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Abstract
We consider a facility-location problem that abstracts settings where the cost of serving the
clients assigned to a facility is incurred by the facility. Formally, we consider the minimum-load
k-facility location (MLkFL) problem, which is defined as follows. We have a set F of facilities,
a set C of clients, and an integer k ≥ 0. Assigning client j to a facility f incurs a connection
cost d(f, j). The goal is to open a set F ⊆ F of k facilities, and assign each client j to a facility
f(j) ∈ F so as to minimize maxf∈F

∑
j∈C:f(j)=f d(f, j); we call

∑
j∈C:f(j)=f d(f, j) the load of

facility f . This problem was studied under the name of min-max star cover in [6, 2], who (among
other results) gave bicriteria approximation algorithms for MLkFL for when F = C. MLkFL is
rather poorly understood, and only an O(k)-approximation is currently known for MLkFL, even
for line metrics.

Our main result is the first polynomial time approximation scheme (PTAS) for MLkFL on
line metrics (note that no non-trivial true approximation of any kind was known for this metric).
Complementing this, we prove that MLkFL is strongly NP-hard on line metrics. We also devise
a quasi-PTAS for MLkFL on tree metrics. MLkFL turns out to be surprisingly challenging even
on line metrics, and resilient to attack by the variety of techniques that have been successfully
applied to facility-location problems. For instance, we show that: (a) even a configuration-style
LP-relaxation has a bad integrality gap; and (b) a multi-swap k-median style local-search heuristic
has a bad locality gap. Thus, we need to devise various novel techniques to attack MLkFL.

Our PTAS for line metrics consists of two main ingredients. First, we prove that there always
exists a near-optimal solution possessing some nice structural properties. A novel aspect of this
proof is that we first move to a mixed-integer LP (MILP) encoding the problem, and argue that a
MILP-solution minimizing a certain potential function possesses the desired structure, and then
use a rounding algorithm for the generalized-assignment problem to “transfer” this structure
to the rounded integer solution. Complementing this, we show that these structural properties
enable one to find such a structured solution via dynamic programming.
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1 Introduction

Facility-location (FL) problems have been widely studied in the Operations Research and
Computer Science communities (see, e.g., [13] and the survey [16]), and have a wide range
of applications. These problems are typically described in terms of an underlying set of
clients that require service, and a candidate set of facilities that provide service to these
clients. The goal is to determine which facilities to open, and decide how to assign clients to
open facilities to minimize some combination of the facility-opening and client-connection
(a.k.a service) costs. An oft-cited prototypical example is that of a company wanting to
decide where to locate its warehouses/distribution centers so as to serve its customers in a
cost-effective manner.

We consider settings where the cost of serving the clients assigned to a facility is incurred
by the facility; for instance, in the above example, each warehouse may be responsible for
supplying its clients and hence bears a cost equal to the total cost of servicing its clients. In
such settings, it is natural to consider the problem of minimizing the maximum cost borne by
any facility. Formalizing this, we consider the following mathematical model. We are given a
set F of facilities, a set C of clients, and an integer k ≥ 0. Assigning client j to a facility f
incurs a connection or service cost d(f, j). There are no facility-opening costs. The goal is to
open k facilities from F and assign each client j to an open facility f(j) so as to minimize
the maximum load of an open facility, where the load of an open facility f is defined as∑
j∈C:f(j)=f d(f, j); that is, the load of f is the total connection cost incurred for the clients

assigned to it. We call this the minimum-load k-facility location (MLkFL) problem. As is
common in the study of facility-location problems, we assume that the clients and facilities
lie in a common metric space, so the d(f, j)s form a metric.

Despite the extensive amount of literature on facility-location problems, there is surpris-
ingly little amount of work on MLkFL and it remains a rather poorly understood problem
(see [15]). One can infer that the problem is NP-hard, even when the set of open facilities is
fixed, via a reduction from the makespan-minimization problem on parallel machines, and that
an O(k)-approximation can be obtained by running any of the various O(1)-approximation
algorithms for k-median [4, 9, 8, 3, 12] (where one seeks to minimize the sum of the facility
loads). No better approximation algorithms are known for MLkFL even on line metrics, and
this was mentioned as an open problem in [15]. The only work on approximation algorithms
for this problem that we are aware of is due to Even et al. [6] and Arkin et al. [2], who
refer to this problem as min-max star cover (where F = C). 1 Both works obtain bicriteria
approximation algorithms for MLkFL in general metrics, which means that the algorithm
returns a solution with near-optimal maximum load but may need to open more than k

facilities. For MLkFL on star metrics and when F = C, some O(1)-approximation algorithms
follow from work on minimum-makespan scheduling and [6, 2] (see “Related work”).

1.1 Our Results
We completely resolve the status of min-load k-FL on line metrics. As we elaborate below (see
“Our Techniques”), MLkFL turns out to be surprisingly challenging even on line metrics, and
seems resilient to attack by the variety of techniques that have been successfully applied to
facility-location problems, including LP-rounding, local search, and primal-dual methods. Our
main result is that despite these difficulties, one can devise a polynomial-time approximation

1 Jorati [10], in his Master’s thesis, obtained a preliminary version of some of our current results.
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scheme (PTAS) for MLkFL on line metrics (Theorem 1). As mentioned earlier, this is the
first approximation algorithm for MLkFL on line metrics that achieves anything better than
an O(k)-approximation.

We also consider MLkFL in tree metrics (Section 4). First, we observe that the quasi-
PTAS obtained by Jorati [10] for line metrics extends to yield a quasi-PTAS (QPTAS) for
tree metrics (Theorem 9). Next, we consider the special case of star metrics, but in the
more-general setting where clients may have non-uniform integer demands {Dj}j∈C and the
demand of a client may be split integrally between several open facilities. We now define
the load of a facility f to be

∑
j xfjd(f, j), where xfj ∈ Z≥0 is the amount of j’s demand

that is assigned to f . We devise a 14-approximation algorithm for MLkFL on star metrics
with non-uniform demands (Theorem 10). Notice that when we restrict the metric to be
a star metric, we cannot create colocated copies of a client (without destroying the star
topology), which makes the setting with non-uniform demands strictly more general than
the unit-demand setting.

In Section 5, we obtain various computational-complexity and integrality-gap lower
bounds for MLkFL. Complementing our PTAS, we show (Theorem 11) that MLkFL is
strongly NP-hard on line metrics (and hence, a PTAS is the best approximation that one
can hope to achieve in polytime unless P =NP). We also show that MLkFL is APX-hard in
the Euclidean plane (Theorem 12). Finally, we justify our comment about the difficulty of
tackling MLkFL via the various LP-based methods developed for facility-location problems
by showing that even a configuration-style LP-relaxation for MLkFL—where we “guess” the
optimum value B and have a variable xf,S for every facility f and every possible set S of
clients such that

∑
j∈S d(f, j) ≤ B—has an integrality gap of Ω(k/ log k) even for line metrics

(Theorem 13). Note that the configuration LP is stronger than the natural LP-relaxation
for MLkFL. Moreover, this holds even if the graph consisting of the edges (j, f) such that
d(j, f) ≤ B—call these feasible edges—is connected. This is in contrast with capacitated
k-center [5, 1], where a large integrality gap for the natural LP arises due to the fact that
the graph of feasible edges is disconnected.

