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RESUMO/ABSTRACT

A Regret Model applied to the Facility Location Pro

blem with limited

capacity facilities

This article addresses issues related to location and allocation problems.
Herein, we intend to demonstrate the influence of congestion, through the
random number generation, of such systems in final solutions. An algorithm is
presented which, in addition to the GRASP, incorporates the Regret with the p-
minmax method to evaluate the heuristic solution obtained with regard to its
robustness for different scenarios. Taking as our point of departure the Facility
Location Problem proposed by Balinski [27], an alternative perspective is added
associating regret values to particular solutions.
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Abstract

This article addresses issues related to locatimhadlocation problems. Herein, we intend to
demonstrate the influence of congestion, through rdmdom number generation, of such
systems in final solutions. An algorithm is presehtwhich, in addition to the GRASP,

incorporates the Regret with tipeminmax method to evaluate the heuristic solution obtained
with regard to its robustness for different scammriTaking as our point of departure the Facility
Location Problem proposed by Balinski [27], an raléive perspective is added associating

regret values to particular solutions.

Key-words: location, allocation, coverage, heuristic, regsegnarios.

1. Introduction

Given the vital importance of providing servicescontexts of ever increasing demand and the
costs of setting up such allocation systems, longtroblems are of utmost importance both in
our daily lives as well as in scientific circlesypically, the performance of such services is
evaluated by the number of customers in the quewdetlae waiting time ensuing from the
arrival of a request at the center. Overall, what be concluded is that these indicators are
highly correlated with the number of centers prongdservices and their specific location.
Examples of such services are medical systemsgcepaperations, firefighters, roadside

assistance services, amongst others.

The problem that researchers strive to resolveligad to the location of service centers and the
respective allocation of demand to these centerattémpting to characterize such systems and

approximate them to reality, the location modelgehlaecome so complex that obtaining results



by complete enumeration has became more difficulyeat part as a result of the exponential

growth of computing time.

The various models heretofore developed have biéected by the problem of complexity that
hampers the process of finding a solution. Fornwiathave been constrained by simplifying
assumptions, yet planners are often faced withatievis from reality that occur both in the
public and private sectors. Technological advarn@es allowed the gradual development of
more realistic formulations, given the possibilifyfinding solutions to complex models within

acceptable computing times.

Despite the different formulations that have besppsed over time for the various problems
related to location and allocation, it is commomlysumed that regions are represented by

networks, a continuous space or a set of discidalrpoints.

This paper presents an algorithm which, besideskitmavn GRASP - Greedy Randomized
Adaptive Search Procedure - incorporatesptin@nmax Regret method to evaluate the heuristic
solution obtained with regard to its robustnesdiftierent scenarios. The use of these processes
is undertaken in accordance with previous semir@aksy such as that of Daskin et al [2]. It
aims to integrate these new findings in order fol@e new methodologies that improve or are

better adapted to the circumstances of the cagdiedt

We found that by varying the limits imposed on wajttimes, maximum distance, demand
processing capacity and size of network, it is fbsgo ascertain significant changes in the
final solutions. The problem under study is thelskabwn Maximum Cover Location Problem

developed by Church and Revelle [1] that incorgman alternative model in which the server
choice behavior does not only depend on the elapisesl from the node to the center, but

includes also the waiting time for the service.



Our model and its various examples were testedyubim random number generation model. In
most cases different results were obtained by ngakipossible to confirm that the proposed
formulation produces significant differences inmerof results. In general, the "tighter" the
systems are, i.e., when the related distance betiveen demand and center values are lower,
the number of service centers to locate or tHata® waiting time limit, location decisions are

generally more sensitive to pre-defined paramdterthe model.

The classification of the location problems thabhagrn us may be undertaken in accordance
with the grouping suggested by Current et al. [B#ximum distance models, "p-dispersion”
problems and average or overall distance models. cAfe characterize this model as a
maximum distance model given that maximum distaaceexplicitly considered as a pertinent
factor as well as considerations relating to th&imam distance within which a facility must
be located to provide the relevant service as agthe time limit within which the service can
be provided. This is usually the case of schootsplhials or police station locations where
people generally expect to have access to a faailithin acceptable limits outside of the

original demand area.

A consumer is considered to be covered by a serwehich is considered fixed and presents
unlimited capacity concerning the possibility obpessing the relevant service needs - if you
have an installation within the pre-establishedaglise limit. Where a service is provided by a

facility located below this maximum, the service@sidered appropriate or acceptable.

