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The multisource Weber problem is to locate simultaneously m facilities in the Euclidean plane to minimize the total transportation cost
for satisfying the demand of n #xed users, each supplied from its closest facility. Many heuristics have been proposed for this problem,
as well as a few exact algorithms. Heuristics are needed to solve quickly large problems and to provide good initial solutions for exact
algorithms. We compare various heuristics, i.e., alternative location-allocation (Cooper 1964), projection (Bongartz et al. 1994), Tabu
search (Brimberg and Mladenovi1c 1996a), p-Median plus Weber (Hansen et al. 1996), Genetic search and several versions of Variable
Neighbourhood search. Based on empirical tests that are reported, it is found that most traditional and some recent heuristics give poor
results when the number of facilities to locate is large and that Variable Neighbourhood search gives consistently best results, on average,
in moderate computing time.

1. INTRODUCTION

The multisource Weber problem (also known as the
location-allocation problem) requires locating a set of
facilities and simultaneously allocating to these facilities
demands for service from a set of customers in order to
optimize some performance criterion. This problem oc-
curs in many practical settings where facilities provide a
homogeneous service, such as the location of plants, ware-
houses, retail outlets, and public facilities. In the continuous
version of the location-allocation problem, referred to as
the multisource Weber problem, the objective is to gener-
ate m new facility sites in IR2 to serve the demands of n
customers or #xed points in such a manner as to minimize
the total transportation (or service) cost. The uncapacitated
version we consider may be formulated as follows (e.g.,
see Love et al. 1988):

min
W;X

n∑
i=1

m∑
j=1

wij‖xj − ai‖

s:t:
m∑
j=1

wij =wi; i=1; : : : ; n;

wij¿0; ∀i; j;

(1)

where
ai = (ai1; ai2) is the known location of customer

i; i=1; : : : ; n;

X = (x1; : : : ; xm) denotes the matrix of location decision
variables, with xj =(xj1; xj2) being the unknown loca-
tion of facility j; j=1; : : : ; m;

wi is the given total demand or ;ow required by customer
i; i=1; : : : ; n;

W = (wij) denotes the vector of allocation decision vari-
ables, where wij gives the ;ow to customer i from
facility j; i=1; : : : ; n; j=1; : : : ; m;

‖xj − ai‖= [(xj1 − ai1)2 + (xj2 − ai2)2]1=2 is the Euclidean
norm.

The objective function above gives the total transporta-
tion cost, while the constraint set ensures that all customer
demands are satis#ed. Because there are no capacity con-
straints on the facilities, an optimal solution will have the
demand at each customer served by the facility that is clos-
est to it (ties being broken arbitrarily).
The main di?culty in solving (1) arises from the fact

that the objective function is nonconvex (Cooper 1967)
and, in general, contains a large number of local minima.
Consider for example the well-known 50 customer prob-
lem in Eilon et al. (1971). Using 200 randomly generated
starting solutions, the authors obtained 61 local minima for
m=5, where the worst solution deviated from the best by
40.9%. It was later shown (Krau 1997) that the best solu-
tion was indeed the global optimum. Thus, because of the
complex shape of the objective function, the problem falls
in the realm of global optimization. The problem may also
be viewed as an enumeration of the Voronoi partitions of
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the customer set and is known to be NP-hard (Megiddo and
Supowit 1984).
As a consequence, exact methods for solving the location-

allocation problem have been restricted until very recently
to relatively small instances. Kuenne and Soland (1972)
derive branch-and-bound algorithms that allow the solution
of problem sizes of the order of 30 customers and 2 facili-
ties or 15 customers and up to 4 facilities. The set reduction
method and p-Median algorithm of Love and Morris (1975)
for rectangular distances is restricted to similarly sized prob-
lems. An e?cient solution procedure is developed for the
special case of Euclidean distances and m=2 (Ostresh
1973a, Drezner 1984). This method is based on an obser-
vation that the subsets of customer locations allocated to
the two facilities are separated by a straight line (Ostresh
1975). Computation times for up to 100 customers were
reported at less than 14 seconds on an Amdahl 470=V8 com-
puter (Drezner 1984). However, because there are O(n2)
single facility location problems to solve, computation time
will increase rapidly with n. More recently, Chen et al.
(1992) have used a d:− c: programming method to solve
the two-facility case more e?ciently. The authors observe a
near-linear increase in the computation time as n increases
and conclude that problem sizes of up to 1000 customers
can be solved exactly. However, for three or more new
facilities, the memory requirements of the method quickly
restrict the problem sizes that can be attempted. A branch-
and-bound algorithm of Ostresh (1973b) solves problems
with 3 facilities and 50 customers. Rosing (1992) extends
the approach of Ostresh (1973a) in the following way: For
a given number of facilities, potential subsets of customers
served by the same facility (in other words, market areas)
are determined by separating iteratively their set of loca-
tions by straight lines n− 1 times. Then a large partitioning
problem is solved, where each customer must belong to
exactly one of those subsets. Unfortunately, the number of
subsets augments very rapidly, and hence problems with 30
customers and 5 facilities or 25 customers and 6 facilities
are typical of the size that can be solved.
The use of new tools has drastically augmented the size

of problems that can be solved exactly. Krau (1997) pro-
poses a column generation approach, combined with global
optimization and branch-and-bound, which leads to the ex-
act solution of instances with 287 customers and 2 to 100
facilities. These solutions are used for comparison of heuris-
tics later in the paper. Combining this approach with a
bundle method in the l1-norm (du Merle et al. 1997) to sta-
bilize solution of the dual leads to a very eOective algorithm
(Hansen et al. 1997) that can solve problems of up to 1000
customers and 100 facilities. To work well, both the column
generation and the l1-norm bundle method require an initial
solution quite close to the optimum. Therefore, they use in
an initial step the best heuristics developed in the present
paper. Conversely, they provide exact solutions as a bench-
mark for large instances studied in this paper. Knowledge
of exact optimal values (or tight bounds) is important, as
some heuristics give solutions very far from the best values

obtained by other ones (i.e., 100% or more for large m);
and if optimal values are unknown, one might wonder if all
heuristics give bad solutions for large instances or not. As
will be shown below, this is not the case.
In the context of the multisource Weber problem, large

problem sizes refer to the existence of multiple local op-
tima, which make the global optimal solution di?cult (if not
impossible) to #nd in a reasonable amount of computing
time. Furthermore, the complexity of the problem depends
in a nonlinear manner on the parameters n and m. Thus, a
problem with as few as 50 customers may be relatively dif-
#cult to solve when the number of facilities is augmented to
25. In the location-allocation literature, signi#cantly larger
problem sizes than this have been reported for the purpose of
testing and comparison of alternative solution methods. Typ-
ically, these problems are generated in some random fashion.
However, large-scale multisource Weber problems are also
reported in practical applications with real data; e.g., con-
sider the transshipment center location problem with (m; n)
of the order of (20, 1700) in Bhaskaran (1992) and the dis-
tricting problem with (m; n) of the order of (170, 1400) in
Fleischmann and Paraschis (1988).
For the initialization of exact algorithms as well as for

the approximate solution of very large problem instances
that may occur in practice in terms of both parameters n
and m, heuristic methods are required. Many such meth-
ods have been proposed in the literature, beginning with
the well-known iterative location-allocation algorithm of
Cooper (1964). This heuristic uses the property that the lo-
cation and allocation phases of the problem are very easy
to solve in isolation. Thus, given the facility locations, each
customer is simply allocated to its nearest one. Alternatively,
knowing the allocation of the customers among the facilities,
the problem reduces to the solution of m independent single
facility minisum problems, which because of the convexity
of the objective function for normed distances are readily
solved by descent methods such as the Weiszfeld procedure
or variants thereof (e.g., see Kuhn 1973, Rosen and Xue
1991, Brimberg and Love 1993, Drezner 1992, Frenk et al.
1994, and Brimberg et al. 1996). Starting with an initial par-
tition of the customer set, the Cooper algorithm alternates
between the location and allocation phases until no further
improvement can be made. Each iteration produces a lower
value of the objective function until the process becomes
trapped at a local minimum. A multistart version involves
repeating the Cooper algorithm many times from randomly
generated initial solutions and retaining the best local min-
imum from the trials as the #nal solution. Variants of the
Cooper algorithm are discussed in Scott (1970) and Baxter
(1981), while Sullivan and Peters (1980) propose a method
to cluster customers into mutually exclusive subsets, in each
of which a facility is then located.
Love and Juel (1982) devise a heuristic method with a

de#ned neighbourhood structure. This neighbourhood con-
sists of all the points around a current solution, which are
obtained by exchanging a speci#ed number of assignments
of customers from their current facilities to new ones. Five
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variants of the proposed method are investigated. The #rst
three algorithms, denoted as H1 to H3, use a single exchange,
while the last two, H4 and H5, allow up to two exchanges.
DiOerent strategies such as #rst improvement and best
improvement are employed to make descent moves from the
current solution to a neighbourhood point. Again, because
the search is local, the H heuristics of Love and Juel are
guaranteed only to obtain a local minimum. The motivation
for the larger neighbourhood of H4 and H5 is to better en-
able the algorithm to jump out of a “local optimum trap,” but
obviously, this comes at a large cost in computation time.
A completely diOerent heuristic approach is given by