1.2 Our Techniques
Before detailing the techniques underlying our PTAS for line metrics, we describe some of
the difficulties encountered in applying the machinery developed for (other) facility-location
problems to MLkFL (even on line metrics). One prominent source of techniques for facility
location are LP-based methods. However, our integrality-gap lower bound for line metrics
points to the difficulty in leveraging such LP-based insights. In fact, we do not know of any
LP-relaxation for MLkFL with a constant integrality gap even on line metrics. An approach
that often comes to the rescue for FL problems when there is no known good LP-relaxation
(e.g., capacitated FL) is local search, however the min-max nature of MLkFL makes it difficult
to exploit this. In particular, one can come up with simple examples where a k-median style
multi-swap local-search does not yield any bounded approximation ratio even for line metrics.
Given these difficulties, one needs to find new venues of attack for MLkFL. Our PTAS for
line metrics consists of two main ingredients. First, we prove that there always exists a
near-optimal solution possessing some nice structural properties (Section 3.1). Namely, the
collection of intervals corresponding to “small” client assignments forms a laminar family.
We prove this by “fractionally uncrossing” the small client assignments while preserving the
loads at each facility, so the resulting fractional assignment does not contain large strictly
fractional assignments. This solution is then rounded using the rounding algorithm of [17]
for the generalized assignment problem (GAP), and this rounding procedure preserves the
laminarity property for small assignments.

APPROX/RANDOM’14
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Second, we show in Section 3.2 that these structural properties enable one to find such
a structured solution via dynamic programming (DP). Roughly speaking, the DP pieces
together solutions to subproblems in a way that corresponds to the tree-like structure of a
laminar family. To handle the unstructured large client assignments, the DP carries enough
information about how large clients cross the boundary of the subproblem being considered.

1.3 Related Work
There is a wealth of literature on facility-location problems (see, e.g., [13, 16]); we limit
ourselves to the work that is relevant to MLkFL. As mentioned earlier, Even et al. [6] and
Arkin et al. [2] are the only two previous works that study MLkFL (under the name min-max
star cover). They view the problem as one where we seek to cover the nodes of a graph
by stars (hence the name min-max star cover), and obtain bicriteria guarantees. Viewed
from this perspective, MLkFL falls into the class of problems where we seek to cover nodes
of an underlying graph using certain combinatorial objects. Even et al. and Arkin et al.
consider various other min-max problems—where the number of covering objects is fixed
and we seek to minimize the maximum cost of an object—in this genre. Both works devise a
4-approximation algorithm when the covering objects are trees (see also [14]), and Even et
al. obtain the same approximation for the rooted problem where the roots of the trees are
fixed. Arkin et al. obtain an O(1)-approximation when the covering objects are paths or
walks. The approximation guarantees for min-max tree cover were improved by Khani and
Salavatipour [11]. All of these works also consider the version of the problem where we fix
the maximum cost of a covering object and seek to minimize the number of covering objects
used.

For MLkFL on star metrics, when F = C, certain results follow from some known results
and the above min-max results. For example, it is not hard to show that MLkFL, even
with non-unit demands, can be reduced to the makespan-minimization problem on parallel
machines while losing a factor of 2.2 Since the latter problem admits a PTAS [7], this yields
a (2 + ε)-approximation algorithm for MLkFL on star metrics when F = C. When F = C
and with unit demands, one can also infer that (for star metrics) the objective value of any
solution for min-max tree cover (viewed in terms of the node-sets of the trees) is within a
constant factor of its objective value for min-max star cover. (This is simply because for any
set S of nodes, the cost of the best star spanning S is at most twice the cost of the minimum
spanning tree for S.) These correspondences however break down when F 6= C, even for unit
demands. Our 14-approximation algorithm for star metrics works for arbitrary F , C sets and
non-unit (equivalently, non-uniform) demands.

As with the k-median and k-center problems, MLkFL can also be motivated and viewed
as a clustering problem: we seek to cluster points in a metric space around k centers, so to
minimize the maximum load (or “star cost”) of a cluster. Whereas MLkFL and k-center are
min-max clustering problems, where the quality is measured by the maximum cost (under
some metric) of a cluster, k-median is a min-sum clustering problem, where the clustering
quality is measured by summing the cost of each cluster.

Finally, observe that if we fix the set of k open facilities, then the problem of determining
the client assignments is a special case of GAP. There is a well-known 2-approximation

2 If we require that all k facilities lie at the root r of the star, then the resulting problem is precisely a
makespan-minimization problem on k parallel machines. Given a partition C1, . . . , Ck of the client-set
obtained by solving this problem, we can simply open, for each Ci, a facility at the node in Ci that is
closest to r. This increases the maximum load by a factor of at most 2.
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algorithm for GAP [17]. As noted earlier, this algorithm plays a role in the analysis of our
PTAS for line metrics (but not the algorithm itself), when we reason about the existence of
well-structured near-optimal solutions.

2 Problem Definition

In the minimum-load k-facility location (MLkFL) problem, we are given a set of clients
C and a set of facilities F in a given metric space d. The distance between any pair of
points i, j ∈ C ∪ F is denoted by d(i, j). Additionally we are given an integer k ≥ 1. The
goal is to select k facilities f1, . . . , fk to open and assign each client j to an open facility
so as to minimize maxki=1

∑
j∈C:f(j)=i d(i, j), where f(j) is the facility to which client j is

assigned. We use the terms facility and center interchangeably. We frequently use the term
star to refer to a pair (f, S), where f is an open facility in the solution and S ⊆ C is the
collection of clients assigned to f ; we also refer to f as the center of this star. The cost
of this star, which is the load of facility f , is

∑
j∈S d(f, j). Thus, our goal is to find k

stars, (f1, S1), (f2, S2), . . . , (fk, Sk), centered at facilities so that they “cover” all the clients
(i.e. C = ∪ki=1Si) and the maximum load of a facility (or cost of the star) is minimized.
Throughout, we use OPT to denote an optimum solution and Lopt to denote its cost.