The formulation used in this work is based on esistudies, such as the works of Marianov
and Serra [4] and those of Silva and Serra [S]tiqdarly those relating to "Maximum

Coverage Models" and the additional incorporatibresults from the Queuing Theory.

The complexity associated with the model requiggshistication in our attempts to represent

more elements or aspects of reality and the uskedfistic procedures in the search for



solutions. Thus, in addition to GRASP, the algarnithontains a Regret component, based on
the work of Daskin [2] that has produced acceptabtults, both in terms of computing speed

and, perhaps more importantly, in terms of apprexiom to the optimal solution.

This work highlights the importance, corroboratgdéal-life events, of considering the various

forms of system congestion as a vital factor imgepf location and allocation decision-making.

2. Related Literature

Location Models have been studied for decades amnd produced implementation solutions
for the public and private sectors. Classic examme such problems are those that were
explored and pioneered by Hakimi [6, 7]. He posadaa network without imposed direction on

arcs, where consumers are located only at the n@tedemand point). Each demand point
presents a certain percentage of demand or neeaxhifer The 1-median problem that is herein
considered is based on the location of a facilityaanetwork. Its goal is that helping consumers
minimize the average travel distance between ttiétfaand the demand node. Hakimi showed
that, among all of the nodes, there was at leasp@mal location for the server, in this manner
reducing a continuous search by a finite one. Ailamresult is also applied to (p-median)

multi-median problem, in which various facilitie®ud be located so as to minimize the

average distance from the nearest facility to thesamers.

The types of problems addressed by Discrete Lataflodels are generally formulated with
integer linear programming and can be solved usimeg algorithm known as "branch and

bound". However, when applying heuristic processeen the most basic location problems are



classified as "NP-Hard" and require unacceptablmpegation times to find patterns of

employment associated with more realistic situation

The maximum coverage model proposed by Church awlfe [1] seeks to limit the number
of facilities to be located. The goal then becomaescate a predetermined or budgeted number
of facilities so that the requests directed to dad® server installation are maximized. This

model does not require that all demand is covered.

However, problems of location have been studiedstone time and the uncertainty that such
allocation systems may exhibit lead researcheexpdore alternative positions with regard to
modeling demand, travel time or even costs assatiaith the chosen locations. Four basic
approaches were formulated: approximations throagbeterministic replacement, finding

deterministic equivalents, probabilistic models hwitestraints, queuing systems spatially

distributed and scenario planning.

Concerning this approach and its inclusion of atmmn scenarios we highlight the seminal
contribution of Sheppard [8] in 1974. His work demwated the importance of taking into
account uncertain environments in location andcation decision-making. These uncertain
contexts are the object of this study inasmuchhay take into account randomness in the
frequency of demand for certain services as a restaifion of uncertainty, the most important

source of congestion of the systems in question.

Other researchers, such as Hogan and Revelle [@di®jng within a deterministic paradigm
are addressing system congestion with alternatvedlations for models that address the
location and coverage with redundant coverage. kiDgd.1, 12] suggest that probabilistic
extensions can be added to the "Maximal Coveririgblem, assuming that servers are busy
according to a given probability. In this case gloal is to maximize the demand covered by the

other servers that are not busy.



In such studies, an attempt is made to incorpan&eactions occurring in queues with location
models. There have been some interesting advanaesent decades, particularly with regard
to emergency services. The pioneering work in flékl of research was Larson’s [13] —
“hypercube queuing” model. Its author proposes stesy of stochastic service spatially
distributed, with mobile servers scattered. Battald14] used this model to demonstrate that
the implicit assumption of independence of the eeras assumed by Daskin [11],[12], is often

erroneous.

Fixed servers can "face" congestion. This is thee ad health services and, in general, public

services of any kind availing servers fixed. Sessiain example Marianov and Serra [15].

Berman, Larson and Chiu [16] produced the firstknbrat synthesized location theories and
queuing theories. This work was expanded by Hakiifi] 1-median problem, incorporating it

in the context of research on queuing. In ordedd¢oide where to locate service centers due
consideration must be granted to service timeselttames and delays resulting from queuing.

Larson’s work [13] Hypercube Queuing Model has akswed as a basis for such explorations.

In this context, the following objectives are prepd. Batta [17] considers the problem of
locating a single service center in a network thagrates as an M/G/1 queue where waiting
calls are answered according to a class of quealigujplines that rely solely on the information

about the expected service time.

