as the
Unscented Kalman filter (UK-PHD) (Melzi and Ouldali, 2011) or the
Gaussian Particle Implementations of the PHD filter (Granstrom et al.,
2012).

3.1.4. Object classification
Finally, the object’s type can be realized by analyzing the tracked

data. Different methodologies have been proposed for this task. Intra-
frame features (derived from a single scan) can be extracted for classi-
fication. A typical example is to use a feature set including geometrical
shape, size, and intensity level proposed by Lane and Stoner (1994).
Thresholding values are then calculated using these features for clas-
sifying objects. Similarly, Dos Santos et al. (2017) introduced a set
of 10-dimensional feature vectors to be extracted from each detected
object in the scene. K-nearest Neighbor, Support Vector Machine, and
Random Trees are three classifiers used for comparing purposes. While
these proposed methods are straightforward, they usually suffer from
low-resolution object intra-frame features and cluttered backgrounds
in long-range contexts. Chantler and Stoner (1997) improve the fea-
ture selection process by introducing inter-frame features or temporal
features (derived from a sequence of scans). Dai et al. (1995) fur-
ther improved the method by combining intra-frame and inter-frame
features to identify the correct class of the object with a linear discrim-
inant function. Inter-frame features are not only discriminative between
different objects but also between objects and noise. Therefore, the
combined feature methods are very robust to noisy environments.
Typical temporal features are statistical measures such as mean value,
mean contrast, and variance. While hand-crafted features have shown
promising results in long-range object classification and recognition,
they are time-consuming, unoptimized, and require expert knowledge.
Therefore, deep learning-based methods have recently become the new
research trend for underwater object classification. Again, the major
challenge for applying machine learning techniques is the availability
of standardized datasets. Those available provide minimal options in
the number of samples, object types, or object resolutions. For exam-
ple, Fuchs et al. (2018a) combines transfer learning with a limited
amount of training data for sonar object recognition. A Convolutional
Neural Network (CNN) model is trained for categorizing five classes:
fish, hull, pole, stone, and swimmer. The results are compared with
other learning-based methods and classical hand-crafted feature ap-
proaches. Phung et al. (2019) proposes a deep learning architecture
consisting of a CNN and a hierarchical Gaussian Process classifier. They

solve the data scarcity problem using a Generative Adversarial Network
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to generate extra sonar snapshots. Some researchers also focus on using
deep learning technology to classify objects lying on the seabed for
different underwater tasks. For example, Williams (2016) introduces
using CNN for training a system to classify objects deployed on the
seafloor, including mine-shape objects, calibrated rocks, and other ar-
tificial objects. This work unfolds the immense power of deep learning
in long-range object classification with a big jump in performance
compared to traditional hand-crafted methods. Other similar projects
include using deep learning for mine inspection proposed by Denos
et al. (2017) or using a pre-trained Mask R-CNN for boulder object
segmentation and recognition (Christensen et al., 2021). We summarize
our review for long range object perception in Table 2

3.2. Medium range object perception

Even if the AUVs can track and recognize multiple objects at a
long distance, they still need to move closer to the target to verify
the classification results or to collect more data for other purposes,
such as object inspections or pose estimations. There are mainly two
sensing modalities for the robots to work with in medium-range sce-
narios, including optical-based sensors and acoustic-based sensors. This
section will summarize articles addressing fusion-based methods us-
ing data from multiple perception devices and sensors. Fusion-based
methodologies combine data from various ‘‘close-range’’ and ‘‘long-
range’’ perception devices, where each device complements the other.
However, the available data can no longer qualify for both ranges these
devices were initially designed for. Instead, they qualify for a range that
is comfortably in between both. The following are recent articles that
strongly align with this concept.

The primary challenge of medium-range object perception is the
issue of data fusion. For example, images obtained from a FLS and that
of an optical camera do not see a given object in the same way. Hence,
more than a mere superimposition may be required to take advantage
of both imaging modalities. Therefore, due to the extra effort, such
fusion methods are often relegated to navigation instead of perception.

Most articles combine various sonar devices like Profile Sonar (PS)
with FLS. Some combine optical cameras with other sensors like an
IMU (Inertial Measurement Unit) for improved calibration, thereby
improving its range, while some use it with sonar for similar purposes.
The selected articles can be broadly classified into two categories,
fusion with different types of Sonars and fusion amongst different types
of sonars only and fusion of other sensors, including sonars.

3.2.1. Fusion-based methodologies using sonars only
Different types of Sonars can be combined for improved perception.

Different sonar devices. Joe and Yu (2018) came up with a combination
f an ALMS and a MSIS to realize the height of the observed objects.
he proposed perception workflow consists of three steps, including
oint cloud data generation from both devices, scan matching of both
oint clouds, and slope and sensor drift correction. Joe et al. (2019b)
ecommends a combination of a PS, which provides reliable data in the
ertical plane, and a Forward Scanning Sonar (FSS), which provides
eliable data in the horizontal plane for 3D mapping. The PS mainly
rovides elevation information to complement the FSS data. While the
ata obtained from a PS can be of a larger range, it is narrower than
hat of an FSS. The former issue is used to build an occupancy grid in
hich data fusion effectively carves out areas where no object exists. In

ontrast, the latter issue is used to construct a particle filter since the
ata acquired in a PS will only be visible in an FSS after some time.
oe et al. (2019a) analyses the possible positions of the Mechanical
canning Imaging Sonar (MSIS) to work effectively with an Acoustic
ens-based Multi-beam Sonar (ALMS). They identified three positions
oncerning the AUV, as shown in Fig. 13.
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- Position i is fixed at the bottom at an angle of 60◦

- Position ii is fixed perpendicular to the bottom
- Position iii is the same as position ii but with the ability to

relatively rotate to the yaw-axis

Position i provided a view like ALMS, but with poorer quality. Position
ii provided height information but was not useful due to the narrow
field of view. Therefore, position iii helped extend the field of view by
rotating the MSIS itself, which could complement the data obtained
by an ALMS. Using similar concepts, Joe et al. (2020) explored the
combination of an FLS and PS, with the major difference being the
use of Monte-Carlo experiments to correct the FLS readings, which
uses the probable elevation angles as particles for weight computa-
tion. Joe et al. (2021) studied the fusion of an FLS and a PS for 3D
point cloud reconstruction in which line-based feature matching and
principal component analysis were applied to the generated sub-maps.

Multi-frequency sonars. Tamsett et al. (2016, 2019) took a step further
by suggesting a custom triple-frequency side-scan sonar system (114,
256, and 410 kHz) to obtain colorful maps of seabed in Scotland.
Using multiple frequencies apart from one not only provides vibrant
maps due to various levels of absorption and backscattering of sound
waves, but it also reveals about 2.5 times more information about
the seabed based on information entropy than a single frequency. The
amplitude of reflected signals is converted to a value in the negative
BGR color space with simple mathematical equations. Additionally,
using a user-supervised texture mapping approach, elements of a map
can be classified based on different objects, for example, sand and rock
types. We summarize our review for sonar-only fusion-based methods
in Table 4

3.2.2. Fusion of other sensors, including sonar
A more promising and reasonable trend is the use of multi-modal

perception methods where one modality complements the other. Some
of the articles focus on fusing sensors, sometimes excluding Sonars.

