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Abstract
Budgeted Red-Blue Median is a generalization of classic k-Median in that there are two
sets of facilities, say R and B, that can be used to serve clients located in some metric space. The
goal is to open kr facilities in R and kb facilities in B for some given bounds kr, kb and connect
each client to their nearest open facility in a way that minimizes the total connection cost.

We extend work by Hajiaghayi, Khandekar, and Kortsarz [2012] and show that a multiple-
swap local search heuristic can be used to obtain a (5 + ε)-approximation for Budgeted Red-
Blue Median for any constant ε > 0. This is an improvement over their single swap analysis
and beats the previous best approximation guarantee of 8 by Swamy [2014].

We also present a matching lower bound showing that for every p ≥ 1, there are instances
of Budgeted Red-Blue Median with local optimum solutions for the p-swap heuristic whose
cost is 5 + Ω

(
1
p

)
times the optimum solution cost. Thus, our analysis is tight up to the lower

order terms. In particular, for any ε > 0 we show the single-swap heuristic admits local optima
whose cost can be as bad as 7− ε times the optimum solution cost.
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1 Introduction

Facility location problems crop up in many areas of computing science and operations research.
A typical problem involves a set of clients and possible facility locations located in a metric
space. The goal is to open some facilities and connect each client to some open facility as
cheaply as possible. These problems become difficult when there are costs associated with
opening facilities or additional constraints that ensure we cannot open too many facilities.

We study Budgeted Red-Blue Median, one particular instance of this type of problem.
Here we are given a set of clients C, a set of red facilities R, and a set of blue facilities
B. These are located in some metric space with metric distances d(i, j) ≥ 0 for any two
i, j ∈ C ∪R ∪ B. Additionally, we are given two integer bounds kr ≤ |R| and kb ≤ |B|. The
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goal is to select/open kr red facilities R and kb blue facilities B to minimize

cost(R ∪B) :=
∑
j∈C

min
i∈R∪B

d(i, j) .

The classic NP-hard k-Median problem appears as a special case when, say, R = ∅. Thus,
Budgeted Red-Blue Median is NP-hard. In this paper, we focus on approximation
algorithms for Budgeted Red-Blue Median, in particular on local search techniques.

1.1 Previous Work
The study of Budgeted Red-Blue Median from the perspective of approximation al-
gorithms was initiated by Hajiaghayi, Khandekar, and Kortsarz [9], where they obtain a
constant-factor approximation by a local search algorithm that iteratively tries to swap one
red and/or one blue facility in the given solution. The do not specify the constant in their
analysis, but it looks to be greater than 8. Citing [9] as inspiration, Krishnaswamy et al.
studied a generalization of Budgeted Red-Blue Median known as Matroid Median
[10]. Here, a matroid structure is given over the set of facilities and we can only open a set
of facilities if they form an independent set in the matroid. They obtain a constant-factor
approximation for Matroid Median through rounding an LP relaxation. This was later
refined to an 8-approximation by Swamy [15].

The special case of k-Median is a classic optimization problem and has received a lot
of attention from both theoretical and practical communities. The best approximation
guarantee known so far is 2.675 by Byrka et al. [5], who build heavily on the breakthrough
work of Li and Svensson for the problem [11].

While local search techniques have been used somewhat infrequently in the design of
approximation algorithms in general, it may be fair to say that they have seen the most
success in facility location problems. For almost 10 years, the best approximation for k-
Median was based on a local search algorithm. Arya et al. [3] show that a multiple-swap
heuristic leads to a (3 + ε)-approximation for k-Median for any constant ε > 0. This analysis
was simplified in [8], which inspires much of our analysis.

Another textbook application of local search is a (1 +
√

2)-approximation for Uncapac-
itated Facility Location [3, 6]. Local search has been very helpful in approximating
Capacitated Facility Location, the first constant-factor approximation was by Pál,
Tardos, and Wexler [13] and the current best approximation is a (5 + ε)-approximation by
Bansal, Garg, and Gupta [4]. In the special case when all capacities are uniform, Aggarwal
et al. [1] obtain a 3-approximation. Even more examples of local search applied to other
facility location variants can be found in [2, 7, 8, 12, 14].

1.2 Our Results and Techniques
We show that a multiswap generalization of the local search algorithm considered in [9] is a
(5 + ε)-approximation for Budgeted Red-Blue Median. That is, for a value p say the
p-swap heuristic is the algorithm that, upon given an initial feasible solution, tries to swap
up to p facilities of each colour. If no such swap produces a cheaper solution, it terminates.
Otherwise, it iterates with the now cheaper solution. Algorithm 1 in Section 2 gives the
formal description of our algorithm.

