
Robust Design of Single-Commodity Networks

Inaugural-Dissertation
zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von
Daniel Rainer Schmidt geb. Plümpe

aus Unna

Köln 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kölner UniversitätsPublikationsServer

https://core.ac.uk/display/33335251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Berichterstatter: Prof. Dr. Michael Jünger
Prof. Dr. Frauke Liers

Tag der mündlichen Prüfung: 1. Dezember 2014

Zusammenfassung

Die vorliegende Dissertation ist im Rahmen einer Kooperation mit Valentina Cacchiani,
Frauke Liers, Andrea Lodi und Michael Jünger entstanden, an der in Teilen auch Eduardo
Álvarez-Miranda, Tim Dorneth und Tiziano Parriani beteiligt waren.

Das Thema der Arbeit ist ein robustes Netzwerkdesignproblem, d.h. ein Problem der Art
„dimensioniere ein Netzwerk so, dass in allen realistischen Szenarien ausreichend Kapazität
vorhanden ist.“ In dem konkreten Problem wird das Netzwerk durch einen ungerichteten
Graphen modelliert, in dem jedes Szenario einen Angebots- oder Bedarfswert für jeden
Knoten definiert. Ein Fluss im Netzwerk heißt zulässig, wenn er alle Angebote und Bedarfe
ausgleicht. Welche Szenarien beachtet werden müssen, bestimmt das Szenarienpolytop B.
Gesucht sind ganzzahlige Kapazitäten, die zwar die insgesamten Installationskosten min-
imieren, aber in jedem Szenario b ∈ B die Existenz eines zulässigen Flusses garantieren.
Dieses Single-Commodity Robust Network Design Problem (sRND) geht zurück auf eine
Arbeit von Buchheim, Liers und Sanità (INOC 2011) und enthält als Spezialfall das Steiner-
baumproblem (gegeben einen ungerichteten Graphen und eine Terminalmenge, finde einen
Teilbaum mit minimalen Kosten, der alle Terminale verbindet). Es ist daher NP-schwierig.
Außerdem ist es eine natürliche Erweiterung von Minimumkostenflüssen.

Die Literatur unterscheidet die Fälle, dass B als endliche Menge seiner Extremalpunkte
(endlicher Fall) oder als Lösungsmenge eines linearen Ungleichungssystems gegeben ist
(polyedrischer Fall). Diese beiden Fälle sind zwar äquivalent, können jedoch im Allgemeinen
nicht effizient ineinander überführt werden.

Buchheim, Liers und Sanità (INOC 2011) schlagen einen Branch-and-Cut-Algorithmus für
den endlichen Fall vor. In diesem Fall existiert eine kanonische Formulierung des Problems
als gemischt-ganzzahliges lineares Programm (MIP). Sie enthält Flussvariablen für jedes
Szenario. Um bessere Schranken zu erhalten, fügen Buchheim, Liers und Sanità zusätzlich
allgemeine Schnittebenen, sog. Target Cuts, ein.
Der erste Teil der Dissertation beschäftigt sich nun mit der Variante des Problems, in

der jedes Szenario genau zwei Terminalknoten besitzt. Ist das Netzwerk zusätzlich ein
ungewichteter vollständiger Graph, so handelt es sich um das Network Synthesis Problem
im Sinne von Chien (IBM Journal of R&D, 1960). Für diesen Fall existieren polynomielle
Algorithmen von Gomory und Hu (SIAM J. of Appl. Math. 1961) und Kabadi, Yan, Du und
Nair (SIAM J. on Discr. Math. 2009), die jedoch darauf beruhen, dass vollständige Graphen
hamiltonsch sind. Wir entwickeln unter der Voraussetzung, dass die Angebote und Bedarfe
einer bestimmten Verteilung folgen, einen ähnlicher Algorithmus für Hyperwürfelgraphen.
Diese Graphen sind ebenfalls hamiltonsch.
Im zweiten Teil der Arbeit geht es um die Struktur des sRND-Lösungspolyeders. Hier

ist das erste Ergebnis eine neue MIP-Kapazitätsformulierung des sRND-Problems, deren
Größe unabhängig von der Anzahl der Extremalpunkte von B ist. Damit ist die For-
mulierung auch für den polyedrischen Fall geeignet. Die Formulierung verwendet sogenannte
Cut-Set-Ungleichungen, die in ähnlicher Form auch bei anderen Netzwerkdesignproblemen

verwendet werden. Wir wandeln einen Beweis von Mattia (Computational Optimization
and Applications 2013) ab und so zeigen so, dass die Cut-Set-Ungleichungen Facetten
des Lösungpolyeders sind. Um eine bessere Relaxierung des ganzzahligen linearen Pro-
gramms zu erreichen, interpretieren wir bestimmte generische Schnittebenen als sogenannte
3-Partitionsungleichungen und zeigen, dass auch diese Ungleichungen Facetten des Lö-
sungspolyeders definieren.

Da die Kapazitätsformulierung exponentielle Größe hat, benötigen wir einen Separierungsal-
gorithmus für Cut-Set-Ungleichungen. Im endlichen Fall führen wir das Separierungsproblem
auf ein Minimum-Schnitt-Problem zurück, das in Polynomialzeit gelöst werden kann. Im
polyedrischen Fall ist das Separierungsproblem hingegen NP-schwierig, selbst wenn man
davon ausgeht, dass das Szenarienpolytop im Wesentlichen ein Quader – das sogenannte
Hose-Polytop – ist. Dennoch kann das Separierungsproblem in der Praxis gelöst werden:
Wir zeigen hierzu einen MIP basierten Separierungsansatz für Hose-Szenarienpolytope.
Weiterhin stellt die Arbeit zwei Separierungsalgorithmen für 3-Partitionsungleichungen vor,
die unabhängig von der Codierung des Szenarienpolytops funktionieren. Zusätzlich führen
wir einige Rundungsheuristiken ein.

Das Ergebnis ist ein Branch-and-Cut-Algorithmus für die Kapazitätsformulierung, den wir
im letzten Teil der Dissertation untersuchen. Dort weisen wir experimentell die praktische
Leistungsfähigkeit des Branch-and-Cut-Algorithmus für den endlichen und den polyedrischen
Fall nach. Als Referenzpunkt dient dazu eine CPLEX-Implementierung der Flussformulierung
und die Rechenergebnisse von Buchheim, Liers und Sanità. Die Experimente zeigen,
dass unser neuer Branch-and-Cut-Algorithmus eine Verbesserung des bisherigen Ansatzes
darstellt. Dabei eignet er sich vorallem für Probleminstanzen mit vielen Szenarien. Es zeigt
sich insbesondere, dass die MIP-Separierung der Schnittungleichungen im polyedrischen
Fall auch praktisch anwendbar ist.

Abstract

The results in the present work were obtained in a collaboration with Eduardo Álvarez-
Miranda, Valentina Cacchiani, Tim Dorneth, Michael Jünger, Frauke Liers, Andrea Lodi
and Tiziano Parriani.

The subject of this thesis is a robust network design problem, i.e., a problem of the type
“dimension a network such that it has sufficient capacity in all likely scenarios.” In our case,
we model the network with an undirected graph in which each scenario defines a supply or
demand for each node. We say that a flow in the network is feasible for a scenario if it can
balance out its supplies and demands. A scenario polytope B defines which scenarios are
relevant. The task is now to find integer capacities that minimize the total installation costs
while allowing for a feasible flow in each scenario. This problem is called Single-Commodity
Robust Network Design Problem (sRND) and was introduced by Buchheim, Liers and Sanità
(INOC 2011). The problem contains the Steiner Tree Problem (given an undirected graph
and a terminal set, find a minimum cost subtree that connects all terminals) and therefore
is NP-hard. The problem is also a natural extension of minimum cost flows.
The network design literature treats the case that the scenario polytope B is given as

the finite set of its extreme points (finite case) and that it is given as the feasible region
of finitely many linear inequalities (polyhedral case). Both descriptions are equivalent,
however, an efficient transformation is not possible in general.
Buchheim, Liers and Sanità (INOC 2011) propose a Branch-and-Cut algorithm for the

finite case. In this case, there exists a canonical problem formulation as a mixed integer
linear program (MIP). It contains a set of flow variables for every scenario. Buchheim, Liers
and Sanità enhance the formulation with general cutting planes that are called target cuts.

The first part of the dissertation considers the problem variant where every scenario has
exactly two terminal nodes. If the underlying network is a complete, unweighted graph,
then this problem is the Network Synthesis Problem as defined by Chien (IBM Journal of
R&D 1960). There exist polynomial time algorithms by Gomory and Hu (SIAM J. of Appl.
Math 1961) and by Kabadi, Yan, Du and Nair (SIAM J. on Discr. Math.) for this special
case. However, these algorithms are based on the fact that complete graphs are Hamiltonian.
The result of this part is a similar algorithm for hypercube graphs that assumes a special
distribution of the supplies and demands. These graphs are also Hamiltonian.
The second part of the thesis discusses the structure of the polyhedron of feasible sRND

solutions. Here, the first result is a new MIP-based capacity formulation for the sRND
problem. The size of this formulation is independent of the number of extreme points
of B and therefore, it is also suited for the polyhedral case. The formulation uses so-called
cut-set inequalities that are known in similar form from other network design problems. By
adapting a proof by Mattia (Computational Optimization and Applications 2013), we show
that cut-set inequalities induce facets of the sRND polyhedron. To obtain a better linear
programming relaxation of the capacity formulation, we interpret certain general mixed
integer cuts as 3-partition inequalities and show that these inequalities induce facets as well.

The capacity formulation has exponential size and we therefore need a separation algorithm
for cut-set inequalities. In the finite case, we reduce the cut-set separation problem to
a minimum cut problem that can be solved in polynomial time. In the polyhedral case,
however, the separation problem is NP-hard, even if we assume that the scenario polytope
is basically a cube. Such a scenario polytope is called Hose polytope. Nonetheless, we can
solve the separation problem in practice: We show a MIP based separation procedure for
the Hose scenario polytope. Additionally, the thesis presents two separation methods for
3-partition inequalities. These methods are independent of the encoding of the scenario
polytope. Additionally, we present several rounding heuristics.
The result is a Branch-and-Cut algorithm for the capacity formulation. We analyze the

algorithm in the last part of the thesis. There, we show experimentally that the algorithm
works in practice, both in the finite and in the polyhedral case. As a reference point, we
use a CPLEX implementation of the flow based formulation and the computational results by
Buchheim, Liers and Sanità. Our experiments show that the new Branch-and-Cut algorithm
is an improvement over the existing approach. Here, the algorithm excels on problem
instances with many scenarios. In particular, we can show that the MIP separation of the
cut-set inequalities is practical.

Acknowledgments

My thanks go to all those who have supported me in writing this thesis. I am very grateful
to Prof. Dr. Michael Jünger for having me in his Cologne group and I could hardly imagine
a more ideal place for working on a PhD. During my time in Cologne, I have had much
freedom, but also a place to find advice and support whenever I needed it. You gave me
the opportunity to travel with my ideas and to discuss with fellow researchers. Thank you
for your trust in me. I also thank Prof. Dr. Frauke Liers for her support, the pleasant
collaboration, for many discussions, for listening and for sharing ideas. I always enjoyed my
visits to Erlangen. I thank Prof. Andrea Lodi for taking time for our discussions and for
asking the right questions. Thank you also for always welcoming me in Bologna and for all
the support that you gave me. Large parts of this thesis were developed in a joint project
in the VIGONI program funded by the German-Italian University Centre and the German
Academic Exchange Service whose financial support I gratefully acknowledge. I thank Prof.
Dr. Michael Jünger, Prof. Dr. Frauke Liers and Prof. Andrea Lodi for including me in this
great project.
I thank my friends and colleagues Frank Baumann, Michael Belling, Diana Fanghänel,

Dustin Feld, Martin Gronemann, Thomas Lange, Sven Mallach, Francesco Mambelli, Gregor
Pardella, Andreas Schmutzer, Christiane Spisla, Lena Tepaße, Göntje Teuchert and Käte
Zimmer for the harmonic working atmosphere in Cologne, for many discussions, enjoyable
coffee breaks and many joint travels to conferences and workshops. In particular, I thank
three of you who took many of the every-day troubles from me: Michael for the excellent
library service, Thomas by maintaining a most reliable and efficient computer system and
Göntje by helping with all the organizational and administrative woes. I thank Christiane
for being such a kind and pleasant-natured office-mate and for bringing a lot of fun into our
shared office. I trust you enjoyed our research discussions and chats as much as I did.
I also thank my friends from Bologna: Eduardo Álvarez-Miranda, Valentina Cacchiani

and Tiziano Parriani made me feel very welcome in Italy. I thank you for a successful project
and an enjoyable collaboration. In particular, I thank Valentina for countless kind emails,
good suggestions and ideas – but also for showing me Bologna and the Italian cuisine.
To Martin Groß, Jan-Philipp Kappmeier and Melanie Schmidt I am grateful for many

fun days of research on network flows. I thank Prof. Dr. Martin Skutella and his group for
welcoming us in Berlin for this collaboration.

I thank Jan-Philipp Kappmeier, Magdalena Schmidt, Melanie Schmidt, Christiane Spisla
and Lena Tepaße for proof-reading parts of this thesis and giving invaluable feedback.
Special thanks go to Melanie who managed to read the entire thesis while writing her own.

However, I could not have written this thesis without the love and support of my family.
I thank all of you, in particular my parents and my brother Sven, for being there, but also
my parents-in-law and my belles-sœurs Katharina and Magdalena for all their kindness. To
my wife Melanie I am grateful for more reasons than I could possibly express here.

Contents

1 Preliminaries 17
1.1 Basic Linear Algebra . 18

1.1.1 Vectors and Functions . 18
1.1.2 Matrices . 18
1.1.3 Combinations of Vectors, Subspaces and Convexity 18
1.1.4 Independence of Vectors . 19
1.1.5 Dimension . 20
1.1.6 Hyperplanes and Half-Spaces . 20

1.2 Polyhedral Theory . 20
1.2.1 Convex Sets, Extreme Points and Rays 20
1.2.2 Polyhedra . 21

1.3 Linear Programming . 23
1.3.1 Optimum Solutions . 23
1.3.2 Duality . 24
1.3.3 Cutting Plane Algorithms . 25
1.3.4 Integer Linear Programs . 26

1.4 Graphs and networks . 33
1.4.1 Adjacency, Paths and Cycles . 33
1.4.2 Connectivity . 34

1.5 Cuts and flows in networks . 34
1.5.1 Cuts . 34
1.5.2 Single-Commodity Flows . 37

1.6 Multi-Commodity Flows . 41

2 Network Design and Robustness 47
2.1 What Robustness Means . 48
2.2 Single-Commodity Robust Network Design 49
2.3 Non-Robust Capacitated Network Design 52

2.3.1 Communication Network Design Terminology 52
2.3.2 Non-Robust Formulations for the sND Problem 53
2.3.3 Non-Robust Formulations for the mND Problem 53

2.4 Tractable Worst-Case Robustness Models 55
2.4.1 Column-Wise Uncertainty: Soyster’s Model for Robustness 56
2.4.2 Tractable Robust Counterparts by Ben-Tal and Nemirovski 57
2.4.3 Gamma-Robustness: Bertsimas’ and Sim’s Less Conservative Model 58

2.5 Worst-Case Robust Capacitated Network Design 61
2.5.1 Terminology . 61
2.5.2 Formulations for Robust Capacitated Network Design Problems . . 62

10 Contents

2.6 More Valid Inequalities . 73
2.6.1 More General Metric Inequalities for the mND 73
2.6.2 Cut-Set Inequalities for Various Network Design Problems 74
2.6.3 Additional Partitioning Based Inequalities 76

2.7 An Overview of Related Works . 77

3 Scenarios with a Single Source and Sink 79
3.1 Problem Complexity . 80
3.2 The Network Synthesis Problem . 80

3.2.1 A Decompositioning Technique by Gomory and Hu 81
3.3 An Algorithm for Hypercube Graphs . 86

3.3.1 When Supplies and Demands are Binary 87
3.3.2 Uniform Supplies and Demands that are not Binary 88

3.4 Extensions . 93

4 The Polyhedral Structure of the sRND Problem 95
4.1 Dimension of the sRND Polyhedron . 96
4.2 An IP-Formulation with Facet-Inducing Cut-Set Inequalities 97

4.2.1 Characterizing the sRND Problem with Cut-Set Inequalities 97
4.2.2 Cut-Set Formulation vs. Arc-Flow Formulation 99
4.2.3 Relationship to the Robustness Models from the Literature 99
4.2.4 Cut-Set Inequalities Induce Facets 100

4.3 Non-Negativity Constraints Induce Facets 101
4.4 Deriving 3-Partition Facets as Chvátal-Gomory Cuts 102

4.4.1 Chvátal-Gomory Cuts for the sRND Problem 102
4.4.2 Separating 3-Partition Inequalities by Enumeration 104
4.4.3 Shrinking Graphs and Lifting Facets 105
4.4.4 3-Partition Inequalities Induce Facets 111

4.5 Degeneracy . 114

5 Separation Under Uncertainty 117
5.1 The General Cut-Set Separation Problem 118
5.2 General Separation Methods for Robust Linear Programs 119
5.3 When the Scenario Set is Given As a Finite List 121

5.3.1 Polynomial Time Separation of Cut-Set Inequalities 121
5.3.2 Separating 3-Partition Inequalities More Efficiently 122

5.4 Separating over Scenarios in a Linear Description 123
5.4.1 The Hose Uncertainty Set for sRND-P 123
5.4.2 Complexity of sRND with Hose Uncertainties 125
5.4.3 Separating Cut-Set Inequalities over the Hose Polytope 126

6 A Branch-and-Cut Algorithm 133
6.1 The Algorithm . 134

6.1.1 Lower Bounds . 134
6.1.2 Upper Bounds . 136

Contents 11

6.1.3 Preprocessing . 138
6.1.4 Additional Settings . 140

6.2 Testbed . 140
6.2.1 Network Topologies . 140
6.2.2 Generating Vertex Descriptions of Scenario Sets 141
6.2.3 Generating Linear Descriptions of Scenario Sets 142
6.2.4 Software and Hardware for the Experiments 142

6.3 Computational Results . 143
6.3.1 Collected Data . 143
6.3.2 The Previous Approach by Buchheim, Liers, and Sanità 144
6.3.3 Impact of our Problem Specific Cutting Planes 146
6.3.4 Comparison with a Default CPLEX Implementation 147
6.3.5 Results on the Hose Instance Sets 154

Introduction

Much of the present day infrastructure for transportation, supply or telecommunication
is organized in networks that connect a set of nodes via links of limited capacity. Before
such a network is built or expanded, plans need to be made: Keeping in mind the traffic
that will later flow through the network, we must decide where to build its links and what
capacities they should have. To keep the access to the network affordable, its costs should
be as small as possible. The resulting optimization problem is known as network design.
The interest in the design of networks started in the 1950’s and 1960’s. By now, entire

research communities and journals are devoted to its study; their topics ranging from
abstract studies of base problems to practical works that incorporate the physical and
technical properties of state-of-the-art networks.
The difficulty in designing a network that is both reliable and affordable is the fact that

the traffic through a typical network is constantly changing. The fluctuations not only
concern the raw amount of traffic in the network, but also the areas of the network that are
in use at a given point in time. Consider for instance the traffic in a road network of a big
city: In the morning, mostly those streets that lead into the city will be used. Then, during
the day, traffic concentrates on the city center until in the afternoon, those streets that lead
out of the city are filled with commuters. Thus, when designing a network, different usage
situations – we call them scenarios – must be taken into account.

However, classical optimization only works if the problem parameters are known exactly
and in particular, if there is only one usage scenario. In order to still use these classical
methods, we could optimize for the average traffic, risking that the capacities will be
insufficient to handle traffic peaks. Unfortunately, most networks break down when the
traffic flow exceeds their capacity (think of a traffic jam or a black-out) and therefore, this
strategy is unsafe. Alternatively, we can build a network that can handle all the peaks at
the same time. While this strategy guarantees that the network will not be used beyond
its capacity, it is also very expensive. As an example, consider again the road network
from the previous paragraph: If the peak traffic during rush hour requires a four lane road,
then building four lanes per direction is certainly a feasible solution. However, by realizing
that there will never be peak traffic into the city and out of the city at the same time, we
can find a cheaper solution: We build a road with five lanes and switch the direction of
four lanes according to the current traffic. This is why robust optimization is especially
important in network design.

This thesis focuses on an abstract model for robust network design, neglecting the physical
properties of the traffic that is transported through the network. In particular, we do not
model properties like gas pressure, resistances of the links or telecommunication protocols.
Instead, we merely assume that no goods are lost or created during the transport (a
property known as flow conservation) and that no link can be used above its capacity. In
principle, this yields a base model for a wide range of applications; however, we focus on
telecommunication networks as an application from now on.

14 Contents

In more detail, we consider the following problem. In each scenario, every node can be
a source (i.e., supplying goods to the network), a sink (i.e., consuming goods from the
network) or a hub (i.e., forwarding all goods). Each sink has a demand that states the
amount of goods that it wants to receive. However, the sink cannot specify which source
should supply those goods. Likewise, each source specifies the amount of goods that it will
supply to the network without declaring which sink will receive them. The capacities of the
network must be installed in multiples of a base unit and must be such that in all scenarios,
all goods can be sent through the network. Our task is to find such capacities at minimum
cost.
We distinguish two different ways to specify the scenarios: In the first problem variant,

we explicitly list all possible situations. In the second variant, the situations are described
implicitly using linear side constraints. Such constraints can model that a given area of the
network receives a certain amount of traffic in all cases or they could limit the amount of
traffic sent to a given node in any scenario. In both cases, we call the resulting problem
the Single-Commodity Robust Network Design Problem (sRND). A typical application that
is described by the sRND model are video-on-demand networks where distributed server
farms deliver movies to paying customers. Here, it is irrelevant to the customer which server
delivers the movie as long as the entire movie arrives.
The above network design problem is a problem of the type “Find a combination of

elementary decisions that obey certain side constraints while incurring minimum cost.” As
such, it is a problem from Combinatorial Optimization. Many combinatorial optimization
problems – and in particular our network design problem – are NP-hard. It is commonly
believed that this means that there can be no algorithm that efficiently finds a best possible
solution on all problem instances. Still, to find reasonably good solutions, we could relax
the quality assumption and require that our algorithm must efficiently find a solution whose
costs are within a constant factor of the optimum costs, on all problem instances. Such an
algorithm is an approximation algorithm. On the other hand, we can relax the requirement
that the algorithm must be efficient on all problem instances, as long as it runs in reasonable
time on those instances that we actually want to solve. One class of algorithms that makes
the latter choice are Branch-and-Bound algorithms.
In 2011, Buchheim, Liers and Sanità [BLS11] proposed a Branch-and-Cut algorithm for

the sRND problem. The algorithm is based on formulating the sRND problem as an Integer
Linear Program. However, it can only handle the case that the scenario set is given as a
finite list and the size of the Integer Linear Program depends on the number of scenarios.
In this thesis, we propose a different Branch-and-Cut algorithm whose underlying integer
linear programming formulation is independent of the number of scenarios. Moreover, it
also works if the scenario set is given by certain linear inequalities.

Outline of the Thesis

Chapter 1 contains a brief introduction into combinatorial optimization and sets the notation
for the later chapters. It covers linear programming, Branch-and-Bound algorithms and
other fundamental concepts of combinatorial optimization, most notably graphs, network
flows and cuts. We formally define the sRND problem in Chapter 2. Additionally, the chapter

Contents 15

covers the related literature on network design and gives a brief introduction into robust
linear programming. In Chapter 3, we cover a special case of the sRND problem where each
scenario has a unique source node and a unique sink node. For this case, there exists a
combinatorial algorithm by Gomory and Hu [GH61] that assumes that the network is a
complete graph with unit costs. We propose a similar algorithm for a family of unit-cost
hypercube instances and show that hypercube instances with binary scenarios are hard
to solve for Branch-and-Bound algorithms. Chapter 4 contains the theoretical foundation
for our Branch-and-Cut algorithm. There, we develop an integer linear programming
formulation for the sRND problem. This formulation is based on so-called cut-set inequalities.
We then strengthen our formulation with 3-partition inequalities and show that these
inequalities can be obtained as {0, 1

2}-cuts. Both the cut-set inequalities and the 3-partition
inequalities are facet-inducing. Our integer linear programming formulation contains an
exponential number of cut-set inequalities. We show in Chapter 5 how to separate the
inequalities. This allows us to solve the linear programming relaxation. If the scenario
set is given as a finite list, the separation is possible in polynomial time. If the scenario
set is given by linear inequalities, the separation problem becomes NP-hard, even if the
linear inequalities are so-called box-constraints. We propose an integer linear programming
based separation algorithm for this case. In Chapter 6, we describe the Branch-and-Bound
algorithm and analyze it computationally. The experiments show that the algorithm
improves on the previous approach by Buchheim, Liers and Sanità [BLS11]. If the number of
scenario is large, it performs better than a commercial solver for integer linear programs and
it provides better root bounds than the commercial solver in all cases. For both descriptions
of the scenario set, the algorithm is able to solve medium sized instances in reasonable time.

Chapter 1

Preliminaries

This chapter contains all basic definitions that will be used throughout the thesis. Its
purpose is to set a consistent notation for the thesis. In addition, the text cites some
fundamental theorems that are explicitly or implicitly used later, aiming – within reasonable
bounds – to make the thesis self-contained. All definitions and results here are standard and
can be found, along with their proofs, in various text books on combinatorial optimization,
in particular the ones by Schrijver [Sch86], Nemhauser and Wolsey [NW88], Korte and
Vygen [KV12], and the extensive lecture notes by Grötschel [Grö04]. The textbook by
Ahuja, Magnanti and Orlin [AMO93] is a good additional reference for the part on network
flow theory. All of these references were used as a source for the present text.

18 1.1 Basic Linear Algebra

1.1 Basic Linear Algebra
The linear algebra part of the chapter mostly follows the exposition in [Grö04].

1.1.1 Vectors and Functions
Throughout this thesis, we assume that vectors x = (x1, . . . , xn)T ∈ Rn are column vectors
and denote them with lowercase letters. If we want to stress the geometric interpretation
of x, we call x a point. We interpret functions φ : S → R over some finite, ordered set
S := {s1, . . . , sn} as vectors φ = (φ(s1), . . . , φ(sn))T ∈ Rn and write RS := {φ | φ : S → R}
for the set of all functions from S to R. Following this notation, the image of si ∈ S under
φ is φi ∈ R. We write xTy = ∑n

i=1 xi · yi for the inner product of x, y ∈ Rn. For two
sets X,Y ⊆ Rn the Minkowski sum X + Y denotes the set {x + y | x ∈ X, y ∈ Y }. If
Y = {y} consists of a single vector y, we write X + y as a shorter form for X + {y}.

1.1.2 Matrices
A matrix A ∈ Rm,n has m rows and n columns. We denote matrices with capital letters.
Consequently, we write the entry in the i-th row and the j-th column of A as aij . We use
ai∗ ∈ Rn to refer to the (transposed) i-th row of A and a∗j ∈ Rm to refer to its j-th column.
For a set I ⊆ {1, . . . ,m}, we denote the submatrix that consists of the rows (ai∗)i∈I as AI∗
and we write A∗J to denote the columns (a∗j)j∈J indexed by a set J ⊆ {1, . . . , n}.

1.1.3 Combinations of Vectors, Subspaces and Convexity
We say that a vector xk+1 ∈ Rn is a linear combination of k vectors x1, . . . , xk ∈ Rn if
there exists a λ ∈ Rk such that λ1x1 + · · ·+ λkx

k = xk+1. Moreover, the vector xk+1 is a
• conic combination of x1, . . . , xk if additionally λ ≥ 0.

• affine combination of x1, . . . , xk if additionally ∑k
i=1 λi = 1.