Sensor fusion without sonar. Perception leading to navigation and map-
ping elaborates on sensor fusion algorithms for calibrated sensors,
leading to better perception and navigation tasks. Jakuba et al. (2010)
proposed using optical cameras coupled with sensors like magnetic
compasses and depth sensors to improve navigation and hence 3D
reconstruction of seabeds. The corrections derived from SLAM can be
used to improve the dead-reckoning accuracy of magnetic compasses
while also helping validate vehicle depth measurements. As AUVs
continue to be used in various water conditions, cameras must be
constantly calibrated to obtain helpful information other than video
feed. Anwer et al. (2017) uses a custom waterproof housing for a
camera which accounts for the various refraction effects in water. The
camera here is a combination of optical and near-infrared cameras
which provides color and depth of the perceived environment, which
also helps in better point cloud reconstruction. Bongiorno et al. (2018)’s
work focuses on combining hyperspectral imaging with optical stereo
imaging for seabed modeling. The stereo camera can enhance the in-
water hyperspectral imaging data using image co-registration. Thus,
the system can mitigate the various attenuation effects that regular
hyperspectral imaging faces. The resulting maps are of a spatial resolu-
tion of 30 cm. Additionally, using support vector machines, the maps
can be further classified into elements like sand, coral, etc. Gu et al.
(2019) introduces a Camera-IMU calibration method for Monocular
Visual-Inertial SLAM. The IMU and camera are linked with the help of
intrinsic and extrinsic calibration methods unique to any camera. Along
with other calculations, this ensures full calibration once initialized.
The technique helps in the extended use of cameras for applications
like Simultaneous Localization and Mapping, despite changing environ-
ments. We summarize our review of fusion-based methods for sensor

calibration in Table 3
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Table 2
References for long range object perception section.

Reference Tracking technology Performance analysis Validation

Chantler and
Stoner (1997)

Sector-Scan Sonar Data pre-processing and object detection involve a combination of
fast median filtering, thresholding, and region-growing. The object
tracking is manually performed, while the object classification is
achieved using a discriminant function with a set of temporal
feature measures.

In-field
Experiment

Lane et al.
(1998a)

Sector-Scan Sonar Dynamic objects are obtained by applying a Fast Fourier Transform
method on a sequence of frames. The algorithm calculates the
motion estimation of dynamic objects using optical flow
methodology. Data association can be obtained by using a tracking
tree to determine the best estimates of the object tracks.

In-field
Experiment

Zhang et al.
(2020)

Forward-Looking Sonar Sonar data is pre-processed using median filtering and
region-growing segmentation methodologies. An optimal set of
features is determined using a combination of GRNN and search
procedures. Object tracking is performed by combining an improved
Gaussian Particle Filter with the feature set. Object classification
can be obtained using a GRNN.

In-field
Experiment

Quidu et al.
(2012)

Forward-Looking Sonar Object detection is performed using a simple goodness-of-fit test.
Object tracking algorithms utilize multiple Kalman Filters for
multiple objects. The state equation takes navigational data as
inputs. Data association is achieved using a validation test and a
validation gate derived from the innovation term of the Kalman
filter.

In-field
Experiment

Petillot et al.
(2001)

Multibeam
Forward-Looking Sonar

Objects are detected using a double layer segmentation algorithm.
At the same time, object tracking involves using Kalman Filter with
a state vector composing the position, the area of the object, and
their associated first and second derivatives. A path planning
algorithm is introduced using a nonlinear programming technique
based on a CSG (constructive solid geometry) representation of the
obstacles.

In-field
Experiment

Perry and Guan
(2004)

Sector-Scan Sonar Data pre-processing is performed by cleaning the imagery using
temporal averaging with motion compensation. Object candidates
are segmented out using a threshold value. A first-stage multi-layer
perceptron system is trained to reject obvious false alarms. Object
tracking is performed using a bank of Kalman Filters. A
second-stage recurrent neural network is used to process feature
sequences and improve the object detection result.

In-field
Experiment

Karoui et al.
(2015)

Forward-Looking Sonar Object detection is performed using a hierarchical detection
procedure to detect various target signatures using echo analysis
and constant false-alarm rate (CFAR). Target tracking is achieved in
the Cartesian coordinate using Kalman Filter. Object association is
performed using the joint probabilistic data association filter.

In-field
Experiment

Wang et al.
(2018)

Forward-Looking Sonar Introduces an adaptive particle swarm optimization (APSO)
algorithm for tracking multiple underwater objects, achieving
higher tracking accuracy and faster tracking speed than traditional
methodologies such as Kalman Filter.

In-field
Experiment

Dos Santos et al.
(2017)

Forward-Looking Sonar Object detection involves thresholding, pixel searching, and
intensity peak analysis. A set of geometric features is extracted for
each of the detected objects. Object classification is performed
using three methods: Support Vector Machine, K-Nearest Neighbors,
and Random Trees. The results show that K-Nearest Neighbors
achieve the highest performance for the given set of features.

In-field
Experiment

Fuchs et al.
(2018a)

Forward-Looking Sonar Data-preprocessing and object detection are the same as proposed
by Dos Santos et al. (2017). Object classification is performed using
transfer learning using ResNet50 architecture. The algorithm uses
the ARACATI dataset from a marina environment to categorize five
classes of objects. The results show that transfer learning can be
used as a good classifier for underwater object classification.

In-field
Experiment

Christensen
et al. (2021)

Side-Scan Sonar This work present an automatic boulder detection system using
deep learning methodology. The feature of the input side-scan sonar
image can be extracted automatically using a Feature Pyramid
Network (FPN). The feature map is the input for a region proposal
network (RPN). The region proposals are refined using the box and
score prediction head. The network also contains a mask prediction
head to perform pixel-level classification for proposed regions.

In-field
Experiment
Sensor fusion with sonar. Bruno et al. (2015) combines optical stereo
vision and 3D acoustic data in real-time using extrinsic calibration
matrices. The resulting opto-acoustic data is robust to water turbidity
effects. The data is represented as point clouds, hence algorithms like
11
the iterative close-point algorithm is also possible, apart from the
image processing steps required, e.g. denoising sonar data, conversion
of images to point clouds etc. Lagudi et al. (2016) further validated
this approach by real-time experiments. Raaj et al. (2016a) proposed a
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Fig. 13. Three Proposed Positions (Position 2 is shifted to the side instead of the bottom for better view).
Table 3
References for sonar-only fusion-based methods.

Reference Tracking Technology Performance Analysis Validation

Joe and Yu
(2018)

ALMS and MSIS (Sonar),
Point Cloud Generation

Normalized Distribution Transform is used
to combine data from short-ranged ALMS
and Middle Ranged MSIS

Controlled
Real-world
testing

Joe et al.
(2019b)

FSS and PS (Sonar) Mainly for elevation angle, but a PS was
used to obtain data that the FLS usually
would not, uses concepts like particle filters
and occupancy grids

Simulations and
Controlled
Real-world
testing

Joe et al. (2020) FLS and PS (Sonar) 3D reconstruction using an FLS and PS,
using Monte Carlo Experiments

Simulations and
Controlled
Real-world
testing

Joe et al. (2021) FLS and PS (Sonar) 3D reconstruction using an FLS and PS,
using concepts like PCA and Line Feature
Matching

Controlled
Real-world
testing

Tamsett et al.
(2016, 2019)

3 Frequency color Sonar Fusing data of Sonar with different
frequencies can give a better detail of the
seabed, identification of individual objects
using pattern matching gives better results
than using single frequencies

Real World
Testing
novel workflow for fusing data from an FLS and an optical camera using
particle filters. The particle filter tracker utilizes extrinsic calibration
between the camera and the sonar and vehicular odometry data, which
is more straightforward than other data association methods. Its robust-
ness is based on the fact that tracking can proceed even if either of the
devices produces noisy data. Collings et al. (2020)’s preliminary work
showed that using a Lidar with a side-scan sonar together was more
beneficial than using either alone, as the combined data was able to
differentiate the seabed better. By fusing single monocular camera data
with single beam echosounder data, Roznere and Li (2020) can greatly
improve the depth estimation to the point that it can be used for SLAM,
image scaling and even image enhancement. After extrinsic calibration,
the acoustic pulses emitted from the echosounder will be like a cone.
When projected on an optical image from the camera, it will look like
a circle. Similarly, Chemisky et al. (2021) proposed the Opto-Acoustic
fusing algorithm underwater target mapping. Unlike optical cameras,
the principle is that sonars have high ranges, but the acoustic images
generated cannot be used to identify objects sufficiently. Using a seven-
parameter Helmert transformation, they can calculate the acoustic
sensor center relative to the optical camera used for data fusion. A
multi-triplane spherical target is used for calibration as it is visible in
visual and acoustic images.