Chen (1983). Using an approximation by Charalambous
and Bandler (1976), the objective function is transformed
by giving an exponent (−N ) to all distances between cus-
tomers and facilities and an exponent (−1=N ) to the sum of
so modi#ed distances from all facilities of each user. For N
su?ciently large, this last quantity approaches the distance
between the customer and its closest facility. In this way,
the allocation decision variables are eliminated. The result-
ing problem is then solved by the Broyden-Fletcher-Shanno
quasi-Newton method (e.g., Avriel 1976). Good results, but
not always the best known, are obtained with N set at 100.
Murtagh and Niwattisyawong (1982) propose a heuris-

tic that uses MINOS, a large-scale nonlinear programming
package, to solve simultaneously for both the locations and
allocations. As the iterations proceed, the algorithm #xes any
allocation decision variables (wij) that reach either a value
of zero or wi, and then updates only the free variables. The
update uses a quasi-Newton approximation of the Hessian
matrix within the space of the free variables, and at nondif-
ferentiable points, a subgradient suggested by Kuhn (1973).
Moreno et al. (1990) construct a “drop” heuristic that

begins with an initial solution of N clusters, where N is cho-
sen between m and 2m. Then surplus facilities are dropped
in a greedy manner until exactly m are left. This method
was tested on problem sizes of up to 900 customers and 10
facilities and obtained results comparable to the Cooper
algorithm.
More recently, Bongartz et al. (1994) developed a pro-

jection method for solving the multisource Weber problem.
Instead of assuming Euclidean distances, as is typically the
case, the authors consider the more general lp norm. As
in Murtagh and Niwattisyawong (1982), the new method
solves simultaneously for location and allocation decision
variables. Simple projection formulas on subspaces of the
domain are derived (instead of solving the system of equa-
tions in general) and used to #nd descent directions. The
algorithm is guaranteed to converge to a local minimum. The
authors test a multistart version of their algorithm, where the
initial solutions may be generated randomly or by partition-
ing customers in successive sets along a traveling salesman
tour. The solutions are compared with multistart versions of
Cooper’s algorithm, Murtagh and Niwattisyawong (1982),
and Chen (1983). The projection method generally outper-
forms the other heuristics, but in several of the reported test
problems Cooper’s algorithm comes in a close second. Thus,

for the purposes of our current study, both of these methods
will be considered as the state of the art.
Other heuristics have appeared after the projection

method by Bongartz et al. (1994). These will for refer-
ence purposes be termed recent heuristics. Mladenovi1c
and Brimberg (1995) test a hybrid algorithm that takes
random points in a k-exchange neighbourhood of the type
used in the H-heuristics of Love and Juel (1982), and
then applies Cooper’s algorithm at each of these points. In
Brimberg and Mladenovi1c (1996a), elementary tabu search
rules are added to the H3 heuristic to allow ascent moves
away from a local optimum. Hansen et al. (1996) obtain
an approximate solution by solving a related p-Median
problem followed by the solution of single facility
Weber problems. This idea was #rst suggested by Cooper
(1963). A variable neighbourhood concept, introduced by
Brimberg andMladenovi1c (1996b), systematically increases
the number of exchanges (k) of the H-type neighbourhood
to expand the search radius about a local optimum. Variable
neighbourhood search may be viewed as a new metaheuris-
tic, with a wide range of possible applications in combina-
torial optimization (see Mladenovi1c 1995, Mladenovi1c and
Hansen 1997, and Hansen and Mladenovi1c 1997).
There is a clear need for a comparative study of the

heuristics that have appeared after the projection method of
Bongartz et al. (1994). At the moment, there are several
disconnected pieces, but no uni#ed framework de#ning the
current state of the art. Thus we begin the next section with
a review of the recent heuristics. In addition, we present a
new genetic algorithm and new facility relocation heuristics
that we have developed. The de#ned relocation neighbour-
hood structures are used to conduct a simple local search—or
alternatively, Tabu and variable neighbourhood searches—
producing several new methods. The subsequent section
reports on an extensive empirical study comparing old, re-
cent, and new heuristics. The last section summarizes our
conclusions and suggests future directions of research.
In overview, the main objectives of our study are:
1. To update the state of the art by reviewing under one

roof the several “recent” heuristics appearing after the pro-
jection method (Bongartz et al. 1994).
2. To add to this list “new” heuristics, and hybrid versions

thereof, that we are currently studying.
3. To conduct an extensive empirical study comparing

the new and recent heuristics together and with the old es-
tablishment (Bongartz et al. 1994 and Cooper 1963, 1964,
1967). Standard test problems will be used, but we will also
consider much larger problem instances than previously re-
ported in the literature. This will permit us to evaluate trends
in performances of the various heuristics as problem size
increases.

2. RECENT HEURISTICS

In this section we review several heuristic approaches to
solve the multisource Weber problem, which have been re-
cently developed by us.
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2.1. Tabu Search (TS)

This method (Brimberg and Mladenovi1c 1996a) is an adap-
tation of the H3 heuristic of Love and Juel (1982) within the
Tabu search framework (Glover 1989, 1990; Hansen and
Jaumard 1990). A neighbourhood is constructed around a
given (current) solution by considering all points obtained
by a single exchange of a customer allocation from its current
facility to another one. However, unlike the H3 heuristic,
the tabu search algorithm will allow ascent moves from a
local minimum. The parameters required by the basic
method are ntabu and nbmax for the length of the tabu
list and the number of moves allowed without an im-
provement in the objective function, respectively. It is
understood below that the facilities are always optimally lo-
cated with respect to the speci#ed allocations of customers
by solving up to m independent single facility minisum
problems.

Step 1 {initialization}. Obtain an initial solution by
randomly partitioning the customer set {1; : : : ; n} into m
mutually exclusive subsets Aj, and allocating Aj to
facility j, ∀j=1; : : : ; m (located by using, e.g., theWeiszfeld
procedure). Denote this solution by Xc, and let Zc equal
the value of the objective function at Xc. Set k =0,
(Xbest ; Zbest) = (Xc; Zc), and the tabu list = ∅.
Step 2 {neighbourhood search}. Consider all points Xi;

i = 1; : : : ; n(m− 1), in the one-exchange neighbourhood of
Xc, except those that are not permitted by the tabu list. Retain
the best solution (X ∗; Z∗) from among the neighbourhood
points. If Z∗ ¡ Zbest ; set (Xbest ; Zbest) = (X ∗; Z∗).

Step 3 {move to adjacent point}: Place the reverse ex-
change (X ∗ → Xc) at the bottom of the tabu list, and remove
the top element in the list (using a FIFO rule) if the length
exceeds ntabu. If Z∗¡Zc (descent move), set k = 0; else,
k = k + 1. If k ¿ nbmax, STOP; else (Xc; Zc) = (X ∗; Z∗)
and return to Step 2.

2.2. p-Median Heuristic (PM)

The p-Median problem is a discrete version of the multi-
source Weber problem, where p facility locations (p = m)
are to be chosen from n nodes on a network representing the
customer set. (For a review of the p-Median problem, see
Mirchandani and Francis 1990.) The proposed p-Median
heuristic (Hansen et al. 1996) solves the discrete problem
optimally, where the facility locations are now restricted
to the set of #xed points {a1; : : : ; an}. It should be noted
that the optimal solution of the continuous problem often
has facilities located at or near customer sites. The travel
distances between nodes are calculated with the Euclidean
norm. The resulting p-Median problem is solved using the
e?cient code of Hanjoul and Peeters (1985).

Step 1. De#ne and solve a p-Median problem (p = m)
with the same customers and demands as in the continuous
problem, and the set of #xed points {a1; : : : ; an} as the set of
sites for locating facilities. Let Aj be the subset of customers
allocated to facility j in the optimal solution, j = 1; : : : ; m.

(Note that the Aj are nonempty, mutually exclusive sets, and⋃m
j=1Aj = {1; : : : ; n}:)
Step 2. Solve m independent continuous single facility

minisum problems (e.g., using the Weiszfeld procedure),
where facility j serves exclusively subset Aj; j = 1; : : : ; m.
Let x∗j denote the optimal facility site thus obtained,
j = 1; : : : ; m.
Step 3. A heuristic solution for the multisource Weber

problem is given by {(x∗j ; Aj); j = 1; : : : ; m}; with objective
function value

ZPM =
m∑
j=1

∑
i∈Aj

wi‖x∗j − ai‖:

A useful feature of the PM heuristic is that no parameters
need to be speci#ed by the analyst.

2.3. Variable Neighbourhood Search (VNS)

The variable neighbourhood search combines the elements
of random search with a systematic way of exploring dif-
ferent regions of the solution space (Mladenovi1c 1995,
Brimberg and Mladenovi1c 1996b, Mladenovi1c and Hansen
1997, Hansen and Mladenovi1c 1997). If a given neigh-
bourhood does not produce a better solution, we augment
the neighbourhood in order to move further away from the
current solution and resume the search. The neighbourhood
structure used here is a generalization of the #xed neigh-
bourhood used in the H-heuristics of Love and Juel (1982)
and in the hybrid algorithm of Mladenovi1c and Brimberg
(1995). We de#ne the k-neighbourhood of a given solution
as the set of all possible surrounding points obtained by
exactly k exchanges of customer allocations from current
facilities to new ones. This may be viewed as exchang-
ing k existing branches on a bipartite graph representation
with k new ones. The total number of points in the kth

neighbourhood is bounded by

(
n
k

)
(m− 1)k ;

which increases exponentially with k. The procedure ran-
domly chooses a speci#ed number b of points in this
neighbourhood from which to conduct a local search with
Cooper’s algorithm. A basic form of VNS is outlined below.
Generalizations of the method are discussed in Brimberg
and Mladenovi1c (1996b).

Step 1 {initialization}. Specify an initial solution, and
run Cooper’s algorithm to obtain a local optimum (Xc). Set
k = 1.
Step 2 {neighbourhood search}.
(a) Select b points at random in the k-neighbourhood

of Xc.
(b) For each of these points run Cooper’s algorithm

to obtain local minima Xi; i = 1; : : : ; b (note that
these solutions will not in general be all unique).