3 A PTAS for Line Metrics

In this section we focus on MLkFL on line metrics and prove Theorem 1. Here, each
client/facility i ∈ C ∪ F is located at some rational point vi ∈ R. It may be that vi = vj for
i 6= j, for instance when we have collocated clients. To simplify notation we use the term
“point” to refer to a client or facility i ∈ C ∪ F as well as to its location vi. The distance
d(i, j) between points i, j ∈ C ∪ F is simply |vi − vj |. We assume that |C ∪ F| = n and that
0 ≤ v1 ≤ v2 ≤ . . . ≤ vn. For a star (f, S) in a MLkFL solution and for any v ∈ S, say that
the open interval with endpoints f and v is an arm of the star (f, S) and we say that f
covers v. For S′ ⊆ S, we sometimes use the phrase “load of f by S′” to refer to the sum of
the lengths of arms of f to the clients in S′. The main result of this section is the following
theorem.

I Theorem 1. There is a (1 + ε)-approximation algorithm for MLkFL on line metrics for
any constant 0 < ε ≤ 1.

Our high-level approach is similar to other min-max problems. Namely, we present an
algorithm that, given a guess B on the optimum solution value, will either certify that
B < Lopt or else find a solution with cost not much more than B. Our main technical result,
which immediately yields Theorem 1 is the following.

I Theorem 2. Let Π = (C ∪ F , d, k) be a given MLkFL instance on a line metric. For any
constant 0 < ε ≤ 1 and any B ≥ 0, there is a polynomial-time algorithm A that either finds
a feasible solution with cost at most (1 + 18ε) ·B or declares that no feasible solution with
cost at most B exists. If B ≥ Lopt, then it always finds a feasible solution with cost at most
(1 + 18ε) ·B.

We show how to complete the proof of Theorem 1, assuming Theorem 2 is true.

Proof. Set ε := ε/18. We use binary search to find a value B ≤ Lopt such that algorithm A
from Theorem 2 finds a solution with cost ≤ (1 + 18ε) · B ≤ (1 + 18ε) · Lopt. Return this
solution.

APPROX/RANDOM’14
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Since the points vi are rational and since n · vn is clearly an upper bound on the optimum
solution, then we may perform the binary search over integers α ∈ [0, nvn∆] where ∆ is such
that vi∆ ∈ Z for each point i. For each such value α in the binary search, we try algorithm
A with value B = α

∆ . J

In what follows, we describe algorithm A. We will assume that B ≥ Lopt and show
how to find a solution with cost at most (1 + 18ε) ·B. Let SB denote a collection of stars
{(f1, S1), . . . , (fk, Sk)} with cost at most B. In the remainder of this section, we will describe
some preprocessing steps that simplify the structure of the problem. In Section 3.1 we prove
that a well-structured near-optimum solution exists and in Section 3.2 we describe a dynamic
programming algorithm that finds such a near-optimum well-structured solution.

Without loss of generality, we assume that 1/ε is an integer. We start with some
preprocessing steps. Note that d(i, f) ≤ B for any i ∈ S of a star (f, S) in SB. So, if the
distance of two consecutive points on the line is more than B then we can decompose an
instance into instances where the distance of any two consecutive points is at most B. For
each of the resulting instances Π′, we find the smallest k′ such that running the subsequent
algorithm on the instance with k′ instead of k finds a solution with cost at most (1 + 18ε)B.
Since we are assuming B ≥ Lopt , then the sum of these k′ values over the subinstances is at
most k. Note that in each subinstance Π′ we can assume 0 ≤ vi ≤ n ·B for each point vi.

Next, we perform a standard scaling of distances. Move every point i ∈ C ∪ F left to its
nearest integer multiple of εBn and then multiply this new point by n

εB . That is, move i from
vi to bvi · n/εBc. Denote the new position of client/facility i by v′i. The following describes
how the optimum solutions to the original and new locations relate.

I Lemma 3. The optimum solution has cost at most (1 + 1/ε) · n in the instance given by
the new positions v′. Furthermore, any solution with cost at most (1 + αε) · (1 + 1/ε) · n for
the new positions has cost at most (1 + (2 + 2α)ε) ·B in the original instance.

Proof. After sliding each point vi left to its nearest integer multiple of εB
n , the distance

between any two points changes by at most εB
n . Therefore, the load of any star changes by

at most εB so each star has load at most (1 + ε)B. Finally, after multiplying all points by
n
εB we have that the maximum load of any star is at most (1 + 1/ε) · n.

Now consider any solution with cost at most (1 +α · ε) · (1 + 1/ε) ·n. Scaling the points v′
back by εB/n produces a solution with cost at most (1 +α · ε)(1 + ε) · εB ≤ (1 + (1 + 2α)ε) ·B.
Then sliding, any two points i, j back to their original positions vi, vj changes their distance
by at most εB/n, so doing this for all points changes the cost of any star by at most εB.
The resulting stars then have cost at most (1 + (2 + 2α)ε) ·B. J

In subsequent sections, we describe a (1+8ε)-approximation for any one of the subinstances
Π′ of Π, except we use the new points v′i. By Lemma 3, this gives us a solution to Π with
cost at most (1 + 18ε)B, proving Theorem 2. To simplify notation, we use vi to refer to
the new location of point i ∈ C ∪ F (i.e. rename v′i to vi). Similarly, the notation d(i, j) for
i, j ∈ C ∪F refers to these new distances |v′i− v′j | and B denotes the new budget (1 + 1/ε) ·n.
From now on, we assume our given instance Π of MLkFL satisfies the following properties: a)
Each point vi is an integer between 0 and (1 + 1/ε) · n2, b) There is a solution SB with cost
at most B = (1 + 1/ε) · n.

3.1 Structure of Near Optimum Solutions
In this section, we show that there is a near-optimum solution to the instance Π with clients
and facilities C ∪ F that has some suitable structural properties. In Section 3.2, we will find
such a solution using a dynamic programming approach.
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We denote the open interval between two points vi and vj on the line by Ii,j and call
this the arm between i and j (assuming that one of i, j is a client and the other is a facility).
An arm Ii,j is large if d(i, j) > εB and is small otherwise. We say that two arms Ii,j and
Ii′,j′ cross if Ii,j is not contained in Ii′,j′ or vice versa, and Ii,j ∩ Ii′,j′ 6= ∅.

A well-formed solution for an MLkFL instance is a solution in which the small arms
between clients and their assigned facilities (centers) do not cross. We show that there
exists a low cost well-formed solution in two steps. First, we demonstrate the existence of a
fractional solution where there are k (integral) facilities and the clients are assigned to these
centers fractionally. This will be such that the fractional load of each facility is still at most
B, all strictly fractional arms in the support have length at most 2εB, and that all small
arms in the support of the solution do not cross.

Second, we use a rounding algorithm for the Generalized Assignment Problem (GAP)
by Shmoys and Tardos [17] to round such a fractional solution to an integral solution with
cost at most (1 + 2ε)B. We emphasize that that this rounding algorithm is not a part of our
algorithm, it is only used to demonstrate the existence of a well-structured solution.

For the first step, we will consider a fractional uncrossing argument to eliminate crossings.
Instead of proving the fractional uncrossing process eventually terminates, we will instead
provide a potential function that strictly decreases in a fractional uncrossing. This potential
function is the objective function of a mixed integer-linear program below; thus an optimal
solution will not contain any crossings between small arms its support.

