331 research outputs found

    Auto-bandwidth control in dynamically reconfigured hybrid-SDN MPLS networks

    Get PDF
    The proposition of this work is based on the steady evolution of bandwidth demanding technology, which currently and more so in future, requires operators to use expensive infrastructure capability smartly to maximise its use in a very competitive environment. In this thesis, a traffic engineering control loop is proposed that dynamically adjusts the bandwidth and route of flows of Multi-Protocol Label Switching (MPLS) tunnels in response to changes in traffic demand. Available bandwidth is shifted to where the demand is, and where the demand requirement has dropped, unused allocated bandwidth is returned to the network. An MPLS network enhanced with Software-defined Networking (SDN) features is implemented. The technology known as hybrid SDN combines the programmability features of SDN with the robust MPLS label switched path features along with traffic engineering enhancements introduced by routing protocols such as Border Gateway Patrol-Traffic Engineering (BGP-TE) and Open Shortest Path First-Traffic Engineering (OSPF-TE). The implemented mixed-integer linear programming formulation using the minimisation of maximum link utilisation and minimum link cost objective functions, combined with the programmability of the hybrid SDN network allows for source to destination demand fluctuations. A key driver to this research is the programmability of the MPLS network, enhanced by the contributions that the SDN controller technology introduced. The centralised view of the network provides the network state information needed to drive the mathematical modelling of the network. The path computation element further enables control of the label switched path's bandwidths, which is adjusted based on current demand and optimisation method used. The hose model is used to specify a range of traffic conditions. The most important benefit of the hose model is the flexibility that is allowed in how the traffic matrix can change if the aggregate traffic demand does not exceed the hose maximum bandwidth specification. To this end, reserved hose bandwidth can now be released to the core network to service demands from other sites

    Congestion avoidance in overlay networks through multipath routing

    Get PDF
    Overlay networks relying on traditional multicast routing approaches use only a single path between a sender and a receiver. This path is selected based on latency, with the goal of achieving fast delivery. Content is routed through links with low latency, ignoring slower links of the network which remain unused. With the increasing size of content on the Internet, this leads to congestion, messages are dropped and have to be retransmitted. A multicast multipath congestion-avoidance routing scheme which uses multiple bottleneck-disjoint paths between senders and receivers was developed, as was a linear programming model of the network to distribute messages intelligently across these paths according to two goals: minimum network usage and load-balancing. The former aims to use as few links as possible to perform routing, while the latter spreads messages across as many links as possible, evenly distributing the traffic. Another technique, called message splitting, was also used. This allows nodes to send a single copy of a message with multiple receivers, which will then be duplicated by a node closer to the receivers and sent along separate paths only when required. The model considers all of the messages in the network and is a global optimisation. Nevertheless, it can be solved quickly for large networks and workloads, with the cost of routing remaining almost entirely the cost of finding multiple paths between senders and receivers. The Gurobi linear programming solver was used to find solutions to the model. This routing approach was implemented in the NS-3 network simulator. The work is presented as a messaging middleware scheme, which can be applied to any overlay messaging network.Open Acces

    A framework for Traffic Engineering in software-defined networks with advance reservation capabilities

    Get PDF
    298 p.En esta tesis doctoral se presenta una arquitectura software para facilitar la introducción de técnicas de ingeniería de tráfico en redes definidas por software. La arquitectura ha sido diseñada de forma modular, de manera que soporte múltiples casos de uso, incluyendo su aplicación en redes académicas. Cabe destacar que las redes académicas se caracterizan por proporcionar servicios de alta disponibilidad, por lo que la utilización de técnicas de ingeniería de tráfico es de vital importancia a fin de garantizar la prestación del servicio en los términos acordados. Uno de los servicios típicamente prestados por las redes académicas es el establecimiento de circuitos extremo a extremo con una duración determinada en la que una serie de recursos de red estén garantizados, conocido como ancho de banda bajo demanda, el cual constituye uno de los casos de uso en ingeniería de tráfico más desafiantes. Como consecuencia, y dado que esta tesis doctoral ha sido co-financiada por la red académica GÉANT, la arquitectura incluye soporte para servicios de reserva avanzada. La solución consiste en una gestión de los recursos de red en función del tiempo, la cual mediante el empleo de estructuras de datos y algoritmos específicamente diseñados persigue la mejora de la utilización de los recursos de red a la hora de prestar este tipo de servicios. La solución ha sido validada teniendo en cuenta los requisitos funcionales y de rendimiento planteados por la red GÉANT. Así mismo, cabe destacar que la solución será utilizada en el despliegue piloto del nuevo servicio de ancho de banda bajo demanda de la red GÉANT a finales del 2017