• convex combination of x1, . . . , xk if it is both a conic and an affine one.
The (linear) subspace of Rn induced by all linear combinations of x1, . . . , xk ∈ Rn is the
span

span({x1, . . . , xk}) :=
{ k∑
i=1

λix
i
∣∣∣ λ ∈ Rk

}
⊆ Rn

of {x1, . . . , xk}. Likewise, we call the set of all conic combinations of x1, . . . , xk ∈ Rn the
conic subspace (or cone)

cone({x1, . . . , xk}) :=
{ k∑
i=1

λix
i
∣∣∣ λ ∈ Rk≥0

}
⊆ Rn

spanned by x1, . . . , xk, we say that the set of all affine combinations of x1, . . . , xk ∈ Rn is
the affine subspace spanned by x1, . . . , xk

aff({x1, . . . , xk}) :=
{ k∑
i=1

λix
i
∣∣∣ λ ∈ Rk ∧

k∑
i=1

λi = 1
}
⊆ Rn

Chapter 1 – Preliminaries 19

and call the set of all convex combinations of x1, . . . , xk ∈ Rn the convex subspace
spanned by x1, . . . , xk

conv({x1, . . . , xk}) :=
{ k∑
i=1

λix
i
∣∣∣ λ ∈ Rk≥0 ∧

k∑
i=1

λi = 1
}
⊆ Rn.

We also refer to the latter set as the convex hull of x1, . . . , xk.
Any vector x = ∑k

i=1 λix
i ∈ aff(x1, . . . , xk) ⊆ Rn can be equivalently written as x =

x1 +∑k
i=2 λi(xi − x1) because it holds that

x = x1 +
k∑
i=2

λi(xi − x1) = x1 +
k∑
i=2

λix
i − x1 ·

k∑
i=2

λi = x1 +
k∑
i=2

λix
i − x1(1− λ1)

= x1 +
k∑
i=2

λix
i − x1 + λ1x

1 =
k∑
i=1

λix
i.

It follows that aff(x1, . . . , xk) = x1 + span(x2 − x1, . . . , xk − x1), i.e., the affine subspace
spanned by x1, . . . , xk is the linear subspace spanned by x2 − x1, . . . , xk − x1 translated by
the x1 vector.

1.1.4 Independence of Vectors

A non-empty set X = {x1, . . . , xk} ⊆ Rn of vectors is linearly/affinely independent if
for all i = 1, . . . , k, the element xi does not lie in the linear/affine subspace induced by
X \ {xi}. We define that the empty set is linearly dependent, but affinely independent.
By choosing λ = 0, we observe that 0 ∈ span({x1, . . . , xk}) and that therefore, any set of
vectors containing the zero vector is linearly dependent. Thus, the vectors in X are linearly
independent if and only if ∑k

i=1 λix
i 6= 0 for all λ ∈ Rk \ {0}. We can check if a set of

vectors is affinely independent by moving the subspace that it spans into the origin: The
vectors x1, . . . , xk are affinely independent if and only if x2 − x1, . . . , xk − x1 are linearly
independent. Linear independence implies affine independence, but the converse is only
true if the space spanned by the affinely independent vectors is a proper affine space, i.e., if
it does not contain the origin. This is a standard result in linear algebra.

Lemma 1.1. Let x1, . . . , xk ∈ Rn, k ≤ n, be affinely independent vectors. Then, the
x1, . . . , xk are linearly independent if and only if 0 6∈ aff(x1, . . . , xk)

Proof. If 0 ∈ aff(x1, . . . , xk), there is some λ ∈ Rk with 0 = ∑k
i=1 λix

i and ∑k
i=1 λi = 1. In

particular, λ 6= 0 and the x1, . . . , xk are linearly dependent.
For the other direction, assume that 0 6∈ aff(x1, . . . , xk) and that x1, . . . , xk are linearly

dependent, i.e., ∑k
i=1 λix

i = 0 for some λ 6= 0. If ∑k
i=1 λi = 0, we have λ1 = −∑k

i=2 λi and
it follows

0 =
k∑
i=1

λix
i =

k∑
i=2

λix
i + λ1x

1 =
k∑
i=2

λix
i −

k∑
i=2

λix
1 =

k∑
i=2

λi(xi − x1).

20 1.2 Polyhedral Theory

Now, the λ2, . . . , λk cannot all be zero, as otherwise we would have λ1 = 0, too, and then
λ = 0. Consequently, x1, . . . , xk are affinely dependent – a contradiction.
Otherwise, set µ := ∑k

i=1 λi 6= 0 and then

k∑
i=1

λix
i = 0 ⇐⇒

k∑
i=1

λi
µ
xi = 0 ⇐⇒

k∑
i=1

λ′ix
i = 0

for λ′i = λi/µ. This is in contradiction to our assumption, because together with the fact
that ∑k

i=1 λ
′
i = 1 it implies that 0 ∈ aff(x1, . . . , xk).

1.1.5 Dimension

The dimension dimX of a set X ⊆ Rn is the cardinality of a largest affinely independent
subset of X, minus one. In particular, the dimension of span(x1, . . . , xk) is n if and only
if the cardinality of a largest linearly independent subset of span(x1, . . . , xk) is n: Let
{y1, . . . , yn} be such a set. Then yi 6= 0 for all i = 1, . . . , n and {0, y1, . . . , yn} is a subset of
span(x1, . . . , xk) that contains n+ 1 affinely independent vectors (we observe that yi − 0,
i = 1, . . . , n, are linearly independent). On the other hand, the existence of n′ > n + 1
affinely independent vectors would imply the existence of n′ − 1 > n linearly independent
vectors in span(x1, . . . , xk). As we have previously observed, the affine subspace induced
by x1, . . . , xk can be written as x1 + span({x2 − x1, . . . , xk − x1}). Its dimension is exactly
the dimension of span(x2 − x1, . . . , xk − x1). We say that X ⊆ Rn is full-dimensional if
dimX = n.

1.1.6 Hyperplanes and Half-Spaces

A hyperplane in Rn is an affine subspace of dimension n− 1. Hyperplanes are exactly the
subspaces that can be written as

Ha,b :=
{
x ∈ Rn

∣∣ aTx = b
}
⊆ Rn

for some a ∈ Rn and b ∈ R. A halfspace in Rd is a set of the form{
x ∈ Rn

∣∣ aTx ≥ b
}
⊆ Rn

and its boundary is the hyperplane Ha,b.

1.2 Polyhedral Theory
The presentation of polyhedral theory and linear programming is mainly based on the
textbooks by Nemhauser and Wolsey [NW88] and Schrijver [Sch86].

1.2.1 Convex Sets, Extreme Points and Rays

We say that a set X ⊆ Rn is convex if for any two points x, y ∈ X the line between x and
y is contained in X, i.e., if λx+ (1− λ)y ∈ X for any λ ∈ [0, 1]. The linear, the conic, the

Chapter 1 – Preliminaries 21

affine and the convex subspace spanned by any x1, . . . , xk ∈ Rn are all convex sets, as is
any half-space.
Let now X ⊆ Rn be any convex set. A point x ∈ X is an extreme point of X if x

does not lie strictly between two points in X, i.e., if there are no y, z ∈ X \ x such that
x = 1

2y + 1
2z. Moreover, x ∈ X is an interior point of X if there is an ε > 0 such that the

open ball of radius ε around x completely lies in X, i.e., if x + {y ∈ Rn | ‖y‖ < ε} ⊆ X.
Lastly, x ∈ X is an inner point of X if it is neither an extreme nor an interior point of X.
A convex set X ⊆ Rn is unbounded if there are vectors x, r ∈ Rn such that x+ λr ∈ X

for all λ ≥ 1. We call r a unbounded direction or ray of X. Analogously to extreme
points, a ray r is an extreme ray if it cannot be obtained as a convex combination of other
rays, i.e., if there are no rays r1, r2 ∈ Rn \ r such that r = 1

2r
1 + 1

2r
2.

1.2.2 Polyhedra

A polyhedron is the intersection of finitely many half-spaces, i.e., a set of the form

PA,b =
{
x ∈ Rn

∣∣ Ax ≥ b}
where A ∈ Rm,n is a matrix and b ∈ Rm is a vector. Sets of the form {x ∈ Rn≥0 | Ax ≤ b}
are polyhedra as well; they can be rewritten as {x ∈ R≥0 | (−A)x ≥ −b}. The intersection
of finitely many polyhedra is a polyhedron. In particular, a set {x ∈ Rn≥0 | Ax = b} is a
polyhedron because it is the intersection of {x ∈ Rn≥0 | Ax ≥ b} and {x ∈ Rn≥0 | Ax ≤ b}.
We use the Fraktur typeface to denote polyhedra. Being the intersection of convex sets, PA,b

is convex, too. We say that a polyhedron P is rational if there exists a matrix A ∈ Qm,n

and a vector b ∈ Qm such that P = {x ∈ Rn | Ax ≥ b}. Throughout this thesis, we only
consider rational polyhedra and given that we want to represent polyhedra in a computer,
this is a reasonable assumption.
If P is bounded, we say that P is a polytope. In this case, there exists a B ∈ R such

that ‖x‖ ≤ B for all x ∈ P.
We say that the inequality aTx ≥ b is valid for a polyhedron P if it is satisfied by all

x ∈ P or, equivalently, if P ⊆ {x ∈ Rn | aTx ≥ b}. A subset F ⊆ P is a face of P if there is
a valid inequality aTx ≥ b for P such that F = {x ∈ P | aTx = b}. In this case, we say that
aTx ≥ b induces the face F. We observe that F is a polyhedron. If F is non-empty, we say
that aTx ≥ b supports P. A non-empty face F of P is a facet of P if dimF = dimP− 1.
It is a vertex of P if dimF = 0. A vector x ∈ P is an extreme point of P if and only if {x}
is a 0-dimensional face of P. We therefore use vertex and extreme point interchangeably in
the sequel. We can determine the dimension of any face F of PA,b by checking the rank of
the rows of Ax ≥ b that are exactly satisfied by F.

Lemma 1.2 (Proposition 2.4 in [NW88]). Let PA,b =
{
x ∈ Rn

∣∣ Ax ≥ b
}
⊆ Rn be a

polyhedron and let F be a face of P. If we define the set I := {i | aT
i∗x = b for all x ∈ F},

then
dimF = n− rank(AI∗ | bI)

where (AI∗ | bI) is the subsystem of Ax ≥ b that consists of the rows indexed by I.

22 1.2 Polyhedral Theory

Our definition of a polyhedron characterizes polyhedra with a finite number of linear
inequalities, its linear description. The importance of facets lies in the fact that they are
necessary for the linear description of P in the following sense.

Theorem 1.3 (Theorem 3.5 in [NW88]). Any polyhedron P has a (inclusion-wise) minimal
description by linear inequalities that is unique up to scalar multiplication and there is a
one-to-one correspondence between the facets of P and the inequalities in the minimal linear
description.

In particular, any polyhedron PA,b has a finite number of facets, namely at most as many
as there are rows in A. Equivalently, we can characterize a polyhedron by its vertices and
extreme rays.

Theorem 1.4 (Theorem 4.8 in [NW88]). A set P ⊆ Rn is a polyhedron if and only if it
can be written as

P = conv(x1, . . . , xk) + cone(y1, . . . , yl)

where x1, . . . , xk ∈ Rn are its vertices and y1, . . . , y` ∈ Rn are its extreme rays.

In particular, the number of vertices and extreme rays of any polyhedron is finite.

Corollary 1.5. Any extreme point x of PA,b ⊆ Rn is the intersection of n linearly inde-
pendent hyperplanes defined by the rows of Ax ≥ b. Consequently, the polyhedron PA,b can
have at most

(m
n

)
vertices, where m is the number of rows in A.

If a polyhedron is bounded, i.e., if it is a polytope, we do not need the conic part of the
description.

Corollary 1.6 (Theorem 3.31 and Corollary 3.32 in [KV12]). A set P ⊆ Rn is a polytope
if and only if it can be written as

P = conv(x1, . . . , xk)

where x1, . . . , xk ∈ Rn are the vertices of P.

It is possible to convert between a linear description and a description by extreme points
and rays, but only at the expense of the size of the description.

Example 1.7. The n-dimensional unit hypercube polytope defined by

Cn =
{
x ∈ Rn

∣∣ 0 ≤ xi ≤ 1 for all i = 1, . . . , n
}

has a linear description of size Θ(n). Yet, any vector x ∈ {0, 1}n satisfies n linearly
independent inequalities with equality and is thus a vertex of Cn. Thus, the hypercube
polytope has 2n vertices.

In practice, we use software like PORTA [CL08] or Polymake [GJ00] for the conversion.
Due to the exponential worst-case running time of the algorithms and the huge output size,
however, the conversion is only feasible for small polytopes.

Chapter 1 – Preliminaries 23

1.3 Linear Programming
Linear programming is the task to optimize a linear objective function over a polyhedron
and a linear program (LP) is given by a system

min
n∑
j=1

cjxj (1.1)

s.t.
n∑
j=1

aijxj ≥ bi for all i = 1, . . . ,m

xj ≥ 0 for all j = 1, . . . , n

of linear inequalities and a linear objective function
∑n
j=1 cjxj . We call the i-th row

aT
i∗x ≥ bi of the system the i-th constraint and call xj the j-th variable. The vector b

defines the right-hand side of the constraints.
The above form of the linear program is the standard form that we will use throughout this

thesis. Still, it is straight-forward to include different types of constraints in the program:
Constraints of the form aTx ≤ b can be included by multiplying both sides with −1 and
we can include constraints of the form aTx = b by adding both the constraints aTx ≥ b
and aTx ≤ b. Likewise, the assumption that x ≥ 0 is without loss of generality, as two
variables y − z = x with y, z ∈ R≥0 model a general variable x ∈ R. In order to maximize
the objective function ∑n

j=1 cjxj , one can minimize −∑n
j=1 cjxj instead.

Given a vector x ∈ Rn, we say that the slack of the inequality aTx ≥ b at x is

slack(a, b, x) = b− aTx.

If the slack of aTx ≥ b at x is zero, we say that the inequality is tight at x. We say
that aTx ≥ b is satisfied by x if slack(a, b, x) ≥ 0 and that aTx ≥ b is violated by x if
slack(a, b, x) < 0. In the latter case, let

viol(a, b, x) = − slack(a, b, x) = aTx− b

be the violation of aTx ≥ b at x.

1.3.1 Optimum Solutions
The feasible region {x ∈ Rn≥0 | Ax ≥ b} of min{cTx | x ∈ Rn≥0 s.t. Ax ≥ b} is a
polyhedron PA,b. If PA,b is empty, we say that the program is infeasible. If on the other
hand min{cTx | x ∈ Rn≥0 s.t. Ax ≥ b} = −∞, we say that the program is unbounded.
Theorem 1.8 (Theorem 1.8 in [KV12]). If a linear program is neither infeasible nor
unbounded, then the objective function attains the optimum.

We use this fact as a justification to not distinguish minima and infima in this case. If a
linear program has an optimum solution, i.e., if it is neither infeasible nor unbounded, it is
well-known that this optimum solution can be attained in a vertex of the polyhedron.
Theorem 1.9 (Theorem 4.5 in [NW88]). If the linear objective function cTx attains a
minimum/maximum on a polyhedron PA,b, then it attains a minimum/maximum in a vertex
of PA,b, respectively.

24 1.3 Linear Programming

1.3.2 Duality

Duality provides certificates for optimality in the following way. Any conic combination
m∑
i=1

λi

n∑
j=1

aijxj ≥
m∑
i=1

λibi with λ ≥ 0

of the inequalities in A is a valid inequality for PA,b and we can rewrite that inequality
equivalently as

n∑
j=1

xj

m∑
i=1

aijλi ≥
m∑
i=1

λibi with λ ≥ 0.

Thus, if λ ≥ 0 is chosen such that ∑m
i=1 aijλi ≤ cj for all j = 1, . . . , n, we obtain

n∑
j=1

cjxj ≥
n∑
j=1

(
m∑
i=1

λiaij)xj =
m∑
i=1

λi

n∑
j=1

aijxj ≥
m∑
i=1

λibi.

This proves that for any λ ≥ 0 with ∑m
i=1 aijλi ≤ cj for all j = 1, . . . , n, the sum ∑m

i=1 λibi
is a lower bound on the objective function. We will see that maximizing this sum over all
valid choices of λ provides the best possible lower bound. The maximization corresponds to
the following program.

max
m∑
i=1

biλi (1.2)

s.t.
m∑
i=1

aijλi ≤ cj for all j = 1, . . . , n

λi ≥ 0 for all i = 1, . . . ,m

Program (1.2) is again a linear program. It has a variable for each constraint in (1.1) and a
constraint for each variable in (1.1). We call it the dual of the primal program (1.1) and
the dual program of (1.2) is again the program (1.1). In matrix notation, the dual reads
max{bTλ | λ ∈ Rm s.t. ATλ ≤ c}. By the above argumentation, it is true that bTλ ≤ cTx
for all feasible solutions x, λ of (1.1) and (1.2), respectively, and this observation is called
the weak duality principle. However, these feasible solutions do not necessarily exist.

Theorem 1.10 (Proposition 2.2 and Corollary 2.5 in [NW88]). Consider a pair of a primal
linear program min{cTx | Ax ≥ b, x ∈ Rn≥0} and its dual max{bTλ | ATλ ≤ c, λ ∈ Rm≥0}.
It holds:
1. If the primal program is infeasible, then the dual program is either infeasible as well or

it is unbounded.
2. If the primal program is unbounded, then the dual program is infeasible.
3. The primal program is feasible and bounded if and only if the dual program is feasible

and bounded. In this case, we have bTλ ≤ cTx for any pair λ, x of feasible solutions.

Chapter 1 – Preliminaries 25

And of course, the converse is also true: If the dual is infeasible, then the primal is either
infeasible or unbounded. An unbounded dual program implies an infeasible primal one. A
useful criterion for feasibility is Farkas’ Lemma, see Theorem 2.7 in [NW88].

Lemma 1.11 (Farkas’ Lemma). A primal problem in standard form is feasible (i.e.,
{x ∈ Rn≥0 | Ax ≥ b} 6= ∅) if and only if bTλ ≤ 0 for all λ ∈ Rm≥0 with ATλ ≤ 0.

Equivalently, the primal program given by {x ∈ Rn≥0 | Ax ≥ b} is feasible if and only if
max{bTλ | ATλ ≤ 0, λ ∈ Rm≥0} ≤ 0. If both the primal and the dual program have a feasible
solution, however, the bound provided by the dual program is tight.

Theorem 1.12 (Theorem 2.4 and Proposition 2.6 in [NW88]). Consider a pair of a primal
linear program min{cTx | Ax ≥ b, x ∈ Rn≥0} and its dual max{bTλ | ATλ ≤ c, λ ∈ Rm≥0}.
Let x ∈ Rn≥0 be a feasible solution for Ax ≥ b and let λ ∈ Rm≥0 be a feasible solution for
ATλ ≤ c. Then the following statements are equivalent.
1. The vectors x and λ are optimum for their respective programs.
2. We have cTx = bTλ.
3. For all j = 1, . . . , n with xj > 0 we have

∑m
i=1 aijλi = cj and for all i = 1, . . . ,m with

λi > 0, we have
∑n
j=1 aijxj = bi. This means that if the inequality defined by the j-th

row of (A, b) is not tight, then the corresponding dual variable must be zero; and that if
the dual inequality given by the i-th row of (AT , c) is not tight, then the corresponding
primal variable must be zero.

Property 2 is often referred to as the strong duality principle and Property 3 is called
complementary slackness.

1.3.3 Cutting Plane Algorithms
Linear Programs can be solved in a time that is polynomial in the size of the constraint
system Ax ≥ b. For some problems, however, there are linear programming formulations
whose size is exponential in the input size of the problem. Thus, it is inefficient to solve the
entire linear program with a linear programming solver.

Still, in order to optimize a fixed objective function cTx over the system, we do not need
a full description of PA,b. Theoretically, it is enough to know n rows of (A, b) that define
an optimum vertex of PA,b with respect to cTx. However, finding these n constraints is as
hard as solving the original problem. It still shows that if we fix the objective function, we
can omit certain constraints without changing the optimum solution.
Cutting plane algorithms exploit this idea. Such an algorithm starts by solving a small

subproblem min{cTx | A1x ≥ b1}, obtaining a first solution x1. It then needs to solve the
separation problem: Find a row of row aT

i∗x ≥ bi of Ax ≥ b such that aT
i∗x

1 < bi or prove
that none such row exists. If a new row is found, the algorithm adds it to the current
subsystem and since this new row cuts off the current solution x1, it is called a cutting
plane or simply a cut. Otherwise, no more cutting planes can be found and the algorithm
stops with a solution x∗. This solution x∗ is feasible for Ax ≥ b, because if it were not, the
algorithm would have found another cutting plane. It is also optimum for Ax ≥ b, because
any solution for Ax ≥ b is feasible for all subsystems that the algorithm considers.

26 1.3 Linear Programming

It can happen that the separation problem is NP-hard to solve or that the algorithm
needs to perform an exponential number of iterations to solve the linear program. We will
see examples for both cases later. However, a famous theorem tells us that (up to certain
technical conditions) the separation problem is polynomial time solvable if and only if the
original problem is polynomially solvable. This theorem is generally attributed to Grötschel,
Lovász and Schrijver [GLS81; GLS84] and, according to Korte and Vygen [KV12], it was
independently discovered by Karp and Papadimitriou [KP80; KP82] as well as Padberg and
Rao [PR81]. It not only holds for polyhedra, but also for general convex sets.
If an algorithm can find some cutting planes but cannot prove that no more cutting

planes exist, we say that the algorithm is a heuristic separation algorithm. Otherwise,
the algorithm is an exact separation algorithm.
Generating a violated cutting plane for the dual problem corresponds to generating a

variable that improves the objective value for the primal problem. This method is called
column generation. The problem of finding an improving variable is called pricing
problem.

1.3.4 Integer Linear Programs
Many optimization problems can be modeled more easily by restricting a subset of the
variables to integer values. Such variables can model binary decisions or indivisible goods
that only exist in multiples of some base unit. We a resulting problem of the form

min
{
cTx+ dTy

∣∣ (x, y) ∈ Zn1
≥0 × Rn2

≥0 such that Ax+By ≥ b
}

(1.3)

a Mixed Integer Linear Program (or MIP) if both integer and general variables are
present. If the program only has integer variables, we say that it is an Integer Linear
Program (or IP). The convex hull

PA,B,b = conv
{
(x, y) ∈ Zn1

≥0 × Rn2
≥0
∣∣ Ax+By ≥ b

}
of the set of integer feasible solutions is again a polyhedron. We say that (x, y) ∈ PA,B,b

is an integer solution or integer feasible if x is integer. All vertices of PA,B,b are integer
feasible.

Therefore, there is an equivalent formulation of (1.3) as a linear program without integer
variables. In general, however, the size of this formulation can be exponential in the size
of (1.3) and in fact, optimizing a general MIP is NP-hard [Kar72].
A classical approximation of this mixed integer linear program is the linear program-

ming relaxation (LP relaxation) of (1.3)

min
{
cTx+ dTy

∣∣ (x, y) ∈ Rn1
≥0 × Rn2

≥0 such that Ax+By ≥ b
}

(1.4)

by removing the integrality condition on the x variables. Its feasible region

P̃A,B,b =
{
(x, y) ∈ Rn1

≥0 × Rn2
≥0
∣∣ Ax+By ≥ b

}
(1.5)

is an outer approximation of PA,B,b, i.e., it holds that PA,B,b ⊆ P̃A,B,b. We say that
(x, y) ∈ P̃ \P is a fractional solution or fractionally feasible. By cutting off fractional

Chapter 1 – Preliminaries 27

−x +y ≤ 2.5
x +y ≤ 3.5
x −y ≤ 2.5
−x −y ≤ 1.5

x, y ∈ Z

Figure 1.1: The picture shows a 2-dimensional lattice. The blue points are the feasible solutions of
the integer linear program on the right; the blue region depicts their convex hull. The
feasible region of the corresponding linear programming relaxation is drawn in gray. Its
vertices are not lattice points. In order to equivalently rewrite the integer linear program
as a linear program without explicit integrality conditions, we would need to find the
eight blue facets of the convex hull of its feasible solutions. In red: A valid cutting-plane
that would strengthen the linear programming relaxation. The picture was inspired by
the famous book cover of Schrijver’s textbook on “The Theory of Linear and Integer
Programming” [Sch86].

solutions of P̃A,B,b with cutting planes, we can bring the LP relaxation closer to the original
MIP (see next subsection). The situation is illustrated by Figure 1.1.
If all vertices (x, y) of the LP relaxation P̃A,B,b are integer feasible, we have PA,B,b =

P̃A,B,b. We can thus remove the integrality conditions without changing the problem. This
happens independently of the choice of any integer b ∈ Zm if and only if the determinant of
each square submatrix of the constraint matrix A is 1, −1 or 0. In this case, the matrix A
is totally unimodular.

Lemma 1.13 (Proposition 2.1 in [NW88]). The following statements are equivalent.

1. The matrix A ∈ Rm,n is totally unimodular.
2. The transpose AT of A is totally unimodular.
3. A matrix obtained by deleting a row of A that is a unit vector is unimodular.
4. A matrix obtained by multiplying a row of A by −1 is totally unimodular.

Chvátal-Gomory Cuts

Parts of this subsection are based on the concise but very useful introduction to Chvátal-
Gomory cuts by Fischetti and Lodi [FL07] and the one by Caprara and Fischetti [CF96].
These cutting planes provide one possibility to derive a complete linear description of the
convex hull of integer feasible solutions. For any given linear program Ax ≥ b with a
constraint matrix A = (aij) ∈ Zm×n and vectors x ∈ Rn, b ∈ Zm one can generate a valid

28 1.3 Linear Programming

inequality for Ax ≥ b by computing an arbitrary conic combination with coefficients λ ≥ 0
m∑
i=1

λi

n∑
j=1

aijxj ≥
m∑
i=1

λibi (1.6)

of the rows of Ax ≥ b. By rounding up the left-hand side coefficients, we know that the value∑n
j=1d

∑m
i=1 λiaijexj of the left-hand side will be integer for any integer x. The inequality

therefore remains valid if we round up the right-hand side of (1.6) to the next integer as
well. We thus obtain

n∑
j=1

⌈ m∑
i=1

λiaij
⌉
xj ≥

⌈ m∑
i=1

λibi
⌉

(1.7)

as a valid inequality for Ax ≥ b, x ∈ Z. If the right-hand side of (1.6) is not integer, the
inequality (1.7) can be used to cut off fractional solutions of a linear program. It is generally
referred to as a Chvátal-Gomory Cut and is due to Gomory [Gom58] and Chvátal [Chv73].

We define the linear description that arises from taking all Chvátal-Gomory cuts over the
original formulation Ax ≥ b as the first Chvátal-Gomory closure

G1(A, b) :=
{
x ∈ Rn≥0

∣∣∣ Ax ≥ b ∧ ⌈λTA
⌉
x ≥

⌈
λTb

⌉
for all λ ∈ Rm≥0

}
.

Chvátal [Chv73] showed that even though the definition of G1 includes an inequality for
every λ ∈ Rm≥0, a finite number of inequalities suffice to define G1. Thus, the first Chvátal-
Gomory closure G1(A, b) is a polyhedron. By iterating the process, we define the i-th
Chvátal-Gomory closure as the first Chvátal-Gomory closure of the (i − 1)-th, i.e., we
set Gi(A, b) := G1(Gi−1(A, b)) which is again a polyhedron by induction. We say that a
Chvátal-Gomory cut is of rank i if the i-th Chvátal-Gomory closure is the first that contains
the cut.
If all variables of Ax ≥ b are integer and bounded by some value B, then for some finite

i ∈ Z≥0, the i-th Chvátal-Gomory closure exactly describes the convex hull of all integer
feasible solutions, i.e.,

conv
{
x ∈ [0, B]n ∩ Zn

∣∣ Ax ≥ b} = Gi(A, b)

for some finite i ∈ Z≥0. However, the correct value of i can be very large. Moreover, the
separation problem for Chvátal-Gomory cuts is NP-hard [Eis99]. This is why practical
algorithms usually separate Chvátal-Gomory cuts heuristically.

The Special Case of Zero-Half Cuts

Caprara and Fischetti [CF96] consider the special case that λi ∈ {0, 1
2} for all i = 1, . . . ,m

and refer to the resulting cuts as {0, 1
2}-Chvátal-Gomory cuts (or, simply {0, 1

2}-cuts). This
special case will be of importance in the later chapters and we take some time to find a
necessary condition for a {0, 1

2}-cut to be violated. Assume for the analysis that λ is chosen
such that the left-hand side coefficients are integer and do not need to be rounded. Then,
building a {0, 1

2}-cut is equivalent to selecting some subset I ⊆ {1, . . . ,m} of the constraints
and then computing the inequality

1
2 ·
∑
i∈I

n∑
j=1

aijxj ≥
⌈1

2
∑
i∈I

bi
⌉
.