We let CB = {f1, . . . , fk} denote the centers (facilities) of the stars in the solution SB
(recall that each star in CB has cost/load at most B). The variable xij indicates that client
j is assigned to facility fi ∈ CB . The first constraint ensures every client is assigned to some
facility and the second ensures the cost of a star (i.e. load of a facility) does not exceed B.

We stress that this is not a relaxation for MLkFL. The objective function is more similar
to the objective function for the k-median problem. Rather, we will only be using this to
help demonstrate the existence of a well-formed solution. The objective function acts as a
potential function.

minimize
∑
fi∈CB

∑
j∈C

d(fi, j) · xij (MIP)

subject to
∑
fi∈CB

xij = 1 ∀j ∈ C

∑
j∈V

d(fi, j) · xij ≤ B ∀fi ∈ CB

xij ∈ {0, 1} ∀i, j : d(fi, j) ≥ 2εB
0 ≤ xij ≤ 1 ∀i, j : d(fi, j) < 2εB.

I Lemma 4. There is a feasible solution x to mixed integer-linear program (MIP) where the
small arms in the support of x do not cross.

Proof (Sketch). First observe that there is in fact a feasible solution x because the integer
solution SB is feasible for this ILP. By standard theory of mixed-integer programming and
the fact that the set of feasible solutions is bounded, there is then an optimal solution x. We
claim that no two small arms in the support of an optimal solution to (MIP) are crossing.
The low-level details that support this claim will appear in the full version, but the idea is
that if two small arms cross then we can fractionally uncross them to get a strictly better
solution to (MIP) and the new fractional arms have length at most 2εB. J

APPROX/RANDOM’14
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We will use Lemma 4 to prove the existence of a near-optimum solution to instance Π
where the small arms used by clients do not cross. To complete this proof, we rely on a
structural result concerning the polytope of a relaxation for the following scheduling problem.

I Definition 5. In the scheduling problem on unrelated machines, we are given machines
m1, . . . ,mk, jobs j1, . . . , jn, and processing times p(mi, ja) ≥ 0 between any job ja and any
machine mi. The goal is to assign each job ja to a machine φ(ja) ∈ {m1, . . . ,mk} to minimize
the maximum total running time

∑
a:φ(ja)=mi p(mi, ja) of any machine.

Shmoys and Tardos prove a result concerning the polytope of an LP relaxation for this
problem, as a part of a more general result concerning the related Generalized Assignment
Problem (GAP). The following summarizes the results they obtain that are relevant for our
work.

I Theorem 6 (Shmoys and Tardos, [17]). Suppose we have a bound B and fractional values
x(mi, ja) ≥ 0 for each job ja and each machine mi that satisfy the following:∑k

i=1 x(mi, ja) = 1 for each job ja,∑n
a=1 p(mi, ja)x(mi, ja) ≤ B for each machine mi.

Then there is an assignment φ of jobs to machines such that x(φ(ja), ja) > 0 for each job ja
and the maximum load of any machine under φ is at most B + maxa,i:0<x(mi,ja)<1 p(mi, ja).

We use the above theorem together with Lemma 4 to prove the following.

I Theorem 7. There is a feasible (integer) solution to the MLkFL instance Π with maximum
load (1 + 2ε)B on each star such that no two small arms cross.

Proof. Let x∗ be the fractional solution provided by Lemma 4. We view x∗ as a solution to
the following scheduling problem on unrelated machines. We have k machines m1, . . . ,mk,
each corresponding to a facility fi ∈ CB. For each client a ∈ C, there is a single job ja.
The processing time p(mi, ja) of job ja on machine mi is |vi − va|, the distance between the
corresponding locations.

Now, x∗ fractionally assigns each job ja to the machines to a total extent of 1 and the
maximum (fractional) load at machine mi is B. Furthermore, the only strictly fractional
assignments (i.e. those with 0 < xij < 1) have |vi−vj | ≤ 2εB. In the scheduling terminology,
the only strictly fractional assignments are between a job ja and a machine mi such that
p(mi, ja) ≤ 2εB.

Theorem 6 shows we can transform this fractional assignment x∗ into an integer assignment
such that a) if client j is assigned to facility/center i, then x∗ij > 0 and b) the maximum load
of a facility is B + maxi,j:0<x∗

ij
<1 |vi − vj | ≤ B + 2εB. In this solution, small arms used by

clients do not cross because they come from the support of x∗. J

I Remark. Our distinction between small and large arms is not just for the sake of obtaining a
PTAS. In fact, we do not know if there is a completely uncrossed, O(1)-approximate solution.
For instance, we have an example where iterating the fractional uncrossing argument to
uncross all arms may create a fractional arm whose length is longer than B by a super-constant
factor.

3.2 Finding a Well-Formed Solution
3.2.1 Step Min-max Cost
Theorem 7 shows that there is a solution of cost at most (1 + 2ε)B such that no two small
arms (i.e. length ≤ εB) used to assign clients to centers cross. Call this solution S ′B. We
now show that we can find such a well-structured solution of cost at most (1 + 8ε)B.
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The main idea behind our approach is the following. If it were true that a near-optimum
solution did not have any crossing arms (large or small) then we can find such a solution
using a dynamic programming approach. At a very high-level, we could exploit the laminar
structure of the solution by decomposing the solution into a family of nested intervals I such
that for every I ∈ I there is one center c with vc 6∈ I such that clients in I are served either
by centers in I or by c. From this, we can consider triples (I, c, r) where I ∈ I, c is a location
outside of I and r is some integer between 0 and poly(n, 1/ε) describing the load assigned to
c from clients in I. We can look for partial solutions parametrized by these triples and relate
them through an appropriate recurrence.

Unfortunately, we are only guaranteed that the small arms do not cross in our near-
optimum solution so the collection of all arms in the solution is not necessarily laminar. To
handle this general case, we must carry extra information through our dynamic programming
approach. We begin by coarsening how we measure the length of long arms.

First, recall that all long arms have length more than εB. Thus, each facility is serving
at most (1+2ε)B

εB ≤ 3
ε clients that are at distance more than εB; in other words each star is

assigned at most 3
ε long arms in the solution provided by Theorem 7. Say that one such long

arm is between client j and center i. If we moved both j and i left to their nearest integer
multiples of ε2B, then their distance changes by at most ε2B. If this is done for all long
arms assigned to a center i, then the total load of center i due to long arms changes by at
most 3εB.

Now, notice that this way to measure the distance between client j and center i is simply
ε2B times the number of integer multiples of ε2B that lie in the half-open interval (vi, vj ] if
vi < vj or (vj , vi] if vj < vi. In the dynamic programming algorithm described below, we
will use this coarse method to measure the distance of long arms and call this the perceived
cost of the star. More specifically, the perceived cost of a star (f, S) is the total cost of the
small arms plus

∑
j∈S:If,j long |v′′f − v′′j | where v′′i is the nearest multiple of ε2B to the left of

vi. The following is proved using arguments similar to the proof of Lemma 3, recalling that
every star in S ′B has at most 3/ε long arms.

