
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2016

Planning With Adaptive Dimensionality
Kalin Vasilev Gochev
University of Pennsylvania, kgochev@seas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Artificial Intelligence and Robotics Commons, and the Robotics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1739
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Gochev, Kalin Vasilev, "Planning With Adaptive Dimensionality" (2016). Publicly Accessible Penn Dissertations. 1739.
http://repository.upenn.edu/edissertations/1739

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=repository.upenn.edu%2Fedissertations%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=repository.upenn.edu%2Fedissertations%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1739?utm_source=repository.upenn.edu%2Fedissertations%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1739
mailto:libraryrepository@pobox.upenn.edu

Planning With Adaptive Dimensionality

Abstract
Modern systems, such as robots or virtual agents, need to be able to plan their actions in increasingly more
complex and larger state-spaces, incorporating many degrees of freedom. However, these high-dimensional
planning problems often have low-dimensional representations that describe the problem well throughout
most of the state-space. For example, planning for manipulation can be represented by planning a trajectory
for the end-effector combined with an inverse kinematics solver through obstacle-free areas of the
environment, while planning in the full joint space of the arm is only necessary in cluttered areas. Based on
this observation, we have developed the framework for Planning with Adaptive Dimensionality, which makes
effective use of state abstraction and dimensionality reduction in order to reduce the size and complexity of
the state-space. It iteratively constructs and searches a hybrid state-space consisting of both abstract and non-
abstract states. Initially the state-space consists only of abstract states, and regions of non-abstract states are
selectively introduced into the state-space in order to maintain the feasibility of the resulting path and the
strong theoretical guarantees of the algorithm---completeness and bounds on solution cost sub-optimality.
The framework is able to make use of hierarchies of abstractions, as different abstractions can be more
effective than others in different parts of the state-space. We have extended the framework to be able to utilize
anytime and incremental graph search algorithms. Moreover, we have developed a novel general incremental
graph search algorithm---tree-restoring weighted A*, which is able to minimize redundant computation
between iterations while efficiently handling changes in the search graph. We have applied our framework to
several different domains---navigation for unmanned aerial and ground vehicles, multi-robot collaborative
navigation, manipulation and mobile manipulation, and navigation for humanoid robots.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Maxim Likhachev

Second Advisor
Alla Safonova

Keywords
Planning Algorithms, Planning for Humanoid Mobility, Planning for Mobile Manipulation, Planning for
Navigation, Planning for Robotics, Search-Based Planning

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1739

http://repository.upenn.edu/edissertations/1739?utm_source=repository.upenn.edu%2Fedissertations%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages

Subject Categories
Artificial Intelligence and Robotics | Computer Sciences | Robotics

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1739

http://repository.upenn.edu/edissertations/1739?utm_source=repository.upenn.edu%2Fedissertations%2F1739&utm_medium=PDF&utm_campaign=PDFCoverPages

PLANNING WITH ADAPTIVE DIMENSIONALITY

Kalin Vasilev Gochev

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

2016

Supervisor of Dissertation

Maxim Likhachev
Adjunct Assistant Professor
Computer and Information Science

Co-Supervisor of Dissertation

Alla Safonova
Assistant Professor
Computer and Information Science

Graduate Group Chairperson

Lyle Ungar
Professor
Computer and Information Science

Dissertation Committee

Christopher Atkeson, Professor of Computer Science

Norman Badler, Professor of Computer and Information Science

Kostas Daniilidis, Professor of Computer and Information Science

Daniel Lee, Professor of Electrical and Systems Engineering

PLANNING WITH ADAPTIVE DIMENSIONALITY

c© COPYRIGHT

2016

Kalin Vasilev Gochev

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/

ABSTRACT

PLANNING WITH ADAPTIVE DIMENSIONALITY

Kalin Vasilev Gochev

Maxim Likhachev

Alla Safonova

Modern systems, such as robots or virtual agents, need to be able to plan their actions in

increasingly more complex and larger state-spaces, incorporating many degrees of freedom.

However, these high-dimensional planning problems often have low-dimensional represen-

tations that describe the problem well throughout most of the state-space. For example,

planning for manipulation can be represented by planning a trajectory for the end-effector

combined with an inverse kinematics solver through obstacle-free areas of the environment,

while planning in the full joint space of the arm is only necessary in cluttered areas. Based

on this observation, we have developed the framework for Planning with Adaptive Dimen-

sionality, which makes effective use of state abstraction and dimensionality reduction in

order to reduce the size and complexity of the state-space. It iteratively constructs and

searches a hybrid state-space consisting of both abstract and non-abstract states. Initially

the state-space consists only of abstract states, and regions of non-abstract states are se-

lectively introduced into the state-space in order to maintain the feasibility of the resulting

path and the strong theoretical guarantees of the algorithm—completeness and bounds on

solution cost sub-optimality. The framework is able to make use of hierarchies of abstrac-

tions, as different abstractions can be more effective than others in different parts of the

state-space. We have extended the framework to be able to utilize anytime and incremental

graph search algorithms. Moreover, we have developed a novel general incremental graph

search algorithm—tree-restoring weighted A*, which is able to minimize redundant compu-

tation between iterations while efficiently handling changes in the search graph. We have

iii

applied our framework to several different domains—navigation for unmanned aerial and

ground vehicles, multi-robot collaborative navigation, manipulation and mobile manipula-

tion, and navigation for humanoid robots.

iv

TABLE OF CONTENTS

ABSTRACT . iii

LIST OF TABLES . viii

LIST OF ILLUSTRATIONS . x

CHAPTER 1 : Introduction . 1

CHAPTER 2 : Motivating Observation . 5

CHAPTER 3 : Related Work . 7

3.1 State Abstraction Techniques . 7

3.2 Two-Layer Planners . 9

3.3 Sampling-Based Planners . 10

3.4 Optimization Methods . 13

3.5 Incremental Search Algorithms . 13

CHAPTER 4 : Planning with Adaptive Dimensionality 16

4.1 Definitions and Notations . 16

4.2 Overview . 17

4.3 Hybrid State-Space Construction . 20

4.4 Algorithm . 23

4.5 Identifying Areas that Require High-Dimensional Planning 26

4.6 Theoretical Properties . 27

4.7 Algorithm Parameters . 29

CHAPTER 5 : Hierarchical Planning with Adaptive Dimensionality 31

5.1 Motivation . 31

v

5.2 Related Work . 31

5.3 Combining Multiple Abstractions . 33

5.4 Theoretical Properties . 37

5.5 Identifying Useful Abstractions . 39

CHAPTER 6 : Incremental Graph Search for PAD 46

6.1 Motivation . 46

6.2 Definitions and Notations . 48

6.3 Tree-Restoring Weighted A* Search . 48

6.4 Anytime Tree-Restoring Weighted A* Search 55

6.5 Efficiently Detecting Changes in the Graph 57

6.6 Experimental Evaluation . 58

6.7 Analysis of Results . 60

CHAPTER 7 : Application: PAD for Navigation 65

7.1 Non-Incremental 3D Path Planning for a Non-Holonomic Vehicle 65

7.2 Incremental 3D Path Planning for a Non-Holonomic Vehicle 69

7.3 Interleaving Planning and Execution . 74

CHAPTER 8 : Application: PAD for Multi-Robot Collaborative Navigation 85

8.1 Related Work . 86

8.2 State Lattice with Controller-based Motion Primitives 88

8.3 Implementation Details . 91

8.4 Experimental Setup . 97

8.5 Analysis of Results . 99

CHAPTER 9 : Application: PAD for Manipulation 101

9.1 Using 3D Low-Dimensional Representation 101

9.2 Using 4D Low-Dimensional Representation for Manipulators with Indepen-

dent Wrist Joints . 106

vi

CHAPTER 10 : Application: PAD for Mobile Manipulation 120

10.1 Using a Single Abstraction . 120

10.2 Using Multiple Abstractions . 125

CHAPTER 11 : Application: PAD for Humanoid Robot Mobility 132

11.1 Domain Background and Related Work . 132

11.2 Algorithm Extension . 135

11.3 Implementation Details . 140

11.4 Experimental Evaluation . 150

11.5 Analysis of Results . 151

CHAPTER 12 : Conclusion . 154

APPENDIX . 156

BIBLIOGRAPHY . 165

vii

LIST OF TABLES

TABLE 1 : Anytime TRA? simulation results 60

TABLE 2 : Fixed sub-optimality TRA? simulation results 61

TABLE 3 : Non-holonomic vehicle navigation planning 68

TABLE 4 : Non-holonomic vehicle navigation planning on PR2 robot 71

TABLE 5 : Incremental vs. non-incremental PAD for navigation 72

TABLE 6 : Interleaving vs. non-interleaving PAD for navigation 81

TABLE 7 : Results for multi-robot collaborative navigation planning 99

TABLE 8 : Results for multi-robot collaborative navigation planning 100

TABLE 9 : 7D/3D manipulation planning results 105

TABLE 10 : Consistency comparison of search-based vs. sampling-based planners 106

TABLE 11 : 7D/4D manipulation planning results 117

TABLE 12 : Path quality comparison results . 118

TABLE 13 : Performance of 7D/4D manipulation planning for independent wrist

joints . 118

TABLE 14 : 11D/3D mobile manipulation results 124

TABLE 15 : Manipulating a stick trough a window: 11D/7D adaptive planner

vs. RRT planner results . 124

TABLE 16 : Results for mobile manipulation planning with multiple abstractions 131

viii

LIST OF ILLUSTRATIONS

FIGURE 1 : Weighted A∗ search example . 3

FIGURE 2 : Motivation example: navigation planning 6

FIGURE 3 : Motivation example: motion planning 6

FIGURE 4 : Example of an asymmetric cost function 11

FIGURE 5 : Hybrid graph transitions . 18

FIGURE 6 : Planning with Adaptive Dimensionality in 3D/2D 23

FIGURE 7 : Planning with Adaptive Dimensionality in 7D/3D 24

FIGURE 8 : Transitions between abstract sub-spaces 35

FIGURE 9 : Estimating cost gradient for graphs 44

FIGURE 10 : Tree-restoring A? example . 49

FIGURE 11 : Computing affected graph edges from changed map cells 57

FIGURE 12 : TRA? example environment . 58

FIGURE 13 : Example maps for non-holonomic vehicle navigation 67

FIGURE 14 : Incremental Planning with Adaptive Dimensionality example . . . 70

FIGURE 15 : 3D/2D Planning with Adaptive Dimensionality for PR2 robot . . 71

FIGURE 16 : Number of iterations vs. speed-up factor 72

FIGURE 17 : PR2 in a cluttered indoor environment. 80

FIGURE 18 : Example graph using state-lattice controllers 90

FIGURE 19 : Multi-robot adaptive navigation planning example 94

FIGURE 20 : Robots used for multi-robot collaborative navigation 96

FIGURE 21 : Maps used in multi-robot collaborative navigation 99

FIGURE 22 : Degrees of freedom of the right arm of a PR2 robot 102

ix

FIGURE 23 : Manipulation planning example environments 103

FIGURE 24 : Trajectory being executed by actual PR2 robot 105

FIGURE 25 : 7D/4D manipulation planning example 109

FIGURE 26 : Heuristic local minimum example 113

FIGURE 27 : PR2 retrieving an object from a fridge 116

FIGURE 28 : Degrees of freedom for mobile manipulation on PR2 robot 121

FIGURE 29 : PR2 manipulating a stick trough a window 122

FIGURE 30 : PR2 reaching from a high shelf to a low shelf of a bookcase 122

FIGURE 31 : Example kitchen environment . 128

FIGURE 32 : Example indoor environment from real sensor data 128

FIGURE 33 : Planning phase of Planning with Adaptive Dimensionality with

multiple abstractions . 129

FIGURE 34 : Tracking phase of Planning with Adaptive Dimensionality with

multiple abstractions . 130

FIGURE 35 : Initial distribution of sub-spaces in environment 130

FIGURE 36 : Humanoid Robots . 133

FIGURE 37 : Humanoid Mobility Example . 134

FIGURE 38 : Yamabiko Humanoid Robot . 140

FIGURE 39 : Humanoid Robot Abstraction Hierarchy 141

FIGURE 40 : Bipedal Abstraction for Flat Terrain 143

FIGURE 41 : Bipedal Abstraction for Stairs . 144

FIGURE 42 : Maintaining Static Stability . 147

FIGURE 43 : Planning with Adaptive Dimensionality for Humanoid Mobility . 153

x

CHAPTER 1 : Introduction

Planning is an important component of any intelligent system. It allows the system to adapt

to changing environment conditions and sensory inputs. In recent years robotics research

has moved from the controlled predictable industrial environments towards the cluttered,

uncontrolled and unpredictable domestic environments, where robots need to be able to

safely perform a variety of tasks necessitating careful, but efficient, planning. Search-based

planning algorithms are often used in many areas of robotics and artificial intelligence. They

represent the planning problem as a graph search in a graph consisting of a set of nodes,

denoting valid system configurations, and a set of edges, denoting valid transitions from

one system configuration to another. The planning problem then becomes finding a path (a

sequence of edges) in the graph from a given start node to a given goal node. Henceforth,

we will refer to nodes in a graph as system states, or simply states, and to the set of nodes

in a graph as the state-space.

The most common application of search-based planning is navigation planning or path-

finding (Likhachev and Ferguson, 2008; Dolgov et al., 2010). It is also commonly used

to solve discrete combinatorial problems, such as various puzzles and games (Holte et al.,

1996b). There are several important reasons for the popularity of search-based planners.

Firstly, they typically provide strong theoretical guarantees on completeness with respect

to the graph representing the search problem, and bounds on solution cost sub-optimality.

Usually, in search-based planners one can easily trade-off solution optimality for faster plan-

ning time, for example, by varying the heuristic weighting factor ε in Weighted A* search,

and still have strong guarantees that the cost of the solution is within a desired bound

of the optimal solution cost. Second, a number of anytime search algorithms have been

developed, that find the best solution they can within a given time limit and continue to

improve the solution quality as the planning time allows (ARA* (Likhachev et al., 2003),

Anytime A* (Zhou and Hansen, 2002), Beam-Stack Search (Zhou and Hansen, 2005b)).

Third, a number of search algorithms can re-use previous search efforts to find new solu-

1

tions faster (Focussed D* (Stentz, 1995a), Incremental A* (Koenig and Likhachev, 2002b),

D* Lite (Koenig and Likhachev, 2002a)). Such algorithms are well-suited for planning in

dynamic environments, where fast re-planning is necessary. Finally, formulating the search

problem as a cost-minimization problem allows one to define and incorporate complex cost

functions and constraints into the planning process. These properties of search-based plan-

ning algorithms address common considerations when designing intelligent systems, such as

efficiency, response time, and consistency.

Modern intelligent systems, such as robots or virtual agents, need to be able to plan their

actions in increasingly more complex state-spaces with many degrees of freedom. These

degrees of freedom are often introduced to capture the full capabilities of the system, or to

account for its various kinodynamic constraints. In the context of search-based planning,

the increasing number of degrees of freedom of the system introduces an exponential increase

in the size of the search space, also known as the “curse of dimensionality”. Thus, the high

dimensionality of the states-space often leads to a dramatic increase in the time and memory

required by the search algorithm to find a solution. Dijkstra’s graph search algorithm

(Dijkstra, 1959) is probably the most well-known graph search algorithm with running time

of about O(|E| log(|V |)), depending on the specific implementation, where E is the set of

edges and V is the set of nodes in the graph. However, this running time becomes impractical

for systems with large number of degrees of freedom, as |V | and |E| scale exponentially with

the number of degrees of freedom.

Search-based algorithms try to alleviate the problem by focusing the search efforts in

promising directions by using heuristic functions (or simply heuristics) (Hart et al., 1968)—

functions that estimate the cost of reaching the goal from every state in the search space.

A heuristic is said to be admissible if it never overestimates the cost of reaching the goal.

Usually, admissible heuristics are required in order for the search-based planning algorithms

to provide guarantees about the cost of the solution. However, some algorithms impose an

even stronger requirement on the heuristic functions they are able to use—consistency. A

2

Figure 1: Weighted A∗ search (ε = 5) on an 8-connected 2D grid using Euclidean distance
cost between nodes from start (bottom left) to goal (top right). The heuristic used is
Euclidean distance to the goal. The gray shape represents an obstacle. Blue circles represent
nodes on the OPEN list, solid colored nodes represent expanded nodes, with color varying
from red to green based on increasing g value. Solid blue nodes are invalid nodes that are
in collision with the obstacle. The green path represents the solution to the problem found
by the weighted A∗ search. The shape of the obstacle introduces a local minimum of the
heuristic function. All nodes in the local minimum are expanded by the search. Image
taken from (Wikipedia, 2015).

heuristic h is said to be consistent (or monotone) if and only if it is admissible and obeys the

triangle inequality for any state A in the state-space S and any state B ∈ successors(A):

h(A) ≤ cost(A,B) + h(B) ∀A ∈ S, ∀B ∈ successors(A).

These limitations on the heuristic functions, combined with the increasing complexity of

the search problems being studied, make it very challenging for researchers to find good

heuristics that perform well over a wide range of problems. It is often challenging to find

heuristics that perform consistently over a wide variety of problem instances. Pronounced

local minima in the heuristic can lead to a significant performance decrease, as the search

needs to expand all states in the local minimum in order to overcome it and proceed towards

the goal (Fig. 1). In Fig. 1, the heuristic does not take into account obstacles in the search

space, and thus, certain obstacle shapes and configurations can produce very large local

minima, which significantly degrade the performance of the search.

3

We have developed a framework for search-based planning, Planning with Adaptive Dimen-

sionality (PAD), that tries to address the size of the state-space and the “curse of dimension-

ality” for high-dimensional planning problems based on the observation described in the next

chapter. We demonstrate that the framework provides the important theoretical properties

of search-based planning algorithms—completeness with respect to the graph represent-

ing the problem and strong guarantees on solution cost sub-optimality bounds. We have

also experimentally validated our framework in a number of planning domains—navigation,

manipulation, mobile manipulation, and motion planning for a bipedal humanoid robot.

4

CHAPTER 2 : Motivating Observation

While planning in a high-dimensional state-space is often necessary to capture the full ca-

pabilities of the system and its kinodynamic constraints, large portions of the computed

solutions exhibit low-dimensional structures. For example, a 3-DoF (x,y,heading) path for

a non-holonomic vehicle typically contains large portions that are straight-line segments

and do not therefore require three-dimensional planning. On the other hand, sections of

the path that include turning do require planning in all three degrees of freedom in order to

capture the minimum turning radius constraints of the system (Fig. 2). Similarly, planning

for manipulation can often be reduced to 3-DoF (x, y, z) planning for the manipulator’s

end-effector position and using an inverse kinematics solver to find a full-dimensional ma-

nipulator path that corresponds to the computed end-effector path (Fig. 3 (a)). At the

same time, there are situations when the planner does need to consider the full configu-

ration of the arm when trying to ensure the feasibility of the end-effector path—in highly

cluttered areas of the environment or certain obstacle configurations (Fig. 3 (b)), for ex-

ample. Such low-dimensional representations can be found for many robotic systems, as

they are inherently embedded into the 2D planar or 3D spatial geometric environments in

which they operate. Moreover, a number of informative heuristics exist for such geometric

environments, such as various distance metrics, which can even account for the obstacles in

the environment. Thus, search in these low-dimensional spaces can be performed quickly

and efficiently.

In this work, we present an algorithm framework that exploits this observation. It itera-

tively constructs a hybrid state-space that utilizes a low-dimensional state representation

(abstraction) throughout most of the search space (e.g. end-effector position), except for

the areas where low-dimensional planning fails and full-dimensional planning is necessary

(e.g. full manipulator configuration) to ensure that the solution is feasible and satisfies a

desired cost sub-optimality bound. At each iteration the algorithm identifies areas of the

state-space that require high-dimensional planning and introduces them into the hybrid

5

Figure 2: Example trajectory for a non-holonomic vehicle with minimum turning radius
constraints. Planning for the heading of the vehicle is needed in areas that require turning
in order to ensure constraints are satisfied (light red circles). Planning for the heading of the
vehicle is unnecessary for areas that can be traversed in a straight line. A: start location;
B: goal location; gray boxes: obstacles.

(a) (b)

Figure 3: Motion planning for a manipulator: (a) Simple example: planning an end-effector
trajectory and using an inverse kinematics solver to compute a corresponding manipulator
trajectory. (b) Example: planning an end-effector trajectory combined with an inverse
kinematics solver fails to produce a valid trajectory.

graph, until the necessary high-dimensional areas have been identified and the planner is

able to compute a feasible solution. Using such low-dimensional abstractions results in sub-

stantial reduction in the size of the state-space and considerable speedups in planning time

and lower memory requirements of the planner. On the theoretical side, we have shown that

the method is complete with respect to the state-space representing the search problem and

can provably guarantee to find a solution, if one exists, within a desired cost sub-optimality

bound. Additionally, we present a number of extensions of the framework that can further

improve its performance.

6

CHAPTER 3 : Related Work

In order to improve planning times and memory requirements, researchers have used a

variety of techniques to avoid performing global planning in large high-dimensional state-

spaces.

3.1. State Abstraction Techniques

State abstraction is a general technique for simplifying search problems by reducing the size

and complexity of the search space. The general idea is to combine states in the original

state-space into abstract states based on pre-defined set of criteria, thus creating a much

smaller abstract state-space. A search is then performed on the abstract state-space and

the results of the search are used to guide a subsequent search of the original state-space. In

other words, abstraction provides a means of automatically creating admissible heuristics

for graph search algorithms and has been studied by researchers since the 70’s (Guida and

Somalvico, 1978; Gaschnig, 1979; Pearl, 1984; Prieditis, 1993). In order for the abstraction

to generate an admissible heuristic, the distance between every pair of states A and B in

the original state-space S must be no less than the distance between their corresponding

abstract states A′ and B′ in the abstract state-space S′ (i.e. the abstraction underestimates

distances or costs between states).

cost(A,B) ≥ cost(A′, B′)∀A,B ∈ S

A′ = image(A) ∈ S′, B′ = image(B) ∈ S′

Different hierarchical planners use different methods of abstraction to make better-informed

heuristics to guide the search, such as the clique abstraction in (Bulitko et al., 2007) and

the max-degree star abstraction in (Holte et al., 1996a,b). The most important difference

between such hierarchical planners and our approach is that, rather than computing more

7

informative heuristic functions, our approach focuses on removing irrelevant dimensions

from the planning process itself. These dimensions are only considered in regions of the

state-space that require them in order to ensure the feasibility of the resulting solution

and its cost sub-optimality bound. Moreover, the abstractions considered by hierarchical

planners (Holte et al., 1996b,a; Botea et al., 2004; Bulitko et al., 2007) usually combine

states that are adjacent or within a certain distance in terms of number of edges within the

state-space. Usually, such abstractions require the full graph representing the state-space

to be constructed and stored in memory, which may be infeasible in many high-dimensional

systems. Then the abstract graph is constructed and used to compute a heuristic for the

problem instance in a pre-processing step that can be quite computationally expensive.

Thus, these approaches are not well-suited for dynamic environments. Both the clique

(Bulitko et al., 2007) and max-degree star (Holte et al., 1996a,b) abstractions require sig-

nificant pre-processing. In addition, computing the clique abstraction in a general graph

is an NP-complete problem. Bulitko et al. (Bulitko et al., 2007) are able to compute the

abstraction efficiently only in 8-connected 2D grids. In contrast, our method uses projection

functions to project states to and from the low-dimensional state-space. This allows us to

dynamically construct both the low-dimensional and high-dimensional regions of the graph,

and thus, we do not need to pre-allocate memory for the entire graph.

Our approach is also somewhat relevant to planners that use very accurate pre-computed

heuristic values (Knepper and Kelly, 2006). Similarly to the hierarchical planners using

state abstraction, the heuristics are often derived by solving a simplified lower-dimensional

problem. As a result, these methods can be viewed as full-dimensional planning that uses

the results of lower dimensional planning. Unlike our approach however, these methods do

not explicitly decrease the dimensionality and, as a result, can run into severe computational

problems when the heuristic is inaccurate. As mentioned above, our approach does not focus

on computing accurate heuristics, but rather decreases the dimensionality of the problem in

order to explicitly reduce the size of the state-space. In addition, our framework for Planning

with Adaptive Dimensionality can use and benefits from accurate heuristics. However, due

8

to the reduced size of the state-space, our approach is more robust to handling possible

heuristic local minima than approaches that perform full-dimensional planning. Thus, the

performance of our approach does not rely solely on the quality of the heuristic.

Kapadia et al. (Kapadia et al., 2013) use an approach very similar to ours. They use

the same concept of a “tunnel” around a low-dimensional path, which we introduce in the

following chapter, to focus and constrain a subsequent search of a high-dimensional space.

They also incorporate multiple low-dimensional representations in their planning framework

to form an abstraction hierarchy, which we discuss in Chapter 5, and use an incremental

graph search algorithm to speed-up subsequent search queries, which we discuss in Chapter

6. Their approach, however, is significantly different than ours in that they do not use

hybrid graphs containing both low- and high-dimensional states, which we use to ensure

the completeness of our algorithm and that the desired cost sub-optimality bound is met.

In contrast, their approach relies on increasing the width of the “tunnel” until a valid high-

dimensional path is found through it. Moreover, their approach does not provide bounds

on the solution cost sub-optimality.

3.2. Two-Layer Planners

Many path planners implement a two layer planning scheme, where a low-dimensional global

planner provides input to a high-dimensional local planner. Since these local planners

operate on a small subset of the entire environment, usually in the immediate vicinity of

the robot, they can afford to incorporate more dimensions, while still meeting planning time

constraints. The local planners have been implemented using reactive obstacle avoidance

planners (Thrun et al., 1998) and dynamic windows (Philippsen and Siegwart, 2003; Brock

and Khatib, 1999) to produce feasible paths from an underlying low-dimensional global

planner. However, these techniques can result in highly sub-optimal paths and even paths

that are infeasible for execution by the system due to mismatches in the assumptions made

by the global and the local planners. In contrast, our approach does not split the planning

process into two fixed layers, but rather mixes the different dimensionality of the planning

9

problem within a single planning process. By combining the abstract and non-abstract state

representations in a single hybrid graph, our framework is able to identify areas exhibiting

inconsistencies between the low-dimensional and high-dimensional state representations and

remedy these inconsistencies by requiring high-dimensional planning to be performed in

those areas. Moreover, our approach is complete with respect to the full-dimensional state-

space and guarantees to compute a path that is feasible in the full-dimensional state-space

if one exists.

3.3. Sampling-Based Planners

Sampling-based motion planners, such as probabilistic roadmaps (PRM) (Kavraki et al.,

1996; Bohlin and Kavraki, 2000), and rapidly-exploring random trees (RRT) (LaValle and

Kuffner, 2001a) and its variants (Kuffner and LaValle, 2000; Berenson et al., 2009, 2011;

Karaman et al., 2011) have become extremely popular in recent years for solving high-

dimensional planning problems. They have been shown to solve impressive high-dimensional

motion planning problems, while being simple, fast, and easy to implement. These methods

have also been extended to support motion constraints through rejection sampling (Sucan

and Kavraki, 2009).

Our search-based approach to planning differs from the sampling-based methods in sev-

eral important aspects. First, sampling-based motion planners are mainly concerned with

finding any feasible path, rather than minimizing the cost of a solution. The notable ex-

ception is the RRT* algorithm (Karaman et al., 2011), which asymptotically converges to

an optimal solution and is one of the algorithms that we compare our approach against ex-

perimentally. In general, sampling-based approaches sacrifice cost minimization in order to

gain very fast planning speeds. As such, they may often produce solutions of unpredictable

length involving highly sub-optimal or jerky motions that may be hard for the system to

execute. To compensate for the lack of solution cost minimization, sampling-based methods

rely on various smoothing techniques to improve the quality of the computed trajectory.

While often helpful, smoothing may fail in cluttered environments. Sampling-based meth-

10

Figure 4: Example of an asymmetric cost function: energy consumption effect of changing
altitude for a UAV. Transitioning from state A to state B (red arrow) is more costly than
transitioning from state B to state A (blue arrow). Thus, in terms of cost, moving from
B to A is closer than moving from A to B, which makes the cost function not a proper
distance metric. Such cost functions present a challenge for sampling-based algorithms.

ods which aim to provide solution cost minimization, such as RRT*, usually have to use

a distance metric for their cost function and do not support arbitrary cost functions, due

to the requirement for solving k-nearest neighbors queries in the cost space. However, in

robotics cost functions are often non-symmetric, which violates the distance metric require-

ments. In many systems the cost of transitioning from state A to state B is not necessarily

equal to the cost of transitioning from B to A in the state-space S.

∃A,B ∈ S s.t. cost(A,B) 6= cost(B,A)

For example, the energy consumption for a unmanned aerial vehicle (UAV) is higher for

increasing altitude than it is for decreasing altitude (Fig. 4). Thus, if the cost function is

based on energy consumption, the costs of actions that involve changes in altitude are highly

asymmetric. Moreover, it is generally much easier and safer for a robot to move forward

than backward, as sensors are usually located at the front of the robot. Thus, moving

backward is often considered undesirable and such actions are associated with much higher

costs than equivalent actions for moving forward. Such asymmetry in the cost function is

11

easily handled by search-based planners by using a directed graph to represent the problem.

Another difference between search- and sampling-based planning methods is that search-

based planners produce more consistent solutions between planning episodes with similar

start and goal configurations. Due to their randomized nature, sampling-based methods

may often produce solutions of unpredictable length that can be inconsistent from one

planning episode to another. It is often preferable for planners to produce similar solutions

for planning queries with similar start/goal configurations. Consistency of planners is an

important consideration when the system needs to operate in environments with proximity

to humans. Humans need to be able to predict and anticipate the behavior of the system

in order to feel safe and comfortable around it. In our experimental evaluation we compute

a consistency measure of the trajectories produced by our approach and sampling-based

alternatives and compare the results.

Finally, the performance of sampling-based methods can suffer significantly in very cluttered

environments with narrow solution spaces. Researchers have tried to address this problem

by developing non-uniform sampling techniques that try to identify narrow passages and

bias sampling in those areas (Lee et al., 2012). However, one must be very careful how

one biases the sampling, as biased sampling can often break the algorithm’s probabilistic

completeness, and in the case of RRT*, even its guarantee to converge to optimality.

There are certain similarities between search- and sampling-based methods. For example,

methods based on PRM (Kavraki et al., 1996) only differ from search-based methods in the

way the underlying graph is constructed. PRM-based methods use sampling to generate

nodes in the graph, rather than regular discretization of the continuous space. However,

both PRM methods and search-based methods rely on efficient graph search algorithms in

order to compute a solution from the underlying graph.

12

3.4. Optimization Methods

Several motion planning algorithms have been developed that also try to minimize the

cost of solutions through optimization techniques (Ratliff et al., 2009; Kalakrishnan et al.,

2011). The Covariant Hamiltonian Optimization and Motion Planning (CHOMP) algorithm

(Ratliff et al., 2009) works by creating a naive initial trajectory from start to goal, and then

uses a method similar to gradient descent to try to minimize the cost function. The use

of gradient descent, however, makes the approach vulnerable to local minima in the cost

function. The final solution of the algorithm usually lies in the same homotopic class as

the initial estimate. Thus, the approach needs an initial solution estimate that is fairly

close to the optimal in order to converge to global optimality. The Stochastic Trajectory

Optimization for Motion Planning (STOMP) algorithm (Kalakrishnan et al., 2011), on the

other hand, relies on generating noisy trajectories to explore the space around a naive initial

trajectory. It then iteratively combines these trajectories to produce an updated trajectory

with lower cost. A cost function based on a combination of obstacle avoidance and path

smoothness is optimized in each iteration. The stochastic nature of the approach makes it

less vulnerable to local minima in the cost function, but does not guarantee convergence to

global optimality.

3.5. Incremental Search Algorithms

Researchers have developed various methods for performing incremental heuristic searches,

based on the observation that information computed during previous search queries can be

used to perform the current search faster. Due to its iterative nature, our framework for

Planning with Adaptive Dimensionality can benefit greatly from incremental graph search

algorithms in order to minimize redundant computation between iterations. Generally,

incremental heuristic search algorithms fall into three categories.

The first class of algorithms, such as Lifelong Planning A? (Koenig et al., 2004), D? (Stentz,

1995b), D?-Lite (Koenig and Likhachev, 2002a), Anytime D? (Likhachev et al., 2005), and

13

Anytime Truncated D? (Aine and Likhachev, 2013), aim to identify and repair inconsis-

tencies in a previously-generated search tree. These approaches are very general and don’t

make limiting assumptions about the structure or behavior of the underlying graph. They

also demonstrate excellent performance by repairing search tree inconsistencies that are

relevant to the current search task. The main drawback of these algorithms is the book-

keeping overhead required, which sometimes may significantly offset the benefits of avoiding

redundant computation.

The second class of algorithms, such as Fringe-Saving A? (Sun et al., 2009) and Differential

A? (Trovato and Dorst, 2002), also try to re-use a previously-generated search tree, but

rather than attempting to repair it, these approaches aim to identify the largest portion of

the search tree that is unaffected by the changes and still valid, and resume searching from

there. These approaches tend to be less general and to make limiting assumptions about

the graph on which they operate. The Fringe-Saving A?, for example, only works on 2D

grids with unit cost transitions between neighboring cells. It uses geometric techniques to

reconstruct the search frontier based on the 2D grid structure of the graph. The assumptions

made by these algorithms allow them to perform very well in scenarios that meet these

limiting assumptions.

The third class of incremental heuristic search algorithms, such as Generalized Adaptive A?

(Sun et al., 2008), aim to compute more accurate heuristic values by using information from

previous searches. As the heuristic becomes more informative, search tasks are performed

faster. The main challenge for such algorithms is maintaining the admissibility or consis-

tency of the heuristic when edge costs are allowed to decrease. Path- and Tree-Adaptive

A? (Hernández et al., 2011) algorithms, for example, rely on the fact that optimal search

is performed on the graph and edge costs are only allowed to increase. However, often in

robotics incremental search algorithms need to be able to support both increasing and de-

creasing edge costs to capture obstacles appearing and disappearing from the environment.

A typical example in navigation planning is opening and closing doors or passageways in

14

the environment. Moreover, performing optimal search is often impractical for systems with

a large number of degrees of freedom, making approaches that allow for trade-off between

solution quality and planning time more appealing for such systems.

We have developed a novel general anytime incremental graph search algorithm that works

well with our framework for Planning with Adaptive Dimensionality. We call the algorithm

Tree-Restoring Weighted A? and it falls into the second class of incremental search algo-

rithms described above, which identify and reuse valid portions of the search tree generated

by the previous search iteration. However, our approach differs from similar techniques in

that we do not make any limiting assumptions about the structure of the graph or the be-

havior of the cost function. Our algorithm is able to support both increasing and decreasing

edge costs on arbitrary graphs. The algorithm is an extension to the Anytime Repairing

A? (ARA?) algorithm (Likhachev et al., 2003) and has the same strong theoretical proper-

ties, such as completeness and provable bounds on solution cost sub-optimality. Similarly

to ARA?, our algorithm allows for trading-off between solution quality and planning time.

Moreover, the algorithm has much lower book-keeping overhead when compared to alter-

native approaches, such as D? (Stentz, 1995b), D?-Lite (Koenig and Likhachev, 2002a),

Anytime D? (Likhachev et al., 2005), and Anytime Truncated D? (Aine and Likhachev,

2013).

15

CHAPTER 4 : Planning with Adaptive Dimensionality

In this chapter we provide a detailed description of our algorithm for Planning with Adaptive

Dimensionality (PAD). We begin by introducing the important assumptions, definitions,

and notations used.

4.1. Definitions and Notations

We assume that the planning problem is represented by a discretized finite state-space S

of dimensionality d, consisting of states represented by state-vectors X = (x1, ..., xd), and

a set of transitions T = {(Xi, Xj)|Xi, Xj ∈ S}. Each transition (Xi, Xj) corresponds to a

feasible transition between the corresponding state vector values and is associated with a

cost c(Xi, Xj) which is bounded from below by some positive δ, that is, c(Xi, Xj) > δ > 0.

Thus, we have an edge-weighted directed graphG with a vertex set S and edge set T . We will

use the notation πG(Xi, Xj) to denote a path in graph G from state Xi to state Xj . The cost

of any path πG(Xi, Xj) is the cumulative costs of the transitions along it and will be denoted

by c(πG(Xi, Xj)). We will use π∗G(Xi, Xj) to denote a least-cost path and πεG(Xi, Xj), ε ≥ 1

to denote a path of bounded cost sub-optimality c(πεG(Xi, Xj)) ≤ ε · c(π∗G(Xi, Xj)). The

goal of the planner is to find a least-cost path in G from the start state XS to the goal state

XG. Alternatively, given a desired sub-optimality bound ε ≥ 1, the goal of the planner is

to find a path πεG(XS , XG).

Definition 4.1 A heuristic function h is said to be admissible for a graph search problem

on an edge-weighted graph G and a goal state g ∈ G if

h(s) ≤ c(π∗G(s, g))∀s ∈ G

i.e. the heuristic never overestimates the optimal cost of reaching the goal. Such heuristic

functions are sometimes called optimistic.

Definition 4.2 A heuristic function h is said to be consistent or monotone for a graph

16

search problem on an edge-weighted graph G and a goal state g ∈ G if

h(s) ≤ c(s, t) + h(t)∀s ∈ G, ∀t ∈ successors(s)

h(g) = 0

4.2. Overview

Let us consider two state-spaces—a high-dimensional SHD with dimensionality h, and a

low-dimensional SLD with dimensionality l, which is a projection of SHD onto a lower

dimensional manifold (h > l, |SHD| > |SLD|). We define a many-to-one mapping

λ : SHD → SLD

from the high-dimensional state-space SHD to the low-dimensional state-space SLD. For

example, in the case of navigation planning for a non-holonomic vehicle in 3 dimensions (x,

y, heading) described in Chapter 7 we used a 2-dimensional state representation (x, y) and

the simple mapping λ((x, y, θ)) = (x, y), just dropping the heading information θ from the

state-vector for low-dimensional states.