(c) Retain the best solution X ∗ ∈{Xi; i=1; : : : ; b}.
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(d) If X ∗ is a better solution than Xc; Xc=X ∗, k =1,
and return to the beginning of Step 2; otherwise,
proceed to the next step.

Step 3 {augmenting the neighbourhood}.
(a) k = k + 1.
(b) If k6kmax, return to Step 2;

otherwise, if the stopping criterion is not satis#ed,
set k =1 and return to Step 2; else STOP (#nal
solution is Xc).

The parameters to be speci#ed in VNS are b and kmax.
In the heuristic by Mladenovi1c and Brimberg (1995), the

neighbourhood size is #xed at a speci#ed parameter value
(k). Random points are chosen in the neighbourhood, and
the local descent from each of these points is carried out
using Cooper’s algorithm as above. This procedure referred
to as #xed neighbourhood search, as well as VNS, may be
easily modi#ed to allow ascent moves.

3. NEW HEURISTICS

In this section we describe a new genetic algorithm and a
framework for new facility relocation heuristics.

3.1. Genetic Algorithm (GA)

Unlike random search methods that do not use any previous
information, the genetic algorithm attempts to construct im-
proved solutions from predecessors in an evolutionary type
process (Holland 1975). In this respect the genetic algorithm
may be thought of as a more intelligent stochastic search
technique. A genetic algorithm has already been developed
for the multisource Weber problem by Houck et al. (1996).
We give below the general framework of the algorithm
followed by details of our implementation.

Step 1. Generate N diOerent initial solutions (the popu-
lation of solutions).
Step 2. Sort the population in nonincreasing order of

solution quality measured by the value of the objective
function.
Step 3.

Repeat:
(a) Select two solutions from the population,
(b) Mix these solutions with a cross-over operator to

create a new solution,
(c) Modify the new solution with a mutation operator,
(d) Insert the modi#ed solution in the population and

sort,
(e) Remove solutions from the population with a culling

operator,
until a stopping criterion is satis#ed.

To determine an initial solution in Step 1 of GA, the
facilities are located at m randomly chosen #xed points.
Using these starting locations, the alternating algorithm of
Cooper is applied until a local minimum is reached. The
process is repeated until N local minima are obtained to
make up the population.

The selection operator in Step 3(a) generates two in-
stances y1; y2 of a random variable uniformly distributed in
the interval (0,1). The #rst solution selected from the se-
quenced population is identi#ed as s1 = 	y21 ·Q+1�, where
Q is the number of solutions currently in the population and
	y� denotes the largest integer value less than or equal to
y. The second solution is given by

s2 =

{
s′2; if s′2¡s1;

s′2 + 1; otherwise;

where s′2 = 	y22 · (Q − 1) + 1�. Note that the squaring of
y1 and y2 in the above formulas tends to generate smaller
integer values for s1 and s2; that is, the tendency is to select
the best solutions from the population in line with a survival-
of-the-4ttest strategy.
The cross-over operation combines the features for the

two existing solutions, s1 and s2 (the parents), to produce a
new solution s3 (the child). In our implementation, each
facility j is added to s3 at a site it occupies in s1 or s2. A
minimal separation distance dmin between facilities is spec-
i#ed to spread them out among the customers and avoid du-
plication of good sites. We use a dmin equal to the smallest
distance between two customers. Let xij be the site of facility
j in solution i. The cross-over operation works as follows.
First set x31 = x11 or x21, with equal probability. Then, for
each j=2; : : : ; m, calculate with distance function d(.,.):

d1 = min
t¡j

d(x3t ; x1j); d2 = min
t¡j

d(x3t ; x2j):

If (d1¡dmin) and (d2¿dmin), set x3j = x2j; else if (d2¡dmin)
and (d1¿dmin), set x3j = x1j; else set x3j = x1j or x2j with
equal probability.
The mutation operator in Step 3(c) is simply a local

improvement on the new solution s3 using the Cooper
algorithm to obtain a local minimum. If the population size
exceeds a speci#ed limit Qmax, the culling operator removes
the worst solution in Step 3(e). The process will continue
producing new generations of solutions inde#nitely if it is
not stopped. The stopping criterion is typically a limit on
the number of iterations or on the execution time or the
convergence of the algorithm is detected (i.e., all solutions
of the population are the same). Thus, in summary, we need
to specify the parameters N; Qmax; dmin, and a stopping
criterion to implement the procedure.

3.2. Relocation Heuristics

Until now, local searches have been conducted in a neigh-
bourhood of the current solution de#ned by a #xed number
of customer-to-facility reallocations. We propose here a new
local search procedure that constructs its neighbourhood as
the set of points obtained by a given number of facility relo-
cations. The simplest construction considers the relocation
of a single facility to any unoccupied customer location (i.e.,
a customer that does not have a facility coincident with it).
This one-exchange neighbourhood has been used before in
network location problems; e.g., see Teitz and Bart (1968)
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for the p-Median problem. Because there are m candidates
to choose from, and as many as n customer sites at which
to reposition them, there are O(mn) points in the resulting
neighbourhood.
Local searches that visit all the points in the neighbour-

hood will be referred to as interchange (CH) heuristics.
Various strategies may be employed in this context to trade
oO the accuracy or depth of the search at a neighbourhood
point with speed. For example, the facilities may always be
optimally located in continuous space (for the speci#ed al-
locations), or forced to remain only at customer sites. In
the latter case, the heuristic is solving the related discrete
m-Median problem. The algorithm would adjust the facility
locations in continuous space at well-de#ned times. The net
eOect would be to allow more iterations (with less precision)
in the same amount of CPU time.
Instead of visiting all points in the interchange neighbour-

hood, an alternative strategy referred to as drop and add
(DA) could be used. This procedure has been applied with
success in other settings such as the Traveling Salesman
Problem (see for example Gendreau et al. 1992) and the
p-Median problem (e.g., Rolland et al. 1996); however, to
the best of our knowledge, this is the #rst application in
continuous location-allocation problems. The DA method
decides, using some criterion, which is the best facility
to drop, and only then, by another criterion, where is the
best site to reinsert it. It follows that O(m + n) points are
investigated in place ofO(mn) of the interchange procedure.
However, visiting O(mn) solutions in an interchange neigh-
bourhood may not be more time consuming than visiting
O(m+ n) solutions in a DA neighbourhood because of the
following facts: (1) A good drop strategy may be time con-
suming (if, for example, a local minimum is obtained each
time for the remaining m− 1 facilities) and likewise for the
add move; (2) As shown by Whitaker (1983), the points in
an interchange neighbourhood may be updated e?ciently in
a p-Median problem. We found that these results could also
be applied to the continuous relocation neighbourhood we
constructed.
A basic form of the DA heuristic follows.

Step 1 {initialization}. Find an initial solution Xc, and let
Zc be the corresponding value of the objective function.
Step 2 {drop}. Delete a facility at site (xjdel1; xjdel2) using

some criterion. (All other facilities remain in their current
locations.)
Step 3 {add}. Reinsert the facility at an unoccupied

customer location (ainew1; ainew2) according to some other
criterion.
Step 4 {local improvement}. Use Cooper’s algorithm and

the modi#ed set of facility locations to #nd a local minimum
(X ∗; Z∗). If Z∗¡Zc, save the new currently best solution,
(Xc; Zc)= (X ∗; Z∗), and return to Step 2; otherwise STOP.

The key features in the DA heuristic are seen to be the
criteria used in Steps 2 and 3. Several deletion and insertion
rules were investigated, but for brevity we will report only on
the more successful ones. The three best criteria for dropping
a facility were found to be:

1.Drop least useful (DLU). Here each facility j is deleted
in turn, and a local minimum Wj is obtained by Cooper’s
algorithm for the remaining (m − 1) facilities. The facility
to be dropped corresponds to the minimum-valued Wj, i.e.,
Wjdel = min{Wj; j=1; : : : ; m}.
2. Drop by second closest criterion (DSC). Find the

second closest facility to each customer. Now temporarily
remove a facility j. Let rj be its contribution in the current
objective function, and let sj equal the weighted sum of dis-
tances between customers temporarily without a facility and
their second closest facility. Repeat the preceding step for
j=1; : : : ; m. Then facility jdel corresponds to the minimum
diOerence, sj − rj.
3. Drop by minimum potential criterion (DMP). De#ne

the potential of each facility j as the product rjdj, where
rj is its contribution to the objective function and dj the
distance to its closest facility. If facility j coincides with a
customer i, then set rj = rj + wi. Drop the facility jdel with
the minimum potential.
The #rst drop procedure is intuitively the most appealing

because it identi#es a facility whose removal will cause the
least increase in the objective function. However, Cooper’s
algorithmmust be calledm times in each iteration, and hence
this procedure becomes time consuming for larger problem
instances. The second and third drop procedures, on the other
hand, are much faster because a local improvement of the
solution for the remaining (m − 1) facilities is not carried
out.
Analogous versions of the drop step may be constructed

for the add step. We mention only two of these:
1. Add most useful (AMU). Insert the deleted facility

at an unoccupied customer location. Find a local minimum
using Cooper’s algorithm and the new set of facility sites.
Repeat for each unoccupied customer location and retain the
best solution.
2. Add by second closest criterion (ASC). Insert the

deleted facility at an unoccupied customer location i. Real-
locate those customers who are now closer to the newly
inserted facility than to their current facility (which becomes
the second closest). Calculate the decrease in the objective
function (si − ri) attributed to the given insertion point. Re-
peat for each unoccupied customer location, and retain the
insertion point which maximizes (si − ri).
The interchange and drop=add neighbourhoods may be en-

larged by increasing the number of facility relocations from
the current solution. In addition, we may allow ascent moves
in the de#ned neighbourhood. This gives rise to a host of
new heuristics based on tabu search and variable neighbour-
hood search. These algorithms apply the same steps as be-
fore, except that the reallocation neighbourhoods are now
replaced by the newly de#ned relocation neighbourhoods.