I Lemma 8. The perceived cost of every star in S ′B is at most (1 + 5ε)B. Furthermore, any
star with perceived cost at most (1 + 5ε)B and at most 3/ε long arms has (actual) cost at
most (1 + 8ε)B.

Our dynamic programming algorithm will find a solution with perceived cost at most
(1 + 5ε)B and at most 3/ε large arms per star, so the actual cost will be at most (1 + 8ε)B.

3.2.2 Dynamic Programming
Before we formally define the subproblems of dynamic programming, we discuss the structure
of a well-formed solution, say S. We call a client covered by a small (large) arm a small client
(large client), respectively. Let the small span or s-span of a star be the interval, possibly
empty, formed from the left most to the right most small client in this star. Since the small
arms do not intersect in S, for any two s-spans I1 and I2 of two stars, either I1 ∩ I2 = ∅ or
I1 ⊆ I2 or I2 ⊆ I1. Therefore, the ⊆ relation between s-span of stars in S defines a laminar
family (a forest like structure).

Also, consider the restriction of S to the interval Ii,j for two arbitrary points vi and vj .
Assume that an arm has a direction and goes from the center of the star (i.e. the facility) to
the client that it covers. There are some large arms that enter or leave this interval from vi
or vj . There are two types of arms: the arms that enter the interval Ii,j from vi or vj or
the arms that leave the interval Ii,j from vi or vj ; for example a center inside the interval

APPROX/RANDOM’14
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Ii,j might cover a client outside this interval or a center to the left of i might cover a client
inside the interval or a client to the right of j. Note that a large arm may have both these
types, i.e., it enters from one endpoint and leaves from the other endpoint. The arms that
enter the interval can cover the deficiency of coverage for some client in the interval and the
arms that leave the interval provide coverage for some client outside of interval and can be
viewed as surplus to the demand of coverage of the clients in the interval. Also, recall that
in the perceived cost, the length of a large arm is measured as an integer multiple q of ε2B,
where 0 ≤ q ≤ 1

ε2 .
By the above observations, we can keep the information of all large arms that enter or

exist the interval Ii,j in four size 1
ε2 + 1 vectors Di,Si,Dj, and Sj, which are the deficiency

and surplus vectors of vi and the deficiency and surplus vectors of vj with respect to Ii,j ,
respectively. The qth entry (0 ≤ q ≤ 1

ε2 ) of each of these vectors is an integer between 0
and |C|. The qth element of vector Di is the number of large arms entering from vi having
perceived length q · ε2B past vi. More specifically, it is the number of clients j′ with vj′ ≥ vi
that are assigned to a center c with vc < vi such that the interval (vi, vj′ ] contains q multiples
of ε2B. In the same vein, entry q of Si records the number of clients j′ with vj′ < vi that are
assigned to a center c with vc ≥ vi such that the interval (vc, vi] contains q multiples of ε2B.
Similarly, Dj(q) is the number of large arms entering from vj with perceived length q prior
to vj and Si(q) is the number of large arms exiting from vj with perceived length q past i.

3.3 The Table
The table we build in our dynamic programming algorithm captures “snapshots” of solutions
bound between two given points plus some information on how arms cross these points.
We consider the values A(k′, i, j, c, β,Di,Dj,Si,Sj) corresponding to subproblems. The
meanings of the parameters are as follows. 1) 1 ≤ i ≤ j ≤ n corresponds to the interval Ii,j ,
2) 0 ≤ k′ ≤ k is the number of centers (of stars) in the interval Ii,j , 3) c ∈ F denotes a single
point with either c < i or c > j (i.e. outside of Ii,j) that is the center of some star, or else
c = ⊥. If c 6= ⊥ it is the only center outside of Ii,j with small arms going into Ii,j and the
total cost of small arms that c pays to cover vertices in Ii,j is β where 0 ≤ β ≤ (1 + 5ε)B is
an integer. 4) Di,Dj,Si,Sj are deficiency and surplus vectors for the endpoints of interval
Ii,j . Note that in the above, if c = ⊥ then the value of β can be assumed to be zero. Let q
denote the number of multiples of ε2B lying in the interval (vi, vj ].

The subproblem A(k′, i, j, c, β,Di,Dj,Si,Sj) is true if and only if the following holds. It
is possible to open k′ centers in the interval Ii,j and assign each i′ ∈ C with i ≤ i′ ≤ j: 1)
to one of these open centers, or 2) to center c, if c 6= ⊥, 3) or as a large arm exiting Ii,j ,
and also assign some of the large arms entering Ii,j to these open centers such that: 1) the
perceived load of each of the k′ centers is at most (1 + 5ε)B, 2) the load of c from small arms
originating i′ ∈ C with i ≤ i′ ≤ j is at most β, 3) and the large arms entering and/or exiting
Ii,j are consistent with Di,Dj,Si,Sj.

By consistent, we mean the following. First, for each 0 ≤ a ≤ ε−2, each of the Di(a)
large arms entering Ii,j is assigned to an open center f such that (vi, vf ] contains precisely a
integer multiples of ε2B, or (if q ≤ a) exits Ii,j . A similar statement applies to Dj(a). Then
for each 0 ≤ a ≤ ε−2 we have that Sj(a) is precisely the number of large arms represented
by Di(a − q) that are not assigned to one of the k′ open centers in the interval plus the
number of large arms originating from clients in the interval that exit by passing vj and have
perceived length a past vj . Finally, we also require that no open center serves more than 3/ε
clients using large arms.

The number of table entries is polynomial, because k′, i, j, c are in O(n) and β′ is a
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c vjvi

. . .
vj′

. . .

A[k′ − k′′, j′ + 1, j, c, β′, . . .]A[k′′, i, j′ − 1,⊥, 0, . . .]

Figure 1 Case 1 of recursive step.

polynomial in n and 1
ε and the deficiency and surplus vectors are in O(n1+1/ε2), which is

polynomial for a constant ε. We shortly explain how one can compute the table entries in
polynomial time. After that, to find out if there is a feasible solution having perceived cost
(1 + 5ε)B, one simply needs to look at the value of A[k, 1, n,⊥, 0,0,0,0,0], where 0 is a
vector having 1 + 1/ε2 zero components.

