11,579 research outputs found

    Joint Facility and Demand Location Problem

    Full text link
    In typical applications of facility location problems, the location of demand is assumed to be an input to the problem. The demand may be fixed or dynamic, but ultimately outside the optimizers control. In contrast, there are settings, especially in humanitarian contexts, in which the optimizer decides where to locate a demand node. In this work, we introduce an optimization framework for joint facility and demand location. As examples of our general framework, we extend the well-known k-median and k-center problems into joint facility and demand location problems (JFDLP) and formulate them as integer programs. We propose a local search heuristic based on network flow. We apply our heuristic to a hurricane evacuation response case study. Our results demonstrate the challenging nature of these simultaneous optimization problems, especially when there are many potential locations. The local search heuristic is most promising when the the number of potential locations is large, while the number of facility and demand nodes to be located is small.Comment: 20 pages, 7 figure

    Algorithms For Clustering Problems:Theoretical Guarantees and Empirical Evaluations

    Get PDF
    Clustering is a classic topic in combinatorial optimization and plays a central role in many areas, including data science and machine learning. In this thesis, we first focus on the dynamic facility location problem (i.e., the facility location problem in evolving metrics). We present a new LP-rounding algorithm for facility location problems, which yields the first constant factor approximation algorithm for the dynamic facility location problem. Our algorithm installs competing exponential clocks on clients and facilities, and connects every client by the path that repeatedly follows the smallest clock in the neighborhood. The use of exponential clocks gives rise to several properties that distinguish our approach from previous LP-roundings for facility location problems. In particular, we use \emph{no clustering} and we enable clients to connect through paths of \emph{arbitrary lengths}. In fact, the clustering-free nature of our algorithm is crucial for applying our LP-rounding approach to the dynamic problem. Furthermore, we present both empirical and theoretical aspects of the kk-means problem. The best known algorithm for kk-means with a provable guarantee is a simple local-search heuristic that yields an approximation guarantee of 9+ϵ9+\epsilon, a ratio that is known to be tight with respect to such methods. We overcome this barrier by presenting a new primal-dual approach that enables us (1) to exploit the geometric structure of kk-means and (2) to satisfy the hard constraint that at most kk clusters are selected without deteriorating the approximation guarantee. Our main result is a 6.3576.357-approximation algorithm with respect to the standard LP relaxation. Our techniques are quite general and we also show improved guarantees for the general version of kk-means where the underlying metric is not required to be Euclidean and for kk-median in Euclidean metrics. We also improve the running time of our algorithm to almost linear running time and still maintain a provable guarantee. We compare our algorithm with {\sc K-Means++} (a widely studied algorithm) and show that we obtain better accuracy with comparable and even better running time

    Tight Analysis of a Multiple-Swap Heuristic for Budgeted Red-Blue Median

    Get PDF
    Budgeted Red-Blue Median is a generalization of classic kk-Median in that there are two sets of facilities, say R\mathcal{R} and B\mathcal{B}, that can be used to serve clients located in some metric space. The goal is to open krk_r facilities in R\mathcal{R} and kbk_b facilities in B\mathcal{B} for some given bounds kr,kbk_r, k_b and connect each client to their nearest open facility in a way that minimizes the total connection cost. We extend work by Hajiaghayi, Khandekar, and Kortsarz [2012] and show that a multiple-swap local search heuristic can be used to obtain a (5+ϵ)(5+\epsilon)-approximation for Budgeted Red-Blue Median for any constant ϵ>0\epsilon > 0. This is an improvement over their single swap analysis and beats the previous best approximation guarantee of 8 by Swamy [2014]. We also present a matching lower bound showing that for every p1p \geq 1, there are instances of Budgeted Red-Blue Median with local optimum solutions for the pp-swap heuristic whose cost is 5+Ω(1p)5 + \Omega\left(\frac{1}{p}\right) times the optimum solution cost. Thus, our analysis is tight up to the lower order terms. In particular, for any ϵ>0\epsilon > 0 we show the single-swap heuristic admits local optima whose cost can be as bad as 7ϵ7-\epsilon times the optimum solution cost