The focus of several articles nowadays is on sensor fusion for naviga-
tion purposes. Works like the following have a primary imaging sensor
coupled with several non-imaging sensors to optimize the underwater
12
vehicle’s trajectory. Rahman et al. (2018) introduced the method for
combining a stereo camera, an IMU, a depth sensor, and a sonar for
effective navigation using SLAM. The video feed from the camera is im-
proved using a contrast-limited adaptive histogram equalization filter
to work in challenging environments. Each sensor used in this setup
has unique capabilities and issues. Hence a cost equation accounting
for all possible errors like reprojection errors in cameras and drift in
IMUs is used. Such a setup can help in better SLAM as it is targeted
mainly for pose estimation and loop closure. Similarly, Cheng et al.
(2022) in their article utilize the images obtained from an FLS to
create point clouds in real-time, using image processing operations like
adaptive thresholding based on averages and distance. This reduces the
excess data obtained largely due to noise. The resulting point cloud
data is fused with sensors like a DVL and IMU to perform simultaneous
localization and mapping. Sadjoli et al. (2021) is an article that uses an
orthogonal arrangement of two FLS devices for imaging. This is used
for object recognition and pose estimation, which is further discussed
in the following section. While works similar to this, whereby a fusion
of imaging sensors is used for further characterization of targets, it
can also be easily used for improved localization. Additionally, the use
of sonars with multiple frequencies but in a side-scan configuration
shows the usefulness compared to single-frequency data. However, this
approach has yet to be explored in forward-looking sonars, which are
typical of higher frequencies, up to 1.2MHz compared to a maximum
of 480 KHz used in Tamsett et al. (2019)’s work.
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Table 4
References for fusion with other sensors, including sonar.

Reference Tracking technology Performance analysis Validation

Jakuba et al.
(2010)

Camera, Magnetic
Compass, Depth Sensor

Visual Augmented SLAM helps in validating
magnetic compass and depth sensor
readings, resulting in better 3D
reconstruction

Real-world
testing

Bongiorno et al.
(2018)

Spectrometer and Optical
Camera

Spectroscopy and optical images are used to
map and differentiate (with the help of
machine learning) different elements of a
seabed

Real-world
testing

Bruno et al.
(2015) and
Lagudi et al.
(2016)

Stereo Camera and 3D
Acoustic Camera

Data fusion using extrinsic calibration
matrices which helps in producing detailed
point-clouds

Controlled
real-world
testing

Collings et al.
(2020)

LIDAR and SSS LIDAR and SSS readings for observed
seabeds were complementing each other,
prompting further investigation into
methods like SLAM

Real-world
testing

Raaj et al.
(2016a)

FLS and Camera A particle filter is used for a
computationally inexpensive and reliable
fusion of an optical camera and FLS after
calibration

Controlled
Real-world
testing

Joe et al.
(2019a)

ALMS and MSIS (Sonar),
Point Cloud Generation

MSIS at the bottom of the ROV in panning
motion provides the best height information
for ALMS to complement

Controlled
Real-world
testing

Gu et al. (2019) Camera, IMU Camera IMU integration done, such that
calibration needs to happen only once in
the air. Done to counter refraction effects

Controlled
Real-world
testing

Roznere and Li
(2020)

Sonar, Camera, SLAM Depth estimation is made possible using a
combination of monocular cameras and
Sonar (Single-beam Echosounder)

Controlled
Real-world
testing

Chemisky et al.
(2021)

3D Acoustic Camera and
Optical Camera

Development of a low-cost opto-acoustic
navigation solution for calibration purposes.
Spherical targets are most useful as they are
visible in optical and acoustic images

Controlled
Real-world
testing
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3.3. Close range object perception

The distance definition for a close-range operation varies based
on different objectives. However, ‘close range’ objects usually refer to
those at distances less than 1 meter from the AUV, where imaging
sonars have the best resolution, and underwater optical sensors have
the best visibility. Various types of underwater perception methodology
within this range have been developed based on the sensor type.
These close-range methodologies generally focus on either data quality
enhancement, or maximization of extractable features and semantics
from close-by objects for better perception results.

3.3.1. Underwater optical image enhancement
Underwater Image Enhancement (UIE) improves the quality of cap-

tured optical underwater images to improve visibility and effective
range. Similar to underwater object detection, UIE can also be catego-
rized into data-driven and non-data-driven methodologies. However, as
of recent, data-driven UIE methods have achieved the state-of-the-art
performance, usually leveraging synthetic data produced from Gener-
ative Adversarial Networks (GAN)s (Goodfellow et al., 2014) for their
training, in addition to usage of existing real-world underwater image
datasets (Li et al., 2020) combined with land-based datasets (Fabbri
et al., 2018; Li et al., 2018; Wang et al., 2019; Guo et al., 2020;
Hambarde et al., 2021).

Within the context of underwater object detection, recent underwa-
ter object detectors have integrated UIE methodologies into their model
or architectures to enhance reliability in extreme or very turbid water
environments (Li et al., 2021). While relatively new, this combination
of fundamental object detectors with UIE architectures is generally seen
as one of the more promising developments for optical-based object
detection in the future (Shen et al., 2021b). Additionally, the proposals
13

of alternative underwater image formation models such as Akkaynak o
and Treibitz (2018, 2019) to improve visibility could allow further
improvement for UIE, which in turn should also improve optical-based
underwater object detection in the future.

3.3.2. Methods using optical-based sensors
Optical-based RGB imaging sensors provide 2D colored images of

objects that provide rich spatial and color features to be leveraged for
object perception tasks, the most common of which is object detection.
However, as explained in Section 3, optical signal attenuation cause
reduced visibility, shape clarity, and noisy shape features, resulting in
poor perception even at close ranges. The development of underwater
optical-based perception has focused on addressing these visibility
and clarity issues, leveraging the progress of land optical-based object
perception, which utilizes similar RGB image inputs. The most common
of these developed methods are underwater object detection methods
which utilize specialized 2D image filters to extract key features of
objects. Based on the type of filter used, these methods are categorized
into two types: non-data-driven methods, and data-driven methods. Addi-
ionally, several types of underwater optical perception systems utilize
xternal landmarks to highlight target objects’ key features better.

on-data-driven object detection. The feature detectors within this cate-
ory are usually developed using more theoretical mathematical under-
tandings of underwater environmental effects on light attenuation and
mage quality. Most notable example of these are detectors that extract
egion of interest (ROI) based on image analysis that incorporate
hese environmental equations (Chen et al., 2017; Shen et al., 2021a).
nother method within this category focuses more on detecting specific
bjects based on a priori knowledge of the objects’ model or shape that
an be expected within a scene (Park and Kim, 2016). While proven to
e accurate, reliable, and not require a lot of a priori data, this category

f methods has the main limitation of being effective mainly within the
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apriori environment or objects that were used to model the detector.
The effectiveness of these methods is slightly reduced when used for
environments or objects that were not considered or modeled during
the development of the detector (Shen et al., 2021b).

Data-driven object detection. In this category, the weights of the feature
etectors are mainly developed from samples of data images collected
ithin the expected underwater environment. This approach provides

he advantage of usually producing detector models that are more
eneralizable and robust to noise, allowing more reliable usage in many
reas. Following the marginal success on perception for land-based
pplications, most state-of-the-art detectors have utilized deep learning-
ased models to achieve reasonable success for several underwater
pplications, such as robot convoy (Shkurti et al., 2017) and close-range
ocalization (Raaj et al., 2016b) with reasonable success. However,
hile more generalizable, these data-driven methods usually require
any training samples to achieve models with adequate performance,
hich may only be practical and feasible for some applications and un-
erwater environments. Additionally, it is still noticeably insufficient to
ddress the visibility limitation of optical-based underwater perception,
equiring further processing of data to achieve more reliable results in
xceedingly turbid water areas (Shen et al., 2021b).

sage of external landmarks. The visibility limitation of optical sensors,
specially in turbid waters, means that more complex, high maneuver-
bility applications like garage docking, direct object detection, and
ose estimation remain a significant challenge, even with current UIE
ethods. Recent optical-based object detection alleviates this issue by

ttaching high-visibility landmarks on target objects, such as LEDs,
pecialized grid patterns, or beacons, to be trained as the highlighted
eatures by detection and tracking methods (Yahya and Arshad, 2017;
akamura et al., 2018; Singh et al., 2020; Ren et al., 2021). However,

urbid water optical-based object detection independent of additional
andmark features is still a preferable alternative in practice and thus
emains an active area of research.