Brandeau and Chiu [18], also dedicated to congestsitms, developed the model "Stochastic
Queue Center Location" that aims to minimize thexiimam response time to any consumer.
For these authors the expected response time itatkeaccount not only the waiting time until

the server is on but also the travel time to th#act center.



In turn, the Revelle and Hogan [9] model previoushentioned, deals with congestion
presenting a probabilistic version of the locafmwablem. It is also in this line of reasoning that
Marianov and ReVelle [19] presented the “Probatidli€overing Problem with Queues”. With
an identical formulation as the one adopted in“Br@babilistic Covering Problem”, a simple
modification of Maximum Coverage Location ProblemGhurch and ReVelle [1], Marianov
and Serra [4] introduce the “Maximum Coverage Laorafllocation Model with Queues”

where the goal is to locate p service centers dfettathese users so that the maximum

population is covered.

3. The Location Problem with Limited Capacity

Facilities

This section seeks to present an employed noté3idn and a proposed formulation (3.2), the
Facility Location Problem and the application angasurement of a heuristic model is applied

is order to produce the desired outcome.

3.1. Notation.

The following notation is defined as:

e | :{l...,m} represents a set of costumers with demand i, i 01 ;
e J= {ZL...,n} is a subset of the network nodes which have operating facilities that will

serve demand;

«  For each location j[JJ, the fix cost of operating a facility in jis fj ;



«  Foreach location j[J, the respective capacity limit is Cj ;

¢ The cost, in terms of traveled distance, of allocating facility j to costumeriis dij .

3.2. Formulation.

The Location Problem with Limited Capacity Facdidiis a transformation of the Facility
Location Problem first introduced by Balinski [27]he original model didn’t considered the
capacity limit of delivering a service and now, lwihe inclusion of such feature, the minimum

cost location pattern might not be capable of ditemall demand.

This problem seeks to minimize the total costoafiting service delivery facilities, as well the
minimization of all costs related to the transpiotzs given the distances traveled. Its

formulation is as follows:

Min DX+ dY, (3.2.1

j0J ior jod )
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4. Heuristic Procedure



We proceed to formulate, with Reeves [22], a héarisiethod that attempts to find good
solutions (i.e. near-optimal) in reasonable cormuutime. Therefore it is assumed that the
solutions found by these heuristics methods daalvedys ensure an optimal outcome and may

not present possible solutions.

The implemented algorithm adopts, at some poid,"Breedy Randomized Adaptive Search
Procedure" (GRASP) developed by Feo and ResendeM#8h comes up as an unfolding of
one of the heuristics used to solve the 1st lonatiodels designed by Teitz and Bart [24]. This
is interpreted as an approach through "exchangeétemlacement”, moving the servers from
their current positions to other non-used positiaséist keeping this new position whenever
the objective value is improved. For additionalomfation on the subject see Festa and

Resende [25].

This methodology is also used in the proposed #lgorthe heuristip-minmax Regret that was

developed by Daskin et al [2]. To understand thpartance of this method and the issue it
addresses in the attempt to deal with the unprgality of demand, the problem is solved for
different scenarios by random generation (whersahepresent different population levels) and

different frequencies of demand for service.

The term Regret is associated with the notion efaden or difference and it provides us with
an "opportunity cost" when implementing the chokmration. Given the design of the service
delivery system that we considered optimal for &eni scenario, the Regret, based on
population characteristics of the remaining sc@sadgnd respective objective function value

(covered population), returns the difference iredae locations were kept.



According to the author, there may be many objestifor this indicator. What is intended in

the present work is to select the lowest from thmdst differences and, by successive
adaptations, minimize it. We can interpret thisgess as finding a location solution that, in the
worst possible scenario (the one that presentgtbatest Regret given the optimal solution)

presents the lower deviation or "opportunity cost”.

We now present the algorithm implemented in C + which we introduce the two heuristics

discussed above - GRASP gmdinmax Regret. Beforehand, we indicate the notation used:

e jindex of possible locations;
* iindex of demand nodes;
« D list of potential location points for services ered according to the total population;

¢ Ssolution

- S complementary solution

e Ccandidate set of points

e pnumber of services to locate
e nnumber of demand nodes

e inc_j overall rate of calls to potential service locatip

D;; list of demand nodes within the distance limit dimgfrom the potential location

for service

Thus, the allocation process starts by readinglistance file identifying and recognizing at this
early stage the network of demand (nodal) poirti$ of which are potential locations — and the

distances between them - our associated cost neshisuierms of time units.



