7,122 research outputs found

    Localization of Spatially Distributed Near-Field Sources with Unknown Angular Spread Shape

    No full text
    International audienceIn this paper, we propose to localize and characterize coherently distributed (CD) sources in near-field. Indeed, it appears that in some applications, the more the sources are close to the array of sensors, the more they can seem scattered. It thus appears of the biggest importance to take into account the angular distribution of the sources in the joint direction of arrival (DOA) and range estimation methods. The methods of the literature which consider the problem of distributed sources do not handle with the case of near field sources and require that the shape of the dispersion is known. The main contribution of the proposed method is to estimate the shape of the angular distribution using an additional shape parameter to address the case of unknown distributions. We propose to jointly estimate the DOA, the range, the spread angle and the shape of the spread distribution. Accurate estimation is then achieved even when the shape of the angular spread distribution is unknown or imperfectly known. Moreover, the proposed estimator improves angular resolution of the sources

    Performance analysis of MUSIC for spatially distributed sources

    No full text
    In this paper, the direction of arrival (DOA) localization of spatially distributed sources impinging on a sensor array is considered. The performance of the well known MUSIC estimator is studied in presence of model errors due to angular dispersion of sources. Taking into account the coherently distributed source model proposed in [1], we establish closed-form expressions of the DOA estimation error and mean square error (MSE) due to both the model errors and the effects of a finite number of snapshots. The analytical results are validated by numerical simulations and allow to analyze the performance of MUSIC for coherently distributed sources

    Localisation de sources aéroacoustiques et imagerie à haute résolution

    Get PDF
    Localization of Coherently Distributed (CD) source presents a challenge in the array signal processing. Our work motivates the localization of aero-acoustic source based on its spatial extension. This challenge is practically ignored in the literature of acoustic imaging field where many applications consist in mapping noisy source to reduce its contribution. The thesis presents the three following contributions. First, we propose a Joint Angle, Distance, Spread and Shape Estimator called JADSSE. The estimation of the so-called spread shape distribution parameter proposed by JADSSE avoids the modeling error due to the required a priori knowledge on the source shape when using classical estimators. Second, we expand the Decoupled DSPE to the near field. This method decouples the Direction of Arrival (DoA) and the range estimation from the spread estimation. Meanwhile, this method prevents the spread estimation for unknown shape distribution. Therefore, we propose the DADSSE to successively estimate the DOA, the range and then the spread and the shape distribution of the source. Third, we generalize the CD model and the JADSSE to consider the bi-dimensional spread of the source. Next, we propose two source power estimation approaches accounting the spatial spread of the source. The proposed methods are tested using a set of experimental data of the Renault wind tunnel application. Results show the presence of new aero-acoustic sources especially the overlapped ones with weak powers. We provide a tool to better map and characterize the aero-acoustic source by estimating the position, spread, power and shape.La localisation de source Distribuée Cohérente (DC) présente un défi du traitement d'antenne. Les contributions de cette thèse s’articulent principalement autour de trois aspects. Premièrement, un estimateur conjoint de l'angle, la distance, la dispersion et la forme de la source appelée JADSSE est proposé pour le cas champ proche. L’estimation d’un paramètre de forme de distribution de la dispersion permet d’éviter des erreurs de modèles sur l’a priori de la forme de la distribution. Deuxièmement, on généralise l'estimateur Decoupled DSPE en champ proche. Cette approche permet de découpler l'estimation de la Direction D’Arrivée (DDA) et de la distance de l'estimation de la dispersion. Afin de permettre l’estimation de la dispersion sans connaître a priori les formes de distribution, on propose le DADSSE qui consiste à estimer successivement la DDA, la distance et ensuite la dispersion et la forme de la distribution de la source. Troisièmement, on généralise le modèle DC avec une dispersion spatiale bidimensionnelle de la source ainsi que l’estimateur JADSSE. Deux approches sont proposées pour l’estimation de la puissance prenant en compte le modèle d’étalement des sources. Les méthodes proposées sont testées sur les données expérimentales de la soufflerie de Renault. Les résultats mettent en évidence des sources aéro-acoustiques proches et de faibles puissances. L’ensemble de ces travaux permet de fournir un outil pour une meilleure cartographie et caractérisation des sources aéro-acoustiques grâce à l’estimation de la position, l'étalement, la puissance et la forme

    MScMS-II: an innovative IR-based indoor coordinate measuring system for large-scale metrology applications