Say that a solution is locally optimum for the p-swap heuristic if no cheaper solution
can be found by swapping up to p facilities of each colour. Let OPT denote the cost of an
optimum solution. Our main result is the following.
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I Theorem 1. Any locally optimum solution for the p-swap heuristic has cost at most
(5 +O(1/√p)) ·OPT .

Using standard techniques (briefly mentioned in Section 2), this readily leads to a polynomoial-
time approximation algorithm. By choosing p = θ(1/ε2) we have the following.

I Theorem 2. For any constant ε > 0, Budgeted Red-Blue Median admits a polynomial-
time (5 + ε)-approximation.

This improves over the 8-approximation for Budgeted Red-Blue Median in [15].
We emphasize the approximation guarantee from Theorem 1 result is for Budgeted

Red-Blue Median only, the 8-approximation in [15] is still the best approximation for
the general Matroid Median problem. Indeed, [10] show that Matroid Median cannot
be approximated within any constant factor using any constant number of swaps even in
the generalization of Budgeted Red-Blue Median where there can be a super-constant
number facility colours.

We also present a lower bound that matches our analysis up the lower order terms.

I Theorem 3. For any integers p, ` with 1 ≤ p ≤ `/2, there is an instance of Budgeted
Red-Blue Median that has a locally-optimum solution for the p-swap heuristic with cost at
least

(
5 + 2

p −
10p
`+1

)
·OPT .

By letting `→∞ but keeping p fixed, we see that the p-swap heuristic cannot guarantee
a ratio better than 5 + 2

p . So, Theorem 1 is tight up to lower order terms. Also, for p = 1 we
see that the single-swap heuristic analyzed in [9] is not better than a 7-approximation.

Local search techniques are typically analyzed by constructing a set of candidate test
swaps where some facilities in the optimum solution are swapped in and some from the local
optimum are swapped out in order to generate a useful inequality. One of the main features
of the k-Median analysis in [3] and [8] is that such swaps can be considered that ensure each
facility in the global optimum is swapped in once and, by averaging some swaps, each facility
in the local optimum is swapped out to the extent of at most 1 + O(ε) times. Each time
a facility in the local optimum is swapped out, they pay an additional 2 times the global
optimum cost for some clients to reassign them.

We obtain only a 5 + ε approximation because we end up swapping out some facilities in
the local optimum solution to the extent of 2 +O(ε), thereby paying an additional 2 +O(ε)
more than in the k-Median analysis. Ultimately, this is because some of our initial swaps
generate inequalities that depend positively on client assignment costs in the local optimum.
So we consider additional swaps that do not introduce any more positive dependence on the
local optimum to cancel them out.

This issue was also encountered in the analysis in [9]. In some sense, we are showing
that this is the only added difficulty over the standard k-Median analysis. However, the
averaging arguments we use are a bit more sophisticated than the analysis for k-Median.

1.3 Organization
Section 2 presents the algorithm and describes some useful notation. In particular, it presents
a way to decompose the global and local optimum solution into structured groups that are
examined in the analysis. Section 3 analyzes the quality of locally optimum solutions to
prove Theorem 1. Section 4 proves Theorem 3 with an explicit construction of a bad example.
We conclude with some remarks in Section 5.

ICALP 2016



75:4 Tight Analysis of a Multiple-Swap Heurstic for Budgeted Red-Blue Median

2 Notation and Preliminaries

Say that a feasible solution is a pair (R,B) of subsets R ⊆ R and B ⊆ B with |R| = kr and
|B| = kb. Algorithm 1 describes the local search algorithm.

Algorithm 1 The p-Swap Heuristic for Budgeted Red-Blue Median
Let (R,B) be an arbitrary feasible solution.
while there is some feasible solution (R′, B′) with |R−R′| ≤ p

and |B −B′| ≤ p and cost(R′ ∪B′) < cost(R ∪B) do
(R,B)← (R′, B′)

end while
return (R,B)

While a single iteration of Algorithm 1 can be executed in nO(p) (where n is the total
number of locations in the problem), it may be that the number of iterations is not polynomi-
ally bounded. We can employ a well-known trick to ensure it does terminate in a polynomial
number of steps while losing only another ε in our analysis. The idea is to perform the update
only if cost(R′ ∪B′) ≤ (1− ε/∆) · cost(R ∪B) where ∆ is some quantity that is polynomial
in the input size. Our analysis is compatible with this approach; one can check that the
total weight of all inequalities we consider is polynomially bounded. For example, see [3] for
details. We do not focus any further on this issue, and instead work toward analyzing the
cost of the solutions produced by Algorithm 1 as it is stated.