4. COMPUTATIONAL RESULTS

An extensive empirical study was carried out to compare
the various heuristics—old, recent, and new—in a uni-
#ed setting. We considered the following four problem
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Table 1. Optimal and best known values for test problems.

n=50 n=287 n=654 n=1060

Optimal Optimal Best Known Best Known
m Value m Value m Value m Value

2 135.5222 2 14427.5930 2 815313.2961 5 1851879.9
3 105.2139 3 12095.4422 3 551062.8811 10 1249564.8
4 84.1536 4 10661.4766 4 288190.9860 15 980132.1
5 72.2369 5 9715.6275 5 209068.7935 20 828802.0
6 60.9713 6 8787.5568 6 180488.2126 25 722061.2
7 54.5020 7 8160.3230 7 163704.1681 30 638263.0
8 49.9393 8 7564.2949 8 147050.7904 35 577526.6
9 45.6884 9 7088.1283 9 130936.1241 40 529866.2
10 41.6851 10 6705.0356 10 115339.0328 45 489650.0
11 38.0205 11 6351.5910 11 100133.2007 50 453164.0
12 35.0551 12 6033.0474 12 94152.0550 55 422770.0
13 32.3067 13 5725.1853 13 89454.7613 60 397784.4
14 29.6559 14 5469.6478 14 84807.6690 65 376759.5
15 27.6282 15 5224.7028 15 80177.0422 70 357385.0
16 25.7427 16 4981.9608 20 63389.0238 75 340242.0
17 23.9900 17 4755.1890 25 52209.5106 80 326053.2
18 22.2851 18 4547.3651 30 44705.1921 85 313738.2
19 20.6399 19 4342.0648 35 39257.2685 90 302837.0
20 19.3560 20 4148.8443 40 35704.4076 95 292875.1
21 18.0826 25 3348.7101 45 32306.9721 100 283113.0
22 16.8220 30 2716.9071 50 29338.0106 105 274576.0
23 15.6136 35 2238.1839 55 26699.1699 110 265801.0
24 14.4431 40 1900.8361 60 24504.3952 115 257605.0
25 13.3016 45 1630.3115 65 22747.0996 120 249584.0
26 12.3016 50 1402.5836 70 21468.1543 125 242930.0
27 11.4193 55 1203.9849 75 20312.9668 130 236154.0
28 10.4759 60 1055.1391 80 19193.8848 135 230431.0
29 9.5936 65 924.5547 85 18316.5391 140 224504.0
30 8.7963 70 814.2238 90 17544.3516 145 218279.0
31 7.9666 75 730.0434 95 16786.3887 150 212926.0
32 7.1814 80 655.3788 100 16087.6846
33 6.4567 85 588.3680 105 15436.4004
34 5.7484 90 529.2126 110 14830.1602
35 5.0483 95 480.8592 115 14381.0566
36 4.5471 100 441.2417 120 13921.5498

con#gurations: the well-known 50-customer problem in
Eilon et al. (1971), the 287-customer ambulance problem
from Bongartz et al. (1994), and a 654- and 1060-customer
problem listed in the TSP library (Reinelt 1991). The weights
(wi) were taken directly from Bongartz et al. for the 287-
customer problem; otherwise, unit weights were speci#ed
throughout. In each case, the number of facilities to lo-
cate was varied over a wide range. This provided a large
number of problem instances from comparatively small
sizes to much larger instances than previously reported in
the literature. Thus we were able to investigate the perfor-
mance of the heuristics over an extensive range of problem
di?culty.
The diOerent methods were compared on the basis of

equivalent CPU times. Each problem instance was solved ini-
tially by 100 runs of Cooper’s alternating algorithm from
randomly generated starting points. (The multistart version
of Cooper’s algorithm will be referred to as MALT from this
point on.) The resulting CPU time was then used as a stop-
ping criterion for the other heuristics. That is, the algorithm

would be terminated at the completion of a local search if
the total elapsed CPU time exceeded the stopping criterion;
otherwise the iterations were allowed to continue. In cases
where the stopping criterion could not be applied, such as
the p-Median algorithm, actual CPU times to complete the
#rst solution are reported.
All methods were programmed in FORTRAN 77 except GA,

which used C++. The codes were compiled using an op-
timizing option (g++-O3 for C++, and f77-cg92-O4 for
FORTRAN) and run on a SUN SPARC station 10.

Old and Recent Heuristics

Results for the “old” and “recent” heuristics are reported
in Tables 2 to 5. Where applicable, two sets of values are
given: the average and the best value of the objective func-
tion found from 10 separate runs of the algorithm. These
results are expressed as a percent deviation from the best
known solutions (listed in Table 1). It should be noted that
the best known solutions listed for the 50- and 287-customer
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Table 2. Old=recent heuristics and the 50-customer problem.

CPU MALT TS VNS-1 PROJ PM-1

m Time Av. Best Av. Best Av. Best Av. Best CPU Best

2 0.94 0.00 0.00 3.71 0.00 3.39 0.00 1.45 0.00 0.06 0.05
3 1.59 0.00 0.00 1.51 0.00 1.35 0.00 2.24 0.00 0.06 0.26
4 2.21 0.00 0.00 3.04 0.00 1.23 0.00 4.26 0.00 0.06 0.02
5 2.82 0.00 0.00 1.09 0.00 0.15 0.00 2.93 0.00 0.08 0.63
6 3.75 0.00 0.00 6.41 0.00 1.25 0.00 2.65 0.00 0.05 0.21
7 4.00 0.00 0.00 3.51 0.00 2.97 0.00 4.53 0.25 0.05 0.24
8 4.23 0.06 0.00 4.61 0.00 0.63 0.00 4.78 0.72 0.05 0.00
9 4.26 0.38 0.00 4.00 0.79 1.78 0.00 6.19 0.91 0.05 0.00
10 4.27 0.51 0.00 8.16 1.77 2.65 0.00 8.14 2.40 0.05 0.00
11 4.31 2.24 1.34 11.73 5.83 2.53 0.00 9.44 1.57 0.05 0.00
12 4.27 2.65 0.35 13.75 7.84 1.06 0.00 9.44 0.61 0.05 0.00
13 4.24 3.90 1.57 15.51 2.22 1.45 0.00 10.40 3.33 0.05 0.30
14 4.18 4.22 2.18 16.49 6.35 1.91 0.00 12.48 5.65 0.05 0.00
15 4.14 4.73 0.84 19.55 9.06 1.39 0.00 11.56 5.33 0.05 0.41
16 4.05 4.93 1.53 16.88 8.98 0.76 0.00 11.62 5.44 0.06 0.00
17 3.91 4.88 1.11 20.88 9.62 0.03 0.00 12.78 5.75 0.05 0.00
18 3.90 6.39 3.70 20.72 8.73 0.32 0.01 14.70 2.97 0.06 0.00
19 3.80 5.66 1.41 21.11 10.15 0.04 0.00 15.01 2.91 0.05 0.00
20 3.75 5.81 0.68 19.87 6.34 0.20 0.00 13.37 3.63 0.05 0.04
21 3.67 5.77 2.11 13.45 6.40 0.16 0.00 12.60 1.34 0.09 0.35
22 3.60 6.04 3.76 16.17 5.18 0.30 0.00 13.57 5.34 0.05 0.44
23 3.52 4.93 1.00 23.38 11.74 0.42 0.00 14.42 4.34 0.09 0.89
24 3.46 5.77 2.92 22.24 9.64 0.27 0.00 13.91 0.37 0.10 0.95
25 3.38 5.58 2.50 23.68 9.64 0.19 0.00 13.60 2.00 0.05 0.82

Av. 3.59 3.10 1.12 12.98 5.01 1.10 0.00 9.42 2.29 0.06 0.23

problems are also known to be global optimal solutions
(Krau 1997). The CPU times (in seconds) listed in the tables
are for 10 runs of MALT (with 100 restarts of Cooper’s al-
gorithm in each run), thus giving the total time to obtain the
best solution.
We note that the projection method (PROJ) of Bongartz

et al. (1994) uses the original code supplied by the authors.
This code permits the choice between random or travelling
salesman solutions as starting points. The results reported
here for PROJ apply to the type of starting point that gave
the best average performance over all problem instances in
the table (random initial solutions in Table 3, and travel-
ling salesman solutions for Tables 2, 4, and 5). Also note
that the heuristics are all augmented where applicable by an
insertion procedure to eliminate degenerate local minima
that occur when one or more facilities are at locations that
do not serve any customers (see Brimberg and Mladenovi1c
1998).
Some general observations are inferred from a compari-

son of the results in Tables 2 to 5. These are summarized
below.

OBSERVATION 1. At the lower values of m in each table, the
old heuristics (MALT and the projection method (PROJ)
of Bongartz et al.) perform as well as or better than the
recent heuristics. This implies that random restarts are an
eOective solution strategy for “smaller” problem instances.
This relates to the existence of relatively few local minima.

OBSERVATION 2. The relatively poor performance of MALT
and PROJ for higher values of m may be attributed to the
fact that the number of local minima increases with problem
size at an exponential rate, giving rise to a central-limit
catastrophe (Boese et al. 1994). As a result, procedures that
use random restarts lose their eOectiveness. Also note that
PROJ takes up to 80% longer than MALT to #nd a local
minimum. Nonetheless, PROJ gives the best performance
overall in Table 5 for the 1060-customer problem. This may
be because of the use of travelling salesman solutions in
PROJ to generate starting points.