Chapter 1 – Preliminaries 29

The violation of a {0, 1
2}-cut with respect to some fractional solution x∗ is

viol(I, x∗) :=
∑
i∈I

viol(ai∗, bi, x∗) =
⌈1

2 ·
∑
i∈I

bi
⌉
−
∑
i∈I

1
2

n∑
j=1

aijx
∗
j .

In order to use {0, 1
2}-cuts in a cutting plane algorithm, we often wish to maximize the

violation or, at the very least, to find a {0, 1
2}-cut with viol(I, x∗) > 0. It is well-known that

viol(I, x∗) is inversely proportional to the sum of the slacks of the participating inequalities

slack(I, x∗) :=
∑
i∈I

slack(ai∗, bi, x∗) =
∑
i∈I

(n∑
j=1

aijx
∗
j − bi

)
due to the following analysis.

viol(I, x∗) =
⌈1

2 ·
∑
i∈I

bi
⌉
− 1

2
∑
i∈I

n∑
j=1

aijx
∗
j

=
⌈1

2 ·
∑
i∈I

bi
⌉
− 1

2
∑
i∈I

bi −
1
2
∑
i∈I

slack(ai∗, bi, x∗)

The resulting {0, 1
2}-cut is never violated by any fractionally feasible x∗ if ∑i∈I bi is even;

in that case, the rounding does not increase its right-hand side and the cut is a linear
combination of the rows in A. This is consistent with the above analysis: If x∗ is fractionally
feasible for Ax ≥ b, the slack slack(ai∗, bi, x∗) of all rows i ∈ I is non-negative. This implies
that viol(I, x∗) ≤ 0 if ∑i∈I bi is even.
If otherwise ∑i∈I bi is odd, then the violation of the resulting cut is exactly

1
2 −

1
2
∑
i∈I

slack(ai∗, bi, x∗).

In particular, the violation is maximum if the inequalities in I are tight at x∗ and decreases
with increasing slacks slack(ai∗, bi, x∗) of the rows i ∈ I. Moreover, if the rows in I have a
total slack of at least 1, the resulting {0, 1

2}-cut is redundant.
Summarizing, it is desirable to use inequalities with low slack, preferably tight inequalities,

to generate a {0, 1
2}-cut. In general, the {0, 1

2}-cut separation problem is NP-hard as
well [CF96].

Branch-and-Bound Algorithms

Modeling combinatorial optimization problems as an MIP is of no use if the resulting
MIP cannot be solved. Still, solving the linear programming relaxation does not always
provide sufficient bounds, even if we strengthen the linear programming relaxation with
additional cutting planes. Thus, we can be stuck with a fractional solution at some point.
Branch-and-Bound algorithms solve this problem by Branching, i.e., they divide the original
problem into several disjoint subproblems such that any integer optimum solution is still

30 1.3 Linear Programming

feasible in at least one of the subproblems while the current fractional solution is cut off in
all of them. The branching is generally done by inserting additional constraints into the
problem or by fixing variables. The algorithm then recurses on the subproblems. We call
the resulting search tree the Branch-and-Bound tree. The root of the tree corresponds
to the original problem while all other nodes correspond to recursively created subproblems.
An extensive introduction to Branch-and-Bound algorithms can be found in [EGJR01]
and [Mar01]. Assuming that the algorithm solves a minimization problem, the Bound
component of a Branch-and-Bound algorithm maintains:

• A local lower bound (LLB), i.e., a minimum value for any integer feasible solution of
a given subproblem.

• A global lower bound (GLB), i.e., a minimum value for any integer feasible solution
of the original problem.

• A global upper bound (GUB), i.e., a maximum value for any integer feasible solution
of the original problem.

The algorithm can obtain locally valid lower bounds by solving any relaxation of the
problem. Typically, computationally easy relaxations are chosen for this part, most notably
the LP relaxation. A global lower bound is given by the minimum of all lower bounds
in any subproblem. Global upper bounds can be obtained by a problem heuristic and
by constructing a feasible solution based on the solution of the relaxation. This latter
step is called exploiting. We call the currently best known integer feasible solution the
incumbent solution.

Whenever the local lower bound in any subproblem is not strictly smaller than the global
upper bound, we know that this subproblem cannot produce a better solution than the one
that we already have. In this case, the subproblem is fathomed and can be closed. The
same is true if the relaxation is infeasible, i.e., if the feasible region of the subproblem is
empty.

A Branch-and-Cut algorithm is a Branch-and-Bound algorithm in which the LP relax-
ation is solved with the cutting plane method. The additional cutting planes can stem from
the original problem formulation, i.e., the LP relaxation itself, they can be problem specific
cuts or they can be general MIP cuts like the Chvátal-Gomory cuts from the previous
subsection. In more detail, a Branch-and-Cut algorithm works as follows. At the root node
of the Branch-and-Bound tree, the algorithm runs a heuristic to initialize the global upper
bound and builds an initial relaxation of the problem. It then adds the root node to a list
of open subproblems.

While the list is not empty, the algorithm selects the next subproblem from the list. The
selection is governed by the selection strategy. The algorithm then starts by solving the
initial LP relaxation of the subproblem If the relaxation is infeasible, the algorithm concludes
that no solution exists, marks the subproblem as fathomed and closes it. Otherwise, the
algorithm has obtained a local lower bound. It now checks if the value of the incumbent
solution is less or equal to this bound. If so, we have proven that the incumbent solution is
best possible for the subproblem, and the subproblem can be fathomed. Otherwise, it might
happen that the solution obtained from the LP relaxation is integer feasible; if so, we have

Chapter 1 – Preliminaries 31

found a new integer feasible solution. The algorithm can then fathom the subproblem and
possibly update the global upper bound. Otherwise, we run an additional heuristic that
tries to build an integer feasible solution from the result of the LP relaxation and possibly
update the global lower bound again. Finally, the algorithm tries to add cutting planes to
the LP relaxation in the hope that the relaxation will produce a better bound or even an
integer solution in the next iteration. If no cutting planes can be found or if the algorithm
discovers that adding new cutting planes does not yield a significant improvement (tailing
off), the algorithm has no choice but to branch, thus creating new subproblems according
to a predefined branching strategy. The algorithm inserts the new subproblems into the
list of open subproblems. A flow chart of the algorithm is depicted in Figure 1.2.
We review some of the algorithmic choices in the algorithm.

Subproblem Selection. The Branch-and-Bound tree is traversed in an order that depends
on how the algorithm progresses through the list of open subproblems. Usually, the algorithm
can traverse the tree in a breadth-first fashion (which stresses the quick generation of
good lower bounds), a depth-first fashion (which stresses the quick generation of feasible
solutions) or in best-first fashion. In the latter case, the algorithm will heuristically select
those subproblems first that are expected to yield good bounds.

Branching Strategy. The easiest way to branch is to branch by fixing variables. This
strategy first selects branching variable candidates according to a variable selection rule,
ranks them and then proceeds to branch on the variable xi of highest rank. In the case
of binary variables, this will create one subproblem where xi is fixed to zero and another
subproblem where xi is fixed to one. If xi is an integer variable and has a value of x∗i in the
current solution of the LP relaxation, we create one subproblem where the upper bound of
xi is changed to bx∗i c and another subproblem where the lower bound of xi is changed to
bx∗i c + 1. Branching on constraints is a generalization of this strategy. Suppose that
the solution x∗ of the current LP relaxation obeys aTx∗ = b for some a ∈ Zn and b ∈ R \ Z.
Then we remove no integer point by creating one subproblem with the additional constraint
aTx ≤ bbc and another one with the additional constraint aTx ≥ bbc+ 1.

Branching Variable Selection and Ranking. Apart from special cases, it only makes
sense to branch on variables that have a fractional value in the solution of the current LP
relaxation. An easy way to rank these variables is by fractionality, i.e., a variable has a
higher rank if the fractional part of its value in the current LP relaxation is close to 0.5. Ties
can be broken by ranking variables with large objective function coefficient higher. More
sophisticated ranking strategies simulate the outcome of a possible branching by tentatively
fixing a variable according to a branching rule and then solving the resulting LP relaxation.
In order to decrease the running time of this procedure, the solution algorithm for the LP
relaxation is often stopped after a constant number of iterations. The procedure yields two
estimate values for every branching variable candidate and proceeds by selecting one of the
variables whose estimates are not dominated by the others. We call this process Strong
Branching.

32 1.3 Linear Programming

Start

Initialize

Unfathomed sub-
problem exists?Select subproblem Done.

Activate

Solve LP

LP infeasible?

Is GUB < lpval?

Is LP solu-
tion feasible?

Separate

Cutting
planes found?

Deactivate

Is LP solution
integer feasible?

Fathom subproblem
and update GLB

Exploit LP and
update GUB

Update GUB

Solve subproblem

no

yes

no

yes

no

yes yes

no

no

yes

Branch and create
new subproblems

yes no

Figure 1.2: A flow-chart of a typical Branch-and-Cut algorithm. The chart is a simplified version of
the one in [EGJR01, Figure 9]

Chapter 1 – Preliminaries 33

Constraint Elimination. In order to keep the LP relaxation small, the cutting plane
method can decide to remove constraints that are no longer useful. Typically, a constraint
is considered useful as long as it has small slack and thus constraints are removed if they
have had large slack for a given number of iterations of the cutting plane method (aging).

Tailing off. The Branch-and-Cut algorithm can compare the upper and lower bounds of
a subproblem before and after the insertion of cutting planes. If neither value changes
significantly after a given number of iterations, it makes sense to stop the cutting plane
generation prematurely and to branch instead.

1.4 Graphs and networks
We use the ideas from the previous section to solve network design problems. To that aim,
we model networks as finite graphs. Following common convention, we denote a graph by
the letter G and use the letter V for its set of nodes. If G is an undirected graph, we write
{i, j} to denote an undirected edge1 connecting the nodes i and j. We use the letter E
for the multi-set of edges of G. The multi-set E may contain several edges between a given
pair of nodes. We call such edges parallel. If G is directed, we write (i, j) for an edge (in
this case, we also say arc) from i to j, stressing that the edge has an orientation. We then
denote the multi-set of arcs of G by the letter A. As before, we say that two arcs (i, j) and
(k, l) are parallel if i = k and j = l and they are antiparallel if i = l and j = k. We shall
also convert directed graphs into undirected ones by replacing all arcs (i, j) of a directed
graph by an edge {i, j} and by subsequently removing all parallel edges. We refer to the
resulting graph as the underlying (simple) undirected graph.

In a directed graph, we define the reverse arc of an arc (i, j) as the arc (j, i). The class
of bidirected graphs is a subclass of the directed graphs. For each of its arcs (i, j), a
bidirected graph must contain the reverse arc (j, i). Given an undirected graph G = (V,E),
we define the underlying bidirected graph of G as G↔ = (V,

{
(i, j), (j, i)

∣∣ {i, j} ∈ E}).
Unless otherwise stated, we consider undirected graphs in this thesis.
If φ : A → X is a function that assigns a value from an arbitrary set X to each arc of

a directed graph (V,A), then we write φij = φ(i,j) = φ((i, j)) to denote the image of (i, j)
under φ. Likewise, if (V,E) is an undirected graph instead, we write φij to denote the image
of an edge {i, j} ∈ E under φ : E → X.

1.4.1 Adjacency, Paths and Cycles

If an undirected graph contains an edge {i, j}, we say that i and j are adjacent and
that they are neighbors. We use the symbol δ(i) :=

{
j ∈ V

∣∣ {i, j} ∈ E} to denote the
neighborhood of i. Likewise, we say that two undirected edges e, f ∈ E are adjacent if
they share a common node, i.e., if e ∩ f 6= ∅.

A sequence (e1, . . . , ek) of k ≥ 0 undirected edges from E is called an edge progression
of length k in this thesis. If an edge progression P visits an edge e ∈ E, then we write
e ∈ P . An edge progression is a walk if ei and ei+1 are adjacent in G for all i = 1, . . . , k− 1.
1We also allow the slightly sloppy notation {i, i} to denote a loop connecting node i with itself.

34 1.5 Cuts and flows in networks

In this case, the edge progression can be written as ({i1, i2}, {i2, i3}, . . . , {ik, ik+1}) and we
can equivalently define it by the sequence P = (i1, . . . , ik+1) of nodes that it visits. If
i1, . . . , ik+1 are pairwise different, we say that P is a path from its start node i1 to its
end node ik+1. We call a walk P a cycle if i1 = ik+1 and we say that P is a simple
cycle if additionally i2, . . . , ik are pairwise different, i.e., a simple cycle is a simple path
with i1 = ik+1. A simple cycle that visits all nodes i ∈ V is a Hamiltonian cycle.

We say that i and j are adjacent (or neighbors) in a directed graph G = (V,A) if G
contains an arc (i, j). We use δin(i) :=

{
j ∈ V

∣∣ (j, i) ∈ A
}
and δout :=

{
j ∈ V

∣∣ (i, j) ∈ A
}

to denote the incoming and the outgoing neighborhood of node i, respectively. We set
δ(i) = δin(i) ∪ δout(i) also in this case.
Analogously to the undirected case, we call two arcs (i1, j1), (i2, j2) adjacent if j1 = i2

and say that a sequence (e1, . . . , ek) of k ≥ 0 adjacent arcs is a directed walk. Any
directed walk has the form ((i1, i2), (i2, i3), . . . , (ik, ik+1)) and we can identify it by the
nodes P = (i1, . . . , ik+1) that it visits. If no node is contained twice in P , we say that P is
a directed path and if P starts and ends in the same node, we say that P is a directed
cycle. We call a directed cycle simple if i2, . . . , ik are pairwise different.

1.4.2 Connectivity
Given an undirected graph G = (V,E) and a subset X ⊆ V of its nodes, we say that the
graph G[X] := (X,

{
{i, j} ∈ E

∣∣ i, j ∈ X}) is the induced subgraph of the set X. We say
that an undirected graph G = (V,E) is connected, if for any pair i, j ∈ V of nodes, there
is a path from i to j in G. A connected component of G is a maximal subset X ⊆ V such
that G[X] is connected. A connected graph that does not contain any cycles is a tree. If
for any i ∈ V , a graph G is connected, but G[V \ {i}] is not, then i ∈ V is a cut vertex of
G. Furthermore, if G is connected, but removing the edge {i, j} makes the remaining graph
(V,E \{{i, j}}) disconnected, then {i, j} is a bridge. We call a connected graph G = (V,E)
biconnected if |V | ≥ 2 and G contains no cut vertex. A biconnected component of G
is a maximal subset X of V such that G[X] is biconnected.

1.5 Cuts and flows in networks
A network is a triple N := (V,E, u) consisting of a graph G := (V,E) that has been
augmented by a capacity function u : E → Z≥0 for the edges. The underlying graph G can
be directed or undirected; we speak of a directed or undirected network accordingly.

1.5.1 Cuts
We extend the notion of neighborhoods to sets. In a directed graph G = (V,A), any cut-set
S ⊆ V induces a cut

δout(S) :=
{
(i, j) ∈ A

∣∣ i ∈ S ∧ j ∈ V \ S}.
It consists of all the edges that leave S. Likewise, the set of edges that enter S is

δin(S) :=
{
(j, i) ∈ A

∣∣ i ∈ S ∧ j ∈ V \ S}.

Chapter 1 – Preliminaries 35

Observation 1.14. For any S ⊆ V it holds that δout(S) = δin(V \ S) and vice-versa.

A proper cut-set is a cutset ∅ (S (V . A proper cut-set S is strong if the subgraph
G[S] induced by S and the subgraph G[V \ S] induced by V \ S are both connected. In
a directed network G = (V,A, u), we say that a cut induced by S ⊆ V has a weight of∑

(i,j)∈δout(S) uij . The sets δin(S) and δout(S) coincide in an undirected networkN = (V,E, u)
and any cut-set S ⊆ V induces the undirected cut

δ(S) :=
{
{i, j} ∈ E

∣∣ i ∈ S ∧ j ∈ V \ S}.
of weight ∑{i,j}∈δ(S) uij .

Observation 1.15. For any S ⊆ V it holds that δ(S) = δ(V \ S) and vice-versa.

There is a one-to-one correspondence between undirected cuts δ(S) in an undirected
network N = (V,E, u) and directed cuts δout(S) in the underlying bi-directed network
N↔ = (V,A, ū) where ūij = ūji = uij for all {i, j} ∈ E. Moreover, both cuts have the same
weight. We therefore only consider directed cuts in this chapter.

We also consider partial cuts, i.e., collections of arcs between sets S, T ⊆ V that do not
necessarily span the entire node set. In a directed graph, we write (S : T) = δout(S)∩ δin(T)
to denote the set of arcs that start in S and end in T . If G is an undirected graph, then
(S : T) = δ(S) ∩ δ(T) is the set of edges that have one node in S and one node in T .

Theminimum cut problem asks for a proper cut-set S of minimum weight in a directed
network (V,A, u). It admits a formulation as an integer linear program with a variable xi
for all nodes i ∈ V and a variable yij for all arcs (i, j) ∈ A.

min
∑

(i,j)∈A
uijyij (1.8)

s.t. xi − xj ≤ yij for all (i, j) ∈ A (1.8a)∑
i∈V

xi ≥ 1 (1.8b)
∑
i∈V

xi ≤ |V | − 1 (1.8c)

xi ∈ {0, 1} for all i ∈ V (1.8d)
yij ∈ {0, 1} for all (i, j) ∈ A (1.8e)

The interpretation of the variables is that xi = 1 if and only if i ∈ S; likewise, we have
yij = 1 if and only if (i, j) ∈ δout(S). Constraint (1.8a) ensures that the y variables are set
such that yij = 1 if and only if xi = 1 and xj = 0. Constraints (1.8a) and (1.8b) enforce
that the set S is a proper cut-set. This formulation depends on our assumption that u
is non-negative – if uij < 0 for some arc (i, j) 6∈ δ(S), then any optimum solution must
set yij = 1, even if (i, j) 6∈ δ(S). Moreover, the integrality requirement on the variables
is necessary as the constraint matrix is not totally unimodular. Still, the problem can be
solved with in polynomial time with an algorithm by Gomory and Hu [GH61] or a simplified
version by Gusfield [Gus90].

For two nodes s, t ∈ V , a s-t-cut-set is a cut-set S such that s ∈ S and t ∈ V \ S. The
corresponding cut δout(S) is a s-t-cut and the minimum s-t-cut problem is the problem

36 1.5 Cuts and flows in networks

of finding an s-t-cut with minimum weight. In this case, the formulation (1.8) simplifies to
the following one with the same interpretation of the variables.

min
∑

(i,j)∈A
uijyij (1.9)

s.t. xi − xj ≤ yij for all (i, j) ∈ A (1.9a)
xs = 1 (1.9b)
xt = 0 (1.9c)
xi ∈ [0, 1] for all i ∈ V (1.9d)
yij ∈ [0, 1] for all (i, j) ∈ A (1.9e)

By forcing that xs = 1 and xt = 0 in the constraints (1.9b) and (1.9c), we can guarantee
that s ∈ S and t ∈ V \S in any feasible solution. Without constraints (1.8b) and (1.8c), the
constraint matrix is now totally unimodular and this is why we could remove the integrality
requirement for the variables (formulation (1.9) is a linear program). Still, for the same
reason as before, the formulation only works if u is non-negative.

The complexity of both the minimum cut and the minimum s-t-cut problem depends on
the choice of the weights. If the weights are non-negative, both problems can be solved
in polynomial time while both problems are NP-hard if arbitrary weights are allowed.
McCormick, Rao and Rinaldi give a extensive overview over the intermediate cases [MRR03].
In particular, they show how to compute a minimum cut in polynomial time in the star-
negative case, i.e., if all edges with negative weights are incident to a unique node s. We
briefly repeat their demonstration here because the star negative case will be useful in the
later chapters where we will use it for undirected graphs.

Theorem 1.16 (McCormick, Rao and Rinaldi [MRR03]). Let G = (V,E) be an undirected
graph with a distinct node s ∈ V . If u ∈ RE is such that uij ≥ 0 for all {i, j} with i 6= s,
then a minimum cut on (V,E, u) can be computed in polynomial time.

Proof. If s is the only node of G, the unique cut of cost zero is induced by S = {s}. We
can therefore assume that |V | ≥ 2 and we let U = min{uij | {i, j} ∈ E ∧ uij < 0} be the
smallest negative weight. We can also assume without loss of generality that the edge {s, i}
is present for all i ∈ V \ {s}, because if it is not, we can insert it with zero weight. Now,
build an auxiliary graph G′ by inserting an additional node t along with additional edges
{i, t} of weight |U | for all i ∈ V \ {s}. Then, again for all i ∈ V \ S, increase the weight of
{s, i} by |U |. Any cut in G′ must either cut {s, i} or {i, t} for all i ∈ V \ {s} and therefore,
a set S ⊆ V induces a cut of weight C in G if and only if it induces a cut of weight of
C + |U | · (|V | − 2) in G′. Thus, it suffices to compute a minimum s-t-cut in G′ with respect
to the modified, non-negative weights and this can be done in polynomial time.

Chapter 1 – Preliminaries 37

1.5.2 Single-Commodity Flows

The dual to minimum s-t-cuts are maximum s-t-flows. In a directed network (V,A, u) with
two distinct nodes s and t, a directed s-t-flow is a function f : A→ R≥0 that satisfies the
following two properties.

• Flow balance. At each node except s and t, the incoming flow equals the outgoing
flow, i.e., ∑

(i,j)∈A
fij −

∑
(j,i)∈A

fji = 0 for all nodes j ∈ V \ {s, t}.

• Capacity compliance. The flow respects the capacity of each arc, i.e.,

fij ≤ uij for all arcs (i, j) ∈ E

Here, the value fij is the value that f assigns to the arc (i, j). We call s and t the network’s
source and sink, respectively, and think of s as a node that is used to feed goods into the
network while t is used to extract goods from the network. For simplicity, we also write
(V,A, u, s, t) to quickly specify a network with a source s and a sink t. For any node i ∈ V
we call exf (i) := ∑

(i,j)∈A fji −
∑

(j,i)∈A) fij the excess of node i with respect to f . We
write |f | := − exf (s) and say that |f | is the value of the flow f .

In order to define a flow on an undirected graph G = (V,E) with capacities u ∈ RE≥0, we
replace G the underlying bi-directed graph G↔ = (V,E↔) and then define a flow f on G↔.
For each edge {i, j} ∈ E of G, the flow f consists of two values fij and fji that define the
amount of flow passing over {i, j} from i to j and from j to i, respectively. We require that
fij + fji ≤ uij for all edges {i, j} of G and that f satisfies the flow conservation constraints.
The maximum s-t-flow problem is the problem to find a flow f of maximum value |f |

on a given directed network (V,A, u, s, t). It has a straight forward formulation as a linear
program with an arc flow variable fij for all arcs (i, j) ∈ A.

max
∑

(s,j)∈A
fsj −

∑
(i,s)∈A

fit (1.10)

s.t.
∑

(i,j)∈A
fij −

∑
(j,i)∈A

fji = 0 for all i ∈ V \ {s, t}

0 ≤ fij ≤ uij for all (i, j) ∈ A

This program is the dual of the minimum s-t-cut program (1.9) and therefore, its constraint
matrix is totally unimodular. This means that, as long as the capacities u are integer, there
always exists an integer maximum s-t-flow. Another fact follows from the duality of the
two problems: A maximum s-t-flow has the same value as a minimum s-t-cut. This is Ford
and Fulkerson’s MaxFlow-MinCut-Theorem.

Theorem 1.17 (MaxFlow-MinCut-Theorem [FF54]). Let N = (V,A, u) be a directed
network and let s, t ∈ V . Then the value of a maximum s-t-flow in N is the same as the
value of a minimum s-t-cut with respect to u in N .

38 1.5 Cuts and flows in networks

The reason why network flows are often associated with shipping goods is that they can
be decomposed into source-sink paths.

Lemma 1.18 (Theorem 8.8 in [KV12]). Let N = (V,A, u) be a directed network and let f
be a s-t-flow on N , s, t ∈ V . Then there is a path-cycle decomposition of f , i.e., a finite set
of simple s-t-paths P with a flow assignment π : P → R>0 and a finite set of simple cycles
C with a flow assignment ζ : C → R>0 such that for all (i, j) ∈ A

fij =
∑

p∈P : (i,j)∈P
π(p) +

∑
c∈C : (i,j)∈C

ζ(c)

Moreover, there is a maximum s-t-flow on N such that C is empty in any decomposition.

Using Lemma 1.18 there is a linear program with path flow variables for the maximum
s-t-flow problem. Let P(s, t) be the set of all directed paths from s to t in N .

max
∑

p∈P(s,t)
xp (1.11)

s.t.
∑

p∈P(s,t) : (i,j)∈p
xp ≤ uij for all (i, j) ∈ A

xp ≥ 0 for all p ∈ P(s, t)

Here, variable xp models the amount of flow that is assigned to the s-t-path p. As the
number of variables in this formulation can be exponential, it needs to be solved by column
generation in practice.
There are many combinatorial algorithms for the maximum flow problem, as is seen in

the large overview in [AMO93]. Due to the duality of the problems, these algorithms also
compute minimum s-t-cuts: Given any maximum s-t-flow f , a residual edge with respect to
f is an edge whose capacity is not fully used by f . Using complementary slackness, the
set of nodes S ⊆ V that can reach t with a path of residual edges is a minimum cut if and
only if f is maximum. The same holds for the set of nodes that can be reached from s with
residual edges. Thus, any maximum s-t-flow algorithm can be used to compute a minimum
s-t-cut with non-negative weights.
If the goal is not to maximize the flow but rather to ship a prescribed amount of goods,

we can generalize the flow conservation constraint. Given a supply and demand vector
or a balance vector b ∈ RV that has an entry bi for each i ∈ V , a b-flow is a function
f : A→ R≥0 that satisfies properties similar to those of an s-t-flow:

• Flow balance ∑
(i,j)∈A

fij −
∑

(j,i)∈A
fji = bi for all nodes i ∈ V

• Capacity compliance

fij ≤ uij for all edges {i, j} ∈ E

Chapter 1 – Preliminaries 39

If for some i ∈ V we have bi > 0, then we say that the node i has a supply of bi and
that i is a source. If on the other hand bi < 0, we say that node i has a demand of
|bi| = −bi and that i is a sink. We also call source and sink nodes terminals and all other
nodes intermediate nodes. Lastly, we say that b ∈ RV is balanced if ∑i∈V bi = 0. The
resulting problem is a feasibility problem: Given a network (V,A, u) and a balance vector
b ∈ RV , does there exist a b-flow? The following necessary condition is standard.

Lemma 1.19. Let N = (V,A, u) be a directed network and let b ∈ RV . If there exists a
b-flow on N , then b is balanced.

Proof. Let f be a b-flow on N . From the flow balance conditions, we obtain that∑
i∈V

bi =
∑
i∈V

[∑
(i,j)∈A

fij −
∑

(j,i)∈A
fji
]

=
∑

(i,j)∈A
fij −

∑
(i,j)∈A

fij = 0

Thus, if b is not balanced, we know that no b-flow can exist, independently of the arcs
of the network and the choice of capacities. If b is balanced, however, we can decide the
existence of a b-flow with a single maximum flow computation.

Theorem 1.20 (Section 9.1 in [KV12]). Let N = (V,A, u) be a directed network and let
b ∈ RV be balanced. Construct an auxiliary network N ′ = (V ′, A′, u′) by introducing an
additional source s∗ and an additional sink t∗, connecting all original sources s to s∗ with
an arc (s∗, s) of capacity bs and all original sinks t to t∗ with an arc (t, t∗) of capacity −bt:

V ′ := V ∪ {s∗, t∗}
A′ := A ∪ {(s∗, i) | i ∈ V : bi > 0} ∪ {(i, t∗) | i ∈ V : bi < 0}
u′ij := uij for all (i, j) ∈ A
u′s∗i := bi for all i ∈ V : bi > 0
u′it∗ := −bi for all i ∈ V : bi < 0

Then, there exists a b-flow in N if and only if a maximum s∗-t∗-flow in the auxiliary network
N ′ = (V ′, A′, u′) has a value of

∑
i∈V, bi>0 bi.

A similar construction can be used to polynomially reduce the maximum s-t-flow problem
to a b-flow: Set the flow balance of s and t to an arbitrary value β and −β, respectively.
All other flow balances are set to zero. Then, by doing a binary search on β, the correct
value for the maximum flow can be found. In that sense, the two problems are equivalent.
We can also characterize the existence of b-flows in terms of cuts.