From now on, let S = R ∪ B with R ⊆ R, B ⊆ B denote an arbitrary local optimum
solution. That is, there is no cheaper solution (R′, B′) with |R−R′| ≤ p and |B −B′| ≤ p.
Also fix a global optimum solution O = R∗ ∪ B∗ where R∗ ⊆ B and B∗ ⊆ B. We assume
that S ∩O = ∅. This is without loss of generality, as we can duplicate each facility location
in the input and say that S use the first copies and O use the second copies. It is easy to
verify that S is still a local optimum solution.

To help analyze the cost, we will introduce some notation. For any client j ∈ C, let sj ∈ S
denote the local optimum facility is closest to j and oj ∈ O denote the global optimum
facility that is closest to j, breaking ties arbitrarily. For brevity, let cj = d(j, sj) be the cost
of assigning j in the local optimum and c∗j = d(j, oj) the cost of assigning j in the global
optimum. Thus, cost(S) =

∑
j∈C cj and cost(O) =

∑
j∈C c

∗
j . For any facility i∗ ∈ O we let

N∗(i∗) = {j ∈ C : oj = i∗} and for any i ∈ S we let N(i) = {j ∈ C : sj = i}.
Let φ : O → S map each facility in O to its nearest facility in S, breaking ties arbitrarily.

For i ∈ S, let deg(i) = |φ−1(i)|. If deg(i) 6= 0, let cent(i) be the facility in φ−1(i) that is
closest to i, again breaking ties arbitrarily.

We also borrow some additional notation from [9].

I Definition 4 (very good, good, bad facility). A facility i ∈ S is very good if deg(i) = 0, good
if no i∗ ∈ φ−1(i) has the same colour as i, and bad otherwise.

The analysis in [9] divides S ∪O into blocks that satisfy certain properties. We require
slightly stronger properties than their blocks guarantee. We also use a slightly different notion
of what it means for some i ∈ S to be a leader. The required properties are summarized in
the following lemma, which also serves as our definition of a block. The proof can be found
in the full version of our work.

I Lemma 5. We can partition S ∪O into blocks T satisfying the following properties.
|T ∩R| = |T ∩R∗| and |T ∩B| = |T ∩B∗|.
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For every i ∈ S ∩ T , we also have φ−1(i) ⊆ T . For every i∗ ∈ O ∩ T , we have φ(i∗) ∈ T .
There is some facility î ∈ T ∩ S with deg(̂i) > 0 designated as the leader that has the
following properties. Every other i ∈ T ∩ S − {̂i} is either good or very good and all good
i ∈ T ∩ S − {̂i} have the same colour.

We will focus on analyzing one block at a time to prove the approximation guarantee.
This provides us with a cleaner way to describe the test swaps and the additional structure
will help handle the inevitable cases where we have to swap out some i ∈ S but cannot swap
in all of φ−1(i). For example, this can happen if all blue facilities i ∈ B have deg(i) being
very large (so all deg(i′) = 0 facilities are red). We will still need to close some of them in
order to open facilities in B∗ when generating bounds via test swaps.

Before delving into the analysis we note the following two bounds. The first has been
used extensively in local search analysis and was first proven in [3] and the second was proven
in [9].

I Lemma 6. For any j ∈ C, d(j, φ(oj))− cj ≤ 2c∗j .

I Lemma 7. For any j ∈ C, d(j, cent(φ(oj)))− cj ≤ 3c∗j + cj.

Finally, we often consider operations that add or remove a single item from a set (usually
to exclude the leader î of a block from some parts of the analysis). To keep the notation
cleaner we let A+ i and A− i refer to A ∪ {i} and A− {i}, respectively, for sets of facilities
A and a single facility i.

3 Multiswap Analysis

Recall that we are assuming S = R ∪ B is a locally optimum solution with respect to the
heuristic that swaps at most p facilities of each colour and that O = R∗ ∪B∗ is some globally
optimum solution. We assume p = t2 + 1 for some sufficiently large integer t.

Focus on a single block T . For brevity, let T ∗R = T ∩R∗ and T ∗B = T ∩B∗ denote the red
and blue facilities from the optimum solution in T . Similarly let TR = T ∩R and TB = T ∩B
denote the red and blue facilities from the local optimum solution in T . The main goal of
this section is to demonstrate the following inequality for group T .

I Theorem 8. For some absolute constant γ that is independent of t, we have

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

[(
1 + γ

t

)
c∗j − cj

]
+

∑
j∈N(TR∪TB)

[(
4 + γ

t

)
· c∗j + γ

t
· cj
]
.

Theorem 1 follows by summing over all associated inequalities for the various blocks.
The analysis breaks into a number of cases based on whether T ∗R and/or T ∗B are large. In

each of the cases, we use the following notation and assumptions. Let î denote the leader in
T . Without loss of generality, assume all other i ∈ TB ∪TR with deg(i) > 0 are blue facilities.
Let B = {i ∈ TB − î : deg(i) > 0}, so cent(B) denotes {i∗ ∈ T ∗B ∪ T ∗R : cent(φ(i∗)) = i∗}.
Figure 1 illustrates this notation.