OBSERVATION 3. The Tabu search method (TS-1) performs
poorly in comparison to MALT for large problem sizes (see
Table 2). This is attributed to the neighbourhood structure
in TS, which results in a very slow local descent or ascent.
Thus, relatively few iterations are completed within the im-
posed time limit. For this reason, we report TS-1 only in
Table 2. For small problem sizes, TS-1 is seen to be compet-
itive with the other methods within the imposed time limit.

OBSERVATION 4. The variable neighbourhood search (VSN-
1) reported in Tables 2 to 5 uses in all cases parameter
values of b=1 (number of points randomly selected in a
given neighbourhood), and kmax = n (maximum number of
customer reallocations or largest neighbourhood). No
attempt was made to #nd the best parameter values for
individual problems, but rather, a “parameterless” version
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Table 3. Old=recent heuristics and the 287-customer problem.

CPU MALT FNS VNS-1 PROJ PM-1

m Time Av. Best Av. Best Av. Best Av. Best CPU Best

2 10.34 0.04 0.00 0.00 0.00 0.00 0.00 4.22 0.00 2.28 0.42
3 18.63 0.00 0.00 0.00 0.00 0.00 0.00 10.12 0.00 2.04 0.04
4 20.04 0.01 0.01 4.12 0.01 3.67 0.01 12.27 0.00 2.14 0.01
5 23.24 0.89 0.21 2.93 0.20 4.29 0.20 16.47 0.00 2.26 0.01
6 25.94 3.39 3.21 2.89 0.03 3.31 3.21 18.57 3.49 1.60 0.03
7 27.48 3.81 0.79 1.35 0.39 3.06 0.03 22.47 4.65 2.22 0.06
8 29.53 4.22 2.36 1.50 0.01 2.07 0.01 26.84 3.07 2.15 0.56
9 30.60 3.10 0.54 1.15 0.00 2.02 0.00 21.39 5.74 2.09 0.58
10 32.21 3.05 0.96 0.39 0.30 0.89 0.32 26.21 8.09 2.63 0.72
11 33.49 2.08 0.97 0.65 0.12 0.60 0.00 22.76 9.28 2.27 0.59
12 34.87 2.60 0.95 0.31 0.00 0.41 0.00 20.31 10.28 2.43 0.44
13 35.63 2.77 2.01 0.39 0.00 0.26 0.00 29.88 12.00 2.05 0.69
14 36.99 2.47 1.34 0.34 0.01 0.15 0.01 25.59 9.70 2.38 0.42
15 37.17 2.09 1.57 0.24 0.01 0.58 0.01 27.96 11.20 2.39 0.16
16 38.32 2.43 1.34 0.39 0.01 0.49 0.01 29.71 14.14 1.88 0.26
17 38.67 2.51 1.08 0.49 0.01 1.06 0.01 27.72 16.60 1.92 0.15
18 39.57 2.18 0.82 0.50 0.06 0.91 0.06 31.35 18.57 2.01 0.22
19 39.72 3.07 1.66 0.99 0.01 0.95 0.40 35.82 15.28 1.81 0.23
20 39.88 3.66 2.27 1.41 0.14 1.12 0.28 34.10 16.54 2.48 0.24
25 42.83 5.81 3.40 2.32 0.62 2.85 0.87 46.74 25.05 2.31 0.02
30 48.39 6.77 4.13 3.11 0.36 3.41 2.29 52.61 25.07 2.45 0.06
35 53.64 8.05 4.80 3.63 0.01 2.73 0.05 50.82 25.26 2.39 0.02
40 58.65 8.83 4.70 5.79 3.99 2.61 1.22 63.24 47.01 2.77 0.09
45 63.28 10.58 7.44 5.63 4.29 3.21 1.43 49.31 33.76 2.20 0.14
50 67.32 12.07 5.93 7.76 5.49 4.71 2.12 54.70 38.97 2.60 0.01
55 70.06 15.77 12.58 8.09 3.68 6.14 2.77 53.05 28.92 2.53 0.02
60 74.69 18.49 8.88 10.76 5.25 4.76 1.83 49.57 37.85 2.94 0.03
65 77.99 21.63 17.14 11.63 6.39 6.95 4.21 45.28 29.04 4.25 0.17
70 81.45 25.13 13.91 13.31 9.84 9.32 2.36 47.22 25.46 2.65 0.10
75 83.79 27.28 21.81 12.26 5.08 7.61 2.69 37.50 22.72 2.75 0.18
80 86.07 28.30 22.23 14.62 12.25 9.91 4.18 37.65 20.06 2.68 0.18
85 88.24 33.95 27.12 15.68 11.12 10.50 5.59 34.29 22.21 20.04 0.13
90 89.97 32.89 21.65 17.01 14.01 8.86 4.66 30.85 17.85 2.07 0.09
95 91.66 37.43 28.31 16.52 12.77 9.48 5.01 31.45 16.98 2.26 0.10
100 92.99 39.41 30.12 19.00 15.26 8.86 4.47 29.34 12.12 2.17 0.00

Av. 50.38 10.76 7.32 5.35 3.19 3.65 1.44 33.07 16.77 2.86 0.20

was implemented to see how the algorithm in its simplest
form could perform over all problem sizes.
Referring to the average error summary in the tables,

we observe that VNS-1 signi#cantly outperformed MALT
within the same CPU time. For the 50-customer problem,
the best solution obtained by VNS-1 was optimal in al-
most all cases! However, the results were not uniform for
the other problem sets. It is also interesting to note that the
#xed neighbourhood search (FNS) with number of reallo-
cations k = n=2, obtained substantially better results than
VNS-1 for the problem sets in Tables 4 and 5. This im-
plies that the variable neighbourhood search is sensitive to
the parameter settings. Thus, for best results, the parameters
should be adjusted for individual problems (or CPU time in-
creased). Alternatively, b and kmax may vary according to an
intensi#cation=diversi#cation strategy during the execution
of the algorithm.

OBSERVATION 5. The solutions obtained by the p-Median al-
gorithm (PM-1) are very good in comparison to the other

methods reported in Tables 2 to 5. With the exception of the
50-customer problem, PM-1 outperforms VNS-1 by a con-
siderable margin. However, the execution time for PM-1 to
complete a solution far exceeded the time limit imposed on
VNS-1, so a direct comparison of the two methods cannot
be made. Note that results for PM-1 are not listed for ex-
ecution times exceeding a 3000-second limit. (This is also
the reason PM-1 is not included in Table 5.)

New Descent Relocation Heuristics

We begin with a discussion of results for the drop=add (DA)
algorithm. As noted in the description of this method in §3,
several criteria may be selected to determine which facility
to remove and where to insert it back. This provides a large
number of possible drop=add strategies. We will report on
only a few of the more promising combinations.
Table 6 provides results on four DA strategies for the

287-customer problem. The Av. column gives the average
result from 10 random restarts, while the next column lists
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Table 4. Old=recent heuristics and the 654-customer problem.

CPU MALT FNS VNS-1 PROJ PM-1
m Time Av. Best Av. Best Av. Best Av. Best CPU Best

2 13.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 33.19 0.00
3 26.29 0.00 0.00 0.16 0.00 0.14 0.00 0.00 0.00 37.67 0.20
4 49.82 0.00 0.00 12.84 0.00 12.84 0.00 0.00 0.00 25.12 0.00
5 49.99 0.00 0.00 0.00 0.00 0.00 0.00 16.71 0.00 33.39 0.00
6 55.43 3.54 0.00 0.57 0.00 0.00 0.00 3.07 0.00 36.08 0.00
7 60.96 0.60 0.08 0.52 0.00 0.52 0.00 2.44 0.00 31.06 0.00
8 61.92 0.65 0.00 4.60 0.72 4.41 0.72 0.89 0.00 39.62 0.00
9 61.25 0.40 0.40 9.33 0.40 9.40 0.40 0.78 0.40 35.69 0.00
10 1.26 5.18 0.00 19.23 11.56 19.08 9.21 3.11 0.00 37.74 0.04
11 60.30 14.87 9.03 15.76 0.00 24.60 20.92 8.08 0.00 32.86 0.07
12 61.13 13.56 10.87 15.03 11.29 21.63 1.44 13.48 13.07 48.28 0.00
13 61.73 15.30 14.19 9.82 0.57 19.13 0.57 8.99 1.60 129.70 0.01
14 63.41 17.78 5.54 5.97 0.60 20.73 3.16 13.94 1.68 138.97 0.00
15 64.86 19.77 6.68 6.18 0.58 16.76 3.33 12.25 1.75 98.07 0.01
20 89.47 27.18 23.24 8.03 3.94 21.28 11.27 22.76 7.81 678.97 0.06
25 116.75 38.04 35.37 4.76 2.53 23.84 10.92 29.94 12.32 710.11 0.13
30 137.65 52.09 45.74 4.56 0.08 23.06 6.67 39.40 11.83 2111.24 0.22
35 154.34 59.99 50.99 2.05 0.22 22.64 10.88 39.09 19.35 803.95 0.38
40 176.75 63.99 55.97 1.33 0.41 24.63 9.63 39.98 26.97 881.32 0.56
45 186.37 68.45 62.73 2.66 1.62 30.42 7.75 43.53 27.55 648.16 0.50
50 204.21 67.83 62.03 3.79 2.72 19.18 7.89 47.35 33.52 1243.34 0.43
55 213.58 70.60 49.49 6.40 4.03 19.83 9.57 49.46 31.74 — —
60 233.03 70.17 47.02 5.05 3.26 17.15 7.50 56.88 43.92 — —
65 242.39 70.56 52.88 5.16 2.44 18.46 8.94 61.03 48.41 — —
70 251.48 62.01 52.01 3.15 1.40 13.64 9.13 69.16 54.59 — —
75 260.00 63.21 55.52 3.98 1.98 14.69 9.71 69.11 50.36 — —
80 267.09 56.91 52.13 5.00 3.23 16.79 9.64 72.32 59.97 — —
85 277.22 50.72 35.71 4.95 4.07 12.71 8.03 76.61 46.19 — —
90 279.82 50.38 46.79 4.70 3.28 13.23 7.71 79.60 62.40 — —
95 281.12 47.78 38.69 5.15 3.42 15.19 8.99 75.94 51.85 — —
100 285.47 47.03 34.40 4.75 2.90 14.32 8.43 80.40 64.39 — —

Av. 142.20 34.15 27.34 5.66 2.17 15.17 6.21 33.43 21.67 373.07 0.13

Table 5. Old=recent heuristics and the 1060-customer problem.