    A framework for Traffic Engineering in software-defined networks with advance reservation capabilities

    Get PDF
    298 p.En esta tesis doctoral se presenta una arquitectura software para facilitar la introducción de técnicas de ingeniería de tráfico en redes definidas por software. La arquitectura ha sido diseñada de forma modular, de manera que soporte múltiples casos de uso, incluyendo su aplicación en redes académicas. Cabe destacar que las redes académicas se caracterizan por proporcionar servicios de alta disponibilidad, por lo que la utilización de técnicas de ingeniería de tráfico es de vital importancia a fin de garantizar la prestación del servicio en los términos acordados. Uno de los servicios típicamente prestados por las redes académicas es el establecimiento de circuitos extremo a extremo con una duración determinada en la que una serie de recursos de red estén garantizados, conocido como ancho de banda bajo demanda, el cual constituye uno de los casos de uso en ingeniería de tráfico más desafiantes. Como consecuencia, y dado que esta tesis doctoral ha sido co-financiada por la red académica GÉANT, la arquitectura incluye soporte para servicios de reserva avanzada. La solución consiste en una gestión de los recursos de red en función del tiempo, la cual mediante el empleo de estructuras de datos y algoritmos específicamente diseñados persigue la mejora de la utilización de los recursos de red a la hora de prestar este tipo de servicios. La solución ha sido validada teniendo en cuenta los requisitos funcionales y de rendimiento planteados por la red GÉANT. Así mismo, cabe destacar que la solución será utilizada en el despliegue piloto del nuevo servicio de ancho de banda bajo demanda de la red GÉANT a finales del 2017

    OpenFlowによる高信頼・トラヒック分散ネットワークの構築

    Get PDF
     近年の高度情報化社会に於いてはネットワーク通信に対する需要が非常に高まっており、障害が発生した際の被害をなるべく回避することでネットワークの信頼性を高めるように努めることは、非常に重要であると言える。その一方で、破損時の対策だけでなく、平常時の通信に於ける効率的な通信もまた両立させたい。 ネットワークの効率性を向上させる一つの手段として、現在のネットワークに於いて使われているOpen Shortest Path First(OSPF) というルーチングプロトコルを改良したSmart-OSPF(S-OSPF) がMishraらによって提案されており、これは発ノード(出発点のノード)においてトラヒックを分散させて送ることにより、ネットワークの混雑を抑えた通信を可能とするという概念である。 S-OSPFには現在2つの課題がある。1つは、計算されたトラフィック分散比をルータに通知するコントローラを用意し、且つルータにトラヒックを分散する機能を実装する為の改修をする必要がある。 もう1つは、分散中にネットワーク故障が起こった時の対処方法が現在確立されていないので、その際の対策法を検討する必要がある。 これまでになされたS-OSPFを実際のネットワークへ実装させた場合及びその故障発生時の対応動作の性能へのアプローチは、主にCPLEXという数理計画問題を解く計算ソフトウェアを用いたシミュレーションによるもので、実際のネットワーク機器を用いての研究はまだされ始めてきたばかりの段階である。 また、ネットワークをソフトウェアによって制御するSoftware-Defined Network(SDN)によってS-OSPFを実機へ実装する研究は既に行われているが、こちらは故障発生時の対策については未だ考慮である。 本研究では、ネットワーク機器を一つのコントローラで一元管理するOpenFlowによって、これらの従来研究を踏まえた効率的な平常時の通信及び経路に故障が発生した際における適切な対応動作の両立について検討する。電気通信大学201