The swaps we consider in these cases are quite varied, but we always ensure we swap in
cent(i) whenever some i ∈ S ∩ T with deg(i) > 0 is swapped out. This way, we can always
bound the reassignment cost of each client j by using either Lemma 6 or Lemma 7.

ICALP 2016
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î̂i

cent(̂i)cent(̂i)

i1i1 i2i2 i3i3 i4i4

cent(i1)cent(i1) cent(i2)cent(i2) cent(i3)cent(i3) cent(i4)cent(i4)

Figure 1 Illustration of a block T . The facilities on the top are in T ∩O and the facilities on the
bottom are in T ∩S. The directed edges depict φ, and the thick edges connect cent(i) to i. The facili-
ties coloured black lie in B, the facilities coloured white lie in R, and the facilities coloured grey could
either lie in B orR. Note that B = {i1, i2, i3, i4} and cent(B) = {cent(i1), cent(i2), cent(i3), cent(i4)}.
The layout of the figure is suggestive of how the block was constructed by adding “good” groups to
the initial bad group in the procedure of generating blocks. The details of this procedure can be
found in the full version of our work.

3.1 Case |T ∗R| ≤ t2, |T ∗B| ≤ t

In this case, we simply swap out all of TR ∪ TB and swap in all of T ∗R ∪ T ∗B . Because R ∪B
is a locally optimum solution and because this swaps at most t2 facilities of each colour, we
have:

0 ≤ cost(S ∪ (T ∗R ∪ T ∗B)− (TR ∪ TB))− cost(S) .

Of course, after the swap each client will move to its nearest open facility. As is typical in
local search analysis, we explicitly describe a (possibly suboptimal) reassignment of clients
to facilities to upper bound this cost change.

Each j ∈ N∗(T ∗R ∪ T ∗B) is moved from sj to oj which incurs an assignment cost change of
exactly c∗j − cj . Each j ∈ N(TR∪TB)−N∗(T ∗R∪T ∗B) is moved to φ(oj). Note that φ(oj) 6∈ T
so it remains open after the swap. By Lemma 6, the assignment cost change is bounded by
2c∗j . Every other client j that has not already been reassigned remains at sj and incurs no
assignment cost change. Thus,

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

2c∗j

which is even better than what we are required to show for Theorem 8.
We note that the analysis Section 3.4 could be extended to subsume this analysis (with a

worse constant), but we have included it here anyway to provide a gentle introduction to
some of the simpler aspects of our approach.

3.2 Case |T ∗R| ≥ t2 + 1, |T ∗B| ≥ t + 1
We start by briefly discussing some challenges in this case. In the worst case, all of the
ib ∈ TB have deg(i) being very large. The issue here is that we need to swap in each i∗b ∈ T ∗B
in order to generate terms of the form c∗j − cj for j with oj = i∗b . But this requires us to swap
out some ib. Since we cannot swap in all of φ−1(ib), we resort to only swapping in cent(ib).

Any client j with sj being closed and oj ∈ φ−1(ib) − cent(ib) cannot be reassigned to
φ(oj), so we send it to cent(φ(oj)) and use Lemma 7 to bound the reassignment cost. This
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leaves a term of the form +cj , so we have to consider additional swaps involving −cj in
their bound to cancel this out. These additional swaps cause us to lose a factor of roughly 5
instead of 3.

Another smaller challenge is that we do not want to swap out the leader î ∈ T ∩ S for a
variety of technical reasons. However, since |T ∗R| and |T ∗B | are both big, this is not much of
a problem. When we swap in some i∗ ∈ T ∩ O, we will just swap out a randomly chosen
facility in T ∩ S − î of the same colour. The probability any particular facility is swapped in
this way is very small. Ultimately, each facility in T ∩ S − î will be swapped out at most
2 +O(1/t) times in expectation.

To be precise, we partition the set of clients in N(TR ∪ TB) into two groups:

Cbad := N(B) ∩N∗(T ∗R − cent(B)) and Cok := N(TR ∪ TB − î)− Cbad .

We have omitted N (̂i) from Cok because we will not close î.
The first group is dubbed bad because there may be a swap where both sj and φ(oj)

are closed yet oj is not opened so we can only use Lemma 7 to bound their reassignment
cost. In fact, some clients j ∈ Cgood may also be involved in such a swap, but we are able to
use an averaging argument for these clients to show that the resulting +sj term from using
Lemma 7 appears with negligible weight and does not need to be cancelled.