Lemma 1.21. Let N = (V,A, u) be a directed network and let b ∈ RV . If there exists a
b-flow in N , then for all S ⊆ V it holds that∑

(i,j)∈δout(S)
uij ≥

∑
i∈S

bi

40 1.5 Cuts and flows in networks

Proof. Let f be a b-flow and let S ⊆ V . We obtain from the flow balance conditions that∑
i∈S

bi =
∑
i∈S

[∑
(i,j)∈A

fij −
∑

(j,i)∈A
fji
]

=
∑
i∈S

[∑
(i,j)∈A
j∈S

fij −
∑

(j,i)∈A
j∈S

fji
]

︸ ︷︷ ︸
=0

+
∑
i∈S

[∑
(i,j)∈A
j∈V \S

fij −
∑

(j,i)∈A
j∈V \S

fji
]

=
∑

(i,j)∈δout(S)
fij −

∑
(i,j)∈δin(S)

fij ≤
∑

(i,j)∈δout(S)
uij .

The following theorem is an extension of Ford and Fulkerson’s MaxFlow-MinCut-Theorem
by Gale.

Theorem 1.22 (Gale; Ford and Fulkerson [Gal57; FF54]). Let N = (V,A, u) be a directed
network and let b ∈ RV be balanced. There exists a b-flow on N if and only if for all S ⊆ V
it holds that ∑

(i,j)∈δout(S)
uij ≥

∑
i∈S

bi. (1.12)

Proof. Necessity follows from Lemma 1.21. For sufficiency, we claim that in the auxiliary
network N ′ from Theorem 1.20, the set {s∗} is a minimum s∗-t∗-cut. To see this, consider
some cut-set {s∗} ∪· S ⊆ V ′ in N ′. The cut induced by {s∗} ∪· S in N ′ has a weight of

weight({s∗} ∪· S) =
∑

i∈V \S, bi>0
bi −

∑
i∈S, bi<0

bi +
∑

(i,j)∈δout(S)
uij . (1.13)

On the other hand, the cut induced by {s∗} has a weight of

weight({s∗}) =
∑

i∈V,bi>0
bi =

∑
i∈S,bi>0

bi +
∑

i∈V \S,bi>0
bi. (1.14)

Subtracting (1.13) from (1.14) we obtain

weight({s∗})− weight({s∗} ∪· S) =
∑

i∈S,bi>0
bi +

∑
i∈S, bi<0

bi −
∑

(i,j)∈δout(S)
uij

=
∑
i∈S

bi −
∑

(i,j)∈δout(S)
uij

(1.12)
≤ 0.

It follows that {s∗} is indeed a minimum s∗-t∗-cut cut and therefore, a flow of value
weight({s∗}) = ∑

i∈V,bi>0 bi exists in N ′. This is equivalent to the existence of a b-flow by
Theorem 1.20.

We get the analogous theorem for an undirected network G = (V,E, u) by considering
(as before) the underlying bidirected network where every edge {i, j} ∈ E is replaced by
two arcs (i, j) and (j, i) with shared capacity. This gives us two flow values fij and fji for
each edge {i, j} and f is a valid flow if fij + fji ≤ uij .

Chapter 1 – Preliminaries 41

Corollary 1.23 (Gale; Ford and Fulkerson [Gal57; FF54]). Let N = (V,E, u) be an
undirected network and let b ∈ RV . There exists a b-flow on N if and only if for all S ⊆ V
it holds that ∑

{i,j}∈δ(S)
uij ≥

∣∣∑
i∈S

bi
∣∣.

Given a network N = (V,A, u), a balance vector b ∈ RV and a cost vector c ∈ RA the
cost of a b-flow f is ∑(i,j)∈A cijfij . The problem of finding a b-flow with minimum costs (or
deciding that none such flow exists) is the minimum cost flow problem. Its formulation
as a linear program has an arc-flow variable fij for each arc (i, j) ∈ A that models the
amount of flow on (i, j).

min
∑

(i,j)∈A
cijfij (1.15)

s.t.
∑

(i,j)∈A
fij −

∑
(j,i)∈A

fji = bi for all i ∈ V

0 ≤ fij ≤ uij for all (i, j) ∈ A

While the right-hand sides differ, the constraint matrix of formulation 1.15 is the same as
the one for the maximum s-t-flow formulation (1.10) – apart from the fact that it contains a
flow balance constraint for all nodes. Thus, the matrix is totally unimodular and therefore,
if for a given integral balance vector b ∈ ZV an optimum b-flow exists, then there also exists
an integral one. Notice here that there is no canonical way to write (1.15) with path-flow
variables (short of using the transformation in Theorem 1.20) because there is no fixed
mapping of sources to sinks.

The minimum cost flow problem is well-studied and, as for the maximum s-t-flow problem,
there exist many standard solution algorithms. We refer to [AMO93] for an overview and
more details.

1.6 Multi-Commodity Flows

In a standard network flow as defined in the previous section, any source can serve any
sink. This is not true in applications where several distinct goods (or, commodities) need
to be shipped through the network. In this case, the suitable modeling choice is to use
multi-commodity flows. Given a directed network N = (V,A, u) and K commodities
C := {(s1, t1, d1), . . . , (sK , tK , dK)}, a C-multi-commodity flow is a flow that simultaneously
sends exactly dk ≥ 0 units of flow from sk to tk for all k = 1, . . . ,K while respecting
the capacities u. The value dk is called the demand of the k-th commodity. Thus, a
C-multi-commodity flow is composed of sk-tk-flow flows fk, k = 1, . . . ,K, that share
the capacities of the network. More formally, a C-multi-commodity flow is a function
f : A× {1, . . . ,K} → R≥0 that assigns to each arc in N a flow of commodity k = 1, . . . ,K

42 1.6 Multi-Commodity Flows

such that the following linear constraints are satisfied.

∑
(i,j)∈A

fkij −
∑

(j,i)∈A
fkji =

dk, if i = sk

−dk, if i = tk

0, otherwise

for all k = 1, . . . ,K
and for all i ∈ V

(1.16)

K∑
k=1

fkij ≤ uij for all (i, j) ∈ A

fkij ≥ 0
for all k = 1, . . . ,K
and for all (i, j) ∈ A

Rather than specifying the commodities of a multi-commodity flow on a given network
N = (V,A, u) as a list {(sk, tk, dk)}Kk=1 it is sometimes convenient to write them as a matrix
D = (dij)i,j∈V ∈ RV×V≥0 instead. Here, for each pair i, j ∈ V, i 6= j, the entry dij defines a
commodity (i, j, dij) with source i, sink j and a demand of dij . We assume that dii = 0
for all i ∈ V . A multi-commodity flow given in this notation is called a multi-commodity
D-flow. The multi-commodity flow problem is the problem to find a feasible solution
for (1.16). In contrast to the single-commodity flow arc-flow formulation (1.10) from the
previous section, the constraint matrix of (1.16) is not totally unimodular and for that
reason, a feasible multi-commodity flow in a network with integer capacities and demands
is not necessarily integer itself (see Figure 1.3). Indeed, Even, Itai and Shamir show that
finding a integer multi-commodity flow is NP-hard in both the directed and the undirected
case [EIS76]. Their proof holds even if only two commodities are involved and if at the
same time the network has unit capacities2. The fractional multi-commodity flow problem
is polynomially solvable – it suffices to solve formulation (1.16). Still, at the time of the
writing no combinatorial algorithm that solves the problem in polynomial time is known to
the author.
Formulation (1.16) consists of K arc-flow formulations of the s-t-flow problem that are

coupled only by the capacity constraints. We can couple the path-flow formulations for
the s-t-flow problem in the same way and obtain a path-flow formulation for the multi-
commodity flow problem. As before, we use P(sk, tk) to denote the set of all directed
sk-tk-paths for k = 1, . . . ,K.

∑
p∈P(sk,tk)

xkP = dk for all k = 1, . . . ,K (1.17)

K∑
k=1

∑
p∈P(sk,tk) :

(i,j)∈p

xkp ≤ uij for all (i, j) ∈ A

xkp ≥ 0
for all p ∈ P(sk, tk)
and k = 1, . . . ,K

2Even, Itai and Shamir refer to [Kar75] for the first proof of the NP-hardness of the multi-commodity flow
problem. This proof requires as many commodities as there are clauses, however.

Chapter 1 – Preliminaries 43

s1

t2

a b

s2

t1

Figure 1.3: An example originating from [AMO93] where no integer multi-commodity flow exists
even though all input data is integer. In the example, all edges have a capacity of 1 and
both commodities have a demand of 1. A feasible flow is attained by sending half a unit
of commodity 1 along both dashed paths and half a unit of commodity 2 along both
dotted paths. On the other hand, any flow that sends a full unit of flow on any source
sink path disconnects the network. Therefore, no feasible integer flow can exist.

The aim in the following is to derive a commonly-known multi-commodity equivalent of
Gale’s existence criterion (Theorem 1.22) for single-commodity flows. The first (standard)
observation is that the cut-condition from the previous section is still a necessary condition.

Lemma 1.24. Let N = (V,A, u) be a directed network and let C := {(sk, tk, dk)}Kk=1 be a
set of K commodities. For any set S ⊆ V let T (S) be the set of commodities whose source
and sink are separated by the cut δ(S), i.e., let T (S) := {k | sk ∈ S ∧ tk ∈ V \ S}. If there
is a feasible C-multi-commodity flow in N , then∑

(i,j)∈δout(S)
uij ≥

∑
k∈T (S)

dk

for all cut-sets S ⊆ V .

For undirected networks, it is well-known that the condition translates to

Lemma 1.25. Let N = (V,E, u) be an undirected network and let C := {(sk, tk, dk)}Kk=1 be
a set of K commodities. For any set S ⊆ V let T (S) be the set of commodities whose source
and sink are separated by the cut δ(S), i.e., let T (S) := {k | sk ∈ S ∧ tk ∈ V \ S or sk ∈
V \ S ∧ tk ∈ S}. If there is a feasible C-multi-commodity flow, then∑

(i,j)∈δ(S)
uij ≥

∑
k∈T (S)

dk

for all cut-sets S ⊆ V .

In contrast to single-commodity flows, however, the above condition is not sufficient for
the existence of a multi-commodity flow, see Figure 1.4 for an example. Instead, the proper
translation of Theorem (1.17) was given by Onaga and Kakusho [OK71] as the so-called

44 1.6 Multi-Commodity Flows

s1
s3 = t4

s2 = t3

t1

s4 = t2

Figure 1.4: A counterexample by Okamura and Seymour [OS81]. All edges in the graph have a
capacity of 1 and we are to ship one unit of each commodity. The instance satisfies the
cut condition of Lemma 1.25, but no feasible multi-commodity flow exists (at most 3
commodities can be fully sent at the same time).

Japanese Theorem. By Farkas’ Lemma3, the path-flow formulation (1.17) has a feasible
solution if and only if ∑

(i,j)∈A
µijuij +

K∑
k=1

λkdk ≥ 0

for all vectors µ ∈ RA≥0 and λ ∈ RK that satisfy

−
∑

(i,j)∈p
µij ≤ λk

for all p ∈ P(sk, tk) and all k = 1, . . . ,K. This is true if and only if the optimum solution
value of

min
∑

(i,j)∈A
µijuij −

K∑
k=1

σkdk (1.18)

s.t.
∑

(i,j)∈p
µij ≥ σk

for all k = 1, . . . ,K
and all p ∈ P(sk, tk)

(1.18a)

µij ≥ 0 for all (i, j) ∈ A (1.18b)

is non-negative (substitute σ for −λ). Now, constraint (1.18a) means that σk is at most
the length distµ(sk, tk) of a shortest sk-tk-path with respect to the edge lengths given by
µ. Setting σk = distµ(sk, tk) for all k = 1, . . . ,K can never decrease the solution value
and therefore, there is always an optimum solution where σk is exactly the length of a
shortest sk-tk-path. This is why there is a feasible multi-commodity flow if and only
if ∑(i,j)∈A µijuij ≥

∑K
k=1 d

k · distµ(sk, tk) for all choices of non-negative edge lengths µ.
It turns out that it suffices to check the feasibility condition for all metrics, i.e., for all
µ ∈ RV×V≥0 such that µih + µhj ≥ µij for all i, j, h ∈ V .
3The full computation in matrix notation is e.g. given in [BCGT98].

Chapter 1 – Preliminaries 45

Theorem 1.26 (Japanese Theorem [OK71; Iri70]). Let N = (V,A, u) be a network with K
commodities C := {(sk, tk, dk)}Kk=1. Then there is a feasible C-multi-commodity flow in N
if and only if ∑

(i,j)∈A
µijuij ≥

K∑
k=1

dk · distµ(sk, tk)

for all metrics µ ∈ RV×V≥0 .

This is a generalization of Gale’s existence criterion for b-flows (Theorem 1.22) in the
following sense. A cut-metric is a metric µ with

µij =
{

1, if i ∈ S and j ∈ V \ S
0, otherwise

for a cut-set S ⊆ V . If a flow has a single commodity, checking the condition of Theorem 1.26
for all cut metrics translates exactly to checking the condition of Theorem 1.22 for all
cut-sets S ⊆ V . A different interpretation of Gale’s Theorem 1.22 is thus that the existence
of a single-commodity b-flow can be asserted by checking the condition from the Japanese
Theorem for all cut-metrics.

Onaga and Kakusho [OK71] give a combinatorial interpretation of why the condition in
the Japanese Theorem is necessary for the existence of a multi-commodity flow. For some
weights µ ∈ RA≥0, the total amount of weighted capacity in a network is U := ∑

(i,j)∈A µijuij .
Sending a unit of flow along a path p ∈ P(sk, tk) consumes ∑(i,j)∈A µijuij weighted capacity
units of the total weighted capacity U . Thus, the capacity consumption is minimum if
all flow is sent along shortest paths with respect to the weights µ. Yet, in that case,
the flow requires exactly ∑K

k=1 d
k distµ(sk, tk) weighted capacity units. This implies that∑

(i,j)∈A µijuij ≥
∑K
k=1 d

k distµ(sk, tk) for all choices of µ ∈ RA≥0 is necessary for the existence
of a multi-commodity flow.

Chapter 2

Network Design and Robustness

Network design is the task to build a network of links over a set of terminals, allowing them
to exchange physical or abstract goods. Typically, the design should minimize the building
costs of the network, maximize its potential profit and obey a wide range of side constraints.
These constraints can for instance concern the network’s connectivity, its capacity, the
network’s diameter and other topological aspects. This chapter contains a survey over
capacitated network design problems, i.e., problems where the task is to find capacities for
the links such that certain goods can be transported through the network. The focus lies on
applications in communication networks where data packages make up the network’s traffic.
As the thesis aims to solve an abstract model rather than aiming for one specific application,
our survey will mostly neglect modeling application dependent physical properties and
technological details. Still, the traffic in real-world networks is hard to predict. Robust
optimization provides the abstract tools that we need to design optimum networks that
continue to work when the traffic fluctuates. We review the state-of-the-art of these tools
and in particular, of robust capacitated network design. Apart from the literature review,
we define the single-commodity robust network design problem in this chapter. This problem
will be the main subject of the remaining chapters.

48 2.1 What Robustness Means

2.1 What Robustness Means
According to a text book by Ben-Tal, El Ghaoui and Nemirowski [BTEN09], robust
optimization is a “methodology for handling optimization problems with uncertain data”.
We extend this notion of robustness and say that a solution to an optimization problem is
robust if it is feasible for a prescribed range of scenarios rather than in a single situation.
Two examples illustrate this concept.
• The amount of traffic generated by a client in a network fluctuates on a daily basis.
One reason for this fluctuation is that the traffic depends on the clients’ activities:
Watching a movie online generates much more traffic than reading emails or simple
surfing. Likewise, noise and other interferences on the line create transmission errors
and force repeated transmissions, thus generating more traffic. This is why, even with
sophisticated statistical means, traffic can only be predicted and not be foretold. In
particular, it can never be known with arbitrary precision and in that sense, the traffic
in a network is uncertain – we can only assert that it will be within certain tolerances.
Consequently, describing the network’s traffic with a fixed number in an optimization
model can lead to solutions that are feasible in theory but not in practice.
In the past, one solution for this problem has been to estimate the true traffic
requirements, to design the network and to then add a certain amount of capacity
to handle unexpected fluctuations. This approach, however, is expensive and at the
same time, it does not give any guarantee that the additional safety capacity will be
sufficient. Its rationale is that small fluctuations in the traffic should only induce small
changes in the required capacity. Unfortunately, this is not true: Indeed, Ben-Tal,
El Ghaoui and Nemirovski [BTEN09] show a practical linear programming instance
from the NetLib [netlib] where changing the coefficients of the constraint matrix by
10% makes a previously feasible solution violate the perturbed constraints by 450%.
A much better approach is to include the possibility that the real capacity can deviate
from its nominal value in the model. Then, every possible deviation defines one
scenario that should be considered in the optimization.

• Uncertain traffic is not the only problem in network design. Suppose a network includes
a commercial district and a residential area. We can expect that the commercial
district will mostly generate traffic during working hours while the residential area’s
traffic will concentrate on the evening and night hours. To get a feasible solution, we
can design a network that can handle the traffic of both areas at the same time, but
this solution will be overly expensive. Likewise, we could take an average over the
requirements and run the risk of having insufficient capacities for traffic peaks. A
more reasonable solution is to allow different scenarios in the model: One where the
residential area is the main source of traffic and one where most traffic comes from
commercial district. This idea goes back to Gomory and Hu [GH64] who observe that
“Actually, in a communication net problem there is no one set of requirements Rp,q
but rather a set Rp,q(t) varying with a third index, time, that allows for a changing
load on the network.” In this case, it is not the uncertainty that makes it difficult to
cast the requirements into a single nominal input, but rather the different network
configurations that need to be taken into account.

Chapter 2 – Network Design and Robustness 49

Here, we consider robust linear programs, although the notion exists for different models as
well, see for instance [BTN99] and [Soy73] for robust convex and quadratic programs.

2.2 Single-Commodity Robust Network Design
One of the most basic network design problem is the question to connect a given subset of
nodes of a graph with a tree. This question is known as the Steiner tree problem.

Definition 2.1. Let G = (V,E) be an undirected graph and let T ⊆ V be a set of nodes
called terminals. An edge set X ⊆ E induces a Steiner tree if the subgraph induced by X
is a connected tree that contains all terminals t ∈ T .

Problem 2.2. Given an undirected graph G = (V,E), a terminal set T ⊆ V and edge costs
c ∈ RE≥0, the Steiner tree problem is the task to find an edge set X ⊆ E that induces a
Steiner tree with minimum costs

∑
{i,j}∈E cij.

The main subject of this thesis is a robust single-commodity network design model that
is a generalization of the Steiner tree problem (as we will see in Chapter 3). It is given by
the following definitions.

Definition 2.3. Let G = (V,E) be an undirected, connected network and let B ⊆ RV be a
polytope. We say that B is a (single-commodity) scenario set on G if all vertices of B are
integer and if

∑
i∈V bi = 0 for all b ∈ B.

Problem 2.4. Let G = (V,E) be a connected, undirected network, let B be a single-
commodity scenario set on G and let c ∈ RE≥0. The single-commodity robust network
design problem (sRND) is the task to find integer capacities u ∈ ZE≥0 with minimal costs∑
{i,j}∈E cijuij such that there is a b-flow in (V,E, u) for all b ∈ B.

The assumption that G is connected is without loss of generality: If G is not connected,
then we can solve the sRND problem on the connected components independently. The
same is true for the edge costs: If some edge e has strictly negative costs ce < 0, then the
problem is unbounded. Also, by Lemma 1.19, the condition that the scenarios in B must
be balanced is necessary. Still, the problem definition does not specify how the scenario
polytope is encoded in the input. While the encoding is irrelevant for the modeling power of
the problem, we will see later that it does make a difference in terms of theoretical problem
complexity.

Problem 2.5. A triple (G,B, c) consisting of an undirected network G = (V,E), a scenario
set B ⊆ RV on G and a cost function c ∈ RE≥0 is an instance of the polyhedral single-
commodity robust network design problem (sRND-P) if B is given in a linear description
B = {b ∈ RV | Ab ≥ r} with a matrix A ∈ Rk×n and a right-hand side r ∈ Rk, where
n = |V | and k ∈ N is some arbitrary positive integer.

Problem 2.6. A triple (G,B, c) consisting of an undirected network G = (V,E), a scenario
polytope B ⊆ RV on G and a cost function c ∈ RE≥0 is an instance of the finite single-
commodity robust network design problem (sRND-F) if B is given as the finite list of its
K ∈ N vertices B = conv{b1, . . . , bK} ⊆ ZV .

50 2.2 Single-Commodity Robust Network Design

The linear description can be converted into the vertex-based description and vice-versa,
however, the conversion requires exponential time and space (see Chapter 1) in general.
Yet, since both descriptions encode the same polytope, the resulting instances are otherwise
equivalent. Independently of the description, it is sufficient to check feasibility for the
vertices of B.

Observation 2.7. A capacity vector u ∈ ZE≥0 is feasible for an instance (V,E,B, c) of the
sRND problem if and only if there exists a b-flow in (G, u) for each vertex b of B.

In particular, if B is given as a finite list of points {b1, . . . , bK}, it suffices to check
feasibility for each bk, k = 1, . . . ,K, and there is no need to compute the actual convex hull
of the points. This motivates the following notation.

Convention 2.8. In accordance with the standard network design literature, we write
B = {b1, . . . , bK} instead of B = conv{b1, . . . , bK} to denote a scenario set for an sRND-F
instance.

Regardless of the input format, the sRND problem is NP-hard, but in order to see why,
we first need to define the multi-commodity variant of the problem.

Definition 2.9. Let G = (V,E) be an undirected, connected network and let D ⊆ RV×V≥0 be
a polytope. We say that D is a multi-commodity scenario set on G if all vertices of D are
integer and if dii = 0 for all i ∈ V .

Definition 2.10. Let G = (V,E) be a connected, undirected network, let D be a multi-
commodity scenario set on G and let c ∈ RE≥0. The multi-commodity robust network
design problem (mRND) is the task to find integer capacities u ∈ ZE≥0 with minimal costs∑
{i,j}∈E cijuij such that there is a multi-commodity D-flow in (G, u) for all D ∈ D.

Analogously to the sRND problem, we define the variants mRND-P and mRND-F of mRND for
the cases that the scenario polytope is given as a linear description or a finite list of points,
respectively. We observe that our remarks about the relationship of those two encodings
remain valid for the mRND problem; this is why we use the same convention regarding vertex
descriptions of uncertainty sets.
Sanità [San09] shows that already the single-source case of the mRND-F problem is NP-

hard. In this special case, we assume that there is a fixed node s such that in all scenarios
(dij)i,j∈V ∈ D we have dij = 0 for all i ∈ V \ {s} and all j ∈ V . The proof is by a reduction
from 3-dimensional matching and requires one scenario per matching dimension.1

Theorem 2.11 (Sanità [San09]). The mRND-F problem on an undirected graph G = (V,E)
is NP-hard even if the scenario set D = {D1, D2, D3} has only three scenarios, if all
demands are 0 or 1 and if a fixed node s ∈ V is the unique source node for all commodities
in all scenarios.

To show that the problem is a special case of the single-commodity network design
problem, consider a fixed scenario d ∈ D from this special variant of the mRND problem
1More recently, Oriolo, Sanità and Zenklusen [OSZ13] showed that mRND-F with unit costs and demands is
NP-hard even if D = {D1, D2}. However, the proof requires more than one source per scenario.

Chapter 2 – Network Design and Robustness 51

where all commodities originate from the same source s ∈ V . Then, we can equivalently
aggregate all commodities (s, j) with j ∈ V into a single commodity that has

bi :=

∑
j∈V

dsj , if i = s

−dsj , if j ∈ V \ {s}
(2.1)

as its balance vector. However, the aggregation destroys the zero-one demand property.

Corollary 2.12 (Buchheim, Liers and Sanità [BLS11]). The sRND-F problem on an undi-
rected graph G = (V,E) is NP-hard even if the scenario set B = {b1, b2, b3} has only three
scenarios and if a fixed node s ∈ V is the unique source node in all three scenarios.

Corollary 2.13. The sRND problem is NP-hard.

If we relax the integrality requirement, the sRND-F problem is polynomial time solvable
(see Chapter 4) with linear programming techniques. This is not true for the polyhedral
case. We will see in Chapter 5 that the sRND-P problem is NP-hard even if the uncertainty
set is (in essence) given by box constraints and even if we do not require integer capacities.
It will turn out that even deciding if a vector u ∈ RE is feasible for an sRND-P instance
(V,E,B, c) is co-NP-complete. If there is a single scenario, however, even the integral case
can be solved in polynomial time.

Problem 2.14. Given an undirected graph G = (V,E), a cost function c ∈ RE≥0 and a
balance vector b ∈ ZV , the single-commodity network design problem (sND) is the task to find
integer capacities u ∈ ZE≥0 with minimum costs

∑
{i,j}∈E cijuij such that there is a feasible

b-flow in (G, u).

The problem is polynomial time solvable by computing a minimum cost b-flow f in
(G,∞). This flow then induces an optimum solution uij = fij + fji for all {i, j} ∈ E and
this solution is integral because an integral balance vector b implies the existence of an
integral b-flow with minimum cost.

Observation 2.15. The single-commodity network design problem (sND) is polynomial
time solvable.

Surprisingly, the same is true for the multi-commodity network design problem on an
undirected graph G = (V,E) with a single scenario D ∈ ZV×V≥0 (mND), even though the
problem requires integer capacities – as long as all demands are integer. This is in contrast to
the fact that integer multi-commodity flows with integer demands are NP-hard to compute
(see Chapter 1). The reason for this discrepancy is that the capacities are not bounded; we
can increase them until all commodities can flow independently of each other. Thus, we can
compute an uncapacitated integer multi-commodity D-flow f on (G,∞). This is possible in
polynomial time: For each pair i, j ∈ V, i 6= j, we simply send dij units of flow on a shortest
i-j-path2. To obtain an optimum integer capacity vector u ∈ ZE , we set uij to the total
amount of flow that f sends on {i, j} for all {i, j} ∈ E.
2If some commodity had more than one source and sink, we would need to compute a single-commodity
b-flow here, but this flow would still be integer.

52 2.3 Non-Robust Capacitated Network Design

Observation 2.16. The multi-commodity network design problem with a single integer
scenario (mND) is polynomial time solvable.

The above shortest-path algorithm may produce a fractional solution if some of the
demands are fractional and it is not clear how to round the solution in an optimum way.
This is because rounding up the capacities on a shortest path for a commodity produces
slack and this slack may be used by the routing of another capacity. In this way, the problem
essentially becomes an NP-hard knapsack problem.

Theorem 2.17 (Bienstock, Chopra, Günlük and Tsai [BCGT98]). The (integer) mND
problem with a single scenario is NP-hard.

2.3 Non-Robust Capacitated Network Design
Apart from a few special cases (see next chapter), there are no combinatorial algorithms
that solve the mRND or the sRND problem exactly. Still, a whole body of literature proves
that network design problems can be solved with linear programming methods. We give an
overview over the literature after discussing common terminology.

2.3.1 Communication Network Design Terminology

The sRND problem from the previous section is just one possibility to realize the task “find
minimum cost capacities for the links in the network such that all traffic requests can be
handled.” Depending on the application, the model of the links and their capacities may
change; as may the meaning of their costs and of the traffic requests.

Orientation of the Links Virtually all communication network design models use graphs
to model the network that exists in the real world. They also agree on using the graph’s
edges and arcs to model the real-world links. However, whether we use edges or arcs to
model the links can make a difference. Generally, traffic on a link between to network nodes
i and j can travel in two different directions: from i to j or from j to i. If the links allow
for both, the situation can be modeled by an undirected graph with (undirected) edges or
by two anti-parallel arcs in a bi-directed graph. Otherwise, a directed graph with arcs can
be used. The sRND model uses undirected links, but it insists that the underlying network
flow is directed. This is a common modeling choice and describes what we would expect
from most real-world networks.

Integer Capacities, Buy-at-Bulk and Facilities In reality, we cannot install arbitrarily
small amounts of capacity on a link. Instead, we install integer multiples of a unit capacity
and model this restriction by requiring the capacities to be integer. As a variation, the
Buy-at-Bulk model allows only binary decisions: Each link is either bought at the full cost
at its full, fixed capacity or not bought at all. This can be modeled with binary decision
variables. The Buy-at-Bulk model is generalized by links that consist of several facilities,
each having a fixed capacity and cost. There, the task is to decide which facility to buy on
each link. In some publications, facilities are called modules.