We also define the mapping λ−1 : SLD → (SHD)∗ from the low-dimensional state-space

SLD to subsets of the high-dimensional state-space SHD, defined by

λ−1(XLD) = {X ∈ SHD|λ(X) = XLD}

Notice that λ−1 is a one-to-many mapping and produces a set of high-dimensional states

corresponding to a given low-dimensional state XLD—the set of pre-images of XLD.

Each of the two state-spaces may have its own transition set. For example, in the 3D/2D

navigation planning scenario described in Chapter 7 we used 8-connected 2D grid transitions

for the 2D state-space, and a set of precomputed feasible atomic actions that capture the

17

Figure 5: Example state transitions for a 3D/2D state-space–white cells are 2D states
(x, y), dark gray cells are 2D states with feasible 3D transitions to 3D states (x, y,heading),
and the light gray cells are 3D states. On the upper left is shown a 2D state with all of its
feasible transitions (only 2D transitions). The state in the middle right is in the boundary
area, so its feasible transitions include all 2D transitions that end in a 2D state and all
3D transitions (from all possible heading values) that end in a 3D state. In light gray are
shown some of the disallowed 3D transitions, since they lead to 2D states. In the lower left
is a 3D state with all of its 3D transitions (heading indicated by the white arrow).

kinodynamic constraints of the vehicle, called motion primitives (Likhachev and Ferguson,

2008), as transitions for the 3D state-space (Fig. 5).

Let GHD and GLD denote the corresponding graphs defined by SHD and SLD and their

respective transition sets THD and TLD.

The idea of our algorithm is to iteratively construct and search a hybrid graph GAD con-

sisting of both low- and high-dimensional states and transitions. Initially GAD is identical

to GLD. The iterative nature of the algorithm stems from the fact that each iteration

identifies new areas of GAD where high-dimensional regions need to be introduced until a

valid solution is found. Upon addition of new high-dimensional regions into GAD, another

search iteration is performed on the new instance of GAD taking into account the new high-

dimensional regions. The process is repeated until a search iteration is able to successfully

compute a solution that is feasible in the high-dimensional state-space and satisfies the

specified cost sub-optimality bound. We discuss the structure and the construction of GAD

below.

In order to provide guarantees on bounded solution cost sub-optimality, we require that the

18

costs of the transitions in THD and TLD be such that for every pair of states Xi and Xj in

SHD,

c (π∗ (Xi, Xj)) ≥ c (π∗ (λ(Xi), λ(Xj))) (4.1)

That is, we require that the cost of a least-cost path between any two states in the high-

dimensional state-space to be at least the cost of a least-cost path between their images

in the low-dimensional state-space. The intuition behind this requirement is that path

segments through the low-dimensional areas of the state-space provide optimistic estimates

of the true cost of their high-dimensional images. These optimistic estimates are used to

establish a lower bound on the overall optimal solution cost. The algorithm then uses this

lower bound to ensure that the final solution cost is within the desired sub-optimality factor

of the optimal solution cost.

Then let us formally define a state-abstraction in the context of Planning with Adaptive

Dimensionality as follows:

Definition 4.3 A state-abstraction of a state-space SHD is a tuple A = (λ, λ−1, GLD =

(SLD, TLD), c), where:

• SLD is a projection of SHD to a lower-dimensional sub-space of SHD through a pro-

jection function λ : SHD → SLD

• λ−1 : SLD → (SHD)∗ is defined as λ−1(XLD) = {X ∈ SHD|λ(X) = XLD}

• GLD = (SLD, TLD) is an edge-weighted (directed) graph with vertex set SLD and

transition set TLD

• c : TLD → R+ is a cost function satisfying 4.1

When referring to the full-dimensional abstraction, we mean the identity abstraction of the

full-dimensional state space: H = (λHD, λ
−1
HD, G

HD = (SHD, THD), cHD), where λHD and

19

λ−1HD are both equal to the identity mapping over SHD (∀X ∈ SHD λHD(X) = X and

λ−1HD(X) = {X}).

4.3. Hybrid State-Space Construction

4.3.1. Structure of the Hybrid Graph

Recall that the goal of our algorithm was to use the faster low-dimensional planning, except

for areas of the environment where high-dimensional planning is necessary to ensure the

feasibility of the resulting path and the desired cost sub-optimality bound. We want our

hybrid state-space to capture this property—namely, we want GAD to consist largely of

low-dimensional states, except for the areas where high-dimensional planning needs to be

performed, represented by areas of high-dimensional states in GAD. To ensure path feasibil-

ity in the high-dimensional regions of GAD, we have to use high-dimensional transitions. In

the low-dimensional areas we can use simpler low-dimensional transitions. However, recall

that the transitions we have in THD and TLD connect two states of the same dimensional-

ity, which do not allow us to transition from the low-dimensional to the high-dimensional

regions. Therefore, we have to construct a transition set TAD that allows for transitions

between states of different dimensionality.

4.3.2. Construction of the Hybrid Graph

Our algorithm iteratively constructs GAD, beginning with the low-dimensional state-space

SLD and introducing a set of high-dimensional regions R in it. We first explain how the high-

dimensional regions are being introduced into GAD and connected with the low-dimensional

regions. The algorithm that decides when and where to introduce these regions will be

explained later.

Once a high-dimensional region r is introduced, the following changes are made to GAD. If

a low-dimensional state XLD
i falls inside a new high-dimensional region r ∈ R, we replace

it with its high-dimensional projection states in λ−1(XLD
i). Thus, GAD contains both low-

20

dimensional and high-dimensional states. Notice that if a high-dimensional state XHD is in

SAD, then its low-dimensional projection λ(XHD) is not in SAD, and also if XHD 6∈ SAD,

then λ(XHD) ∈ SAD. Thus, for every state XHD in the original high-dimensional state-

space, either XHD ∈ SAD or λ(XHD) ∈ SAD (but not both). Adding new high-dimensional

regions or increasing the sizes of existing regions requires the reconstruction of SAD and

TAD, and thus, will produce a new instance of GAD = (SAD, TAD).

Next we define the transition set TAD for the hybrid graph GAD as follows.

Definition 4.4 Transitions in GAD: For any state Xi ∈ SAD:

• If Xi is high-dimensional (Xi ∈ SHD), then for all high-dimensional transitions

(Xi, X
HD
j) ∈ THD, if XHD

j ∈ SAD then (Xi, X
HD
j) ∈ TAD. If XHD

j 6∈ SAD,

then (Xi, λ(XHD
j)) ∈ TAD. That is, for high-dimensional states we allow only high-

dimensional transitions to other high-dimensional states if they fall inside SAD, or

their low-dimensional projections (Fig. 5 lower left).

• If Xi is low-dimensional (Xi ∈ SLD), then for all low-dimensional transitions

(Xi, X
LD
j) ∈ TLD, if XLD

j ∈ SAD then (Xi, X
LD
j) ∈ TAD and for all high-dimensional

transitions (X,XHD
j) ∈ THD, where X ∈ λ−1(Xi), if XHD

j ∈ SAD then (Xi, X
HD
j) ∈

TAD. That is, for low-dimensional states we allow low-dimensional transitions if they

lead to another low-dimensional state in SAD (Fig. 5 upper left), and high-dimensional

transitions from their high-dimensional projections if they lead to a high-dimensional

state in SAD (Fig. 5 right).

Notice, that the above definition of TAD allows for transitions between states of different

dimensionality. Figure 5 illustrates the set of transitions in the adaptive graph in the case

of 3D (x, y, θ) path planning.

21

4.3.3. Mapping Hybrid Solutions to the High-Dimensional State-Space

Once we have computed a path through our hybrid graph GAD, which can contain low-

dimensional states and transitions, we need to be able to project it to the high-dimensional

state-space in order to ensure that it is feasible and satisfies the desired solution cost sub-

optimality bound. Therefore, we define a tunnel τ of radius w around a hybrid path πAD

as follows:

Definition 4.5 A tunnel τ of width w around a hybrid path πAD is a sub-graph τ = (Sτ , T τ)

τ ⊆ GHD such that

Sτ ⊆ SHD

T τ ⊆ THD

∀XHD ∈ SHD, XHD ∈ Sτ iff ∃Xi ∈ πAD s.t.

dist(λ(XHD), Xi) ≤ w if Xi ∈ SLD or

dist(λ(XHD), λ(Xi)) ≤ w if Xi ∈ SHD

∀EHD = (Xi, Xj) ∈ THD, EHD ∈ T τ iff Xi ∈ τ and Xj ∈ τ

where dist is some pre-defined distance metric in SLD.

In other words, τ is a sub-graph of GHD, and thus consists only of high-dimensional states

and transitions. Moreover, τ contains all high-dimensional states XHD if they fall within

distance w of some state Xi ∈ πAD. We include in τ all transitions (Xj , Xk) from THD

such that both Xj and Xk are in τ . It is important to note that the above definition of τ

for tunnel width w = 0 becomes equivalent to the sub-graph produced by projecting the

hybrid path πAD to the high-dimensional state-space SHD through the projection function

λ−1. This λ−1 projection method can be used when no distance metric is available in

the low-dimensional state-space. The above definition, however, allows for more flexibility

when mapping hybrid paths into the high-dimensional state-space SHD. To produce a high-

22

(a) Initial 2D/3D path (b) Tunnel around path (c) Tracking in tunnel (d) Add HD region at point

of failure

(e) 2D/3D path (f) Tunnel around path (g) Tracking in tunnel (h) Add HD region at point

of failure

(i) 2D/3D path (j) Tunnel around path (k) Tracking in tunnel (l) Final trajectory

Figure 6: Example of the iterative process of Planning with Adaptive Dimensionality on
simple map in the context of 3D (x,y,heading) path planning for a non-holonomic vehicle.
Start: top left; goal: bottom right; light gray circles: 3D regions; darker gray outer circles:
borders between 2D and 3D regions consisting of 2D states which have valid 3D transitions
going into the 3D areas; white: 2D regions; black bars: obstacles.

dimensional path from a hybrid path πAD, we construct a tunnel τ around πAD; then we

perform a graph search from start to goal in τ , which is a small sub-graph of the original

high-dimensional state-space. The search, if successful, produces a fully high-dimensional

path πHD corresponding to our hybrid path πAD.

4.4. Algorithm

We begin this section with an intuitive description of our algorithm for Planning with

Adaptive Dimensionality. Figure 6 provides an illustration of a run of the algorithm for 3D

(x, y, θ) path planning, that completed in 3 iterations. Figure 7 provides an illustration of a

run of the algorithm for 7-DoF motion planning for a robotic manipulator, that completed

23

(a) XS and XG (b) 7D spheres at XS and

XG

(c) πAD(XS , XG) for itera-

tion 1

(d) New sphere inserted at

point of tracking failure

(e) πAD(XS , XG) for itera-

tion 2

(f) Final 7D arm trajectory

after successful tracking

(g) Final trajectory (obsta-

cles not shown)

(h) Final trajectory (top view)

Figure 7: Example of the iterative process of Planning with Adaptive Dimensionality on
simple environment (a wall with an opening) in the context of 7D motion planning for a
robotic manipulator using 3D end-effector (x, y, z) position low-dimensional representation.
3D states are represented by squares. Dark gray spheres represent the regions in which 7D
planning is performed; 3D planning is performed in all other regions.

in 2 iterations. Algorithm 1 gives the pseudo code for our algorithm.

Each iteration of the algorithm consists of two phases—an adaptive planning phase (Fig.

4.6(a), Alg. 1 line 5) and a path tracking phase (Fig. 4.6(b) - 4.6(d), Alg. 1 line 10).

In the adaptive planning phase, the current instance of the hybrid graph GAD is searched

for a least-cost path from start to goal. The tracking phase, then attempts to construct a

feasible high-dimensional path to match (or track) the hybrid path computed in the adaptive

planning phase.

Initially, GAD is the same as GLD, with two high-dimensional regions added around the start

and goal states (Algorithm 1, lines 1-3), which are necessary since the start and goal states

provided to the planner are high-dimensional. At each iteration, a new instance of GAD is

constructed based on the set of high-dimensional regions, and is searched for a least-cost

path π∗AD from XS to XG. Notice that π∗AD consists of both low-dimensional and high-

dimensional states, so it is not a feasible path. If no path is found in the adaptive planning

24

Algorithm 1 Planning with Adaptive Dimensionality

1: GAD = GLD

2: Add-HD-Region(GAD, λ(XS))
3: Add-HD-Region(GAD, λ(XG))
4: loop
5: . Adaptive Planning Phase
6: search GAD for least-cost path π∗

AD(XS , XG)
7: if π∗

AD(XS , XG) is not found then
8: return no path from XS to XG exists
9: end if

10: . Tracking Phase
11: construct a tunnel τ around π∗

AD(XS , XG)
12: search τ for least-cost path π∗

τ (XS , XG)
13: if π∗

τ (XS , XG) is not found then
14: find state(s) Xr where to insert new HD region(s)
15: Add-or-Grow-HD-Region(GAD, Xr)
16: else if c(π∗

τ (XS , XG)) > ε track · c(π∗
AD(XS , XG)) then

17: find state(s) Xr where to insert new HD region(s)
18: Add-or-Grow-HD-Region(GAD, Xr)
19: else
20: return π∗

τ (XS , XG)
21: end if
22: end loop

phase, then no feasible path exists from start to goal and the algorithm terminates. If an

adaptive path π∗AD is found, then the path tracking phase constructs a tunnel τ of radius

w around the adaptive path π∗AD (Fig. 4.6(b)). Then τ is searched for a least-cost path π∗τ

from start to goal (Fig. 4.6(c)). Note that τ always contains the start and goal states XS

and XG, but does not guarantee that XG is reachable from XS , so π∗τ may not exist. In

addition, note that since τ consists of only high-dimensional states and transitions, π∗τ (if

it exists) is a fully high-dimensional path, and thus, it is feasible. If no path is found in τ ,

then a new high-dimensional region is introduced in GAD or the sizes of the existing regions

are increased, and the algorithm proceeds to the next iteration (Algorithm 1, line 14). If a

path is found in τ , but its cost c(π∗τ) > ε track · c(π∗AD), then a new high-dimensional region

is introduced or the sizes of existing high-dimensional regions are increased, and another

iteration is started (Algorithm 1, line 17). If c(π∗τ) ≤ ε track · c(π∗AD), then the algorithm

returns π∗τ as a feasible path from start to goal that satisfies the desired sub-optimality

bound and terminates (Algorithm 1, line 20). The returned path is guaranteed to have cost

25

that is no more than ε track times the cost of an optimal path in GHD.

c(π∗τ) ≤ ε track · c(π∗HD).

4.5. Identifying Areas that Require High-Dimensional Planning

Identifying the places where high-dimensional regions need to be introduced is a non-trivial

problem in itself. In our experiments, the search within the tunnel during the path tracking

phase keeps a record of how far along the tunnel states have been expanded. Thus, if the

search in τ fails, we are able to reconstruct a path to the point where the search had failed,

and we introduce a new high-dimensional region there, as seen in Fig. 4.6(c),4.6(d),4.6(g),

and 4.6(h).

The way we keep track of how far along a tunnel τ around a hybrid path πAD the search

has reached is the following. By Definition 4.5, for every state Xi ∈ τ there exists a

nearest state Xj ∈ πAD according to our distance metric dist. More specifically, ∀X ∈

πAD dist(λ(Xi), X) ≥ dist(λ(Xi), Xj). Thus, when the search through τ expands a state

Xi it can compute the corresponding nearest state Xj ∈ πAD and its sequence number n in

the hybrid path πAD. Therefore, if the search through τ keeps track of the highest sequence

number N that has been encountered during the search, upon search failure we can say that

the search was able to reach near to the N -th state along πAD before getting “stuck”. In

our experiments, we have found that this is an effective strategy that can be used on line

14 of Alg. 1. It works well in identifying areas that cause the tunnel τ to be disconnected

indicating a mismatch between the low- and high-dimensional state-spaces, and thus, the

region requires high-dimensional planning.

Line 17 of Alg. 1 is obscure about how exactly the state Xr, where a new high-dimensional

region needs to be introduced, is being computed when a path through τ exists, but it

is too costly. There are a number of approaches that can be taken in identifying such a

state. Perhaps the simplest one is to pick a random location along the path π∗AD where to

26

introduce a new region. However, such an approach can lead to the introduction of many

unnecessary high-dimensional regions, which we would like to avoid. A more sophisticated

technique, which we use in our implementation, is to approximate the location, where the

largest cost discrepancy between π∗AD and π∗τ is observed. We do this similarly to the way

we keep track of progress along the tunnel described above. We find correlating states

between the two paths Xi ∈ π∗τ and Xj ∈ π∗AD such that Xj is the state in π∗AD nearest

to λ(Xi); then we compare the cumulative costs along both paths for reaching Xi and

Xj , respectively. If the cumulative path cost along π∗τ exceeds the cumulative path cost

along π∗τ by more than a factor of ε track, we introduce a new high-dimensional region at the

location of Xj . Introducing a new high-dimensional region at that location tends to remedy

the cost discrepancy, and generally works well in identifying the regions that require high-

dimensional planning. The exact approach taken in computing Xr on line 17 of Algorithm

1 does not affect the theoretical properties of the algorithm, such as algorithm termination

and sub-optimality guarantees. However, it can have a significant effect on the performance

of the algorithm as its underlying idea is to efficiently identify the regions that require high-

dimensional planning and refrain from introducing unnecessary high-dimensional regions

into the state-space.

4.6. Theoretical Properties

In this section we present a number of theorems relating to the algorithm for Planning with

Adaptive Dimensionality and provide sketches of their proofs. For detailed proofs we refer

the reader to Appendix A.

The algorithm for Planning with Adaptive Dimensionality presented in Alg. 1 is complete

with respect to GAD and provides guarantees on the sub-optimality related to the ε track

constant.

Theorem 4.1 The cost of a least-cost path from XS to XG, π∗AD(XS , XG), in GAD is a

27

lower bound on the cost of a least-cost path from XS to XG, π∗HD(XS , XG), in GHD.

c(π∗AD(XS , XG)) ≤ c(π∗HD(XS , XG))

Proof Consider the projection of the path π∗HD(XS , XG) onto the hybrid state-space SAD.

In this projection, every state X in π∗HD(XS , XG) is mapped onto itself if X ∈ SAD and onto

λ(X) otherwise. Then according to equation 4.1, every transition Ti in the projected version

of the path π∗HD(XS , XG) will either be bounded from above by the cost of the corresponding

transition in π∗HD(XS , XG) if Ti is a low-dimensional transition, or will be exactly equal to

the cost of the corresponding transition if Ti is a high-dimensional transition. Consequently,

the cost of the projected version of π∗HD(XS , XG) will be no larger than c(π∗HD(XS , XG)).

Furthermore, since π∗AD(XS , XG) is a least-cost path from XS to XG in SAD, its cost is

no larger than the cost of any other path including the cost of the projected version of

π∗HD(XS , XG). As a result, c(π∗AD(XS , XG)) ≤ c(π∗HD(XS , XG)). �

Theorem 4.2 If we have a finite state-space, algorithm 1 terminates and upon successful

termination, the cost of the returned path π(XS , XG) is no more than ε track times the cost

of an optimal path from state XS to state XG in GHD.

Proof The termination of the algorithm is ensured by the fact that after each iteration

we are introducing new high-dimensional states to GAD. Since we have a finite state-

space, after finitely many iterations, GAD will become identical to GHD, containing only

high-dimensional states. GAD will then be searched for a least-cost path in a finite time.

If a path is successfully computed by the adaptive planning phase, it will be fully high-

dimensional and the tracking phase will be able to track the computed path exactly, causing

the algorithm to terminate. If no path is found in GAD, the algorithm again terminates

stating that no feasible path exists from start to goal.

The second statement of Theorem 4.2 follows from Theorem 4.1. By Theorem 4.1, the

28

adaptive planning phase produces an underestimate of the real cost from start to goal.

c(π∗AD(XS , XG)) ≤ c(π∗HD(XS , XG))

Upon algorithm termination, the tracking phase succeeds in finding a path of cost no more

than ε track times the cost of the computed adaptive path. Thus, we have c(πτ (XS , XG)) ≤

ε track · c(π∗AD(XS , XG)) ≤ ε track · c(π∗HD(XS , XG)). Hence, the cost of the tracked path is no

larger than ε track times the cost of an optimal path from start to goal in GHD. �

ε-suboptimal graph searches such as weighted-A* are often used by researchers (Likhachev

and Ferguson, 2008), since they provide the flexibility of quickly finding paths of cost no

more than ε times the cost of an optimal path. The following result can be proven if we

modify algorithm 1 to use such ε-suboptimal graph searches:

Theorem 4.3 If ε plan-suboptimal searches are used in lines 6 and 12 of Algorithm 1, the

cost of the path returned by our algorithm is no larger than ε plan · ε track · π∗HD(XS , XG).

Proof If we use an ε-suboptimal search in the adaptive planning phase, we know that

that the cost of the produced path c(πAD) is no larger than ε · c(π∗AD). Then we have

c(πAD) ≤ ε ·c(π∗AD) ≤ ε ·c(π∗HD). Then we know that the tracking phase produced a path πτ

of cost no larger than ε track·c(πAD). Hence, we have c(πτ) ≤ ε track·c(πAD) ≤ ε track·ε·c(π∗HD).

�

4.7. Algorithm Parameters

The algorithm for Planning with Adaptive Dimensionality has several parameters that can

be used to tune its performance depending on the particular domain of application.

The ε plan and ε track parameters allow the user to specify the desired sub-optimality bound

of the produced solutions. It allows for easy trade-off between solution quality and faster

planning times.

29

The parameters controlling the sizes and shapes of the newly introduced high-dimensional

regions are highly domain specific. Generally, introducing large regions into the hybrid

graph increases its size and may slow down subsequent search iterations. On the other

hand, if the introduced regions are too small, the algorithm may need to perform additional

iterations to introduce more regions or grow the sizes of existing ones. The sizes of the new

high-dimensional regions generally trade-off between time per iteration and the number of

iterations.

The parameter w controlling the width of the tunnel constructed around hybrid paths is

also very domain specific. Large tunnel width increases the chances of successfully finding

a solution through the tunnel at the expense of larger search space and higher planning

time to find a path through the tunnel. If the tunnel width is too narrow, then there is a

higher chance that the tunnel is disconnected and no path exists from start to goal. This, in

turn, will require additional iterations of the algorithm. Generally, the width of the tunnel

allows for trade-off between the time each tracking phase takes and the number of iteration

performed by the algorithm.

We discuss the specific choice of parameter values for each of the application domains

described in the following chapters.

30

CHAPTER 5 : Hierarchical Planning with Adaptive Dimensionality

5.1. Motivation

So far, we have discussed how to use a single abstraction of a state-space and construct

a hybrid graph. However, many high-dimensional planning problems might have multiple

abstract representations that may be more or less relevant in different parts of the state-

space. For instance, mobile manipulation planning for grasping or putting down an object

can often be split into two very different planning problems—navigation planning for moving

the base to a suitable location where the goal is within reach of the manipulator, and

manipulation planning for computing a manipulator trajectory to the goal location. Each

of these sub-problems can have a different abstract representation that considers the relevant

dimensions for the task at hand. Thus, a single abstraction might not be suitable for all

areas of the state-space. Moreover, finding a single abstraction that performs well over all

areas of the state-space might be difficult, or even impossible, for complex high-dimensional

planning problems.

In this chapter, we discuss a method for extending the framework for Planning with Adap-

tive Dimensionality to be able to utilize multiple state-space abstractions and hierarchies

of abstractions. We begin with an overview of important known results about abstractions.

5.2. Related Work

5.2.1. State Space Abstractions

The earliest abstractions studied are the so called “embeddings”, which rather than grouping

states into abstract states, introduce additional edges into the original state space. For

example, adding “macro-operators” or relaxing preconditions for operators in the state space

generate embeddings. The other common type of abstractions are the “homomorphisms”,

which group states together into abstract states.

31

In general, there exist an exponential number of abstractions that can be generated over

a given state-space. Li et al. (Li et al., 2006) discuss the structure of the space of all

abstractions over a given state-space. This space of abstractions is partially ordered and the

partial ordering allows us to say A is “more abstract” or “coarser” than B for some pairs of

abstractions A and B. The partial ordering of the space also means that it forms a directed

acyclic graph (DAG). At one end of the abstraction space is “the finest” identity abstraction,

which maps every state to itself. At the other end is “the coarsest” abstraction (called the

null abstraction), which maps all states into a single abstract state. The homomorphic

abstractions are equivalent to set partitions and equivalence relations of the state-space.

5.2.2. Valtorta’s Theorem

One goal of using abstractions is to create heuristics to guide and speed up a search algo-

rithm, such as A?. Without a heuristic, the algorithm will blindly search the large original

state-space. Focusing the search with a heuristic will reduce the search effort by a certain

amount, called the “saving” in (Holte et al., 1996b). The challenge is to create abstractions

for which the additional effort of computing the heuristic using the abstraction does not

outweigh the benefits of using it. In other words, the “saving” from utilizing the heuristic

is significantly more than the effort required to compute it.

In (Valtorta, 1984), Valtorta presents a cost-benefit analysis of automatically generated

heuristics by using embedding transformations. The work proves that if a state space S

is embedded into an abstracted state space S′ and a heuristic h is computed by blindly

searching S′, then an A? search of S using h will expand every state that is expanded

by a blind A? search of S. This result, known as Valtorta’s theorem, states that using

embedding transformations to compute heuristics could not possibly speed up search, as

the search efforts for computing the heuristic combined with the search efforts of using the

heuristic must always equal or exceed the search efforts of a blind search in the original

state-space. In (Holte et al., 1996b), the authors define “Valtorta’s Barrier” as the number

of states expanded when blindly searching in a state-space, and by Valtorta’s theorem, this

32

barrier cannot be broken using any embedding transformation.

In (Holte et al., 1996b), a generalized version of Valtorta’s theorem is presented, which

states the following:

Theorem 5.1 Valtorta’s Theorem – Generalized

Let E be any state necessarily expanded when the given problem to find π∗S(Start,Goal) is

solved by blind search directly in state space S, let φ be any abstraction mapping from S

to S′ and let hφ(E) be computed by blindly searching in S′ from φ(E) to φ(Goal). If the

problem is solved in S by an A? search using hφ(−), then either:

(1) E itself will be expanded, or

(2) φ(E) will be expanded.

According to this generalized result, when φ is an embedding φ(E) = E and we observe the

result of the original Valtorta’s theorem and that speedup using embeddings is not possible.

However, this result also shows that if φ is a homomorphism, derived by grouping states

together into abstract states, speedup becomes possible, as many expansions in the original

space S can be replaced by a single expansion of the corresponding abstract state in S′.

Another important result derived in (Valtorta, 1984) and generalized in (Holte et al., 1996b)

is the following:

Theorem 5.2 Let φ be any abstraction mapping from S to S′ and let hφ(s) be computed by

blindly searching in S′ from φ(s) to φ(Goal). Then hφ is a consistent (monotone) heuristic.

5.3. Combining Multiple Abstractions

Let us assume that we are given a set of low-dimensional sub-spaces SLD1 , ..., SLDk and

respective transition sets for each sub-space TLD1 , ..., TLDk . Let us also assume that we know

the respective projection functions λ1, ..., λk and their inverses, which allow us to project

high-dimensional states to each of our low-dimensional sub-spaces and back. Let each

of the low-dimensional sub-spaces, their transition sets, and projection functions adhere

33

to the restriction given in 4.1. Thus, we can define a set of abstractions {A1, ...,Ak},

Ai = (λi, λ
−1
i , GLDi = (SLDi , TLDi), ci). Let H denote the full-dimensional abstraction (i.e.

the identity abstraction over SHD). We also assume that the environment is partitioned

into a finite number of regions R = {ρ1, ..., ρn}. Let us assume, for now, that each region

is associated with a particular abstraction based on some oracle function that determines

which abstraction is “most suitable” for each region.

Thus, every region is associated with an abstraction Ai and a corresponding sub-space SLDi ,

or in the case when the region is high-dimensional—H and SHD. What we need to do is

“stitch” the sub-spaces associated with each region together into a hybrid graph GAD. The

following defines how to transition between high-dimensional states and a low-dimensional

sub-space SLDk based on the projection functions λk and λ−1k .

• If Xi is high-dimensional then for all high-dimensional transitions (Xi, X
HD
j) ∈ THD,

if XHD
j ∈ GAD then (Xi, X

HD
j) ∈ TAD. If XHD

j 6∈ GAD, then there exists k such that

λk(X
HD
j) ∈ GAD and (Xi, λk(X

HD
j)) ∈ TAD. That is, for high-dimensional states we

allow only high-dimensional transitions to other high-dimensional states if they fall

inside SAD, or their low-dimensional projections to the corresponding sub-space in

GAD.

• If Xi is low-dimensional in sub-space SLDk then for all low-dimensional transitions

(Xi, X
LD
j) ∈ TLDk , if XLD

j ∈ SAD then (Xi, X
LD
j) ∈ TAD and for all high-dimensional

transitions (X,XHD
j) ∈ THD, where X ∈ λ−1k (Xi), if XHD

j ∈ SAD then (Xi, X
HD
j) ∈

TAD. That is, for low-dimensional states we allow low-dimensional transitions if

they lead to another low-dimensional state in SAD within the same sub-space, and

high-dimensional transitions from their high-dimensional projections if they lead to a

high-dimensional state in SAD.

We also need to define the transitions between two low-dimensional sub-spaces SLDi and

SLDj in regions ρi′ and ρj′ respectively. One can define specific projection functions between

34

Figure 8: Illustration of the process of computing transitions between different low-
dimensional sub-spaces SLDi and SLDj via the high-dimensional space SHD. We use the

projection functions λ−1i and λj (dotted arrows), and high-dimensional transitions from
THD (solid green arrows). The resulting valid successors (blue arrows) allow us to transi-
tion from SLDi to SLDj .

each pair of low-dimensional sub-spaces and utilize them in the same fashion as when com-

puting transitions between high- and low-dimensional states. However, that might become

cumbersome from implementation standpoint if one wants to consider a large number of

sub-spaces. A more computationally expensive, but more general approach is the following.

Let si ∈ SLDi . To compute the valid successor states of si that fall in SLDj , we can compute

the high-dimensional projections of si, H = λ−1i (si). Then, we compute the set of successor

states UHD for all states in H using transitions from THD. Once we have computed the set

of high-dimensional successors UHD, we can project them to sub-space SLDj using λj , while

also discarding all projections that fall outside region ρj′ . Thus, the successors of state

si ∈ SLDi are Successors(si, S
LD
j) = {sj ∈ λj(UHD)|sj ∈ ρj′}. This approach effectively in-

troduces a high-dimensional boundary between different low-dimensional sub-spaces, which

we transition through in order to get from one sub-space to the other. Figure 8 illustrates

the process of computing transitions between low-dimensional sub-spaces.

35

Algorithm 2 Planning with Adaptive Dimensionality Using Multiple Abstractions

1: GAD = Initialize-Regions
((
GLD1 , ρ1

)
...
(
GLDn , ρn

))
2: Add-HD-Region(GAD, XS)
3: Add-HD-Region(GAD, XG)
4: loop
5: . Adaptive Planning Phase
6: search GAD for least-cost path π∗

AD(XS , XG)
7: if π∗

AD(XS , XG) is not found then
8: return no path from XS to XG exists
9: end if

10: . Tracking Phase
11: construct a tunnel τ around π∗

AD(XS , XG)
12: search τ for least-cost path π∗

τ (XS , XG)
13: if π∗

τ (XS , XG) is not found then
14: find state(s) Xr where to introduce next-best abstraction
15: Introduce-Next-Best-Abstraction(GAD, Xr)
16: else if c(π∗

τ (XS , XG)) > ε track · c(π∗
AD(XS , XG)) then

17: find state(s) Xr where to introduce next-best abstraction
18: Introduce-Next-Best-Abstraction(GAD, Xr)
19: else
20: return π∗

τ (XS , XG)
21: end if
22: end loop

1: function Introduce-Next-Best-Abstraction(GAD, Xr)
2: ρ = Get-Region-For-State(Xr)
3: α = Get-Abstraction-For-Region(ρ)
4: β = Get-Next-Abstraction-For-Region(ρ, α)
5: if ∃β then
6: Set-Abstraction-For-Region(ρ, β)
7: Update-Hybrid-Graph-Region(GAD, ρ, β)
8: else
9: Add-or-Grow-HD-Region(Xr)

10: end if
11: end function

Now, let us relax the assumption that we have an oracle function that tells us which “the

best” abstraction is for each region. Instead, for each region ρi we have a score for each of

the abstractions. We will assume that “the best” sub-space to use for the region ρi is the

abstraction with the highest score. Initial scores can be left to the user to specify, or they

can be estimated automatically based on features of the environment, such as distance to

obstacles, inclination of the ground plane, or distance to the goal, for example. They can

also be computed from example trajectories through the environment. In the context of

mobile manipulation, for instance, trajectory segments that move the base could increase

36

the score for the base abstraction in the region, whereas segments moving the arm could

increase the score of the arm abstraction. Trajectory segments with complex movements

of many joints can increase the score for the full-dimensional abstraction H. Moreover,

after each planning query, information from the search tree constructed during the tracking

phase can be used to update the scores for each region, based on the high-dimensional

paths available in the search tree. Thus, when initializing our hybrid graph (Alg. 2, line 1),

rather than using a single abstract representation for all regions, we “stitch” together the

representations with highest scores for each region to form the initial instance of the hybrid

graph.

The tracking phase of the algorithm can also be modified to accommodate the fact that

multiple low-dimensional sub-spaces are available to the planner. Instead of directly intro-

ducing or growing high-dimensional regions into GAD, we can attempt to use the next-best

low-dimensional sub-space for the region where tracking failed (Alg. 2, lines 15,18). Once

we have tried all promising abstractions for a region, we can revert to introducing high-

dimensional regions.

5.4. Theoretical Properties

The proposed extension to the algorithm for planning with adaptive dimensionality does not

break any of the theoretical guarantees provided by the original algorithm, provided that

all low-dimensional sub-spaces used conform to the assumptions stated above and satisfy

constraint 4.1. Thus, the algorithm is complete with respect to the original high-dimensional

graph and provides strong theoretical bounds on solution cost sub-optimality.

Theorem 5.3 The cost of a least-cost path from XS to XG, π∗AD(XS , XG), in GAD is a

lower bound on the cost of a least-cost path from XS to XG, π∗HD(XS , XG), in GHD.

c(π∗AD(XS , XG)) ≤ c(π∗HD(XS , XG))

37

Sketch Consider the projection π′AD of the path π∗HD(XS , XG) onto the hybrid state-space

SAD. In this projection, every stateX in π∗HD(XS , XG) is mapped onto itself, ifX ∈ SAD, or

onto λk(X) otherwise, where Ak = (λk, λ
−1
k , GLDk = (SLDk , TLDk), ck) is the low-dimensional

abstraction associated with the region in which X falls into. Then according to equation 4.1,

every transition Ti in the projected π′AD will either be bounded from above by the cost of

the corresponding transition in π∗HD(XS , XG) if Ti is a low-dimensional transition, or will

be exactly equal to the cost of the corresponding transition if Ti is a high-dimensional

transition. Consequently, the cost of the projected version of π∗HD(XS , XG) will be no

larger than c(π∗HD(XS , XG)). Furthermore, since π∗AD(XS , XG) is a least-cost path from

XS to XG in SAD, its cost is no larger than the cost of any other path including the cost of

the projected version of π∗HD(XS , XG). As a result, c(π∗AD(XS , XG)) ≤ c(π∗HD(XS , XG)).

�

Theorem 5.4 If SHD is finite and we have a finite number of regions {ρ1, ..., ρn} and a

finite number of low-dimensional abstractions {A1, ...,Ak}, algorithm 2 terminates and upon

successful termination, the cost of the returned path π(XS , XG) is no more than ε track times

the cost of an optimal path from state XS to state XG in GHD.

Proof The termination of the algorithm is ensured by the fact that after each iteration one

of the following occurs:

• We are exhausting an assignment of a low-dimensional abstraction to a region (i.e.

assigning the next-best abstraction to a region until no more abstraction are available).

Since the number of regions and abstractions are finite, this can occur only a finite

number of times.

• We are introducing new high-dimensional states to GAD by adding or growing a high-

dimensional region. Since we have a finite number of high-dimensional states in SHD,

this can also occur only a finite number of times.

Thus, our algorithm will perform a finite number of iterations. In the worst case, after

38

finitely many iterations, all regions will be assigned the high-dimensional abstraction and

all states in SHD will be added to GAD (GAD = GHD). Thus, the adaptive planning phase

will produce a fully high-dimensional path πAD, which the tracking phase will be able to

match exactly (πτ = πAD, c(πτ) = c(πAD)). πτ will satisfy c(πτ) ≤ ε track · c(πAD) for any

ε track ≥ 1 and the algorithm will terminate.

The second statement of Theorem 5.4 follows from Theorem 5.3. By Theorem 5.3, the

adaptive planning phase produces an underestimate of the real cost from start to goal.

c(π∗AD(XS , XG)) ≤ c(π∗HD(XS , XG))

Upon algorithm termination, the tracking phase succeeds in finding a path of cost no more

than ε track times the cost of the computed adaptive path. Thus, we have c(πτ (XS , XG)) ≤

ε track · c(π∗AD(XS , XG)) ≤ ε track · c(π∗HD(XS , XG)). Hence, the cost of the tracked path is no

larger than ε track times the cost of an optimal path from start to goal in GHD. �

As we have shown previously, we can allow ε-suboptimal graph searches, such as weighted-

A*, to be used in the PAD framework.

Theorem 5.5 If ε plan-suboptimal searches are used in lines 6 and 12 of Algorithm 2, the

cost of the path returned by our algorithm is no larger than ε plan · ε track · π∗HD(XS , XG).