For each node representative of a population cettige respective population is generated
according to a Uniform distribution. Since thisaisiser-defined parameter, in order to subject
the model to different conditions, the demand Entlestimated based on a percentage of the
population previously determined. These values pufation and demand- are generated for
each one of the (ns) scenarios and will be as maamhe number of scenarios with which we

intend to work.

When the network is characterized, i.e., the nunalberodes, the distance between each node
and the respective populations and demand, usen@ELEX optimization software, the model

begins by solving the maximum coverage locatiorblenm for each scenario.

The optimal value of our objective function for eacenario is thus obtained, acting as a future
reference when compared to the results obtainedotfoer levels of population and when
maintaining the optimum locations obtained. Thitison includes: which nodes are located
service centers, the allocation of demand pointhéorespective centers and the value for the

objective function concerning the covered popalati

Having simulated the scenarios, a matrix entitlegiiet 1 (ns, ns) is activated. The diagonal of
the matrices Regret 1 indicate the optimal valu#sined in each of the simulated scenarios.
Values outside this diagonal, i.e., adjacent to dpémal solution values, are obtained by
calculating the objective function considering thbaracteristics of the other scenarios
(populations and demands) but maintaining the lopatllocation patterns given to us by the

CPLEX optimization software.



197182
161050
170892
171313
169787
196787
197121
177336
179487
189741

201432
190007
167845
175949
191717
192776
195798
181656
173998
185731

198357
181250
157853
194848
188772
193741
177131
189743
167131
159887

196556
182356
164887
164073
169745
183797
193457
187141
189477
169741

195265
192123
169741
169787
180869
181579
189743
191778
183454
200874

194325
179125
190187
199454
183556
171896
172656
194331
199466
190157

198562
183459
178112
185464
197010
181235
164681
184556
193473
182486

196663
168971
156746
177989
191141
182454
165888
175624
195471
189478

197701
179157
192454
184188
186311
192478
178432
185655
164635
168635

194003
189457
189451
188774
188745
179878
182747
189774
167979
182916

Figure 1. 10 scenarios Regret 1 matrix.

A note of caution since the calculation of the esliadjacent to the "optimality diagonal”

requires a possibility test so that, in the cordtian of the algorithm, a necessarily workable

initial solution is obtained. The possibility tedta value adjacent to the optimal solution should

take into account:

in j é is taken into account;

The distance limit (Idist) from demand nddallocated to service center

The limit for the waiting time (wlim) ifis respected; and

Whenever negative valued waiting times are datagtto a solution, in

the matrix Regret 1 a zero will be shown.

When the objective value calculated with the stashdaecations and allocations for the other

scenarios is not possible, under the conditionpoafibility described above, the value in the

Regret 1 matrix will be zero. Thus the associatddt®n is omitted of the rest of the process as

an initial starting solution for GRASP since thesa value will not be considered in the choice

of maximum deviation that is performed in {ireninmax process.

After the possibility test, based on Regret 1 mattie Regret 2 and Regret 3 matrixes are build

up, where each one being a transformation of tieepoaceding, as described below:




Regret 2: each value of this matrix will be obtaidey the difference between the goal

of a given scenario and its respective optimaligrecated by CPLEX and contained in

the diagonal of the Regret 1 matrix). This way, émgtively the diagonal of matrix of

Regret 2 will contain only zeros. This procedureves us to obtain the values of an

"Absolute Regret".

0

-28957
13039

7240
-11082
24891
32440

1712
14852

6825

4250
0
9992
11876
10848
20880
31117
6032
9363
2815

1175
-8757
0
30775
7903
21845
12450
14119
2496
-23029

-626
-7651

7034

0

-11124
11901
28776
11517
24842
-13175

-1917
2116
11888
5714
0
9683
25062
16154
18819
17958

-2857
-10882
32334
35381
2687
0
7975
18707
34831
7241

1380
-6548
20259
21391
16141
9339
0
8932
28838
-430

-519
-21036
-1107
13916
10272
10558
1207
0
30836
6562

519
-10850
34601
20115
5442
20582
13751
10031
0
-14281

-3179
-550
31598
24701
7876
7982
18066
14150
3344

Figure 2. 10 scenarios Regret 2 matrix

Regret 3: the difference obtained according tacdieulations of the Regret 2 matrix are

now divided by the optimal value of reference foe scenario in question. Hence, we

ascertain the value of "Relative Regret" associafitleach scenario.

