3,237 research outputs found

    Supervised Autonomous Locomotion and Manipulation for Disaster Response with a Centaur-like Robot

    Full text link
    Mobile manipulation tasks are one of the key challenges in the field of search and rescue (SAR) robotics requiring robots with flexible locomotion and manipulation abilities. Since the tasks are mostly unknown in advance, the robot has to adapt to a wide variety of terrains and workspaces during a mission. The centaur-like robot Centauro has a hybrid legged-wheeled base and an anthropomorphic upper body to carry out complex tasks in environments too dangerous for humans. Due to its high number of degrees of freedom, controlling the robot with direct teleoperation approaches is challenging and exhausting. Supervised autonomy approaches are promising to increase quality and speed of control while keeping the flexibility to solve unknown tasks. We developed a set of operator assistance functionalities with different levels of autonomy to control the robot for challenging locomotion and manipulation tasks. The integrated system was evaluated in disaster response scenarios and showed promising performance.Comment: In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 201

    Bearing-only formation control with auxiliary distance measurements, leaders, and collision avoidance

    Full text link
    We address the controller synthesis problem for distributed formation control. Our solution requires only relative bearing measurements (as opposed to full translations), and is based on the exact gradient of a Lyapunov function with only global minimizers (independently from the formation topology). These properties allow a simple proof of global asymptotic convergence, and extensions for including distance measurements, leaders and collision avoidance. We validate our approach through simulations and comparison with other stateof-the-art algorithms.ARL grant W911NF-08-2-0004, ARO grant W911NF-13-1-0350, ONR grants N00014-07-1-0829, N00014-14-1-0510, N00014-15-1-2115, NSF grant IIS-1426840, CNS-1521617 and United Technologies

    Planning With Adaptive Dimensionality

    Get PDF
    Modern systems, such as robots or virtual agents, need to be able to plan their actions in increasingly more complex and larger state-spaces, incorporating many degrees of freedom. However, these high-dimensional planning problems often have low-dimensional representations that describe the problem well throughout most of the state-space. For example, planning for manipulation can be represented by planning a trajectory for the end-effector combined with an inverse kinematics solver through obstacle-free areas of the environment, while planning in the full joint space of the arm is only necessary in cluttered areas. Based on this observation, we have developed the framework for Planning with Adaptive Dimensionality, which makes effective use of state abstraction and dimensionality reduction in order to reduce the size and complexity of the state-space. It iteratively constructs and searches a hybrid state-space consisting of both abstract and non-abstract states. Initially the state-space consists only of abstract states, and regions of non-abstract states are selectively introduced into the state-space in order to maintain the feasibility of the resulting path and the strong theoretical guarantees of the algorithm---completeness and bounds on solution cost sub-optimality. The framework is able to make use of hierarchies of abstractions, as different abstractions can be more effective than others in different parts of the state-space. We have extended the framework to be able to utilize anytime and incremental graph search algorithms. Moreover, we have developed a novel general incremental graph search algorithm---tree-restoring weighted A*, which is able to minimize redundant computation between iterations while efficiently handling changes in the search graph. We have applied our framework to several different domains---navigation for unmanned aerial and ground vehicles, multi-robot collaborative navigation, manipulation and mobile manipulation, and navigation for humanoid robots

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    A Multi-Sensorial Hybrid Control for Robotic Manipulation in Human-Robot Workspaces

    Get PDF
    Autonomous manipulation in semi-structured environments where human operators can interact is an increasingly common task in robotic applications. This paper describes an intelligent multi-sensorial approach that solves this issue by providing a multi-robotic platform with a high degree of autonomy and the capability to perform complex tasks. The proposed sensorial system is composed of a hybrid visual servo control to efficiently guide the robot towards the object to be manipulated, an inertial motion capture system and an indoor localization system to avoid possible collisions between human operators and robots working in the same workspace, and a tactile sensor algorithm to correctly manipulate the object. The proposed controller employs the whole multi-sensorial system and combines the measurements of each one of the used sensors during two different phases considered in the robot task: a first phase where the robot approaches the object to be grasped, and a second phase of manipulation of the object. In both phases, the unexpected presence of humans is taken into account. This paper also presents the successful results obtained in several experimental setups which verify the validity of the proposed approach

    Fast, Autonomous Flight in GPS-Denied and Cluttered Environments

    Full text link
    One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution, and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development, and present results from extensive experimental testing in real-world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS-denied environments.Comment: Pre-peer reviewed version of the article accepted in Journal of Field Robotic

    A survey of robot manipulation in contact

    Get PDF
    In this survey, we present the current status on robots performing manipulation tasks that require varying contact with the environment, such that the robot must either implicitly or explicitly control the contact force with the environment to complete the task. Robots can perform more and more manipulation tasks that are still done by humans, and there is a growing number of publications on the topics of (1) performing tasks that always require contact and (2) mitigating uncertainty by leveraging the environment in tasks that, under perfect information, could be performed without contact. The recent trends have seen robots perform tasks earlier left for humans, such as massage, and in the classical tasks, such as peg-in-hole, there is a more efficient generalization to other similar tasks, better error tolerance, and faster planning or learning of the tasks. Thus, in this survey we cover the current stage of robots performing such tasks, starting from surveying all the different in-contact tasks robots can perform, observing how these tasks are controlled and represented, and finally presenting the learning and planning of the skills required to complete these tasks
    • …
    corecore