Proof If we use an ε-suboptimal search in the adaptive planning phase, we know that

that the cost of the produced path c(πAD) is no larger than ε · c(π∗AD). Then we have

c(πAD) ≤ ε ·c(π∗AD) ≤ ε ·c(π∗HD). Then we know that the tracking phase produced a path πτ

of cost no larger than ε track·c(πAD). Hence, we have c(πτ) ≤ ε track·c(πAD) ≤ ε track·ε·c(π∗HD).

�

5.5. Identifying Useful Abstractions

In all of our applications of Planning with Adaptive Dimensionality we have relied on human

intelligence and intuition to provide the abstractions that are being used by the planner.

39

We acknowledge that in many domains it might be difficult or impractical to rely on human

input to define suitable abstractions that work well for the particular domain. One of our

research goals was to explore methods for computing useful abstractions automatically. As

we mentioned previously, the set of all abstraction over a given state-space has a well-defined

structure—a partially ordered set, or a directed acyclic graph. This observation poses an

interesting question: can “good” abstractions be generated or learned automatically? In

other words, can finding “good” abstractions be formulated as a search problem in itself?

As discussed in (Li et al., 2006), the space of all abstractions is partially-ordered and forms

a directed acyclic graph (DAG), which defines a well-structured state-space. In addition,

the work by Holte et al. (Holte et al., 1996b) provides a method of evaluating the maximum

theoretical speedup that an abstraction can achieve on a given problem when compared to

blind search. This can theoretically be used as a measure of how “good” and abstraction

is for a given problem (i.e. a cost function). Unfortunately, the space of abstractions over

a given state-space is exponentially larger than the state-space itself, so performing graph

search on it might be impractical. However, such search need only be performed once during

the design phase of the planner development in order to identify the promising abstractions

for a particular domain. Moreover, the space of all abstractions can be pruned significantly

by only considering abstractions that form regular partitions of the state-space and that

can be encoded using projection functions. Recall our definitions of the projection functions

λ(·) and λ−1(·). λ operates by combining states into a single abstract state in a regular

fashion (e.g. λ((x, y, θ)) = (x, y) for ground vehicle navigation). Thus, for certain domains,

it might be feasible to use such meta-search of the space of abstractions in order to identify

promising ones.

Vernaza and Lee (Vernaza and Lee, 2012) explore the problem of learning low-dimensional

structures of cost functions in the context of holonomic motion planning in continuous

spaces (RN). They have shown that the minimum-cost path between two points in a

Euclidean space is always contained entirely within the smallest affine sub-space containing

40

both points and all directions in which the cost varies. Thus, if the cost function variations

can be captured by a low-dimensional sub-space containing the start and goal locations,

then planning in this low-dimensional sub-space is sufficient for finding the optimal path.

This result is formalized as follows.

Theorem 5.6 Consider a holonomic motion planning problem over RN from xa to xb with

a cost function C : RN → R, and suppose that there exists an N × d matrix W such that

d ≤ N and

C(y) = C(WW T y), ∀y ∈ RN

Let I = [0, 1] denote the unit interval. Then there exists an optimal path x∗ : I → RN of

this planning problem and functions a : I → Rd, s : I → R, such that

x∗(t) = Wa(t) + xa + (xb − xa)s(t), ∀t ∈ I

Algorithm 3 Estimating d-dimensional basis of a cost function C over a continuous space
RN
1: for i = 1→ numberOfGradientSamples do
2: x← randomConfigurationSample()
3: G(:, i)← ∇C(x)
4: end for
5: W ← TopNEigenvectors(d,GGT)
6: return W

Informally, this results shows that optimal paths exist that deviate from the linear interpo-

lation between the start and goal only in the directions upon which the cost depends. They

provide a method for computing a d-dimensional basis for compressing the cost function

through sampling of the cost gradient (Alg. 3). Thus, they compute the d-dimensional

sub-space that best captures the cost variation.

Such cost-space analysis can be directly used in discrete planning problems represented as

graphs, provided that the graphs are embedded in a continuous space and the edge costs are

computed based on a continuous cost function C. A problem arises when the continuous

cost function C is not known and has to be estimated from edge costs. Let’s assume that

41

edge costs ce are computed by integrating an unknown continuous cost function over the

path taken by an edge πe. Let e = (x0, x1) be an edge between two vertices x0, x1 ∈ RN .

Let πe be the time parametrized path taken by the edge from x0 to x1 on the interval

t = [0, 1], where πe(0) = x0 and πe(1) = x1. Then, the cost of an edge is given by the path

integral

ce =

∫ 1

0
C(πe(t))|π′e(t)|dt

where C is an unknown continuous cost function. In order to apply the cost compression

method from (Vernaza and Lee, 2012), we need a way of computing an estimate of ∇C.

Expressing ce as a function of t gives us

ce(t) =

∫ t

0
C(πe(τ))|π′e(τ)|dτ

d

dt
ce(t) =

d

dt

∫ t

0
C(πe(τ))|π′e(τ)|dτ = C(πe(t))|π′e(t)|

C(πe(t)) =
d
dtce(t)

|π′e(t)|

Thus, we can estimate C along any edge by estimating the derivative of the edge cost and

the “speed” at which we travel along the edge. Assuming the edge is traversed in unit time,

then |π′e(t)| = ||πe||∀t ∈ [0, 1]. Moreover, ce(t) is only specified at t = 0 and t = 1. Thus,

we can only estimate its derivative crudely by

d

dt
ce(t) ≈ ce(1)− ce(0) = c(e)∀t ∈ [0, 1]

C(πe(t)) ≈
c(e)

||πe||
∀t ∈ [0, 1]

In other words, we estimate the continuous instantaneous cost along an edge as the cost of

the edge over the distance traveled by the edge. This estimate remains constant throughout

the edge.

The fact that we can compute estimates of C for each edge, and respectively, for each vertex,

42

allows us to compute estimates of∇C by sampling C at several locations. Algorithm 4 shows

a proposed algorithm for adapting the continuous cost-compression algorithm (Alg. 3) for

graphs, embedded into continuous spaces.

Algorithm 4 Estimating d-dimensional basis of a cost function C from a graph G = (V,E)
embedded in a continuous space RN
1: for i = 1→ numberOfGradientSamples do
2: x← randomVertex()
3: Let S = ∅
4: for j = 1→ numberSuccessors(x) do
5: Let xj be the j-th successor of x
6: Let e = (x, xj) ∈ E be the edge connecting x and xj
7: Ĉj(xj)← cost(e)/length(e)

8: Insert (xj , Ĉj(xj)) in S
9: end for

10: ∇Ĉ(x) = approxGradientFromSamples(S)
11: G(:, i)← ∇Ĉ(x)
12: end for
13: W ← TopNEigenvectors(d,GGT)
14: return W

This algorithm can be used on a graph generated for a free space environment as a tool to

give information about which dimensions have most significant effect on the cost function.

This can provide insight to possible low-dimensional representations that can be imple-

mented for the system, which operate in those dominant dimensions. Additionally, the

same analysis can be performed on localized regions of the graph during planning in order

to determine which the dominant dimensions are in each region, and thus decide which of

the low-dimensional representations available to the planner is most suitable for the region.

As a simple example, we applied the method to a graph generated for (x, y,heading) nav-

igation for a non-holonomic vehicle. The graph was generated by applying the same 6

motion primitives at any vertex X = (x, y, θ) from its initial heading. The cost of each edge

ce was computed as the distance traveled along the edge, multiplied by a penalty factor

(the heading value was not used for cost computations). A factor of 1 was used for the

2 edges going forward with the same heading, a factor of 2 was used for the 2 edges that

turned, and a factor of 5 was used for the two edges that went in reverse. As we used

Ĉ(x) = cost(e)/length(e) to estimate C(x), in this case we had Ĉ(x) = cost(e)/length(e) =

43

Figure 9: Estimating the continuous scalar field C(x) from a graph. The figure shows
the outgoing motion primitives (edges) obeying minimum turning radius constraints in the
context of (x, y,heading) navigation for a non-holonomic vehicle. Edge cost was calculated
as the distance traveled along the edge multiplied by a penalty factor. A penalty factor
of 1 was used for the two edges going straight, a factor of 2 was used for the two turning
primitives, and a factor of 5 for the two primitives moving backwards. The estimated
continuous scalar field Ĉ(x) = cost(e)/length(e) is shown.

penalty · length(e)/length(e) = penalty. Figure 9 shows the estimated scalar field for Ĉ(x)

for a vertex centered at the origin and a heading of 0. Estimates for C were computed

at each of the 6 successor vertices and Delaunay triangulation was used to compute a sur-

face estimate from the samples. The surface gradient was estimated at the locations of

all 7 vertices shown and used as samples in the G matrix of algorithm 4. Since the same

motion primitives are applied to every vertex depending on its orientation, the estimated

scalar field Ĉ looks identical for all vertices with the same heading (assuming obstacle-free

environment), and thus, the gradient ∇Ĉ estimates are also identical. The heading was

discretized uniformly into 16 values on the interval [0, 2π). Thus, we had 16 different scalar

field estimates (one for each heading) each with 7 estimates of ∇Ĉ (112 samples total).

The three eigenvectors of GGT found were exactly 〈1, 0, 0〉T , 〈0, 1, 0〉T , and 〈0, 0, 1〉T , with

corresponding eigenvalues 5.5594 · 105, 5.5594 · 105, and 0. Perhaps unsurprisingly, this tells

us that the dominant dimensions of the planning problem are the x and y coordinates, with

the heading being secondary. Thus, using a low-dimensional representation that considers

only (x, y) would be a promising low-dimensional representation to use in the framework

44

for planning with adaptive dimensionality. The heading is not completely irrelevant, even

though in our example it had no effect on the cost function, since it is necessary to ensure

that the minimum turning radius constraints of the vehicle are satisfied. In Chapter 7 we

discuss in detail the application of the PAD framework to planning for navigation.

It is also important to note that changing the representation encoding the degrees of freedom

of the system, such as the one discussed in chapters 9 and 10, might also provide insight

into identifying dominant dimensions. In chapters 9 and 10 we describe an alternative

representation of a 7-DoF anthropomorphic robotic arm, not in terms of its 7 joint angle

values 〈j1, ..., j7〉, but rather in terms of the 6-DoF Cartesian pose of the end-effector and

the arm’s free/swivel angle 〈end-effector pose6D, swivel〉 (Fig. 28).

In general, computing useful abstractions of a state-space is a challenging problem. The

general approach of performing a meta-search over the space of abstractions discussed above

may quickly become impractical for systems with large states-spaces. Thus, one may have

to develop approaches exploiting domain-specific information to simplify the problem, such

as the cost compression approach by (Vernaza and Lee, 2012).

45

CHAPTER 6 : Incremental Graph Search for PAD

6.1. Motivation

Incremental search is a technique for continual planning that reuses information from pre-

vious searches to find solutions to a series of similar search problems potentially faster than

it is possible by solving each search problem from scratch. In many situations, a system

has to continuously adapt its plan to changes in its environment or in its knowledge of the

environment. In such cases, the original plan might no longer be valid, and thus, the system

needs to re-plan for the new situation. In these situations, solving the new search problem

independently of previous search efforts (planning from scratch) can be very inefficient. This

is especially true for situations when the changes of the search problem are small or very

localized. For example, a robot might have to re-plan when it detects a previously unknown

obstacle, which generally affects the graph structure and edge costs in a very localized fash-

ion. Incremental graph search is certainly useful in the context of Planning with Adaptive

Dimensionality, as the algorithm performs multiple search iterations and the changes to

the graph structure and edge costs between iterations is very localized—inside the newly

inserted high-dimensional regions. The motivation for developing a new incremental graph

search algorithm came from our goal to use incremental search in the framework for Plan-

ning with Adaptive Dimensionality. However, the popular approaches D?-Lite and Anytime

D? demonstrated prohibitive book-keeping overhead and often exhibited worse performance

than starting the planning from scratch each iteration. We wanted our incremental search

algorithm to take full advantage of the properties of the hybrid graphs used by Planning

with Adaptive Dimensionality. In addition, we wanted the algorithm to efficiently handle

localized changes in the graph structure with as little overhead as possible.

In this chapter, we present a simple, but very effective, technique for performing incremen-

tal weighted A? graph search in an anytime fashion, we call Tree-Restoring Weighted A?

(TRA?). The algorithm employs a heuristic to focus the search and allows for trading off

46

bounded path cost sub-optimality for faster search, just like weighted A?. In addition, the

algorithm re-uses information from previous search queries in order to improve planning

times. Moreover, the algorithm can be used for anytime search, similarly to the Anytime

Repairing A? (ARA?) algorithm (Likhachev et al., 2003) starting the search with a large

heuristic inflation factor ε to produce an initial solution faster, and continuously decreasing

ε to 1 as time permits to find paths of lower sub-optimality bound. On the theoretical side,

we show that our anytime incremental algorithm preserves the strong theoretical guaran-

tees provided by the weighted A? and ARA? algorithms, such as completeness and bounds

on solution cost sub-optimality. The algorithm is able to handle a variety of changes to

the underlying graph, such as both increasing and decreasing edge costs, and changes in

the heuristic. On the experimental side, we demonstrated the effectiveness of our Tree-

Restoring Weighted A? algorithm in the context of (x,y,z,yaw) navigation planning for an

unmanned aerial vehicle (UAV) in unknown and partially-known environments and com-

pared our algorithm to popular incremental and anytime graph search algorithms.

We also applied our incremental search algorithm in the framework for Planning with Adap-

tive Dimensionality and observed significant performance improvements. We applied the

incremental algorithm in the context of 3-DoF (x,y,heading) path planning for Willow

Garage’s PR2 robot, performing full-body collision checking. Our results suggest that us-

ing TRA? rather than performing planning from scratch at each iteration improves planning

times by up to a factor of 5 in the context of Planning with Adaptive Dimensionality. More-

over, we observed that the Tree-Restoring Weighted A? algorithm tends to work better in

the context of Planning with Adaptive Dimensionality than alternative incremental graph

search techniques, such as D?. The experimental setup and results for this experimental

evaluation are discussed in Chapter 7.

In this chapter we describe the Tree-Restoring Weighted A? algorithm and its theoretical

properties as a stand-alone general anytime incremental graph search algorithm.

47

6.2. Definitions and Notations

This chapter focuses heavily on the weighted A? search algorithm, so here we provide some

useful definitions relating to the algorithm.

Definition 6.1 Each state s in a graph G has an associated value called g-value during a

weighted A? graph search. The g-value of a state s, denoted g(s), represents the currently

best known cost for reaching S from the start state.

Definition 6.2 Each state s in a graph G has an associated value called f -value during a

weighted A? graph search. The f -value of a state s, denoted f(s), is computed as

f(s) = g(s) + ε · h(s)

where g(s) is the state’s g-value, h(s) is the state’s heuristic function value, and ε is the

heuristic inflation factor used in the weighted A? graph search. The f -value represents an

estimate of the expected cost of a path from start to goal passing through s. The f -values

are used as keys for the priority queue of the algorithm.

Notation 6.1 We use OPEN to denote the set containing all states in the priority queue

of a weighted A? search. We use CLOSED to denote the set containing all expanded

states that are not in OPEN . We use UNSEEN is the set of states that have not been

encountered by the search (all states that are not in OPEN and not in CLOSED).

6.3. Tree-Restoring Weighted A* Search

6.3.1. Algorithm

The state of a weighted A? search can be defined by the OPEN list, the CLOSED list,

the g-values of all states, and the back-pointer tree. Note the distinction between a state

of a search and a state in the graph being searched; we will use “state” when referring to

a state of a search. The idea of our approach to incremental weighted A? planning is to

48

(a) Tree-restoring A? search showing the

creation time (bottom left) and expansion

time (bottom right) of each state. A dash

indicates ∞.

(b) The first modified state is generated at

step 5. Restoring the weighted A? search

state at step 4 produces a valid A? search

state.

Figure 10: Simple 8-connected grid tree-restoring weighted A? example (assuming a perfect
heuristic for simplicity). Light gray: CLOSED list (expanded states), dark gray: OPEN
list, striped: modified states, black: obstacles/invalid states, solid arrows: valid back-pointer
tree, dashed arrows: invalid back-pointer tree.

keep track of the state of the search, so that when the graph structure is modified, we can

restore a valid previous search state and resume searching from there.

We call a state of a weighted A? search valid with respect to a set of modified states, if the

OPEN and CLOSED lists, and the back-pointer tree do not contain any of the modified

states and the g-values of all states are correct with respect to the back-pointer tree.

At any one time during a weighted A? search, each state falls in exactly one of the following

categories:

• unseen - the state has not yet been encountered during the search; its g-value is

infinite; the state is not in the back-pointer tree, not in OPEN , and not in CLOSED.

• inOPEN - the state is currently in the OPEN list; the state has been encountered

(generated), but has not yet been expanded; its g-value is finite (assuming that when

states with infinite g-values are encountered, they are not put in the OPEN list); the

state is in the back-pointer tree.

49

• inCLOSED - the state is currently in the CLOSED list; the state has been generated

and expanded; its g-value is finite; the state is in the back-pointer tree.

We assume that the weighted A? search expands each state at most once, which preserves

the sub-optimality guarantees of the algorithm as proven in (Likhachev et al., 2003) when

using a consistent heuristic. The Tree-Restoring Weighted A? algorithm (TRA?) keeps a

discrete time variable step that is initialized at 1 and incremented by 1 after every state

expansion. Thus, if we record the step C(X) in which a state X is generated (first placed

in the OPEN list, C(X) = ∞ if state has not yet been generated) and the step E(X) in

which a state is expanded (placed in the CLOSED list, E(X) =∞ if the state has not yet

been expanded), we can reconstruct the OPEN and CLOSED lists at the end of any step

s (Fig. 10).

CLOSEDs = {X|E(X) ≤ s}

OPENs = {X|C(X) ≤ s and E(X) > s}

Note that C(X) < E(X)∀X (i.e. a state’s creation time is before the state’s expansion

time), and if E(X) = E(X ′) then X ≡ X ′ (i.e. no two states could have been expanded

during the same step).

In order to be able to reconstruct the back-pointer tree and g-values for all states at the end

of a previous step s, each state must store a history of its parents and g-values. Every time

a better g-value g and parent Xp are found for a state X (when Xp is being expanded), a

pair (Xp, g) is stored for the state X. Note that the pair stores the g-value of the state X

itself, not the g-value of its parent Xp. Thus, we can compute the parent Ps(X) and g-value

gs(X) of a state X at the end of a previous step s by going through X’s list LX of stored

(parent, g-value) pairs.

50

(Ps(X), gs(X)) =

(Xp, g)∈LX |∀(X
′, g′)∈LX : E(X ′) ≤ E(Xp) ≤ s

In other words, the valid (parent, g-value) pair of X at step s is the pair containing the

parent that was expanded last (most recently), but before or during step s. Storing the

history in a list or array and searching it backwards seems to be very effective in quickly

identifying the most recent valid parent and g-value.

When a set of states M get modified between search episodes by changes in the costs of

some of their transitions, we identify the earliest step cmin in which a modified state was

created: cmin = min(C(X)|X ∈M). If we then restore the search state at the end of step

cmin − 1, we will end up with a valid search state with respect to the modified states, and

thus, we can resume searching from there, provided the heuristic has not changed or does

not need to be recomputed.

An important consideration is allowing the algorithm to handle decreasing edge costs, which

in turn, require the heuristic to be recomputed so that it remains admissible. In such cases,

we might have to restore the search state to an even earlier step than cmin − 1 in order to

ensure that correct expansion order is maintained with respect to the new heuristic values.

We maintain correct expansion order by identifying all possible states that might have been

expanded out-of-order relative to the current search state and the new heuristic values.

An expanded state X might have been expanded out-of-order relative to the current best

candidate for expansion X ′ from OPEN , if X’s f -value at the time of its expansion was

lower than the current f -value of X ′, and also, at the step when X was selected for expansion

X ′ had been created and was in OPEN (i.e. C(X ′) < E(X)). In other words, at time

E(X) − 1 both X and X ′ were in OPEN and X ′ had potentially better f -value than X,

and therefore X might have been expanded incorrectly before X ′. If we don’t find any such

states, then the current search state is valid with respect to the new heuristic and does

51

not violate the proper expansion order. On the other hand, if we find a set of states I, that

were potentially expanded out-of-order, we identify the state Xf = arg minX∈I(E(X)) with

the earliest expansion time and restore the search state at step E(Xf) − 1, right before

the potentially incorrectly expanded state Xf was selected for expansion. We repeat this

process of restoring previous search states until the current search state does not have any

states that might have been expanded out-of-order.

We note that the TRA? algorithm can be extended to allow for re-expansion of states by

keeping multiple records of C and E values for each state for every time a state is placed on

OPEN and every time a state is expanded, respectively. However, such an extension will

additionally increase the memory overhead of the algorithm. If re-expansions are allowed,

however, maintaining correct expansion order is no longer necessary, as re-expansions of

states will correctly propagate any inconsistencies in the search tree within the current

search iteration.

Algorithms 5 and 6 give the pseudo code for all the important functions in the TRA?

algorithm.

6.3.2. Theoretical Properties

In this section we provide sketches of proofs for each of the theorems stated. Complete

rigorous proofs can be found in Appendix B.

Theorem 6.1 All states X with C(X) > c will become unseen after restoreSearch(c) is

called.

Proof Follows trivially from definition. �

Theorem 6.2 The contents of the OPEN and CLOSED lists after restoreSearch(c) is

called are identical to what they were at the end of step c of the algorithm.

Proof Let OPENc and CLOSEDc be the OPEN and CLOSED lists at the end of

step c of the algorithm. Let OPEN ′ and CLOSED′ be the OPEN and CLOSED

52

lists after the function restoreSearch(c) is called. In can be easily shown that X ∈

OPENc iff X ∈ OPEN ′ and X ∈ CLOSEDc iff X ∈ CLOSED′. Thus, OPENc ≡

OPEN ′ and CLOSEDc ≡ CLOSED′. �

Theorem 6.3 All states X with C(X) ≤ c will have correct parent pointers and corre-

sponding g-values after restoreSearch(c) is called.

Proof We construct a proof by contradiction. Suppose a state X has an incorrect parent

pointer, i.e there exists a state P ′ ∈ CLOSED such that g(P ′) + cost(P ′, X) < g(P) +

cost(P,X) (a better parent P ′ for X exists in the CLOSED list). We argue that P ′ must

have been expanded before P , and since P ′ provides better g-value than P , then P cannot

have been recorded as a parent for X—contradiction. �

Theorem 6.4 Let M be the set of all modified states after a successful incremental A?

search episode. Let cmin = min(C(X)|X ∈ M). restoreSearch(c) for any c < cmin results

in a search state that is valid with respect to the modified states M .

Proof The result follows directly from the above theorems. �

If edge costs cannot decrease, the heuristic remains admissible between search episodes and

does not need to be re-computed. However, the heuristic does need to be re-computed when

edge costs decrease, in order to ensure that the current search is performed with admissible

heuristic values. Changes in the heuristic values, however, affect the ordering of states in

the OPEN list and the order of state expansions during the search. As we only allow states

to be expanded once, it is necessary to maintain correct expansion order.

Thus, although by Theorem 6.4 restoreSearch(cmin − 1) produces a search state that is

valid with respect to the modified states, that search state is not necessarily valid with

respect to the new heuristic values, as the order of expansions might be no longer correct.

heuristicChanged() is the function that maintains the correct expansion order when the

heuristic changes. As described above, the idea of this function is to keep restoring the

53

search to earlier search state until there are no states that could have been expanded

in incorrect order. In the worst case, the change in the heuristic is such that expansion

order changes from the very beginning, in which case heuristicChanged() will restore the

search state to the end of step 0–right after the start state was expanded, which would be

equivalent to starting the search from scratch.

It is important to note that, in the context of Planning with Adaptive Dimensionality,

introducing new high-dimensional regions can only increase edge costs, and thus, the original

heuristic remains admissible for the new instance of the hybrid graph. Consequently, the

Tree-Restoring Weighted A? algorithm needs to perform only a single restoring step in order

to produce a valid search state . Thus, the TRA? algorithm is highly efficient when applied

in the framework for Planning with Adaptive Dimensionality.

Theorem 6.5 The function heuristicChanged() terminates and at the time of its termi-

nation the search is restored to a search state that is valid with respect to the new heuristic

values. That is, no state has been expanded out-of-order with respect to the new f -values.

Proof Let X0 be the state with lowest f -value in OPEN in the current search state . X0

was first put in OPEN at step C(X0).

Consider the set I computed in heuristicChanged(). As in (Likhachev et al., 2003), v(X)

stores the value of g(X) at the time X was expanded. Therefore v(X) + ε ·h(X) represents

the f -value of X at the time of its expansion E(X), but also accounting for the new heuristic

values. I = {Xi ∈ CLOSED|v(Xi) + ε ·h(Xi) > f(X0)∧C(X0) < E(Xi)}. In other words,

I contains all expanded states that had higher f -values at the time of their expansion than

the current candidate for expansion X0 and that were expanded while X0 was in OPEN .

As such, I contains all possible states that might have been expanded incorrectly before X0

according to the new f -values. Note that it is possible that the current f(X0) is lower than

the value of f(X0) at step E(Xi), as g(X0) might have decreased as the search progressed

after step E(Xi). Therefore, it is possible that f(Xi) ≤ f(X0) was true at step E(Xi)

54

and that f(Xi) was correctly selected for expansion before X0. Thus, states in I are not

necessarily expanded incorrectly, but they are the only possible states that might have been

expanded incorrectly. Let s′ = min(E(X ′)|X ′ ∈ I)−1 as computed in heuristicChanged().

Restoring the search state to step s′ ensures that no states have been expanded incorrectly

before X0. At the end of the while loop I = ∅, thus no states in CLOSED could have been

expanded incorrectly with respect to the current expansion candidate X0.

To prove that heuristicChanged() terminates, we argue that the integer s′ strictly decreases

through the execution of the while loop. If s′ becomes 0, then CLOSED = ∅ making I = ∅.

�

By Theorem 6.5, TRA? algorithm maintains the same expansion order (up to tie-breaking)

as non-incremental weighted A? and thus, both algorithms have the same theoretical guaran-

tees for completeness, termination, and upper bounds on path cost sub-optimality, assuming

that an admissible heuristic is used.

Theorem 6.6 TRA? expands each state at most once per search query and never expands

more states than Weighted A? from scratch (up to tie-breaking).

Proof It is easy to verify that each state can be expanded at most once per search query, as

once a state has been expanded and put in CLOSED it can never be placed in OPEN . The

fact that TRA? does not expand more states than performing Weighted A? from scratch

follows almost trivially from the fact that the two algorithms produce the same order of

state expansions (up to tie-breaking), but TRA? is able to resume searching from a step

s ≥ 0, thus not performing the first s expansions that Weighted A? from scratch would have

to perform. �

6.4. Anytime Tree-Restoring Weighted A* Search

In many situations, producing a lower-quality initial solution very quickly, and then im-

proving the solution as time permits, is a desirable property of a planning algorithm.

55

By following the concept of the ARA? search algorithm, we can extend the TRA? algorithm

to perform in an anytime fashion. ARA? runs a series of searches with decreasing heuristic

weighting factor ε until the allocated time runs out or an optimal solution is found for ε = 1.

It keeps track of an INCONSISTENT list of all states that have been expanded already

during the current search iteration (in CLOSED), yet a better parent and lower g-value for

them was found after their expansion. The states in INCONS. are moved to OPEN at the

beginning of every search iteration, OPEN is re-ordered based on the new ε value, and the

search proceeds.

To make TRA? an anytime algorithm similar to ARA?, we need to be able to reconstruct

the INCONS. list at a particular time step. Thus, we have to record the step at which a

state X is inserted into INCONS., I(X). Also, since ARA? allows re-expansions of states

between search iterations (the ones from INCONS. list), we also need to maintain separate

creation Cε(X), expansion Eε(X), and inconsistent Iε(X) records for each ε value for which

a search episode is performed. Thus, the memory overhead introduced by the algorithm for

each state increases proportionally to the number of times it is expanded.

We can reconstruct INCONS. at a desired step s by noting that a state X is in INCONS.

from the step Iε1(X) when the state was inserted into INCONS. for a particular ε1, until

it was inserted in OPEN at the beginning of the next planning iteration (for ε2). Thus,

X ∈ INCONS. iff Iε1(X) ≤ s < Cε2(X).

Then, given a desired target restore step s, we can reconstruct the contents of OPEN,

CLOSED, and INCONS. lists, the back-pointer tree, g-values, and the εs value of the

search state at step s. For every state we drop the creation Cε(X), expansion Eε(X),

and inconsistent Iε(X) records for ε < εs, only maintaining the records up to the current

heuristic inflation value εs.

The proposed Anytime Tree-Restoring Weighted A? (ATRA?) search algorithm preserves

the theoretical properties of the ARA? algorithm, such as completeness with respect to the

56

(a) Computing all graph edges affected by a change in a map

cell. The figure shows a sub-set of the edges (arrows) affected

by a change in the shaded cell. Dashed polygons represent the

robot’s perimeter.

(b) ATRA? algorithm storing the expansion step s for which

each cell is encountered first, done during the expansion and

collision checking of each edge (arrow).

Figure 11: Computing affected graph edges from changed map cells.

graph encoding the problem and bounds on solution cost sub-optimality.

6.5. Efficiently Detecting Changes in the Graph

In the context of navigation planning, lattice-based graphs are often used to encode the

search problem by discretizing the configuration space of the robot, and using pre-computed

kinodynamically feasible transitions between states (Likhachev and Ferguson, 2008). On

the other hand, the map data and obstacle information is usually stored on a grid. Thus,

most incremental search algorithms, such as D?, D?-Lite, and Anytime D?, need to be able

to translate changes in the map grid to the actual graph edges that are affected by the

changes. In other words, the algorithm needs to consider all edges in the graph that cause

the robot’s perimeter to pass through the changed cell (Fig. 6.11(a)). This procedure can

be prohibitively expensive for graphs with high edge density and for large robot perimeters,

often significantly diminishing or completely eliminating the benefit of using incremental

graph search.

Our approach, however, does not rely on knowing all affected edges, but rather just the

expansion step at which the first affected edge was encountered during the search. Thus,

for each cell on the map grid, we can record the earliest expansion step for which the

57

(a) Example environment (top view) (b) Initial partially-known map provided to the robot (top

view)

Figure 12: Example environment and corresponding initial map. The start and goal
locations are marked by S and G, respectively.

search encountered an edge that passes through this cell (Fig. 6.11(b)). This introduces a

small memory overhead to the size of the map grid data stored (additional integer per cell).

However, the performance overhead is negligible, as the collision-checking procedure already

enumerates all map cells that an edge passes through to make sure they are obstacle-free.

With this extension, when a map cell changes, we can very quickly look up the earliest

expansion step for which this cell affected an edge in the graph. Taking the minimum

expansion step s across all changed cells in the map and restoring the search state to step

s − 1 produces a valid search tree with respect to the modified map cells, and thus, their

respective modified graph edges.

As shown in our experiments, this approach significantly reduces the time needed for TRA?

and ATRA? to compute the changes to the graph, and subsequently, the overhead of per-

forming incremental search.

6.6. Experimental Evaluation

To validate the ATRA? algorithm we implemented it for 4-DoF (x,y,z,yaw) path planning

for an unmanned aerial vehicle. The graph representing the problem was constructed as

a lattice-based graph, similar to the approach taken in (Likhachev and Ferguson, 2008),

except we used constant resolution for all lattices. In lattice-based planning, each state

58

consists of a vertex encoding a state vector and edges corresponding to feasible transitions

to other states. The set of edges incident to a state are computed based on a set of

pre-computed motion primitives, which are executable by the robot. The state-space was

obtained by uniformly discretizing the environment into 5cm × 5cm × 5cm cells and the

heading values were uniformly discretized into 16 on the interval [0, 2π). The robot was

tasked to navigate to a fixed goal location. Search was performed backwards from the

goal state and the start state changed as the vehicle navigated through the environment.

Whenever a path to the goal was computed, the robot advanced by one edge along the path

to a new start state; sensed any previously unknown obstacles or gaps through obstacles

in its vicinity and updated its environment map; then re-planned for a new path to the

goal accounting for the changes in the environment. The appearing and disappearing of

obstacles in the map caused, respectively, increasing and decreasing of edge costs in the

graph. This, in turn, required a set of modified states to be computed and the heuristic

to be re-computed. Moreover, it was necessary re-compute the heuristic at the beginning

of every re-planning iteration, as the robot moved through the environment and the start

state changed. The heuristic was computed using 3D BFS search from the (x,y,z) position

of the start state on an 26-connected 3D grid accounting for obstacles. The heuristic was

not perfect as did not account for the orientation of the robot or its perimeter shape. Thus,

some scenarios exhibited pronounced heuristic local minima. We ran the planner on 50 maps

of size 25m× 25m× 2m (500× 500× 40 cells) (example shown in Fig. 12). For each of the

environments, the planner was run on both an unknown initial map, and a partially-known

initial map. An example of a partially-known initial map is shown in Fig. 6.12(b). The

maps were generated semi-randomly to resemble floor plans. The partially-known initial

maps were generated by randomly adding and removing obstacles from the true map. The

start and goal states for each environment were in diagonally opposite corners of the map.

We used a set of pre-computed transitions obeying minimal turning radius constraints. The

vehicle was also allowed to turn in-place, but the cost of such transitions was penalized by a

factor of 5. The non-holonomic transitions and the high penalty factor for turning in-place

59

Algorithm
Avg. Sub-optimality Compute Changes Repair/Restore % Iters finished # Expansions per Re-plan Avg. Path

Bound Achieved Avg. Time (s) Avg. Time (s) within 1s avg std dev Cost Ratio

ATRA? 2.2720 0.0000 0.1615 95.95% 52029 29826 1.0 (baseline)

Anytime D? 2.2324 0.6214 0.3240 91.01% 50052 47874 0.98

ARA? 2.4211 0 (n/a) 0 (n/a) 93.70% 77377 16786 1.21

Anytime Truncated D? 2.1124 0.6271 0.3952 91.67% 48853 46904 0.95

Beam-Stack Search (n/a) 0 (n/a) 0 (n/a) 98.07% 65149 21479 1.32

ATRA? 1.8185 0.0000 0.1501 99.63% 47230 20194 1.0 (baseline)

Anytime D? 1.8176 0.4874 0.4067 96.40% 53976 39737 1.03

ARA? 2.1600 0 (n/a) 0 (n/a) 99.20% 82041 17681 1.17

Anytime Truncated D? 1.7802 0.4753 0.4247 97.73% 50974 38225 0.98

Beam-Stack Search (n/a) 0 (n/a) 0 (n/a) 99.54% 69203 22405 1.24

Table 1: Simulation results on a set of 50 unknown maps (top) and 50 partially-known maps
(bottom) for 4-DoF (x,y,z,yaw) path planning for an unmanned aerial vehicle performing
anytime planning with time limit of 1 second.

made the path planning problem very challenging. For sensing obstacles, we simulated a

forward-facing tilting laser range finder with 180◦ horizontal and 90◦ vertical field of view,

and a maximum sensing range of 2.0m.

We ran our planner in anytime mode with an initial sub-optimality bound of ε = 5.0 with

1 second allowed for planning. In cases when no plan was found within the time limit,

the planner was allowed to continue planning for an additional 1 second for up to 10 times

until a solution is found. We also ran our planner in fixed-ε mode, planning until the first

solution satisfying the specified sub-optimality bound is found.

6.7. Analysis of Results

We compared the ATRA? algorithm to other incremental and anytime graph search algo-

rithms—Anytime D? (Koenig and Likhachev, 2002a), ARA? (Likhachev et al., 2003), Any-

time Truncated D? (Aine and Likhachev, 2013), and Beam-Stack Search (Zhou and Hansen,

2005a). The non-incremental algorithms ARA? and Beam-Stack Search performed planning

from scratch at each iteration. In order to replicate the planning conditions across all plan-

ners for fair performance comparison, the vehicle followed a predefined path through the

environment regardless of the paths produced by the planners. Thus, each of the planners

performed the same number of re-planning iterations with identical map information. All

planners used the same heuristic, recomputed for every re-planning iteration. The time

reported as “Compute Changes” is the time each incremental algorithm required to trans-

60

Algorithm
Sub-optimality Compute Changes Repair/Restore Re-planning Time (s) # Expansions per Re-plan

Bound Avg. Time (s) Avg. Time (s) avg std dev avg std dev

ATRA? 5.0 0.0000 0.0327 0.2105 0.4643 11065 21499

Anytime D? 5.0 0.4063 0.0194 0.5973 3.7712 12799 44616

ARA? 5.0 0 (n/a) 0 (n/a) 0.2770 0.3163 22666 21602

Anytime Truncated D? 5.0 0.4177 0.0231 0.5031 1.6433 11533 36551
ATRA? 2.0 0.0000 0.0895 0.3583 0.6435 19994 30477

Anytime D? 2.0 0.6111 0.2109 0.3397 0.8574 21580 54726

ARA? 2.0 0 (n/a) 0 (n/a) 0.5004 0.4017 44352 26316

Anytime Truncated D? 2.0 0.6093 0.2242 0.3088 0.6881 18306 28487
ATRA? 1.25 0.0000 0.1593 1.6718 5.9480 70116 225425

Anytime D? 1.25 1.5722 1.5150 4.0458 11.565 213777 592017

ARA? 1.25 0 (n/a) 0 (n/a) 5.6696 16.038 384546 904201

Anytime Truncated D? 1.25 1.5983 1.5311 2.3184 8.1722 107634 472733

ATRA? 5.0 0.0000 0.0258 0.0322 0.1260 2338 8248

Anytime D? 5.0 0.1986 0.0207 0.1326 0.6359 5427 25114

ARA? 5.0 0 (n/a) 0 (n/a) 0.3118 0.2125 30705 19612

Anytime Truncated D? 5.0 0.2043 0.0313 0.1196 0.5363 5214 22756
ATRA? 2.0 0.0000 0.0698 0.2635 1.0427 14178 50706

Anytime D? 2.0 0.3367 0.1338 0.2531 1.2339 16042 85201

ARA? 2.0 0 (n/a) 0 (n/a) 0.7860 0.8860 70229 64742

Anytime Truncated D? 2.0 0.3274 0.1459 0.2364 1.1491 14954 76638
ATRA? 1.25 0.0000 0.4295 1.5719 10.448 66014 395437

Anytime D? 1.25 0.6864 0.9521 1.9882 8.1290 120754 467172

ARA? 1.25 0 (n/a) 0 (n/a) 4.1886 9.5945 271330 548481

Anytime Truncated D? 1.25 0.6593 0.9361 1.7318 6.9560 97811 422109

Table 2: Simulation results on a set of 50 unknown maps (top) and 50 partially-known maps
(bottom) for 4-DoF (x,y,z,yaw) path planning for an unmanned aerial vehicle performing
fixed-ε planning until first solution for various sub-optimality bounds.

late changes in the map grid into relevant changes to the graph (computing modified edges

for Anytime D? and Anytime Truncated D?, and computing the target restore step for

ATRA?). The time reported as “Repair/Restore” is the time each incremental algorithm

took to update its search state with the new edge costs and heuristic values, so that a new

search iteration can be started.