We consider the following two types of swaps to generate our initial inequality.
For each i∗b ∈ T ∗B, choose a random ib ∈ TB − î. If ib 6∈ B (i.e. deg(ib) = 0) then simply
swap out ib and swap in i∗b . If ib ∈ B then swap out ib and a random ir ∈ TR − î and
swap in i∗b and cent(ib).
For each i∗r ∈ T ∗R − cent(B), swap in i∗r and swap out a randomly chosen ir ∈ TR − î.

By choosing facilities at “random”, we mean uniformly at random from the given set and
this should be done independently for each invokation of the swap.

I Lemma 9.

0 ≤
∑

j∈N∗(T∗
B
∪T∗

R
)

(
t+ 1
t
· c∗j − cj

)
+
∑
j∈Cok

[(
2 + 5

t

)
c∗j + 1

t
cj

]
+ t+ 1

t

∑
j∈Cbad

(3c∗j + cj) .

Proof. For brevity, we will let βR = |TR|
|TR−î|

and βB = |TB |
|TB−î|

. Note that βR, βB ≤ t+1
t and

that either βR = 1 or βB = 1.
First consider a swap of the first type that swaps in {i∗b , cent(ib)} and swaps out {ib, ir}

for some ib with deg(ib) > 0. Because R ∪B is a local optimum the cost of the solution does
not decrease after performing this swap. We provide an upper bound on the reassignment
cost.

Each j ∈ N∗({i∗b , cent(ib)}) is reassigned from sj to oj and incurs an assignment cost
change of c∗j − cj . Every client j ∈ N({ib, ir}) that has not yet been reassigned is first moved
to φ(oj). If this φ(oj) remains open, assign j to it. By Lemma 6, the assignment cost for j
increases by at most 2c∗j . If φ(oj) is not open then φ(oj) = ib (because deg(ir) = 0) so we
instead move j to cent(φ(oj)) = cent(ib). Lemma 7 shows the assignment cost increases by
at most 3c∗j + cj . This can only happen if sj ∈ {ir, ib} and φ(oj) = ib.

Combining these observations and using slight overestimates, we see

0 ≤
∑

j∈N∗({i∗
b
,cent(ib)})

(c∗j − cj) +
∑

j∈N({ib,ir})
φ(oj)6=ib

2c∗j +
∑

j∈N({ib,ir})
φ(oj)=ib

(3c∗j + cj). (1)

ICALP 2016
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Now, if the random choice for ib in the swap has deg(ib) = 0, then swapping {ib} out and
{i∗b} in generates an even simpler inequality:

0 ≤
∑

j∈N∗(i∗
b

)

(c∗j − cj) +
∑

j∈N(ib)

2c∗j . (2)

To see this, just reassign each j ∈ N∗(i∗b) from sj to oj and reassign the remaining j ∈ N(ib)
from sj to φ(oj) (which remains open because deg(ib) = 0) and use Lemma 6.

Consider the expected inequality that is generated for this fixed i∗b . We start with some
useful facts that follow straight from the definitions and the swap we just performed.

Any j ∈ N∗(cent(B)) has oj being opened with probability 1
|TB−î|

.
Any j ∈ Cbad has sj being closed with probability 1

|TB−î|
.

Any j ∈ Cok −N(TR) has sj being closed with probability 1
|TB−î|

. When this happens, if
oj is not opened then φ(oj) must be open. That is, sj ∈ Cok means oj ∈ T ∗B ∪ cent(B).

Furthermore, if oj ∈ T ∗B then φ(oj) = î (by the structure of block T ) which remains open.
If oj ∈ cent(B) then either φ(oj) was not closed, or else cent(φ(oj)) = oj was opened.
Any j ∈ Cok ∩N(TR) has sj being closed with probability |B|

|TB−î|
· 1
|TR−î|

. If oj and φ(oj)
are closed, then we move j to cent(φ(oj)). However, this can only happen with probability

1
|TB−î|

· 1
|TR−î|

since it must be that φ(oj) is the blue facility that was randomly chosen
to be closed.

Averaging (1) over all random choices and using some slight overestimates we see

0 ≤
∑

j∈N∗(i∗
b

)

(c∗j − cj) + 1
|TB − î|

·
∑

j∈N∗(cent(B))

(c∗j − cj)

+ 1
|TB − î|

 ∑
j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j


+ 1
|TB − î|

· 1
|TR − î|

∑
j∈Cok∩N(TR)

(|B|2c∗j + 3c∗j + cj).

Summing over all i∗b ∈ T ∗B (i.e. over all swaps of the first type) shows

0 ≤
∑

j∈N∗(T∗
B

)

(c∗j − cj) + βB ·
∑

j∈N∗(cent(B))

(c∗j − cj) (3)

+βB ·

 ∑
j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j


+ βB

|TR − î|
·

∑
j∈Cok∩N(TR)

((2|B|+ 3)c∗j + cj).

