497 research outputs found

    Implicit Decals: Interactive Editing of Repetitive Patterns on Surfaces

    Get PDF
    11 pagesInternational audienceTexture mapping is an essential component for creating 3D models and is widely used in both the game and the movie industries. Creating texture maps has always been a complex task and existing methods carefully balance flexibility with ease of use. One difficulty in using texturing is the repeated placement of individual textures over larger areas. In this paper we propose a method which uses decals to place images onto a model. Our method allows the decals to compete for space and to deform as they are being pushed by other decals. A spherical field function is used to determine the position and the size of each decal and the deformation applied to fit the decals. The decals may span multiple objects with heterogeneous representations. Our method does not require an explicit parameterization of the model. As such, varieties of patterns including repeated patterns like rocks, tiles, and scales can be mapped. We have implemented the method using the GPU where placement, size, and orientation of thousands of decals are manipulated in real time

    Rigidity controllable as-rigid-as-possible shape deformations

    Get PDF
    Shape deformation is one of the fundamental techniques in geometric processing. One principle of deformation is to preserve the geometric details while distributing the necessary distortions uniformly. To achieve this, state-of-the-art techniques deform shapes in a locally as-rigid-as-possible (ARAP) manner. Existing ARAP deformation methods optimize rigid transformations in the 1-ring neighborhoods and maintain the consistency between adjacent pairs of rigid transformations by single overlapping edges. In this paper, we make one step further and propose to use larger local neighborhoods to enhance the consistency of adjacent rigid transformations. This is helpful to keep the geometric details better and distribute the distortions more uniformly. Moreover, the size of the expanded local neighborhoods provides an intuitive parameter to adjust physical stiffness. The larger the neighborhood is, the more rigid the material is. Based on these, we propose a novel rigidity controllable mesh deformation method where shape rigidity can be flexibly adjusted. The size of the local neighborhoods can be learned from datasets of deforming objects automatically or specified by the user, and may vary over the surface to simulate shapes composed of mixed materials. Various examples are provided to demonstrate the effectiveness of our method

    Hierarchical processing, editing and rendering of acquired geometry

    Get PDF
    La représentation des surfaces du monde réel dans la mémoire d’une machine peut désormais être obtenue automatiquement via divers périphériques de capture tels que les scanners 3D. Ces nouvelles sources de données, précises et rapides, amplifient de plusieurs ordres de grandeur la résolution des surfaces 3D, apportant un niveau de précision élevé pour les applications nécessitant des modèles numériques de surfaces telles que la conception assistée par ordinateur, la simulation physique, la réalité virtuelle, l’imagerie médicale, l’architecture, l’étude archéologique, les effets spéciaux, l’animation ou bien encore les jeux video. Malheureusement, la richesse de la géométrie produite par ces méthodes induit une grande, voire gigantesque masse de données à traiter, nécessitant de nouvelles structures de données et de nouveaux algorithmes capables de passer à l’échelle d’objets pouvant atteindre le milliard d’échantillons. Dans cette thèse, je propose des solutions performantes en temps et en espace aux problèmes de la modélisation, du traitement géométrique, de l’édition intéractive et de la visualisation de ces surfaces 3D complexes. La méthodologie adoptée pendant l’élaboration transverse de ces nouveaux algorithmes est articulée autour de 4 éléments clés : une approche hiérarchique systématique, une réduction locale de la dimension des problèmes, un principe d’échantillonage-reconstruction et une indépendance à l’énumération explicite des relations topologiques aussi appelée approche basée-points. En pratique, ce manuscrit propose un certain nombre de contributions, parmi lesquelles : une nouvelle structure hiérarchique hybride de partitionnement, l’Arbre Volume-Surface (VS-Tree) ainsi que de nouveaux algorithmes de simplification et de reconstruction ; un système d’édition intéractive de grands objets ; un noyau temps-réel de synthèse géométrique par raffinement et une structure multi-résolution offrant un rendu efficace de grands objets. Ces structures, algorithmes et systèmes forment une chaîne capable de traiter les objets en provenance du pipeline d’acquisition, qu’ils soient représentés par des nuages de points ou des maillages, possiblement non 2-variétés. Les solutions obtenues ont été appliquées avec succès aux données issues des divers domaines d’application précités.Digital representations of real-world surfaces can now be obtained automatically using various acquisition devices such as 3D scanners and stereo camera systems. These new fast and accurate data sources increase 3D surface resolution by several orders of magnitude, borrowing higher precision to applications which require digital surfaces. All major computer graphics applications can take benefit of this automatic modeling process, including: computer-aided design, physical simulation, virtual reality, medical imaging, architecture, archaeological study, special effects, computer animation and video games. Unfortunately, the richness of the geometry produced by these media comes at the price of a large, possibility gigantic, amount of data which requires new efficient data structures and algorithms offering scalability for processing such objects. This thesis proposes time and space efficient solutions for modeling, editing and rendering such complex surfaces, solving these problems with new algorithms sharing 4 fundamental elements: a systematic hierarchical approach, a local dimension reduction, a sampling-reconstruction paradigm and a pointbased basis. Basically, this manuscript proposes several contributions, including: a new hierarchical space subdivision structure, the Volume-Surface Tree, for geometry processing such as simplification and reconstruction; a streaming system featuring new algorithms for interactive editing of large objects, an appearancepreserving multiresolution structure for efficient rendering of large point-based surfaces, and a generic kernel for real-time geometry synthesis by refinement. These elements form a pipeline able to process acquired geometry, either represented by point clouds or non-manifold meshes. Effective results have been successfully obtained with data coming from the various applications mentioned