The results we observed for anytime planning for each of the planners for unknown and

partially-known maps are summarized in Table 1. As seen from the results, ATRA? is able

to detect graph changes and restore the search tree significantly faster than Anytime D?

and Anytime Truncated D?, while achieving nearly identical sub-optimality bounds and

path costs, on average, on both unknown and partially-known maps. Beam Stack Search

was able to meet the 1-second deadline in the highest number of iterations at the expense

of about 20-30% higher solution cost and no theoretical sub-optimality bound guarantees.

The results we observed for planning until the first solution satisfying a fixed sub-optimality

61

bound for each of the planners for unknown and partially-known maps are summarized in

Table 2. Beam Stack Search was not included in these experiments as it does not pro-

vide theoretical sub-optimality bounds on intermediate solutions. The results illustrate the

benefit of using incremental graph search as the desired sub-optimality bound decreases.

Overall, ATRA? performed significantly better than the rest of the planners by both reduc-

ing the overhead of performing incremental search and reducing the number of expansions

(and thus re-planning time) required for each iteration.

We observed that ATRA? is able to outperform planning from scratch most significantly

on the difficult planning scenarios (ones exhibiting heuristic local minima, or ones with low

sub-optimality bound), as it is able to avoid re-expanding a large number of states between

iterations in such cases. The most significant performance gain of ATRA? over the two

D?-based algorithms, apart from the reduced overhead in computing changes in the graph,

were in scenarios when increasing edge costs cause a large number of expansions of under-

consistent states (significantly more expensive than regular over-consistent expansions) in

the D?-based algorithms. On the other hand, our approach suffers most in situations where

the search state needs to be restored to a very early step , in which cases the overhead

of performing repeated tree restoring eliminates the benefits of avoiding relatively few re-

expansions.

Even though TRA? was designed with Planning with Adaptive Dimensionality in mind,

we found that TRA? and anytime TRA? as stand-alone planning algorithms are able to

outperform popular alternative incremental and anytime approaches by efficiently avoiding

redundant computation and significantly reducing the overhead of performing incremental

search. Moreover, TRA? and ATRA? are general incremental graph search algorithms that

can handle arbitrary graphs and arbitrary edge cost changes.

62

Algorithm 5 Tree-Restoring Weighted A?

CLOSED : Set
OPEN : MinHeap
CREATED : Array
step : Integer
function initializeSearch(XS XG)

CLOSED ← ∅
OPEN ← {XS}
g(XS)← 0
f(XS)← g(XS) + ε · h(XS)
step← 1
C(XS)← 0
insert(CREATED, XS)
E(XS)←∞

end function
function resumeSearch()

if needed to recompute heuristic then
recompute admissible heuristic
heuristicChanged()

end if
while OPEN 6= ∅ do

X ← extractMin(OPEN)
if f(XG) > f(X) then

return reconstructPath()
end if
Expand(X)

end while
return no path exists

end function
function heuristicChanged

update f -values for created states and re-order OPEN
while not done do

Let X0 be the state with lowest f -value in OPEN
I ← {X ∈ CLOSED|v(X) + ε · h(X) > f(X0) ∧ C(X0) < E(X)}
if I = ∅ then

done
else

s′ ← min(E(X′)|X′ ∈ I)− 1
restoreSearch(s′)

end if
end while

end function
function updateParents(X, s)

latestG← 0
latestParent← ∅
latestParentStep← 0
for all (Xp, gp) in stored parent/g-value pairs of X do

if E(Xp) ≤ s then . Xp is a valid parent for step s
if E(Xp) > latestParentStep then

. Found more recent parent
latestParentStep← E(Xp)
latestParent← Xp
latestG← gp

end if
else . Xp is not a valid parent for step s

Remove (Xp, gp) from stored parent/g-value pairs
end if

end for
return (latestParent, latestG)

end function

63

Algorithm 6 Tree-Restoring Weighted A?

function restoreSearch(s)
. restores the search state to just after the expansion at step s

OPEN ← ∅
CLOSED ← ∅
CREATED′ ← ∅
if s ≤ 0 then

initializeSearch(XS , XG)
return

end if
for all X ∈ CREATED do

if E(X) ≤ s then . state created and expanded
(Xp, g)← updateParents(X, s)
g(X)← g
parent(X)← Xp
insert(CLOSED, X)
insert(CREATED′, X)

else if C(X) ≤ s then . state created, not expanded
(Xp, g)← updateParents(X, s)
g(X)← g
v(X)←∞
parent(X)← Xp
f(X)← g + ε · h(X′)
insertOpen(X, f(X))
E(X)←∞
insert(CREATED′, X)

else . state not created
clearParents(X)
g(X)←∞
v(X)←∞
parent(X)← ∅
C(X)←∞
E(X)←∞

end if
end for
CREATED ← CREATED′

step← s+ 1
end function
function Expand(X)

v(X)← g(X)
for all X′ ∈ successors of X do

if X′ was not visited before then
g(X′) =∞

end if
g′ ← g(X) + cost(X,X′)
if g′ ≤ g(X′) then

g(X′)← g′

storeParent(X′,(X, g′),step)
f(X′)← g′ + ε · h(X′)
if X′ 6∈ CLOSED then

if X′ 6∈ OPEN then
insertOPEN(X′, f(X′))
C(X′)← step . record state put in OPEN
insert(CREATED, X′)

else
updateOPEN(X′, f(X′))

end if
end if

end if
end for
E(X)← step . record state expanded
insert(CLOSED, X)
step← step+ 1

end function

64

CHAPTER 7 : Application: PAD for Navigation

In this section we discuss our results from applying our framework for Planning with Adap-

tive Dimensionality to the domain of path planning for a non-holonomic vehicle done in

three dimensions—(x,y,heading θ). The low-dimensional representation which we used in

all the navigation planning experiments described below was the 2-dimensional (x,y) posi-

tion of the vehicle, disregarding the heading information. We used a very simple projection

function λ to transform 3D states to 2D states:

λ3D/2D(x, y, θ) = (x, y).

We used a 16-discretized value for the heading angle, thus, our λ−1 mapping was:

λ−13D/2D(x, y) = {(x, y, 0), ..., (x, y, 15)}.

Our algorithm implementation kept track of the high-dimensional regions of the environment

as circles. This allowed us to quickly check if a state falls inside a region or not, and also

quickly add new regions and grow the sizes of existing ones.

The graph G representing the problem was constructed as a lattice-based graph, similar to

the approach taken in (Likhachev and Ferguson, 2008), except we used constant resolution

for all lattices. In lattice-based planning, each state consists of a vertex encoding a state

vector and edges corresponding to feasible transitions to other states. The set of edges

incident to a state are computed based on a set of pre-computed motion primitives, which

are executable by the robot.

7.1. Non-Incremental 3D Path Planning for a Non-Holonomic Vehicle

The results reported in this section were originally published in our work (Gochev et al.,

2011) presented at the Symposium on Combinatorial Search (SoCS 2011).

65

7.1.1. Implementation Details

We modeled our environment as a planar world and a polygonal robot. For 3D states we

performed accurate collision-checking of the robot’s footprint against the obstacles in the

environment. We used a relaxed collision model for 2D states as heading information was

unavailable, treating the robot as a circle of radius equal to the radius of the inscribed circle

of the robot’s perimeter.

The set of motion primitives used for 3D states consisted of long straight, short straight,

left and right turn elements for both forward and reverse motion, as can be seen in the lower

left corner of Fig. 5. The motion primitives used for 2D states were the eight neighboring

states (8-connected 2D grid), as seen in the upper left of Fig. 5. It should be noted that

the motion primitives for 2D states do not produce feasible paths.

The relaxed collision model and the lower costs of edges in the 2D regions ensured that the

cost functions for our 3D and 2D regions satisfied Equation 4.1.

7.1.2. Experimental Evaluation

We compared our algorithm to a weighted A* planner performing full 3D search on several

different map sizes. Small maps with few hundred cells in each dimension were quickly

solved by the full 3D planner, so little benefit was seen of our algorithm. On maps with

5000 or more cells in both x and y dimensions, the full 3D planner was unable to find

a solution due to memory constraints, while our algorithm, having to expand a lot fewer

states, was still able to plan successfully.

As a middle ground and to prevent the results from being skewed by the 3D planner having

to use the significantly slower hard drive swap space, we randomly generated 50 2500x2500

cell maps for our test runs (typical example can be seen in Fig 7.13(a)).

In all instances we used a Dijkstra’s search on the 2D map grid to compute a heuristic

accounting for obstacles to help guide the planners towards the goal state. We inflated

66

(a) Typical map used for 3D/2D navigation. (b) Example map for which the 2D Dijkstra

heuristic is misleading for the 3D search (the

opening on the lower left is not traversable

using 3D motion primitives).

Figure 13: Maps of size 2500x2500 cells.

the obstacles on the map by the inscribed circle radius to preclude the generation of paths

through areas too narrow for the robot to physically traverse.

For these experiments, the underlying search algorithm used in both the adaptive planning

phase and the tracking phase of our algorithm for Planning with Adaptive Dimensionality

was weighted A* and planning was started from scratch at each iteration of the algorithm.

In addition, the tunnel width we used for the tracking phase was six cells, and the radii of

newly added spheres were 20 cells. Since the longest motion primitive was 10 cells long,

these parameter values seemed sufficient to allow reasonable range of maneuvering to occur

within a sphere and within the tracking tunnel τ .

For each map three values of the sub-optimality parameter ε were tried: 1.1, 1.5 and 3.0

with the adaptive planner using the square root of ε for both ε plan and ε track, giving an

overall sub-optimality bound of the adaptive algorithm of ε. For both planners a maximum

planning time was enforced based on the value of ε: ε = 1.1 : 5 minutes, ε = 1.5 : 4 minutes,

ε = 3.0 : 3 minutes. If planning time exceeded the time limit the run was reported as a

failure.

67

Algorithm
Sub-optimality Time (secs) # 3D Expands (in thousands) # 2D Expands (in thousands) Total Expands (in thousands) Path Cost

Bound mean std dev mean std dev mean std dev mean std dev mean std dev

3D 1.1 142.57 60.24 5218 2177 n/a 5218 2177 58763 9610

adaptive 1.1 184.99 112.93 4448 2884 2434 1793 6957 3946 59202 9856

3D 1.5 83.74 104.94 2813 3533 n/a 2813 3533 68360 11946

adaptive 1.5 25.78 48.96 648 1665 826 1332 1476 2541 66630 13400

3D 3.0 59.99 79.16 2252 3064 n/a 2252 3064 79707 13463

adaptive 3.0 15.21 35.80 396 1319 656 1145 1053 1903 71358 13372

Table 3: Testing results on 50 randomly generated maps for 3D path planning on non-
holonomic robot. Non-incremental 3D/2D Adaptive Planner vs. 3D weighted A* planner.

7.1.3. Analysis of Results

We compared the total number of states expanded, number of high-dimensional states

expanded, final path cost, and execution time of the adaptive planner compared to the

high-dimensional planner, for each of the maps tested. Our results are summarized in table

3.

While the average time for the adaptive planner was significantly shorter than the average

time for the 3D weighted A* planner, it is interesting to note that the 3D planner was

actually faster on 54 out of 100 runs. When the map was benign, the 2D Djikstra heuris-

tic allowed the 3D planner to expand very few states, particularly at higher ε plan values.

However, two particular cases led to very long plan times for the 3D weighted A* planner:

the case of a map with no solution and the case of a map where the solution required a

route very different from the one computed by the heuristic. Of the 18 runs where neither

algorithm was able to find a solution in the allowed time the adaptive planner recognized

no solution was available in an average of 12 seconds with a maximum of 25 seconds. On

the other hand, the 3D planner in all but two cases ran out of allowable execution times

(the two cases completed after 177 and 175 seconds for ε = 1.5 and ε = 3.0 respectively).

The second case where the adaptive planner performed significantly better than the 3D

planner is the set of maps where the heuristic for the 3D planner is misleading or has

pronounced local minima. An example of this type of map is shown in figure 7.13(b).

A significantly shorter path exists from start to goal going through the narrow opening

depicted in the lower left. Even after inflating the obstacles, the 2D planner is capable of

68

finding a route through the narrow passage. However, this path is not executable using the

3D motion primitives. The 3D planner cannot make use of this information and update

its heuristic due to its non-iterative nature. The adaptive algorithm initially plans a 2D

path through the short-cut, but after attempting to track this path, finds that it cannot

negotiate the tight turn and places a sphere at that location. During the next iteration while

expanding the 3D states in the sphere the adaptive planner determines that no path through

the sphere exists and reverts back to the faster 2D planner to explore other alternative

routes. By using the lower-dimensional search to find the alternate route, this search can

be performed significantly quicker than the full 3D search.

The type of maps used in this experimental evaluation required quite a lot of turning

and careful maneuvering, which in turn caused the algorithm to introduce many high-

dimensional regions and perform many iterations of planning. In this evaluation, each

iteration performed planning from scratch, which caused a lot of redundant computation

(state expansions) between iterations. We realized this was a potential area for improve-

ment of the framework for Planning with Adaptive Dimensionality, which motivated the

development of the Tree-Restoring Weighted A* graph search algorithm described in Section

6.

7.2. Incremental 3D Path Planning for a Non-Holonomic Vehicle

The results reported in this section were originally published in our work (Gochev et al.,

2013) presented at the International Conference on Automated Planning and Scheduling

(ICAPS 2013).

7.2.1. Implementation Details

The domain we chose to experimentally validate our incremental version of the Planning

with Adaptive Dimensionality algorithm was path planning for non-holonomic vehicles in

three dimensions (x,y,heading) with full-body collision checking. We used Willow Garage’s

PR2 robot as our experimental platform. We used the same approach to 3-DoF planning as

69

(a) Start (left) and Goal

(right)

(b) Iter. 1 Expanded States

(2D: lighter, 3D: darker)

(c) OPEN at the end of iter.

1 (arrows) and new 3D region

(d) OPEN at beginning of

iter. 2 (arrows) after tree-

restoring

(e) Iter. 2 Expanded States

(2D: lighter, 3D: darker)

(f) OPEN at the end of iter.

2 (arrows) and new 3D region

(g) OPEN at beginning of

iter. 3 (arrows) after tree-

restoring

(h) Iter. 3 Expanded States

(2D: lighter, 3D: darker)

Figure 14: Example of Planning with Adaptive Dimensionality using tree-restoring
weighted A∗ search (with no heuristic for illustration purposes). New high-dim. regions
introduced in the graph are represented by the inner circles. The outer circles represent
states that are affected by the introduction of the new region (modified states). Dark cells
indicated by arrows represent the OPEN list (search frontier). Note the reduction of the
number of expanded states as iterations progress.

in (Gochev et al., 2011) discussed in Section 7.1—we used lattice-based graphs of uniform

resolution (2.5cm×2.5cm) and heading angle values were uniformly discretized into 16 on

the interval (−π, π]. We used a set of pre-computed transitions for a non-holonomic robot

for 3D states and simple 8-connected 2D grid transitions for the 2D states. The costs of

2D transitions were representative of the distance traveled and the costs of 3D transitions

were computed based on the distance traveled, inflated by a pre-computed penalty factor:

3D transitions that required the robot to move backwards had higher penalty factors than

transitions moving forward. We used a 2D 8-connected grid-based distance-to-goal heuristic,

accounting for obstacles. The heuristic values were computed by a single backward Dijkstra

search on the 2D grid. In the incremental versions of the algorithm, every time a new high-

dimensional region was introduced, all states falling inside the region and all states on the

boundary of the region (states that have valid high-dimensional transitions into the region)

were tagged as modified. At the beginning of each iteration the Tree-Restoring Weighted

A? algorithm (TRA?) restored a valid search state with respect to the modified states and

70

Figure 15: Example run of an Adaptive-Dimensionality planner on an indoor environment.
The high-dimensional regions introduced by the algorithm, represented by circles, and the
computed path are shown in the embedded figure. 3D planning is performed inside the
circles and 2D planning is performed everywhere else in the environment.

Algorithm
Sub-opt. Time (s) # Iterations # 3D Expands # 2D Expands Total Expands Successful
Bound mean std dev min max mean std dev mean std dev mean std dev mean std dev Searches

3D Weighted A∗ 5.0 39.41 34.45 2.42 118.57 n/a 37.29K 32.53K n/a 37.29K 32.53K 23 of 30

Non-incremental Adaptive 5.0 14.43 15.92 0.89 48.69 2.07 1.10 13.92K 15.52K 1.41K 0.99K 15.31K 16.39K 30 of 30

Tree-restoring A∗ Adaptive 5.0 6.86 2.75 0.89 21.75 2.07 1.10 6.83K 6.34K 0.69K 0.29K 7.51K 6.59K 30 of 30

Incremental D∗ Adaptive 5.0 10.40 10.80 0.89 34.97 2.07 1.10 7.35K 8.96K 2.22K 1.76K 9.55K 9.96K 30 of 30

Bi-directional RRT n/a 22.56 20.48 0.03 87.87 n/a n/a n/a n/a 286 of 300

Table 4: Experimental results on 30 scenarios for 3-DoF (x,y,heading) path planning
(weighted A∗ planner vs. non-incremental adaptive-dimensionality planner vs. adaptive-
dimensionality planner using tree-restoring weighted A∗ vs. adaptive-dimensionality plan-
ner using D∗-Lite vs. sampling-based bi-directional RRT planner). The deterministic
search-based planners were run only once on each scenario. RRT results are averaged
over 10 runs on each scenario. The reported times for RRT do not include trajectory post-
smoothing. A search was reported as successful if it took less than 60 seconds to compute
a path to the goal.

resumed the search from there, avoiding a lot of redundant computation.

7.2.2. Experimental Evaluation

We compared three implementations of the algorithm for Planning with Adaptive Dimen-

sionality: the non-incremental version of the algorithm, an incremental version using Tree-

Restoring Weighted A∗ discussed in Chapter 6, and an incremental version using D∗-Lite

planner (Koenig and Likhachev, 2002a). We also compared the three adaptive algorithms

with a 3D weighted A∗ lattice-based planner and a 3D sampling-based bi-directional RRT

planner based on the approach taken in (LaValle and Kuffner, 2001b). The RRT planner

71

Algorithm
Sub-opt. Time (s) # Iterations Time spent in planning phase
Bound mean std dev min max mean std dev mean std dev min max

Non-incremental Adaptive 5.0 22.91 15.50 6.41 48.69 2.78 0.83 15.35 13.28 2.11 40.21

Incremental A∗ Adaptive 5.0 12.03 5.67 4.96 21.75 2.78 0.83 5.16 3.30 1.42 9.75

Inremental D∗ Adaptive 5.0 17.08 10.87 5.29 34.97 2.78 0.83 10.94 8.94 1.69 27.27

Table 5: Statistical data for the 18 scenarios that required more than one iteration of
planning demonstrating the benefits of using incremental graph searches in the context of
Planning with Adaptive Dimensionality. Using tree-restoring weighted A∗ reduced the time
spent in the planning phase of the algorithm by a factor of 3.

used controllers for a non-holonomic robot with the same parameters (minimum turning

radius and nominal velocity) as the 3D transitions used by the search-based planners. We

ran all algorithms on 30 indoor environments of varying degree of difficulty (example can

be seen in Fig. 15). Most scenarios exhibited challenging features such as pronounced

heuristic local minima and narrow passages. All algorithms performed full-body collision

checking (base, torso, arms and head) to ensure that the computed paths were completely

collision-free. This is much more computationally expensive (orders of magnitude) than

collision-checking just the footprint of the robot, but is much more precise. The adaptive

planners used simpler collision checking for 2D states, treating the robot as a point and

inflating the obstacles by the robot’s inscribed circle radius.

A
vg

. S
pe

ed
-U

p
F

ac
to

r

Number of Iterations

1

2

3

4

5

1 2 3 4
0

Figure 16: Relationship between the number of iterations performed and the average
speed-up factor between non-incremental Adaptive-Dimensionality planner and incremen-
tal Adaptive-Dimensionality planner using tree-restoring weighted A∗ observed in our 30
experimental scenarios. The incremental algorithm demonstrates better speed-up as the
difficulty of the problem increases.

72

7.2.3. Analysis of Results

As seen in Table 4, both the 3D weighted A∗ lattice planner and the bi-directional RRT

planner were outperformed by the adaptive algorithms. The poor performance of the RRT

algorithm can be attributed to the many narrow passages (such as doorways and narrow

gaps between furniture) present in our test environments. A significant drawback of the bi-

directional RRT algorithm was the fact that it frequently produced highly sub-optimal paths

and paths that required the robot to drive backwards for long periods, which we consider

undesirable. The performance of the 3D weighted A∗ lattice planner was reasonable only

in a few scenarios that did not exhibit local minima of the heuristic function. We observed

that the adaptive algorithm using tree-restoring weighted A∗ performed best on average,

improving performance over the non-incremental version by a factor of 2 on average.

Table 5 compares the performance of the incremental and non-incremental versions of the

adaptive algorithm on 18 of the 30 scenarios, which required multiple search iterations to

produce a path. On scenarios that required only a single iteration of planning, all three

versions of the algorithm behaved identically, since no re-planning was needed. The adaptive

algorithm using D∗-Lite performed significantly better than the non-incremental version of

the algorithm, improving the overall planning time by a factor of 1.35. However, using

D∗-Lite seems to introduce significantly more overhead than using the simple tree-restoring

technique for incremental weighted A∗ planning. This can be explained by the fact that

D∗-Lite needs to generate both successor and predecessor states for all modified states in the

graph in order to propagate the inconsistencies in its search tree. This involves expensive

collision-checking and some book-keeping overhead. Also, in the context of Planning with

Adaptive Dimensionality, edge costs only increase when a new high-dimensional region

is added, which results in underconsistent states (g(X) < rhs(X), defined in (Koenig and

Likhachev, 2002a)) in theD∗ search. D∗-Lite propagates the consistency by expanding these

underconsistent states to make them overconsistent (g(X) > rhs(X), defined in (Koenig

and Likhachev, 2002a)), after which it may have to expand these states again to make

73

them consistent (g(X) = rhs(X)). Thus, while attempting to correct its search tree, D∗-

Lite might have to expand many states twice, which introduces significant overhead. On

the other hand, the tree-restoring weighted A∗ does not attempt to correct its search tree,

but rather quickly identifies a re-usable portion of the search tree and resumes searching

from there. In our experiments we observed that the tree-restoring weighted A∗ algorithm

needed an average of 5 milliseconds to restore itself to a valid previous search state and

resume searching. As a result, tree-restoring weighted A∗ improves the performance of the

planning phase of the algorithm for Planning with Adaptive dimensionality by a factor of

3 on average and seems to be a better incremental search alternative than D∗-Lite in this

context. As shown in Fig. 16, the performance benefit of using tree-restoring weighted A∗

increases as the difficulty of the search problem increases and more iterations are needed to

solve it, since a lot of redundant computation is avoided by using incremental search.

7.3. Interleaving Planning and Execution

7.3.1. Motivation

The iterative nature of our framework for Planning with Adaptive Dimensionality and the

fact that the tracking phase of each iteration is able to produce at least a partial trajectory

towards the goal, suggested that the algorithm can be extended to support the interleaving

of planning and execution, thus reducing the robot’s idle time while waiting for the planner

to produce a complete trajectory to the goal. A high-dimensional trajectory piece from the

robot’s current state towards the goal is available after every tracking phase. This trajectory

piece, or at least the first few actions of it, can be sent to the controller for execution, while

the planner continues to search for a complete solution. Therefore, the robot’s idle time is

reduced to the time it takes for a single iteration of the algorithm to complete and makes the

system more responsive. This motivated the following extension to our framework in order

to support interleaving planning and execution, while preserving the theoretical guarantees

of the original algorithm. The extension is general and it is not restricted to navigation

planning, but we chose this domain for our experimental evaluation.

74

7.3.2. Algorithm Extension and Implementation Details

Structurally, our algorithm interleaving Planning with Adaptive Dimensionality and exe-

cution (Algorithm 7) is very similar to our original algorithm for Planning with Adaptive

Dimensionality (Algorithm 1). It iteratively constructs and searches a graph Gad consisting

of largely low-dimensional states, and high-dimensional states are only introduced in areas

of the state-space that require high-dimensional planning to ensure the feasibility and the

cost sub-optimality bound of the resulting path.

As before, each iteration of the algorithm consists of two phases—planning and tracking. In

the planning phase Gad is searched for a path πplan of bounded sub-optimality from start to

goal (Alg. 1 Line 6, Alg. 7 Line 9). Then, in the tracking phase, a high-dimensional tunnel

τ is constructed around the path πplan produced in the planning phase. This tunnel is then

searched for a path πtrack from start to goal, which consists entirely of high-dimensional

states and transitions, and thus is feasible for execution by the robot (Alg. 1 Line 12, Alg.

7 Line 21). The cost of πtrack is checked to satisfy a sub-optimality constraint condition

(c(πtrack) ≤ ε ·c(πplan)). If the sub-optimality constraint on πtrack is not met or the tracking

phase fails to produce a path trough the tunnel τ , more high-dimensional regions are added

to Gad or existing regions are grown.

Lines 12-16 of Algorithm 7 are taken from the algorithm presented in (Zhang et al., 2012),

which are important in order to guarantee that the algorithm is complete and terminates,

provided that actions have inverses and can be undone.

At the end of each iteration of Algorithm 7, a high-dimensional trajectory piece is extracted

from the complete or partial trajectory produced by the tracking phase and is sent to the

controller for execution. The planner then advances the start state to the last state of the

produced trajectory piece and continues with the next iteration of planning. To ensure that

high-dimensional planning is done near the start state, a moving high-dimensional region

is always associated with the current start state Scurr in the current instance of Gad.

75

Next, we provide a brief overview of the important functions used by our algorithm exten-

sion.

ComputeTunnelPath(τ , Sstart, Sgoal, [tlimit]) is a forward graph search that computes a

least-cost path from Sstart to Sgoal in a tunnel τ . τ is a high-dimensional graph, subgraph of

Ghd. If the graph search is able to successfully compute a path π from start to goal, it returns

the ordered pair [π, true] indicating that a path to the goal was computed successfully. If the

search fails, it returns the ordered pair [πpartial, false], where πpartial is a path from Sstart

to the state Sfarthest—the state farthest along the tunnel τ which was expanded during the

search. false indicates that the search was unable to reach the goal and that a partial path

is returned. If a time limit tlimit is specified, anytime graph search is used to compute a

path within the allowed time.

ComputeADPath(Gad, Sstart, Sgoal, [tlimit]) is a backward A∗ graph search that com-

putes a least-cost path from Sstart to Sgoal in a hybrid graph instance Gad. A high-

dimensional region is always inserted in the current instance of Gad at the location of the

given start state Sstart. The function returns a pair [π, g], where π is a path from start to

goal (if one exists), and g is an array containing the corresponding A∗ g-values of the states

on the path π. Notice, that the g-values along the path π are representing cost-to-goal, and

thus are strictly decreasing along π. If a time limit tlimit is specified, anytime backward A∗

search is used to compute a path within the allowed time limit.

ExtractTrajectoryPiece(π, [tlimit]) is a function that, given a path π = {S1, S2, ..., Sn},

returns the largest possible high-dimensional trajectory piece πhd = {S1, ..., Si}, such that

Sk ∈ Ghd∀k = 1..i. If time limit tlimit is specified, the returned trajectory πhd is truncated,

so that its estimated execution time does not exceed tlimit.

7.3.3. Theoretical Properties

In this section, we prove the following theoretical properties of Algorithm 7.

76

Theorem 7.1 At the conclusion of every iteration i of Algorithm 7, lines 9-31 for i > 1,

one of the following conditions holds prior to the execution of line 33:

• Case 1: gi−1(Sprev) > gi(Scurr)

• Case 2: ∃S ∈ Ghd : P i−1(S) < P i(S)

• Case 3: ∃j < i such that (‖Qjc‖ < ‖Qic‖ or Gjad 6= Giad) and Sjcurr = Sicurr and

∀k = j + 1, ..., i− 1, Skcurr 6= Scurr, where Sjcurr denotes the value of Scurr right before

line 33 is executed during the j-th iteration.

• Case 4: Gi−1ad 6= Giad.

Where Gkad denotes the instance of Gad that was searched during iteration k.

Proof Assume Case 1 does not hold. Then gi−1(Sprev) ≤ gi(Scurr). We have the following

cases:

• If P i−1(Scurr) = 0, then by line 16 Scurr will be moved to Q1 and P i(Scurr) = 1 >

P i−1(Scurr). Thus, Case 2 will hold.

• Alternatively, if P i−1(Scurr) = 1, therefore Scurr has been the start state at least

once before since only start states are inserted into Q1. Let j be the most recent

iteration that started from Scurr and let gj(Scurr) be the corresponding g-value. By

line 17, glow(Scurr) ≥ gj(Scurr). Then, either ‖Qic‖ = ‖Qjc‖ or ‖Qic‖ > ‖Q
j
c‖. If

‖Qic‖ > ‖Q
j
c‖, then Case 3 holds. Alternatively, if ‖Qic‖ = ‖Qjc‖, then we can assert

that either that the graphs searched in iterations j and i were identical Gjad = Giad, or

not Gjad 6= Giad. If Gjad 6= Giad, then Case 3 holds. Else, we have gi(Scurr) = gj(Scurr),

since the graphs that were searched in iteration i and iteration j were identical and

had the same start and goal states. Since gi(Scurr) ≥ gi−1(Sprev) > gi−1(Scurr), then

glow(Scurr) > gi−1(Scurr). In this case the condition on Line 12 will hold, and a new

state will be introduced in Qc. Therefore ‖Qic‖ > ‖Q
j
c‖, which is a contradiction.

77

• Finally, if P i−1(Scurr) = 2, it indicates that Scurr is already the center of a high-

dimensional region. We also have gi−1(Sprev) > gi−1(Scurr). If a new state was added

to Q1 or Qc during iteration i, then Case 2 will hold. Let’s assume no new states

were added to Q1 and Qc, and also that Case 4 does not hold (i.e. Gi−1ad = Giad).

Since the graphs searched during iterations i − 1 and i were identical, the goal state

is the same, and the current start state Scurr was closer to goal than the previous

start Sprev according to the search in iteration i − 1, then it must be the case that

gi−1(Sprev) > gi−1(Scurr) ≥ gi(Scurr), which contradicts the assumption that Case 1

does not hold.

�

Theorem 7.2 On a finite graph, Algorithm 7 is guaranteed to reach the goal state if any

state reachable from the start has a feasible path to the goal.

Proof By theorem 7.1, through every iteration of our algorithm, at least one of four cases

hold. We will argue that each of the four cases can occur only a finite number of times on

a finite graph. This implies that our algorithm must run for a finite number of iterations

and terminate.

Case 1 states that the cost-to-goal of the current start state Scurr is strictly decreasing over

time, but it is also bounded from below by 0 and only takes integer values. Thus, Case 1

can only be true a finite number of times, before gi(Scurr) reaching 0.

Case 2 states that the priority of some high-dimensional state increased during the itera-

tion. The priority of each state can increase at most twice. As we have a finite number of

high-dimensional states N , we can increase their priority at most 2N times.

Case 3 states that if we use a state S for a second time as the current start state, then

we must have added a new high-dimensional state to Qc or the current instance of Gad

has changed since the last iteration that we used S as start state. Since we have a finite

78

number of states, we can add new states to Qc only a finite number of times. Moreover,

the instance of Gad changes either when the environment changes, or when a new high-

dimensional region is introduced. We assume that the environment changes a finite number

of times. Also, we can only introduce a finite number of high-dimensional regions before Gad

becomes identical to Ghd and stops changing. Thus, the instance of Gad can only change a

finite number of times. Therefore, Case 3 can only hold a finite number of times.

Case 4 states that the instances of Gad used in the previous iteration is different from the

current instance of Gad. As we argued above, the instance of Gad can only change a finite

number of times. Thus, Case 4 can only hold a finite number of times.

We have shown that our algorithm always terminates. Now we will argue that if any state

reachable from the start has a feasible path to the goal, then the algorithm will terminate

by reaching the goal. For the algorithm to terminate in any other way other than reaching

the goal state, it must fail to find a path from Scurr to Sgoal in the current instance of Gad

during some iteration. Assume our graph search from Scurr to Sgoal failed. Thus, Sgoal is

not reachable from Scurr. However, Scurr is reachable from Sstart, since during the previous

iterations our algorithm has produced a path from Sstart to Scurr. This contradicts our

assumption that any state reachable from the start has a feasible path to the goal. �

Observation 7.1 On a finite graph, Algorithm 7 will start producing trajectories of bounded

sub-optimality after finitely many iterations.

We leave this claim without an official proof, but we give the following argument to support

it. In order to guarantee the sub-optimality of the produced trajectory, the tracking phase

of our algorithm must complete successfully and find a path to the goal that satisfies the

sub-optimality constraint on Line 26. The two other possible results of the tracking phase

serve to identify locations along the proposed adaptive path πad, where high-dimensional

planning is needed to ensure feasibility and sub-optimality bound. At each iteration, the al-

gorithm either identifies a new location where a high-dimensional region will be introduced,

79

Figure 17: PR2 in a cluttered indoor environment.

or produces a trajectory that satisfies the sub-optimality constraint. After finitely many

iterations, sufficiently many high-dimensional regions will be introduced that the tracking

phase will find a path satisfying the sub-optimality constraint. In the worst case, πad would

go through only high-dimensional regions (no low-dimensional segments on the path), in

which case the tracking phase will be able to match πad perfectly (πτ = πad), and thus,

satisfy the sub-optimality constraint for any εtrack ≥ 1.

We also developed a time-constrained version of our algorithm for Interleaving Planning

with Adaptive Dimensionality and Execution (Algorithm 8), where the user can specify the

maximum amount of time tlim that each iteration can take, and thus, the maximum amount

of time before the next trajectory piece is computed and sent for execution. Algorithm 8

must use anytime graph searches in order to ensure timely completion of each iteration.

The same theoretical properties proven for Algorithm 7 hold for Algorithm 8, provided

that the specified time limit is sufficiently large for ComputeADPath to complete in each

iteration. If tlim is not sufficient to perform the tracking phase of an iteration (Algorithm

8, Line 23), the algorithm behaves like the algorithm presented in (Zhang et al., 2012).

80

Algorithm
Sub-optimality Planning Time (secs) Idle Time (secs) Execution Time (sec.) # Iterations Successful

Bound mean std dev min max mean std dev min max mean std dev min max mean std dev min max Plans

3D ARA* 5.0 14.0 16.3 4.8 60.0 14.0 16.3 4.8 60.0 161.8 30.1 87.5 214.1 n/a 42 of 50

Original Adaptive 5.0 9.6 10.3 1.6 39.4 9.6 10.3 1.6 39.4 128.8 32.6 83.2 257.4 2.9 2.3 1 10 50 of 50

Global/Local1 n/a 9.7 3.9 5.6 19.9 0.75 0.3 0.4 1.5 182.7 28.4 95.4 336.2 14.5 3.2 9 19 38 of 50

Global/Local2 n/a 10.2 3.2 5.8 22.4 0.82 0.3 0.4 1.7 171.3 34.2 93.7 321.5 13.8 4.1 9 18 50 of 50

Interleaving Adaptive 5.0 9.8 10.3 1.6 40.1 2.4 0.6 1.4 3.2 128.8 32.6 83.2 257.4 2.9 2.3 1 10 50 of 50

Table 6: Experimental results on 50 indoor scenarios comparing interleaving and non-
interleaving planners.

7.3.4. Experimental Evaluation

To experimentally validate our algorithm, we chose the problem of non-holonomic navigation

planning with full-body collision-checking for Willow Garage’s PR2 robot, as in Section

7.2. The task in our experiments was to navigate the robot through a cluttered indoor

environment (Fig. 17).

We ran a number of simulation experiments to compare the performance of our planner

to other similar algorithms. Each algorithm was run on 50 scenarios with varying degree

of difficulty. For each algorithm we used a heuristic computed by running a 2D Dijkstra

search. Some of the more challenging scenarios contained passages that seemed traversable

when planning in 2D, but in reality were not (“false passages“), thus exhibiting pronounced

heuristic local minima. Table 6 summarizes the simulation results we observed for each of

the planners.

7.3.5. Analysis of Results

When comparing our algorithm with a 3-DOF Anytime Repairing A* planner (3D ARA*),

we observed that our algorithm was able to achieve faster planning times and greater plan-

ning success rate. The ARA* planner failed to produce a plan within 60 seconds on 8 of

the scenarios. Since the ARA* planner did not interleave planning and execution, the robot

was idle for the entire time it took for the planner to produce a path.