3.4 The Recurrence
In this subsection we present the recurrence for the dynamic program of the PTAS for line.

Base Case. The base case is when k′ = 0 and i = j. Without loss of generality assume
that i is a client (or else there is nothing to be covered). First, assume c = ⊥ and so β = 0
or c 6= ⊥ but β = 0. In either case, vi must be covered with a large arm. Assume this arm
comes from left. In this case, the first component of Di, which corresponds to the number of
large arms having perceived length 0 · ε2B = 0 passed vi, must be non-zero and one more
than the first component of Sj, because one will be used to cover i. All other components of
these vectors must be the same. Also, all components of Si and Dj must be the same. The
case that the arm comes from right is similar. Now, assume c 6= ⊥ and β 6= 0. Then, vi is a
small client and it must be covered by vc. Therefore, d(vi, vc) must be equal to β. Also, we
must have Di = Sj and Si = Dj. In all other cases, the entry of the table will be set to False.

Recursive Step. Next, we show how to determine if A[k′, i, j, c, β,Di,Dj,Si,Sj] is true
when the parameters do not represent a base case by relating its value to values of smaller
problems. In what follows, by guessing a parameter, we mean that we try all polynomially
many possible values of that parameter and if one of them results in a feasible solution, we
set the value of the current subproblem to true. We consider two cases regarding value of c:
1. c 6= ⊥ and β > 0. There must be a small client in Ii,j covered by c. We guess j′ to be

the leftmost small client in Ii,j covered by c. Now, we can break the subproblem into
two smaller subproblems at the left and right sides of j′ (see Figure 1). If j′ = i or
j′ = j, one of the subproblems is empty and its value can be considered as true. Thus,
assume i < j′ < j. We guess k′′ the number of stars having center in Ii,j′−1 and so the
remaining k′ − k′′ centers will be in Ij′+1,j . Also, we guess the deficiency and surplus
vectors, Dj′−1,Sj′−1, at vj′−1 for the interval Ii,j′−1, and Dj′+1,Sj′+1, at vj′+1 for the
interval Ij′+1,j , such that all are consistent in the sense that Sj′−1(q) = Dj′+1(q − q′)
where q′ is the number of integer multiples of ε2B in (vj′−1, vj′+1], and similarly for large
arms crossing vj′ from right to left.
We check to see if A[k′′, i, j′−1,⊥, 0,Di,Si,Dj′−1,Sj′−1] is true. If it is true, we examine
the second subproblem. The coverage that c provides to the right of j′ can be computed
as β′ where β′ = β − d(vc, vj′). We let c′ = c if β′ > 0, and c′ = ⊥ if β′ = 0. If
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c′ vjvi

. . . . . .. . . . . .

A[k′ − k′′ − 1, c′ + 1, j, c′, β′′, . . .]A[k′′, i, c′ − 1, c′, β′, . . .]

Figure 2 Case 2b of recursive step.

A[k′ − k′′, j′ + 1, j, c, β′,Dj′+1,Sj′+1,Dj,Sj] is also true, we set the value of subproblem
true.

2. c 6= ⊥ and β = 0, or c = ⊥. We consider two subcases regarding value of k′:
(a) k′ = 0. All clients in Ii,j must be covered by large arms from centers (facilities)

outside the interval. First suppose that i is a client and, without loss of generality,
assume vi is covered by a large arm from the left. Then, the number of large
arms having length 0 · ε2B = 0 passed vi must be non-zero and we use one such
arm to cover vi. In this case we define D′i = Di − (1, 0, . . . , 0), i.e., the updated
deficiency vector after covering i. If i is not a client (and so does not need to be
covered) we define D′i = Di. In both cases (whether i is a client or not) suppose
that (vi, vi+1] has q multiples of ε2B for some 0 ≤ q ≤ 1/ε2. Thus, the value of
the first q components in D′i must be zero. Define a deficiency vector Di+1 for
i+ 1, which is equal to the vector obtained by shifting the values of D′i, q places
to the left (add trailing zeros for the values missing). Also, the last q components
of Si must be zero, too (or else the arms that start at a node vj′ ≥ vi+1 and exits
vi will have length larger than B). Define a surplus vector Si+1 for i + 1, which
is equal to the vector obtained by shifting the values of Si, q places to the right
(add leading zeros for the values missing). We set the value of this subproblem to
A[0, i+ 1, j,⊥, 0,Di+1,Si+1,Dj,Sj].

(b) k′ > 0. Note that since c 6= ⊥ and β = 0, or c = ⊥, no small arm can enter Ii,j .
Consider the set of centers in Ii,j . The s-span (interval of small arms) of these
centers forms a laminar family. Consider the roots of the forest of this laminar family
and let c′ be the center corresponding to the leftmost root; we guess c′ (see Figure 2).
Observe that the s-span of c′ is not contained in the s-span of any other star having
a center in Ii,j . This star has at most 3/ε large arms. Recall that in the perceived
cost of a star, the length of large arms is measured in multiples of ε2B. For each
0 ≤ q ≤ 1/ε2, we guess n(l)

q and n(r)
q the number of length q · ε2B large arms that c′

has (with respect to perceived cost) to its left and its right, respectively. We also
guess k′′ the number of stars having center in Ii,c′−1. We must have k′ − k′′ − 1 ≥ 0
stars having center in Ic′+1,j . Also, we guess β′ where c′ provides β′ coverage to its
left side. Finally, we guess the deficiency and surplus vectors, Dc′−1,Sc′−1, at vc′−1
for the interval Ii,c′−1 and we guess the deficiency and surplus vectors, Dc′+1,Sc′+1,
at vc′+1 for the interval Ic′+1,j and make sure that these vectors are consistent in
the sense that Dc′+1(q − q′) = Sc′−1(q) − n(l)

q where q′ is the number of integer
multiples of ε2B in (vc′−1, vc′+1], and similarly for the large arms crossing c′ from
right to left.
Now, we can break the subproblem into two smaller subproblems at the left and
right sides of c′. We first check to see if A[k′′, i, c′ − 1, c′, β′,Di,Si,Dc′−1,Sc′−1] is
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true (if β′ = 0, we check A[k′′, i, c′ − 1,⊥, 0,Di,Si,Dc′−1,Sc′−1] ). We guess β′′

such that β′ + β′′ +
∑ 1

ε2
q=0(n(l)

q + n
(r)
q )q, where the cost of small arms of c′ to clients

in Ic′+1,j is β′′. We check and if A[k′ − k′′ − 1, c′ + 1, j, c′, β′′,Dc′+1,Sc′+1,Dj,Sj]
is also true, we set the value of subproblem true (again if β′′ = 0, we check
A[k′ − k′′ − 1, c′ + 1, j,⊥, 0,Dc′+1,Sc′+1,Dj,Sj]).

4 Tree Metrics

The extension of the PTAS presented for line metrics to tree metrics is not clear. However,
there is a QPTAS for line metrics (see [10]) which uses a somewhat different approach. We
describe the high level idea of that QPTAS (for line metrics) here and refer the reader to
[10] for details. Then we explain how that approach can be extended to a QPTAS for tree
metrics.