Chapter 2 – Network Design and Robustness 53

Multi-Layer-Networks Real-world networks use several layers of abstraction and network
design problems occur on each of them. However, designing the layers independently can
produce suboptimal solutions. The k-layer network design model aims to optimize k layers
at the same time to resolve this problem.

Unsplittable Flow-Paths In a standard multi-commodity flow with a fixed source-sink
assignment, any number of paths may be used for sending flow from some source to some
sink. In the unsplittable path model, only a single path may be used for each source-sink
pair; the entire demand of that pair must be sent over the unique path.

2.3.2 Non-Robust Formulations for the sND Problem
Using the the arc-flow formulation (1.15) for the minimum cost b-flow problem, it is
straight-forward to find a linear programming formulation for the sND problem.

min
∑
{i,j}∈E

cijuij (2.2)

s.t.
∑
{i,j}∈E

(fij − fji) = bi for all i ∈ V

0 ≤ fij + fji ≤ uij for all {i, j} ∈ E
uij ≥ 0 for all {i, j} ∈ E

Since the resulting constraint matrix is still totally unimodular, we do not need to enforce
integrality of u and the formulation remains solvable in polynomial time.

2.3.3 Non-Robust Formulations for the mND Problem
In the mND problem definition, each pair s, t ∈ V, s 6= t of vertices defines a commodity. By
introducing a set of arc-flow variables for every commodity, we can derive the mND analogon
of the multi-commodity arc-flow formulation (1.16) from Chapter 1. The formulation has
two continuous arc-flow variables fstij and fstji for each edge {i, j} ∈ E and each commodity
(s, t) ∈ V × V as well as an integer capacity variable uij for each edge {i, j} ∈ E.

min
∑
{i,j}∈E

cijuij (2.3)

s.t.
∑
{i,j}∈E

fstij − fstji =

dst, if i = s

−dst, if i = t

0, otherwise
for all i, s, t ∈ V

∑
s,t∈V

f stij + fstji ≤ uij for all {i, j} ∈ E

fstij , f
st
ji ≥ 0 for all s, t ∈ V
uij ∈ ZE≥0 for all {i, j} ∈ E

54 2.3 Non-Robust Capacitated Network Design

Here, the f variables are not necessarily integer – even if the u variables are. Hence, if
we want integer flows, we must add the integrality requirement for the f variables. The
major drawback of the formulation is that it requires Θ(|E| · |V |2) variables. By aggregating
commodities with the same source, we can reduce the number of variables to Θ(|E| · |V |),
but even then the formulation quickly becomes too large to be solved efficiently, especially
on dense graphs where the number of variables has a cubic dependency on the number of
nodes.

The Japanese Theorem (Theorem 1.26) yields an alternative formulation with |E| variables
(we use one variable uij for each edge {i, j} ∈ E). As before, we define distµ(s, t) to be the
shortest path length from s to t in G with respect to a metric µ.

min
∑
{i,j}∈E

cijuij (2.4)

s.t.
∑
{i,j}∈E

µijuij ≥
∑
s,t∈V

dst · distµ(s, t) for all metrics µ ∈ RV×V≥0 (2.4a)

uij ∈ Z≥0 for all {i, j} ∈ E (2.4b)

The constraints (2.4a) are called metric inequalities (see [Min81; BCGT98; AMS04]).
While there is an infinite number of metrics, it is enough to state the constraints for the
extreme rays of the metric cone

M(G) :=
{
µ ∈ RV×V≥0

∣∣ µij ≤ µik + µkj for all i, j, k ∈ V
}
.

The number of extreme rays of M(G) is exponential in general, but fortunately, the proof
of the Japanese Theorem directly yields a separation algorithm for the metric inequalities:
It suffices to solve the adaptation of the linear program (1.18) for a fixed u∗:

min
∑
{i,j}∈E

µiju
∗
ij −

∑
s,t∈V

σstdst (2.5)

s.t.
∑
{i,j}∈p

µij ≥ σst for all s, t ∈ V and p ∈ P(s, t) (2.5a)

µij ≥ 0 for all {i, j} ∈ E (2.5b)
σst ∈ R≥0 for all s, t ∈ V (2.5c)

If the optimum value of the program is negative, we found a violated metric inequality,
otherwise, all metric inequalities are satisfied. Program (2.5) again has an exponential
number of constraints, but this time, there is a combinatorial separation algorithm: Given
(µ̄, σ̄), it suffices to compute a shortest s-t-path pst with respect to the weights defined by µ̄
for all s, t ∈ V . If, for some s, t ∈ V , we find that pst has a length of strictly less than σ̄st,
we have found a violated inequality. Otherwise, all inequalities of type (2.5a) are satisfied.

Chapter 2 – Network Design and Robustness 55

Alternatively, we can reformulate program (2.5) as

min
∑
{i,j}∈E

µiju
∗
ij (2.6)

s.t.
σsti − σstj
σstj − σsti

}
≤ µij for all s, t ∈ V and all {i, j} ∈ E (2.6a)

∑
s,t∈V

∑
i∈V

dstσ
st
i = 1 (2.6b)

µij ≥ 0 for all {i, j} ∈ E (2.6c)

(see [Gün02; Gün07; Mir00; AMS04]) and solve it without separation. In the program,
constraint (2.6b) normalizes the right-hand side of the separated inequality to 1. This is
necessary because without this normalization, the program would be unbounded. Conse-
quently, any feasible solution (µ̄, σ̄) for (2.6) with an objective value of less than 1 induces
a violated metric inequality ∑{i,j}∈E µ̄iju∗ij ≥ 1. The technique to derive dual cuts by an
application of Farkas’ Lemma is known as Benders’ decomposition [Ben62].
Branch-and-Bound algorithms that are based on the formulations in this section were

for example given by Bienstock, Chopra, Günlük and Tsai [BCGT98], by Günlük [Gün99],
by Avella, Mattia and Sassano [AMS04], by Costa, Cordeau and Gendron [CCG09] and
by Lee, Lee and Park [LLP13]. Magnanti and Wong [MW84] give a large overview over
modeling alternatives and solution algorithms for non-robust network design problems.
Minoux [Min89] describes the same technique to derive metric inequalities in an extensive
survey.

2.4 Tractable Worst-Case Robustness Models
The sRND model is worst-case robust: It requires that a robust solution must be feasible
in all scenarios. Such a model will produce very conservative (i.e., safe) solutions, but
this safety comes at a price: An optimum worst-case robust solution can be much more
expensive than an optimum solution without robustness. Bertsimas and Sim analyze this
price of robustness [BS04]. There are, however, situations where this model is appropriate.

• In the application, safety is critical and a failure of the optimized system is not
permitted or more expensive than guarding against it. This could, for instance, be
true in an energy network: There, locally driving the network over the maximum
capacity can result in a global breakdown of the network, triggering costly and
time-consuming repairs of vital infrastructure.

• The probability distribution of the scenarios is not known or all scenarios are equally
likely.

• Or, as a variation of the previous point: We are certain that all scenarios will happen
anyway. This is true in our second introductory example where the scenarios model
the load changes of a network during the day.

56 2.4 Tractable Worst-Case Robustness Models

Ben-Tal and Nemirovski [BTN99] describe yet another situation where worst-case robustness
is useful by looking at the alternative. If we do not require that a solution is feasible in
all scenarios, we accept that some scenarios violate some of the side constraints. In that
sense, removing the requirement that a robust solution must work in all scenarios turns
the hard side constraints into soft constraints. Worst-case robustness, however, maintains
that the side constraints may not be violated under any circumstances. As an example for
where hard constraints are crucial, Ben-Tal and Nemirovski propose a processing plant that
uses a two-phase process to create a final product. The first phase turns a raw material
into a resource needed for the second phase. However, the amount of the resource that
comes out of the first phase is subject to uncertainty due to variations in the raw material
and inaccuracies in the conversion process. Still, the second phase can never use up more
resources than the first phase actually produced. This is a hard constraint – and modeling
the situation with a soft constraint would overestimate the output of the plant.
Surprisingly, the outcome of the robustification depends on the problem formulation:

Applying the same robustification approach with the same uncertainty set to different
formulations can yield different models with different optimum solutions and different levels
of protection.

2.4.1 Column-Wise Uncertainty: Soyster’s Model for Robustness

To the best of the author’s knowledge, Soyster [Soy73] was the first to develop a solution
approach for general robust linear programs. He asks for an optimum solution of the
problem

inf
n∑
i=1

cixi (2.7)

s.t.
n∑
i=1

xi · Ki ⊆ K

xi ≥ 0 for all i = 1, . . . , n

where K1, . . . ,Kn and K are arbitrary convex sets, the multiplication α · X of a scalar
α ∈ R and a set X ⊆ Rm multiplies all vectors in X by α and the set addition is the
Minkowski sum as defined in Chapter 1. In particular, a non-robust linear program
min{cTx | Ax ≥ b, x ∈ Rn≥0} is the special case where Ki = {Ai∗} is a singleton containing
the i-th column of A for i = 1, . . . , n and K := {x ∈ Rn≥0 | x ≥ b} is a halfspace. The idea
of Soyster is to interpret (2.7) as a linear program where the columns of the constraint
matrix are not exactly known; rather, the i-th column can be any vector from the set Ki.
Indeed, a vector x ∈ Rn≥0 is feasible for (2.7) if and only if ∑n

i=1 k
ixi ∈ K for all choices of

(k1, . . . , kn) ∈ K1 × · · · × Kn, i.e., all possible realizations of the columns. In the notation of
the introductory examples this means that every choice of columns represents one scenario
in which a robust solution of (2.7) must work.
An example from Soyster’s article illustrates the idea. Consider the linear program

min{cTx | Ax ≥ b, x ∈ Rn≥0} and let Ki = {a ∈ Rm | ‖a − Ai∗‖∞ ≤ ε} for some fixed
tolerance ε > 0. Then, x ∈ Rn is feasible for (2.7) if and only if x is feasible for the original

Chapter 2 – Network Design and Robustness 57

linear program and all those variations of it where the coefficients of A have been changed
by at most ε. Soyster shows that, more generally, the feasible region of (2.7) is a convex set.
Moreover, if K is a half-space {x ∈ Rn | x ≥ b}, then the feasible region is a polyhedron

independently of the choice of K1, . . . ,Kn. Then an optimum solution for (2.7) can be found
by solving the auxiliary linear program min{cTx | Āx ≥ b, x ∈ Rn≥0}. Here, the coefficients
of Ā are defined as āij = inf{a ∈ Ki | aij}. These coefficients are well-defined: Soyster
observes that we can assume āij > −∞ without loss of generality: If we have āij = −∞
for some i, j, then we know that xi is zero and we can remove the i-th column from the
problem.

2.4.2 Tractable Robust Counterparts by Ben-Tal and Nemirovski
Building on the ideas by Soyster, Ben-Tal and Nemirovski [BTN99] augment a linear
program min{cTx | Ax ≥ b, x ∈ Rn≥0} with a convex uncertainty set U ⊆ Rm×n. They
call the resulting problem

min cTx (2.8)
s.t. Ax ≥ b for all A ∈ U

x ∈ Rn≥0

the robust counterpart of the original linear program. Likewise, the original problem is
the deterministic formulation of (2.8). As before, we say that A ∈ U is a scenario or
a realization of the uncertain coefficients. Compared with Soyster’s model, this allows
dependencies in the rows and in the columns of the constraint matrix. In the model, the
assumption that only the constraint matrix is uncertain is without loss of generality: If
the right-hand side of the system is not known exactly, we can introduce a fixed auxiliary
variable and move b to the constraint matrix. Likewise, as replacing U by its closed convex
hull does not change the problem, we may assume without loss of generality that U is convex
and closed. As the sRND model, this model requires that a solution x is feasible for all
scenarios and in fact, Ben-Tal and Nemirovski coined the term worst-case robustness.
The first observation of Ben-Tal and Nemirovski is that the robust counterpart behaves

unexpectedly. In some cases, the robust counterpart is infeasible even though for every
fixed scenario A ∈ U, the problem min{cTx | Ax ≥ b, x ∈ R≥0} does have a feasible solution.
Phrased differently: Even if we can find a feasible solution x(A) ∈ Rn≥0 for every scenario
A ∈ U, there is not necessarily a single solution that is feasible in all scenarios. Ben-Tal
and Nemirovski show that this anomaly has its source in the dependencies of the rows.
We say that the uncertainty set U ⊆ Rm×n works row-wise if U is decomposable into sets
U1, . . . ,Um ⊆ Rn such that the robust counterpart (2.8) may be rewritten as

min cTx (2.9)
s.t. uTx ≥ b for all u ∈ U1

...
...

uTx ≥ b for all u ∈ Um

x ∈ Rn≥0.

58 2.4 Tractable Worst-Case Robustness Models

If we have row-wise uncertainty and the feasible region of min{cTx | Ax ≥ b, x ∈ Rn≥0} is
bounded for all A ∈ U, then the above anomaly disappears. Moreover, in that case, the
value of an optimum solution of the robust counterpart (2.8) is the one of a worst-case
scenario.

Theorem 2.18 (Ben-Tal and Nemirovski [BTN99]). Let U ∈ Rm×n be a convex, closed
uncertainty set that works row-wise and let b ∈ Rm. If {x ∈ Rn≥0 | Ax ≥ b} is bounded for
all A ∈ U, then
1. the feasible region {x ∈ Rn≥0 | Ax ≥ b for all A ∈ U} of the robust counterpart is

non-empty if and only if the feasible regions {x ∈ Rn≥0 | Ax ≥ b} are non-empty for all
scenarios A ∈ U, and

2. min{cTx | Ax ≥ b, x ∈ Rn≥0, for all A ∈ U} = supA∈U{cTx | Ax ≥ b, x ∈ Rn≥0}.

Independently of the structure of U, the feasible region of the robust counterpart is a
closed convex set. The Separation Theorem by Grötschel, Lovász and Schrijver [GLS81;
GLS84] (see the discussion in Chapter 1) tells us that, in order to optimize over the feasible
region of the robust counterpart, we only need a separation algorithm. This is an algorithm
that decides whether a given point x ∈ Rn≥0 is feasible for (2.8) and if not, yields a scenario
A ∈ U and a row Ai∗ of A such that AT

i∗x < b. Ben-Tal and Nemirovski argue that a
separation oracle for the robust counterpart (2.8) exists if a separation oracle for U exists;
indeed, to separate x∗, it suffices to solve

c∗i := min
{
AT
i∗x
∗ ∣∣ A ∈ U

}
(2.10)

for all i = 1, . . . ,m. If for some i we have c∗i < bi, then we found a separating inequality
AT
i∗x ≥ bi. Yet, solving (2.10) is possible in polynomial time if and only if there is a

separation oracle for U (again due to the Theorem by Grötschel, Lovász and Schrijver).

Tractability Principle 2.19 (Ben-Tal and Nemirovski [BTN99]). Let U ⊆ Rm×n and let
b ∈ Rm. Then the program

min
{
cTx

∣∣ Ax ≥ b, x ∈ Rn≥0, for all A ∈ U
}

is solvable in time polynomial in m and n if there is separation algorithm for U with a
running time polynomial in m and n.

Thus, we can solve worst-case robust linear programs polynomially if we can separate
polynomially over the uncertainty set.

2.4.3 Gamma-Robustness: Bertsimas’ and Sim’s Less Conservative Model
Bertsimas and Sim [BS03; BS04] propose a model for the case where we do not need to
cover entirely different scenarios, but where the input data is inexact. Analogously to the
earlier example by Soyster, they assume that the coefficients of the constraint matrix are
not known exactly. Each3 coefficient aij of the constraint matrix A ∈ Rm×n has a nominal
3We neglect the case that not all coefficients are inexact.

Chapter 2 – Network Design and Robustness 59

value āij and can deviate from that value by an amount of âij > 0, i.e., it holds that the true
coefficient aij lies in the interval [āij − âij , āij + âij]. The central observation of the article
is that, in reality, it is highly unlikely that all coefficients attain the maximum deviation at
the same time and that therefore, the model by Soyster can produce unnecessarily costly
solutions.
In order to control the level of robustness, Bertsimas and Sim introduce a parameter

vector Γ ∈ Zm≥0 whose i-th entry Γi decides how many coefficients of the i-th constraint may
deviate from their nominal value at the same time.4 A solution is feasible in this model
if and only if it is feasible regardless of the amount of deviation, as long as at most Γi
coefficients of the i-th constraint, i ∈ {1, . . . ,m}, deviate. Thus, the model is worst-case
robust in the sense of Ben-Tal and Nemirovski with the parametrized uncertainty set

U(Γ) :=

(aij)m,ni,j=1 ∈ Rm×n

∣∣∣∣∣∣∣∣∣∣
S1, . . . , Sm ⊆ {1, . . . , n}

|Si| ≤ Γi for all i = 1, . . . ,m
aij ∈ [āij − âij , āij + âij], if j ∈ Si
aij = āij , otherwise

 .

Accordingly, the Γ-robust counterpart of a program min{cTx | Ax ≥ b, x ∈ Rn≥0} is

min{cTx | Ax ≥ b for all A ∈ U(Γ), x ∈ Rn≥0}. (2.11)

By increasing Γi, we increase the robustness as well as the cost of the solution. In this way,
solving the model for different values of Γ allows to find a good trade-off between robustness
and cost; the extreme cases being Soyster’s model (set Γi = n for all i = 1, . . . ,m) or a
non-robust model (set Γi = 0 for all i = 1, . . . ,m). More verbosely, the program (2.11)
reads

min
n∑
j=1

cjxj (2.12)

s.t.
n∑
j=1

āijxj − max
S⊆{1,...,n}
|S|≤Γi

∑
j∈S

âijxj ≥ bi for all i = 1, . . . ,m (2.12a)

x ∈ Rn≥0 (2.12b)

This formulation is not (yet) linear, but it is equivalent to the standard description of the
robust counterpart in (2.11): If we fix a selection S of deviating coefficients in any constraint
i of the robust counterpart (2.11), then this constraint is most restrictive if aij deviates
to the lower bound āij − âij for all j ∈ S, as x ≥ 0. This is modeled by the reformulated
constraint (2.12a).
The first step for linearizing (2.12) is to observe that the maximization problem in

constraint (2.12a) is in fact a linear program. For the i-th constraint and a fixed x∗ ∈ Rn≥0,
4Actually, the model allows to choose a fractional Γ ∈ Rm≥0 with the interpretation that bΓic coefficients of
constraint i deviate maximally and a single coefficient aij of constraint i deviates by the remaining amount
(Γi − bΓic)āij . The extension is straight-forward, yet omitting it makes the exposition significantly easier.
For the full model, see [BS04].

60 2.4 Tractable Worst-Case Robustness Models

the optimum value may be computed as

max
n∑
j=1

âijx
∗zj (2.13)

s.t.
n∑
j=1

zj ≤ Γi (2.13a)

zj ≤ 1 for all j = 1, . . . , n (2.13b)
zj ≥ 0 for all j = 1, . . . , n (2.13c)

In an optimum solution, the z variables sum up to Γi and there is always an optimum
solution where all zj are integer. In such a solution, zj is set to one if and only if aij is
chosen to deviate from the nominal value.

We could now replace the maximization problem in the constraint (2.12a) by system (2.13).
However, after the substitution x is not fixed and we would obtain a quadratic program.
Instead, Bertsimas and Sim propose to use the dual of (2.13) which will indeed fix this
problem. Introducing a variable γ for constraint (2.13a) and a variable ζj , j = 1, . . . , n, for
the constraints (2.13b), it reads

min Γiγ +
n∑
j=1

ζj (2.14)

s.t. γ + ζj ≥ âijx∗j for all j = 1, . . . , n (2.14a)
γ, ζ ≥ 0 (2.14b)

We can now replace the maximization problem in the constraints (2.12a) by its dual (2.14).

min
n∑
j=1

cjxj (2.15)

s.t.
n∑
j=1

āijxj − Γiγ −
n∑
j=1

ζj ≥ bi for all i = 1, . . . ,m (2.15a)

γ + ζj ≥ âijx∗j
for all i = 1, . . . ,m
and all j = 1, . . . , n (2.15b)

xj , ζj ≥ 0 for all j = 1, . . . , n (2.15c)
γ ≥ 0 (2.15d)

Since in constraint (2.15a) the amount subtracted from ∑n
j=1 āijxj is minimized anyway,

we can omit the explicit minimization. The result is a linear program. We will use this
dualization technique again in Chapter 5 to solve a similar problem. The same technique
works if the original problem (2.11) is a mixed integer problem. This is due to the fact
that the inner maximization problem (2.13) remains a continuous (i.e., not integer) linear
program also in this case [BS03].

Chapter 2 – Network Design and Robustness 61

2.5 Worst-Case Robust Capacitated Network Design
Robust network design problems arise by combining the network design formulations from
Section 2.3 with the robustification techniques from Section 2.4.

2.5.1 Terminology

Routing Schemes: Static vs. Dynamic Routing

Both the sRND and the mRND problem are problems that allow a dynamic routing scheme:
They permit us to route the traffic along different paths in every scenario and the routing
is determined implicitly by the underlying network flow. In some applications, however,
this approach is not feasible; rather, the network protocol or the network’s hardware may
require to fix the routing before the realization of the scenarios is known. In that case, we
need a routing template π : P → [0, 1], where P is the set of all paths in our network.
The interpretation of the template is that if dij is the demand of the node pair i, j ∈ V
in some scenario d, then the flow on the i-j-path p ∈ P is exactly π(p) · dij . We call such
a routing scheme static. Generally, a static routing is more restricted and thus requires
more capacity than a dynamic one. This is why the routing scheme should be taken into
account in the optimization, yielding different models for different routing schemes. If the
routing template may only contain a single path per commodity, we say that the routing is
unsplittable. It will turn out that flow formulations are more useful for problems with
static routing whereas capacity formulations are well-suited for the dynamic routing case.

Standard Uncertainty Sets for mRND-P

Consider the application of Bertsimas’ and Sim’s [BS04] approach (see Section 2.4.3) to
capacitated network design. We denote by d̄st a nominal value for the demand of each
commodity s, t ∈ V and we suppose that the true demand of the commodity can deviate
from its nominal value by at most d̂st. Additionally, there can be at most Γ deviations at
the same time. We define the resulting uncertainty set as the Γ-robustness polytope for
the mRND-P problem with static or dynamic routing.

G(d̄, d̂,Γ) :=

(dst)s,t∈V ∈ RV×V≥0

∣∣∣∣∣∣∣∣
dst ∈ [d̄st − d̂st, d̄st + d̂st], if (s, t) ∈ S
dst = d̄st, otherwise

where S ⊆ V × V with |S| ≤ Γ

 .
Defining S(Γ) := {σ ∈ [0, 1]V×V |∑s,t∈V σst ≤ Γ} as the set of possible deviations, we can
rewrite the Γ-robustness polytope equivalently as the following set.

G(d̄, d̂,Γ) = (d̄st)s,t∈V +
{
(σstd̂st)s,t∈V ∈ RV×V≥0

∣∣ σ ∈ S(Γ)
}

This transformation is due to Koster, Kutschka and Raack [KKR13].
In practice, networks can be so large that measuring a nominal value and a deviation

for each pair of nodes is not feasible. At the same time, estimating these values reliably is
hard because the traffic in the network can be hard to predict [FST97]. This can render

62 2.5 Worst-Case Robust Capacitated Network Design

the Γ-robustness approach impractical in larger networks. Likewise, taking even a small
number of traffic samples for all node pairs requires many resources and produces a large
amount of data. Specifying the scenario set as a finite list can therefore be unrealistic as
well [DGG+99].

As an alternative, Fingerhut, Suri and Turner [FST97] and Duffield, Goyal, Greenberg
et al. [DGG+99] independently define the Hose model. In that model, we only assume
that we know the maximum incoming traffic dini and the maximum outgoing traffic douti at
each node i ∈ V . Any traffic matrix that obeys these bounds is a valid scenario. Thus, the
number of parameters is linear in the number of nodes (as opposed to the quadratic number
in the previous models). Additionally, these parameters are easier to predict [FST97] and
can even be known exactly if they stem from technical specifications or legal contracts. We
call the resulting uncertainty set

Hm(din, dout) :=
{

(dst)s,t∈V ∈ RV×V≥0

∣∣∣ ∑
i∈V

dsi ≤ douts and
∑
i∈V

dis ≤ dins for all s ∈ V
}

the (multi-commodity) Hose polytope. We speak of the symmetric Hose polytope if
dini = douti for all nodes i ∈ V .

The VPN Problem

The combination of mRND-P with static routing and the Hose polytope is known as the
virtual private network design (VPN) problem. In the case of a symmetric Hose polytope and
unsplittable static routing, there is always an optimum solution where the routing template
forms a tree. This was shown by Goyal, Olver and Shepherd [GOS08]. Gupta, Kleinberg,
Kumar et al. [GKK+01] show that such a solution can be found in polynomial time and
thus this special case is polynomial time solvable. On the other hand, Gupta, Kleinberg,
Kumar et al. also show that finding an optimum tree solution in the case of an asymmetric
Hose polytope is NP-hard in general, as is deciding if a given capacity allocation allows for
an unsplittable static routing.

2.5.2 Formulations for Robust Capacitated Network Design Problems

Dynamic Routing: Flow Formulations

Robust flow formulations for network design problems with dynamic routing require a full
set of flow variables for each vertex of the scenario set. This works if the scenario set is
given as a finite list; yet even in this case, flow formulations have the drawback of having
a large number of variables. If the scenario set is given in its linear description, then its
vertices must be determined before a flow formulation can be used. Still, flow formulations
have the advantage of being solvable without a separation algorithm.

An Arc-Flow Formulation for sRND [BLS11]. Buchheim, Liers and Sanità [BLS11]
propose a robustification of the sND arc-flow formulation (2.2) for the sRND-F problem. It
has an integer capacity variable uij for each edge {i, j} ∈ E and two continuous arc-flow

Chapter 2 – Network Design and Robustness 63

variables f qij , f
q
ji for each edge {i, j} ∈ E and each scenario q = 1, . . . ,K.

min
∑
{i,j}∈E

cijuij (2.16)

s.t.
∑
{i,j}∈E

(
f qij − f

q
ji

)
= bqi for all i ∈ V and q = 1, . . . ,K

max
q=1,...,K

(
f qij + f qji

)
≤ uij for all {i, j} ∈ E

f qij , f
q
ji ≥ 0 for all {i, j} ∈ E and q = 1, . . . ,K
uij ∈ ZE≥0 for all {i, j} ∈ E

The full set of variables for each scenario is necessary because of the flow balance constraints.
Buchheim, Liers and Sanità linearize the program.

min
∑
{i,j}∈E

cijuij (2.17)

s.t.
∑
{i,j}∈E

f qij − f
q
ji = bqi for all i ∈ V and q = 1, . . . ,K

f qij + f qji ≤ uij for all {i, j} ∈ E and q = 1, . . . ,K

f qij , f
q
ji ≥ 0 for all {i, j} ∈ E and q = 1, . . . ,K
uij ∈ ZE≥0 for all {i, j} ∈ E

The formulation matches the definition of sRND-F exactly; any feasible solution defines a
bq-flow f q for all scenarios q = 1, . . . ,K along with minimum integer capacities that support
the flows. The constraint matrix of formulation (2.17) is not totally unimodular and thus
the integrality requirement for the capacity variables is necessary. Given integer values for
u, however, we can always find a feasible f that is integer as well, even though integrality
of the bq-flows is not required in the definition of the sRND-F problem. Buchheim, Liers and
Sanità propose a Branch-and-Cut algorithm for solving the MIP. In order to strengthen the
linear programming relaxation of (2.17), they use target cuts [BLO08].

An Arc-Flow Formulation for mRND [Min81]. The robustification of mND works anal-
ogously to the sRND case. For the arc-flow formulation, we introduce one set of arc-flow
variables for each traffic matrix in {D1, . . . , DK} and each commodity (s, t) ∈ V × V . This

64 2.5 Worst-Case Robust Capacitated Network Design

gives us a robustified version of (2.3).

min
∑
{i,j}∈E

cijuij (2.18)

s.t.
∑
{i,j}∈E

f qij(s, t)− f
q
ji(s, t) =

dqst, if i = s

−dqst, if i = t

0, otherwise

for all i, s, t ∈ V
and q = 1, . . . ,K

∑
s,t∈V

f qij(s, t) + f qji(s, t) ≤ uij
for all {i, j} ∈ E
and q = 1, . . . ,K

f qij(s, t), f
q
ji(s, t) ≥ 0

for all s, t ∈ V
and q = 1, . . . ,K

uij ∈ ZE≥0 for all {i, j} ∈ E

The robust formulation has Θ(|V |2 · |E| ·K) variables and in the same way as (2.3), the
formulation is not too practical even when K is small [Min81].