    Approximation Algorithms for Minimum-Load k-Facility Location

    Get PDF
    We consider a facility-location problem that abstracts settings where the cost of serving the clients assigned to a facility is incurred by the facility. Formally, we consider the minimum-load k-facility location (MLkFL) problem, which is defined as follows. We have a set F of facilities, a set C of clients, and an integer k > 0. Assigning client j to a facility f incurs a connection cost d(f, j). The goal is to open a set F\u27 of k facilities, and assign each client j to a facility f(j) in F\u27 so as to minimize maximum, over all facilities in F\u27, of the sum of distances of clients j assigned to F\u27 to F\u27. We call this sum the load of facility f. This problem was studied under the name of min-max star cover in [6, 2], who (among other results) gave bicriteria approximation algorithms for MLkFL for when F = C. MLkFL is rather poorly understood, and only an O(k)-approximation is currently known for MLkFL, even for line metrics. Our main result is the first polynomial time approximation scheme (PTAS) for MLkFL on line metrics (note that no non-trivial true approximation of any kind was known for this metric). Complementing this, we prove that MLkFL is strongly NP-hard on line metrics. We also devise a quasi-PTAS for MLkFL on tree metrics. MLkFL turns out to be surprisingly challenging even on line metrics, and resilient to attack by the variety of techniques that have been successfully applied to facility-location problems. For instance, we show that: (a) even a configuration-style LP-relaxation has a bad integrality gap; and (b) a multi-swap k-median style local-search heuristic has a bad locality gap. Thus, we need to devise various novel techniques to attack MLkFL. Our PTAS for line metrics consists of two main ingredients. First, we prove that there always exists a near-optimal solution possessing some nice structural properties. A novel aspect of this proof is that we first move to a mixed-integer LP (MILP) encoding the problem, and argue that a MILP-solution minimizing a certain potential function possesses the desired structure, and then use a rounding algorithm for the generalized-assignment problem to "transfer" this structure to the rounded integer solution. Complementing this, we show that these structural properties enable one to find such a structured solution via dynamic programming

    Lotsize optimization leading to a pp-median problem with cardinalities

    Get PDF
    We consider the problem of approximating the branch and size dependent demand of a fashion discounter with many branches by a distributing process being based on the branch delivery restricted to integral multiples of lots from a small set of available lot-types. We propose a formalized model which arises from a practical cooperation with an industry partner. Besides an integer linear programming formulation and a primal heuristic for this problem we also consider a more abstract version which we relate to several other classical optimization problems like the p-median problem, the facility location problem or the matching problem.Comment: 14 page

    New Approximability Results for the Robust k-Median Problem

    Full text link
    We consider a robust variant of the classical kk-median problem, introduced by Anthony et al. \cite{AnthonyGGN10}. In the \emph{Robust kk-Median problem}, we are given an nn-vertex metric space (V,d)(V,d) and mm client sets {SiV}i=1m\set{S_i \subseteq V}_{i=1}^m. The objective is to open a set FVF \subseteq V of kk facilities such that the worst case connection cost over all client sets is minimized; in other words, minimize maxivSid(F,v)\max_{i} \sum_{v \in S_i} d(F,v). Anthony et al.\ showed an O(logm)O(\log m) approximation algorithm for any metric and APX-hardness even in the case of uniform metric. In this paper, we show that their algorithm is nearly tight by providing Ω(logm/loglogm)\Omega(\log m/ \log \log m) approximation hardness, unless NPδ>0DTIME(2nδ){\sf NP} \subseteq \bigcap_{\delta >0} {\sf DTIME}(2^{n^{\delta}}). This hardness result holds even for uniform and line metrics. To our knowledge, this is one of the rare cases in which a problem on a line metric is hard to approximate to within logarithmic factor. We complement the hardness result by an experimental evaluation of different heuristics that shows that very simple heuristics achieve good approximations for realistic classes of instances.Comment: 19 page

    A regret model applied to the facility location problem with limited capacity facilities

    Get PDF
    This article addresses issues related to location and allocation problems. Herein, we intend to demonstrate the influence of congestion, through the random number generation, of such systems in final solutions. An algorithm is presented which, in addition to the GRASP, incorporates the Regret with the pminmax method to evaluate the heuristic solution obtained with regard to its robustness for different scenarios. Taking as our point of departure the Facility Location Problem proposed by Balinski [27], an alternative perspective is added associating regret values to particular solutions.N/
    corecore