As before assume we have our points v1 ≤ v2 ≤ . . . ≤ vn on a line and we have a guessed
bound B on the value of optimum. With a similar scaling approach as in Section 3 we can
assume that the minimum distance between two consecutive points i, i+ 1 is at least εB/n2

and at most B; thus the maximum pairwise distance is at most nB. Scaling everything by
εB/n2 we can assume the minimum distance is at least 1 the maximum distance between
consecutive points is n3/ε and that B is at most n4/ε. This will increase the cost of the
solution to at most (1 + ε)B. We then use a dynamic programming (DP) that computes a
(1 + ε)-approximate solution to an instance satisfying above conditions. Each subproblem
is defined by an interval Ii,j and parameter k′, and the goal is to cover the clients in this
interval with k′ stars whose centers are in this interval and some other stars whose centers are
outside. We use a binary dissection to break the problem into two (almost) equal parts Ii,m
and Im+1,j where m is the middle point. This gives rise to a dissection tree of height O(logn)
with the interval I1,n at the root and n singleton intervals Ii,i as leaves. So the height
of the recursion is O(logn). As before we keep deficiencies and surpluses vectors for the
two ends vi and vj : Di,Dj,Si,Sj, but they are defined slightly differently. Consider vector
Si = (s(i)

1 , . . . , s
(i)
σ ) (with σ to be defined soon). Each sa will keep the number of clients to

the left of this interval (i.e. before vi) that are at an approximate distance la and are served
by centers to the right of i (possibly after j). Similarly Sj stores the number of clients to the
right of vj that are served by centers before j. Di and Dj will be representing the number
of clients inside Ii,j within an approximate certain distance from vi (or vj) that are to be
covered by a center outside of the interval. To cut down on the interface of an interval Ii,j
with the rest of the line, we round up the surplus and deficiency lengths on each of the right
and left sides to the nearest power of (1 + ε′/ logn), for some ε′ depending on ε, at each level
of dissection. Thus, we only keep track of lengths la = (1 + ε′/ logn)a, a ∈ {1, . . . , σ}. For
instance, for Si = (s(i)

1 , . . . , s
(i)
σ ), s(i)

a will be the number of clients to the left of Ii,j that are
at (scaled up) distance (1 + ε′/ logn)a from i that are served by centers inside the interval
Ii,j . So there will be σ = O(logn · logB/ε′) = O(log2 n/ε′) different lengths and as a result
at most nO(log2 n/ε′) different surplus and deficiency vectors. In this way, each arm of a star
will be scaled up by a factor of at most (1 + ε′/ logn) at each level of DP computation (to
account for the rounding), and since the depth of recursion (dissection) is dlogne, this will
result in an extra factor of (1 + ε′/ logn)dlogne ≤ (1 + ε) (for a suitable choice of ε′) over the
entire length of each arm. In other words, if a subproblem for an interval i, j and parameter
k′ is feasible (with each star costing at most B) without rounding the lengths of deficiency
and surplus vectors then the subproblem with rounded (up to nearest power of (1 + ε′/ logn))
lengths for deficiency and surplus vectors is feasible if each star is allowed to have cost at
most (1 + ε) ·B.
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Each entry of the table represents a subproblem (i, j, k′,Di,Dj,Si,Sj), where:
1. i, j represents the interval Ii,j .
2. k′ is the number of centers to be opened from among the points in Ii,j .
3. Di = (d(i)

1 , . . . , d
(i)
σ ) and Dj = (d(j)

1 , . . . , d
(j)
σ ) are the deficiency vectors on the left and

right sides of the interval Ii,j , respectively.
4. Si = (s(i)

1 , . . . , s
(i)
σ ) and Sj = (s(j)

1 , . . . , s
(j)
σ ) are the surplus vectors on the left and right

sides of Ii,j , respectively.

Each surplus and deficiency vector is a vector of size σ = O(log2 n/ε′), where d(p)
a or s(p)

a

(for p ∈ {i, j}) is the number of broken arm parts of length (1 + ε′/ logn)a (after rounding).
Each entry of the table records in Boolean values the feasibility of having k′ stars centered in
the points in Ii,j , such that each star has cost at most (1 + ε) ·B. Each of the k′ stars would
cover some clients in Ii,j and the clients located at distances Si and Sj from the endpoints
i and j of the interval. The rest of the clients have to be covered with the broken arms of
Di and Dj, thus connected to the two sides i and j, respectively. The size of the DP table
is O(n2 · k · nO(logn logB/ε′)) = nO(log2 n/ε′), which is quasi-polynomial in n. See [10] for the
details of how to fill in the entries of this table.

Now suppose that the given metric for the MLkFL instance can be represented as a cost
function on the edges of a tree T . The algorithm, as before, works with a guessed value B as
an upper bound for Lopt . Also, using a scaling argument as for the case of line metrics, we
can assume that the aspect ratio of heaviest to cheapest edge cost is polynomially bounded.
Next, we can make the tree T binary by introducing zero-cost edges at nodes that have more
than two children, keeping one of its children and placing the rest as a subtree hanging from
the zero-cost edge added. Repeating this gives a binary tree that still has linear size. So for
the rest of this section we assume that the input tree is binary.

For each binary tree with n nodes one can find an edge e = (u, v) (where u is parent of v)
such that each subtree resulted by deleting e has size in [n/3, 2n/3]. This splitting of the
tree into two subtrees Tv (tree rooted at v) and T \ Tv that are almost the same size (by
a factor of at most two) plays the role breaking the problem into two almost equal sizes.
Given a binary tree T we can recursively partition it into two “almost equal” subtrees until
we arrive at subtrees of size 1. The depth of this recursive dissection will be O(logn) and
each time we recursively break the tree into two smaller binary trees (whose sizes differ by a
factor of at most 2). The breaking point introduces a new interface (or “portal”) point for
the two smaller sub-trees: if edge e = (u, v) is cut then v is an interface point (or portal)
for the subproblem Tv in addition to any other interface point it might have had passed
on to from previous dissection operations, and u is an interface point (portal) for T \ Tv in
addition to any other portal points generated before. More specifically, each subproblem
is of the form (T ′, k′, {S(p)}p∈P (T ′), {D(p)}p∈P (T ′)) where T ′ is a subtree that is obtained
by performing the dissection operation, 0 ≤ k′ ≤ k is the number of centers of stars to be
opened in T ′, P (T ′) ⊆ V (T ′) is the set of portal points of T ′. If a tree T̂ is cut into two
almost equal sized subtrees T1 (rooted at v) and T2 = T̂ \ T1 by cutting edge e = (u, v) then
P (T1) will consist of all the portals of T̂ that are in T1 plus node v. Similarly P (T2) consists
of all the portals of T̂ that are in T2 plus node u. It follows that for each subproblem, the
number of portals is at most O(logn). The dynamic programming then follows along the
same lines as the QPTAS described above (see [10] for details) for the line metrics, and we
obtain the following theorem.