Dynamic Routing: Capacity Formulations

In general, the problem with robustified capacity formulations is that the separation
algorithm must take the uncertainty into account as well. This is not a problem if the
vertices of the uncertainty set are given in the input because then, the separation can be
performed once for each vertex. If the uncertainty set is given as a linear description, however,
the resulting separation problems can be hard in theory and in practice. Nonetheless, there
is a separation algorithm for mRND-P metric inequalities by Mattia [Mat13] in the next
section. It resorts to a non-convex quadratic problem. The current literature does not have
capacity formulations with robustified traffic requirements for the sND problem, but we will
see in Chapter 4 how the ideas of this chapter can be used in the single-commodity case and
in Chapter 5 we propose a MIP separation for cut-set inequalities for the sRND-P problem.

A Capacity Formulation for mRND [Mat12]. If we require in the non-robust capacity
formulation (2.4) of mND that the capacity must be sufficient in all scenarios, we obtain the
following integer linear program.

min
∑
{i,j}∈E

cijuij (2.19)

s.t.
∑
{i,j}∈E

µijuij ≥
∑
s,t∈V

dst · distµ(s, t)
for all metrics µ ∈ RV×V≥0

and all D = (dij)i,j∈V ∈ D

uij ∈ Z≥0 for all {i, j} ∈ E

Chapter 2 – Network Design and Robustness 65

Here, the uncertainty only affects the right-hand sides of the inequalities and we can apply
Soyster’s [Soy73] approach from the previous section (an uncertain right-hand side is the
same as a column with uncertain coefficients). Equivalently, we can observe that a fixed
cut is sufficient for all scenarios if and only if it is sufficient for a scenario with maximum
demand. Both observations yield the following linear program that has an inequality for
every extreme ray of the metric cone.

min
∑
{i,j}∈E

cijuij (2.20)

s.t.
∑
{i,j}∈E

µijuij ≥ max
(dij)i,j∈V ∈D

∑
s,t∈V

dst · distµ(s, t) for all metrics µ ∈ RV×V≥0

uij ∈ Z≥0 for all {i, j} ∈ E

This formulation is an integer linear program and in principle, it can be solved as it is. For
a fixed metric µ, the value distµ(s, t) is a constant and can be computed from the input.
Therefore, to find the correct right-hand side for a fixed metric µ, it suffices to optimize
the linear function ∑s,t∈V dst · distµ(s, t) over D. The full formulation, however, can be too
large and in practice, we need a separation algorithm to solve the formulation in reasonable
time.

Mattia [Mat10a; Mat10b; Mat12] shows how to modify the separation LP for mND metric
inequalities to separate metric inequalities in the mRND-P case. Assume that we have a
linear description of a multi-commodity scenario set

D = {D ∈ RV×V | A ·D ≥ r,D ≥ 0}

with a matrix A = (aist)i=1,...,m;s,t∈V ∈ Rm,V×V and a vector r ∈ Rm for some m ≥ 0. Then,
we can separate metric inequalities with the following program. It has a variable σst for
each pair s, t ∈ V and a variable µij for each edge {i, j} ∈ E. The interpretation of the
program is that µij defines a metric and σst denotes the shortest path distance from s to t
with respect to the weights defined by µ.

min
∑
{i,j}∈E

µiju
∗
ij −B (2.21)

s.t.
σsi − σsj
σsj − σsi

}
≤ µij

for all s ∈ V
and all {i, j} ∈ E

(2.21a)∑
{i,j}∈E

µij = 1 (2.21b)

µij ≥ 0 for all {i, j} ∈ E (2.21c)
σst ∈ R for all s, t ∈ V (2.21d)
B = max

∑
s,t∈V

σstdst (2.21e)

∑
s,t∈V

aistdst ≥ ri for all i = 1, . . . ,m (2.21f)

dst ≥ 0 for all s, t ∈ V (2.21g)

66 2.5 Worst-Case Robust Capacitated Network Design

The formulation has two levels: The outer level has the global objective function that
finds a cost-minimum metric for a fixed scenario dst. Here, the constraints (2.21a)–(2.21d)
make sure that µ is a (normalized) metric and that σst is set to the shortest path distance
from s to t with respect to µ. We refer to [Mat10b] for a proof. The inner level chooses a
worst-case scenario d for a fixed metric µ. The choice is made over D, as ensured by the
constraints (2.21f) and (2.21g). If the optimum objective value of (2.21) is negative, we
obtain a metric inequality that is violated by u∗, otherwise, our current solution u∗ satisfies
all metric inequalities. Unfortunately, the program (2.21) cannot be solved as a standard
linear program due to its bi-level structure. The objective function strives to maximize
B even without the explicit maximization in (2.21e) and therefore, the two levels can be
collapsed into a single one. This is, however, at the expense of linearity as the resulting
program has a quadratic, non-convex objective function.

min
∑
{i,j}∈E

µiju
∗
ij −

∑
s,t∈V

σstdst (2.22)

s.t.
σsi − σsj
σsj − σsi

}
≤ µij

for all s ∈ V
and all {i, j} ∈ E∑

{i,j}∈E
µij = 1

∑
s,t∈V

aistdst ≥ ri for all i = 1, . . . ,m

µij ≥ 0 for all {i, j} ∈ E
dst ≥ 0 for all s, t ∈ V
σst ∈ R for all s, t ∈ V

The alternative is to replace the inner problem (2.21e)–(2.21g) by its dual. Denote by αi
the dual variable corresponding to the constraints (2.21f), for i = 1, . . . ,m.

min
∑
{i,j}∈E

µiju
∗
ij −B (2.23)

s.t.
σsi − σsj
σsj − σsi

}
≤ µij

for all s ∈ V
and all {i, j} ∈ E

(2.23a)∑
{i,j}∈E

µij = 1 (2.23b)

µij ≥ 0 for all {i, j} ∈ E (2.23c)
σst ∈ R for all s, t ∈ V (2.23d)

B = min
m∑
i=1

riαi (2.23e)

m∑
i=1

aistαi ≥ σst for all s, t ∈ V (2.23f)

αi ≤ 0 for all i = 1, . . . ,m (2.23g)

Chapter 2 – Network Design and Robustness 67

In this new formulation, constraint (2.23e) cannot be moved into the objective function as
before. Yet, there is a standard technique for bi-level programs that allows us to linearize
formulation (2.23): We simply collapse the levels and ensure optimality for the inner level
by adding the (quadratic) complementary slackness conditions (see Theorem 1.12). This is
the approach that Mattia; Mattia [Mat13; Mat10b] pursues. The resulting program reads
as follows.

min
∑
{i,j}∈E

µiju
∗
ij −

m∑
i=1

riαi (2.24)

s.t.
σsi − σsj
σsj − σsi

}
≤ µij

for all s ∈ V
and all {i, j} ∈ E

(2.24a)∑
{i,j}∈E

µij = 1 (2.24b)

∑
s,t∈V

aistdst ≥ ri for all i = 1, . . . ,m (2.24c)

m∑
i=1

aistαi ≥ σst for all s, t ∈ V (2.24d)

(∑
s,t∈V

aistdst − ri
)
· αi = 0 for all i = 1, . . . ,m (2.24e)

(m∑
i=1

aistαi − σst
)
· dst = 0 for all s, t ∈ V (2.24f)

µij ≥ 0 for all {i, j} ∈ E (2.24g)
dst ≥ 0 for all s, t ∈ V (2.24h)
αi ≤ 0 for all i = 1, . . . ,m (2.24i)
σst ∈ R for all s, t ∈ V (2.24j)

Here, constraints (2.24c) and (2.24d) guarantee primal and dual feasibility of d and α,
respectively. Complementary slackness is ensured by the constraints (2.24e) and (2.24f).
Mattia now proposes to linearize the quadratic complementary slackness constraints using
additional variables and big-M constraints.5 She then proceeds to separate metric inequali-
ties with the resulting linear program. The report shows computational results for the case
that the uncertainty set is the Hose polytope.

5A constraint aTx ≥ b can be disabled conditionally by introducing a binary variable y ∈ {0, 1} and
rewriting the constraint as aTx+M · y ≥ b, where M is a sufficiently large constant. The new constraint
is only relevant for the linear program if y = 0. Such a constraint is called big-M constraint. Integer linear
programs with big-M constraints can be difficult to solve because their linear programming relaxation
generally does not provide a good dual bound.

68 2.5 Worst-Case Robust Capacitated Network Design

Static Routing

In the static routing case, the flow formulation does not need a set of arc-flow variables for
every scenario because we use the same routing in all scenarios. Instead, we need a single
set of flow variables to compute a routing template. Here, for all pairs s, t ∈ V and all edges
{i, j} ∈ E, the variables fstij and f stji denote the fraction of the demand of the commodity
(s, t) that is routed via the arcs (i, j) and (j, i), respectively, in each scenario. As before, we
use an integer variable uij to model the capacity of the edge {i, j}, for all {i, j} ∈ E. We
have the following linear program [AABP07].

min
∑
{i,j}∈E

cijuij (2.25)

s.t.
∑
{i,j}∈E

fstij − f stji =

1, if i = s

−1, if i = t

0, otherwise

for all s, t ∈ V
and all i ∈ V

(2.25a)

∑
s,t∈V

dst ·
(
fstij + fstji

)
≤ uij

for all {i, j} ∈ E
and all (dst)s,t∈V ∈ D

(2.25b)

fstij , f
st
ji ∈ [0, 1]

for all {i, j} ∈ E
and all s, t ∈ V

(2.25c)

uij ∈ Z≥0 for all {i, j} ∈ E (2.25d)

Again, it is sufficient to include the constraints (2.25b) for the vertices of D. A similar
formulation can be obtained using a continuous path variable xP for each s-t-path P ∈ P(s, t)
and all s, t ∈ V .

min
∑
{i,j}∈E

cijuij (2.26)

s.t.
∑

P∈P(s,t)
xP = 1 for all s, t ∈ V

∑
s,t∈V

∑
P∈P(s,t):
{i,j}∈P

dstxP ≤ uij
for all {i, j} ∈ E
and all (dst)s,t∈V ∈ D

xP ∈ [0, 1] for all P ∈ P(s, t) and all s, t ∈ V
uij ∈ Z≥0 for all {i, j} ∈ E

To model unsplittable routing it suffices to turn the arc-flow variables f in program (2.25)
(or the path-flow variables x in program (2.26), respectively) into binary variables.

Static Routing and General Polytopes [BAK05]. Ben-Ameur and Kerivin [BAK05]
consider the mRND problem with static routing, with an uncertainty set D that is given in a

Chapter 2 – Network Design and Robustness 69

linear description and with upper bounds ū for the capacities of the edges. They decompose
the path-formulation (2.26) in the following way: The master problem consists of a variant
of the path formulation (2.26), however, it maintains a set P(s, t) ⊆ P(s, t) of relevant paths
for each pair of nodes s, t ∈ V as well as a set of relevant scenarios D ⊆ D. Both sets are
initially empty. In more detail, the master problem is the following.

min
∑
{i,j}∈E

cijuij (2.27)

s.t.
∑

p∈P(s,t)
xp ≥ 1 for all s, t ∈ V (2.27a)

∑
p∈P(s,t):
{i,j}∈p

xp ≤ fstij for all s, t ∈ V and all {i, j} ∈ E (2.27b)

∑
s,t∈V

f stij dst ≤ uij for all {i, j} ∈ E and all (dst)s,t∈V ∈ D (2.27c)

uij ≤ ūij for all {i, j} ∈ E (2.27d)
xp ∈ [0, 1] for all s, t ∈ V and all p ∈ P(s, t) (2.27e)
f stij ∈ [0, 1] for all s, t ∈ V and all {i, j} ∈ E (2.27f)

The master problem (2.27) is bounded. Suppose for the moment that it is feasible as
well and let u∗ be an optimum solution for the problem. In order to guarantee that u∗ is
globally optimum, we need to make sure that adding additional paths to P := ⋃

s,t∈V P(s, t)
cannot improve the value of u∗. Moreover, u∗ must be globally feasible, i.e., the capacities
must be sufficient to route all scenarios in D (and not only those in D). For the former
problem, Ben-Ameur and Kerivin solve a path satellite problem. It consists of computing
a shortest path between all pairs s, t ∈ V with respect to the dual variables π and ρ of
the constraints (2.27a) and (2.27b). They argue that if ∑{i,j}∈p ρstij < πst for some s-t-path
p 6∈ P, then p will improve the current solution u∗. In this case, we add the path p to P. To
ensure global feasibility on the other hand, Ben-Ameur and Kerivin separate inequalities
of type (2.27c) in a demand satellite problem. Given fixed routing variables f∗ and fixed
capacities u∗ from an optimum solution of (2.27), it suffices to solve the linear program

umax
ij := max

∑
s,t∈V

f∗,stij dst (2.28)

s.t. (dst)s,t∈V ∈ D

for all edges {i, j} ∈ E. Notice that here, we optimize over the entire scenario set. If for
some edge {i, j} ∈ E we find that umax

ij > u∗ij , then the inequality∑
s,t∈V

fstij dst ≤ uij (2.29)

is violated by (f∗, u∗). We add the corresponding optimum solution d∗ of (2.28) to D, thus
adding the violated inequality (2.29) to the master problem.

70 2.5 Worst-Case Robust Capacitated Network Design

To solve the master problem to global optimality, it now suffices to iteratively call the
path satellite, the demand satellite and the master problem itself until neither new paths
nor new scenarios are found. If at some point during the computation the master problem
becomes infeasible, we call the path satellite and if no improving paths can be found, then
the problem instance must be globally infeasible (i.e., the upper bounds for the capacities
are too restrictive to route all scenarios in D).

Static Routing and the Hose Polytope [AABP07]. Altın, Amaldi, Belotti and Pı-
nar [AABP07] apply the dualization technique by Bertsimas and Sim [BS03] (see Sec-
tion 2.4.3) to the arc-flow formulation (2.25). Assuming that the underlying uncertainty set
is the Hose polytope, they equivalently replace constraint (2.25b) by the optimization

uij = max dst(fstij + fstji) (2.30a)
s.t.

∑
i∈V

dsi ≤ douts for all s ∈ V (2.30b)
∑
i∈V

dis ≤ dins for all s ∈ V (2.30c)

dst ≥ 0 for all s, t ∈ V (2.30d)

for all {i, j} ∈ E. For fixed f , this gives us a bounded, feasible linear program for each edge
{i, j} ∈ E. Following the technique by Bertsimas and Sim, we replace these programs by
their dual. In the linear program for edge {i, j}, denote by ωij and υij the dual variables
corresponding to constraint (2.30b) and (2.30c), respectively. This yields the following dual
for each edge {i, j}.

min
∑
s∈V

douts ωijs + dins υ
ij
s (2.31)

s.t. ωijs + υijt ≥ fstij + fstji for all s, t ∈ V
ωijs , υ

ij
s ≥ 0 for all s ∈ V

Chapter 2 – Network Design and Robustness 71

This program is linear even for a non-fixed f . Altın, Amaldi, Belotti and Pınar insert it
into formulation (2.25), replacing constraint (2.25b).

min
∑
{i,j}∈E

cijuij (2.32)

s.t.
∑
{i,j}∈E

fstij − f stji =

1, if i = s

−1, if i = t

0, otherwise

for all s, t ∈ V
and all i ∈ V

(2.32a)

∑
s∈V

douts ωijs + dins υ
ij
s ≤ uij for all {i, j} ∈ E (2.32b)

ωijs + υijt ≥ fstij + fstji for all s, t ∈ V (2.32c)

ωijs , υ
ij
s ≥ 0 for all s ∈ V (2.32d)

fstij , f
st
ji ∈ [0, 1]

for all {i, j} ∈ E
and all s, t ∈ V

(2.32e)

uij ∈ Z≥0 for all {i, j} ∈ E (2.32f)

As the objective function makes sure that the left-hand side of constraint (2.32b) is minimized,
we can omit the explicit minimization without inserting complementary slackness conditions.
In this way, we directly obtain a single level mixed integer linear program and do not need
any further linearization. Solving the program gives us minimum cost integer capacities for
mRND with static routing over the Hose polytope. The program has Θ(|V |2|E|) variables
and Θ(|V |3 + |V |2|E|) constraints. A similar algorithm for a problem variant with multiple
facilities was given by Altın, Yaman and Pınar [AYP11].

Static Routing and Gamma-Robustness [KKR13]. Koster, Kutschka and Raack [KKR13]
robustify the arc-flow formulation (2.25) with the Γ-robustness model.

min
∑
{i,j}∈E

cijuij (2.33)

s.t.
∑
{i,j}∈E

fstij − f stji =

1, if i = s

−1, if i = t

0, otherwise

for all s, t ∈ V
and all i ∈ V

(2.33a)

∑
s,t∈V

d̄st(fstij + fstji) + max
σ∈S(Γ)

∑
s,t∈V

σstd̂st
(
fstij + f stji

)
≤ uij for all {i, j} ∈ E (2.33b)

fstij , f
st
ji ∈ [0, 1]

for all {i, j} ∈ E
and all s, t ∈ V

(2.33c)

uij ∈ Z≥0 for all {i, j} ∈ E (2.33d)

They solve the model with both the dualization technique by Bertsimas and Sim [BS03]
and the separation approach by Ben-Ameur and Kerivin [BAK05] and computationally

72 2.5 Worst-Case Robust Capacitated Network Design

compare the resulting algorithms.
For the dualization approach, Koster, Kutschka and Raack replace the optimization

problem in constraint (2.33b) by its dual

min γij · Γ +
∑
s,t∈V

τ ijst (2.34)

s.t. γij + τ ijst ≥ d̂st(fstij + f stji) for all s, t ∈ V
τ ijst ≥ 0 for all s, t ∈ V
γij ≥ 0

where {i, j} is a fixed edge. The result is a compact linear program with Θ(|V |2|E|) variables
and Θ(|V |3 + |V |2|E|) constraints.

min
∑
{i,j}∈E

cijuij (2.35)

s.t.
∑
{i,j}∈E

fstij − fstji =

1, if i = s

−1, if i = t

0, otherwise

for all s, t ∈ V
and all i ∈ V

∑
s,t∈V

d̄st(fstij + fstji) + γij · Γ +
∑
s,t∈V

τ ijst ≤ uij for all {i, j} ∈ E

γij + τ ijst − d̂st(fstij + f stji) ≥ 0
for all s, t ∈ V
and all {i, j} ∈ V

τ ijst ≥ 0
for all s, t ∈ V
and all {i, j} ∈ E

γij ≥ 0 for all {i, j} ∈ E

fstij , f
st
ji ∈ [0, 1]

for all s, t ∈ V
and all {i, j} ∈ E

uij ∈ Z≥0 for all {i, j} ∈ E

The problem is then solved with a Branch-and-Cut algorithm.
To apply the alternative approach by Ben-Ameur and Kerivin [BAK05], Koster, Kutschka

and Raack need to solve the separation problem for the constraints (2.33b). This is
the corresponding problem to the demand satellite in [BAK05]. As we have an arc-flow
formulation here, there is no need to solve a path satellite problem, however. Given fixed f∗
and u∗, the separation problem for the constraints (2.33b) is to find a deviation σ ∈ S(Γ)
and an edge {i, j} ∈ E such that∑

s,t∈V
d̄st(f∗,stij + f∗,stji) +

∑
s,t∈V

σstd̂st
(
f∗,stij + f∗,stji

)
> u∗ij

Chapter 2 – Network Design and Robustness 73

or to decide that none such combination of a deviation and an edge exists. The problem
can be solved separately for each fixed edge {i, j}. Then, it amounts to solving

max
σ∈S(Γ)

∑
s,t∈V

σstd̂st
(
f∗,stij + f∗,stji

)
. (2.36)

If the optimum value of (2.36) is larger than u∗ij −
∑
s,t∈V d̄st(f

∗,st
ij + f∗,stji), then we found

a violated inequality; otherwise, no violated inequality involving the edge {i, j} exists.
Koster, Kutschka and Raack observe that to solve (2.36), we can simply sort the values
d̂st
(
f∗,stij + f∗,stji

)
in decreasing order. Then, the first Γ commodities in the order determine a

worst-case deviation. This approach yields a program that initially has Θ(|V |3) constraints
and Θ(|V |2|E|) variables. To solve the linear programming relaxation of the problem, we
need to solve Θ(|E|) separation problems per iteration of the separation algorithm.

2.6 More Valid Inequalities
2.6.1 More General Metric Inequalities for the mND
If the left-hand side of a metric inequality only has integer coefficients, then the right-hand
side of the inequality can be rounded up. The result is a rounded metric inequality, as
defined by [BCGT98], ∑

{i,j}∈E
µijuij ≥

⌈∑
s,t∈V

dst · distµ(s, t)
⌉
.

Rounded metric inequalities are only useful if there are fractional scenarios.
Avella, Mattia and Sassano [AMS04] improve the separation of metric inequalities with a

slight modification of the separation LP (2.6). The resulting strong metric inequalities are
guaranteed to have a sparse left-hand side. Additionally, they introduce a MIP separation
for {0, 1}-rounded metric inequalities, i.e., another strengthened version of the previous
metric inequalities. As a third separation method, they show a shrinking procedure that
heuristically tries to turn any separated inequality on an mND instance (V,E,D) into a tight
metric inequality of the form ∑

{i,j}∈E
µijuij ≥ OPT(V,E,D, µ),

where µ is an arbitrary metric and OPT(V,E,D, µ) is the optimum value of the same mND
instance (V,E,D) with edge costs defined by µ. The resulting inequality is not necessarily a
tight metric inequality, but it is guaranteed to have the same violation as the corresponding
tight metric inequality on the shrunken graph. By studying the convex hull of all integer
feasible solutions

PmND(V,E,D) := conv
{
u ∈ ZE≥0

∣∣ u is feasible for the mND instance (V,E,D)
}

of a mND instance (V,E,D) they show that the tight metric inequalities completely charac-
terize PmND. In particular, all valid inequalities for PmND are dominated by a tight metric
inequality.

74 2.6 More Valid Inequalities

2.6.2 Cut-Set Inequalities for Various Network Design Problems

Cut-set inequalities are a well-known concept in network design; we discuss examples and
the literature in the sequel. The general idea is to fix a cut-set S, i.e., a partitioning of the
node set into two shores such that there are terminals on either side of the induced cut.
Since all connections between the separated terminals must cross from S to V \ S at some
point, we can derive a lower bound on the minimum capacity of the cut induced by S in
this way. Cut-set inequalities exist for several network design problems, including some
special cases of sRND. In many cases, these inequalities are facet-inducing.

Steiner Tree

Consider the Steiner tree problem 2.2 from Chapters 2 and 3, i.e., the task to connect
all terminals T ⊆ V of a connected, undirected graph G = (V,E) with a (minimum cost)
subtree. To obtain a cut-set inequality, let S ⊆ V be a cut-set and assume that there are
two terminals s ∈ S and t ∈ V \ S that are separated by S. In order to connect s and t,
any feasible Steiner tree must contain at least one edge out of the cut e ∈ δ(S). Chopra
and Rao [CR94] show that this idea yields a Steiner tree formulation as an integer linear
program.

min
∑
{i,j}∈E

cijxij (2.37)

s.t.
∑

{i,j}∈δ(S)
uij ≥ 1 for all S ⊆ V with ∅ 6= S ∩ T 6= T (2.37a)

uij ∈ {0, 1} for all {i, j} ∈ E (2.37b)

The constraints (2.37a) are called Steiner cut-set inequalities. Given that S separates at
least two terminals, they are facet-inducing if and only if S is a strong6 cut-set [CR94].

Single-Commodity Network Design with a Single Source and Binary Demands

As discussed in Section 2.2, the mRND problem is a special case of the sRND problem if there
is a unique source s that is shared by all commodities. Cut-set inequalities also exist in
this setting. Suppose that we have a finite set of scenarios D = {D1, . . . , DK} ⊆ {0, 1}V×V
and that these scenarios are binary and use a unique source s ∈ V . Now, denote by
T q := {j ∈ V | dsj > 0} the set of sinks of scenario (dqij)i,j∈V ∈ D and fix some S ⊆ V \ {s}
and a scenario q. Then, we know that each sink in S ∩ T q must be connected to the
source s with a capacity of 1. All these connections must use an edge in δ(S). Thus, for all
S ⊆ V \{s} we get the following valid inequality for conv{u ∈ ZE≥0 | u is feasible for (G,D)},
see [San09; OSZ13]. ∑

{i,j}∈δ(S)
uij ≥ max

q=1,...,K
|S ∩ T q| (2.38)

6As before, we say that a cut-set ∅ (S (V is strong if both the induced subgraph G[S] and its complement
G[V \ S] are connected graphs.

Chapter 2 – Network Design and Robustness 75

To stress the connection to the general cut-set inequalities that we will use later in this
chapter, we observe that we can equivalently rewrite (2.38) as∑

{i,j}∈δ(S)
uij ≥

∣∣∑
i∈S

bi
∣∣

using the definition of b in (2.1).

Multi-Commodity Network Design

Even though they are not sufficient to obtain a mND LP formulation, inequalities of the form∑
{i,j}∈δ(S)

uij ≥
⌈∑
i∈S

∑
j∈V \S

dij +
∑
i∈V \S

∑
j∈S

dij
⌉

for some cut-set S ⊆ V are still valid for the mRND polyhedron

PmND(G,D) := conv
{
u ∈ ZE≥0

∣∣ there is a feasible D-multi-commodity flow in (G, u)
}

by Lemma 1.25. The idea is that if a source i ∈ S wants to send dij units of flow to a sink
j ∈ V \ S, then the cut must have sufficient capacity to support these dij units of flow.7
Cut-set inequalities of this type were first given by Magnanti and Mirchandani [MM93]

and Magnanti, Mirchandani and Vachani [MMV95] for the multi-facility case where the
authors show that an inequality for a cut-set S is facet-inducing if and only if its right-hand
side is non-zero and if S is a strong cutset. These two works provide a Branch-and-Cut
algorithm using cut-set inequalities and a heuristic separation. Barahona [Bar96] uses
cut-set inequalities for the buy-at-bulk case of mND. He also provides a Branch-and-Cut
algorithm; again with a heuristic separation. A variant where the task is to expand existing
capacities is given by Bienstock and Günlük [BG96]; also in this case, strong cut-sets
characterize facet-inducing cut-set inequalities. Bienstock and Günlük generalize the cut-set
inequalities to flow cut-set inequalities for an arc-flow formulation. These inequalities
contain non-zero coefficients for the flow variables. Atamtürk [Ata02] gives a complete
linear description consisting of cut-set inequalities for the sND problem where capacities
can only be installed in batch sizes of c ∈ Z≥1. Atamtürk then generalizes the inequalities
to the sND and the mND problem with multiple facilities and shows that they remain facet-
defining if, essentially, both sides of the inducing cuts have non-zero demands. Ortega and
Wolsey [OW03] study the computational effectiveness of cut-set and flow cut-set inequalities.
Costa, Cordeau and Gendron [CCG09] compare cut-set and metric inequalities and their
relationship to Benders’ decomposition [Ben62]. Mattia [Mat10a] adapts the results by
Magnanti, Mirchandani and Vachani [MMV95] to the mRND problem as we shall see later,
showing in particular facet-inducing robust cut-set inequalities for the mRND-P problem.
Altın, Yaman and Pınar [AYP11] show facet-inducing robust cut-set inequalities for the
mRND-P with Hose-robustness, multiple facilities and static routing. Raack, Koster, Orlowski
7The same is true in the converse situation where a source i in V \ S sends dij units of flow to a sink j ∈ S,
because in our definition of multi-commodity flows in undirected graphs, the pairs (i, j) and (j, i) define
two separate commodities. As all commodities must be sent simultaneously, we can add up the demands
of all separated terminal pairs.

76 2.6 More Valid Inequalities

and Wessäly [RKOW11] compare undirected, bi-directed and directed cut-set inequalities for
the mND problem and characterize whether these inequalities induce facets. They generalize
the inequalities to facet-inducing arc-residual inequalities and study the computational
effectiveness of the different inequality classes. Facet-inducing robust cut-set inequalities for
the mRND-P problem with Γ-robustness and static routing were given by Koster, Kutschka
and Raack [KKR13].