0,00000
0,15240
0,08260
0,04413
0,06127
0,14480
0,19699
0,00975
0,09021
0,03731

0,02155
0,00000
0,06330
0,07238
0,05998
0,12147
0,18895
0,03435
0,05687
0,01539

0,00596
0,04609
0,00000
0,18757
0,04369
0,12708
0,07560
0,08039
0,01516
0,12590

0,00317
0,04027
0,04456
0,00000
0,06150
0,06923
0,17474
0,06558
0,15089
0,07203

0,00972
0,01114
0,07531
0,03483
0,00000
0,05633
0,15219
0,09198
0,11431
0,09818

0,01449
0,05727
0,20484
0,21564
0,01486
0,00000
0,04843
0,10652
0,21156
0,03959

0,00700
0,03446
0,12834
0,13037
0,08924
0,05433
0,00000
0,05086
0,17516
0,00235

0,00263
0,11071
0,00701
0,08482
0,05679
0,06142
0,00733
0,00000
0,18730
0,03587

0,00263
0,05710
0,21920
0,12260
0,03009
0,11974
0,08350
0,05712
0,00000
0,07807

0,01612
0,00289
0,20017
0,15055
0,04355
0,04644
0,10970
0,08057
0,02031
0,00000

Figure 3. 10 scenarios Regret 3 matrix.

Basing our judgments on the Regret 3 matrix, weinae the application of our algorithm i.e.,

p-minmax heuristic as suggested by Daskin et al. [2]. Befbe application of the latter matrix,

the procedures are as follows:




. From the Regret 3 matrix, observing the valuetsine, we choose the
one that presents the higher relative regret, rerotvords, the possible solution that
departs furthest in percentage terms from the aptincontrol solution contained in

Regret 1 diagonal obtained using the CPLEX;

. Subsequently, within all these maximum percemi@deyiations (relative
Regrets) the minor is picked up with the intentidrusing it as an initial solution in the

local search that follows on the GRASP heuristic.

The GRASP consists of two phases — constructioselaad local search phase — and is an
iterative process with reliable solution built ip@edently at each iteration. Described below is

a pseudo-code for the GRASP.

Procedure GRASP (Max_iterations, Seed)
For k = 1 to Max_iterations do

S&Greedy_Randomized_Construction(Seed, y);
S&Local_Search(Solution);
Update_Solution(Solution, Best_Solution)
Enddo
end GRASP
Pseudo-Code 1: Pseudo-Code GRASP

From a general point of view, the process develdpetiis heuristic, after the selected initial

solution as described above, follows like this:

. From the locations contained in the initial $iwno previously obtained,
randomly one is chosen to be removed and replhgeanother which, necessarily,
must be on the RCL Restricted Candidate List;

. The potential locations belonging to the RCL museet the

requirements of acceptability with regard, not oty distance limits imposed but



presenting a priori a demand frequency greater tinaagual togamma percent of the
search node with the highest demand frequency;

. If part of the RCL it is temporarily accepted lhe considered in the
iterative process and, when replacing the previmasition, switches its position
regarding its allocation to demand points;

. When the initial solution is improved, new Idoat and allocation
patterns are accepted;

. Otherwise, the initial solution persists.

These are again activated in the Regret 1, R@gaed Regret 3 matrixes based on the values
obtained in the local search now held. In this pss¢ the first matrix goes again through the

possibility test already described. This processpeated for a predefined number of iterations.

We now explain the use of pseudo-code for the tlwasps of that process, the GRASP
heuristic. The construction phase, which will ratan initial solution at each iteration, is

invoked and is a function from the root in thedam number generator and of the gamma
parameter that defines what solutions will be ideldi in RCL -Restricted Candidate List, the

list containing the best solutions.

The development of tigreedy  Randomized _ Construction(Seed) is now described:

procedure Greedy Randomized Construction (Seed,y)
{sort candidate sites by decreasing order of population}
D, ~ Sort_Candidate _ Stes( population);
{initialize solution set}
s={}
S =C;
{while solution is not a complete solution}
while ‘3 # pdo
{loop over all candidate sites not in the solution list}
Forj=1to ‘§‘ do
{initialize parameters}
{restrict demand points list to the standard covering distance to site j}



D, - {oD.d, <d}
{sort demand points by increasing distance to site j}
D; « Sort_Demand_ Point 5(distance);