I Theorem 9. For any constant 0 < ε ≤ 1, there is a (1 + ε)-approximation algorithm for
MLkFL on tree metrics that runs in quasi-polynomial time.
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4.1 Star Metrics
We now consider MLkFL in star metrics, but in the more-general setting where each client
j has an integer demand Dj that may be split integrally across various open facilities;
we call this an integer-splittable assignment. The load of a facility i is now defined as∑

j xijd(i, j) where xij ∈ Z≥0 is the amount of j’s demand that is served by i. We devise
a 14-approximation algorithm for this problem. At a high level our approach is similar to
the one used to obtain the PTAS for line metrics. We again “guess” the optimal value B.
We argue via a slightly different uncrossing technique that if B ≥ Lopt , then there exists a
well-structured fractional solution with maximum load at most 6B, and use DP to obtain
a fractional solution with maximum load at most 12B. This can then be converted to an
integer-splittable assignment with maximum load at most 14B using the GAP-rounding
algorithm, since it is easy to ensure via some preprocessing that d(i, j) ≤ 2B for every facility
i and client j. Thus, we either determine that B < Lopt or obtain a solution with maximum
load at most 14B. The details are deferred to the full version of this paper.

I Theorem 10. There is a 14-approximation algorithm for MLkFL on star metrics with
non-uniform demands and integer-splittable assignments.

5 Hardness Results and Integrality-gap Lower Bounds

We now present various hardness and integrality-gap results. We prove that MLkFL is
strongly NP-hard on line metrics and APX-hard in the Euclidean plane (Theorems 11 and 12).
We also demonstrate that a natural configuration-style LP has an unbounded integrality gap
(Theorem 13). The details of the first two theorems are deferred to the full version of this
paper.

I Theorem 11. Minimum-load k-facility location is strongly NP-hard even in line metrics.

I Theorem 12. It is NP-hard to α-approximate minimum-load k-facility location problem
on the Euclidean plane, for any α < 4/3. Thus, MLkFL is APX-hard in the Euclidean plane.

5.1 Integrality-gap Lower Bound
Let

(
F , C, d, k

)
be an MLkFL instance. Given a candidate “guess” B of the optimal value, we

can consider the following LP-relaxation of the problem of determining if there is a solution
with maximum load at most B. We propose the following linear programming for the MLkFL
. For each facility i ∈ F , define S(B; i) := {C ⊆ C :

∑
j∈C d(i, j) ≤ B} to be the set of all

stars centered at i that induce load at most B at i. We will often refer to a star in S(B; i)
as a configuration. (Note that S(B; i) contains ∅.) Our LP Will be a configuration-style
LP, where for every facility i and star C ∈ S(B; i), we have a variable denoting if star C is
chosen for facility i. This yields the following natural feasibility LP.

∑
i∈F

∑
C∈S(B;i):j∈C

x(i, C) ≥ 1 ∀j ∈ C (1)

∑
C∈S(B;i)

x(i, C) ≤ 1 ∀i ∈ F (2)

∑
i∈F

∑
C∈S(B;i)

x(i, C) ≤ k (3)

x ≥ 0.


(P)
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Figure 3 Example showing bad integrality gap for the configuration LP in line metric.

Constraint (1) ensures that each client belongs to some configuration, and constraints (2)
and (3) ensure that each facility belongs to at most one configuration, and that there are at
most k configurations. We show that there is an MLkFL instance on the line metric, where
the smallest value BLP for which (P) is feasible is smaller than the optimal value by an
Ω(k/ log k) factor; thus, the “integrality gap” of (P) is Ω(k/ log k). Moreover, in this instance,
the graph containing the (i, j) edges such that d(i, j) ≤ BLP is connected.

I Theorem 13. The integrality gap of (P) is Ω(k/ log k) even for line metrics.

Proof. Assume for simplicity that k is odd (the argument easily extends to even k). Consider
the following simple MLkFL instance. We have F = {a1, b1, a2, b2, . . . , am, bm}, where
2m = k + 1. These facilities are located on a line as shown in Figure 3, with the distance
between any two consecutive nodes being T/2. There are n = 2k clients colocated with each
facility. Let Ai (respectively Bi) denote the set of clients located at ai (respectively bi) for
1 ≤ i ≤ m.

There is a feasible solution to (P) with B = T . For all i = 1, . . . ,m, we set x(ai, Ai ∪
{j, j′}) = k

(k+1)·(n2) for all j, j′ ∈ Bi; note that all these configurations lie in S(T ; ai).

Similarly, we set x(bi, Bi ∪ {j, j′}) = k

k+1·(n2) for all j, j′ ∈ Ai. It is easy to verify that x is
a feasible solution. It is clear that constraints (2) and (3) hold since every facility belongs
to exactly

(
n
2
)
configurations. Consider a client j ∈ Ai. j is covered to an extent of k

k+1 by
the

(
n
2
)
configurations

{
Ai ∪ {k, `}

}
k,`∈Bi

in S(ai;T ) and to an extent of 1
k+1 by the n− 1

configurations
{
Bi ∪ {j, k}

}
k∈Ai:k 6=j

. A symmetric argument applies to clients in some Bi
set. (If k is even, we may set B = 2T and choose the above configurations for the first k − 2
facilities and the k-th facility; for facility k− 1, we consider

(
n
2
)
configurations, each of which

contains all the clients colocated at facility k − 1, two clients colocated with the (k − 2)-th
facility and 2 clients colocated with the k-th facility.)

Finally, we show that any feasible solution must have maximum load at least T · k
2Hk ,

where Hr := 1 + 1
2 + . . .+ 1

r is the r-th harmonic number, which proves the theorem. In any
feasible solution, there is some location v that does not have an open facility. For i = 1, . . . , k,
let ni be the number of clients colocated at v that are assigned to a facility at a location
that is i hops away from v; set ni = 0 if there is no such location. Then,

∑k
i=1 ni = n, and

the maximum load L at a facility is at least maxi=1,...,k
niiT

4 since there are at most two
facilities that are i hops away from v, and one of them must have at least ni

2 clients assigned
to it. Thus, we have ni ≤ 4L

iT for all i = 1, . . . k, and so n ≤ 4L
T ·Hk, or L ≥ nT

4Hk . (Note that
this argument does not depend on whether k is odd or even.) J

6 Concluding Remarks

In this paper we present the first true polynomial time approximation for the MLkFL restricted
to line metrics and the first true approximation in tree metrics. We also show that the
standard tools of LP rounding (even for configuration based LP) or local search methods,
which have been used successfully for various facility location problems do not seem to work
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for this problem (even for this restricted metrics). Obviously, the major open question here is
to obtain a true approximation (even an O(logn)-approximation) for the MLkFL on general
metrics. A smaller step could be to obtain such an algorithm for the Euclidean metrics.
Note that the APX-hardness result for the Euclidean metrics shows that this problem is
significantly more difficult than the uncapacitated facility location or k-median (for which
there are known PTAS’s).
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