CPU MALT FNS VNS-1 PROJ
m Time Av. Best Av. Best Av. Best Av. Best

5 121.74 0.00 0.00 0.22 0.00 0.21 0.00 0.13 0.00
10 242.04 0.03 0.01 0.10 0.00 0.10 0.00 1.09 0.04
15 320.98 0.09 0.04 0.27 0.01 0.41 0.00 2.40 0.14
20 377.04 1.17 1.09 2.17 1.72 2.10 1.71 3.66 0.36
25 406.02 3.65 2.98 4.94 2.92 5.10 2.81 4.74 0.07
30 507.45 8.20 7.28 7.73 5.89 8.51 5.44 5.11 1.17
35 607.56 10.88 8.77 9.92 6.34 11.03 8.77 5.57 0.80
40 679.96 14.92 13.19 12.77 10.58 15.68 11.18 7.46 1.53
45 718.97 19.70 18.37 13.20 8.94 18.82 10.86 8.85 2.44
50 740.57 23.75 22.36 13.73 10.09 23.37 15.81 10.20 2.14
55 802.29 28.09 25.67 11.88 8.08 26.28 21.65 10.81 3.69
60 855.83 32.38 30.19 13.20 10.15 26.31 20.59 11.79 2.83
65 905.99 35.02 32.83 11.18 9.23 28.29 20.74 12.18 4.87
70 956.30 38.59 37.17 10.69 7.38 32.75 23.22 12.59 3.82
75 1005.61 39.75 37.29 10.02 7.60 31.77 23.33 13.21 4.22
80 1020.64 41.77 38.00 9.46 3.77 31.13 27.05 13.05 4.49
85 1028.75 42.79 40.71 7.87 4.48 31.19 24.24 13.42 5.08
90 1044.53 42.75 39.10 7.16 3.83 32.67 23.60 13.44 5.51
95 1084.29 43.59 35.57 4.04 2.08 34.31 28.30 13.60 5.41
100 1092.74 43.59 37.26 3.37 2.02 33.33 23.34 13.20 5.02

Av. 725.96 23.57 21.43 7.73 5.29 19.70 14.67 8.83 2.72
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Table 6. Descent DA heuristics in the 287-customer problem.

(DLU, AMU) (DLU, ASC) (DMP, ASC) (DSC, ASC)
m Av. Best Time Av. Best Time Av. Best Time Av. Best Time

2 0.00 0.00 133.5 0.38 0.38 0.6 0.38 0.38 0.4 0.38 0.38 0.4
3 0.00 0.00 99.7 0.14 0.00 1.1 0.17 0.00 0.6 0.17 0.00 0.6
4 0.01 0.00 169.3 0.01 0.01 2.4 0.01 0.01 0.8 0.41 0.00 0.8
5 0.01 0.01 227.0 0.01 0.01 4.0 0.01 0.01 1.1 1.11 0.01 1.0
6 0.02 0.02 294.4 0.31 0.03 4.4 0.89 0.02 1.4 4.49 0.03 1.0
7 0.03 0.02 296.1 0.03 0.03 6.4 0.83 0.02 1.5 1.49 0.03 1.2
8 0.00 0.00 328.1 0.77 0.01 6.2 2.86 0.01 1.3 3.03 0.01 1.3
9 0.29 0.00 297.8 0.51 0.00 6.8 1.84 0.50 1.3 2.90 0.08 1.2
10 0.00 0.00 366.9 0.28 0.00 8.2 0.66 0.40 1.4 2.33 0.42 1.4
11 0.23 0.00 337.6 0.76 0.15 10.5 1.78 0.47 1.4 3.42 0.49 1.3
12 0.19 0.00 348.0 0.97 0.00 12.5 1.39 0.16 1.6 2.86 0.00 1.4
13 0.35 0.00 378.0 0.83 0.11 12.5 1.66 0.32 1.5 3.45 0.32 1.3
14 0.42 0.01 367.6 1.23 0.27 16.0 1.43 0.20 1.7 3.84 1.03 1.3
15 0.53 0.05 369.7 2.18 0.65 15.3 2.67 0.76 1.6 3.16 1.56 1.5
16 0.61 0.18 382.9 1.21 0.34 14.7 2.39 0.66 1.5 2.89 0.95 1.4
17 0.43 0.09 470.8 1.03 0.23 19.6 3.40 0.76 1.5 4.63 2.72 1.4
18 0.09 0.01 535.7 0.96 0.06 23.6 2.89 0.76 1.9 4.81 2.43 1.5
19 0.12 0.01 621.2 1.65 0.34 23.1 2.67 0.34 2.0 5.18 2.52 1.7
20 0.11 0.01 538.3 2.86 0.03 21.6 3.03 0.93 1.9 3.29 1.45 1.9
25 0.31 0.00 675.3 0.68 0.01 37.1 2.32 0.61 3.0 6.68 1.46 2.2
30 0.08 0.03 693.9 0.36 0.03 50.0 0.86 0.05 3.4 5.37 2.74 2.8
35 0.02 0.01 809.3 0.03 0.01 66.6 1.41 0.01 3.8 4.40 1.35 3.5
40 0.10 0.01 1081.1 3.44 0.01 93.1 3.94 1.16 4.0 5.50 1.50 4.2
45 0.15 0.01 1175.0 3.96 0.01 113.5 4.00 1.53 3.8 6.15 2.93 4.4
50 0.02 0.00 1462.4 3.23 0.07 142.3 2.97 2.11 4.9 5.99 1.23 4.9
55 0.03 0.00 1721.0 3.87 0.00 213.3 3.93 1.58 6.2 8.78 5.31 5.7
60 0.15 0.01 1905.9 0.23 0.01 275.5 2.43 1.19 7.1 8.47 1.85 6.2
65 0.09 0.01 1934.9 0.61 0.01 314.6 3.48 0.83 7.2 13.94 8.08 5.5
70 0.07 0.00 2003.5 0.60 0.06 363.9 2.70 0.76 7.9 9.01 3.95 6.7
75 0.08 0.04 2462.3 1.18 0.08 452.1 1.62 0.12 10.3 10.57 6.77 7.6
80 0.18 0.05 2444.6 0.51 0.12 519.1 3.14 1.59 9.4 8.22 4.40 8.3
85 0.14 0.04 2865.1 0.66 0.04 601.4 2.82 1.09 10.0 7.35 3.70 9.4
90 0.06 0.01 3190.0 3.47 0.01 656.9 3.07 0.11 11.6 9.60 5.14 10.1
95 0.11 0.02 3171.0 0.15 0.02 846.5 2.28 0.55 13.4 10.05 5.49 10.8
100 0.01 0.00 3605.0 1.55 0.00 925.8 3.58 1.54 12.2 8.54 3.95 11.5

Av. 0.14 0.02 1078.9 1.16 0.09 168.0 2.16 0.62 4.1 5.21 2.12 3.6

the best result. Computation times are totals for the 10 de-
scents. Referring to the best solutions, we #rst observe that
the drop least useful, add most useful strategy (DLU, AMU)
worked very well. The percent deviation from optimal is
low irrespective of m, and regularly, the optimal solution
itself is obtained. Note, however, that the computational
times are much higher than for the other DA heuristics.
This is attributed to the excessive number of Cooper iter-
ations carried out between adjacent moves in the solution
space.
A compromise between quality and CPU time is obtained

with (DLU, ASC) because the second-closest criterion is fast
to implement. (Also AMU takes much longer than DLU, es-
pecially when m is small.) The fastest procedures are given
by (DMP, ASC) and (DSC, ASC) because optimal relocation of
facilities is not carried out during the drop and add phases.
The listed computation times for (DMP, ASC) and (DSC, ASC)
are substantially less than those for MALT. Yet, a compari-
son shows for example that (DMP, ASC) performs signi#cantly
better than MALT and the “parameterless” VNS-1.

Table 7 presents a summary of results for four local
search heuristics using relocation neighbourhood structures.
The values listed here are combined average percentage
deviations and CPU times over the same sets of values of m
reported in the previous tables. The columns have the same
interpretation as in Table 6.
The #rst two heuristics in Table 7 are the “fast” versions

of drop=add reported in Table 6. The next heuristic (referred
to as CH for interchange) considers all possible location
interchanges of a single facility from its current position to
an unoccupied #xed point. One iteration of Cooper’s algo-
rithm (allocate-locate) is run only at the best neighbourhood
point to save computation time. The fourth heuristic PM-2 is
a discrete version, where the facilities remain at #xed points
during the interchange process. When no further improve-
ment can be made (the current solution is a local minimum
in its neighbourhood), one iteration of Cooper’s algorithm
is performed as in CH.
Comparing the four relocation heuristics in Table 7, we

see that no one method dominates the others. DA-2 obtains
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Table 7. Summary results for local descent heuristics with Relocation neighbourhoods.