{loop over demand points in set Dij}
For i=1to ‘Dij‘ do
{sum frequencies at each demand point if waiting time limit is not reached}
If (W_j<7"and 0.j<1) do
inc_j:=inc_j+fi;
actualize w_j;
actualize p j;

Endif
Enddo

{construct the restricted candidate list}
c™ : =max{inc_j};
RCL {j gSinc_j= yc’“‘”};
{select randomly one site from the RCL}
j* « Random_Select(RCL);
s=so{j*}
s=s\{j*};
{take the demand points allocated to j* out of the demand points list}

Fori=1to ‘Dij* do
D:=0\{i0D,. };

Enddo
Enddo
end Greedy Randomized Construction

Pseudo-Code 2: Construction Phase Pseudo-Code

The proposed algorithm starts by choosing candidetges according to their respective
demands/populationdVe postulated in our example that all demand n@desalso potential
service location points. Another possibility woldd to only consider a subset of demand nodes

from theD;_ list.

Thus, starting with the first node from the cantlkdiist, the closest demand nodes are affected
to it until de coverage limit is reached. Here towerage limit can be determined through the

utilization coefficient or the imposed limit fordtwaiting time.



Total demand affected to each of the potentias ite calledincoming call rate. Theincoming
call rate works as adreedy” function of the algorithm and can be defined agegghing of the

demand nodes no yet covered but that will do idtmnj was chosen to have a server facility.

It is included on the RCL - Restricted Candidatst l(sub-set of best solutions) the candidate
nodes with a totaincoming call rate greater to or equal gamma per cent of théncoming call

rate indexed to the potential location with higher \alu

In the GRASP, thgamma parameter is established beforehand. (for instahgamma equals
0.8, we therefore mean that we include on theclisttaining the best solutionsRestricted
Candidate List — all the potential locations with a total incomioall rate greater than 80% of

the highest value between all incoming call rates).

Note that in the greedy” heuristic, as suggested by Marianov and Serrati@ choice would

always be to locate a center at the node with igfieelst sum of incoming call rates, i.g51.

At each iteration, we choose randomly from amorg ¢dandidate locations with the highest
incoming call rate (i.e., the ones included Restricted Candidate List) the p locations for

servers.

procedure Local_Search (Solution, Best_Solution)
obj_best : = obj(S);
{loop over sites in the solution}

forall J, [1Sdo
s:=s\{j.};
{loop over sites not in the solution}
forall j, JSdo
evaluate obj(S[I{jz});
if obj_best<0bj(SU{j,}) do
s:=s0{j,}:
obj_best : = obj (S[l { jz});

else
s:=s0{j.}:



endif
enddo
Enddo
end Local_Search

Pseudo-Code 3: Local Search Phase Pseudo-Code

At the local search phase, for each centre, welonade its assigned demand and move it to all
the potential locations not yet used, repeatingaah time the steps 9 to 20 from Beeedy
Randomized Construction procedure, aiming to evaluate the objective atdhdihany of the
locations reciprocate a better objective value, maintain the service centre at that node;
otherwise, we keep it in the original location (de®eudo-Code 3). We repeat the procedure

until it is not possible to improve the initial atibn or the limit of iterations is reached.

In a user-defined environment, the algorithm reggiimodification, both in its construction
phase and in the local search in order to insugectbsest possible allocation. The proposed
algorithm penalizes the final objective wheneveruameliable solution is obtained. When a
reliable solution is obtained, this set of locati@re considered potential sites for the placement
of service centers. Otherwise, we consider thisofdbcations an initial solution and not a
potential service location penalizing the objectivith a large negative value M. This will

match the following objective evaluation procedure:

procedure evaluate_objective (S)

Allocate each demand point to its closest center location;
Evaluate W_j and p j;

obj(S):=0;

If (W_j<rand p j<1)do

For j=1to pdo
For i=1to n do
If (i is allocated to j) do
obj(S):=obj(S) + f_i;
endif;
enddo;

enddo;



Else
obj(S):=M;

end evaluate_objective;

Pseudo-Code 4: Objective Evaluation Pseudo-Code

During the Local Search phase, for each centertiateg we un-allocate assigned demands and
move them to unused potential locations. We alwa§sct a demand node to the nearest
potential location and check the possible waitiimget limit. If a solution is not possible, the
objective is penalized with a very high negativiugaM. Whenever new allocations are found
and a more efficient objective is identified we ntain that center in that location. Otherwise,
the starting location is kept. This procedure eated until, when comparing with the previous,

no better solution is found.