We also compared our algorithm with a planner (Global/Local1) combining a local 3D plan-

ner (near the robot’s current position) and a global 2D planner. This algorithm exhibited

very low robot idle times since planning episodes completed very quickly. However, one dis-

81

advantage of this planner is that it does not provide bounds on solution cost sub-optimality

and often the planner produced highly sub-optimal trajectories that required much more

time to execute than the trajectories produced by our algorithm. Another disadvantage is

that “false passages” caused the planner to oscillate infinitely, thus failing to reach the goal

on 12 of the 50 scenarios. Moreover, since 3D planning is done only in the vicinity of the

start state, the planner can only produce a very small piece of executable trajectory at each

planning episode, thus requiring many iterations of re-planning until the goal is reached

and exhibiting high overall planning times.

The algorithm presented in (Zhang et al., 2012) (Global/Local2) exhibited performance most

similar to our planner. It was able to successfully navigate the robot to the goal in all 50

scenarios and had low robot idle times. However, it produced very sub-optimal trajectories

in scenarios with “false passages“. It navigated the robot to the “false passage” before

realizing that the passage was not traversable and finding an alternative route. In contrast,

the tracking phase of our planner was able to “look ahead“ and identify such “false passages”

much earlier than the Global/Local2 algorithm. Similarly to Global/Local1, Global/Local2

could only produce a small piece of executable trajectory at each planning episode and

required many iterations of re-planning before reaching the goal, hence the high overall

planning time.

The proposed extension to the framework for Planning with Adaptive Dimensionality allows

for faster response times of the system at the cost of possibly taking sub-optimal actions in

the early stages of the planning process. However, we have demonstrated that the extension

provides important theoretical guarantees, such as completeness and termination. Moreover,

we argue that after a finite number of planning iteration the planner will start producing

solutions of bounded cost sub-optimality.

82

Algorithm 7 Interleaving Planning with Adaptive Dimensionality and Execution

1: Gad = Gld

2: Gad = Add-HD-Region(Gad, λ(Sgoal))
3: i = 0, Qc = ∅, Q1 = ∅
4: glow(S) = 0, g0(S) =∞, ∀S
5: Sprev = Scurr = Sstart
6: loop
7: Update map with sensor data
8: i = i+ 1
9: [πiad, g

i] = ComputeADPath(Gad, Scurr, Sgoal)
10: if πiad is not found then return No path from Scurr to Sgoal exists
11: end if
12: if ∃S ∈ πiad : (S ∈ Q1) ∧ (gi(S) < glow(S)) then
13: move S from Q1 to Qc
14: Gad = Add-or-Grow-HD-Region(Gad, λ(S))
15: end if
16: if gi(Scurr) ≥ gi−1(Sprev) then
17: glow(Scurr) = max(gi(Scurr), glow(Scurr))
18: insert/update Scurr in Q1 with glow(Scurr)
19: end if
20: Construct a tunnel τ around πiad
21: [πτ , ReachedGoal] = ComputeTunnelPath(Scurr, Sgoal, τ)
22: if ReachedGoal = false then
23: Let Send be the last state on the returned partial path πτ
24: Gad = Add-or-Grow-HD-Region(Gad, λ(Send))
25: πpartial = ExtractTrajectoryPiece(πτ)
26: else if c(πτ) > εtrack · c(πiad) then
27: Identify state(s) Sr with large cost discrepancy between πiad and πτ where to insert new

HD region(s)
28: Gad = Add-or-Grow-HD-Region(Gad, Sr)
29: πpartial = ExtractTrajectoryPiece(πτ)
30: else
31: πpartial = ExtractTrajectoryPiece(πτ)
32: end if
33: Sprev = Scurr
34: Advance Scurr to last state on πpartial
35: Send πpartial to controller for execution
36: if Scurr = Sgoal then return reached the goal
37: end if
38: end loop

83

Algorithm 8 Interleaving Time-Constrained Planning with Adaptive Dimensionality and
Execution
1: Gad = Gld

2: Gad = AddFullDimRegion(Gad, λ(Sgoal))
3: i = 0, Qc = ∅, Q1 = ∅
4: glow(s) = 0, g0(s) =∞, ∀S
5: Sprev = Scurr = Sstart
6: Set iteration time limit tlim as defined by user
7: loop
8: Update map with sensor data
9: i = i+ 1

10: [πiad, g
i] = ComputeADPath(Gad, Scurr, Sgoal, tlim)

11: if πiad is not found then return No path from Scurr to Sgoal found within tlim
12: end if
13: if ∃S ∈ πiad : (S ∈ Q1) ∧ (gi(S) < glow(S)) then
14: move S from Q1 to Qc
15: Gad = AddOrGrowFullDimRegion(Gad, λ(S))
16: end if
17: if gi(Scurr) ≥ gi−1(Sprev) then
18: glow(Scurr) = max(gi(Scurr), glow(Scurr))
19: insert/update Scurr in Q1 with glow(Scurr)
20: end if
21: Let tplan be the time elapsed since the beginning of the iteration
22: Set tavailable = tlim − tplan
23: if tavailable ≤ 0 then
24: πpart. = ExtractTrajectoryPiece(πiad, tlim)
25: else
26: Construct a tunnel τ around πiad
27: [πτ , ReachedGoal] = ComputeTunnelPath(Scurr, Sgoal, τ , tavailable)
28: if ReachedGoal = false then
29: Let Send be the last state on the returned partial path πτ
30: Gad = AddOrGrowFullDimRegion(Gad, λ(Send))
31: πpartial = ExtractTrajectoryPiece(πτ , tlim)
32: else if c(πτ) > εtrack · c(πiad) then
33: Identify a state Sr where a new FullDimRegion needs to be introduced
34: Gad = AddOrGrowFullDimRegion(Gad, Sr)
35: πpartial = ExtractTrajectoryPiece(πτ , tlim)
36: else
37: πpartial = ExtractTrajectoryPiece(πτ , tlim)
38: end if
39: Sprev = Scurr
40: Advance Scurr to last state on πpartial
41: Send πpartial to controller for execution
42: if Scurr = Sgoal then return reached the goal
43: end if
44: end if
45: end loop

84

CHAPTER 8 : Application: PAD for Multi-Robot Collaborative Navigation

Robots are being utilized in an increasing number and variety of situations, which provides

many opportunities to collaborate between robots in different ways. Different robots can

provide computational or sensing resources for each other, they can act as transports,

provide communication relays, or provide other kinds of support. For these types of tasks,

the robots need to be able to generate plans that take into account the differences in

movement, sensing, and localization abilities of the team members in order to take full

advantage of the team’s capabilities.

In some scenarios, these differences within the team can be significant. Teams composed of

a ground vehicle and an aerial vehicle differ in many important ways. They have drastically

different on-station endurance times, different payload capacities (which impact the number,

types, and precision of sensors), and can traverse different types of terrain. However, these

differences can be used to make the team more capable than they are individually. For many

tasks, such as search and rescue, both the high endurance of the unmanned ground vehicle

(UGV) and the capability to traverse difficult environments typical of unmanned aerial

vehicles (UAV) are important. Thus, the robustness and effectiveness of a team of robots

can be improved significantly by leveraging the strengths of the individual members. In

this scenario, the UAV’s limited payload places limits on the sensors it can carry, while the

environment places external limitations on the availability of common localization methods

such as GPS. It is important that the planner is capable of generating trajectories that use

all of the capability of both vehicles, including the ability to gain information from each

other.

Our approach incorporates the recently developed planning framework State Lattice with

Controller-based Motion Primitives (SLC) (Butzke et al., 2014) into the framework for

Planning with Adaptive Dimensionality. SLC allows plans to incorporate multiple different

modes of localization that a robot has available along with the associated collaboration

85

constraints into a unified planning framework. Moreover, when planning for teams of robots,

the degrees of freedom of the system increase dramatically, which makes the framework for

Planning with Adaptive Dimensionality a suitable approach for such planning problems.

Our goal was to implement a planner that allows a UAV with very limited computation,

sensing, and localization capabilities to navigate to a desired location in an indoor environ-

ment, while using assistance from a ground robot that is able to accurately localize itself

within the environment. The UAV had several controllers, which allow it to autonomously

navigate certain parts of the environment without accurate localization, such as following

a wall and going around 90◦ corners. Metric motions were only available to the UAV when

it was well-localized—it had clear line of sight to the ground robot or a known landmark in

the environment. Thus, the planner needed to produce synchronized trajectories for both

robots that allowed the UAV to navigate through the environment and reach the desired

goal location.

8.1. Related Work

Collaborative localization has been a goal of robotics research for many years (Fox et al.,

1999). A lot of this work has been directed at making the detection of the other robots of

a team more reliable and accurate (De Silva et al., 2012), even for chains of robots, where

the farthest ones have no direct knowledge or sensor measurements regarding any known

landmarks, and instead, must rely entirely on their neighboring robots (Wanasinghe et al.,

2014). Other approaches have focused on the sensor data integration (data fusion), ensuring

that the data is used more effectively (Song et al., 2008). Our approach keeps the localization

scheme simple, we used fiducial markers and a simple camera to determine the estimated

relative pose of the UGV from the UAV. Then, using the strong localization capabilities of

the UGV and the relative position of the UAV, we can compute an accurate estimate of the

position of the UAV in the environment. While we did not use these advanced data fusion

techniques in this work, our algorithm is capable of incorporating this improved data into

its planning framework.

86

With the recent increase in the availability of small, low cost UAV’s, in particular easy

to use quadcopters, more research effort has been directed at teams of air-ground robots

(Lacroix and Le Besnerais, 2011) including work on exploration (Burgard et al., 2005), and

collaborative localization between the team members (Rekleitis et al., 2001). Communica-

tion in a variety of forms has been the focus of several works in this area (Viguria et al.,

2010; Vaughan et al., 2000), although frequently these include high-quality localization of

all robots, including the use of GPS on both the UGV and UAV’s, even with vision augmen-

tation (Grocholsky et al., 2006). However, some approaches rely purely on well-localized

UGV’s (Li et al., 2011), forcing the UAV to update its position estimate only by visually

extracting the pose of the UGV. Our work differs from these approaches by incorporating

the collaborative localization element into a larger planning framework.

An in-depth look at multi-robot localization and planning for air-ground teams of robots is

found in (Peasgood, 2007). In this work, the planner uses a simplified topological approach

to planning and is not sufficient to be used directly by the UGV and UAV for navigation

through a complex 3-dimensional environment.

The state lattice with controller-based motion primitive planner allows the execution of

controllers similar to the sequential composition of controller approaches (Burridge et al.,

1999; Conner et al., 2011; Kallem et al., 2011). The SLC planner also includes the func-

tionality of switching between controllers based on external perceptual triggers similar to

the Linear Temporal Logics (Kress-Gazit et al., 2007).

The key feature that distinguishes our work from the prior work in this domain is that we

include the collaborative localization element directly in our planning process. This allows

the robots to go on separate trajectories and only meet up when required rather than travel

in a fixed formation or conversely, operate completely independently.

87

8.2. State Lattice with Controller-based Motion Primitives

In this section, we provide a very brief overview of the State Lattice with Controller-based

Motion Primitives algorithm. We refer the reader to (Butzke et al., 2014) for a detailed

algorithm analysis.

A state lattice-based planner uses a regular lattice constructed from motion primitives to

form the search graph, G = (S, E). In a typical planner, the edges, E , are formed by

applying fixed motion primitives at each state, s ∈ S. These motion primitives are usually

short pre-computed trajectories, which carry the implicit assumption that the robot has

sufficient localization capabilities to be able to execute the motion and to determine the

stopping point. However, in cases that this does not hold true, we can instead turn to

controller-based motion primitives. By adding additional directed edges to the search graph

based on forward simulating different types of controllers, the planner is capable of finding

trajectories through areas that are impassable using only metric-based motion primitives.

These controller-based motions rely solely on the capabilities of the controller, independent

of the robots ability to localize. For example, a wall following controller may not, at any

point during its trajectory, know where in the environment it is with any degree of precision,

however, by executing this controller to its natural stopping point—the end of the wall—

the robot ends up in a known (and repeatable) position. Thus, the SLC planner (Butzke

et al., 2014) adds additional directed edges to the graph, which correspond to executing a

controller c from a given set of controllers C, at a given starting state. These new edges

are formed by forward simulating the desired controller from a given state, si, in order to

determine the end state, sj , and thus forming a new edge, e(si, sj), which is added to the

set of states in the search graph.

Formally, SLC requires three functions to be defined to generate the graph G, C(s), T(c),

and Φ(s, c, τ). The first function, C(s) defines the available controllers at a given state,

s ∈ S:

C(s) : S → P(C)

88

The result is a set of available controllers, C , from the powerset of all controllers, P(C), i.e.

C(s) provides all of the controllers which can be executed at state s. These controllers can

be simple, such as a wall following controller using two range measurements, or complex,

such as a full visual odometry system to navigate to a particular key-frame.

The SLC algorithm also allows controllers to be stopped in the middle of execution through

the use of perceptual triggers. A trigger can be setup to halt a controller based on any

perceptual signal, such as sighting a new landmark. In addition, each controller has an

intrinsic trigger that is the default stopping point for that controller. For example, a wall

following controller has an intrinsic trigger that stops execution when the robot reaches the

end of the wall. An example of various controllers and triggers is shown in Fig. 18.

The second required function maps the controllers onto available triggers:

T(c) : C → P(T)

returning a set of available triggers, T , based on the given controller, c ∈ C. T is the set

of all triggers available to the robot.

The last required function is the actual controller logic defined as:

Φ(s, c, τ) : S × C(s)× T(c)→ S

For a given state s, an allowable controller c for that state, and an allowable trigger τ for

that controller, function Φ simulates the execution of the controller c starting at state s

until either trigger τ or an intrinsic trigger is detected (whichever comes first). The resulting

state s′ is returned by the function.

The problem is thus formally a 6-tuple,

G = {S, C, T ,C(·),T(·),Φ(·, ·, ·)}

89

A

C B

D

(a)

A

S

B

C

D

(fR, oL)

(fR, End)

(fL
, E

nd
)

(f
L,

 E
nd

)

(fR
, E

nd)

(fR, End)

(fL
, E

nd
)

(b)

Figure 18: (a) Environment and (b) segment of graph G based on con-
trollers C = {FollowLeftWall(fL),FollowRightWall(fR)} and triggers T =
{Completion(End),OpeningLeft(oL), OpeningRight(oR)}.

used to produce the graph, G. Further details on the algorithm can be found in (Butzke

et al., 2014).

As an example, suppose we are given a set of controllers

C = {FollowLeftWall,FollowRightWall}

with an intrinsic trigger of Completion corresponding to the end of the wall, and a set of

extrinsic triggers T = {OpeningLeft,OpeningRight}. Given an example environment

as shown in Fig. 8.18(a) we can see how the graph, G, is constructed in Fig. 8.18(b).

Consider a state S, indicated by the square in the lower right corner and suppose both

controllers are available at S. From state S there is an edge to A corresponding to the

controller FollowLeftWall, fL, and trigger Completion, End, as shown in the portion

of G. Likewise, with controller FollowRightWall, fR, and trigger End, the edge goes

from S to D. However, if the trigger were OpeningLeft, oL, then the edge would have

been from S to C. Note, it is possible for multiple controller/trigger combinations to connect

two nodes. For example, B → C is formed by the (fL,End) pair in the graph, however

B → C is also connected by the pair (fR, oL) (which is not depicted).

90

8.3. Implementation Details

A free flying aerial robot has six degrees of freedom—〈x, y, z, heading, roll,pitch〉. However,

planning is typically done in a 4-dimensional space—〈x, y, z, heading〉—allowing the under-

lying controller full control over the roll and pitch of the UAV in order to maintain safe flight.

For this application, the state-space for the UAV was defined by 〈x, y, z, controller type〉,

where controller type denoted one of the available UAV controllers for the particular state.

The heading of the UAV was intrinsically computed based on the controller type. For ex-

ample, for WallFollowing controllers, the heading was kept parallel to the direction of

the wall, while for GoToLandmark controllers, the heading was kept facing the landmark.

The ground vehicle, on the other hand, has 3 positional degrees of freedom—〈x, y,heading〉.

Thus, the overall state-space has a total of 7 degrees of freedom—4 for the UAV and 3 for

the UGV.

The heuristic for the UAV was computed using 3D BFS search from the 〈x, y, z〉 position

of the goal state on an 26-connected 3D grid accounting for obstacles. The heuristic was

not perfect as did not account for the orientation of the robot or its perimeter shape. Thus,

some scenarios exhibited pronounced heuristic local minima.

8.3.1. Controllers and Triggers Implemented for Ground-Air Teams

In order to use the SLC planner, a set of available controllers and triggers were con-

structed. For the UAV, we implemented WallFollowing, GoToLandmark, Met-

ricTurn, MetricStep, and GoAroundCorner controllers. The GoAroundCorner

controller was specified in terms of the two metric controllers, MetricTurn and Metric-

Step: GoAroundCorner = MetricStep(0.5m) → MetricTurn(±90◦) → Metric-

Step(1.0m). The UGV had high-quality localization data from its two scanning laser range

finders and was only given a MetricMotion controller.

Since the UAV does have an IMU and optical flow system there are locations within the

environment that it is capable of generating short range metric motions. We used two such

91

motions, an ability to yaw to a desired heading (MetricTurn), and the ability to move a

set distance forward (MetricStep). The accuracy of the IMU and optical flow system did

not allow for continuous metric motion without receiving some external sensor information.

These metric motions were only available to the UAV when it was well-localized within the

environment—within line-of-sight of the UGV or a known landmark. Thus, the drift in the

IMU and visual odometry could be corrected by using the accurate localization estimate

provided by the landmarks or the UGV. The only exception was the GoAroundCorner

controller, which exercised those metric motions for a very limited time.

We used two different instantiations of the GoToLandmark controller for our implemen-

tation. The first, (GoToLandmarkStat), used static landmarks in the environment that

the UAV could detect with its on-board camera system and, knowing the position and ori-

entation of the landmark, could determine its own position within the environment. The

second controller (GoToLandmarkDyn) used fiducial markers on the ground robot for the

same purpose. These were the only controllers that could compute an accurate localiza-

tion estimate for the UAV and allowed it to execute precise metric motions. Thus, these

controllers allowed the UAV to execute actions, such as move to a target 〈x, y, z〉 loca-

tion. However they did require the corresponding landmark or the ground vehicle to remain

within line-of-sight throughout the metric motion being used.

The WallFollowing controller on the UAV used two IR range sensors mounted on each

side of the UAV in order to maintain a flight path parallel to, and a specified distance from,

any given wall in the environment. It was given the ability to trigger when the wall ended

(Completion) and when an obstacle was within a certain distance of the front or back of

the UAV (Obstacle).

8.3.2. Planning with Adaptive Dimensionality for Ground-Air Teams

The full-dimensional system state was represented by 7-dimensional state-vectors:

〈(x, y, z, controller type)uav, (x, y,heading)ugv〉

92

The transitions available for each state consisted of pre-computed motion primitives (metric

motions) for both vehicles, and state-lattice controller actions for the aerial vehicle. The

cost of each transition was proportional to the cumulative distance traveled by each vehi-

cle during the transition. The roll and pitch of the UAV were derived variables and were

calculated by the controllers in order to maintain a desired nominal velocity and follow the

desired trajectory points. As mentioned previously, the heading of the aerial vehicle was

also not a free variable and was determined by the specific controller used in a transition.

For example, when executing a WallFollowing transition, the heading is kept parallel

to the direction of the wall, and for transitions using the ground vehicle for localization

(GoToLandmarkDyn), the heading is kept facing the ground vehicle. We assumed that

in many areas of the environment the aerial vehicle is capable of autonomous navigation by

using the state-lattice controllers (following walls or going around corners, for example), and

the localization assistance of the ground vehicle is needed only in rare occasions, when no

state-lattice controllers are available to the UAV and metric motions need to be performed.

Thus, the low-dimensional representation of the system used for Planning with Adaptive Di-

mensionality was a 4-dimensional state-vector 〈x, y, z, controller type〉uav, only considering

the position of the aerial vehicle and its available controllers. For low-dimensional states, we

allowed metric motions to be executed at any point, since such states did not have informa-

tion about the location of the UGV. In other words, for low-dimensional regions, we assumed

that the UGV is in a location that allows the UAV to localize using GoToLandmarkDyn

controller. The costs of transitions in the low-dimensional space satisfies 4.1 as only the

cost of moving the aerial vehicle is considered and the restriction of using metric motions

was relaxed. High-dimensional regions are introduced in the hybrid graph only in areas

of the environment where ground vehicle localization assistance is needed and the planner

needs to consider how to navigate the ground vehicle to an appropriate location to provide

localization assistance.

The goal was specified only in terms of desired position for the UAV and a tolerance radius.

The ground vehicle had no desired goal position and moved only when it had to provide

93

(a) Start and goal configurations (b) Adaptive planning phase path and tunnel around
it

(c) Tracking phase path (final solution) (d) Heuristic problem for full-dimensional planner

Figure 19: Simple example of SLC Planning with Adaptive Dimensionality for navigation
and collaborative localization for a UAV and UGV (a)-(c). Heuristic problems when using
full-dimensional planner—no guidance for the UGV (d)

assistance to the UAV. In scenarios when the UAV could navigate completely autonomously

to the goal, the UGV did not move at all, thus incurring no movement cost. The challenge of

performing full-dimensional search for this planning problem is that no heuristic is available

to guide the ground robot, since the locations that the UAV might require localization

assistance is not known a priori, and the lower bound on the cost of moving the UGV in

this case is 0.

An example of a planning scenario is shown in Fig. 19. Figure 8.19(a) shows the start

configurations for both the UAV and UGV in red, and the target goal location for the

UAV. It also shows the high-dimensional regions around the UAV start and goal locations.

During the adaptive planning phase (Fig. 8.19(b)) the planner only considers the UGV

location for states within the high-dimensional regions and computes a path for the UAV

94

following the walls of the first hallway, making a left turn around the corner, then following

the walls of the second hallway until the end. Then, since metric motions are allowed for

low-dimensional states without enforcing localization constraints, the planner uses metric

motions to move from the end of the second hallway to the goal location. Figure 8.19(b)

also shows the high-dimensional tunnel (red shaded areas) constructed around the path

found in the adaptive planning phase. Figure 8.19(c) shows the trajectory for both robots

computed by a successful completion of the tracking phase. The trajectory for the UAV is

almost identical to the one computed in the adaptive planning phase, navigating the UAV

to the end of the second hallway using the WallFollowing and GoAroundCorner

controllers. However, since localization constraints are enforced during the full-dimensional

tracking phase, the UAV is unable to proceed on its own and requires the UGV to move to a

location within line-of-sight in order to be able to execute the metric motion required to get

to the goal location. Thus, the planner computes a corresponding trajectory for the UGV

that allows the UAV to localize and get to the goal. This scenario was fairly easy for the

adaptive planner, requiring less than 10 seconds to solve with a final sub-optimality bound

of ε = 1.16. A full-dimensional planner, on the other hand, is unable to solve the scenario

within 180 seconds. The problem that a full-dimensional planner runs into is illustrated

in Fig. 8.19(d). The full-dimensional planner is able to quickly find a path to the end of

the second hallway by following the heuristic for the UAV guiding it to the goal location.

However, once the UAV is no longer able to proceed autonomously and requires the UGV’s

assistance, the planner gets “stuck” trying to figure out a way of moving the UGV without

a heuristic to guide it. As we mentioned previously, it is difficult to find an admissible

(optimistic) heuristic that is able to guide the UGV, since in the best case the UAV can get

to the goal completely autonomously and the cost of moving the UGV is 0.

In the case of Planning with Adaptive Dimensionality, we can actually leverage information

from the path computed during the adaptive planning phase to compute an admissible

heuristic for the UGV for the tracking phase. The path of the adaptive planning phase

tells us exactly where the UAV begins to use metric motions under the assumption that

95

(a) (b)

Figure 20: (a) Segway-based unmanned ground vehicle (2 scanning laser range finders,
high gain antenna, webcam, high computational capabilities, high-capacity battery). (b)
Pixhawk-based quadcopter unmanned aerial vehicle (low-grade IMU, barometric altimeter,
laser altimeter, 6 IR range sensors, standard webcam, low-capacity battery, low computa-
tional capabilities).

the UGV will be there to help it localize. Thus, we know all the intermediate waypoints

that the UGV will have to navigate to in order to help with localization. In other words,

we know if and where the UGV will be needed for assistance before we begin our full-

dimensional tracking search. For example, in Fig. 19, we know that the final part of the

UAV’s path (from the end of the second hallway to the goal location) is comprised of metric

motions that require the UGV to be within line-of-sight. We compute all UGV locations

(x, y) in discrete coordinates that are within line-of-sight of the UAV’s location at the end

of the second hallway (right before metric motions are needed) and we use those locations

as goals for computing a multi-goal heuristic using 2D Dijkstra’s grid search accounting for

obstacles. Thus, during the tracking phase we are able to use this heuristic to guide the

search on how to navigate the UGV to the location where localization assistance is needed.

96

8.4. Experimental Setup

8.4.1. Robots

For our testing we used two robots: a Pixhawk/DJI-based aerial robot (Fig. 8.20(a)), and

a Segway-based ground robot (Fig. 8.20(b)).

The UGV is a relatively large indoor robot with a significant payload capacity and high

endurance. With a normal operating load, Melvin is capable of operating for 3+ hours

running two independent computer systems, and carrying all required communications in-

frastructure. The first computer system is used as the low level controller and consists of an

Intel Core i3 3.4GHz processor with 8GB of RAM. This system is used for all navigation,

sensing, and interfacing with the Segway base. The second system is a general purpose

computer equipped with an Intel Xeon processor with 8 physical cores and 16GB of RAM.

The planner and plan execution agent both ran on this computer. Due to the limited on-

board processing of the UAV, video from the webcam was streamed to the UGV, which ran

all the necessary image processing to perform landmark detection. In order to increase the

battery life of the UAV, all of the mid-level controllers (the wall following controller, the

metric motion controllers, and the landmark controllers) also ran on the UGV computers,

and commands were sent to the UAV on-board low-level controller over the network. The

UGV is also equipped with two Hokuyo scanning laser sensors mounted on tilt mounts for

a full 3-dimensional scanning capability, and a web camera for visual sensing. To assist the

UAV with collaborative localization, the UGV has a bundle of six AR markers arranged in

a horizontally aligned hexagon, so that the UAV can detect and accurately determine the

position and orientation of the UGV from any direction, even in the presence of some low

obstacles.

Unlike the UGV, the UAV is very limited in terms of sensing and computing power. The

airframe itself is a DJI Flamewheel 450 with a Pixhawk flight control computer and an

ODROID XU3 supplemental computer. A standard web camera is used for landmark

97

detection, while 6 Sharp IR sensors with 1.5m range are arranged around the perimeter

to provide obstacle detection and wall following capabilities. The ODROID captures the

images and transmits them to the UGV for processing, then receives the output from

the mid-level controllers and translates them into the required format for the Pixhawk to

execute.

8.4.2. Environment

Our test environments are meant to replicate a standard indoor office environment (see Fig.

21). We used one area that consisted of two large conference rooms, an outdoor patio area,

and a few hallways with small offices. The other test area was comprised of a cluster of

cubicles, boxes, equipment, and office furniture in half the area, while the other half is a

set of featureless hallways. For our experiments, we restricted the UGV to operate only in

the room portions of the environments by placing obstacles at each hallway entrance. The

UAV was free to operate throughout the map with different areas performing better with

different controllers. For example, since the hallways had no features and the UGV was

unable to enter them, the GoToLandmark controllers were not usable (for both static

and dynamic landmarks). On the other hand, the crowded, erratically configured cubicle

area did not feature many navigable straight walls.

To test our planners performance in real-world scenarios, we randomly selected start and

goal points throughout the environment for the UAV and start points only for the UGV.

This allowed us to construct plans where the two robots started near each other but allowed

the UAV to operate independently if required. The planner would allow the UGV to move

as necessary to support the UAV motion to get to the goal.

The cost function used for these experiments was proportional to the time and distance

traversed for each motion.

98

(a) Conference Rooms and Patio (b) Cubicles and Hallways

Figure 21: Maps of two testing environments.

Algorithm
Planning Time (s) Num. Iter. Num. Expansions Path Cost Final Eps. Success Rate (%)

Avg. Std. Dev. Min Max Avg. Avg. Avg. Avg. @3min

Adaptive MR SLC 20.05 22.00 1.19 91.58 1.59 7348 24401 1.36 100

Full-D ARA? MR SLC 9.37 20.32 0.08 128.04 n/a 1385 23960 1.30 82

Table 7: Experimental results comparing the adaptive multi-robot SLC planner and a
full-dimensional ARA? multi-robot SLC planner on 50 randomly generated start/goal con-
figuration on map 1 (Fig. 8.21(a)). The results shown are for the 41 trials completed by
both planners.

8.5. Analysis of Results

Overall the system was able to generate plans that would not be solvable without using

the controller-based motion primitives due to the lack of an adequate localization capa-

bility of the UAV operating alone. In addition, the adaptive planner played a key role

in making these plans computationally feasible given the high dimensionality of the com-

bined state space. Moreover, using Planning with Adaptive Dimensionality significantly

increased the number and difficulty of the scenarios that could be solved when compared

to full-dimensional planning. Planning times for 50 randomly generated start-goal pairs

on each of the two indoor environments are shown in Table 8.5 and Table 8.5 respectively.

The performance of our collaborative localization algorithm (labeled Adaptive MR SLC)

99

Algorithm
Planning Time (s) Num. Iter. Num. Expansions Path Cost Final Eps. Success Rate (%)

Avg. Std. Dev. Min Max Avg. Avg. Avg. Avg. @3min

Adaptive MR SLC 12.74 9.95 1.19 40.00 1.26 2736 36112 1.31 100

Full-D ARA? MR SLC 12.33 22.23 0.01 88.65 n/a 960 38083 1.38 38

Table 8: Experimental results comparing the adaptive multi-robot SLC planner and a
full-dimensional ARA? multi-robot SLC planner on 50 randomly generated start/goal con-
figuration on map 2 (Fig. 8.21(b)). The results shown are for the 19 trials completed by
both planners.

is compared against a full-dimensional ARA? algorithm using SLC Ṫhe results shown in

the tables are averaged over the scenarios that both planners were able to solve success-

fully. The full-dimensional ARA? planner was unable to solve the most difficult scenarios

within 180s, which was considered a planning failure, whereas the maximum time that our

approach took to solve a scenario was 125.32s.

100

CHAPTER 9 : Application: PAD for Manipulation

In this section we discuss extensions to the framework for Planning with Adaptive Dimen-

sionality and experimental results in the domain of planning for a robotic manipulator.

9.1. Using 3D Low-Dimensional Representation

The results reported in this section were originally published in our work (Gochev et al.,

2011) presented at the Symposium on Combinatorial Search (SoCS 2011).

9.1.1. Implementation Details

In our initial application of Planning with Adaptive Dimensionality to planning for a robotic

manipulator, we chose to use a low-dimensional representation with 3 dimensions—(x,y,z)

position of the manipulator’s end-effector. Our testing platform was Willow Garage’s PR2

robot. We used a 7D/3D adaptive planning, where 3D states represented the arm’s end-

effector position in 3D, and 7D states represented the full arm configuration. Generally,

the full arm configuration on the PR2 robot is given by its seven joint angles (shoulder

pan, shoulder lift, shoulder roll, elbow flex, forearm roll, wrist flex, wrist roll) (Fig. 22).

Constructing a λ mapping reducing full joint angle configuration to end effector position

presented several challenges—namely discretization of the joint angle space could not be

easily matched to a discretization of the end-effector position space, and λ and λ−1 would

have needed to involve expensive FK and IK computations. Instead, we decided to transform

the standard 7D robot arm configuration representation to one described in (Tolani et al.,

2000), which converts joint angles representations of a 7 DOF arm to 7 DOF representations

consisting of the following values: (end-effector x position, end-effector y position, end-

effector z position, end-effector roll, end-effector pitch, end-effector yaw, swivel angle). We

are going to adopt the following short-hand notation for describing such states: (eeposition,

eeorientation, swivel), where eeposition and eeorientation consist of 3 values each. For more

details on the representation, consult (Tolani et al., 2000). This alternative representation

101

Figure 22: The degrees of freedom of the right arm of a PR2 robot: (1) shoulder pan, (2)
shoulder lift, (3) shoulder roll, (4) elbow flex, (5) forearm roll, (6) wrist flex, (7) wrist roll.

of the full arm configuration did not change the dimensionality of the high-dimensional

state-space, but provided clean and easy λ and λ−1 mappings without any dicretization

inconsistencies.

λ7D/3D(eeposition, eeorientation, swivel) = (eeposition)

λ−17D/3D(eeposition) = {(eeposition, eeorientation, swivel)|

for all feasible values of swivel and eeorientation}

We used very simple motion primitives for the 7D arm motion planning—namely we allow

±1 change in each of the seven discretized state-vector values. This produces 14 possible

transitions for 7D states and 6 possible transitions for 3D states. Due to the simplicity of

the motion primitives, the resulting arm trajectories were not very smooth, but applying

simple short-cutting and interpolation produced satisfactory results.

We chose a 2cm 3D grid resolution for the end-effector position, and 16-discretized values for

the four angles. This produced a 3D grid of 75x75x75, or roughly 420,000 low-dimensional

states, centered at the shoulder joint. In each cell of the grid we have 164 ∼ 65, 000 possible

high-dimensional states, giving us a total of about 28 billion states in the high-dimensional

state-space.

102

Figure 23: Examples of environments used in simulation: table-top, shelf, bookcase, cuboid
obstacles

In this evaluation, the adaptive planner used the non-incremental weighted A* search for

both its adaptive planning and tracking phases, planning from scratch at each iteration, as

these results precede the development of the Tree-Restoring Weighted A* algorithm.

9.1.2. Experimental Evaluation

We compared the adaptive planning algorithm against a full 7D weighted A* planning

algorithm on 35 environments. Environments ranged in degree of difficulty—some required

very simple motions to navigate from start to goal, while others were more cluttered and

required a set of complex maneuvers to navigate around the obstacles. Some of the types

of environments we used included various table tops, bookshelves, and random cuboid

obstacles (Fig. 23). Both the adaptive and the 7D algorithm utilized a 3D Dijkstra heuristic

to guide the planners to the goal position constraint of the end-effector. We treated the end-

effector as a point robot of radius equal to the radius of the largest link of the arm. More

sophisticated collision checking and enforcing of joint limits were done on high-dimensional

states.

We observed that new sphere radius parameter value of about 10cm allows sufficient arm

maneuvering. Also tunnel radius of 10-20cm provides a good balance between the success

rate of the tracking phase and the time needed for tracking a path. Since we have a large

number of high-dimensional states, we imposed time limits on both the adaptive planning

phase and the tracking phase. The time limit we used for the adaptive planning phase

103

was 120 seconds. If the limit was reached the adaptive planning failed and the algorithm

terminated, reporting that no path from start to goal could be found in the given time limit.

Due to the number of states inside the tunnel τ even with a small radius, the tracking search

might take a long time to find a path through the tunnel or fail. It becomes impractical to

wait long for tracking to fail before starting a new iteration, thus, we limited the time for

the tracking phase to 20 seconds, allowing us to proceed to the next iteration more quickly.

We also compared our adaptive planner with a sampling-based planner—RRT (LaValle and

Kuffner, 2001a)—in the 7DOF robot-arm setting. Although our algorithm could not match

the speed of RRT, the consistency of our planner was significantly better—it produced very

similar trajectories for similar start/goal configurations within an environment.

We used the following experimental setup for measuring the consistency of the planners.

We picked a random table-top environment in which the goal is to maneuver the robotic

arm from under to over a table-top. We created 10 scenarios with similar (but not the

same) start and goal configurations in that environment. We ran both the adaptive planner

and the RRT planner on these scenarios. To measure the consistency between a pair of

arm trajectories produced by a planner, we measured the average and maximum distances

between end-effector positions along the trajectories and also the average and maximum

distances between elbow positions along the trajectories. We calculated the consistency

between all (45) pairs of the 10 trajectories produced by our planner and compared it with

the consistency between all (45) pairs of the 10 RRT trajectories (we compared with both

RRT with post-smoothing and RRT without smoothing; smoothing operations included

short-cutting and quintic spline smoothing).

9.1.3. Analysis of Results

We compared the total number of states expanded, number of high-dimensional states

expanded, final path cost, and execution time of the adaptive planner compared to the

high-dimensional planner, for each of the environments tested. Our results are summarized

104

Figure 24: Trajectory from Fig. 7 being executed by an actual PR2 robot

Algorithm
Sub-optimality Time (secs) # Iterations # 7D Expands # 3D Expands Total Expands Path Cost Successful

Bound mean std dev mean max mean std dev mean std dev mean std dev mean std dev Plans

7D 2.0 147.88 59.93 n/a 769743 1103939 n/a 769743 1103939 63417 18088 12 of 35

adaptive 2.0 14.42 41.95 1.31 6.0 47419 151391 33219 189870 79689 244112 72656 17000 33 of 35

7D 5.0 10.63 15.66 n/a 46529 65586 n/a 46529 65586 73344 19092 31 of 35

adaptive 5.0 5.23 10.45 1.06 2.0 23877 45427 113 40 23986 45439 75400 18839 34 of 35

Table 9: Testing results on 35 environments for 7D motion planning on robotic arm.
Adaptive 7D/3D planner vs. 7D weighted A* planner.

in Table 9.

In the case of 7D motion planning on a robotic arm, we noticed results similar to those

obtained in the 3D path planning experiments discussed in Section 7.1. For simple envi-

ronments where the 3D Dijkstra heuristic provides good guidance to the goal and for high

ε plan values, 7D planning is able to quickly identify a path from start to goal satisfying

the sub-optimality constraint, without having to expand many states. However, in cases of

complex environments, where the heuristic fails to provide good guidance to the goal, or for

lower sub-optimality bounds the adaptive planner performs significantly faster. As seen in

Table 9, adaptive planning is able to achieve about two times speedup on the average over

seven-dimensional planning for sub-optimality bound of 5.0, and about ten times speedup

for sub-optimality bound of 2.0. We ran our algorithm with several sets of parameter values.