    Flexible Application-Layer Multicast in Heterogeneous Networks

    Get PDF
    This work develops a set of peer-to-peer-based protocols and extensions in order to provide Internet-wide group communication. The focus is put to the question how different access technologies can be integrated in order to face the growing traffic load problem. Thereby, protocols are developed that allow autonomous adaptation to the current network situation on the one hand and the integration of WiFi domains where applicable on the other hand

    Robust Design of Single-Commodity Networks

    Get PDF
    The results in the present work were obtained in a collaboration with Eduardo Álvarez- Miranda, Valentina Cacchiani, Tim Dorneth, Michael Jünger, Frauke Liers, Andrea Lodi and Tiziano Parriani. The subject of this thesis is a robust network design problem, i.e., a problem of the type “dimension a network such that it has sufficient capacity in all likely scenarios.” In our case, we model the network with an undirected graph in which each scenario defines a supply or demand for each node. We say that a flow in the network is feasible for a scenario if it can balance out its supplies and demands. A scenario polytope B defines which scenarios are relevant. The task is now to find integer capacities that minimize the total installation costs while allowing for a feasible flow in each scenario. This problem is called Single-Commodity Robust Network Design Problem (sRND) and was introduced by Buchheim, Liers and Sanità (INOC 2011). The problem contains the Steiner Tree Problem (given an undirected graph and a terminal set, find a minimum cost subtree that connects all terminals) and therefore is N P-hard. The problem is also a natural extension of minimum cost flows. The network design literature treats the case that the scenario polytope B is given as the finite set of its extreme points (finite case) and that it is given as the feasible region of finitely many linear inequalities (polyhedral case). Both descriptions are equivalent, however, an efficient transformation is not possible in general. Buchheim, Liers and Sanità (INOC 2011) propose a Branch-and-Cut algorithm for the finite case. In this case, there exists a canonical problem formulation as a mixed integer linear program (MIP). It contains a set of flow variables for every scenario. Buchheim, Liers and Sanità enhance the formulation with general cutting planes that are called target cuts. The first part of the dissertation considers the problem variant where every scenario has exactly two terminal nodes. If the underlying network is a complete, unweighted graph, then this problem is the Network Synthesis Problem as defined by Chien (IBM Journal of R&D 1960). There exist polynomial time algorithms by Gomory and Hu (SIAM J. of Appl. Math 1961) and by Kabadi, Yan, Du and Nair (SIAM J. on Discr. Math.) for this special case. However, these algorithms are based on the fact that complete graphs are Hamiltonian. The result of this part is a similar algorithm for hypercube graphs that assumes a special distribution of the supplies and demands. These graphs are also Hamiltonian. The second part of the thesis discusses the structure of the polyhedron of feasible sRND solutions. Here, the first result is a new MIP-based capacity formulation for the sRND problem. The size of this formulation is independent of the number of extreme points of B and therefore, it is also suited for the polyhedral case. The formulation uses so-called cut-set inequalities that are known in similar form from other network design problems. By adapting a proof by Mattia (Computational Optimization and Applications 2013), we show that cut-set inequalities induce facets of the sRND polyhedron. To obtain a better linear programming relaxation of the capacity formulation, we interpret certain general mixed integer cuts as 3-partition inequalities and show that these inequalities induce facets as well. The capacity formulation has exponential size and we therefore need a separation algorithm for cut-set inequalities. In the finite case, we reduce the cut-set separation problem to a minimum cut problem that can be solved in polynomial time. In the polyhedral case, however, the separation problem is N P-hard, even if we assume that the scenario polytope is basically a cube. Such a scenario polytope is called Hose polytope. Nonetheless, we can solve the separation problem in practice: We show a MIP based separation procedure for the Hose scenario polytope. Additionally, the thesis presents two separation methods for 3-partition inequalities. These methods are independent of the encoding of the scenario polytope. Additionally, we present several rounding heuristics. The result is a Branch-and-Cut algorithm for the capacity formulation. We analyze the algorithm in the last part of the thesis. There, we show experimentally that the algorithm works in practice, both in the finite and in the polyhedral case. As a reference point, we use a CPLEX implementation of the flow based formulation and the computational results by Buchheim, Liers and Sanità. Our experiments show that the new Branch-and-Cut algorithm is an improvement over the existing approach. Here, the algorithm excels on problem instances with many scenarios. In particular, we can show that the MIP separation of the cut-set inequalities is practical