Next, consider the second type of swap that swaps in some i∗r ∈ T ∗R − cent(B) and swaps
out some randomly chosen ir ∈ TR − î. Over all such swaps, the expected number of times
each ir ∈ TR − î is swapped out is |T

∗
R|−|B|
|TR−î|

= βR − |B|
|TR−î|

. In each such swap, we reassign
j ∈ N∗(i∗r) from sj to oj and every other j ∈ N(ir) from j to φ(oj) which is still open
because deg(ir) = 0. Thus,

0 ≤
∑

j∈N∗(T∗
R
−cent(B))

(c∗j − cj) +
(
βR −

|B|
|TR − î|

)
·

∑
j∈Cok∩N(TR)

2c∗j .
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Scaling this bound by βB , adding it to (3), and recalling |TR| ≥ t2 shows

0 ≤
∑

j∈N∗(T∗
B

)

(c∗j − cj) + βB ·
∑

j∈N∗(T∗
R

)

(c∗j − cj)

+βB ·

 ∑
j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j+


+βB ·

∑
j∈Cok∩N(TR)

[(
2βR + 3

t2

)
· c∗j + 1

t2
· cj
]
.

Recall that βB , βR ≤ t+1
t and also βB · βR ≤ t+1

t to complete the proof of Lemma 9. J

Our next step is to cancel terms of the form +cj in the bound from Lemma 9 for j ∈ Cbad .
To do this, we again perform the second type of swap for each i ∈ T ∗R − cent(B) but reassign
clients a bit differently in the analysis.

I Lemma 10.

0 ≤
∑
j∈Cbad

(c∗j − cj) + t+ 1
t
·

∑
j∈Cok∩N(TR)

2c∗j .

Proof. For each i∗r ∈ T ∗R−cent(B), swap i∗r in and a randomly chosen ir ∈ Tr− î. Rather than
reassigning all j ∈ N∗(i∗r) to i∗r , we only reassign those in Cbad ∩N∗(i∗r). Since deg(ir) = 0
then any other j ∈ N(ir) can be reassigned to φ(oj) and which increases the cost by at most
2c∗j .

Summing over all i∗r , observing that Cbad ⊆ T ∗R − cent(B), and also observing that each
j ∈ Cok has sj closed at most βR ≤ t+1

t times in expectation, we derive the inequality stated
in Lemma 10. J

Adding the bounds stated in Lemmas 9 and 10 shows that Theorem 8 holds in this case.

3.3 Case |T ∗R| ≥ t2 + 1, |T ∗B| ≤ t

In this case, we start by swapping in all of T ∗B and swapping out all of TB (including, perhaps,
î if it is blue). In the same swap, we also swap in cent(TB) and swap out a random subset of
the appropriate number of facilities in TR − î. This is possible as |TR − î| ≥ t ≥ |cent(TB)|.
By random subset, we mean among all subsets of Tr − î of the necessary size, choose one
uniformly at random.

As with Section 3.2, we begin with a definition of bad clients that is specific to this case:

Cbad := N(TB) ∩N∗(T ∗R − cent(TB)) .

Clients j ∈ Cbad have both sj and φ(oj) being closed yet oj is not opened and we cannot
make this negligible with an averaging argument.

I Lemma 11.

0 ≤
∑

j∈N∗(T∗
B
∪cent(TB))

(c∗j − cj) + 1
t

∑
j∈N(TR)

(3c∗j + cj) +
∑
j∈Cbad

(3c∗j + cj)
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Proof. After the swap, reassign every j ∈ N∗(T ∗B ∪ cent(TB)) from sj to oj , for a cost change
of c∗j − cj . Every other j that has sj being closed is first reassigned to φ(oj). If this is
not open, then further move j to cent(oj) which must be open because the only facilities
i ∈ TR ∪ TB with deg(i) > 0 that were closed lie in TB and we opened cent(TB).

If j ∈ N(TB)− Cbad then oj ∈ T ∗B ∪ cent(TB) and we have already assigned j to oj . If
j ∈ Cbad then we have moved j to cent(φ(oj)) and the cost change is 3c∗j + cj by Lemma 7.

Finally, if j ∈ N(TR) then we either move j to φ(oj) or to cent(φ(oj)) if φ(oj) is not open.
The worst-case bound on the reassignment cost is 3c∗j + cj by Lemmas 6 and 7. However,
note that sj ∈ TR is closed with probability at most 1/t because we closed a random subset
of Tr − î of size at most t and |Tr − î| ≥ t2. J

We still need to swap in T ∗R − cent(TB). For each such facility i∗r , swap in i∗r and swap
out a randomly chosen ir ∈ TR− î. The analysis of these swaps is nearly identical to analysis
of the second type of swaps in Section 3.2, so we omit it and merely summarize what we get
by combining the resulting inequalities with the inequality from Lemma 11.