It is interesting to note that increasing the tracking tunnel radius by a factor of 2 results

in about 4 times increase in the average number of 7D states expanded during tracking,

and thus, about 4 times increase in the average planning time (19.59s). On the other hand,

decreasing the tracking tunnel radius by a factor of 2 results in increased number of algo-

rithm iterations on some of the more cluttered environments, slightly increasing the average

planning time (7.66s).

105

Algorithm
End-effector distance Elbow distance

between a pair of trajectories between a pair of trajectories
Avg. Max. Avg. Max.

RRT (smoothed) 8.2 cm 27.5 cm 6.6 cm 18.0 cm

RRT (not smoothed) 9.7 cm 28.8 cm 6.5 cm 17.9 cm

Adaptive 2.5 cm 7.7 cm 2.2 cm 7.9 cm

Table 10: Trajectory consistency comparison between an adaptive planner and an RRT
planner for 7-DOF robotic arm motion planning.

Table 10 shows the maximum and average end-effector and elbow distances averaged over

the 45 pairwise comparisons of the 10 trajectories for the adaptive and RRT planners. We

observed that the key points of the arm we measured (end-effector and elbow) followed

much more consistent and predictable trajectories for the paths produced by the adaptive

planner than those produced by the RRT planner, even when short-cutting and smoothing

were applied.

9.2. Using 4D Low-Dimensional Representation for Manipulators with Independent

Wrist Joints

The results reported in this section were originally published in our work (Gochev et al.,

2014) presented at the IEEE International Conference on Robotics and Automation (ICRA

2014).

We considered the motion planning problem for robotic manipulators whose joints can be

controlled independently from the configuration of the rest of the arm. We developed an

extension to the framework for Planning with Adaptive Dimensionality that considerably

improves the performance of the algorithm in the context of planning for manipulators with

independent wrist joints. Our approach subdivides the original high-dimensional planning

problem into two lower-dimensional problems—planning for the main arm joints, and plan-

ning for the wrist joints.

Our high-dimensional state-space Shd is defined by the full arm configuration. We consider

a lower-dimensional state-space Sld, which only considers the main arm joints, disregarding

the degrees of freedom of the wrist. As before, each iteration of our algorithm consists of

106

two phases: adaptive planning and tracking.

In the planning phase, the current instance of Gad is searched for a path π
εplan
Gad

(XS , XG),

which is of cost no greater than εplan times the optimal path cost from start to goal in Gad.

The planning phase, in effect, solves the first sub-problem of our high-dimensional planning

problem, by providing a trajectory for the main arm angles only. The trajectory contains

wrist information only for segments of the path that go through high-dimensional regions

of Gad.

The tracking phase then needs to solve the second sub-problem—planning for the wrist—

and provide a feasible, collision-free fully high-dimensional trajectory for the manipulator

from start to goal. In (Gochev et al., 2014) we proposed two approaches for extending

and speeding up the tracking phase of the algorithm, which are based on the fact that the

wrist degrees of freedom can be controlled independently of the rest of the arm. Thus, the

tracking phase now consists of 3 steps (Alg. 9).

9.2.1. Algorithm Extension: Interpolation

Consider an adaptive path πad = S1, S2, ...Sn computed by the adaptive planning phase

of the current iteration of the algorithm. As Gad is a hybrid graph consisting of both

low- and high-dimensional states, πad is a path that also consists of both low- and high-

dimensional states. Also S1 and Sn are the start XS and goal XG states, respectively, and

are always high-dimensional states. Without loss of generality, let πld = Si, Si+1, ..., Si+k be

a segment of πad containing only low-dimensional states, such that the state Si−1 preceding

the segment, and the state Si+k+1 following the segment are high-dimensional states. Thus,

we know the desired wrist joint coordinates at the beginning and at the end of πld, but

we do not have information about the wrist joint coordinates throughout πld. Then we

can interpolate between the two desired wrist joint coordinates to compute wrist joint

coordinates for each of the low-D states on the segment πld. If we use such interpolation

for every low-D segment along the adaptive path πad, we can convert the adaptive path to

107

Algorithm 9 Manipulation Planning with Adaptive Dimensionality for Independent Wrist
Joints
1: Gad = Gld

2: Add-HD-Region(Gad, λ(XS))
3: Add-HD-Region(Gad, λ(XG))
4: loop
5: . Adaptive Planning Phase
6: search Gad for least-cost path π∗

ad(XS , XG)
7: if π∗

ad(XS , XG) is not found then
8: return no path from XS to XG exists
9: end if

10: . Tracking Phase
11: . 1. Interpolation
12: πinterp = ComputeInterpolatedPath(π∗

ad)
13: if interp. success and c(πinterp) ≤ ε track · c(π∗

ad) then
14: return πinterp
15: end if
16: . 2. Planning for the wrist joints
17: πHD = PlanForWristJoints(π∗

ad)
18: if wrist plan success and c(πHD) ≤ ε track · c(π∗

ad) then
19: return πHD
20: end if
21: . 3. High-dimensional tracking
22: construct a tunnel τ around π∗

ad(XS , XG)
23: search τ for least-cost path π∗

τ (XS , XG)
24: if π∗

τ (XS , XG) is not found then
25: find state(s) Xr where to insert new HD region(s)
26: Add-or-Grow-HD-Region(Gad, Xr)
27: else if c(π∗

τ (XS , XG)) > ε track · c(π∗
ad(XS , XG)) then

28: find state(s) Xr where to insert new HD region(s)
29: Add-or-Grow-HD-Region(Gad, Xr)
30: else
31: return π∗

τ (XS , XG)
32: end if
33: end loop

a fully high-dimensional path πinterp (Alg. 9, Line 12). The use of interpolation is feasible

only if the degrees of freedom of the wrist can be controlled independently from the other

joint angles in the arm, otherwise the wrist trajectory generated by interpolation might

not be feasible for execution by the manipulator. If πinterp is collision-free and satisfies the

joint limit constraints, and moreover, its cost satisfies the sub-optimality bound criteria

c(πinterp) ≤ εtrack · c(πad), then πinterp is a valid high-dimensional path that satisfies the

desired sub-optimality bound c(πinterp) ≤ εplan ·εtrack ·π∗Ghd . Thus, we can stop planning and

return πinterp as a valid plan. If the interpolation step fails to produce a feasible collision-

108

Figure 25: Trajectory computed for the 4 main arm angles during the adaptive planning
phase (left) and the resulting 7-DoF trajectory after successful planning for the wrist in the
tracking phase (right).

free path, the tracking phase proceeds to step 2. If πinterp is invalid, the locations where

it violates system constraints, such as collisions with the environment or joint limits, are

used as potential locations for introducing new high-dimensional regions into Gad. Since

interpolation is very fast, this additional step does not add any significant computational

burden per iteration. However, in open environments with few obstacles, this approach is

very effective in quickly producing a valid high-dimensional path.

9.2.2. Algorithm Extension: Planning for the Wrist Joints

The fact that the degrees of freedom controlling the wrist are independent from the con-

figuration of the rest of the arm allows us to treat the wrist separately. Thus, the second

step of the tracking phase is effectively a search through the wrist configurations over the

adaptive path πad = S1, S2, ...Sn computed by the planning phase of the current iteration

(Fig. 25). Each state in this state-space Sw is defined by a state vector (wrist, i), where

wrist is a vector of the wrist joint coordinates, and i = 1...n is a path index. In addition,

each such state X = (wrist, k) corresponds to a high-dimensional state X ′ = (Sarmk , wrist),

where Sarmk is the state vector of the main arm joint coordinates of the k-th state Sk in πad,

109

and wrist is the vector of wrist joint coordinates of the state X. Thus, the state X aug-

ments the adaptive state Sk with information about the wrist joint coordinates to produce

a fully-defined high-dimensional state X ′ for the entire arm. Let us denote this mapping

by Ωπad : Sw → Shd. We will omit the subscript πad if it is understood.

The start state of this search is then WS = (Swrist1 , 1), where Swrist1 is the vector of wrist

joint coordinates of S1, and the goal state is WG = (Swristn , n), where Swristn is the vector of

wrist joint coordinates of Sn. Note that S1 and Sn are the start state XS and the goal state

XG, respectively, and thus are always high-dimensional, so Swrist1 and Swristn are defined.

Also, Ω(WS) = XS and Ω(WG) = XG.

We allow the following transitions Tw within this state-space:

• We allow the path index to increase by 1, while the wrist joint coordinates remain the

same (wrist, i) ⇒ (wrist, i + 1) (if i + 1 ≤ n). This corresponds to moving the arm

along the computed path without changing the wrist angles.

• We allow the path index to remain the same, but the wrist joint coordinates to change

by using a set of feasible transitions for the wrist (wrist1, i) ⇒ (wrist2, i). This

corresponds to changing the wrist angles only, without changing the configuration of

the main arm joints.

• We allow the path index to increase by 1 and also the wrist joint coordinates to

change by using a set of feasible transitions for the wrist (wrist1, i)⇒ (wrist2, i+ 1)

(if (i+ 1 ≤ n). This corresponds to changing the wrist angles while moving along the

computed path.

Such transitions are only feasible if the degrees of freedom of the wrist can be controlled

independently from the other joint angles in the arm. The cost of each transition

X = (wristx, i)⇒ Y = (wristy, j)

110

is equal to the cost between the two corresponding high-dimensional states X ′ = Ω(X) =

(Sarmi , wristx) and Y ′ = Ω(Y) = (Sarmj , wristy). We also perform high-dimensional collision-

checking on the transition X ′ ⇒ Y ′ and invalid transitions are discarded by the search.

If we find a path πSw from start to goal through this graph Gw = (Sw, Tw), we can convert

it to a complete high-dimensional path πHD by using the mapping Ω (Alg. 9, Line 17).

Then πHD is a valid path from the start arm configuration XS to the goal arm configuration

XG. If its cost satisfies the sub-optimality bound criteria c(πHD) ≤ εtrack ·c(πad), then πHD

is a valid high-dimensional path that satisfies the desired sub-optimality bound c(πHD) ≤

εplan · εtrack · π∗Ghd . Thus, we can stop planning and return πHD as a valid path. If πSw

does not exist or c(πHD) > εtrack · c(πad), we proceed to step 3 of the tracking phase. If the

search fails, the location of the state with the highest path index value expanded during

the search is used as a potential location for introducing a new high-dimensional region into

Gad, as it indicates the location farthest along πad the search was able to reach before it

failed, and that location might require high-dimensional planning.

The search through Sw is very constrained and low dimensional. As such, it usually com-

pletes very quickly and incurs only a minor computational burden on the tracking phase.

Moreover, our results suggest that it is extremely effective in computing feasible high-

dimensional paths even in cluttered environments.

Tracking steps 1 and 2 solve the second sub-problem of our original high-dimensional plan-

ning problem, augmenting the solution of the first sub-problem with valid coordinates for

the wrist joint angles to produce a valid feasible trajectory for the full arm. If steps 1

and 2 fail to produce a valid high-dimensional path from start to goal, we revert to the

default method for tracking used by Planning with Adaptive Dimensionality—constructing

a tunnel τ around the hybrid path produced by the adaptive planning phase and searching

it for a path from start to goal. We have already discussed this method in detail above.

The two extensions of the tracking phase described above preserve all the theoretical prop-

111

erties of the framework for Planning with Adaptive Dimensionality we have already estab-

lished, such as completeness and solution cost sub-optimality bounds.

9.2.3. Implementation Details

To validate our extension to Planning with Adaptive Dimensionality, we revisited the prob-

lem of motion planning for a 7-DoF robotic arm on the Willow Garage’s PR2 platform. The

full arm configuration on the PR2 is defined by its seven joint angles: shoulder pan, shoul-

der lift, upper arm roll, elbow flex, forearm roll, wrist flex, and wrist roll (Fig. 22). Thus,

we have a 7-DoF high-dimensional state-space Shd. Low-dimensional states, on the other

hand, are defined by only 4 angles: shoulder pan, shoulder lift, upper arm roll, and elbow

flex, disregarding the 3 degrees of freedom controlling the wrist. In our implementation,

all angles are uniformly discretized with 3◦ resolution within their respective joint limit in-

tervals. Full-arm (and grasped object, if any) collision checking against the environment is

performed on 7D states. A more relaxed collision checking is performed on 4D states–only

the upper arm and the forearm links are collision-checked against the environment. Since

4D states do not contain information about the end-effector orientation, it is not possible

to perform gripper and grasped object collision checking.

Planning for the wrist joint over an adaptive path (step 2 of the tracking phase) is done

in a 4-DoF state-space SW defined by 4D state vectors (forearm roll, wrist flex, wrist roll,

path index).

In Section 9.1 we discussed our initial implementation for performing 7D/3D planning

with adaptive dimensionality for the arm of a PR2 robot, where 3D states represented the

end-effector position in (x, y, z). In contrast, in this algorithm extension we choose to do

the planning with adaptive dimensionality in 7D/4D. Firstly, this allows us to speed up

the tracking phase, as described in sections 9.2.1 and 9.2.2. Second, the four dimensions

we select for the low-dimensional states determine the positions and orientations of the

two largest links of the arm–the upper arm and the forearm. This allows for much more

112

Figure 26: PR2 planning an arm motion around a thin tall obstacle. Black box: tall
obstacle, red: heuristic shortest path, green: feasible end-effector path, shaded region:
heuristic function local minimum.

accurate collision checking for low-D states, as the positions of the two largest links of the

arm are known for low-D states. Thus, the adaptive planning phases produces trajectories

that are more likely to be tracked successfully. For example, when using 3D end-effector

(x, y, z) low-D states, the planning phase will produce a low-D end-effector path similar to

the one shown in red in Fig. 26, which will be impossible for the tracking phase to follow

and a new high-D region will be introduced behind the obstacle. By using 4D main arm

joint angles as low-D states, on the other hand, the planning phase search will produce a

low-D path similar to the one shown in green in Fig. 26, which will be more likely to be

tracked successfully without additional iterations being necessary.

A desired 6-DoF cartesian pose was used to define the end-effector goal. Note that, due to

the redundancy in the manipulator, a 6-DoF cartesian pose corresponds to multiple goal

states in the 7-DoF state-space of the arm.

We use a lattice-based approach (Pivtoraiko and Kelly, 2005) to construct the transitions

we use in our graph. Thus, each transition represents a feasible path from one state to

another. The graph is constructed dynamically as the graph search progresses, as the size

of the state-space is prohibitively large to pre-compute the entire graph. Similar to (Cohen

et al., 2010), each of our high-dimensional transitions is a 7-DoF vector of joint velocities

for each of the joints in the arm, and a 4-DoF vector for low-dimensional states. We use

113

a very simple set of fixed transitions, allowing only one joint angle to change with each

transition. For each joint, we have 2 short transitions allowing ±1 unit of discretization

change in the joint angle value, and 2 long transitions allowing ±2 units of discretization

change in the joint angle value. Thus, we have a total of 28 possible transitions for each

high-dimensional state, and 16 possible transitions for low-dimensional states. Similarly,

when planning for the wrist joint over an adaptive path (step 2 of the tracking phase) we

use transitions allowing ±1 unit of discretization change in the joint angle value for each of

the three wrist joints. These transitions were selected for the sake of simplicity. However,

more complex transitions that operate on several joints simultaneously can be used by the

planner.

We take the same approach as in (Cohen et al., 2011) for computing dynamic transitions. For

any high-dimensional state S whose end-effector position is within a fixed distance threshold

of the goal position, we try to compute a dynamic transition using inverse kinematics. The

inverse kinematics solver is seeded with the joint angles anglesS of the state S and is asked

to compute joint angles anglesIK that satisfy the goal position and orientation of the end-

effector (i.e. the 6-DoF cartesian goal pose). If the kinematics solver is able to compute

joint angles anglesIK satisfying the goal constraints, and the interpolated trajectory from

anglesS to anglesIK is collision-free and obeys joint limit constraints, then this trajectory

(from anglesS to anglesIK) is used as a transition from S to the goal state defined by

anglesIK .

For any high-dimensional state S whose end-effector position matches exactly the goal

position, we use an analytical solver to compute the values for the forearm roll, wrist flex,

and wrist roll angles, that would satisfy the goal orientation constraints, while maintaining

the same values for the other 4 joint angles (Cohen et al., 2011). If the transition from S to

the desired values for forearm roll, wrist flex, and wrist roll is collision-free and obeys joint

limit constraints, it is used as a transition from S to the goal state.

To compute the heuristic function, we discretize the environment into 3D voxels and we

114

use a 3D Dijkstra’s search accounting for obstacles to find the least cost paths for the end-

effector from every voxel to the goal voxel (corresponding to the (x, y, z) position of the

cartesian goal pose). We use a highly optimized implementation of 3D Dijkstra’s search,

which is able to very quickly compute the heuristic. This heuristic is very helpful in guiding

the search around the obstacles in the environment and towards the cartesian goal position.

Figure 26 shows an example where the 3D Dijkstra’s search heuristic has a pronounced

local minimum (shaded area behind the black obstacle). Our approach is quite robust with

respect to such local minima as these local minima are overcome by expanding states in the

much smaller 4D state-space.

9.2.4. Experimental Evaluation

To measure the performance of the algorithm, we used 524 planning scenarios through

various environments. The difficulty level of the environments varied from obstacle-free to

highly cluttered. Some examples of environments used in our simulations are shown in Fig.

23—various tables, shelves, bookcases, and cuboid obstacles of random sizes and locations.

The difficulty level of the 524 planning scenarios varied based on the environment used

in the scenario, and the particular start and goal configurations. In some scenarios the

path from start to goal was fairly trivial, where in others, highly complex maneuvering was

necessary to reach the goal. We compared our 7D/4D adaptive planner to a number of

popular planners available from the Open Motion Planning Library (OMPL) (Şucan et al.,

2012)—PRM planner, RRT-Connect planner, and RRT* planner. We also compared against

a 4D ARA* planner that only considers the wrist orientation near the goal position, and

a 7D ARA* planner that plans in all 7-DoF. Each planner was given a 10-second planning

limit to produce a path for each of the 524 environments. If a planner failed to produce

a path within the allowed time limit, the scenario was reported as failure. Due to their

randomized nature, the sampling-based OMPL planners were given 10 planning trials on

each of the scenarios and the observed results were averaged.

We also developed a framework for the use of the 7D/4D adaptive planner on a real PR2.

115

Figure 27: PR2 robot retrieving an object from a fridge using 7D/4D adaptive manipulation
planner.

The framework accepts and serves planning requests to a desired 6-DoF cartesian pose for

the end-effector either programmatically or through the use of a GUI to allow for teleopera-

tion of the arm. We observed quick responsiveness from the planner when asked to produce

paths through typical household environments. An example scenario of the robot reaching

into a refrigerator, grasping an object, and safely retrieving the object from the fridge is

shown in Fig. 27. Since grasp selection is outside the scope of this work, a teleoperator

selected a suitable grasp pose.

9.2.5. Analysis of Results

As seen in Table 11, the adaptive planner was not able to match the planning times of the

sampling-based OMPL planners. However, the achieved average planning time is still quite

satisfactory. The 7D ARA* planner demonstrated the worst performance with highest

average planning time and only solving just over half of the scenarios. The 4D ARA*

planner was able to achieve planning times similar to the OMPL planners, however as it

considers the end-effector orientation only in a small region around the goal, it is unable to

116

Algorithm
Sub-optimality Planning Time (s) Successful

Bound mean std dev min max Plans

7D/4D Adaptive 100 0.93 0.70 0.03 8.47 87.36%

4D ARA* 100 0.12 0.16 0.01 1.27 71.51%

7D ARA* 100 2.96 2.00 0.01 9.95 52.96%

OMPL PRM n/a 0.33 2.13 0.01 9.43 83.80%

OMPL RRT-Connect n/a 0.03 0.03 0.01 0.39 86.62%

OMPL RRT* n/a 0.36 1.32 0.01 9.73 86.42%

Table 11: Planning time and success rate comparison between arm planners on 524 plan-
ning scenarios in simulation. Results for all sampling-based (OMPL) planners are averaged
over 10 planning trials on each scenario.

solve planning problems that require the end-effector orientation to change far from the goal

position, which explains the relatively low success rate, especially in cluttered environments.

The 7D/4D adaptive planner had the highest success rate and was able to solve some of

the toughest scenarios within the allowed time limit.

More specifically, the sampling-based methods performed best on the more open scenarios

with fewer obstacles, where a feasible path was easy to identify with only a few samples.

Our approach was also able to solve such problems quickly, however, the planning times

were 2-4 times slower (but still within 1.5 seconds). The benefits of our algorithm were most

obvious on the more cluttered scenarios, some of which exhibited narrow solution spaces,

which were challenging for the sampling-based methods. The performance of our approach

does not suffer in such scenarios and it was able to solve those scenarios quickly. The

scenarios that our approach exhibited its worst performance were situations for which the

3D Dijkstra heuristic for the end-effector was leading the search in an unfeasible direction or

it exhibited pronounced local minima. This occurred most often on the environments with

random cuboid obstacles. For some scenarios the heuristic was “pulling” the end-effector

to the far side of a cuboid obstacle, similar to the example shown in Fig. 26. Significantly

larger number of state expansions than average were necessary to overcome the heuristic

local minimum leading to higher planning times. However, despite the pronounced local

minima in such scenarios, the adaptive planner was still able to find a solution within the

allowed time, while the 7D ARA* planner failed to do so.

117

Algorithm
Sub-optimality Distance Traveled (m)

Bound Wrist Gripper Tip Elbow
mean std dev mean std dev mean std dev

7D/4D Adaptive 100 1.30 0.70 1.84 0.72 0.64 0.36

4D ARA* 100 1.64 0.91 1.98 1.22 0.79 0.41

7D ARA* 100 1.44 0.80 1.86 1.20 0.71 0.39

OMPL PRM n/a 1.75 0.91 2.23 1.12 1.10 0.58

OMPL RRT-Connect n/a 1.56 0.79 1.93 0.93 1.01 0.52

OMPL RRT* n/a 1.53 0.77 1.91 0.92 0.98 0.50

Table 12: Path quality comparison between various arm planners: the average distance
traveled by the wrist, gripper tip, and elbow for the trajectories computed by each planner
on 524 planning scenarios in simulation. The same smoothing was perfomed on the trajec-
tories from all planners. Results for all sampling-based (OMPL) planners are averaged over
10 planning trials on each scenario.

Tracking Step % of successful tracking phases Avg. Time (s)

1. Interpolation 49.55% 0.001

2. 4D Orientation Planning 44.59% 0.244

3. HD Tracking 5.86% 1.431

Table 13: Performance and success rate of each of the three steps of the tracking phase
of the 7D/4D adaptive planner. Over 94% of successful tracking phases are completed by
the much faster interpolation or 4D orientation planning steps. The more computationally
expensive HD tracking is performed in less than 6% of the tracking phases.

Table 12 illustrates the average quality of the paths generated by each of the 6 planners.

For each computed trajectory, we kept track of the distance traveled by three key points on

the arm—the wrist, the elbow, and the gripper tip. As seen in the table, the 7D/4D planner

produced the shortest trajectories on average. The OMPL planners had significantly higher

distances traveled by the elbow, even after trajectory smoothing. This suggests that many

of the trajectories computed by the OMPL planners had unnecessary elbow motions.

Table 13 is the most relevant to the main contribution of this extension to the framework

for Planning with Adaptive Dimensionality. It illustrates the number of successful track-

ing phases completed by each of the three tracking steps as a percentage of all tracking

phases performed, and the average time of each tracking step. Nearly half of all tracking

phases were solved by simple interpolation, which took a negligible amount of time. The

4-DoF end-effector orientation tracking was successful in nearly 45% of the tracking phases

performed, and was much quicker than performing high-dimensional tracking. The more

computationally expensive HD tracking had to be performed only in less than 6% of all

118

tracking phases. Thus, the two algorithm extensions for performing tracking in the context

of Planning with Adaptive Dimensionality for robotic arms with independent wrist joints

prove to be very effective and significantly improve the performance of the algorithm.

119

CHAPTER 10 : Application: PAD for Mobile Manipulation

10.1. Using a Single Abstraction

The results reported in this section were originally published in our work (Gochev et al.,

2012) presented at the IEEE International Conference on Robotics and Automation (ICRA

2012). We present our results of applying the framework for Planning with Adaptive Di-

mensionality to mobile manipulation planning for Willow Garage’s PR2 platform.

10.1.1. Implementation Details

Similarly to our approach to 7D manipulation planning, we used a 11D/3D adaptive plan-

ning, where 3D states represented the arm’s end-effector (x,y,z) position, and 11D states

represented the full arm, torso and base configurations. As discussed in 9.1, we transformed

the standard 7-DOF robot arm configuration representation to one described in (Tolani

et al., 2000), which converts joint angles representations of a 7-DOF arm to 7-DOF repre-

sentation consisting of the following values: (end-effector x position, end-effector y position,

end-effector z position, end-effector roll, end-effector pitch, end-effector yaw, arm swivel an-

gle) (Fig. 28). This alternative representation of the full arm configuration does not change

the dimensionality of the high-dimensional state-space, but provides clean and easy λ and

λ−1 mappings without any dicretization inconsistencies and not involving expensive forward

and inverse kinematics computations.

Using this alternative representation, our 11-dimensional states were represented by the

following state vector:

(eeposition, eeorientation, swivel, base, torsoheight),

where eepos, eeori and base consist of 3 values each—end-effector (x,y,z), end-effector (roll,

120

Figure 28: The 11-DOF of the PR2 robot (left) and the alternative 7-DOF arm represen-
tation (right) used by our planner. Left: (1: shoulder pan; 2: shoulder lift; 3: upper-arm
roll; 4: elbow flex; 5: forearm roll; 6: wrist flex; 7: wrist roll; 8,9,10: base XY position and
heading; 11: torso height) Right:(1,2,3: end-effector XYZ position; 4,5,6: end-effector RPY
orienation; 7: arm swivel angle; 8,9,10: base XY position and heading; 11: torso height)

pitch, yaw), and base (x, y, heading), respectively. We used the following mapping functions:

λ(eepos, eeori, swivel, base, torsoht) = (eepos)

λ−1(eepos) = {(eepos, eeori, swivel, base, torsoht)|

for all feasible values of eeori, swivel, base and torsoht}

The end-effector was allowed to move in a 3m×3m×2m 3D uniform grid with resolution

of 2cm, centered around the robot. We used 6cm resolution for the base position and

torso height. We uniformly discretized the values for the end-effector roll, pitch and yaw

angles, the arm swivel angle, and the base heading angle into 16 on the interval (−π, π].

This discretization produced a 3D grid for the end-effector of size 150×150×100, or roughly

2.25 × 106 low-dimensional states. Our high-dimensional state-space consisted of about

1.8× 1015 states.

We used very simple motion primitives for graph transitions for the motion planning—

namely we allow ±1 change in each of the eleven discretized state-vector values. This

121

Figure 29: PR2 manipulating 80cm stick trough a 40cm×50cm window.

Figure 30: PR2 reaching from a high shelf to a low shelf of a bookcase

produces 22 possible transitions for 11D states and 6 possible transitions for 3D states. The

cost of each low-dimensional motion primitive was representative of the distance traveled

by the end-effector when executing that primitive. The costs of high-dimensional motion

primitives included the distance traveled by the base and penalties for changes in any of

the angular values of the state, as well as the distance traveled by the end-effector.

Obstacles in the environment are obtained through a collision map produced by the tilt-

ing laser scanner of the PR2. Very basic collision-checking is performed on low-dimensional

states, treating them as point-robots and checking them against the obstacle map. Full colli-

sion checking is performed on high-dimensional states, checking the full robot configuration

(arm, torso, and base) against the obstacle map, while also enforcing joint-limits on the

arm configuration. States that are found to be in collision during the search are discarded

from Gad. Recall that the path returned by our algorithm consists of only high-dimensional

states, on which full collision-checking has been performed, and thus are collision-free.

The graph search algorithm we used for both the adaptive planning and the path tracking

phases was Anytime Repairing A? (ARA?) (Likhachev et al., 2003).

122

10.1.2. Experimental Evaluation

We compared the 11D/3D adaptive planning algorithm, a full 11D weighted A? planning

algorithm, and an 11D bi-directional RRT algorithm (Kuffner and LaValle, 2000) on 30

environments in simulation. Environments ranged in degree of difficulty—some required

very simple motions to navigate from start to goal, while others were more cluttered and

required a set of complex maneuvers to navigate around the obstacles. Some of the types

of environments we used included various table tops, bookshelves, and random cuboid

obstacles (Fig. 23). Both the adaptive and the 11D planners utilized a 3D Dijkstra heuristic

for the end-effector to guide the planners to the position constraint. We treated the end-

effector as a point robot of radius equal to the radius of the smallest link of the arm. Full

collision checking and enforcing of joint limits were performed on high-dimensional states.

As with the 7D/3D adaptive manipulation planner (Sec. 9.1), we observed that inserting

new spheres of radius of about 10cm allowed sufficient arm maneuvering without introducing

too many unnecessary high-dimensional states. Also a tunnel radius of 10-20cm provides

a good balance between the success rate of the tracking phase and the time needed for

tracking a path at each iteration. Since we have a large number of high-dimensional states,

we imposed time limits on both the adaptive planning phase and the tracking phase. The

time limit we used for the adaptive planning phase was 180 seconds per iteration. If the

limit was reached the adaptive planning failed and the algorithm terminated, reporting that

no path from start to goal could be found in the given time limit. We also limited the time

for the tracking phase to 20 seconds. All planners were limited to 600 seconds to produce

a path.

10.1.3. Analysis of Results

The results we observed are summarized in Table 14. As seen in the table, our adaptive

planner was able to achieve much faster planning times than the full 11D planner and was

able to successfully produce a solution in all 30 instances. The 11D planner, on the other

123

Algorithm
Sub-optimality Time (secs) # Iterations # 11D Expands # 3D Expands Total Expands Successful

Bound mean std dev min max mean max mean std dev mean std dev mean std dev Plans

11D 5.0 340.80 243.57 6.81 600.00 n/a 214K 159K n/a 214K 159K 17 of 30

adaptive 5.0 19.07 16.65 5.35 55.44 1.30 3 10.2K 12.3K 67.1 30.79 10.2K 12.3K 30 of 30

RRT n/a 4.15 6.25 0.02 25.69 n/a n/a n/a n/a 600 of 600

Table 14: Experimental results on 30 environments for 11D mobile manipulation planning
(full 11D planner vs. adaptive planner vs. bi-directional RRT planner). The deterministic
11D and adaptive planners were run only once on each environment. RRT results are
averaged over 20 runs on each of the 30 environments (600 runs total).

Algorithm
20cm stick 50cm stick 80cm stick

Time (sec.) Success Time (sec.) Success Time (sec.) Success
mean std dev min max rate mean std dev min max rate mean std dev min max rate

RRT (20 runs) 0.981 0.640 0.080 1.990 100% 33.885 36.474 0.320 130.270 100% 751.458 405.371 351.150 1176.66 20%

adaptive (ε = 5.0) (1 run) 1.520 0.00 1.520 1.520 100% 3.540 0.00 3.540 3.540 100% 9.890 0.00 9.890 9.890 100%

Table 15: Bi-directional RRT planner (Kuffner and LaValle, 2000) vs. adaptive plan-
ner. The task was to manupulate a stick of varying length through a 40cm×50cm window
similar to Fig. 29. RRT results are averaged over 20 runs with the same start and goal
configurations. A time limit of 20min. was imposed on each run.

hand, was much slower and was unable to find a solution within the allowed limit in 13

of the 30 instances. We observed an average speedup of x17.87. The minimal observed

speedup was x1.12 on a very simple scenario that required only about 6 seconds to solve

by both planners. In several cases, however, the adaptive planner was able to produce a

solution within 5-10 seconds, while the 11D planner ran out of the allowed 10 minutes to

produce a plan, giving us very high speedup values of over two orders of magnitude. On

average, the sampling-based bi-directional RRT planner significantly outperformed both

search-based planners. However, on the more cluttered environments, we observed that

the adaptive planner was only marginally outperformed by the RRT planner, and in a few

situations the RRT planner was actually slower than the adaptive planner.

We chose the task of manipulating sticks of varying length trough a 40cm×50cm window

as a basis for further comparison between our adaptive planner and the RRT planner. This

task is challenging for sampling-based planners as it has a narrow solution space. The RRT

planner needs to produce sufficently many valid samples within a narrow “tunnel”, defined

by the window, in order to successfully compute a feasible trajectory. From the results

shown Table 15 we observe that increasing the length of the stick being manipulated causes

a significant increase in the time required for RRT to produce a solution. On the other

124

hand, our adaptive planner does not suffer such a significant performance decrease and it

is able to significantly outperform the RRT planner on this scenario for large stick length

values.

We ran several real-world experiments on an actual PR2 robot using our adaptive planner.

The experiments included tasks such as manipulating an 80cm stick through a window of

size 40cm×50cm (Fig. 29), and reaching to and from shelves of various heights (Fig. 30).

All of the tasks required torso or base movement in order to complete successfully. The

planner was able to successfully navigate from start to goal in all instances, and the planning

times ranged from 4 to 20 seconds.

10.2. Using Multiple Abstractions

There is a significant drawback to using only a single abstraction in the context of mobile

manipulation. The end-effector abstraction we described previously works well in scenarios

that do not require extensive base movement in order to solve, but rather, the base move-

ments are used to expand the workspace of the manipulator for a manipulation-focused

task. On the other hand, scenarios that do require significant relocation of the base can

make use of a different abstraction that focuses on moving the base, rather than the end-

effector. Using the single end-effector abstraction in scenarios that require significant base

movement tends to produce awkward-looking trajectories that seem like the robot is being

pulled by the wrist towards the goal.

Thus, after we developed the extension of the framework for Planning with Adaptive Dimen-

sionality that allows using multiple abstractions, we decided to re-visit the problem of mobile

manipulation planning. Again, we used the PR2 robot as our experimental platform and

included only the right arm in the planning process. The base and torso provided additional

4 degrees of freedom: base (x, y, heading), and torso height. Similarly to the experimental

setup described in Section 10.1, we used the arm representation described in (Tolani et al.,

2000), which converts joint angles representation of a 7-DoF arm to 7-DoF representation

125

consisting of the following values: (end-effector x, y, z position, end-effector roll, pitch, yaw,

swivel angle). We used an under-defined goal state, described by a 6-DoF Cartesian pose

for the end-effector. Our idea was to use two low-dimensional abstractions—the 3D end-

effector abstraction described in Section 10.1, and an abstraction that only considers the

base configuration. Thus, the planner could take advantage of the base abstraction in areas

of the state-space that are far from the goal and require base movement. The end-effector

abstraction could be used in areas that required manipulator movement or reconfiguration,

such as near the goal, and in narrow and cluttered areas.

10.2.1. Implementation Details

Our planner used two heuristic functions—a heuristic for the base, and a heuristic for the

end-effector. To compute the heuristic function for the end-effector, we discretized the

environment into 3D voxels and we used a 3D Dijkstra’s search accounting for obstacles to

find the least cost paths for the end-effector from every voxel to the goal voxel (corresponding

to the (x, y, z) position of the Cartesian goal pose). To compute the base heuristic, we used

a discretized 2D grid and a 2D Dijkstra’s search accounting for obstacles inflated by the

radius of the inscribed circle of the base.

High-dimensional states were represented by 11-DoF vectors of discretized coordinates. All

Cartesian coordinates were discretized uniformly with 2.5cm resolution. The base was

allowed to move on a 10m×10m range in the X-Y plane, and the end-effector was allowed

to move on a 10m×10m×2m range in 3D space. All angular coordinates were discretized

uniformly into 16 values on the interval (−π, π], except the base heading angle, which was

discretized uniformly into 32 values on (−π, π]. Simple transitions allowing ±1 change in

each discretized coordinate were used for the high-dimensional state-space. The heuristic

function for high-dimensional states was computed as the maximum between the base and

the end-effector heuristic functions. Full-body collision checking was performed for high-

dimensional states.

126

The low-dimensional sub-spaces we used were as follows:

• 4-DoF base sub-space, consisting of (x, y, heading) of the base, and the torso height.

No information about the right arm is available in those states. Collision checking

was performed for the base, torso, head, and the left arm in its fixed configuration.

We used very simple transitions allowing for ±1 change in each of the discretized

coordinates. We use the base heuristic for this sub-space, which is very informative

and makes searching through the sub-space very efficient.

• 3-DoF end-effector sub-space, consisting of the (x, y, z) coordinates of the end-effector.

Very simplified collision checking was performed ensuring that there are no obstacles

within 5cm of the end-effector coordinates. The transitions in this sub-space were

again ±1 change in each of the discretized coordinates. We use the end-effector

heuristic for this sub-space. Again, the heuristic is very accurate and search in this

sub-space is very fast.

The discretization of coordinates in the two low-dimensional sub-spaces was identical to the

discretization used in the high-dimensional space.

10.2.2. Experimental Evaluation

We tested the performance of the planner on several typical indoor environments, giving

multiple start/goal configurations for each environment. Two of the environments we used

are shown in Fig. 31 and Fig. 32. The one in Fig. 31 was manually constructed to represent

a kitchen, while the one in Fig. 32 was constructed from real-world sensor data. Fig. 33

and Fig. 34 show the results of an adaptive planning phase and a tracking phase of the

algorithm for an example start/goal configuration in the environment shown in Fig. 31.

To compute initial estimates for the scores of each low-dimensional sub-space in the envi-

ronment, we used a very simple approach, computing the scores based on distance to the

nearest obstacle for each cell on a 10m×10m×2m 3D grid of 2.5cm uniform resolution. Cells

127

Figure 31: Example indoor environment (kitchen) of size 7m×7m×2m. It was one of the
environments we used in our simulations.

Figure 32: Example indoor environment built from real sensor data.

close to obstacles received higher scores for the 3-DoF end-effector sub-space, whereas cells

far from obstacles received higher scores for the 4-DoF base sub-space. Fig. 35 illustrates

the allocation of the low-dimensional sub-spaces throughout the environment based on the

initial score estimates.