.3.3. Methods using acoustic-based sensors
Acoustic-based sensors, especially multibeam FLS sonars, are the

ost commonly used sensor for underwater perception based on their
roven reliability due to low signal attenuation. However, as described
n Section 2, these acoustic sensors have low resolution and sparse
patial information. These limitations mean object shapes have low
larity or high ambiguity even at close range, reducing perception
ffectiveness. Research on acoustic-based perception methodologies
as focused on addressing resolution and spatial information issues.
he research problems include sonar image resolution enhancement,

nferring critical spatial information from other features within the
onar images, or fusing data from multiple sonars to reconstruct or
mprove the quality of features.

lose range resolution enhancement of sonar images. Sonar images have
ower resolution due to the acoustic signal bandwidth limitation and
onar array dimension. Hence, several sensing methodologies are fo-
used on enhancing the image resolution to improve the clarity of
bject features to enable more efficient usage for perception-based
rocesses such as object detection and classification. For close-range op-
rations, more traditional methods were attempted, such as those based
n back-projection, sparse representation (Kumudham R., 2019), and
ignal compressing (Andreas Gällström, 2019). However, most current
tate-of-the-art methods utilize deep learning to perform this resolution
nhancement, leveraging their development for super-resolution on
and-based images. Examples of these methods include using ResNet-
ased neural network (Sung et al., 2018a) and GAN (Sung et al., 2018c;
ua et al., 2021). The GAN models, in particular, show state-of-the-art
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esults for this category of methodologies.
Object detection from single sonar view. While the image resolution
of sonar is still relatively low, sonar hardware and computer vision
method developments have allowed effective object detection with
sonar images. Similar to the development of optical-based underwater
object detection, sonar image-based object detection also follows the
development object detection methods for land-based ones, from those
dynamically creating filters from echo or background features within
the sonar images (Galceran et al., 2012), to more recent methods
that train neural networks to perform the object detection (Kim and
Yu, 2016; Valdenegro-Toro, 2016; Fuchs et al., 2018b; Lee et al.,
2019). The neural network-based methods show a recent trend of
performing transfer-learning (Tan et al., 2018) of networks pre-trained
on land-based images to fit the domain of underwater sonar images
better. These methods enable faster development of models without
requiring as much sonar image training data, which is expensive and
time-consuming to obtain.

Reconstruction of 3D spatial information. Understanding the 3D spatial
information of objects within a scene is most useful for environment
mapping and navigation tasks, crucial for applications requiring high-
risk spatial maneuvers in close ranges, such as garage docking (Sadjoli
et al., 2021). Several 3D scanning sonar models with specialized re-
ceiver arrays, such as Echoscope (2021) have been developed, capable
of preserving the complete 3D spatial information from reflected acous-
tic signals. However, these models utilize proprietary technology and
are usually very expensive, limiting their usage in commercial and
research settings. This has prompted research on methods using more
readily available 2D imaging sonars – such as multibeam FLS – common
on AUVs to infer 3D spatial data. These methods focus on recovering
the depth information loss from sensor data, as explained in Section 2.1,
to get the full 3D spatial information in the scene.

1. Reconstruction using a single sonar image: The first category of
methodologies attempts to perform a 3D reconstruction of the scene
using all the information available within just one sonar image. The
most notable examples within this category are those based on space-
carving methodology (Aykin and Negahdaripour, 2017), which infer
the missing ‘depth’ information of objects from their respective acoustic
shadows within the sonar images (Kim et al., 2019, 2020). While
showing successful results, relying on acoustic shadow information
means these methodologies heavily assume objects to be incident on
relatively large surfaces, such as the seabed. This dependence prevents
their practical usage for floating underwater objects or shallower areas
where the quality of acoustic shadows may not be significantly affected
by reflection signal noise.
2. Reconstruction with multiple sonars: The second category of acoustic-
based underwater 3D reconstruction methods commonly researched is
the fusion of data from multiple sonars at different orientations (Ne-
gahdaripour, 2020). Not dependent on specific landmarks or acoustic
shadows within the sonar images, these methods have the advantage
of being effective for objects in all states, including floating objects.
However, determining the most optimized sonar configuration and
multi-sonar calibration to perform 3D reconstruction are the main
challenges of this category. Negahdaripour (2018) addressed these
challenges by performing epipolar geometry analysis on the inputs
from multiple sonars, which determined that vertically orienting the
sonars is the optimized configuration for 3D reconstruction. Works
done in John McConnell and Englot (2020), McConnell and Englot
(2021) would later prove this analysis, achieving state-of-the-art 3D re-
construction using a realized implementation of orthogonally-oriented
multi-sonar fusion (OMSF), effective for underwater mapping of rela-
tively simple-shaped objects with repeating patterns. As summarized
in Fig. 14, OMSF first uses a relatively simple constant false alarm
(CFAR) based feature extraction (El-Darymli et al., 2013) to extract
feature pixels from image inputs from orthogonally oriented pairs of
FLS sonar. Then, norm-based pixel association is performed within a
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Fig. 14. Summary of OMSF methodology.
Fig. 15. Sample reconstruction result of a garage model by OMSF.

set intersection area, fusing information from the extracted features.
Information from the associated features is then used to estimate the
point and projected back onto 3D space. Preliminary results on OMSF
testing in other works (Sadjoli et al., 2021) have also shown the
method to work relatively well for more complex object shapes at
varying distances (see Fig. 15). However, continued work in McConnell
and Englot (2021) noted the limited effective reconstruction area of
OMSF due to the restricted area during the feature association step.
Additionally, OMSF has a biased tendency to reconstruct points onto
solid surfaces due to the association method used. This means that
with no modifications, reconstruction by OMSF would not work well
on ‘hollow’ objects made up of thin frames, such as underwater trusses.

3.3.4. Methods using electromagnetic sensing
Extreme environmental conditions, such as shallow turbid waters,

reduce the effectiveness of conventional underwater optical and acous-
tic sensors. Limited visibility and high environmental backscatter noise
are tough to overcome due to the inherit limitation of modalities used.
This limits these sensors’ performance for tasks such as localization
and object recognition for these extreme environments. Some research
areas have attempted to overcome these issues via the development of
underwater perception using more unconventional methods of electro-
magnetic sensing based on observations of some animals perceiving the
environment using either electric or magnetic fields. This category of
sensing methods can be divided into two closely related groups: electric
sensing and magnetic sensing.

Electric-based sensing. The basic principle behind this sensing method
is to utilize electric-sensitive receiver probes to detect and measure
changes of electric fields within the probe vicinity, where measured
changes can then be used to estimate information such as object loca-
tion or shapes (Solberg et al., 2008; Bai et al., 2012, 2015; Boyer et al.,
15
2015; Lebastard et al., 2016; Bazeille et al., 2020). Due to relatively
recent development, sensors capable of facilitating these methods have
yet to mature and are still in ongoing development. Thus far, two types
of electric sensors and control schemes have been developed: active
and passive, the main difference being that active electric sensing uses
additional emitter probes that actively emit their electric fields (Bai
et al., 2012).

The simplest type of active electric sensing for underwater percep-
tion can be seen in the work done by Solberg et al. (2008), developing
a particle-filter-based active electric sensing capable of performing
localization of a conductive target object. However, the reliance on
prior electric field mapping of the environment means it is not practical
for usage in new areas. Subsequent developments remove this depen-
dency with sensor probes for detecting phase or potential differences in
the electric fields, providing more distinctive information for different
object geometry and conductivity (Bai et al., 2012). This development
significantly improved the feasibility of active electric sensing, which
can now create an input profile based on the potential reading of
the target object as the sensor is aligned with the object (Bai et al.,
2015). The distinct profiles can then be used as features for accurate
shape recognition and localization of the spherical target objects tested,
performance of which hypothetically can be improved using supervised
learning methods.