I Lemma 12.

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

(c∗j − cj) +
∑

j∈N(TR)

(
t2 + 1
t2

· 2c∗j + 1
t
· (3c∗j + cj)

)
+
∑
j∈Cbad

(3c∗j + cj) .

We cancel the +cj terms for j ∈ Cbad with one further collection of swaps. For each
i∗r ∈ T ∗R − cent(TB) we swap in i∗r and a randomly chosen ir ∈ TR − î. The following lemma
summarizes a bound we can obtain from these swaps. It is proven in essentially the same
way as Lemma 10.

I Lemma 13.

0 ≤
∑
j∈Cbad

(c∗j − cj) + t2 + 1
t2

·
∑

j∈N(TR)

2c∗j .

Adding this to the bound from Lemma 12 and recalling Cbad ⊆ N(TB) shows

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

(
t2 + 3t+ 1

t2
· 4c∗j + 1

t
· cj
)
.

3.4 Case |T ∗R| ≤ t2, |T ∗B| ≥ t + 1
Because φ−1(i) ⊆ T ∗R and deg(i) > 0 for each i ∈ B, then |B| ≤ t2 as well. We will swap all
of T ∗R for all of TR, but we will also swap some blue facilities at the same time. Let B′ = B

and let B′ be an arbitrary subset of T ∗B of size |B|.
If î 6∈ TR ∪ B′ then add î to B′. If cent(̂i) 6∈ T ∗R ∪ B

′ then add cent(̂i) to B′. At this
point,

∣∣∣|B′| − |B′|∣∣∣ ≤ 1 Add an arbitrary i∗b ∈ T ∗B −B
′ to B′ or ib ∈ TB −B′ to B′ to ensure

|B′| = |B′|.
We begin by swapping out TR∪B′ and swapping in T ∗R∪B

′. The following list summarizes
the important properties of this selection, the first point emphasizes that this swap will not
improve the objective function since S is a locally optimum solution for the p-swap heuristic
where p = t2 + 1.
|B′| = |B′| ≤ t2 + 1 and |T ∗R| ≤ t2.
T ∗R was swapped in and TR was swapped out.
For each i ∈ TR ∪ TB with deg(i) > 0, i was swapped out and cent(i) was swapped in.
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Figure 2 Illustration of the bad locality gap. Blue facilities are depicted with black and red
facilities are depicted with white. The top facilities are the global optimum and the bottom are
the local optimum (all of R and B is depicted in the picture). Each client is represented by a small
black dot. There are p2 · (` + 1) clients in the right group, one for each pair of local and global
optimum facilities in the group. The metric is the shortest path metric of the presented graph, if
two locations are not connected in the picture then their distance is a very large value. Every edge
in the right-most group with p2(`+ 1) clients has length 1. Recall β = 2p and α = (`− p)2p.

The following describes precisely the clients j that will be moved to cent(φ(oj)) in our
analysis.

Cbad := [N(TR ∪B′)−N∗(T ∗R ∪B
′)] ∩ {j : φ(oj) ∈ TR ∪B′} .

The following bound is generated from swapping out TR ∪B′ and swapping in T ∗R ∪B
′

and follows from the same arguments we have been using throughout the paper.

I Lemma 14.

0 ≤
∑

j∈N∗(T∗
R
∪B′)

(c∗j − cj) +
∑

j∈N(TR∪B′)−Cbad

2c∗j +
∑
j∈Cbad

(3c∗j + cj) .

Next, let κB : (T ∗B − B
′) → (TB − B′) be an arbitrary bijection of the remaining blue

facilities that were not swapped. For every i∗b ∈ T ∗B −B
′, consider the effect of swapping in i∗b

and swapping out κB(i∗b). Note that every facility ib swapped out in this way has deg(ib) = 0.
So we can derive two possible inequalities from such swaps.

0 ≤
∑

j∈N∗(i∗
b

)

(c∗j − cj)+
∑

j∈N(κB(i∗
b

))

2c∗j and 0 ≤
∑

j∈N∗(i∗b)∩Cbad

(c∗j −cj)+
∑

j∈N(κB(i∗b))

2c∗j . (4)

The second inequality follows from only reassigning clients j ∈ N∗(i∗b) ∩ Cbad from sj to oj .
Adding the bound in Lemma 14 to the sum of both inequalities over all i∗b ∈ T ∗B − B

′

and noting that κB(T ∗B −B) ∩ (TR ∪B′) = ∅, we see

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

4c∗j .