After each tracking phase, we used paths from the search tree generated by the planner

128

Figure 33: Left: path computed by the adaptive planning phase for the given start/goal
configuration. The goal is to reach into an overhead cabinet. The colored states are low-
dimensional base states, representing the robot’s base, torso, and the fixed left arm configu-
ration. The dots represent low-dimensional end-effector states, representing the end-effector
position in (x, y, z). Right: the corresponding tunnel τ constructed for the tracking phase,
based on the adaptive path. Orange: tunnel through base sub-spaces. Red: tunnel through
end-effector sub-spaces.

during tracking to update the scores for each sub-space in the relevant regions. For all

transitions t in the search tree, we update the scores for the base and end-effector sub-

spaces in the region where the transition is located, based on how much the base and the

end-effector move as a result of the transition. In the future, we would like to further explore

alternative approaches for updating the scores for each sub-space and learn from experience

or examples what “the best” sub-space is for each region of the environment.

In order to measure the performance of our planner, we ran it in simulation on 4 example

indoor environments. On each environment, we had 15 start/goal scenarios with varying

degree of difficulty, giving us a total of 60 planning scenarios. We compared the performance

of our planner against 3 sampling-based planners available in the Open Motion Planning

Library (OMPL)—PRM, RRT, and RRT ?. All planners used the same collision-checking

library. We gave a time limit of 120 seconds to each planner to solve each scenario. If a

129

Figure 34: Fully high-dimensional path computed by a successful tracking phase, based on
the tunnel constructed around the adaptive path shown in Fig.33.

Figure 35: The initial distribution of sub-spaces in the environment shown in Fig. 31. The
green regions near obstacles are associated with the end-effector low-dimensional sub-space.
All other regions are associated with the base low-dimensional sub-space. Note that only
several horizontal slices of the full 3D grid are visualized for clarity.

planner failed to produce a path within the allowed time limit, the scenario was reported

as failure. Since our planner is deterministic, we ran it only once on each scenario, whereas

the sampling-based planners were run 10 times on each scenario. In some scenarios the

path from start to goal was fairly trivial, while in others, highly complex maneuvering was

130

Algorithm
Sub-optimality Planning Time (s) Successful

Bound mean std dev min max Plans (@120s)

11-DoF Adaptive 10 32.93 41.40 6.47 108.37 93.33% (56/60)

OMPL PRM n/a 24.33 38.13 0.01 112.52 82.00% (492/600)

OMPL RRT n/a 20.05 29.03 0.01 103.40 86.33% (518/600)

OMPL RRT ? n/a 29.36 46.23 0.04 118.73 84.50% (507/600)

Table 16: Planning time and success rate comparison between mobile manipulation plan-
ners on 60 planning scenarios in simulation. Results for all sampling-based (OMPL) planners
are averaged over 10 planning trials on each scenario.

necessary to reach the goal. Some scenarios required maneuvering through doorways and

narrow gaps between furniture, which were challenging for the sampling-based planners to

solve. The results we observed are summarized in Table 16.

10.2.3. Analysis of Results

Our results demonstrate the excellent performance of the sampling-based planners on the

more trivial scenarios, solving them almost instantly. On the other hand, the average

results suggest that our search-based approach had very comparable performance, while

also achieving the best success rate within the allotted time. The sampling-based planners

had difficulty solving the more challenging scenarios, which required navigating through

narrow gaps, such as doorways. Moreover, they often produced very chaotic trajectories,

even after smoothing was applied, which exhibited unnecessary and erratic arm motions

while far from the goal state. Our search-based planner, on the other hand, produced very

predictable and consistent solutions.

It is also worth noting that our planner was the only one able to solve all 60 scenarios within

180s.

131

CHAPTER 11 : Application: PAD for Humanoid Robot Mobility

In recent years significant research efforts have been directed towards development of hu-

manoid robots. Such robots provide the opportunity to operate in environments that are

designed for humans, such as buildings and vehicles, and to be capable of performing the

tasks that a human might. The ultimate goal of this research is to produce robots that

have human-like agility and versatility. These robots can be used in environments that are

dangerous for humans, such as disaster areas and contaminated areas, in order to perform

support tasks, such as search-and-rescue, cleanup, repair, and maintenance. There are a

large number of challenges that need to be overcome before robots can reach the agility

and versatility of humans. One such challenge is planning for such complex robotic systems

that have large number of degrees of freedom.

In this chapter, we present our work on applying the framework for Planning with Adaptive

Dimensionality (PAD) to the domain of planning for humanoid robot mobility. Our goal

was to develop a planner that allows the robot to navigate through typical household or

industrial environments, which might exhibit challenging features, such as uneven terrain,

stairs, and ladders.

11.1. Domain Background and Related Work

Motion planning for legged and humanoid robots is a challenging domain due to the large

number of degrees of freedom of the system and the complex balancing and collision avoid-

ance constraints needed to ensure that system stability can be maintained throughout the

planned motions. These constraints severely restrict the set of allowable configurations.

Efficient methods for maintaining dynamic balance for biped robots have been developed

(Raibert, 1986; Vukobratovc, 1990; Pratt and Pratt, 1999; Kagami et al., 2001; Yin et al.,

2007a,b). These methods, however, do not consider obstacle avoidance. Kuffner et al.

(Kuffner et al., 2001) developed a sampling-based RRT planning framework that combines

statically-stable motion planning with AutoBalancer (Kagami et al., 2001) to transform

132

Figure 36: Some of the humanoid robots that are currently under development: Honda’s
Asimo, NREC’s Chimp, Boston Dynamics’ Atlas.

statically-stable trajectories into dynamically-stable ones. The approach works well for

computing short motions, but does not allow for the location of the supporting foot (or feet

in the case of dual-leg support) to change during the planned motion.

Robotics systems which need to reason about contacts with the environment, such as legged

robots, need to be able to distinguish between different contact modes. For each mode the

set of contacts is fixed. When an existing contact is broken or a new contact is made,

the mode of the system changes. To plan for such systems, one must find both a discrete

sequence of mode switches and single-mode motions to achieve them. This process is usu-

ally referred to as multi-modal planning (Hauser, 2008). In his dissertation (Hauser, 2008),

Hauser explores the problem of legged robot mobility and proposes an algorithm for multi-

modal probabilistic roadmap planning (MM-PRM). The approach decouples the planning

process into planning for the sequence of mode switches and single-mode motion planning

to compute trajectories that transition from one mode to another. For example, bipedal

locomotion is decomposed into footstep planning, which computes a sequence of contacts

(modes), and full-body motion planning to compute a trajectory from one footstep config-

uration (mode) to another. MM-PRM is able to solve planning queries for a wide range

of legged robots—the 6-legged ATHLETE robot, the 4-legged Capuchin robot, and the

133

Figure 37: Using a high-level footstep following controller for bipedal navigation. Green:
areas of the environment where the high-level controller is safe to use (flat ground); red:
areas where the high-level controller is not available (rough terrain, stairs, ladders, etc.).

humanoid HRP-2.

When developing complex robotic systems, such as legged robots, researchers often develop

higher-level controllers that allow the system to execute simple tasks or behaviors based on

simple inputs. For instance, controllers that maintain balance while minimizing the distance

to a desired robot configuration, or even controllers that achieve basic locomotion based

on a desired direction of movement and speed (Yin et al., 2007a,b). These controllers are

usually carefully tuned operate with precision on the specific robotic system. The motion

planning framework can leverage such built-in system capabilities in order to improve its

performance. Rather than having to always produce full-body trajectories, the planner can

produce the simplified inputs required by a given high-level controller to achieve a desired

action or task, provided that the high-level controller is safe to use in the particular part

of the state-space. For parts of the state-space that do not allow for the safe utilization of

high-level controllers, the planner can revert to full-body planning.

134

Consider, for example, the problem of navigating a bipedal robot through a complex envi-

ronment, such as the one in Fig. 37. Let us assume that the robot has the built-in capability

to robustly follow a sequence of footstep locations defined by

〈(x, y,heading)left, (x, y,heading)right〉 ,

which conform to a set of pre-defined constraints Q (e.g. consecutive footsteps are not too

far from each other, the change in heading between consecutive footsteps does not exceed a

threshold, the sequence maintains a minimum safe distance from obstacles, etc.). Thus, if

the planner is made aware of this built-in capability, by specifying the state-space on which

the high-level controller operates (expected input to the controller), a set of transitions

available in this state-space, the capability constraints Q, and the parts of the environment

that the capability is available, then the planner can make use of this simplified state-space

and perform footstep planning for large areas of the environment (Fig. 37), thus limiting

the use of full-body planning to challenging areas of the environment.

The fact that such high-level controllers are available for many robotics systems prompted

us to develop an extension to the framework for Planning with Adaptive Dimensionality

that leverages them.

11.2. Algorithm Extension

In this section we formalize our definition of high-level controllers and their application to

the PAD framework.

We assume that every high-level controller C expects a sequence of state-vectors X =

〈x1, ..., xi〉 as input, where the components of the state-vector represent a sub-space S

of the full-dimensional robot configuration space. We also assume that an input sequence

X1, ..., Xk needs to satisfy a set of constraintsQ = (Qs(·),Qt(·)), whereQs : S → {true, false}

is a function that checks whether a state X ∈ S satisfies the controller constraints, and

Qt : S × S → {true, false} is a function that checks if a transition between two states,

135

Xi, Xj ∈ S satisfies the controller constraints. Thus, we define a high-level controller as

Definition 11.1 A high-level controller C is a tuple C = (S,Q,Φ), where S is a sub-space

of the full-dimensional state-space Shd (S ⊆ Shd), and Q = (Qs(·),Qt(·)) is a pair of

functions

Qs : S → {true, false}

Qt : S × S → {true, false},

which define constraints for states X ∈ S and transitions T = (Xi, Xj), (Xi, Xj ∈ S).

Given sequence π = (X1, · · · , Xk), X1···k ∈ S s.t.

Qs(Xi) = true ∀Xi ∈ π

Qt(Xi, Xi+1) = true ∀Xi ∈ π, i = 1...k − 1,

Φ(π) = πhd = (X ′1, · · · , X ′n), X ′i ∈ Shd, is a valid path in Shd. Moreover, image(X ′1,S) =

X1 and image(X ′n,S) = Xk.

In other words, a high-level controller is able to generate a high-dimensional path πhd ∈ Shd

from a lower-dimensional path πld ∈ S ld, provided that πld satisfies the controller constraints

Q. For the purposes of planning, we treat the function Φ encoding the controller logic as

a black box. The only assumption that we make is that constraints Q are defined so that

any state transition that satisfies them is safe for the control logic Φ to execute.

For every high-level controller C = (S,Q,Φ), we can construct a state-abstraction A =

(λ, λ−1, G = (S, T), c) that operates in the sub-space S, by providing a set of transitions T ,

which satisfy Qt, and a cost function c : T → R+, which needs to satisfy 4.1. The projection

function λ and λ−1 are implicitly defined by the choice of S. For example, if the high-level

controller operates on footstep locations, then λ has to compute the footstep locations for

a given full-dimensional robot state. Thus, we can construct state-abstractions to be used

136

by the PAD framework based on the available high-level controllers for the system.

So far we have assumed that path segments through low-dimensional state-abstractions

in the hybrid graph of the PAD framework are not directly executable by the robot, and

thus, we required the PAD planner to compute corresponding full-dimensional paths in

the tracking phase of the algorithm. However, path segments through state-abstractions

constructed from high-level controllers can be executed by the robot provided that these

path segments satisfy the corresponding high-level controller requirements. Thus, we can

simplify and expedite the search performed during the tracking phase of the algorithm by

not requiring full-dimensional tracking. This can be extremely beneficial for very high-

dimensional planning problems, such as motion planning for humanoid robots, as even the

tunnel-constrained full-dimensional search during the tracking phase can be prohibitively

expensive. We illustrated the benefits of using alternative methods for performing the

tracking phase in the context of planning for manipulation in Chapter 9, Section 9.2.

The main purpose of the tracking phase of the PAD framework is to find executable path

πhd that corresponds to given path πad through our hybrid graph GAD. Leveraging the fact

that high-level controllers provide us with abstractions that produce executable paths, we

can modify the tracking phase of the algorithm for Planning with Adaptive Dimensionality.

Rather than constructing a high-dimensional tunnel τhd around πad, we can construct a

hybrid tunnel τe that consists of low-dimensional states from executable abstractions only

and high-dimensional states for the areas where executable low-dimensional abstractions

are not available. τe is a hybrid graph corresponding to the high-dimensional graph τhd,

as GAD is a hybrid graph corresponding to GHD, and we can perform a search on it.

If a path πe through τe is found, then it consists fully of executable transitions (some

low-dimensional and some high-dimensional). Each high-dimensional transition in πe is

assumed to be inherently executable. Each low-dimensional transition in πe is associated

with a corresponding high-level controller capable of executing it.

Definition 11.2 We construct a hybrid tunnel τe = (Sτe , T τe) of width w consisting of

137

executable states and transitions around a hybrid path πAD as follows:

∀X ∈ πAD

1. We find the abstraction A to which X belongs.

∃ abstraction A =
(
λA, λ

−1
A , GA =

(
SA, TA

)
, cA
)

s.t.X ∈ SA

2. We find the next finest executable abstraction B � A in the abstraction hierarchy, which

is a finer abstraction than A. Note that B might be the full-dimensional abstraction, which

is the finest available abstraction and is executable. If A is executable, then B = A. Let

B =
(
λB, λ

−1
B , GB =

(
SB, TB

)
, cB
)

3. We include all states from SB in Sτe whose projections to SA are within distance w of

X ∈ SA

∀X ′ ∈ SB, X ′ ∈ Sτe iff dist(φ(X ′), X) ≤ w,

where φ is a function projecting from the finer abstraction B to the coarser abstraction

A, and thus is a many-to-one mapping, similar to the λ projection functions. When A is

executable, and thus B = A, φ is the identity mapping.

4. We construct T τe in the usual manner for constructing edges for hybrid graphs, including

all transitions that connect states from the same abstraction, and using the corresponding

λ and λ−1 projection functions to construct transitions that connect states from different

abstractions. (Fig. 8).

Note that when no executable state representations are available, other than the full-

dimensional one, the above definition becomes identical to constructing a full-dimensional

tunnel around the hybrid path πAD, since in step 2 of the definition B will always be the

full-dimensional abstraction. Then step 3 becomes equivalent to

∀X ′ ∈ SHD, X ′ ∈ Sτe iff dist(λA(X ′), X) ≤ w.

138

Thus Sτe will contain only full-dimensional states whose projections are within w of some

state X ∈ πAD, and consequently, T τe will only contain full-dimensional transitions, which

coincides with our original definition of high-dimensional tunnel (Def. 4.5). Also note that

when the hybrid path πAD consists only of full-dimensional states, then Def. 11.2 again

coincides with Def. 4.5 and τe will be a full-dimensional tunnel. Then the tracking phase will

still be able to track the full-dimensional path πAD exactly (πτe = πAD, c(πτe) = c(πAD)),

and thus the algorithm will terminate returning πτe as a valid solution which satisfies the

desired cost sub-optimality bound.

Algorithm 10 Planning with Adaptive Dimensionality Using Executable Abstractions

1: GAD = Initialize-Regions
((
GLD1 , ρ1

)
...
(
GLDn , ρn

))
2: Add-HD-Region(GAD, XS)
3: Add-HD-Region(GAD, XG)
4: loop
5: . Adaptive Planning Phase
6: search GAD for least-cost path π∗

AD(XS , XG)
7: if π∗

AD(XS , XG) is not found then
8: return no path from XS to XG exists
9: end if

10: . Tracking Phase using executable hybrid tunnel
11: construct an executable hybrid tunnel τe around π∗

AD(XS , XG) by Def. 11.2
12: search τe for least-cost path π∗

τe(XS , XG)
13: if π∗

τe(XS , XG) is not found then
14: find state(s) Xr where to introduce next-best abstraction
15: Introduce-Next-Best-Abstraction(GAD, Xr)
16: else if c(π∗

τe(XS , XG)) > ε track · c(π∗
AD(XS , XG)) then

17: find state(s) Xr where to introduce next-best abstraction
18: Introduce-Next-Best-Abstraction(GAD, Xr)
19: else
20: return π∗

τe(XS , XG)
21: end if
22: end loop

1: function Introduce-Next-Best-Abstraction(GAD, Xr)
2: ρ = Get-Region-For-State(Xr)
3: α = Get-Abstraction-For-Region(ρ)
4: β = Get-Next-Abstraction-For-Region(ρ, α)
5: if ∃β then
6: Set-Abstraction-For-Region(ρ, β)
7: Update-Hybrid-Graph-Region(GAD, ρ, β)
8: else
9: Add-or-Grow-HD-Region(Xr)

10: end if
11: end function

139

Figure 38: The Yamabiko humanoid robot, which is being developed by Waseda University
and Mitsubishi Heavy Industries.

Algorithm 10 gives the pseudo-code for the algorithm extension allowing the PAD frame-

work to perform faster tracking when using executable low-dimensional state-abstractions

constructed from corresponding high-level controllers.

11.3. Implementation Details

The Yamabiko humanoid robot (Fig. 38) was selected as the development platform for our

algorithm in a joint project with Mitsubishi Heavy Industries and Waseda University. Our

goal in this project was to develop a single planning framework that is able to produce plans

to navigate the robot to a desired goal location in a complex environment (Fig. 37), while

being able to reason about the various locomotion modes and capabilities of the system. The

framework for Planning with Adaptive Dimensionality using multiple abstractions provided

the backbone of the planning framework.

Figure 39 illustrates the abstraction hierarchy we have developed so far for the Yamabiko

140

Planner internal representations
(not executable)Point-Robot Abstraction

(3 DoF)

Bipedal Footstep Abstraction
(for stairs, 6 DoF)

Quardupedal Footstep
Abstraction (12 DoF)

Final solution representations
(executable)

Bipedal Footstep Abstraction
(for flat ground, 6 DoF)

Full-Dimensional Abstraction
Joint-Angle Space + Root Pose

(35 DoF)

Figure 39: The abstraction hierarchy developed so far for the Yamabiko robot.

robot. The abstractions are separated into two general categories—planner internal repre-

sentations, and representations that can be executed by a high-level controller on the system

(and thus, can be used in the final solution of the planner). Two high-level controllers are

currently available for the system: a full-body joint-angle controller, and a bipedal foot-

step following controller that can follow sequences of footsteps, provided that the sequence

of footsteps conforms to the constraints specified by the controller (e.g. distance between

consecutive footsteps, distance to the nearest obstacle, etc.). The planner ensures that the

constraints specified by a high-level controller are satisfied for all segments of the final so-

lution that are intended to be executed by that high-level controller. There is currently no

high-level controller capable of following footstep sequences when navigating a staircase, so

the planner uses the bipedal footstep abstraction for stairs as an internal non-executable

low-dimensional state abstraction during the adaptive planning phase. Then, during the

tracking phase, any states from the bipedal footstep abstraction for stairs will be tracked

using the full-dimensional abstraction (the next finest executable abstraction in the hierar-

chy) to produce a sequence of full-body joint-angle actions to be executed by the full-body

141

controller. A quadrupedal footstep following controller is currently being developed, which

will allow the quadrupedal footstep abstraction to be treated as executable in the future.

However, currently it is considered non-executable and the tracking phase of the PAD frame-

work uses the full-dimensional abstraction to track states from the quadrupedal footstep

abstraction and produce corresponding full-body motions.

11.3.1. Point-Robot Abstraction

The point-robot abstraction is the most abstract representation we use and represents the

〈x, y, z〉 position of the root of the robot. It is used to establish the general traversability of

the environment and mainly serves as a heuristic to the less abstract representations. The

representation resembles traditional 3D Dijkstra’s search of the free space of the environ-

ment, however it enforces support constraints, making sure that there is a suitable support

surface within reach of the root position (ground, platform, ladder, or staircase step) and

that the robot does not float through the environment. The state-space is a 3D grid with

26-connected grid transitions. A simplified cylindrical collision model representing the the

inscribed circle of the robot is used for collision checking. The height of the cylinder is

determined from the z coordinate of the root position and the z coordinate of the nearest

support point.

11.3.2. Bipedal Footstep Abstraction for Flat Terrain

The bipedal footstep abstraction for flat terrain represents only the position and heading

of each foot and an indicator variable that keeps track of which foot can be moved next:

〈limbID, (x, y, θ)left, (x, y, θ)right〉, where limbID ∈ {left, right, either}. The z coordinate for

each foot is also stored as part of the state, but it is not a free variable—it is calculated

from the z coordinate of the current support surface. The transitions in this state space are

calculated from a set of motion primitives, which satisfy the constraints of the high-level

footstep following controller. The collision model used for this representation ensures that

the foot locations are in contact with a support surface and are not colliding with obstacles.

142

Figure 40: Example plan showing the output of the bipedal footstep abstraction for flat
terrain. Green cuboids: right foot locations, blue cuboids: left foot locations.

The feet are modeled as cuboids. Figure 40 shows an example plan consisting entirely of

states from the bipedal footstep abstraction for flat terrain.

11.3.3. Bipedal Footstep Abstraction for Stairs

The bipedal footstep abstraction for stairs is very similar to the bipedal footstep abstrac-

tion for flat terrain. Currently the two abstractions use the same state representation:

〈limbID, (x, y, θ)left, (x, y, θ)right〉, where limbID ∈ {left, right, either}. The difference is that

the bipedal footstep abstraction for stairs has a different transition set constructed from a

different set of motion primitives. Additionally, footstep transitions that fall outside the

current support surface (the current step of the staircase), are checked against the previous

and next steps of the staircase (with adjusted z coordinates). Thus, transitions allow for

changes in the support surface, and thus, footsteps to go up and down a staircase. Figure

41 shows an example of a plan consisting of states from the bipedal footstep abstraction

for stairs. Ultimately, we would like to extend this representation to allow reasoning for

possible hand contacts as well, thus allowing additional support when climbing the stairs

(by holding onto a railing, for example).

143

Figure 41: Example plan showing the output of the bipedal footstep abstraction for stairs.
Green cuboids: right foot locations, blue cuboids: left foot locations. The robot starts at
the bottom of the stairs and navigates to the top.

144

11.3.4. Quadrupedal Footstep Abstraction

The quadrupedal footstep abstraction extends the bipedal footstep abstraction by addi-

tionally keeping track of the position and heading of the hand contacts (treating them as

footprints):

〈limbID, (x, y, θ)left hand, (x, y, θ)right hand, (x, y, θ)left foot, (x, y, θ)right foot〉

limbID ∈ {left hand, right hand, left foot, right foot, either hand, either foot,

either left, either right, either}

The transitions used in this abstraction move one limb at a time, thus maintaining three

limbs in contact with support surfaces. This significantly increases the size of the support

polygon of the robot and therefore its stability when compared to the bipedal locomotion

mode. The design requirements of the project specify that quadrupedal locomotion mode

is the preferred method for locomotion through rough terrain, where maintaining stability

can be a challenge. In addition, the transitions for this abstraction allow the user to define

a preferred quadrupedal gait—the repeating sequence in which limbs should be moved

(left hand ⇒ right foot ⇒ right hand ⇒ left foot, for example). Note that specifying a

preferred gait does not impose strict constraints on the planner to always move the limbs

in that sequence, but rather penalizes transitions that deviate from the preferred sequence.

Thus, the planner is encouraged to use transitions which conform to the preferred gait, but

it is still allowed to deviate from it when necessary. We noticed that when the preferred

gait is not specified, the planner produced trajectories that “seemed erratic” because they

did not exhibit an obvious regular repeating pattern, which we innately expect from legged

locomotion.

145

11.3.5. The Full-Dimensional Representation

As mentioned previously, the full-dimensional representation of the robot consists of 35

degrees of freedom—6D pose of the root, 4 limbs with 7 joints each, and 1 joint for the

torso. However, planning in this space is very challenging as the state-space does not

allow explicit reasoning about selecting suitable contacts for the limbs in order to achieve

locomotion. Thus, we augmented the state space with additional 7 degrees of freedom:

〈limbID, pose6Dcontact〉 encoding the next contact target for the current state. This is similar

to the approach taken in MM-PRM (Hauser, 2008), where the planner is explicitly allowed

to search for and select suitable contacts for the limbs (i.e. mode changes) in order to

achieve locomotion. Selecting a target contact allows for a more focused search over the

remaining 35 degrees of freedom, to drive the system to the selected target contact. Once

the current target contact is satisfied, the planner selects the next target contact. The

difference in our approach is that we do not separate the search for contacts and the search

for trajectories to achieve those contacts into two separate searches. Rather, the contact

search and selection and the search for motions to achieve the selected contact is combined

into a single state-space representation that reasons for both concurrently. The next target

contact is selected similarly to how next footstep locations are generated in the bipedal and

quadrupedal representations. Thus, when a state satisfies the current target contact, we

generate successor states for each of the possible next target contacts based on the available

bipedal and quadrupedal motion primitives. Thus, the total number of degrees of freedom

in the full-dimensional representation is 42.

Another important challenge in planning for locomotion for humanoid robots is ensuring the

stability of the system, especially when breaking or making contacts. For the scope of this

project, dynamic stability was not required and the planner needed to produce statically

stable trajectories. To ensure static stability, the planner enforced that for every state,

the center of mass of the robot is fully supported by the support polygon defined by the

current set of contacts. Moreover, before a contact can be broken, the planner ensured that

146

Figure 42: Maintaining static stability: the planner ensures that the projection of the
center of mass (translucent vertical orange line) falls inside the support polygon (green
polygon). The robot needs to shift its center of mass over the stance foot before it can
break the contact of the stepping foot.

the center of mass of the robot is fully supported by the support polygon defined by the

remaining contacts. For example, in the bipedal case, before the robot can make a step

it needs to shift its center of mass over the support polygon of the stance leg. Once the

center of mass is fully supported by the stance leg, then the robot is allowed to proceed with

breaking the contact of the stepping leg and move it towards the selected target contact

location (Fig. 42). This approach for checking stability only works for resting contacts on

horizontal surfaces, assuming that the force of gravity is counteracted by vertical normal

forces at the contact locations. We are currently developing a more complex system for

balance checking, which can handle arbitrary contacts by reasoning about the necessary

forces at the contact locations in order to maintain balance and if those forces can be

achieved within the torque limits.

When more than one limb is in contact, every pair of contacts forms a closed kinematic

chain, which constrains the available motions of the joints in the chain. Consider, for

example, the case when the robot is standing with both feet in contact with the ground.

In order for the robot to shift its center of mass over one of the feet to be able to take a

step, it needs to perform a synchronized motion with both legs, such that the body moves

147

in the desired direction, while the feet maintain their current contacts (Fig. 42 left and

middle). To achieve such motions, we dynamically generate transitions with the use of

inverse kinematics. For example, let’s consider trying to shift the root of the robot from

it’s current pose R to a new pose R′. The current root pose R and the current joint

configurations J make a set of contacts C with the environment (represented as 6D poses of

the links that make the contacts). We would like to compute new set of joint configurations

J ′ such that the new root pose R′ and the new joint configurations J ′ maintain the same

set of contact poses C. We use inverse kinematics from the new root pose R′ to the set of

contacts C to look for feasible joint configurations J ′ of the contacting limbs that satisfy

those contacts (i.e. the poses of the contacting links remain the same). If we find such joint

configurations J ′, then we check if the transition from (R, J) to (R′, J ′) is collision-free and

that it satisfies joint limit and balance constraints. If so, it is used as a valid transition in

the state-space, allowing us to shift the root position, while maintaining the contacts with

the environment.

On the other hand, joints that are not part of closed kinematic chains (i.e. joints of limbs

that are not currently used for support) can be moved freely within their respective joint

limit ranges. For such joints, we allow transitions based on motion primitives, which rotate

the joint by a specified angle. Currently we use only 2 motion primitives for each joint,

which rotate the joint by ±5◦ respectively.

11.3.6. Planning Framework Design

The planning framework is designed to allow easy incorporation of new abstract represen-

tations regardless of their internal state-spaces and transition sets. Every abstraction is

registered with the planning framework and gets assigned a unique ID. Each abstraction

also specifies where it fits in the abstraction hierarchy by registering with their correspond-

ing parent abstractions. The planning framework is completely agnostic to the internal

state representations that the abstractions use. The planner represents every state in the

graph through the following data structure:

148

Abstract State:

• stateID - an integer uniquely identifying every state.

• abstractionID - an integer identifying the abstraction that state belongs to.

• stateData - the state data specific to the abstraction that state belongs to. Our

particular implementation uses a void pointer to the memory location where the data

is stored. The planner has no knowledge of how to interpret the state data. Only the

abstraction that generated the state knows exactly what is stored in the state data

and how to interpret it.

Each abstraction needs to define the following interface functions that the planner uses to

communicate with it

• GetSuccesors(stateID, out array successorIDs, out array transitionCosts) - the func-

tion that generates the successor states of a given state, defined by its stateID. It

returns a set of successor states (defined by stateID ’s) and the corresponding transi-

tion costs (integers). This function defines the transition set and cost function of the

abstraction.

• GetPredecessors(stateID, out array predecessorIDs, out array transitionCosts) - the

function that generates the predecessor states of a given state, defined by its stateID.

It returns a set of predecessor states (defined by stateID ’s) and the corresponding

transition costs (integers). This function defines the transition set and cost function

of the abstraction.

• GetGoalHeuristic(stateID) - the function returns the heuristic value (estimated

cost to goal) of the given state. It is used for forward graph searches.

• GetStartHeuristic(stateID) - the function returns the heuristic value (estimated

cost to start) of the given state. It is used for backward graph searches.

149

• ProjectFromFullD(fullDstateID, out array lowDProjectionIDs) - the function de-

fines the λ function for the particular abstraction and produces a set of projected

low-dimensional states from a given full-dimensional state.

• ProjectToFullD(lowDstateID, out array fullDProjectionIDs) - the function defines

the λ−1 function for the particular abstraction and produces a set of projected full-

dimensional states from a given low-dimensional state.

Note that the projection functions assume that each abstraction has knowledge of what the

full-dimensional state-space is and how to interpret the state data of full-dimensional states.

Thus, each abstraction is intended to work with a specific full-dimensional representation.

If the full-dimensional representation for the system is changed, the projection functions of

each abstraction have to be modified accordingly to work with the new full-dimensional rep-

resentation. Additionally, note that the projection functions can take advantage of domain-

specific knowledge and assumptions in order to optimize the projection process, which can

be quite expensive, especially when projecting to the full-dimensional space. For example,

when projecting from bipedal footstep abstraction to the full-dimensional state-space, we

do not generate all possible full-dimensional configurations that have the desired footstep

locations, since the vast majority of those configuration will be undesirable. Instead, we

generate relatively few full-dimensional configurations that are close to a nominal standing

pose which satisfy the desired footstep locations. This domain-specific strategy significantly

improves the performance of the projection functions.

11.4. Experimental Evaluation

We have begun initial evaluation of the planning framework on simplified test environments

designed to test specific components of the framework (examples in Fig. 40-43). Figure

43 shows an example plan which combines the two bipedal abstractions—bipedal footstep

abstraction for flat terrain and bipedal footstep abstraction for stairs. The adaptive plan-

ning phase in the example required about 60 seconds of planning to identify the sequence of

150

footsteps required to reach the goal and expanded about 1 million low-dimensional states

in the process. The tracking phase performed planning using the two corresponding exe-

cutable abstractions—bipedal footstep abstraction for flat terrain and the full-dimensional

abstraction (for climbing up the stairs)—and required about 290 seconds. Thus, the planner

required about 6 minutes to produce the final trajectory. These results should be considered

preliminary and treated as a proof-of-concept, as there is room for further improvement

and optimization of the code. For example, expansion of full-dimensional states is quite

expensive—planner currently achieves about 10-15 full-dimensional expansions per second.

The computations requiring the most significant amount of time during full-dimensional

expansions are the calls to the inverse kinematics solver (≈ 50-100 ms per expansion),

which is over an order of magnitude more time consuming than the next most significant

computation—transition validation and collision-checking (≈ 5 ms per expansion). We are

currently using a generic inverse kinematics solver, but we believe that the performance

of the inverse kinematics computations can be improved significantly by using a solver

specifically designed to work for the limbs of the robot.

The ultimate goal of the project is to also incorporate interleaving of planning and exe-

cution, which we discussed in Chapter 7.3, in order to achieve low robot idle times while

waiting for the planner to produce a complete trajectory to the goal. Additionally, as the

robot navigates through the environment, the planner will also need to incorporate new

sensor data between planning iterations in order to be able to react to any changes in the

environment and ensure that planning is done with respect to the most current environment

data.

11.5. Analysis of Results

Despite the fact that the application of Planning with Adaptive Dimensionality for hu-

manoid mobility is in its early stages of development, we believe that our initial results

provide a compelling argument for the performance benefits that can be achieved by using

the PAD framework combining multiple low-dimensional representations when planning for

151

robotic systems with a large number of degrees of freedom. We have illustrated that the

framework can solve difficult planning problems in reasonable time, while providing the

strong theoretical guarantees associated with search-based planners—completeness with

respect to the graph representing the planning problem and bounds on solution cost sub-

optimality. We have outlined several ways that can further improve the performance of

the planner, which will be incorporated into the planning framework as the project moves

forward. Our goal is to perform rigorous performance evaluation of the planning framework

and compare it with alternative approaches, such as MM-PRM (Hauser, 2008), in a future

publication.

152

(a) Start and goal (b) Initial abstraction assignments

(c) Planning phase path (d) Tunnel around path

(e) Tracking phase path

Figure 43: Example of Planning with Adaptive Dimensionality for humanoid mobility using
multiple abstractions for different areas of the state-space. (a) The starting robot config-
uration and the goal location at the top of the stairs. (b) Initial abstraction assignments
in the environment: red—bipedal footprint abstraction for flat ground, pink—bipedal foot-
print abstraction for stairs. (c) The path produced by the adaptive planning phase showing
the two different bipedal abstractions used in different colors. (d) Tunnel constraining the
footstep locations to near the ones selected by the adaptive planning phase: red—tracking
using executable bipedal footprint abstraction, pink—tracking using executable full-D ab-
straction. (e) Final solution after successful tracking phase highlighting the use the the
executable bipedal footstep following abstraction.

153

CHAPTER 12 : Conclusion

While many planning problems are seemingly high-dimensional, they often exhibit low-

dimensional structures that describe the problem well throughout most of the state-space.

Based on this observation, we have developed the framework for Planning with Adaptive

Dimensionality, which makes effective use of such low-dimensional representations in order

to reduce the size and complexity of the state-space, resulting in faster planning times

and lower memory requirements, while providing strong guarantees about the feasibility of

the resulting path, completeness with respect to the high-dimensional graph representing

the problem, and bounds on solution cost sub-optimality. The PAD framework provides

a general principled way of combining planning for a hierarchy of multiple different state

abstractions in a single planning process, which avoids expensive high-dimensional planning

through areas of the state-space which do not require it. Moreover, the PAD framework

effectively identifies the areas which do require high-dimensional planning in order to ensure

the feasibility of the final solution and its cost sub-optimality bound. The use abstraction

hierarchies allows the framework to capture the different capabilities of the system and use

suitable state abstractions for different areas of the state-space.

The PAD framework also allows for domain-specific extensions aimed to improve its perfor-

mance. We have developed a number of such extensions, such as the tree-restoring weighted

A* incremental graph search algorithm, which is able to minimize redundant computation

between iterations while efficiently handling changes in the search graph. We have also

developed a method that allows the algorithm to interleave planning and execution, thus

reducing the system’s idle time while waiting for the planner to produce a complete solu-

tion. We have presented several extensions aimed at improving the tracking phase of the

algorithm by introducing more efficient ways to construct a high-dimensional path from the

hybrid path produced by the planning phase.

We have demonstrated the applicability of our framework in several different domains—

154

planning for single robot navigation, multi-robot collaborative navigation, manipulation

and mobile manipulation, and planning for humanoid mobility. We have experimentally

validated the advantages of our framework over popular alternative approaches in these

domains. Our experimental results illustrate that the PAD framework outperforms high-

dimensional planners, especially on difficult planning problems, while also providing more

consistent solutions for similar planning problems than sampling-based alternatives.

We have identified a number of topics relevant to Planning with Adaptive Dimensionality

that present interesting areas for future research—how can suitable abstractions be com-

puted automatically, or how to automatically decide which of the available abstractions is

best suited for a certain area of the state-space, for instance. We have presented our insight

into trying to address those questions, however, we consider them as open questions which

require further exploration.

In conclusion, in this work we have presented a general principled approach for using

state abstractions to deal with the curse of dimensionality for high-dimensional planning

problems—Planning with Adaptive Dimensionality.

155

APPENDIX A : Planning with Adaptive Dimensionality Proofs

Theorem A.I The cost of a least-cost path from XS to XG, π∗ad(XS , XG), in Gad is a

lower bound on the cost of a least-cost path from XS to XG, π∗hd(XS , XG), in Ghd.

c(π∗ad(XS , XG)) ≤ c(π∗hd(XS , XG))

Proof We will construct a proof by contradiction. Let’s assume to the contrary

c(π∗ad(XS , XG)) > c(π∗hd(XS , XG))

Let πhd be any path in the high-dimensional graph Ghd = (Shd, Thd). We can represent

πhd in terms of the sequence of states that it visits πhd = (s1, s2, ..., sn), where si ∈ Shd

and (si, si+1) ∈ Thd. Consider the following projection function λad that projects high-

dimensional paths πhd = (s1, s2, ..., sn) onto the hybrid graph Gad = (Sad, Tad):

∀si ∈ πhd : λad(si) =

 si if si ∈ Sad

λ(si) if si 6∈ Sad
(A.1)

Thus, λad projects high-dimensional states onto themselves if they fall inside a high-dimensional

region of Gad, or to their low-dimensional projections otherwise.

Without loss of generality, let π∗hd(XS , XG) = (s1, s2, ..., sn). Consider the projection π′ =

λad(π
∗
hd(XS , XG)) onto the hybrid graph Gad. Recall that XS = s1 and XG = sn are always

in high-dimensional regions of Gad. Then

π′ = λad(π
∗
hd(XS , XG)) = λad((s1, s2, ..., sn)) = (s1, ...sk, λ(sk+1), ...λ(sm), sm+1, ...sn)

156

Thus, π′ consists of high-dimensional path segments, which are separated by sequences

of low-dimensional states. If π′ contains no low-dimensional states, then π∗hd(XS , XG) =

(s1, s2, ..., sn) is a valid path in Gad and it goes through high-dimensional regions only.