In contrast, the development of passive, reactive electric sensing
instead utilizes sensing probes that read to the lines of electric fields
emitted by objects within nearby area (Boyer et al., 2015), without
requiring any prior electric field mapping. However, this reactive sens-
ing design initially only provided sparse localization information and
tested in a particular role of passively guiding underwater robots to
a docking station actively emitting electric fields. Subsequent work
in Lebastard et al. (2016) then provided additional electrodes and
memory controller to the reactive sensing system, enabling depth esti-
mation of an object relative to the sensor without usage. This additional
depth estimation enabled reactive sensing proved to give a significant
advantage for object shape and pose estimation as shown in Bazeille
et al. (2020), providing highly accurate results without requiring prior
information.

While proven successful for close-range underwater perception, sev-
eral limitations are inherent to all types of electric-based sensing devel-
oped thus far. First, as noted in Solberg et al. (2008), Bai et al. (2012),
Boyer et al. (2015), electric fields emitted by objects or emitter probes
are dependent conductivity of target objects and water environment.
While electric field changes due to object conductivity can be a valuable
feature for object identification, the variance of water conductivity
can lead to inaccurate readings, negatively affecting perception per-
formance for both active or reactive electric sensing (Bai et al., 2012;
Boyer et al., 2015). Such limitation can be problematic for usage by
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underwater robots in operations where traversal through different types
of underwater regions in one process is required.

Magnetic-based sensing. Magnetic sensing utilizes sensors sensitive to
changes in magnetic signals – usually magnetometers or magnetic gra-
diometers – to estimate information of objects within the environment.
Similar to electric sensing, magnetic sensing can be done actively via
active induction of magnetic fields from target objects or passively
detecting any magnetic signatures from the environment. However,
most perception methods have been developed mainly with passive
magnetic sensing due to more practical implementation (Xiang et al.,
2016).

Perception methods developed for magnetic sensing depend highly
on the type of task being solved. For relatively simple applications,
basic processing of detected magnetic fields is sufficient, such as the
detection of buried underwater mines using magnetic gradiometers de-
veloped with specialized signal processing and analytical inference (Ku-
mar et al., 2004; Clem et al., 2004). This application of buried objects
can also be enhanced via fusion with acoustic sensor data, as shown in
work done by Pei et al. (2010). Similar analytical methods successfully
track underwater pipes and guide AUVs as shown in Xiang et al.
(2016). The heading of the target cable is inferred through analytic
calculation of data from mounted magnetometers which are then used
to guide the AUV through specialized magnetic-based feedback and
control loops. More advanced magnetic-based perception methods have
instead focused on using magnetic gradient tensors (MGTs) for more
complex tasks, such as the work developed by Hu et al. (2019). The
method successfully performs nonlinear localization of multiple objects
simultaneously using MGT data. Development of such methodologies
are also parallel with more advanced magnetic gradiometers that focus
on higher quality MGT measurements (Keenan et al., 2010), or novel
active atomic magnetic sensors that estimate magnetic fields from
measurements of atom excitation (Kominis et al., 2003; Deans et al.,
2018).

Current problems for industry use. From an industrial perspective, the
additional electric or magnetic field from active electromagnetic sens-
ing may introduce unintentional magnetic interference, creating com-
plications to the navigational equipment – such as Inertial Measurement
Units and compass – typically found on industrial-grade underwater
robots. This interference could potentially be limited by equipping spe-
cialized electric insulator materials on the underwater robot or target
objects, such as the case in the docking application proposed in Boyer
et al. (2015). However, such a solution would not be practically feasible
as only some target objects encountered can be expected to be equipped
with similarly electric or magnetic insulating materials.

Overall, electric and magnetic sensing show promising early devel-
opment for use in underwater perception. However, practical issues
with dependence on water conductivity for electric sensing and po-
tential electromagnetic complications with navigational sensors mean
further development of these sensing methods to overcome these issues
is still necessary.

3.3.5. Methods using flow sensing
Similar to the development of electromagnetic sensing, the de-

velopment of flow sensing methods is mainly motivated as another
alternative sensing system to address the limitations of conventional
underwater perception sensors. Flow sensing refers to the measurement
of flow from the surrounding liquid within an environment and is based
on the lateral line system (LLS) usually found on fishes (Zheng et al.,
2020).

For underwater robots, flow sensing is enabled by the development
of artificial lateral lines (ALLs) sensor arrays, usually used to solve lo-
calization of the robot itself, which has been used to improve feedback
control of an underwater vehicle, as shown by the works of DeVries
et al. (2015). This self-state estimation has also enabled more accurate
16
trajectory estimation of robots, as shown in the result of Zheng et al.
(2020).

The development of flow sensing is also currently being expanded
to enable the sensing of objects at further ranges. Work in Abdulsadda
and Tan (2013) first showed successful tracking of a moving, vibrating
dipole source using analytical-based nonlinear estimation approach on
ALL flow readings. This ranged flow sensing ability has enabled more
complex applications, such as obstacle avoidance, as done in Li and
Zhang (2020). With integration of machine learning techniques, works
in Pu et al. (2022), Chen et al. (2021) have also shown improved
potential of flow sensing for object detection and localization.

Overall, the feasibility of close-range perception with flow sensing
is well established for tasks such as robot state estimation, object
detection, and localization. However, it has a notable drawback of
not providing shape information of detected objects, meaning in-depth
object classification is currently impossible (see Table 5).

4. From perception to navigation, localization, path planning,
communication, collaborative operations, and machine learning

ROVs and AUVs are the motivations for the progress in underwater
research and industries. The development of robot perception systems
complements other related areas such as robot localization, navigation,
path planning, and joint operation. In this section, we briefly introduce
these research fields in relationship with the underwater perception
field to provide insights into future developments.

Localization and navigation in an unstructured environment such
as the deep ocean remain challenging for many underwater robotic
platforms. Positioning systems such as LBL or USBL are costly and can
only help the automated systems to cover areas that are reachable to
humans to set up the network of transponders. However, automatic
deployment at unknown terrain or unreachable to humans is still a
problem. One primary reason is the need for an accurate map for the
robot’s navigation system. A key technology for solving this problem
is Simultaneous Localization and Mapping (SLAM). Many SLAM tech-
niques have been developed in the literature to help AUVs to navigate
in an unconfined environment without a priori map. However, only
some systems are tested in a practical scenario. A critical requirement of
these SLAM techniques is the available features in the surrounding envi-
ronment for pose discrimination which poses a considerable challenge
for underwater navigation research. The feature extraction step can
be achieved by processing data from an optical camera or multibeam-
sonar. A robust perception system can improve the accuracy of SLAM
techniques significantly. However, the underwater environment usually
lacks informative features, and even the most advanced perception
system will fail in extremely sparse underwater contexts. One possible
solution is to plan the robot’s trajectory through affluent feature areas
to re-calibrate the localization system. This solution also relies on the
perception system to classify the environment into different categories,
such as free, occupied, or unknown areas, to improve its semantic
environmental understanding.

Path planning for underwater vehicles involves generating an opti-
mized path from an initial position to the goal position using particular
evaluation metrics such as path length, navigation time, total en-
ergy consumption, or path feature availability. Various path-planning
algorithms were developed, such as artificial potential field, geomet-
ric model search, random sampling, and intelligent bionic methods.
Underwater path planning is a complex problem due to external en-
vironmental factors such as surrounding obstacles, ocean currents,
limited sensing devices, and lack of undersea terrain information. Re-
search on underwater path planning also has to consider the robot’s
physical and motion constraints. Many path planning algorithms have
been proposed and applied to underwater robotics, such as Artificial
Potential Field, Shortest Path Planning, A-star, D-star, and Level Set
Method. While path planning for terrestrial robots is quite a mature
field, underwater path planning still faces some problems, including
the inability to take into account physical environment conditions such
as ocean currents, the inability to be applied to 3D environments, and
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Table 5
References for close range perception section.