DA-1≡ (DMP, ASC) DA-2≡ (DSC, ASC) CH PM-2
Pb. Av. Best Time Av. Best Time Av. Best Time Av. Best Time

50 7.06 2.07 0.07 0.98 0.21 0.15 1.18 0.11 0.17 0.58 0.02 0.04
287 2.16 0.62 4.13 5.21 2.12 3.65 0.26 0.04 3.35 0.28 0.07 1.33
654 6.64 4.02 18.66 0.58 0.36 32.42 0.95 0.53 29.93 0.29 0.01 8.11
1060 2.83 1.57 85.40 0.48 0.21 115.09 1.05 0.67 93.29 0.67 0.21 71.03

Av. 4.67 2.07 27.07 1.81 0.73 37.83 0.86 0.34 31.69 0.45 0.08 20.13

better results than DA-1 in three of the four problem sets, but
not in the 287-customer set. Interestingly, the same pattern
occurs between PM-2 and CH. As a group, CH and PM-2
obtain better solutions than the DA heuristics in all problem
sets. However, DA-2 obtains the best average deviation in
the 1060-customer set and outperforms CH here and in the
654-customer set. More importantly, we observe that these
new local search heuristics are very e?cient compared with
the earlier methods reported in Tables 2 to 5. With the ex-
ception of VNS-1 in Table 2 (50-customer set), large net
improvements are obtained over the earlier methods in a
small fraction of the CPU time.

New Heuristics

Tables 8 to 11 report on our new heuristics. These con-
sist of a genetic algorithm (GA) and the latest versions
of Tabu search and variable neighbourhood search, using

a relocation neighbourhood structure in place of the previous
reallocation structure. The parameter settings used in GA
are N =15 for the initial population, and Qmax =30 for pop-
ulation size. The #rst Tabu search procedure (TS-2) uses a
drop=add neighbourhood and DA-2 strategy, while the sec-
ond (TS-3) uses the interchange neighbourhood of CH. In
both cases, a Tabu list is maintained of the last 15 #xed-
point insertions. The same neighbourhood structures are uti-
lized again in the variable neighbourhood searches VNS-2
and VNS-3, while VNS-4 borrows the discrete interchange
structure of PM-2. In the three VNS versions, the maximum
neighbourhood size, kmax, is set equal to m, and one point is
randomly chosen in each neighbourhood. Only one iteration
of Cooper’s algorithm is performed at a selected neighbour-
hood point to make e?cient use of CPU time. Note that these
CPU times are not recorded in the tables because they were
set to the execution times previously obtained for MALT.

Table 8. New heuristics and the 50-customer problem.

DA-2 CH P-MED

GA TS-2 VNS-2 TS-3 VNS-3 VNS-4
m Av. Best Av. Best Av. Best Av. Best Av. Best Av. Best

2 0.00 0.00 0.92 0.00 0.08 0.00 0.01 0.00 0.00 0.00 0.01 0.00
3 0.00 0.00 0.93 0.64 0.24 0.00 0.02 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.01 0.00 0.19 0.01 0.11 0.00 0.33 0.00 0.00 0.00 0.19 0.00
6 0.04 0.00 0.61 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.07 0.00 0.02 0.00 0.00 0.00 1.34 0.00 0.00 0.00 0.02 0.00
8 0.23 0.00 0.19 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.00
9 0.68 0.00 0.57 0.00 0.00 0.00 0.78 0.00 0.00 0.00 0.00 0.00
10 0.42 0.00 0.01 0.00 0.00 0.00 1.43 0.00 0.00 0.00 0.00 0.00
11 1.24 0.00 0.47 0.00 0.00 0.00 1.69 0.00 0.00 0.00 0.00 0.00
12 1.72 0.00 0.40 0.00 0.00 0.00 2.06 0.00 0.00 0.00 0.00 0.00
13 1.47 0.00 0.68 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.03 0.00
14 2.79 0.41 0.46 0.00 0.00 0.00 1.76 0.00 0.00 0.00 0.00 0.00
15 3.10 0.16 0.67 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00
16 1.71 0.11 0.86 0.26 0.03 0.00 1.37 0.52 0.00 0.00 0.00 0.00
17 3.99 0.44 1.31 0.00 0.04 0.00 0.66 0.00 0.00 0.00 0.00 0.00
18 4.56 0.48 1.45 0.00 0.03 0.00 0.71 0.00 0.00 0.00 0.03 0.00
19 6.25 2.27 1.27 0.09 0.01 0.00 0.46 0.00 0.00 0.00 0.00 0.00
20 4.41 0.52 1.37 0.68 0.00 0.00 0.84 0.00 0.00 0.00 0.07 0.00
21 4.91 1.56 0.91 0.00 0.00 0.00 0.84 0.13 0.00 0.00 0.08 0.00
22 4.42 0.97 1.14 0.54 0.05 0.00 0.70 0.00 0.00 0.00 0.09 0.00
23 6.66 1.82 1.23 0.00 0.12 0.00 0.91 0.24 0.02 0.00 0.09 0.00
24 8.39 3.79 1.33 0.37 0.02 0.00 0.98 0.00 0.00 0.00 0.10 0.00
25 9.73 6.07 2.07 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.08 0.00

Av. 2.78 0.78 0.80 0.12 0.03 0.00 0.79 0.04 0.00 0.00 0.03 0.00
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Table 9. New heuristics and the 287-customer problem.

DA-2 CH P-MED

GA TS-2 VNS-2 TS-3 VNS-3 VNS-4
m Av. Best Av. Best Av. Best Av. Best Av. Best Av. Best

2 0.04 0.00 0.07 0.00 0.58 0.24 0.02 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.05 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.04 0.00 0.09 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
6 0.53 0.00 2.56 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
7 0.21 0.00 3.46 0.03 0.04 0.03 0.03 0.03 0.02 0.02 0.03 0.03
8 0.35 0.00 3.28 0.09 0.01 0.00 0.01 0.01 0.01 0.00 0.28 0.01
9 0.38 0.00 4.23 0.01 0.04 0.00 0.01 0.00 0.00 0.00 0.33 0.01
10 0.57 0.00 3.71 0.00 0.17 0.01 0.23 0.00 0.00 0.00 0.23 0.00
11 0.58 0.00 1.21 0.00 0.16 0.00 0.03 0.00 0.00 0.00 0.23 0.00
12 0.82 0.18 2.41 0.14 0.39 0.14 0.09 0.00 0.06 0.00 0.24 0.00
13 0.61 0.00 3.06 0.31 0.53 0.34 0.10 0.00 0.03 0.00 0.36 0.00
14 0.81 0.39 1.53 0.22 0.43 0.22 0.21 0.01 0.01 0.01 0.31 0.20
15 0.93 0.17 2.58 0.51 0.32 0.01 0.11 0.01 0.01 0.01 0.13 0.10
16 1.41 0.03 2.91 0.14 0.64 0.11 0.26 0.01 0.01 0.01 0.14 0.10
17 1.23 0.79 3.39 0.85 0.96 0.63 0.56 0.01 0.09 0.01 0.17 0.01
18 1.24 0.42 2.78 0.38 0.76 0.17 0.29 0.06 0.06 0.01 0.08 0.01
19 1.96 0.84 3.88 2.23 1.03 0.16 0.53 0.07 0.06 0.01 0.09 0.01
20 1.59 0.07 4.09 0.42 1.16 0.11 0.41 0.13 0.05 0.01 0.06 0.01
25 2.33 0.01 3.75 1.50 1.13 0.16 0.36 0.01 0.01 0.00 0.01 0.00
30 3.91 0.53 6.66 1.44 1.92 0.31 0.57 0.03 0.03 0.03 0.03 0.03
35 4.09 0.74 5.77 1.56 2.59 0.61 0.12 0.01 0.01 0.01 0.03 0.01
40 5.61 4.19 5.45 1.90 3.11 0.92 0.54 0.01 0.19 0.01 0.09 0.01
45 5.25 2.60 4.81 0.67 3.34 0.68 0.18 0.01 0.01 0.01 0.04 0.01
50 7.11 4.53 4.78 1.35 2.95 1.31 0.17 0.00 0.00 0.00 0.00 0.00
55 8.69 5.76 5.89 3.70 4.74 1.65 0.20 0.00 0.12 0.00 0.02 0.00
60 8.90 5.82 5.22 0.29 4.53 0.65 0.31 0.08 0.14 0.00 0.32 0.01
65 10.04 4.82 6.53 2.72 4.75 1.65 0.29 0.01 0.03 0.01 0.12 0.01
70 11.91 6.65 9.01 5.62 6.86 4.05 0.75 0.03 0.07 0.03 0.08 0.03
75 11.57 7.68 7.38 3.00 4.59 2.45 0.25 0.04 0.09 0.04 0.16 0.05
80 12.00 4.96 5.58 2.75 3.59 2.34 0.29 0.04 0.08 0.04 0.22 0.06
85 12.39 8.35 6.50 3.94 4.66 2.49 0.34 0.04 0.04 0.04 0.13 0.05
90 15.38 10.51 8.87 4.65 5.53 3.09 0.19 0.02 0.02 0.01 0.09 0.02
95 14.38 10.44 6.94 2.57 4.17 2.43 0.06 0.02 0.02 0.02 0.18 0.02
100 14.29 10.30 6.03 3.42 3.89 1.52 0.06 0.01 0.02 0.01 0.10 0.01

Av. 4.60 2.59 4.13 1.33 1.99 0.81 0.22 0.02 0.04 0.01 0.12 0.02

Referring to Tables 8 to 11, the following observations
are made.

OBSERVATION 1. GA performs very well over the lower range
of m values in all four problem sets. However, the per-
centage deviation tends to increase with m. This may be
attributed to an exponentially increasing number of local
minima and the fact that GA has time to visit only a small
number of them.