    No full text
    According to the current great interest concerning large-scale metrology applications in many different fields of manufacturing industry, technologies and techniques for dimensional measurement have recently shown a substantial improvement. Ease-of-use, logistic and economic issues, as well as metrological performance are assuming a more and more important role among system requirements. This paper describes the architecture and the working principles of a novel infrared (IR) optical-based system, designed to perform low-cost and easy indoor coordinate measurements of large-size objects. The system consists of a distributed network-based layout, whose modularity allows fitting differently sized and shaped working volumes by adequately increasing the number of sensing units. Differently from existing spatially distributed metrological instruments, the remote sensor devices are intended to provide embedded data elaboration capabilities, in order to share the overall computational load. The overall system functionalities, including distributed layout configuration, network self-calibration, 3D point localization, and measurement data elaboration, are discussed. A preliminary metrological characterization of system performance, based on experimental testing, is also presente

    Divergence Model for Measurement of Goos-Hanchen Shift

    Get PDF
    In this effort a new measurement technique for the lateral Goos-Hanchen shift is developed, analyzed, and demonstrated. The new technique uses classical image formation methods fused with modern detection and analysis methods to achieve higher levels of sensitivity than obtained with prior practice. Central to the effort is a new mathematical model of the dispersion seen at a step shadow when the Goos-Hanchen effect occurs near critical angle for total internal reflection. Image processing techniques are applied to measure the intensity distribution transfer function of a new divergence model of the Goos-Hanchen phenomena providing verification of the model. This effort includes mathematical modeling techniques, analytical derivations of governing equations, numerical verification of models and sensitivities, optical design of apparatus, image processin

    Origin of TeV Galactic Cosmic Rays

    Full text link
    We consider a possibility of identification of sources of cosmic rays (CR) of the energy above 1 TeV via observation of degree-scale extended gamma-ray emission which traces the locations of recent sources in the Galaxy. Such emission in the energy band above 100 GeV is produced by CR nuclei and electrons released by the sources and spreading into the interstellar medium. We use the data from the Fermi gamma-ray telescope to locate the degree-scale 100 GeV gamma-ray sources. We find that the number of such sources and their overall power match to those expected when CRs injection events happen every ~100 yr in portions of ~1e50 erg. We find that most of the sources are associated to pulsars with spin down age less than ~30 kyr and hence to the recent supernova explosions. This supports the hypothesis of supernova origin of Galactic CRs. We notice that the degree-scale extended emission does not surround shell-like supernova remnants without pulsars. Based on this observation, we argue that the presence of the pulsar is essential for the CR acceleration process. We expect that a significant fraction of the degree-scale sources should be detectable as extended sources with km3-scale neutrino detectors.Comment: 14 pages, 14 figures, accepted for publication in Phys.Rev.

    Astrometry with the Wide-Field InfraRed Space Telescope

    Get PDF
    The Wide-Field InfraRed Space Telescope (WFIRST) will be capable of delivering precise astrometry for faint sources over the enormous field of view of its main camera, the Wide-Field Imager (WFI). This unprecedented combination will be transformative for the many scientific questions that require precise positions, distances, and velocities of stars. We describe the expectations for the astrometric precision of the WFIRST WFI in different scenarios, illustrate how a broad range of science cases will see significant advances with such data, and identify aspects of WFIRST's design where small adjustments could greatly improve its power as an astrometric instrument.Comment: version accepted to JATI

    Fermi-LAT Discovery of Extended Gamma-ray Emission in the Direction of Supernova Remnant W51C

    Full text link
    The discovery of bright gamma-ray emission coincident with supernova remnant (SNR) W51C is reported using the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. W51C is a middle-aged remnant (~10^4 yr) with intense radio synchrotron emission in its shell and known to be interacting with a molecular cloud. The gamma-ray emission is spatially extended, broadly consistent with the radio and X-ray extent of SNR W51C. The energy spectrum in the 0.2-50 GeV band exhibits steepening toward high energies. The luminosity is greater than 1x10^{36} erg/s given the distance constraint of D>5.5 kpc, which makes this object one of the most luminous gamma-ray sources in our Galaxy. The observed gamma-rays can be explained reasonably by a combination of efficient acceleration of nuclear cosmic rays at supernova shocks and shock-cloud interactions. The decay of neutral pi-mesons produced in hadronic collisions provides a plausible explanation for the gamma-ray emission. The product of the average gas density and the total energy content of the accelerated protons amounts to 5x10^{51}(D/6kpc)^2 erg/cm^3. Electron density constraints from the radio and X-ray bands render it difficult to explain the LAT signal as due to inverse Compton scattering. The Fermi LAT source coincident with SNR W51C sheds new light on the origin of Galactic cosmic rays.Comment: 17 pages, 4 figures, 1 table. Accepted for ApJ Letters. Contact authors: Y. Uchiyama, S. Funk., H. Tajima, T. Tanak
    • …
    corecore