2.6.3 Additional Partitioning Based Inequalities
Cut-set inequalities arise by partitioning the node set of a graph into two partitions and by
finding a lower bound for the edges that connect the two partitions. The same principle
applies for any number k ≥ 2 of partitions. Here, finding the best lower bound for the
connecting edges often amounts to solving the original problem on an auxiliary graph in
which the nodes of each partition are aggregated into a single node. Chopra and Rao [CR94]
define Steiner k-partition inequalities for the Steiner tree problem, observing that at least
k − 1 edges are necessary to connect any k-partition of the node set, provided that all
partitions contain terminals. They show that Steiner k-partition inequalities induce facets
if the auxiliary graph described above is biconnected.
Magnanti, Mirchandani and Vachani [MMV95] show that 3-partition inequalities for

the mND problem with two facilities can be derived by building a {0, 1
2}-cut (see [CF96]

and Chapter 1) from the cut-set inequalities induced by the three partitions. We show
in Chapter 4 that the principle works for the sRND problem. We also characterize which
3-partition inequalities define facets there. Bienstock, Chopra, Günlük and Tsai [BCGT98]
show 3-partition inequalities for the basic mND problem.
Also for the basic mND problem, Agarwal [Aga06] shows how to lift any facet of the

polyhedron defined by the auxiliary instance such that it yields a facet of the polyhedron
of the original instance. A similar lifting theorem exists by Chopra and Rao [CR94] for
the Steiner tree problem. Agarwal then uses the lifting theorem to find facet-inducing
4-partition inequalities. Mattia [Mat10a] shows that Agarwal’s theorem also holds for the
mRND problem.
We show in Chapter 4 that Agarwal’s theorem can be translated to the sRND problem

as well. Here, Buchheim, Liers and Sanità [BLS11] had previously proposed to separate
valid inequalities for the sRND-F flow formulation using general cutting planes (so-called
target-cuts [BLO08]). In order to separate a capacity vector u∗, the target-cut procedure
projects u∗ to the auxiliary instance on k-partitions in the above sense. If the projection of
u∗ is not feasible, Buchheim, Liers and Oswald find a violated facet-inducing inequality on
the auxiliary instance. This is done by solving a linear program. The violated inequality is
then lifted back to the original instance where it is still valid and violated by u∗. Thus, the
procedure yields a violated k-partition inequality. Furthermore, by our new adaptation of
Agarwals’ lifting theorem, the lifted inequality is facet-inducing.

Chapter 2 – Network Design and Robustness 77

2.7 An Overview of Related Works

capacities flow model link model robustness routing LP/IP
type

Ford and Fulkerson
[FF58]

fractional MC U — — path-flow

Minoux [Min81] fractional MC U finite dynamic arc-flow,
capacity

Magnanti and
Wong [MW84]

binary MC U/D — — arc-flow

Minoux [Min89] fractional,
linear

/concave
costs

SC/MC U/D finite dynamic arc-flow,
capacity

Magnanti,
Mirchandani and
Vachani [MMV95]

integer MC U, 2-FAC — — arc-flow

Barahona [Bar96] binary MC U (D) — — arc-flow,
capacity

Bienstock and
Günlük [BG96]

binary MC U, 2-FAC — — arc-flow

Bienstock, Chopra,
Günlük and Tsai
[BCGT98]

integer MC D — — arc-flow,
capacity

Günlük [Gün99] integer MC U — — arc-flow,
capacity

Labbé, Séguin,
Soriano and
Wynants [LSSW99]

integer MC U finite dynamic
on

prescribed
subgraphs

arc-flow,
lagrangian

Atamtürk [Ata02] integer SC U, k-FAC — — arc-flow,
capacity

Mirchandani
[Mir00]

integer SC/MC U, k-FAC — — arc-flow,
capacity

Ortega and Wolsey
[OW03]

binary SC U — — arc-flow

Avella, Mattia and
Sassano [AMS04]

integer MC U finite dynamic arc-flow,
capacity

Erlebach and
Rüegg [ER04]

fractional MC B Hose static,
single-
path,
tree

arc-flow

78 2.7 An Overview of Related Works

capacities flow model link model robustness routing LP/IP
type

Ben-Ameur and
Kerivin [BAK05]

fractional MC D general
polyhedral,

Hose

static path-flow

Agarwal [Aga06] integer MC U — — arc-flow,
capacity

Altın, Amaldi,
Belotti and Pınar
[AABP07]

integer MC U Hose, Γ static &
unsplit-
table

arc-flow,
path-flow

Mudchanatongsuk,
Ordóñez and Liu
[MOL08]

binary MC D general
polyhedral,
ellipsoidal

dynamic arc-flow

Koster, Orlowski,
Raack et al.
[KOR+09]

binary MC U,
multi-layer

— — arc-flow

Costa, Cordeau and
Gendron [CCG09]

fractional MC D — — arc-flow,
capacity

Altın, Yaman and
Pınar [AYP11]

integer MC U, k-FAC general
polyhedal,

Hose

static arc-flow

Buchheim, Liers
and Sanità [BLS11]

integer SC U finite dynamic arc-flow

Poss and Raack
[PR11]

fractional MC U general
polyhedral

affine
recouse

arc-flow

Raack, Koster,
Orlowski and
Wessäly [RKOW11]

binary MC U/D/B — — arc-flow,
capacity

Ljubić, Putz and
Salazar-González
[LPSG12]

binary MC, single-
source

U/D,
k-FAC

— — arc-flow,
capacity

Koster, Kutschka
and Raack
[KKR13]

integer MC U Γ static arc-flow

Lee, Lee and Park
[LLP13]

binary MC U, k-FAC Γ static arc-flow,
capacity

Mattia [Mat13] integer MC U general
polyhedral,

Hose

dynamic arc-flow,
capacity

Chapter 3

Scenarios with a Single Source and Sink

In our definition of the sRND problem, we allow arbitrary balance vectors b ∈ B. This
means, in particular, that we do not limit the number of nodes which have a non-zero
balance. In this chapter, however, we assume that in each scenario b ∈ B, there is a
single node s with a positive balance bs > 0 and a single node t with a negative balance
bt < 0. The additional assumption does not change the complexity of the problem as was
shown by Maculan [Mac87a]. If the underlying network is a complete graph, however,
there is a polynomial time algorithm by Kabadi, Yan, Du and Nair [KYDN09]. We will
see a more detailed discussion of the problem in this chapter, starting with an algorithm
by Gomory and Hu [GH61] for the fractional variant. Finally, we show how to solve the
problem on hypercubes with uniform balances in constant time. The results in this Chapter
were obtained in a collaboration with Eduardo Álvarez-Miranda, Valentina Cacchiani, Tim
Dorneth, Michael Jünger, Frauke Liers, Andrea Lodi and Tiziano Parriani. They have been
published in [ACDJ+12] and [MCL+14].

80 3.2 The Network Synthesis Problem

3.1 Problem Complexity

The sRND problem with a single source and an arbitrary number of sinks is NP-hard, even if
the number k of scenarios is fixed to k = 3 [San09; BLS11]. The proof is by a reduction from
3-dimensional matching and inherently requires a non-constant number of sinks. However,
Sanità [San09] reports on a reduction from Steiner tree that only uses a single source and a
single sink per scenario, but requires a non-constant number of scenarios.

Theorem 3.1 (Sanità, Maculan [San09; Mac87a]). The finite sRND problem where each
scenario has a single source and a single sink is NP-hard, even when all node balances are
−1, 0 or 1.

Proof. We prove the NP-hardness by a reduction from the NP-hard Steiner tree prob-
lem [Kar72]. Suppose that (V,E, c, T) is an arbitrary instance for the Steiner tree problem.
We construct an input for the sRND problem in the following way: If T is empty, construct
an sRND instance with an empty scenario set. Otherwise, fix some arbitrary terminal s ∈ T
and create a scenario bt for any t ∈ T \ {s} by setting

bti :=

1, if i = s

−1, if i = t

0, otherwise

and collect all scenarios in B :=
{
bt
∣∣ t ∈ T \ {s}}. Let u be an optimum solution for the

resulting sRND instance (V,E, c,B) on the same node and edge set. We claim that the
support graph H of u is a Steiner tree and has the same cost as u. Firstly, to make u
feasible, all terminals t ∈ T must be connected to s. Also, H is a tree: If H contained a
cycle C, then C would connect all nodes on it with a capacity of 2. However, the maximum
absolute balance of any terminal is 1 and therefore we can remove the most expensive edge
from C without destroying the feasibility of u. On the other hand, any Steiner tree solution
for (V,E, c, T) immediately induces a feasible solution for the sRND instance (V,E, c,B)
of the same cost. Therefore, solving sRND with a single source and sink per scenario also
enables us to solve the NP-hard Steiner tree problem.

A similar reduction can be used to show that the variant with a polyhedral uncertainty
set is NP-hard, see Chapter 5.

3.2 The Network Synthesis Problem

The single-source single-sink variant of the sRND problem is in fact the origin of network
design problems. Chien [Chi60] defines the Network Synthesis problem in the following way.
Denote by |fmax

s→t | the value of a maximum s-t-flow in an undirected network (V,E, u, s, t).

Problem 3.2 (Chien [Chi60]). Given a complete undirected graph (V,E) and a flow
requirement rst = rts for all pairs s 6= t ∈ V of nodes, find capacities u ∈ RE≥0 with minimum
cost

∑
i,j∈E uij such that |fmax

s→t | ≥ rst for all pairs s 6= t ∈ V .

Chapter 3 – Scenarios with a Single Source and Sink 81

This problem is equivalent to the fractional sRND problem where each scenario has a
single source and a single sink and the underlying network topology is a complete graph.
Any instance of the network synthesis problem can be made into an sRND instance with
exactly |V |(|V | − 1)/2 scenarios, each having a single source s and a single sink t (and, to
be more precise, in scenario s, t, the supply/demand of s and t is exactly rst). On the other
hand, it does not make sense to have more than one scenario for each unordered pair {s, t}
of a source s and a sink t, because if we are able to route the scenario with the highest
balance for any unordered pair of nodes {s, t}, we can also route all other scenarios with
that set of terminals.1 Therefore, any sRND instance on a complete graph that has a single
source and sink per scenario is a Network Synthesis problem.

Kabadi, Yan, Du and Nair [KYDN09] give a short overview over the existing algorithms
for this problem and its variants. Let us, however, focus on an algorithm by Gomory and
Hu [GH61] here, because its decomposition technique is similar to the one that we will use
in Section 3.3.

3.2.1 A Decompositioning Technique by Gomory and Hu
The algorithm by Gomory and Hu is a divide-and-conquer algorithm that iteratively
decomposes the requirement matrix. It ends up with a family of requirement matrices
for which suitable networks can be synthesized easily. It then recomposes those networks
into a final solution. The difficulty is to show that the re-composed solution is actually an
optimum one.

Decomposing Requirements

The Network Synthesis problem has an important decomposition property. If we distribute
the requirements of an instance (V,E, r) among two instances (V,E, r′) and (V,E, r′′), then
we can obtain a feasible solution for (V,E, r) by adding up feasible solutions of (V,E, r′)
and (V,E, r′′).

Lemma 3.3 (Gomory and Hu [GH61]). Let (V,E, r) be an instance for the Network
Synthesis problem and let r = r′ + r′′ with r′, r′′ ∈ RE≥0. If u′ and u′′ are feasible solutions
for (V,E, r′) and (V,E, r′′), respectively, then u′ + u′′ is a feasible solution for (V,E, r).

Proof. For all i, j ∈ V let f ′(i, j) be a maximum flow in (V,E, u′) of value at least r′ij and
let f ′′(i, j) be a maximum flow in (V,E, u′′) of value at least (r′′)ij . Simply adding up
f ′(i, j) and f ′′(i, j) gives us a flow that sends (r′ + r′′)ij units of flows between i and j. To
send (f ′ + f ′′)(i, j), the capacities u′ + u′′ are sufficient and therefore, (u′ + u′′) is a feasible
solution for (V,E, r′ + r′′).

Unfortunately, even if u′ and u′′ are optimum solutions, their sum u′+u′′ is not necessarily
optimum for (V,E, r′ + r′′) (see Figure 3.1). We say in this case that the decomposition
does not maintain optimality. If we decompose correctly, however, optimality is preserved:
We make sure that both the decomposed and the resulting solution satisfy the following
lower bound exactly – which implies that the resulting solution is optimal.
1Even more, Gomory and Hu [GH61] show that there is always a dominating scenario set of size |V | − 1,
see Lemma 3.8.

82 3.2 The Network Synthesis Problem

r′ 5

4

0

r′′ 0

0

2

r′ + r′′ 5

4

2

u′3

2

2

u′′0

0

2

u′ + u′′3

2

4

OPT

3

2

2

Figure 3.1: If the decomposition is not chosen carefully, adding the solution for the decomposed
instances can lead to a suboptimal solution for the original instance. In this case,
decomposing r into r′ + r′′ has lead to a solution u′ + u′′ of value 9, while the optimum
solution has a value of 7. This is despite the fact that both u′ and u′′ satisfy (3.1) with
equality and despite of r′′ being uniform.

Lemma 3.4 (Gomory and Hu [GH61]). Let (V,E, r) be a network synthesis instance. Any
feasible solution u ∈ RE≥0 satisfies

∑
{i,j}∈E

uij ≥
1
2
∑
i∈V

max
j∈V

rij (3.1)

Proof. Observe that u can only be feasible if at any node i the capacity out of i is at least
as large as the maximum requirement that i has, i.e.,∑

j∈δ(i)
uij ≥ max

j∈V
rij .

Adding up for all i ∈ V we obtain ∑
i∈V

∑
j∈δ(i)

uij ≥
∑
i∈V

max
j∈V

rij

⇐⇒
∑
{i,j}∈E

uij ≥
1
2
∑
i∈V

max
j∈V

rij

which gives us the desired lower bound on the total capacity.

We define rmin := min{rij | {i, j} ∈ X} as the minimum positive requirement on the
support X := {{i, j} ∈ E | rij > 0} of r.

r′′ij :=
{
rmin if rij > 0
0 otherwise

for all {i, j} ∈ E (3.2)

In this way, we obtain two instances (V,E, r′) and (V,E, r − r′). This is a decomposition
of (V,E, r) because r = r′ − r + r′. Suppose that we have feasible capacities u′ and u′′ for

Chapter 3 – Scenarios with a Single Source and Sink 83

r′ and r − r′, respectively, such that both pairs (u′, r′) and (u′′, r − r′) satisfy (3.1) with
equality. Then we have

1
2
∑
i∈V

max
j∈V
{rij} = 1

2
∑
i∈V

max
j∈V

{
r′ij + (rij − r′ij

}
= 1

2
∑
i∈V

max
{i,j}∈X

{
r′ij + (rij − r′ij)

}
= 1

2
∑
i∈V

[
rmin + max

{i,j}∈X

{
(rij − r′ij)

}]
= 1

2
∑
i∈V

[
max
{i,j}∈X

{r′ij}+ max
{i,j}∈X

{
(rij − r′ij)

}]
= 1

2
∑
{i,j}∈E

u′ij + u′′ij

and we see that also (u′ + u′′, r) satisfies (3.1) with equality – and this implies that u′ + u′′

is optimum for (V,E, r). It now remains to find optimum solutions for (V,E, r′) and
(V,E, r− r′) that satisfy (3.1) with equality. Observe at this point that the requirements in
(V,E, r′) are uniform.

Definition 3.5. For β ∈ R≥0, a requirement matrix r is β-uniform on X ⊆ E if

rij =
{
β, if {i, j} ∈ X
0, otherwise

for all {i, j} ∈ E

Due to the uniform requirements r′, it is conceivable that finding optimum solutions
for (V,E, r′) is much easier than finding optimum solutions for (V,E, r). The instance
(V,E, r − r′), however, can have an arbitrary structure and therefore it is not clear why
the decomposition should help us. The central observation is now that if we apply the
decomposition technique recursively to (V,E, r − r′), we will at some point decompose into
two instances that are both uniform. Therefore, solving an arbitrary Network Synthesis
instance (V,E, r) can be reduced to solving a sequence of uniform Network Synthesis
instances.

Dominant Requirement Trees

Before we actually synthesize a network, we make a further simplification: Any instance
(V,E, r) can be reduced such that the support of r induces a tree. We will see in this
subsection why this is true. The key argument is the following famous lemma.

Lemma 3.6 (Gomory and Hu [GH61]). Let N = (V,E, u) be an arbitrary network with
capacities u ∈ RE≥0. Then, for any path (i1, . . . , ip) in N , we have

|fmax
i1→ip | ≥ min

{
|fmax
i1→i2 |, . . . , |f

max
ip−1→ip |

}

84 3.2 The Network Synthesis Problem

Proof. We show that for any i, j, k ∈ V , we have

|fmax
i→k | ≥ min{|fmax

i→j |, |fmax
j→k|}

from which our original claim follows by induction. Assume that |fmax
i→k | < min{|fmax

i→j |, |fmax
j→k|}

for some choice of i, j, k ∈ V . Then, by the MaxFlow-MinCut Theorem 1.17 there is a
cut X ⊆ V such that i ∈ X, j ∈ V \X and the capacity of X is exactly |fmax

i→k |. Now, if
j ∈ X, the same Theorem implies that |fmax

j→k| < |fmax
i→k |, which is a contradiction. Similarly,

if j ∈ V \X we have a contradiction because |fmax
i→j | < |fmax

i→k |.

This means that if at least ρ flow units can be sent between all two adjacent nodes ij ,
ij+1 on a i1-ip-path, then at least ρ units of flow can be sent from i1 to ip. This is of course
true: We obtain a valid flow by adding up the flows between the nodes of the path and
canceling out any resulting cycles. We now use Lemma 3.6 to reduce the number of non-zero
requirements.

Definition 3.7 (Gomory and Hu [GH61]). Let (V,E, r) be an instance of the Network
Synthesis Problem. A dominant requirement tree of (V,E, r) is a maximum spanning tree
of (V,E) where the weight of {i, j} ∈ E is exactly rij.

The dominant requirement tree is called dominant because its edges induce dominating
requirements. This is what the next lemma states.

Lemma 3.8 (Gomory and Hu [GH61]). Let (V,E, r) be an instance of the Network Synthesis
Problem and let T be the edge set of a dominant requirement tree of (V,E, r). If we define

rT :=
{
rij if {i, j} ∈ T
0 otherwise

,

then a solution u is feasible for (V,E, r) if and only if it is feasible for (V,E, rT).

Proof. Any solution for (V,E, r) must in particular satisfy the requirements rij for all
{i, j} ∈ T . For the other direction, suppose that u is a feasible solution for (V,E, rT) and
let i, j ∈ V . Then, there is a path (i, i1, . . . , ip, j) connecting i to j in T . Moreover, since u
is feasible, |fmax

i→j | ≥ rij for all {i, j} ∈ T . By Lemma 3.6, we have

|fmax
i→j | ≥ min{|fmax

i→i1 |, . . . , |f
max
ip→j |} ≥ min{ri,i1 , . . . , rip,p} ≥ rip,

where the last inequality is valid because T is a maximum spanning tree.

All that remains now is to synthesize optimal networks where the requirements are
uniform and induced by a tree.

Synthesizing Networks with Uniform Requirement Trees

Suppose now that (V,E, r) is an instance of the Network Synthesis Problem with β-uniform
requirements and that the support X := {{i, j} ∈ E | rij > 0} of r is a tree. Gomory
and Hu construct an optimum solution u ∈ RE≥0 for (V,E, r) that exactly meets the lower
bound (3.1) in the following way.

Chapter 3 – Scenarios with a Single Source and Sink 85

If X consists of a single edge {i, j}, set uij = β. Otherwise, choose any cycle C ⊆ E that
contains exactly the nodes i ∈ V [X] (this can be done easily because (V,E) is a complete
graph). Then, set uij = β/2 for all {i, j} ∈ C and uij = 0, otherwise.
The resulting solution u is feasible for (V,E, r) when X = {{i′, j′}} because the require-

ment between i′ and j′ is β and exactly β units of flow can be sent over {i′, j′}. It also
satisfies (3.1) with equality in this case, as we have∑

{i,j}∈E
uij = ui′,j′ = β = 1

2
∑
i∈V

max
{i,j}∈X

rij = 1
2
∑
i∈V

max
j∈V

rij .

The solution u is also feasible if |X| > 1: Any pair i, j of terminals in (V,E, r) has a
requirement of β and lies on the constructed cycle C. It also decomposes C into two disjoint
paths, each having a capacity of β/2. Thus, β units of flow can be sent from i to j (and
vice-versa). In this case, we get∑

{i,j}∈E
uij =

∑
{i,j}∈X

uij =
∑

i∈V [X]

β

2 = 1
2
∑

i∈V [X]
max
j∈V

rij = 1
2
∑
i∈V

max
j∈V

rij

and we see that u satisfies (3.1) with equality.

Summary: The Complete Network Synthesis Algorithm by Gomory and Hu

In summary, we obtain Algorithm 1 that is able to synthesize a network for an arbitrary
requirement matrix. It only requires that the underlying network topology is a complete
graph.

Algorithm 1: The Network Synthesis Algorithm by Gomory and Hu [GH61]
input : A complete graph G = (V,E) and a requirement matrix r ∈ ZV×V
output : Capacities u ∈ RE≥0 that support r

1 Let u ≡ 0
2 Compute a dominant requirement tree T of r
3 Set all requirements outside of T to zero (Lemma 3.8)
4 Compute the bottleneck requirement rmin := min{rij > 0 | {i, j} ∈ E}
5 if T consists of a single edge {ij} then
6 Set uij = rmin

7 return u

8 else if T is uniform then
9 Find a Hamiltonian Cycle C through the nodes of T

10 Set uij = rmin/2 for all {i, j} ∈ C
11 return u

12 end
13 Choose r′′ according to rmin and (3.2)
14 Recursively solve (V,E, r′) and (V,E, r − r′), obtain solutions u′ and u′′
15 return u′ + u′′ (Lemma 3.3)

86 3.3 An Algorithm for Hypercube Graphs

3.3 An Algorithm for Hypercube Graphs

The step in Line 9 of Algorithm 1 attempts to find a Hamiltonian Cycle. When the
underlying network is not complete, however, this cycle does not necessarily exist and even
if it does, finding it is NP-hard. Still, there are other classes of graphs that always contain
a Hamiltonian cycle and it is a natural idea to adapt Gomory and Hu’s algorithm to one
of them. In fact, one of these classes is formed by Hypercube Graphs and these shall be
the subject of our studies in this section. In the sequel, we use the shorter word Hypercube
instead of Hypercube Graph.

Definition 3.9. A d-dimensional hypercube Cd is the result of the following recursive
construction: C0 is the graph that consists of a single node. For d > 0, Cd is obtained by
duplicating the nodes and edges of Cd−1 and connecting each node v to its copy v′ with an
additional edge {v, v′}.

Definition 3.10. We say that two nodes v, w are diagonally opposite on Cd if the shortest
path from v to w in Cd has maximum length, i.e., length d. For each v ∈ Cd there is exactly
one diagonally opposite node vo.

The fact that a longest shortest path in Cd has length d is well-known, as is the uniqueness
of vo, see for example the survey by Harary, Hayes and Wu [HHW88] on this subject.2 The
same is true for the size of hypercubes.

Observation 3.11. The hypercube Cd has Nd := 2d nodes and Md := d · 2d−1 edges.

Moreover, there is a straight-forward inductive proof that for d > 1, any hypercube is
Hamiltonian: The 2-dimensional hypercube C2 is itself a Hamiltonian cycle. Let d > 2.
By its definition, Cd is composed of two copies H1, H2 of Cd−1 and each of them admits a
Hamiltonian cycle C1, C2, respectively, by induction. Then, for some edge {i, j} in C1, we
have the Hamiltonian cycle (C1 ∪ {i, i′} ∪ {j, j′} ∪C2) \ ({i, j} ∪ {i′, j′}) where i′ and j′ are
the copies of i, j in H2.

Observation 3.12. For any d > 1, the hypercube Cd contains a Hamiltonian cycle.

Let us now define a family of hypercube instances for the sRND problem in the following
way. For any d ≥ 1, the hypercube Cd is composed of two (d− 1)-dimensional hypercubes
and as before, we call them H1, H2. Each of the copies has exactly 2d−1 nodes. For each
node i ∈ H1, we define a scenario where i is the only source, having balance 1 and its
diagonally opposite node io ∈ H2 is the only sink, having balance −1. Figure 3.2 shows the
construction. We denote the instance obtained in this way by C1

d. Scaling all balances in
C1
d by r ∈ Z≥0, we obtain the instance Crd. In the remainder of this chapter, we try to find

algorithms for solving Crd with different r.

2Harary, Hayes and Wu argue that each node i of Cd can be associated with a distinct vector vi ∈ {0, 1}d
such that the distance of two nodes i, j ∈ Cd is exactly the number of bits in which the corresponding
vectors vi, vj differ. This implies that the maximum distance of two nodes is d and that only the node
associated with the complementary vector of vi can have distance d to node i.

Chapter 3 – Scenarios with a Single Source and Sink 87

1 1 1 2

2 1

3

2

4

1

21

4 3

3
7

2
6

4
8

1
5

5

1

8

4

6

2

7

3

Figure 3.2: Hypercubes Cd in d = 1, 2, 3, 4 dimensions. Circle nodes depict the nodes that are sources
and square nodes depict those nodes that are sinks in our Cr

d instances. The number
next to the nodes defines the mapping of sources to sinks: Each source is mapped to its
diagonally opposite node. All sources have a supply of r.

3.3.1 When Supplies and Demands are Binary

When all supplies and demands are binary, i.e., if bi ∈ {−1, 0, 1} for all b ∈ B, and every
scenario b ∈ B has a single source and a single sink node, it is not difficult to find an
optimum fractional solution for the sRND problem on our hypercube instances. This is due
to the uniform structure of the supplies and demands that allows us to obtain a feasible
solution by setting a capacity of 1/d on every edge of Cd: Between any pair of diagonally
opposite vertices, there are d disjoint paths and all of them have a capacity of 1/d. Also,
this solution has a value of d · 2d−1 · 1

d = 2d−1, which is optimal by Lemma 3.4, as we have
1
2
∑
i∈V [Cd]|max bi| = 1

2 |V [Cd]| = 2d−1.

Observation 3.13. For d ≥ 1, the cost of an optimum fractional solution of C1
d is 2d−1.

If we additionally require that the capacities must be integer, it is no longer clear how to
find an optimum solution for the problem. Even more, on general graphs, the single source,
single sink sRND problem with binary balances is a special case of the NP-hard Steiner
forest problem.

88 3.3 An Algorithm for Hypercube Graphs

Definition 3.14. Given an undirected graph G = (V,E), an edge cost function c : E → R≥0
and k disjoint sets T1, . . . , Tk ⊆ V , find a minimum cost forest F ⊆ E such that for all
l = 1, . . . , k and all i, j ∈ Sl, there exists a path from i to j in F .

The Steiner forest problem is NP-hard, since the case where l = 1 is exactly the Steiner
tree problem. If we make Si to contain exactly the source-sink pair of the i-th scenario, then
we reduced the binary single-source single-sink sRND problem (BSS-sRND) to Steiner forest.
Still, it is not clear if Steiner forest can be reduced so BSS-sRND since sets Si with |Si| > 2
cannot be trivially modeled in an BSS-sRND instance. To the best of the author’s knowledge,
it is unknown if this special case of Steiner forest remains NP-hard (in particular when the
underlying graph is a hypercube). There is, however, evidence that the problem is difficult
to tackle with Branch-and-Cut methods. More precisely, we show in the sequel that the
integrality gap, i.e., the quotient of an optimum integer and an optimum fractional solution
converges to 2 as d goes to infinity. To this aim, we establish a lower bound on the value of
an integer solution. An example of the situation for d = 2 is depicted in Figure 3.3.

Lemma 3.15. Any integer solution of C1
d has a total cost of at least 2d − b2d−1/dc.