4 Locality Gaps

Here we prove Theorem 3. Let p, ` be integers satisfying p ≥ 1 and ` ≥ 2p. Consider
the instance with kr = p + 1 and kb = p(` + 1) depicted in Figure 2. Here, β = 2p and
α = β · (`− p).
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The cost of the local optimum solution is α · (p+ 1) + β · p · `+ p2(`+ 1) and the cost of
the global optimum solution is simply p2(`+ 1). Through some careful simplification, we see
the local optimum solution has cost at least 5 + 2

p −
10p
`+1 times the global optimum solution.

To complete the proof of Theorem 3, we must verify that the presented local optimum
solution indeed cannot be improved by swapping up to p facilities of each colour. The
straightforward details appear in the full version of this paper.

5 Conclusion

We have demonstrated that a natural p-swap local search procedure for Budgeted Red-
Blue Median is a (5 +O(1/√p))-approximation. This guarantees a better approximation
ratio than the single-swap heuristic from [9], which we showed may find solutions whose cost
is (7− ε) ·OPT for arbitrarily small ε. Our analysis is essentially tight in that the p-swap
heuristic may find solutions whose cost is (5 + 2

p − ε) ·OPT .
More generally, one can ask about the p-swap heuristic for the generalization where there

are many different facility colours. If the number of colours is part of the input then any local
search procedure that swaps only a constant number of facilities in total cannot provide good
approximation guarantees [10]. However, if the number of different colours is bounded by a
constant, then perhaps one can get better approximations through multiple-swap heuristics.

However, generalizing the approaches taken with Budgeted Red-Blue Median to
this setting seems more difficult; one challenge is that it is not possible to get such nicely
structured blocks. It would also be interesting to see what other special cases of Matroid
Median admit good local-search based approximations. For example, the Mobile Facility
Location problem studied in [2] is another special case of Matroid Median that admits a
(3 + ε)-approximation through local search.

Finally, the locality gap of the p-swap heuristic for k-Median is known to be 3 + 2
p

[3] and we have just shown it is at least 5 + 2
p for Budgeted Red-Blue Median. Even

if the multiple-swap heuristic for the generalization to a constant number of colours can
provide a constant-factor approximation, this constant may be worse than the alternative
8-approximation obtained through Swamy’s general Matroid Median approximation [15].

References
1 Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta, Shubham

Gupta, and Surabhi Jain. A 3-approximation for facility location with uniform capacities.
In Proc. of IPCO, pages 149–162, 2010.

2 Sara Ahmadian, Zachary Friggstad, and Chaitanya Swamy. Local-search based approxima-
tion algorithms for mobile facility location problems. In Proc. of SODA, pages 1607–1621,
2013.

3 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
J. Comput., 33(3):544–562, 2004.

4 Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capacitated
facility location. In Proc. of ESA, pages 133–144, 2012.

5 Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization.
In Proc. of SODA, pages 737–756, 2015.

6 Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location
problems. SIAM J. Comput., 34(4):803–824, 2005.



Z. Friggstad and Y. Zhang 75:13

7 Inge Li Gørtz and Viswanath Nagarajan. Locating depots for capacitated vehicle routing.
In Proc. of APPROX, pages 230–241, 2011.

8 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location. CoRR, abs/0809.2554, 2008.

9 MohammadTaghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. Local search algo-
rithms for the red-blue median problem. Algorithmica, 63(4):795–814, 2012.

10 Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and
Barna Saha. The matroid median problem. In Proc. of SODA, pages 1117–1130, 2011.

11 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proc. of
STOC, pages 901–910, 2013.

12 Mohammad Mahdian and Martin Pál. Universal facility location. In Proc. of ESA, pages
409–421, 2003.

13 Martin Pál, Éva Tardos, and TomWexler. Facility location with nonuniform hard capacities.
In Proc. of FOCS, pages 329–338, 2001.

14 Zoya Svitkina and Éva Tardos. Facility location with hierarchical facility costs. ACM Trans.
Algorithms, 6(2), 2010.

15 Chaitanya Swamy. Improved approximation algorithms for matroid and knapsack median
problems and applications. In Proc. of APPROX, pages 403–418, 2014.

ICALP 2016


	Introduction
	Previous Work
	Our Results and Techniques
	Organization

	Notation and Preliminaries
	Multiswap Analysis
	Case |T*-R <= t*t, |T*-B <= t|
	Case |T*-R >= t*t+1, |T*-B >= t+1|
	Case |T*-R >= t*t*+1|, |T*-B <= t|
	Case |T*-R <= t*t|, |T*-B >= t+1|

	Locality Gaps
	Conclusion