    A two-stage design framework for optimal spatial packaging of interconnected fluid-thermal systems

    Get PDF
    Optimal spatial packaging of interconnected subsystems and components with coupled physical (thermal, hydraulic, or electromagnetic) interactions, or SPI2, plays a vital role in the functionality, operation, energy usage, and life cycle of practically all engineered systems, from chips to ships to aircraft. However, the highly nonlinear spatial packaging problem, governed by coupled physical phenomena transferring energy through highly complex and diverse geometric interconnects, has largely resisted automation and quickly exceeds human cognitive abilities at moderate complexity levels. The current state-of-the-art in defining an arrangement of these functionally heterogeneous artifacts still largely relies on human intuition and manual spatial placement, limiting system sophistication and extending design timelines. Spatial packaging involves packing and routing, which are separately challenging NP-hard problems. Therefore, solving the coupled packing and routing (PR) problem simultaneously will require disruptive methods to better address pressing related challenges, such as system volume reduction, interconnect length reduction, ensuring non-intersection, and physics considerations. This dissertation presents a novel automated two-stage sequential design framework to perform simultaneous physics-based packing and routing (PR) optimization of fluid-thermal systems. In Stage 1, unique spatially-feasible topologies (i.e., how interconnects and components pass around each other) are enumerated for given fluid-thermal system architecture. It is important to guarantee a feasible initial graph as lumped-parameter physics analyses may fail if components and/or routing paths intersect. Stage 2 begins with a spatially-feasible layout, and optimizes physics-based system performance with respect to component locations, interconnect paths, and other continuous component or system variables (such as sizing or control). A bar-based design representation enables the use of a differentiable geometric projection method (GPM), where gradient-based optimization is used with finite element analysis. In addition to geometric considerations, this method supports optimization based on system behavior by including physics-based (temperature, fluid pressure, head loss, etc.) objectives and constraints. In other words, stage 1 of the framework supports systematic navigation through discrete topology options utilized as initial designs that are then individually optimized in stage 2 using a continuous gradient-based topology optimization method. Thus, both the discrete and continuous design decisions are made sequentially in this framework. The design framework is successfully demonstrated using different 2D case studies such as a hybrid unmanned aerial vehicle (UAV) system, automotive fuel cell (AFC) packaging system, and other complex multi-loop systems. The 3D problem is significantly more challenging than the 2D problem due to vastly more expansive design space and potential features. A review of state-of-the-art methods, challenges, existing gaps, and opportunities are presented for the optimal design of the 3D PR problem. Stage 1 of the framework has been investigated thoroughly for 3D systems in this dissertation. An efficient design framework to represent and enumerate 3D system spatial topologies for a given system architecture is demonstrated using braid and spatial graph theories. After enumeration, the unique spatial topologies are identified by calculating the Yamada polynomials of all the generated spatial graphs. Spatial topologies that have the same Yamada polynomial are categorized together into equivalent classes. Finally, CAD-based 3D system models are generated from these unique topology classes. These 3D models can be utilized in stage 2 as initial designs for 3D multi-physics PR optimization. Current limitations and significantly impactful future directions for this work are outlined. In summary, this novel design automation framework integrates several elements together as a foundation toward a more comprehensive solution of 3D real-world packing and routing problems with both geometric and physics considerations
    corecore