Reference Sensor type Analysis summary Validation Applications

Sadjoli et al.
(2021)

Multibeam
Sonar, Reactive

Provided short justification for using acoustic-based
sensors vs. optical, and performed initial
simulator-based controllable testing on OMSF method.
Initial results seem promising but require more
experiments and data for validation.

Simulation
experiments

ROV Perception,
Underwater SLAM

Shen et al.
(2021b)

Optical RGB,
Single or
Multiple views

Review paper on the image formation methods for
underwater optical sensors, and the methods that
have been used alongside them.

– ROV Perception,
Underwater Object
Detection

Chen et al.
(2017)

Optical RGB,
Single View

Non-data driven underwater object detection method
developed base on mathematical modeling of the light
attenuation underwater, using single-view optical
sensor. Results are shown to be satisfactory, albeit
within a limited amount of tested environments.

Simulation and
Field Experiments

ROV Perception,
Underwater Object
Detection

Shen et al.
(2021a)

Optical RGB,
Single View

Non-data driven object detection method using prior
calculation. Satisfactory results, however, development
of prior may not be generalizable to all environments
and not tested within turbid environments.

Simulation and
in-field experiments

ROV Perception,
Object detection
and underwater
image segmentation

Park and Kim
(2016)

Optical RGB,
Single view

Non-data driven object detection that uses apriori
object model data to perform specialized object
detection on specific object models. Satisfactory
results, however, only tested in clearer waters and
notably would work objects within apriori data

In-Field experiments ROV Perception,
Underwater Object
Detection

Shkurti et al.
(2017)

Optical RGB,
Single View

Example application of underwater object detection
used for a multi-robot convoy, where several popular
object detectors (e.g., YOLO) are transfer-learned to
adjust to the underwater domain. However, good
results are not fully tested for turbid environments.

In-field experiment ROV Perception,
ROV Convoy

Raaj et al.
(2016b)

Optical RGB and
FLS Sonar

Object Detection and localization using fusion
between optical RGB and FLS sonar. The close-range
perception section focuses more on the example of
CNN-based object detection being used for the optical
RGB portion. The method shows good results, with
some testing done vs. some turbidity levels. However,
the turbidity results shows significant performance
decrease for optical portion once turbidity increases
significantly

In-field experiment ROV Perception,
Underwater Object
Detection

Goodfellow et al.
(2014)

– First paper on proposing the idea and implementation
of General Adversarial Network (GAN)

– Data synthesis and
Deep learning-based
training

Fabbri et al.
(2018), Li et al.
(2018), Wang
et al. (2019),
Guo et al.
(2020),
Hambarde et al.
(2021)

Optical RGB Examples of using GAN for data synthesis and
development of a UIE model. Good results with more
recent papers showing higher levels of accuracy and
performance.

In-field experiment Underwater Object
Detection, Image
Enhancement

Li et al. (2021) Optical RGB Example of combining UIE into core DL-based
underwater detection methods that have been
attempted before

In-field experiment ROV Perception,
Underwater Object
Detection

Akkaynak and
Treibitz (2018,
2019)

Optical RGB Example of alternative image formation model
proposed that provides more accurate image
representation for underwater environments. Current
experiments show promising results. However,
effective integration would require more specialized
low-level hardware to be developed.

In-field experiment ROV Perception,
Underwater Image
Enhancement

Yahya and
Arshad (2017),
Nakamura et al.
(2018), Singh
et al. (2020),
Ren et al. (2021)

Optical RGB Example papers of using external beacons to alleviate
the visibility issue for underwater optical RGB-s, but
more specialized for garage docking. Satisfactory
results are shown in all the papers. However, the
necessity of external hardware limits full practicality
in scenarios where the garage is remote or turbidity
removes beacons’ effectiveness.

In-field experiment ROV Perception,
ROV/AUV Garage
Docking

(continued on next page)
the lack of path planning for the multi-AUV system. The path planning
problem is coupled with underwater perception and SLAM problems.
These problems should be solved simultaneously.

Underwater communication is also an important technical aspect to
be enhanced. The field is significant and always is the center of research
17
concentration. The technology allows exchanging of data between var-
ious underwater components, including network nodes, ROVs, AUVs,
offshore stations, and surface stations. There are three common types of
underwater communication including acoustic, optical, and radio fre-
quency (RF). While optical and RF can provide high datarate, they are
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Table 5 (continued).
Kumudham R.
(2019), An-
dreas Gällström
(2019), Sung
et al. (2018a,c),
Hua et al.
(2021)

Multibeam
Sonar, Active

Example of GAN used for enhancing the images from
the multibeam FLS sonars. All papers show good
results and highlight the lack of good quality sonar
image data.

In-field
experiment

ROV Perception,
Sonar Image
Enhancement

Galceran et al.
(2012)

Multibeam
Sonar, Active

Non-data driven object detector for FLS images that
performs detection based on the background and echo
data of the FLS image. It shows good results but no
longer gets state-of-the-art results.

In-field
experiment

ROV Perception,
Object Detection

Kim and Yu
(2016),
Valdenegro-Toro
(2016), Fuchs
et al. (2018b),
Lee et al. (2019)

Multibeam
Sonar, Active

Examples of usage of CNN for object detection using
FLS images. Good results but not yet performed on
many object types require more data.

In-field
experiment

ROV Perception,
Object Detection

Tan et al. (2018) – Paper on Transfer Learning for domain transfer of
Deep-Learning based models

– –

Echoscope
(2021)

Multibeam
Sonar, Active

Article for an example of the active 3D sonar profiler
models. However too expensive and not as practical
for integration with many AUV systems.

– Active 3D
Underwater
Perception

Instruments
(2000)

Multibeam
Sonar, Active

Basic guide from SeaBeam on how multibeam FLS
works.

– Underwater FLS
sonar imaging.

Aykin and
Negahdaripour
(2017)

Multibeam
Sonar, Active

Introduced Space-Carving concept for Underwater
Object Reconstruction from Multibeam sonar images.
Fast and relatively accurate reconstruction
methodology, however heavily dependent on the
presence of background surface as methodology
utilizes acoustic shadow for the main feature. Hence,
may not be suitable for floating underwater objects
(where optical cameras may not be usable)

Simulation
and in-field
experiments

ROV Perception,
Underwater
Mapping

Kim et al.
(2019)

Multibeam
Sonar, Active

Fast and satisfactorily accurate reconstruction results
based on Space-Carving methodology with testing that
expanded upon Negahdaripour’s testing. However, still
faces similar problems of background surface
dependence.

In-field
Testing

ROV Perception,
Underwater
mapping

Kim et al.
(2020)

Negahdaripour
(2020)

Multibeam
Sonar, Active

In-field tests to expand upon the epipolar geometry
analysis done from OCEANS 2018 paper. Accurate
localization results were shown. However, the method
is only tested on simple smaller objects, and not full
3D reconstruction of a more complex object

In-field
testing

ROV Perception,
underwater mapping

Negahdaripour
(2018)

Multibeam
Sonar, Active

Assessment on feasibility and best configuration of
multiple multi-beam sonar configurations for
underwater reconstruction by analyzing the epipolar
geometry of the different acoustic images produced by
the different sonar configurations tested. Test results
suggest the orthogonal sonar configuration to produce
the best optimized epipolar geometry calculations for
best reconstruction results

Simulation
experiments

ROV Perception,
Underwater SLAM

John McConnell
and Englot
(2020),
McConnell and
Englot (2021)

Pair of
Multibeam
Sonar, Active

Fast and accurate reconstruction result that is not
dependent on the presence of a background surface,
thus suitable for floating underwater objects as well.
However, require multiple sonars and reconstruction
only occurs within a limited intersection area between
the multiple sonars.