5. Computational Experience

In order to observe the difference between theltesid the heuristic solution and the initial
results that have been obtained, which will selwe atarting point (and comparison) for the
GRASP Local Search, randomly generated problersétiations in the demand network model
are proposed. The size of this network will be ataleé and each center and a particular demand
frequency is assigned (need for service / carath&mmore, the characteristics of this process

will also be amended with regard to the numbervailable nodes and demand centers.

The Location Problem with Limited Capacity Facdii in study, as well as the evaluated
heuristic procedure, is based on a network of dennaxdes that also stand for possible facilities
location The size of this network will be variateled each node will have a demand frequency

associated (need of attendance).



Networks of 25, 40, 50 nodes will be generated tanglach of this nodes a demand frequency
will also show accordingly to an Uniform distriboi [800;1800]. Retrieving the population

from this distribution, 1% is considered as demiaduency.

Bear in mind that for each scenario and speciftevaek the distance between nodes is constant

— changes only show on the size of the networkthederified demand. The distance between

nodes is obtained using a distance matrix commatti Btenarios and networks in use.

A summary of the characteristics and parameterth@fworked data are presented below in

table 5.1.
Number Capacity Limits Number
Cases of Scenarios Iterations
Nodes
1 50 1000, 2000 e 3000 10 500, 1000 e
2000
2 40 1000, 2000 e 3000 10 500, 1000 e
2000
3 25 1000, 2000 e 3000 10 500, 1000 e
2000

Table 5.1 Characteristics and parameters of the worked data

The algorithm in this study was implemented on mater with 2.50 GHz Pentium Dual-Core
processor with 1920 MB of memory and using the deniC++ Microsoft Visual Studio 2005
which integrates, for the resolution of the probdgmnoposed the optimization software CPLEX

Optimization Sudio 12.2.

We attempted to analyze the results obtained wtliistking if the location-allocation patterns
that were produced by the heuristics method shamgdlifferences when it was compared with
the location-allocation pattern from the initialwon in the GRASP Local Search phase. The
average value of the percentage deviation assdoidth the solution is also obtained and, in a

greedy fashioywe tried to low it as much as possible.



5.1. Changing the Network Size

Not having a predetermined parameter for the nurobeenters to locate, this value
contained in the final solution that minimizes tatast is also a matter of discussion,

besides all the other indicators shown on Table 5.2

Before an increasing number of network nodes, jtassible to verify that the average
processing time increases. The same behavior & @issent when increasing the
iterations number. If we only consider the netwside, the increase in the processing

time is exponential.

As we could expect, also with the increase in the ef the network used, the number
of centers to locate increase and, generally, #meesgoes for the Minimum Relative
Regret value. In this case, if we intend to complaeeinitial solution with the heuristics
solution, we can point cases where the initial ndl locations match, although with

an erratic pattern.

Regarding the matching solutions, the increasdeniterations number does not allow
also to generalize a behavioral pattern for thdicator. Still, we can verify some
stability in the behavior of the Minimum Relativeedtet. A call of attention for an
exception that shows a decrease in this indicatforb a “tighter” system with lower

capacity limits and higher number of network nodes.

25 Nodes Network 40 Nodes Network

Capacity 1000 2000 3000 | 1000 2000 3000 | 1000 2000

n o g

Average Processing Time 3.399 0,738 0.756 68.26 4,115 1.784

119.41 5.611

50 Nodes Network




% Matching Locations 0% 10% 10% 0% 0% 16% 0% 0% 2%
Average Regret 1.417 4.970 0.831 1.563 1.201 1.088 1.399 1.112 1.290
Located Centres 2 1 1 3 2 1 3 2 2
< Average Processing Time 4.101 1.042 1.001 72.379 5.471 2.443 137.42 7.138 6.532
8 ¥ | %Matching Locations 6% 2% 12% 0% 4% 16% 0% 4% 10%
= § Average Regret 1.443 2.809 0.833 1.579 1.299 1.102 1.601 1.191 1.282
= Located Centres 2 1 1 3 2 2 3 2 2
< Average Processing Time 5.798 1.453 1.570 69.357 8.521 3.461 233.82 12.10 11,839
8 € | % Matching Locations 0% 4% 8% 0% 6% 8% 0% 2% 6%
3 § Average Regret 1.423 0.832 0.844 1.565 1.117 1.043 1.599 1.219 1.259
® Located Centres 2 1 1 3 2 1 3 2 2

Table 5.2. Simulation results for 100 examples &4fdscenarios; average processing
time measured in seconds.

