research

New Approximability Results for the Robust k-Median Problem

Abstract

We consider a robust variant of the classical kk-median problem, introduced by Anthony et al. \cite{AnthonyGGN10}. In the \emph{Robust kk-Median problem}, we are given an nn-vertex metric space (V,d)(V,d) and mm client sets {SiV}i=1m\set{S_i \subseteq V}_{i=1}^m. The objective is to open a set FVF \subseteq V of kk facilities such that the worst case connection cost over all client sets is minimized; in other words, minimize maxivSid(F,v)\max_{i} \sum_{v \in S_i} d(F,v). Anthony et al.\ showed an O(logm)O(\log m) approximation algorithm for any metric and APX-hardness even in the case of uniform metric. In this paper, we show that their algorithm is nearly tight by providing Ω(logm/loglogm)\Omega(\log m/ \log \log m) approximation hardness, unless NPδ>0DTIME(2nδ){\sf NP} \subseteq \bigcap_{\delta >0} {\sf DTIME}(2^{n^{\delta}}). This hardness result holds even for uniform and line metrics. To our knowledge, this is one of the rare cases in which a problem on a line metric is hard to approximate to within logarithmic factor. We complement the hardness result by an experimental evaluation of different heuristics that shows that very simple heuristics achieve good approximations for realistic classes of instances.Comment: 19 page

    Similar works