Then, its cost is cannot be smaller than the cost of a least-cost path in Gad, which violates

our initial assumption. Thus, π′ contains at least one low-dimensional state.

Note that the transitions between high- and low-dimensional states, such as (sk, λ(sk+1))

and (λ(sm), sm+1) are high-dimensional transitions by our definition of how to construct Tad

and their cost is equal to the corresponding transitions in the high-dimensional graph Ghd,

where chd denotes the cost of a transition in Ghd and cad denotes the cost of a transition in

Gad.

cad(sk, λ(sk+1)) = chd(sk, sk+1) (A.2)

cad(λ(sm), sm+1) = chd(sm, sm+1) (A.3)

Let’s use πi = (sj , ..., sk) to represent a maximum-length high-dimensional path segment (a

maximum-length sequence of high-dimensional states) in π′. Also, let ti = (sj , λ(sj+1))

represent a transition from a high-dimensional to a low-dimensional state in π′, t′i =

(λ(sj), sj+1) represent a transition from a low-dimensional to a high-dimensional state in π′,

and Li = (λ(sj), ..., λ(sk)) represent a maximum-length sequence of low-dimensional states

in π′. Then, π′ can be represented as

π′ = (π1, t1, L1, t
′
1, π2, t2, L2, t

′
2, ...πr−1, tr−1, Lr−1, t

′
r−1, πr)

In other words, π′ is a combination of high-dimensional path segments and sequences of

low-dimensional states connected by appropriate transitions.

Now let us make the following definitions. For any Li = (λ(sj), ..., λ(sk)), let Hi =

(sj , ..., sk) be the corresponding sequence of high-dim. states in π∗hd(XS , XG). For any

157

ti = (sj , λ(sj+1)), let τi = (sj , sj+1). For any t′i = (λ(sj), sj+1), let τ ′i = (sj , sj+1). Notice

that cad(ti) = chd(τi) and cad(t
′
i) = chd(τ

′
i), as mentioned above (Eq. A.2 and Eq. A.3).

Then, we can write π∗hd(XS , XG) in terms of our new definitions as

π∗hd(XS , XG) = (π1, τ1, H1, τ
′
1, π2, τ2, H2, τ

′
2, ...πr−1, τr−1, Hr−1, τ

′
r−1, πr)

We basically break down π∗hd(XS , XG) into path segments that map into high-dimensional

regions in Gad (πi’s), path segments that map into low-dimensional regions of Gad (Hi’s),

and transitions to connect them (τi’s and τ ′i ’s).

Then, the cost of π∗hd(XS , XG) can be written as the sum of its individual segments and

transitions:

c(π∗hd(XS , XG)) =
∑
i=1...r

c(πi) +
∑

i=1...(r−1)

chd(τi) +
∑

i=1...(r−1)

chd(τ
′
i) +

∑
i=1...(r−1)

c(Hi)

Then, using Eq. A.2 and Eq. A.3 we get:

c(π∗hd(XS , XG)) =
∑
i=1...r

c(πi) +
∑

i=1...(r−1)

cad(ti) +
∑

i=1...(r−1)

cad(t
′
i) +

∑
i=1...(r−1)

c(Hi) (A.4)

Now let’s consider an arbitrary Hi = (sj , ..., sk). By our assumption stated in 4.1:

c(Hi) = c(π∗hd(sj , sk)) ≥ c(π∗ld(λ(sj), λ(sk)))

Let’s denote π∗ld(λ(sj), λ(sk)) for an arbitrary Hi = (sj , ..., sk) by π∗ld[Hi]. Then, from Eq.

158

A.4, we have:

c(π∗hd(XS , XG)) ≥
∑
i=1...r

c(πi) +
∑

i=1...(r−1)

cad(ti) +
∑

i=1...(r−1)

cad(t
′
i) +

∑
i=1...(r−1)

c(π∗ld[Hi])

Rewriting the sumations in a more intuitive form leads to:

c(π∗hd(XS , XG)) ≥ c(π1) + cad(t1) + c(π∗ld[H1]) + cad(t
′
1) + c(π2) + cad(t2) + c(π∗ld[H2])+

+ cad(t
′
2) + ...+ c(πr−1) + cad(tr−1) + c(π∗ld[Hr−1]) + cad(t

′
r−1) + c(πr) (A.5)

Notice that for all πi = (sj , ..., sk), πi is a valid path in Gad, as sj , ..., sk ∈ Sad. Then, for

any two πi = (sj , ..., sk) and πi+1 = (sp, ..., sq) we have:

• ti = (sk, λ(sk+1))—a transition from the end of πi to λ(sk+1);

• π∗ld[Hi] = π∗ld(λ(sk+1), λ(sp−1))—a low-dimensional path from λ(sk+1) to λ(sp−1);

• t′i = (λ(sp−1), sp)—a transition from λ(sp−1) to the beginning of πi+1.

Therefore, the sequence

π′′ad = (π1, t1, π
∗
ld[H1], t

′
1, π2, t2, π

∗
ld[H2], t

′
2, ...πr−1, tr−1, π

∗
ld[Hr−1], t

′
r−1, πr)

is a valid path in Gad from XS = s1 to XG = sn, where all πi are high-dimensional

path segments lying in high-dimensional regions of Gad, all ti and t′i are valid transitions

between high- and low-dimensional regions, and all π∗ld[Hi] are valid paths through the

low-dimensional regions of Gad. The cost of π′′ad is:

159

c(π′′ad) = c(π1) + cad(t1) + c(π∗ld[H1]) + cad(t
′
1) + c(π2) + cad(t2) + c(π∗ld[H2])+

+cad(t
′
2) + ...+ c(πr−1) + cad(tr−1) + c(π∗ld[Hr−1]) + cad(t

′
r−1) + c(πr) (A.6)

Thus, from our assumption, Eq. A.5, and Eq. A we have the following:

c(π∗ad(XS , XG)) > c(π∗hd(XS , XG)) ≥ c(π′′ad)

We have shown that we were able to construct a valid path π′′ad in Gad, which has strictly

lower cost than the least-cost path π∗ad(XS , XG) in Gad—a contradiction. Thus, our as-

sumption that

c(π∗ad(XS , XG)) > c(π∗hd(XS , XG))

must be incorrect and we have

c(π∗ad(XS , XG)) ≤ c(π∗hd(XS , XG))

Theorem A.II If we have a finite state-space, algorithm 1 terminates and upon successful

termination, the cost of the returned path π(XS , XG) is no more than ε track times the cost

of an optimal path from state XS to state XG in Ghd.

Proof The termination of the algorithm is ensured by the fact that after each iteration

we are introducing new high-dimensional states into Gad and removing the corresponding

low-dimensional states. Since we have a finite state-space, after finitely many iterations,

Gad will become identical to Ghd, containing only high-dimensional states. Gad will then

be searched for a least-cost path in a finite time.

If a path π∗ad is successfully computed by the adaptive planning phase, it will be fully

160

high-dimensional. Then, by definition, the tunnel sub-graph τ constructed around π∗ad will

contain π∗ad as a valid fully high-dimensional path from start to goal. Thus, the tracking

phase graph search will be able to compute a valid optimal path from start to goal π∗τ and its

cost will be equal to the cost of the optimal high-dimensional path π∗ad, i.e. c(π∗τ) = c(π∗ad).

Therefore, c(π∗τ) ≤ ε track · c(π∗ad)∀ε track ≥ 1 and the sub-optimality check on line 16 of Alg.

1 will be satisfied and the algorithm will return π∗τ as an optimal solution and terminate.

On the other hand, if no path is found in Gad, the algorithm again terminates stating that

no feasible path exists from start to goal.

The second statement of the theorem follows from Theorem A.I. By Theorem A.I, the

adaptive planning phase produces an underestimate of the real cost from start to goal.

c(π∗ad(XS , XG)) ≤ c(π∗hd(XS , XG))

Upon successful algorithm termination, the tracking phase succeeds in finding a path of

cost no more than ε track times the cost of the computed adaptive path. Thus, we have

c(πτ (XS , XG)) ≤ ε track · c(π∗ad(XS , XG)) ≤ ε track · c(π∗hd(XS , XG)).

Hence, the cost of the tracked path is no larger than ε track times the cost of an optimal path

from start to goal in Ghd. �

Theorem A.III If ε plan-suboptimal searches are used in lines 6 and 12 of algorithm 1, the

cost of the path returned by our algorithm is no larger than ε plan · ε track · π∗hd(XS , XG).

Proof If we use an ε-suboptimal search in the adaptive planning phase, we know that

that the cost of the produced path c(πad) is no larger than ε · c(π∗ad). Then we have

c(πad) ≤ ε · c(π∗ad) ≤ ε · c(π∗hd). Then we know that the tracking phase produced a path πτ

of cost no larger than ε track · c(πad). Hence, we have c(πτ) ≤ ε track · c(πad) ≤ ε track · ε · c(π∗hd).

�

161

APPENDIX B : Tree-Restoring Weighted A* Proofs

Theorem B.I All states X with C(X) > c will become unseen after restoreSearch(c) is

called.

Proof The function will not insert X into the OPEN or CLOSED lists since C(X) > c.

g(X) will be set to ∞ and the parent pointer of X will be cleared, making X unseen.

Also, any descendant Xd of X in the back-pointer tree must have been created after X

(C(Xd) > C(X) > c). Thus, the call to restoreSearch(c) will make Xd unseen as well. �

Theorem B.II The contents of the OPEN and CLOSED lists after restoreSearch(c) is

called are identical to what they were at the end of step c of the algorithm.

Proof Let OPENc and CLOSEDc be the OPEN and CLOSED lists at the end of step

c of the algorithm. Let OPEN ′ and CLOSED′ be the OPEN and CLOSED lists after

the function restoreSearch(c) is called. In can be easily shown that X ∈ OPENc iff X ∈

OPEN ′ and X ∈ CLOSEDc iff X ∈ CLOSED′. Let X ∈ CLOSEDc, then X has been

created and expanded before or during step c. Thus, C(X) < c and E(X) ≤ c. Then X

will be placed in CLOSED′ by restoreSearch(c). Let X ∈ CLOSED′, then C(X) < c

and E(X) ≤ c. Thus, X has been created and expanded before or during step c of the

algorithm and X ∈ CLOSEDc. Let X ∈ OPENc, then X has been created, but not yet

expanded at the end of step c. Thus, C(X) ≤ c and E(X) = ∞. Then X will be placed

in OPEN ′ by restoreSearch(c). Let X ∈ OPEN ′, then C(X) ≤ c and E(X) > c. Thus

X has been created, but not yet expanded at the end of step c. Then X ∈ OPENc. Thus,

OPENc ≡ OPEN ′ and CLOSEDc ≡ CLOSED′. �

Theorem B.III All states X with C(X) ≤ c will have correct parent pointers and corre-

sponding g-values after restoreSearch(c) is called.

Proof We construct a proof by contradiction. Suppose a state X has an incorrect parent

pointer, i.e there exists a state P ′ ∈ CLOSED such that g(P ′) + cost(P ′, X) < g(P) +

162

cost(P,X) (a better parent P ′ for X exists in the CLOSED list). We argue that P ′

must have been expanded before P , and since P ′ provides better g-value than P , then P

cannot have been recorded as a parent for X. Suppose P was expanded before P ′. Then

E(P) < E(P ′) ≤ c. The call to updateParents(c), then should have found P ′ as the parent

of X as P ′ has been expanded more recently than P , but still before or during step c—a

contradiction. Then, P must have been expanded after P ′ and E(P ′) < E(P) ≤ c. However,

since the g-value obtained through P is larger than the g-value obtained through P ′, P would

not have been recorded as a parent of X when P was expanded because a better parent had

been found already. Thus, P could not be a parent of X—contradiction. Thus, the parent

pointers and their corresponding g-values are computed correctly by restoreSearch(c). �

Theorem B.IV Let M be the set of all modified states after a successful incremental A∗

search episode. Let cmin = min(C(X)|X ∈ M). restoreSearch(c) for any c < cmin results

in a search state that is valid with respect to the modified states M .

Proof The result follows directly from the above theorems. �

Theorem B.V The function heuristicChanged() terminates and at the time of its termi-

nation the search is restored to a search state that is valid with respect to the new heuristic

values. That is, no state has been expanded out-of-order with respect to the new f -values.

Proof Let X0 be the state with lowest f -value in OPEN in the current search state . X0

was first put in OPEN at step C(X0).

Consider the set I computed in heuristicChanged(). As in (Likhachev et al., 2003), v(X)

stores the value of g(X) at the time X was expanded. Therefore v(X) + ε ·h(X) represents

the f -value of X at the time of its expansion E(X), but also accounting for the new heuristic

values. I = {Xi ∈ CLOSED|v(Xi) + ε ·h(Xi) > f(X0)∧C(X0) < E(Xi)}. In other words,

I contains all expanded states that had higher f -values at the time of their expansion than

the current candidate for expansion X0 and that were expanded while X0 was in OPEN .

As such, I contains all possible states that might have been expanded incorrectly before X0

163

according to the new f -values. Note that it is possible that the current f(X0) is lower than

the value of f(X0) at step E(Xi), as g(X0) might have decreased as the search progressed

after step E(Xi). Therefore, it is possible that f(Xi) ≤ f(X0) was true at step E(Xi)

and that f(Xi) was correctly selected for expansion before X0. Thus, states in I are not

necessarily expanded incorrectly, but they are the only possible states that might have been

expanded incorrectly. Let s′ = min(E(X ′)|X ′ ∈ I)−1 as computed in heuristicChanged().

Restoring the search state to step s′ ensures that no states have been expanded incorrectly

before X0. At the end of the while loop I = ∅, thus no states in CLOSED could have been

expanded incorrectly with respect to the current expansion candidate X0.

To prove that heuristicChanged() terminates, we argue that the integer s′ strictly decreases

through the execution of the while loop. If s′ becomes 0, then CLOSED = ∅ making I = ∅.

�

Theorem B.VI TRA∗ expands each state at most once per search query and never expands

more states than Weighted A* from scratch (up to tie-breaking).

Proof It is easy to verify that each state can be expanded at most once per search query, as

once a state has been expanded and put in CLOSED it can never be placed in OPEN . The

fact that TRA∗ does not expand more states than performing Weighted A∗ from scratch

follows almost trivially from the fact that the two algorithms produce the same order of

state expansions (up to tie-breaking), but TRA∗ is able to resume searching from a step

s ≥ 0, thus not performing the first s expansions that Weighted A∗ from scratch would have

to perform. �

164

BIBLIOGRAPHY

S. Aine and M. Likhachev. Anytime truncated D* : Anytime replanning with truncation.
In M. Helmert and G. Rger, editors, SOCS. AAAI Press, 2013. ISBN 978-1-57735-584-7.
URL http://dblp.uni-trier.de/db/conf/socs/socs2013.html#AineL13.

D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner. Manipulation planning
with workspace goal regions. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 618–624, 2009.

D. Berenson, S. Srinivasa, and J. Kuffner. Task space regions: A framework for pose-
constrained manipulation planning. International Journal of Robotics Research (IJRR),
March 2011.

R. Bohlin and L. E. Kavraki. Path planning using lazy prm. In Proceedings of the IEEE
International Conference on Robotics and Automation, volume 1, pages 521–528. IEEE
Press, IEEE Press, April 2000. doi: 10.1109/ROBOT.2000.844107.

A. Botea, M. Müller, and J. Schaeffer. Near Optimal Hierarchical Path-Finding. Journal
of Game Development, 1(1):7–28, 2004.

O. Brock and O. Khatib. High-speed navigation using the global dynamic window ap-
proach. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 341–346, 1999.

V. Bulitko, N. Sturtevant, J. Lu, and T. Yau. Graph abstraction in real-time heuristic
search. Journal of Artificial Intelligence Research (JAIR), 30:51–100, 2007.

W. Burgard, M. Moors, C. Stachniss, and F. Schneider. Coordinated multi-robot explo-
ration. Robotics, IEEE Transactions on, 21(3):376–386, June 2005. ISSN 1552-3098. doi:
10.1109/TRO.2004.839232.

R. R. Burridge, A. A. Rizzi, and D. E. Koditschek. Sequential composition of dynamically
dexterous robot behaviors. IJRR, 18(6):534–555, 1999. doi: 10.1177/02783649922066385.
URL http://ijr.sagepub.com/content/18/6/534.abstract.

J. Butzke, K. Sapkota, K. Prasad, B. MacAllister, and M. Likhachev. State lattice with
controllers: Augmenting lattice-based path planning with controller-based motion prim-
itives. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 258–265, Sept 2014. doi: 10.1109/IROS.2014.6942570.

B. Cohen, S. Chitta, and M. Likhachev. Search-based planning for manipulation with
motion primitives. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 2902–2908, 2010.

B. J. Cohen, G. Subramania, S. Chitta, and M. Likhachev. Planning for manipulation with
adaptive motion primitives. In ICRA, pages 5478–5485. IEEE, 2011.

165

http://dblp.uni-trier.de/db/conf/socs/socs2013.html#AineL13
http://ijr.sagepub.com/content/18/6/534.abstract

D. C. Conner, H. Choset, and A. A. Rizzi. Integrating planning and control for single-bodied
wheeled mobile robots. Autonomous Robots, 30(3):243–264, 2011.

O. De Silva, G. Mann, and R. Gosine. Development of a relative localization scheme
for ground-aerial multi-robot systems. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 870–875, Oct 2012. doi: 10.1109/IROS.
2012.6386015.

E. W. Dijkstra. A note on two problems in connexion with graphs. NUMERISCHE MATH-
EMATIK, 1(1):269–271, 1959.

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path planning for autonomous vehicles
in unknown semi-structured environments. International Journal of Robotics Research,
29:485–501, April 2010. ISSN 0278-3649.

D. Fox, W. Burgard, H. Kruppa, and S. Thrun. Collaborative multi-robot localiza-
tion. In W. Frstner, J. Buhmann, A. Faber, and P. Faber, editors, Mustererkennung
1999, Informatik aktuell, pages 15–26. Springer Berlin Heidelberg, 1999. ISBN 978-3-
540-66381-2. doi: 10.1007/978-3-642-60243-6 2. URL http://dx.doi.org/10.1007/

978-3-642-60243-6_2.

J. Gaschnig. A problem similarity approach to devising heuristics: First results. In Proceed-
ings of the 6th International Joint Conference on Artificial Intelligence - Volume 1, IJ-
CAI’79, pages 301–307, San Francisco, CA, USA, 1979. Morgan Kaufmann Publishers Inc.
ISBN 0-934613-47-8. URL http://dl.acm.org/citation.cfm?id=1624861.1624931.

K. Gochev, B. Cohen, J. Butzke, A. Safonova, and M. Likhachev. Path planning with adap-
tive dimensionality. In Proceedings of the Symposium on Combinatorial Search (SoCS),
2011.

K. Gochev, A. Safonova, and M. Likhachev. Planning with adaptive dimensionality for
mobile manipulation. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2012.

K. Gochev, A. Safonova, and M. Likhachev. Incremental planning with adaptive dimen-
sionality. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), 2013.

K. Gochev, V. Narayanan, B. Cohen, A. Safonova, and M. Likhachev. Motion planning for
robotic manipulators with independent wrist joints. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2014.

B. Grocholsky, J. Keller, V. Kumar, and G. Pappas. Cooperative air and ground surveil-
lance. Robotics Automation Magazine, IEEE, 13(3):16–25, Sept 2006. ISSN 1070-9932.
doi: 10.1109/MRA.2006.1678135.

166

http://dx.doi.org/10.1007/978-3-642-60243-6_2
http://dx.doi.org/10.1007/978-3-642-60243-6_2
http://dl.acm.org/citation.cfm?id=1624861.1624931

G. Guida and M. Somalvico. A method for computing heuristics in problem-solving. In
AISB/GI (ECAI)’78, pages 115–121, 1978.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, 4(2):
100 –107, july 1968. ISSN 0536-1567. doi: 10.1109/TSSC.1968.300136.

K. Hauser. Motion Planning for Legged and Humanoid Robots. PhD thesis, Stanford
University, Stanford, CA, USA, 2008. AAI3332836.

C. Hernández, X. Sun, S. Koenig, and P. Meseguer. Tree adaptive A*. In The 10th
International Conference on Autonomous Agents and Multiagent Systems - Volume 1,
AAMAS ’11, pages 123–130, Richland, SC, 2011. International Foundation for Au-
tonomous Agents and Multiagent Systems. ISBN 0-9826571-5-3, 978-0-9826571-5-7. URL
http://dl.acm.org/citation.cfm?id=2030470.2030488.

R. Holte, T. Mkadmi, R. Zimmer, and A. J. MacDonald. Speeding up problem solving by
abstraction: A graph oriented approach. ARTIFICIAL INTELLIGENCE, 85:321–361,
1996a.

R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. Macdonald. Hierarchical A*: Search-
ing abstraction hierarchies efficiently. In In Proceedings of the National Conference on
Artificial Intelligence, pages 530–535, 1996b.

S. Kagami, F. Kanehiro, Y. Tamiya, M. Inaba, and H. Inoue. Autobalancer: An online
dynamic balance compensation scheme for humanoid robots. In B. R. Donald, K. M.
Lynch, and D. Rus, editors, Algorithmic and Computational Robotics: New Directions
: the Fourth Workshop on the Algorithmic Foundations of Robotics, pages 329–339. A
K Peters, Ltd., Natick, MA, USA, 2001. ISBN 1-56881-125-X. URL http://books.

google.com/books?id=zr9j_CL00igC&pg=PA329#v=onepage&q=&f=false.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal. Stomp: Stochastic
trajectory optimization for motion planning. In International Conference on Robotics
and Automation, 2011.

V. Kallem, A. Komoroski, and V. Kumar. Sequential composition for navigating a non-
holonomic cart in the presence of obstacles. Robotics, IEEE Transactions on, 27(6):
1152–1159, Dec 2011. ISSN 1552-3098. doi: 10.1109/TRO.2011.2161159.

M. Kapadia, A. Beacco, F. Garcia, V. Reddy, N. Pelechano, and N. I. Badler. Multi-
domain real-time planning in dynamic environments. In Proceedings of the 12th ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’13, pages 115–
124, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2132-7. doi: 10.1145/2485895.
2485909. URL http://doi.acm.org/10.1145/2485895.2485909.

S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion planning

167

http://dl.acm.org/citation.cfm?id=2030470.2030488
http://books.google.com/books?id=zr9j_CL00igC&pg=PA329#v=onepage&q=&f=false
http://books.google.com/books?id=zr9j_CL00igC&pg=PA329#v=onepage&q=&f=false
http://doi.acm.org/10.1145/2485895.2485909

using the RRT∗. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), May 2011.

L. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics
and Automation, 12(4):566–580, 1996.

R. Knepper and A. Kelly. High performance state lattice planning using heuristic look-up
tables. In Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on,
pages 3375–3380, Oct. 2006. doi: 10.1109/IROS.2006.282515.

S. Koenig and M. Likhachev. D*-lite. In Eighteenth national conference on Artificial
intelligence, pages 476–483, Menlo Park, CA, USA, 2002a. American Association for
Artificial Intelligence. ISBN 0-262-51129-0. URL http://dl.acm.org/citation.cfm?

id=777092.777167.

S. Koenig and M. Likhachev. Incremental A*. In T. G. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems (NIPS) 14. Cam-
bridge, MA: MIT Press, 2002b.

S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*. Artif. Intell., 155(1-2):
93–146, May 2004. ISSN 0004-3702. doi: 10.1016/j.artint.2003.12.001. URL http:

//dx.doi.org/10.1016/j.artint.2003.12.001.

H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Where’s waldo? sensor-based temporal
logic motion planning. In Robotics and Automation, 2007 IEEE International Conference
on, pages 3116 –3121, april 2007. doi: 10.1109/ROBOT.2007.363946.

J. Kuffner and S. LaValle. RRT-connect: An efficient approach to single-query path plan-
ning. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 995–1001, 2000.

J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion planning for humanoid
robots under obstacle and dynamic balance constraints. In Robotics and Automation,
2001. Proceedings 2001 ICRA. IEEE International Conference on, volume 1, pages 692–
698 vol.1, 2001. doi: 10.1109/ROBOT.2001.932631.

S. Lacroix and G. Le Besnerais. Issues in cooperative air/ground robotic systems. In
M. Kaneko and Y. Nakamura, editors, Robotics Research, volume 66 of Springer Tracts
in Advanced Robotics, pages 421–432. Springer Berlin Heidelberg, 2011. ISBN 978-3-
642-14742-5. doi: 10.1007/978-3-642-14743-2 35. URL http://dx.doi.org/10.1007/

978-3-642-14743-2_35.

S. LaValle and J. Kuffner. Rapidly-exploring random trees progress and prospects. Algo-
rithmic and Computational Robotics New Directions, pages 293–308, 2001a.

168

http://dl.acm.org/citation.cfm?id=777092.777167
http://dl.acm.org/citation.cfm?id=777092.777167
http://dx.doi.org/10.1016/j.artint.2003.12.001
http://dx.doi.org/10.1016/j.artint.2003.12.001
http://dx.doi.org/10.1007/978-3-642-14743-2_35
http://dx.doi.org/10.1007/978-3-642-14743-2_35

S. LaValle and J. Kuffner. Randomized kinodynamic planning. International Journal of
Robotics Research, 20:378–400, May 2001b.

J. Lee, O. Kwon, L. Zhang, and S. eui Yoon. Sr-rrt: Selective retraction-based rrt planner. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
pages 2543–2550, 2012.

L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for
MDPs. In Proceedings of the Ninth International Symposium on Artificial Intelligence and
Mathematics (ISAIM-06), 2006. URL http://research.microsoft.com/apps/pubs/

default.aspx?id=178885.

W. Li, T. Zhang, and K. Kuhnlenz. A vision-guided autonomous quadrotor in an air-ground
multi-robot system. In Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on, pages 2980–2985, May 2011. doi: 10.1109/ICRA.2011.5979579.

M. Likhachev and D. Ferguson. Planning long dynamically-feasible maneuvers for au-
tonomous vehicles. In Proceedings of Robotics: Science and Systems (RSS), 2008.

M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with provable bounds on sub-
optimality. In Advances in Neural Information Processing Systems (NIPS). Cambridge,
MA: MIT Press, 2003.

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime dynamic a*:
An anytime, replanning algorithm. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), June 2005.

J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984. ISBN 0-201-05594-5.

M. Peasgood. Cooperative Navigation for Teams of Mobile Robots. PhD thesis, University
of Waterloo, 2007.

R. Philippsen and R. Siegwart. Smooth and efficient obstacle avoidance for a tour guide
robot. In ICRA, pages 446–451, 2003.

M. Pivtoraiko and A. Kelly. Efficient constrained path planning via search in state lat-
tices. In ’i-SAIRAS 2005’ - The 8th International Symposium on Artificial Intelligence,
Robotics and Automation in Space, volume 603 of ESA Special Publication, Aug. 2005.

J. E. Pratt and G. A. Pratt. Exploiting natural dynamics in the control of a 3d bipedal walk-
ing simulation. In In In Proc. of Int. Conf. on Climbing and Walking Robots (CLAWAR99,
1999.

A. Prieditis. Machine discovery of effective admissible heuristics. Machine Learn-
ing, 12:117–141, 1993. URL http://dblp.uni-trier.de/db/journals/ml/ml12.html#

Prieditis93.

169

http://research.microsoft.com/apps/pubs/default.aspx?id=178885
http://research.microsoft.com/apps/pubs/default.aspx?id=178885
http://dblp.uni-trier.de/db/journals/ml/ml12.html#Prieditis93
http://dblp.uni-trier.de/db/journals/ml/ml12.html#Prieditis93

M. H. Raibert. Legged Robots That Balance. Massachusetts Institute of Technology, Cam-
bridge, MA, USA, 1986. ISBN 0-262-18117-7.

N. Ratliff, M. Zucker, J. A. D. Bagnell, and S. Srinivasa. Chomp: Gradient optimization
techniques for efficient motion planning. In IEEE International Conference on Robotics
and Automation (ICRA), May 2009.

I. Rekleitis, R. Sim, G. Dudek, and E. Milios. Collaborative exploration for the construction
of visual maps. In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, volume 3, pages 1269–1274 vol.3, 2001. doi: 10.1109/IROS.
2001.977157.

K.-T. Song, C.-Y. Tsai, and C.-H. C. Huang. Multi-robot cooperative sensing and local-
ization. In Automation and Logistics, 2008. ICAL 2008. IEEE International Conference
on, pages 431–436, Sept 2008. doi: 10.1109/ICAL.2008.4636190.

A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pages 1652–1659, 1995a.

A. Stentz. The focussed D* algorithm for real-time replanning. In Proceedings of the
14th international joint conference on Artificial intelligence - Volume 2, IJCAI’95, pages
1652–1659, San Francisco, CA, USA, 1995b. Morgan Kaufmann Publishers Inc. ISBN
1-55860-363-8. URL http://dl.acm.org/citation.cfm?id=1643031.1643113.

I. A. Sucan and L. E. Kavraki. Kinodynamic motion planning by interior-exterior
cell exploration. In Algorithmic Foundation of Robotics VIII (Proceedings of Work-
shop on the Algorithmic Foundations of Robotics), volume 57, pages 449–464, 2009.
doi: 10.1007/978-3-642-00312-7 28. URL http://www.springerlink.com/content/

gm47pt40p0740125/.

I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE Robotics
& Automation Magazine, 19(4):72–82, December 2012. doi: 10.1109/MRA.2012.2205651.
http://ompl.kavrakilab.org.

X. Sun, S. Koenig, and W. Yeoh. Generalized adaptive A*. In Proceedings of the 7th
international joint conference on Autonomous agents and multiagent systems - Vol-
ume 1, AAMAS ’08, pages 469–476, Richland, SC, 2008. International Foundation for
Autonomous Agents and Multiagent Systems. ISBN 978-0-9817381-0-9. URL http:

//dl.acm.org/citation.cfm?id=1402383.1402451.

X. Sun, W. Yeoh, and S. Koenig. Dynamic fringe-saving A*. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems - Vol-
ume 2, AAMAS ’09, pages 891–898, Richland, SC, 2009. International Foundation for
Autonomous Agents and Multiagent Systems. ISBN 978-0-9817381-7-8. URL http:

//dl.acm.org/citation.cfm?id=1558109.1558136.

S. Thrun et al. Map learning and high-speed navigation in RHINO. In D. Kortenkamp,

170

http://dl.acm.org/citation.cfm?id=1643031.1643113
http://www.springerlink.com/content/gm47pt40p0740125/
http://www.springerlink.com/content/gm47pt40p0740125/
http://ompl.kavrakilab.org
http://dl.acm.org/citation.cfm?id=1402383.1402451
http://dl.acm.org/citation.cfm?id=1402383.1402451
http://dl.acm.org/citation.cfm?id=1558109.1558136
http://dl.acm.org/citation.cfm?id=1558109.1558136

R. Bonasso, and R. Murphy, editors, AI-based Mobile Robots: Case Studies of Successful
Robot Systems. Cambridge, MA: MIT Press, 1998.

D. Tolani, A. Goswami, and N. Badler. Real-time inverse kinematics techniques for anthro-
pomorphic limbs. Graphical Models, 62:353–388, Sep. 2000.

K. I. Trovato and L. Dorst. Differential A*. IEEE Trans. on Knowl. and Data Eng., 14
(6):1218–1229, Nov. 2002. ISSN 1041-4347. doi: 10.1109/TKDE.2002.1047763. URL
http://dx.doi.org/10.1109/TKDE.2002.1047763.

M. Valtorta. A result on the computational complexity of heuristic estimates for the A*
algorithm. Information Sciences, 34:777–779, 1984.

R. T. Vaughan, G. S. Sukhatme, F. J. Mesa-Martinez, and J. F. Montgomery. Fly spy:
Lightweight localization and target tracking for cooperating air and ground robots. In
Distributed autonomous robotic systems 4, pages 315–324. Springer, 2000.

P. Vernaza and D. D. Lee. Learning and exploiting low-dimensional structure for effi-
cient holonomic motion planning in high-dimensional spaces. I. J. Robotic Res., 31(14):
1739–1760, 2012. URL http://dblp.uni-trier.de/db/journals/ijrr/ijrr31.html#

VernazaL12.

A. Viguria, I. Maza, and A. Ollero. Distributed service-based cooperation in aerial/ground
robot teams applied to fire detection and extinguishing missions. Advanced Robotics, 24
(1-2):1–23, 2010. doi: 10.1163/016918609X12585524300339. URL http://dx.doi.org/

10.1163/016918609X12585524300339.

M. Vukobratovc. Biped locomotion : dynamics, stability, control, and application. Scientific
fundamental of robotics. Springer-Verlag, Berlin, New York, 1990. ISBN 0-387-17456-7.
URL http://opac.inria.fr/record=b1087909. Translated from the Serbo-Croatian
(Cyrillic).

T. Wanasinghe, G. Mann, and R. Gosine. Distributed collaborative localization for a het-
erogeneous multi-robot system. In Electrical and Computer Engineering (CCECE), 2014
IEEE 27th Canadian Conference on, pages 1–6, May 2014. doi: 10.1109/CCECE.2014.
6900998.

Wikipedia. A* search algorithm — wikipedia, the free encyclopedia, 2015. URL http:

//en.wikipedia.org/wiki/A*_search_algorithm. [Online; accessed 01-March-2015].

K. Yin, K. Loken, and M. van de Panne. Simbicon: Simple biped locomotion control. In
ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07, New York, NY, USA, 2007a. ACM.
doi: 10.1145/1275808.1276509. URL http://doi.acm.org/10.1145/1275808.1276509.

K. Yin, K. Loken, and M. van de Panne. Simbicon: Simple biped locomotion control. ACM
Trans. Graph., 26(3), July 2007b. ISSN 0730-0301. doi: 10.1145/1276377.1276509. URL
http://doi.acm.org/10.1145/1276377.1276509.

171

http://dx.doi.org/10.1109/TKDE.2002.1047763
http://dblp.uni-trier.de/db/journals/ijrr/ijrr31.html#VernazaL12
http://dblp.uni-trier.de/db/journals/ijrr/ijrr31.html#VernazaL12
http://dx.doi.org/10.1163/016918609X12585524300339
http://dx.doi.org/10.1163/016918609X12585524300339
http://opac.inria.fr/record=b1087909
http://en.wikipedia.org/wiki/A*_search_algorithm
http://en.wikipedia.org/wiki/A*_search_algorithm
http://doi.acm.org/10.1145/1275808.1276509
http://doi.acm.org/10.1145/1276377.1276509

H. Zhang, J. Butzke, and M. Likhachev. Combining global and local planning with guaran-
tees on completeness. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), May 2012.

R. Zhou and E. A. Hansen. Multiple sequence alignment using A*. In Proceedings of the
National Conference on Artificial Intelligence (AAAI), 2002. Student abstract.

R. Zhou and E. A. Hansen. Beam-stack search: Integrating backtracking with beam search.
In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), 2005a.

R. Zhou and E. A. Hansen. Beam-stack search: Integrating backtracking with beam search.
In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), pages 90–98, 2005b.

172

	University of Pennsylvania
	ScholarlyCommons
	1-1-2016

	Planning With Adaptive Dimensionality
	Kalin Vasilev Gochev
	Recommended Citation

	Planning With Adaptive Dimensionality
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Second Advisor
	Keywords
	Subject Categories

	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	1 Introduction
	2 Motivating Observation
	3 Related Work
	3.1 State Abstraction Techniques
	3.2 Two-Layer Planners
	3.3 Sampling-Based Planners
	3.4 Optimization Methods
	3.5 Incremental Search Algorithms

	4 Planning with Adaptive Dimensionality
	4.1 Definitions and Notations
	4.2 Overview
	4.3 Hybrid State-Space Construction
	4.4 Algorithm
	4.5 Identifying Areas that Require High-Dimensional Planning
	4.6 Theoretical Properties
	4.7 Algorithm Parameters

	5 Hierarchical Planning with Adaptive Dimensionality
	5.1 Motivation
	5.2 Related Work
	5.3 Combining Multiple Abstractions
	5.4 Theoretical Properties
	5.5 Identifying Useful Abstractions

	6 Incremental Graph Search for PAD
	6.1 Motivation
	6.2 Definitions and Notations
	6.3 Tree-Restoring Weighted A* Search
	6.4 Anytime Tree-Restoring Weighted A* Search
	6.5 Efficiently Detecting Changes in the Graph
	6.6 Experimental Evaluation
	6.7 Analysis of Results

	7 Application: PAD for Navigation
	7.1 Non-Incremental 3D Path Planning for a Non-Holonomic Vehicle
	7.2 Incremental 3D Path Planning for a Non-Holonomic Vehicle
	7.3 Interleaving Planning and Execution

	8 Application: PAD for Multi-Robot Collaborative Navigation
	8.1 Related Work
	8.2 State Lattice with Controller-based Motion Primitives
	8.3 Implementation Details
	8.4 Experimental Setup
	8.5 Analysis of Results

	9 Application: PAD for Manipulation
	9.1 Using 3D Low-Dimensional Representation
	9.2 Using 4D Low-Dimensional Representation for Manipulators with Independent Wrist Joints

	10 Application: PAD for Mobile Manipulation
	10.1 Using a Single Abstraction
	10.2 Using Multiple Abstractions

	11 Application: PAD for Humanoid Robot Mobility
	11.1 Domain Background and Related Work
	11.2 Algorithm Extension
	11.3 Implementation Details
	11.4 Experimental Evaluation
	11.5 Analysis of Results

	12 Conclusion
	APPENDIX
	A Planning with Adaptive Dimensionality Proofs
	B Tree-Restoring Weighted A* Proofs
	BIBLIOGRAPHY