5.2. Capacity Limits

Regarding this indicator, which is directly relatetth the facilities/servers ability or
availability of providing the service, it is posklio conclude that its increase allows a
less tight system. This idea is supported by tisailte on the number of centers to

locate; this value is smaller when the capacitytrare higher.

As we would expect, also for the increase of thgacdy limits, it’s possible to assume

that the average processing time decreases.

For last, when assuming facilities with higher aagalimits, we can see that the Regret
values are smaller but the percentage of matcluogtibns (initial and final locations).
We can see this as a sign that for simpler probl@ess constrained systems) allow

easily the heuristic to improve the initial solutio

5.3 Conclusions.




Increasing the limit for the waiting time (wlim) agell as increasing the distance limit (Idist)
between demand node and service centers, lead bsligve that these heuristic produces

solutions that improve the optimal solutions dedimeiginally.

It is important here to analyze not only the petage of matching locations, but also the values
of Minimum Relative Regret. When decreasing, thiggkcate that possible solutions were
found which, in turn, deviate less from the staytsolution for the heuristic given by the Regret

method for the sets of simulated scenarios.

It is patent that for the cases where the systemmoi® constrained, although the increase noted
on the processing time, the heuristic procedurelywres solutions that are different from the

initial solution but with higher values of RelatiRegret.

The “tightness” caused on the system is mainly tdutne facilities characteristics concerning

the service delivery capacities.

6. General Conclusions

When analyzing the literature that addresses lmeadind allocation problems we found that
there is a trend of including in this type of madtie effects of queues. This may happen for
the following reason: when considering a certaimaled for a service it appears that this

demand is random and is one of the sources ofraystagestion.



This type of problem can arise both in the publigpuvate sector, involving different types of
formulations as maximum distance models and totalége distance models. The methodology
associated with each specific problem should befally examined and the results that are

obtained should be compared with others producesthmr testing models.

In addition to the Greedy Randomized Adaptive Search Procedure” (or GRASP), we also used
the heuristic method developed freninmax Regret (Minimum Relative Regret) proposed by
Daskin [2]. The use of these models processes dertaken in accordance with previous
research and aims at its integration into the ocdrggaradigm in order to explore new
methodologies that enhance or better adapt toitbenestances of the cases studied. Thus, the
developed models can be considered adequate tessdtire type of issue proposed in the
current work. Varying limits, in terms of waitingmtes and maximum distance, limits of
demand processing capabilities and network sizexjuges significant changes in the final

solutions.

There are numerous real-life situations in whicé Weiting time is an important, oftentimes
vital, factor when considering the duration of segwendered (time or distance traveled plus
the waiting time). In such cases, taking into actdhe determination of a location pattern, the
waiting time is to be regarded as absolutely essantthe respective modeling of the system. It
may also interfere with the processing time of thenber of centers to locate at a certain

network scale, as well as the capacity of facsiiie providing the sought service.

The proposed meta-heuristic reciprocates near aptiesults demonstrating significant savings
in computation time. Given the initial data, washaihe use of simulation that in the present

study the demand levels associated with each piguildata were obtained.



Regarding the application of Greedy heuristicshiese formulations, these show acceptable
behavior to the extent that the near-optimal sohgiare sensitive to the worked examples and

problematic situations proposed in each case.

On the other hand, the theory and the numericainples obtained suggest that the solutions
become less sensitive to the model parametereas/them becomes less busy. In the case that,
for instance, the distance limit between the demaoik and the service facility is smaller or
when there are less service centers to locate,caneassume that henceforth there will be
greater congestion associated with the model. Thesecases where the heuristic has given

results not identical to the initial solutions usedinput in our algorithmic formulation.

Regarding the computational experiment conductéelvdinal remarks. The tested models and
their various examples were obtained using randomb@r generation. In many cases, different
results were obtained, but there are others whergtoposed formulation does not produce
significant differences in the results. As alreadgntioned, generally speaking, the "tightest"
systems are those wherein the distance limit idlsmand the number of service centers to be
located is smaller. In such cases where there rdegior processing capabilities, location

decisions are more sensitive to pre-defined parensé&r the model.

Concluding, in this paper we simulated populatiang their respective demand frequencies.
Furthermore, we demonstrated the real-life paramouportance of system congestion in its

various forms as a determining factor in locatiaod allocation decisions.
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