OBSERVATION 2. TS-3 outperforms TS-2 in Tables 8 and 9,
but the reverse is true in Tables 10 and 11. Based on these
limited data, we might infer that the interchange neighbour-
hood (CH) is better suited for smaller problems, while the
drop=add (DA-2) should be used for larger instances. This
may be because of the longer CPU time required to make
a move in the interchange neighbourhood, which results in
fewer iterations. Also note that the best TS heuristic outper-
forms GA in each table.

OBSERVATION 3. A similar relation is observed between
VNS-2 and VNS-3. Once again, the drop=add neighbour-
hood appears to be a better choice for larger problems. We
might infer that the DA strategy in VNS-2, although more
time consuming, has more success #nding descent directions
in large problems as compared with the random selection
of neighbourhood points in VNS-3. Hence, VNS-2 would
be able to make more descent moves in the allotted CPU

time.

OBSERVATION 4. Comparing TS-2 with VNS-2 and TS-3 with
VNS-3, we observe that better results are obtained by the
variable neighbourhood approach. However, TS-2 is com-
petitive in Tables 10 and 11, where it outperforms VNS-2
and VNS-3 in a few cases.

OBSERVATION 5. VNS-3 is clearly the best overall method
in Tables 8 and 9, but VNS-4 takes over in Tables 10 and
11. The advantage with VNS-4 pertains to its p-Median
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Table 10. New heuristics and the 654-customer problem.

DA-2 CH P-MED

GA TS-2 VNS-2 TS-3 VNS-3 VNS-4

m Av. Best Av. Best Av. Best Av. Best Av. Best Av. Best

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.17 0.00 0.13 0.00 0.18 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.03 0.02 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
7 0.02 0.00 0.17 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.00 0.00
8 0.05 0.00 0.00 0.00 0.02 0.00 0.43 0.00 0.00 0.00 0.04 0.00
9 0.04 0.00 0.01 0.00 0.07 0.04 0.43 0.40 0.00 0.00 0.00 0.00
10 0.10 0.00 0.01 0.00 0.01 0.00 0.09 0.00 0.00 0.00 0.03 0.00
11 2.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
12 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00
13 1.07 0.00 0.10 0.01 0.09 0.00 0.60 0.19 0.01 0.09 0.11 0.00
14 0.52 0.01 0.04 0.04 0.02 0.01 0.55 0.52 0.01 0.00 0.01 0.00
15 1.55 0.00 0.05 0.04 0.05 0.01 0.54 0.53 0.02 0.01 0.02 0.00
20 0.86 0.03 0.03 0.02 0.03 0.01 0.30 0.28 0.06 0.00 0.07 0.00
25 3.01 1.43 0.05 0.02 0.01 0.01 0.55 0.24 0.21 0.01 0.07 0.01
30 5.43 0.05 0.04 0.01 0.04 0.01 0.17 0.12 0.06 0.01 0.01 0.01
35 6.58 3.09 0.10 0.01 0.08 0.01 0.48 0.09 0.22 0.03 0.13 0.01
40 7.67 2.79 0.13 0.02 0.19 0.12 1.45 0.93 0.40 0.14 0.28 0.04
45 6.37 3.17 0.59 0.29 0.26 0.14 1.94 1.31 0.83 0.63 0.50 0.13
50 10.30 5.83 1.38 1.15 0.93 0.78 2.88 2.22 1.00 0.69 0.55 0.11
55 12.25 8.78 0.48 0.30 0.56 0.30 2.48 0.96 0.92 0.53 0.29 0.00
60 14.49 9.94 0.36 0.13 0.46 0.23 1.78 0.92 1.05 0.46 0.28 0.05
65 18.32 12.57 0.48 0.31 0.40 0.24 1.59 0.39 0.99 0.26 0.40 0.04
70 20.22 14.34 0.48 0.17 0.31 0.17 0.60 0.25 0.33 0.11 0.39 0.20
75 22.41 12.49 0.35 0.14 0.25 0.12 1.16 0.63 0.35 0.12 0.51 0.31
80 24.52 17.06 0.87 0.58 0.59 0.37 1.74 1.29 1.10 0.76 1.26 0.71
85 24.54 18.03 1.10 0.73 0.97 0.73 1.38 1.04 0.96 0.64 1.06 0.73
90 27.73 23.45 1.06 0.64 0.80 0.61 1.23 0.27 0.71 0.25 0.58 0.37
95 26.99 20.49 0.90 0.55 0.62 0.34 1.40 0.96 0.74 0.51 0.55 0.28
100 30.79 25.82 0.47 0.11 0.42 0.11 1.32 0.64 0.46 0.15 0.49 0.14

Av. 8.73 5.79 0.30 0.17 0.24 0.14 0.82 0.46 0.34 0.17 0.25 0.10

neighbourhood structure. Because the facilities are kept at
#xed-point locations, VNS-4 is able to evaluate neighbour-
hood points extremely quickly. Only when a descent move
is made does the algorithm locate the facilities in continuous
space to obtain a candidate solution. The greater number of
visits through the neighbourhoods with VNS-4 appears to
be a critical factor in large problems.

5. CONCLUSIONS

An extensive empirical study is presented of heuristic meth-
ods for solving the multisource Weber problem. Included
are several new methods that have not been reported pre-
viously. An important aspect of the current work is that it
considers much larger problem sizes than previously inves-
tigated in the literature. Thus, we are able to show that the
state of the art heuristics tend to deteriorate in performance
with increasing problem size, sometimes in a disastrous
fashion.

The new heuristics presented here obtained excellent re-
sults, which are far superior to the solutions found by the
existing methods. Deviations from the best known solutions
of less than 0.1% are consistently reported by the new
methods over all problem sets. The fact is made more re-
markable in view of the restricted CPU time. Thus, we may
claim that the state of the art is advanced.
Some general conclusions are inferred from the results of

this study.
1. Relocation-based methods (drop=add or interchange)

are more e?cient than their counterpart reallocation-based
methods. That is, better solutions are obtained in general
in the same CPU time, when local or variable neighbour-
hood searches are conducted with a relocation neigh-
bourhood structure. One reason may be the fact that
the neighbourhood points in the relocation structure
correspond to Voronoi partitions of the customer set, but
not so for reallocations.
2. The variable neighbourhood concept can be eOectively

used to obtain superior solutions. We may view the variable
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Table 11. New heuristics and the 1060-customer problem.

DA-2 CH P-MED

GA TS-2 VNS-2 TS-3 VNS-3 VNS-4
m Av. Best Av. Best Av. Best Av. Best Av. Best Av. Best

5 0.00 0.00 0.98 0.87 0.62 0.26 0.00 0.00 0.02 0.00 0.00 0.00
10 0.03 0.00 0.55 0.45 0.60 0.33 0.04 0.00 0.01 0.00 0.01 0.00
15 0.06 0.01 0.21 0.18 0.31 0.17 0.20 0.01 0.03 0.00 0.04 0.01
20 0.25 0.08 0.17 0.05 0.31 0.14 0.78 0.53 0.11 0.01 0.06 0.00
25 0.26 0.09 0.08 0.04 0.07 0.03 0.45 0.02 0.09 0.01 0.17 0.02
30 0.65 0.04 0.37 0.31 0.30 0.18 0.79 0.22 0.15 0.03 0.06 0.00
35 1.04 0.35 0.19 0.02 0.15 0.02 1.89 1.15 0.46 0.11 0.09 0.00
40 1.36 0.77 0.12 0.01 0.16 0.06 2.11 1.30 0.67 0.38 0.10 0.00
45 1.56 0.69 0.13 0.02 0.17 0.00 1.52 0.94 0.45 0.18 0.19 0.01
50 2.48 1.52 0.22 0.05 0.16 0.02 1.77 1.29 0.66 0.45 0.21 0.08
55 1.97 0.69 0.13 0.02 0.10 0.07 0.91 0.21 0.16 0.04 0.21 0.00
60 2.42 0.83 0.15 0.02 0.10 0.03 0.92 0.51 0.21 0.06 0.07 0.00
65 2.19 0.96 0.29 0.09 0.13 0.06 0.96 0.51 0.15 0.01 0.17 0.00
70 3.49 2.05 0.24 0.05 0.15 0.06 0.95 0.57 0.29 0.11 0.27 0.02
75 3.72 1.89 0.19 0.00 0.13 0.03 0.84 0.61 0.29 0.01 0.20 0.00
80 4.35 3.21 0.37 0.06 0.13 0.03 0.71 0.21 0.22 0.01 0.28 0.00
85 4.18 1.86 0.30 0.13 0.13 0.00 0.65 0.25 0.19 0.10 0.24 0.07
90 4.24 3.14 0.30 0.15 0.12 0.04 0.87 0.58 0.41 0.16 0.31 0.01
95 4.49 3.49 0.23 0.06 0.13 0.00 0.77 0.55 0.33 0.13 0.23 0.01
100 4.71 3.83 0.42 0.11 0.30 0.10 0.92 0.47 0.47 0.28 0.33 0.07

Av. 2.17 1.27 0.28 0.13 0.21 0.08 0.90 0.49 0.26 0.10 0.16 0.02

neighbourhood search (VNS) as a “shaking” process, where
movement to a successive neighbourhood corresponds to
a harder shake. Unlike random restart, which moves from
the current solution to any point (uncontrolled shaking)
typically far away, VNS allows a controlled increase in the
level of the shake.
3. Comparison of the new heuristics suggests that no one

method is best in all cases. Issues to consider in the design
of an algorithm include the type of neighbourhood (e.g.,
drop=add or interchange, discrete or continuous facility
locations), the amount of shaking to permit, when to con-
duct local searches at neighbourhood points and by what
method, and whether or not to permit ascent moves. The
variation of strategies is limitless in terms of shaking and
local search, and parameter settings. Future studies may es-
tablish general guidelines for choosing the ‘best’ algorithm
as a function of problem size (m and n).
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