Simulation
and In-field
Experiment

Underwater ROV
perception,
Underwater SLAM

El-Darymli et al.
(2013)

Multibeam
Sonar, Active

Constant False-Alarm (CFAR) method that is
commonly used for feature extraction among sonar
images.

Underwater Object
Detection

Solberg et al.
(2008)

Electric, Active Developed active electric sensing to perform
localization. Results are highly accurate, however
method is noted requiring a prior electric field
mapping of the environment, reducing feasibility for
practical usage.

Simulation
and lab
experiments

Underwater
localization

(continued on next page)
only suitable for short-range due to transmission attenuation. Acoustic
can support a more extended communication range. However, it also
suffers from limited signal bandwidth, strong environment attenuation
for considerable distances, multi-path propagation, and channel time
18
variations. An underwater network provides interactive communica-
tion between underwater components and allows data to be uploaded
or extracted in real time. The continuous data flow can keep the
system updated and minimize data losses. Robust communication is
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Table 5 (continued).
Bai et al. (2012) Electric, Active Improved electric sensing from Solberg et al. (2008)

by sensing for phase differences of electric fields,
providing more distinct information on objects of
different shape and material. However, water
conductivity could still potentially effect result
accuracy

Simulation
and lab
experiments

Underwater
localization, shape
identification

Bai et al. (2015) Electric, Active Application of Solberg et al. (2008) and Bai et al.
(2012) for object localization and shape identification
via introduction of active alignment algorithm, with
good results

In-field
experiments

Underwater
localization, shape
identification

Boyer et al.
(2015)

Electric, Reactive Proposed reactive electric sensing for the case of
guiding robot to target underwater dock. Reactive
nature means no prior electric mapping is needed.
However, requires specialized insulator materials to be
used on docking and robot, however proven to be
successful

Lab and
In-field
experiments

Guidance for
underwater docking,
underwater
localization

Lebastard et al.
(2016)

Electric, Reactive Improved reactive sensing from Boyer et al. (2015) by
introduction of additional electrode to enable depth
measurement capability. Potentially allows imaging of
object shape for object identification, without
requiring prior electric mapping

Lab
experiment

Object shape and
pose estimation,
Underwater object
identification

Bazeille et al.
(2020)

Electric, Reactive Continuation of Lebastard et al. (2016) to explore
potential of proposed reactive electric sensing for
object shape and pose estimation. Results showed
high accuracy on proposed process.

Lab
experiment

Object shape and
pose estimation

Clem et al.
(2004)

Magnetic,
Passive

Details the signal processing used for a developed
magnetic gradiometer, and the object detection
schematic used when mounted onto an AUV to detect
buried underwater mines.

In-field tests Buried object
detection and
localization

Kumar et al.
(2004)

Magnetic,
Passive

Sensor details for Clem et al. (2004). In-field tests Buried object
detection and
localization

Pei et al. (2010) Magnetic,
Passive

Developed a fusion-based scheme to combine
magnetometer and acoustic sensor readings to perform
object detection and localization of buried objects.

In-field tests Buried object
detection and
localization

Xiang et al.
(2016)

Magnetic,
Passive

Example application of tracking of underwater cables
and automated AUV guidance using magnetometers

In-field tests Object Tracking

Hu et al. (2019) Magnetic,
Passive

Developed method to use MGT to perform
simultaneous nonlinear multi-object localization

Simulation
and In-field
tests

Multiple Object
Localization

(continued on next page)
Table 5 (continued).
Keenan et al.
(2010)

Magnetic,
Passive

Development of magnetic gradiometer to provide
higher resolution MGTs

In-field tests Object detection
and localization

Deans et al.
(2018)

Magnetic, Active Development of active gradiometer using atomic
magnetometers

Lab tests Object detection
and localization

Zheng et al.
(2020)

Flow Sensing,
ALL

Developed methodology of using flow sensing to
self-localize and estimate robot state in real-time

Lab tests Robot
self-localization

DeVries et al.
(2015)

Flow Sensing,
ALL

Developed and demonstrated use of flow sensing with
ALL to improve closed loop feedback control of an
underwater vehicle

Simulation
and Lab tests

Vehicle control loop

Abdulsadda and
Tan (2013)

Flow Sensing,
ALL

Ranged object tracking of vibrating moving dipoles
using ALLs

Lab Tests Object tracking

Li and Zhang
(2020)

Flow Sensing,
ALL

Simulation study of using flow sensing for AUV
obstacle avoidance

Simulation Obstacle avoidance

Pu et al. (2022) Flow Sensing,
ALL and
Pressure sensor

Integration of Neural Network to perform localization
of objects at range using combination of ALL and
pressure sensor readings

Lab tests Object localization

Chen et al.
(2021)

Flow Sensing,
Pressure sensor

Simulation study to incorporate Neural Network to
perform object detection on flow data obtained from
pressure sensors

Simulation Object detection
also essential for ROVs and AUVs. Effective communication greatly
supports the interactions between the robot–robot and robot–human
via information exchange, and it is a complement to the perception
systems. While a perception system can independently help the robot
to detect, recognize, predict and react to the operation of other ob-
jects in the surrounding environment, communication can provide the
19
robot another channel to send commands, double confirm, or clarify
any misunderstandings in joint operations. The underwater communi-
cation development focuses on topology design and implementation
of Underwater Acoustic Networks (UAN) that can minimize energy
consumption, reduce latency, enhance system security, and improve
channel bandwidths. Acoustic and optical modems are also attracting
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enormous interest for improving their operation range and connectivity
and reducing their cost, mainly from the transducer.

Underwater collaborative operations receive substantial interest
from both academia and industry. The motivation originates from the
demand to quickly collect massive data over a sizeable area. A group
of underwater vehicles can also swiftly and collaboratively perform
underwater missions such as seafloor surveying, territory inspection,
search, rescue, or infrastructure maintenance and repair. Additionally,
underwater cooperation could happen between divers and ROVs or
AUVs, where robots become human partners in collaborative tasks.
Joint operations require studying collaborative planning, navigation
and control, cooperative world modeling, and collaborative skills. This
research problem faces many difficulties comparing the terrestrial
version due to the dynamic of the underwater environment and commu-
nication limitations. One such example is multiple AUVs cooperating
to inspect an underwater infrastructure seamlessly. The task could
be extended with the participant of a human partner. Both scenarios
require the robots to be equipped with advanced cognitive systems,
situation awareness for coordination, and cooperative control. Another
exciting topic is robot control in communication losses. Such a scenario
requires each robot in the group to rely on its advanced perception
and control system to recognize and predict the intentions of the
neighboring robot or human partners to safely and accurately perform
the tasks.

Machine learning is the new motive for the development of un-
derwater perception systems. Deep learning methodologies provide
researchers with new opportunities to tackle classical problems in un-
derwater perception, such as reverberation and speckle noise removal,
underwater image enhancement, image resolution, object detection, ob-
ject tracking, object classification, or multiple-view object reconstruc-
tion from a data-driven perspective. The main advantage of machine
learning is the ability to automatically extract high-level features most
appropriate for particular perceptions using a high-quality dataset. Ma-
chine learning can eliminate the ineffective and time-consuming pro-
cesses of designing traditional handcrafted features. Machine learning
also allows transferring of knowledge and models from other domains
to be reused in underwater contexts. The feature benefits underwater
robotics due to the need for decent datasets for underwater research.
Other aspects of underwater robotics, such as underwater system mod-
eling and control, benefit from learning-based methodologies. The main
challenge in system modeling is to compute the optimal robot model
with accurate motion states. Machine learning methodologies can esti-
mate model parameters without using a prior mathematical form. The
learning-based robot model parameter is directly extracted from the
collected data. Different learning-based methods such as reinforcement
learning, fuzzy logic, and optimal control are actively developed to deal
with the dynamic and complex environment and vehicle hydrodynamic
constraints. Machine learning is leading underwater robotics systems to
achieve a higher autonomy level than ever.