    Techniques for Realtime Viewing and Manipulation of Volumetric Data

    Get PDF
    Visualizing and manipulating volumetric data is a major component in many areas including anatomical registration in biomedical fields, seismic data analysis in the oil industry, machine part design in computer-aided geometric design, character animation in the movie industry, and fluid simulation. These industries have to meet the demands of the times and be able to make meaningful assertions about the data they generate. The shear size of this data presents many challenges to facilitating realtime interaction. In the recent decade, graphics hardware has become increasingly powerful and more sophisticated which has introduced a new realm of possibilities for processing volumetric data. This thesis focuses on a suite of techniques for viewing and editing volumetric data that efficiently use the processing power of central processing units (CPUs) as well as the large processing power of the graphics hardware (GPUs). This work begins with an algorithm to improve the efficiency of a texture-based volume rendering. We continue with a framework for performing realtime constructive solid geometry (CSG) with complex shapes and smoothing operations on watertight meshes based on a variation of Depth Peeling. We then move to an intuitive technique for deforming volumetric data using a collection of control points. Finally, we apply this technique to image registration of 3-dimensional computed tomography (CT) images used for lung cancel treatment, planning

    Matrix-based Parameterizations of Skeletal Animated Appearance

    Full text link
    Alors que le rendu réaliste gagne de l’ampleur dans l’industrie, les techniques à la fois photoréalistes et basées sur la physique, complexes en terme de temps de calcul, requièrent souvent une étape de précalcul hors-ligne. Les applications en temps réel, comme les jeux vidéo et la réalité virtuelle, se basent sur des techniques d’approximation et de précalcul pour atteindre des résultats réalistes. L’objectif de ce mémoire est l’investigation de différentes paramétrisations animées pour concevoir une technique d’approximation de rendu réaliste en temps réel. Notre investigation se concentre sur le rendu d’effets visuels appliqués à des personnages animés par modèle d’armature squelettique. Des paramétrisations combinant des données de mouvement et d’apparence nous permettent l’extraction de paramètres pour le processus en temps réel. Établir une dépendance linéaire entre le mouvement et l’apparence est ainsi au coeur de notre méthode. Nous nous concentrons sur l’occultation ambiante, où la simulation de l’occultation est causée par des objets à proximité bloquant la lumière environnante, jugée uniforme. L’occultation ambiante est une technique indépendante du point de vue, et elle est désormais essentielle pour le réalisme en temps réel. Nous examinons plusieurs paramétrisations qui traitent l’espace du maillage en fonction de l’information d’animation par squelette et/ou du maillage géométrique. Nous sommes capables d’approximer la réalité pour l’occultation ambiante avec une faible erreur. Notre technique pourrait également être étendue à d’autres effets visuels tels le rendu de la peau humaine (diffusion sous-surface), les changements de couleur dépendant du point de vue, les déformations musculaires, la fourrure ou encore les vêtements.While realistic rendering gains more popularity in industry, photorealistic and physically- based techniques often necessitate offline processing due to their computational complexity. Real-time applications, such as video games and virtual reality, rely mostly on approximation and precomputation techniques to achieve realistic results. The objective of this thesis is to investigate different animated parameterizations in order to devise a technique that can approximate realistic rendering results in real time. Our investigation focuses on rendering visual effects applied to skinned skeletonbased characters. Combined parameterizations of motion and appearance data are used to extract parameters that can be used in a real-time approximation. Trying to establish a linear dependency between motion and appearance is the basis of our method. We focus on ambient occlusion, a simulation of shadowing caused by objects that block ambient light. Ambient occlusion is a view-independent technique important for realism. We consider different parameterization techniques that treat the mesh space depending on skeletal animation information and/or mesh geometry. We are able to approximate ground-truth ambient occlusion with low error. Our technique can also be extended to different visual effects, such as rendering human skin (subsurface scattering), changes in color due to the view orientation, deformation of muscles, fur, or clothe
    • …
    corecore