For optical-based perception, further development and improve-
ment of non-data driven perception methods first should be of higher
priority, as these methods do not necessitate pre-training on extensive
amount of data which may be expensive to get. This could be poten-
tially very effective with increasing development of improved UIE using
newer optical image formation models (Akkaynak and Treibitz, 2018,
2019) that can provide more accurate image results. However, newer
hardware or processes supporting such new image models would also
need to be developed in parallel. Once the non-data driven methods
and newer image formation models are better established, the data-
driven perception methods could then leverage data collected from
these developments to then create more powerful data-driven models
which can extract more detailed features and semantics from the newer
data.

5. Conclusions and future developments

In the past half-century, developments in underwater robotics have
allowed the technology to emerge from a purely military role to one
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that now finds widespread use in the offshore oil and gas industries,
maritime search and rescue, oceanographic research, and environmen-
tal monitoring. The emerging field of deep-sea mining will push ROVs’
capabilities to unprecedented levels. As with their terrestrial counter-
parts,families of autonomous underwater robots have been developed
and arose from power sources, sensors, navigation technology, and
communications advances. While initially aimed at research, AUVs
are now being employed by the military, offshore industries, and
other related fields. Underwater robots are the topic of an ongoing
research effort that, combined with technological developments, will
undoubtedly impart them with greatly enhanced capabilities in the
future.

Although significant progress has been made in the underwater
robotic field over the past decade, many challenges remain unsolved.
First, in terms of sensing modalities, there are still limitations in sensing
devices. Although new sensing modalities are being developed, such as
electromagnetic sensing, bionic sensing, or underwater laser systems,
optical cameras and acoustic sonar remain primary sensing modalities
for underwater perception. As both sensors are constrained in resolu-
tion or perception range, an optimal sensing modality for underwater
perception still needs to be addressed. Second, in terms of sensing
algorithms, while machine learning is dominated in many research
areas, their contribution to underwater perception is still unmatched
by its immense potential. The reason is that underwater datasets are
always much more difficult, expensive, and time-consuming to build.
Other factors, such as safety, security, and environmental sustain-
ability, limit the amount of data being collected. Multimodal sensing
approaches, on the other hand, suffer from different data acquisitions
and different data sources. Combining data from different types of
underwater sensing modalities is still a challenge. Optical camera and
acoustic sonar data have different operating ranges, resolutions, and
Spatio-temporal alignments. The problem requires robust calibration
algorithms to be applied before performing any data fusion processes.
The requirement is a challenging problem for acoustic sonars as their
accuracy is environmental-dependant.

Underwater perception involves many domains, such as computer
vision, machine learning, sensor fusion, SLAM, 3D reconstruction, co-
operative control, and communication. There are still many problems
to be solved. The future development trend of underwater perception
can be summarized as follows.

1. Improve current weaknesses of primary sensing devices. The current
trend for acoustic sensing devices focuses on improving their captured
resolution. Some FLSs enhance their data resolution by using higher op-
erating frequencies to generate images with millimeter resolution with
an operating range of less than 10 m. Another trend is to improve sonar
resolution by combining data from multiple frequencies to provide
high-resolution data. Multi-beam sonar with the capability to produce
very high-resolution 3D data over a long distance is another possibility
for many underwater projects. While these devices show promising
abilities for underwater perception, their expensive cost is another
problem to be addressed. On the other hand, optical-based devices will
persist in improving their capability to operate in low-light conditions
and minimize their energy consumption by using low-power imaging
sensors and harvesting energy underwater. The artificial illumination
system is another improved aspect to boost image quality. Besides,
there is some interest in using the hyperspectral camera for underwater
applications. While the device also suffers from seawater attenuation,
it can capture underwater objects using hundreds of spectral bands,
allowing potentially better robot perception.
2. Underwater sensing algorithms will focus on two main directions:
learning-based perception and fusion-based perception. The quick
progress of artificial intelligence and machine learning will boost
the performance of underwater perception systems. More underwater
datasets will be available thanks to the increasing availability of under-
water sensors. The more data collected on the aquatic environment, the
better we can train the robot to understand underwater environments.
Intersensory learning is a promising trend for machine learning in
underwater perception research. The methods encourage knowledge

transfer between different types of sensing modalities. For example,
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by presenting low-resolution images from a FLS as input to a neural
network and high-resolution photos from a camera as the output, we
can learn a model that can render camera-like images using sonar data.
However, the approach still requires a decent dataset to be collected for
the model to adapt to various underwater scenarios and an algorithm
for correctly mapping objects between the camera and FLS. Many
successful machine learning models are being adopted for underwater
technology, such as Attention Mechanisms or Transformers, to solve
classical object perception problems. Fusion-based perception is also a
primary trend in underwater robotics. More data fusion methodology
will be implemented with new sensing modalities. For example, some
research projects are experimenting with pairing the optical camera
with underwater Lidar for high-resolution mapping and pairing mul-
tiple FLSs with different configurations for better object perception.
The biggest challenge for data fusion is correctly calibrating various
information sources. For example, the accuracy of sonar calibration is
affected by water temperature and salinity.
3. 3D underwater reconstruction will be the focused research direction
for underwater perception. 3D reconstruction of objects and envi-
ronments is always highly interesting for underwater research. The
technique allows underwater vehicles to build a 3D model of under-
water objects or full coverage of underwater structures. The informa-
tion enables underwater robots to perform path planning and obstacle
avoidance or to navigate near the facilities effectively. For example,
there is a recent work on 3D reconstruction using orthogonal stereo
FLSs (OMSF). Its reconstruction result can also be integrated as PCD in-
puts into the PCD-based classifier and pose-estimator models, as shown
in the diagram in Fig. 16. Other work are exploring similar research
directions, such as those found in Sung et al. (2020). Preliminary
development on OMSF integration for 3D classification are showing
promising results with great accuracy and efficiency, even on sparse
PCDs given by OMSF.
4. Cooperative perception is the new emerging technology for under-
water research. The research direction receives tremendous interest in
developing a systematic approach for controlling a group of robots.
Such a system allows underwater perception tasks such as seafloor
surveying, mapping, or 3D site reconstruction to perform effectively,
collectively, and quickly. Cooperative perception allows a new alloca-
tion strategy for underwater sensing devices. All the sensors used for
fusion need not be on just one underwater vehicle like the works of Liu
et al. (2020) or Li et al. (2022). A step forward could be towards cooper-
ative localization and imaging, whereby several robots can quickly scan
a given target while sharing vital navigation information using acoustic
modems (Djapic et al., 2013; Du et al., 2022), or optical modems like
the Hydromea LUMA. The main bottleneck of such systems would be
the communication protocol, which depends on factors like distance
and bandwidth. However, large amounts of data can be transferred
easily using such devices due to their speed. Another method of using
these multi-robot systems could be in a master–slave fashion, whereby
robots with more extended range sensors could help localize robots
closer to targets of interest to produce imaging data totally independent
of the characteristics of the scanned objects, leading to more robust
implementations of SLAM or approaches like one-shot localization.
Fig. 17 shows an example of the setup.

In this paper, we contribute a survey on marine robotic sens-
ing modalities and perception algorithms. Our underwater perception
framework classifies the perception ranges into long-range, medium-
range, and close-range. Each perception range is characterized by the
availability of the sensor and the sensing methods. Long-range object
perception suffers from the low-contrast, low resolution, and noisy
background of sonar images. Current sensing algorithms overcome
this perception problem by using the object’s unique features, such
as motion and frequency, instead of relying on only traditional ge-
ometrical features, such as size and shape. Fusion-based approaches
are appropriate for enhancing the robot’s perception capabilities in
21

the medium range. Finally, robots can perform advanced perception
Fig. 16. Rough diagram showing example of a potential end-to-end PCD-based
classification and pose-estimation integrating OMSF reconstruction.

Fig. 17. A possible setup for collaborative robot control.

tasks such as object reconstructions or pose estimation with high-
resolution data from optical and acoustic modalities in close range.
With the recent fast-moving progress of related fields such as machine
learning and underwater communication, a promising future awaits the
development of the marine robotic area.
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