Proof. We first show that any connected component of the support graph of an integer
feasible solution uI contains at least 2d nodes: Each connected component C of the support
of uI must contain one source s and its corresponding sink t. Yet, since the shortest path
between any source-sink-pair in Cd contains d edges, d− 1 additional nodes V ′ ⊆ V must
be contained in C. As all nodes are terminals, each node in V ′ is a terminal in some
scenario. However, for no source or sink in V ′ the corresponding terminal can lie in V ′

because otherwise the shortest path between such a terminal pair would have less than
d edges. Thus, another d − 1 nodes need to be contained in C, namely the diagonally
opposite nodes of those nodes in A. This gives us that any connected component must
contain at least d+ 1 + d− 1 = 2d nodes. Therefore, no feasible solution can contain more
than Z := bNd/(2d)c = b2d/(2d)c connected components. However, in order to have at
most Z connected components, the solution must contain at least Nd − Z = 2d − b2d−1/dc
edges.

Thus, we can bound the integrality gap GAP (Id) as follows:

GAP (Id) ≥
∑
e∈E[Cd] u

I
e∑

e∈E[Cd] u
F
e

≥ 2d − 2d−1/d

2d−1 = 2− 1
d

d→∞−−−→ 2

It remains open, however, if the problem can be solved by an efficient algorithm.

3.3.2 Uniform Supplies and Demands that are not Binary
Even when we explicitly forbid binary demands (i.e., if we require that bi ∈ Z \ {−1, 1} for
all nodes i ∈ V and all scenarios b ∈ B), the sRND problem with a single source and a single
sink per scenario remains NP-hard on general graphs. This was pointed out to the author
by Laura Sanità.

Theorem 3.16. [San13] The sRND problem is NP-hard, even if there is a single source
and a single sink in each scenario and if bi ∈ {−2, 0, 2} for all i ∈ V, b ∈ B.

Chapter 3 – Scenarios with a Single Source and Sink 89

1 1

−1−1

1 1

−1−1

integer optimum

1

1

1

0

1 1

−1−1

fractional optimum

1
2

12

1
2

1 2

Figure 3.3: The instance C2 with unit costs and two scenarios: The two green and blue nodes are
the unique source-sink pair of the first and second scenario, respectively. The value of
an optimum integer solution is 3 while an optimum fractional solution only has cost 2.

Proof. We show the claim by a reduction from Hamiltonian Cycle. Let G = (V,E) be an
arbitrary undirected graph. Construct an sRND instance that uses G as the underlying
network topology. Then, fix some arbitrary node s ∈ V and create a scenario bi for all
nodes i ∈ V \ {s} by setting bis = 2 and bii = −2. Finally, set the cost of each edge e to 1.
This gives us an sRND instance IR with |V | − 1 scenarios. We claim that IR has a solution
of value |V | if and only if G has a Hamiltonian cycle.

If G has a Hamiltonian cycle C, we build a feasible solution for IR by installing a capacity
of 1 on each edge of C. In each scenario bi, both unique terminals 1 and i lie on C. The
node i decomposes C into two paths P1, P2 from 1 to i (one clockwise, one counterclockwise).
We can route one unit of flow on P1 and one unit of flow on P2, satisfying the demands of
scenario i. Thus, our solution for IR is feasible and additionally, it has cost of |C| = |V |.
On the other hand, suppose we have a solution for IR of cost |V |. By our choice of

scenarios (we have a single source at node 1 and all other nodes are terminals in some
scenario), each node must be connected to node 1. Therefore, any feasible solution for IR
must have a support S that induces a connected component of G containing all nodes. S
must contain at least |V | − 1 edges, otherwise it cannot be connected. If S contains exactly
|V | − 1 edges, a capacity of 2 must be installed on each edge in S in order to route all
demands. However, such a solution has cost of 2 · |V |−2 > |V | and therefore S must contain
at least |V | edges. If some node in G[S] has a degree of 1, then we must install a capacity
of 2 on its unique incident edge. By the same argument as before, the remaining |V | − 1
nodes must be connected by at least |V | − 1 edges. Then again, the cost of the solution is
at least |V | − 1 + 2 > |V |. Therefore, all nodes in G[S] must have a degree of at least 2
and because we can have at most |V | edges in S, each node must have exactly degree 2.
Together with our observation that G[S] is connected and contains all nodes, we have a
Hamiltonian cycle.

Hypercubes with Uniform Non-Binary Supplies and Demands

In the following, we will see how to solve the problem efficiently when the underlying graph
is a hypercube. This is not a contradiction to the NP-hardness as the above reduction
breaks down on Hamiltonian graphs. The idea for our algorithm is again to decompose an
instance into instances that can be easily synthesized.

90 3.3 An Algorithm for Hypercube Graphs

The atomic instances for our construction are the hypercubes C2
d and C3

d. Indeed, we can
obtain a feasible integer solution for C2

d by using the idea by Gomory and Hu [GH61] from
Subsection 3.2.1: We install a capacity of 1 on each edge of a Hamiltonian cycle in C2

d. As
Cd has 2d nodes, this solution has a cost of 2d.

Lemma 3.17. For any d ≥ 2, there is a feasible integer solution for C2
d with costs 2d.

In this case, splitting the supplies and demands evenly along two sides of a cycle yields
an integer solution because r is even. If r = 3, however, this idea would give us only a
fractional solution. Splitting the supplies and demands unevenly is not possible either since
we would obtain a suboptimal solution in this way. This means that we need to split the
supplies and demands evenly along three instead of two disjoint paths. The proof of the
following lemma shows how this can be done.

Lemma 3.18. For any d ≥ 3, there is a feasible integer solution for C3
d with costs 3 · 2d−1.

Proof. Let d ≥ 3. Then Cd decomposes into two copies H1, H2 of Cd−1 and a set of edges F
connecting H1 and H2. We install a capacity of 1 on each edge in F . Since d− 1 ≥ 2, we
find Hamiltonian cycles C1, C2 in H1 and H2, respectively, and install a capacity of 1 on
each edge of C1 and of C2.
This solution is feasible: For any scenario i ∈ {1, . . . , q}, let si, ti be the corresponding

terminal pair. We need to route three units of flow from si to ti. To do that, let s′i ∈ H2
and t′i ∈ H1 be the unique nodes such that e1 = {si, s′i} ∈ F and e2 = {t′i, ti} ∈ F . Also, let
e3 = {u, v} ∈ F with u ∈ H1 and v ∈ H2 be an arbitrary connecting edge that is different
from e1 and e2. Because d ≥ 3, the set F contains at least four edges. Figure 3.4 shows an
example for the situation on C3

4. Now, by sending one unit of flow over each of e1, e2, e3,
we have reduced the instance to two instances on Cd−1: The first instance is defined on
H1; here, si has a balance of 2 and both u and t′i have a balance of −1. However, these
balances can be routed along the Hamiltonian C1. In the second instance, which is defined
on H2, the sink ti has a balance of −2 and both s′i and v have a balance of 1. Again, these
balances can be routed along the Hamiltonian cycle C2.
Both C1 and C2 contain exactly 2d−1 edges, each with capacity 1. There are 2d−1 edges

in F , all of them having capacity 1. This gives a total cost of 3 · 2d−1.

By Lemma 3.3, we can add up the solutions of C2
d and C3

d to obtain a feasible solution of
C2+3
d . Iterating the argument gives us the following corollary to Lemma 3.3.

Corollary 3.19. Let d ≥ 2 and let r = 2m + 3n with m ∈ Z≥0 and n ∈ {0, 1}. If there
exists an integer feasible solution for C2

d with cost at most c2 and an integer feasible solution
for C3

d with cost at most c3, then there exists an integer feasible solution for Crd with cost at
most m · c2 + n · c3.

Putting together our previous results, we can solve Crd to optimality.

Theorem 3.20. For any d ≥ 3 and any r ≥ 2, an optimum integer solution for the
d-dimensional hypercube instance Crd has a total cost of r · 2d−1.

Chapter 3 – Scenarios with a Single Source and Sink 91

si

u

t′
i

s′
i

v

ti

Figure 3.4: Construction for C3
4: We subdivide C4 into two copies of C3 on the left and on the right.

The thick edges have a capacity of 1. The node si is connected to ti with a capacity of
3 along the dark edges.

Proof. Let r = 2m + 3n with m ∈ Z≥0 and n ∈ {0, 1}. Putting together Lemma 3.19
with Lemma 3.17 and Lemma 3.18, we obtain that there is an integer solution for Crd with
value cr := m · 2d + n · 3 · 2d−1. If r is even, we have n = 0 and m = r/2. Therefore,
cr = r · 2d−1. On the other hand, if r is odd, we have n = 1 and m = (r − 3)/2. Then,
cr = (r− 3)/2 · 2d + 3 · 2d−1 = r · 2d−1 − 3 · 2d−1 + 3 · 2d−1 = r · 2d−1. By Lemma 3.4, this is
optimal.

Lemma 3.4 also tells us that no fractional solution can have a value that is lower than
r · 2d−1 and therefore, the integrality gap of Crd is 1 for r ≥ 2 and d ≥ 3. Analogously to the
binary case, such a solution can also be obtained by installing a capacity of r/d on every
edge.

Corollary 3.21. An optimum fractional solution for Crd has a value of r ·2d−1. In particular,
for r ≥ 2 and d ≥ 3, we have GAP (Crd) = 1.

We conclude this section by giving an alternative proof of Corollary 3.21. It requires the
following structural lemma.

Lemma 3.22. Let d ≥ 3. Then in Cd, |δ(S)| ≥ d for all ∅ (S (V d. Moreover, equality
is attained if and only if |S| = 1 or |S| = |V d| − 1.

Proof. The first part of the lemma is well-known: Saad and Schultz [SS88, Propositions 3.2
and 3.3] proved that for any two nodes i, j of a d-dimensional hypercube, there are at least
d node disjoint paths between i and j. By Menger’s Theorem [Men27], this implies that
|δ(S)| ≥ d for all ∅ (S (V d. Also, if S contains a single node i, then |δ(S)| = |δ(i)| = d. It
remains to show that the inequality is strict if 2 ≤ |S| ≤ |V d|− 2. Without loss of generality,
we can assume that |S| ≤ 1

2 |V
d| since δ(S) = δ(V \ S).

Now, choose an arbitrary decomposition of Cd into two (d− 1)-dimensional hypercubes
H1 = (V1, E1), H2 = (V2, E2) such that neither of S1 := S ∩ V1 and S2 := S ∩ V2 is empty.

92 3.3 An Algorithm for Hypercube Graphs

This is possible because S contains at least two and at most |V |/2 nodes. It also implies
that neither S1 = V1 nor S2 = V2, as otherwise S2 or S1 would be empty, respectively.
For i = 1, 2, the node set Si defines a cut δi(Si) in Hi. As Si 6= ∅ and Si 6= Vi, we know

that |δi(Si)| ≥ d−1, since Hi is a (d−1)-dimensional hypercube. Also, δ1(S1), δ2(S2) ⊆ δ(S)
and therefore |δ(S)| ≥ 2 · (d− 1) > d for d ≥ 3.

We can now give the alternative proof of Corollary 3.21.

Proof of Corollary 3.21. If we define the set

S :=
{
S ⊂ V d | S is connected and separates at least one vq from its partner voq

}
,

we can find an optimum fractional solution for Crd with the following linear program from
Chapter 4.

min
∑
e∈Ed

ue (3.3)

s.t.
∑

e∈δ(S)
ue ≥ r for all S ∈ S

ue ≥ 0 for all e ∈ E

If d = 2, it holds that |S| = d = 2 for all S ∈ S. Consequently, if we set ue = r/2 for all
e ∈ Ed, all primal constraints are satisfied with equality and the solution is optimal. If d ≥ 3,
we introduce dual variables ξS for all S ∈ S and obtain the following dual program:

max
∑
S∈S

r · ξS (3.4)

s.t.
∑
S∈S:
{i,j}∈S

ξS ≤ 1 for all {i, j} ∈ Ed

ξS ≥ 0 for all S ∈ S

We consider the following pair of primal and dual solutions:

ue := r/d for all e ∈ Ed ξS :=
{

0, if |δ(S)| > d

1/2, if |δ(S)| = d
for all S ∈ S.

To prove our claim, we need to show that u and ξ are feasible and satisfy complementary
slackness. Feasibility of u follows by the first part of Lemma 3.22: For all S ∈ S, we have
|δ(S)| ≥ d and thus ∑e∈δ(S) ue = |δ(S)|(r/d) ≥ r. Observe that by the second part of
Lemma 3.22 equality holds if and only if |δ(S)| = d. Thus, we have (∑e∈δ(S) ue− r) · ξS = 0
for all S ∈ S, yielding primal complementary slackness. To see why ξ is feasible for (3.4)
we need to show that ∑

S∈S:
{i,j}∈S

ξS =
∑
S∈S:
|δ(S)|=d
{i,j}∈S

ξS ≤ 1 for all {i, j} ∈ Ed.

Chapter 3 – Scenarios with a Single Source and Sink 93

By applying Lemma 3.22, we can rewrite this as∑
S∈S:
|δ(S)|=d
{i,j}∈S

ξS =
∑
S∈S:
|S|=1
{i,j}∈S

ξS = ξ{i} + ξ{j} = 1 for all {i, j} ∈ Ed

which also yields that (∑S∈S:e∈S ξS − 1) · ue = 0 for all e ∈ Ed, i.e., we have dual
complementary slackness. Finally, both solutions yield the desired objective value of∑
e∈Ed r/d = d · 2d−1 · (r/d) = r · 2d−1.

Explicit and Implicit Encodings of Hypercubes: Complexity Issues

In principle, we can encode the instance Crd by simply stating the numbers r and d. In that
case, an efficient algorithm for Crd is an algorithm with a running time that is polynomial
in log r + log d. This time is sufficient to compute the value of an optimum solution.
The optimum solution itself, however, has size Θ(Ed) = Θ(d · 2d), a term that is doubly-
exponential in log d. Outputting it requires super polynomial time. If, however, the instance
Crd is encoded explicitly the input length is O(Ed). We can then execute the recursive
construction from the previous subsection in time that is polynomial in the input length.

3.4 Extensions
The algorithm by Gomory and Hu [GH61] can be extended to yield integer capacities,
provided that the underlying network is a complete graph, see for example the work by
Kabadi, Yan, Du and Nair [KYDN09] and the references therein. Still, all algorithms
in this section assume that each edge of the network has unit costs. For the weighted
case, Gomory and Hu [GH62] give an linear programming based algorithm that produces
fractional solutions. The author is not aware of any exact combinatorial algorithm yielding
integer solutions on complete graphs with general edge weights; though Sanità [San09]
observes that 2-approximation algorithms [Jai01; Hoc97] for the Steiner forest Problem also
work here.

Chapter 4

The Polyhedral Structure of the sRND Problem

In this chapter, we study the convex hull R(G,B) of all integer feasible capacity vectors for
an sRND instance (G,B), where G is a connected, undirected graph and B is an arbitrary
sRND scenario set. Our aim is to find a good linear description of R(G,B). This description
should work for the finite case of the sRND problem as well as for its polyhedral case. Thus,
the results in this chapter are independent of the representation and the structure of B.
At the start of the chapter, we study the basic properties of R(G,B): We show that
the polyhedron is full-dimensional and give a linear programming relaxation whose size is
independent of the number of vertices of B. The relaxation consists of cut-set inequalities.
We strengthen the relaxation with 3-partition inequalities and show that these inequalities
can be derived as {0, 1

2}-cuts. Both our cut-set inequalities and the 3-partition inequalities
define facets of R(G,B). Finally, we show that R(G,B) is degenerate. The results in
this Chapter were obtained in a collaboration with Eduardo Álvarez-Miranda, Valentina
Cacchiani, Tim Dorneth, Michael Jünger, Frauke Liers, Andrea Lodi and Tiziano Parriani.
They have been published in [ACDJ+12] and [CJL+14].

96 4.1 Dimension of the sRND Polyhedron

4.1 Dimension of the sRND Polyhedron
As before, we assume throughout the chapter that G = (V,E) is a connected, undirected
graph and that B ⊆ RV is an sRND scenario set. This gives us an sRND instance (G,B).
Most results of this chapter are independent of edge costs, but whenever necessary, we also
assume that the costs are given by a vector c ∈ RE≥0.
The convex hull of all integer capacity vectors that are feasible for the sRND instance

(G,B) forms a polyhedron whose structure is independent of the representation of B. We
call this polyhedron the sRND polyhedron.

Definition 4.1. The sRND polyhedron of a connected, undirected graph G = (V,E) and a
scenario set B ⊆ RV is the set

R(G,B) := conv
{
u ∈ ZE≥0

∣∣ u is feasible for (G,B)
}

of all convex combinations of integer feasible capacity vectors for (G,B).

If we relax the integrality conditions and consider the convex hull of all fractionally
feasible capacity vectors, we again obtain a polyhedron.

Definition 4.2. The fractional sRND polyhedron with respect to an undirected, connected
graph G = (V,E) and a scenario set B ⊆ RV≥0 is the set

R̃(G,B) := conv
{
u ∈ RE≥0

∣∣ u is feasible for (G,B)
}

of all fractionally feasible capacity vectors for (G,B).

In general, the integer sRND polyhedron R(G,B) is a proper subset of the fractional
polyhedron R̃(G,B). Moreover, there are instances where an optimum integer solution of
the sRND problem is at least two times more expensive than an integer one (see Chapter 3).
Thus, the fractional polyhedron R̃(G,B) can have fractional vertices in general. In the
following, we close a part of the gap between the two polytopes and to that aim, we study
the structure of R(G,B). Our first observation is that R(G,B), and thus also R̃(G,B), is
unbounded: If u ∈ R(G,B) is a feasible capacity vector, then increasing the capacity of any
edge will never make u infeasible. More formally, if υi denotes the i-th unit vector, then for
i = 1, . . . , |E| we have u+ υi ∈ R(G,B). Thus R(G,B) is unbounded (unless G or B are
empty – in that case, R(G,B) is empty as well).

Observation 4.3. Let G = (V,E) an undirected connected graph with |E| ≥ 1. Let
∅ (B (RV be a scenario set. Then R(G,B) is unbounded and the unit vectors υi span
unbounded directions of R(G,B) for all i = 1, . . . , |E|.

In particular, the vectors u + υ1, . . . , u + υ|E| are linearly independent and therefore,
R(G,B) is full-dimensional.

Lemma 4.4 ([Mat13; Dor12]). Let G = (V,E) be an undirected, connected graph with
|E| ≥ 1 and let ∅ (B (RV be a scenario set. Then R(G,B) has dimension |E|.

Knowing the dimension of R(G,B) is crucial for understanding its facial structure.

Chapter 4 – The Polyhedral Structure of the sRND Problem 97

4.2 An IP-Formulation with Facet-Inducing Cut-Set Inequalities

After we considered the unbounded part of the sRND polyhedron in the previous section, we
now study its boundary. The first step in our analysis is to develop a linear description
for the relaxation R̃(G,B), i.e., we need to characterize the feasibility of a capacity vector
u ∈ RE≥0 with linear inequalities. We have seen in Chapter 2 that the Japanese Theorem 1.26
yields such a characterization for the multi-commodity case. It is natural to use the analogon
for single-commodity flows in our case and indeed, we use Gale’s Theorem 1.23 to derive
a new IP formulation for sRND. The formulation builds on the the well-known class of
cut-set inequalities that are used for several network design problems (see the overview in
Section 2.6.1) and its size does not depend on the number of vertices of B. This will enable
us to handle the polyhedral case of sRND.

4.2.1 Characterizing the sRND Problem with Cut-Set Inequalities

Gale’s Theorem 1.23 only works for a fixed scenario b ∈ B, but it contains a necessary
condition for the existence of a b-flow that is based on the following idea. Consider a fixed
cut-set S ⊆ V . In general, the set S will have an excess of supply or demand in the scenario
b and any feasible b-flow must balance out this excess by routing flow units from S into V \S
or vice-versa. Whether S has an excess of supply or an excess of demand is determined by
the set’s total balance BS := ∑

i∈S bi with respect to b. If BS is strictly positive, the set S
has an excessive supply and any feasible b-flow must route BS flow units from S to V \ S.
If BS is strictly negative, we are in the converse situation and any feasible b-flow routes
BS flow units from V \ S to S. In both cases, the capacity of δ(S) must at least be |BS |;
otherwise, no feasible b-flow can exist. This is why, for all choices of S ⊆ V and b ∈ B, the
non-robust cut-set inequality ∑

{i,j}∈δ(S)
uij ≥

∣∣∑
i∈S

bi
∣∣ (4.1)

is a valid inequality for R(G,B). Since the inequality is valid for all choices of b ∈ B, it is
in particular valid for a b ∈ B that maximizes the right-hand side. We thus obtain that∑

{i,j}∈δ(S)
ue ≥ max

b∈B

∣∣∑
i∈S

bi
∣∣

is valid for all S ⊆ V .

Definition 4.5. Let G = (V,E) be an undirected graph, let S ⊆ V and assume that B is a
finite or a polyhedral uncertainty set. We then call the inequality

∑
{i,j}∈δ(S)

uij ≥ max
b∈B

∣∣∣∑
i∈S

bi
∣∣∣ (CSS)

the cut-set-inequality induced by S. We use (CSS) as a short-hand notation for the inequality
and we denote its right-hand side by RS.

98 4.2 An IP-Formulation with Facet-Inducing Cut-Set Inequalities

In the above definition, we can replace S by its complement and still obtain the same
inequality: As any b ∈ B satisfies ∑i∈V bi = 0 (which implies that ∑i∈S bi = −∑i∈V \S bi),
the right-hand sides of CSS and CSV \S coincide. We also have δ(S) = δ(V \ S), giving us
that the left-hand sides of CSS and CSV \S coincide as well.

Observation 4.6. For any S ⊆ V , we have CSS = CSV \S.

As any vector u ∈ R̃(G,B) must satisfy the cut-set inequality induced by any S ⊆ V , we
have found a necessary criterion for the feasibility of u. Gale’s Theorem, however, also proves
a sufficient condition for the existence of a b-flow that depends on a fixed vector b ∈ B:
If we have ∑{i,j}∈δ(S) uij ≥ |

∑
i∈S bi| for all cut-sets S ⊆ V , then a feasible b-flow exists in

(G, u). Thus, if a capacity vector u ∈ RE≥0 satisfies the non-robust cut-set inequality (4.1)
for all S ⊆ V and all b ∈ B, then u is (fractionally) feasible for (G,B). We summarize our
findings in a theorem.

Theorem 4.7. Let G = (V,E) be a connected, undirected graph and let B be a scenario
set. Then u ∈ R̃(G,B) if and only if∑

{i,j}∈δ(S)
uij ≥ max

b∈B

∣∣∣∑
i∈S

bi
∣∣∣

for all S ⊆ V . We have u ∈ R(G,B) if and only if additionally u ∈ ZE≥0.

Thus, we have found a description of R̃(G,B) as a linear program

min
∑
{i,j}∈E

cijuij (4.2)

s.t.
∑

{i,j}∈δ(S)
uij ≥ max

b∈B

∣∣∣∑
i∈S

bi
∣∣∣ for all S ⊆ V

uij ∈ R≥0 for all {i, j} ∈ E

consisting only of cut-set inequalities and trivial non-negativity constraints. In particular,
we can formulate the sRND problem as an integer linear program as follows.

min
∑
{i,j}∈E

cijuij (4.3)

s.t.
∑

{i,j}∈δ(S)
uij ≥ max

b∈B

∣∣∣∑
i∈S

bi
∣∣∣ for all S ⊆ V

uij ∈ Z≥0 for all {i, j} ∈ E

We refer to this capacity formulation as the sRND cut-set formulation. The program (4.2)
is the linear programming relaxation of the cut-set formulation (4.3).

Corollary 4.8. A capacity vector u ∈ ZE≥0 is feasible for the sRND instance (G,B) if and
only if it is feasible for the cut-set formulation (4.3).

Chapter 4 – The Polyhedral Structure of the sRND Problem 99

4.2.2 Cut-Set Formulation vs. Arc-Flow Formulation
Theorem 4.7 yields in particular that a vector u is feasible for the linear programming relax-
ation of the cut-set formulation (4.3) if and only if it is feasible for the linear programming
relaxation of the arc-flow formulation (2.17) by Buchheim, Liers and Sanità [BLS11] that
we discussed in Chapter 2. Thus, the two formulations yield exactly the same bound. In
that sense, the arc-flow formulation is an extended formulation of the cut-set formulation;
it introduces additional variables to avoid having an exponential number of constraints.
Corollary 4.9. A vector u ∈ RE≥0 is feasible for the linear programming relaxation of the
capacity formulation (4.3) if and only if there exist flows f1, . . . , fk such that (f1, . . . , fk, u)
is feasible for the linear programming relaxation of the flow formulation (2.17).

However, this formulation has the same drawbacks as the robust flow-formulations in
Chapter 2: It requires variables and constraints for every scenario b ∈ B and even if B is
given as a finite list, it can thus grow very large. If B is given in a linear description, the
formulation becomes unmanageable in general. We therefore concentrate on the cut-set
formulation in the remaining part of the thesis.
In the non-robust case, the capacity formulation can be obtained by applying Benders’

decomposition [Ben62] to the flow formulation, see e.g. [MW81], and although Benders’
original decomposition technique yields a slightly weaker version of (4.3), the same principle
applies here.

4.2.3 Relationship to the Robustness Models from the Literature
We continue this section with the observation that the cut-set formulation (4.3) is a special
case of Soyster’s [Soy73] more general robustness framework from Section 2.4. To see why,
fix an arbitrary order of the edges in E = {e1, . . . , em} and let χ` be the cut incidence
vector of the edge e`, i.e., for all ` = 1, . . . ,m and all S ⊆ V let χ`S = 1 if e` ∈ δ(S) and
χ`S = 0 otherwise. Then, the cut-set formulation can be equivalently written in Soyster’s
notation as

min cTu (4.4)

s.t.

 | | |
χ1 · · · χm β
| | |

 · (u
−1

)
≥ 0 for all β ∈ K

u ∈ RE≥0

where K = {(|∑i∈S bi|)S⊆V | b ∈ B} defines the set of possible realizations of the last column
of the constraint matrix. Applying Soyster’s ideas to this formulation yields the (in this
case trivial) observation that we can solve (4.4) by solving an auxiliary linear program.

min cTu (4.5)

s.t.

 | | |
χ1 · · · χm β∗

| | |

 · (u
−1

)
≥ 0

u ∈ RE≥0

100 4.2 An IP-Formulation with Facet-Inducing Cut-Set Inequalities

Here, the vector β∗ = (maxb∈B|
∑
i∈S bi|)S⊆V contains the row-wise maxima of the entries

of the uncertain last column. In this way, we exactly obtain the cut-set formulation (4.3).

4.2.4 Cut-Set Inequalities Induce Facets
Cut-set inequalities not only characterize R̃(G,B), they also induce facets of R(G,B).
This result was already known for the non-robust multi-commodity network design prob-
lem [MMV91] since the 90’s, before Mattia [Mat13] adapted it for the mRND in 2010,
showing that tight metric inequalities – and in particular mRND cut-set inequalities – are
facet-inducing. Finally, Dorneth observed in his diploma thesis [Dor12] that Mattia’s proofs
only need small adaptations for the sRND-F problem. We repeat a more concise version
here and make an (easy) extension to the polyhedral demand case. As before we define
RS := maxb∈B

∣∣∑
i∈S bi

∣∣ and we let B∗ := maxb∈B
∑
i∈V |bi| be an upper bound for the

capacity on any edge.

Theorem 4.10 ([Mat13; Dor12]). For any cut S ⊆ V , (CSS) defines a facet of R(G,B) if
and only if RS > 0 and if the subgraphs induced by S and V \ S are connected.

Proof. If RS = 0, then (CSS) cannot be stronger than the trivial inequalities ue ≥ 0 for
e ∈ δ(S). Also, if S (or likewise, V \ S) decomposes into several connected components
S1, . . . , Sk, then summing up the inequalities we get from S1, . . . , Sk yields the same left-
hand side as we get from S; yet, the right-hand side of (CSS1) + · · ·+ (CSSk) can only be
stronger than the one of (CSS) by the triangle inequality.

Finally, in order to show that (CSS) defines a facet of R(G,B) we define a vector ue for
every edge e ∈ E in the way suggested by Mattia [Mat10a, Theorem 3.14]. In doing so, our
choice depends on whether e lies in δ(S). For all e ∈ δ(S), define ue as

uee′ :=

RS if e′ ∈ δ(S), e′ = e

0 if e′ ∈ δ(S), e′ 6= e

B∗ if e′ 6∈ δ(S)
for alle′ ∈ E

Now, for all e 6∈ δ(S) and some fixed h ∈ δ(S) choose ue as

uee′ :=

RS if e′ ∈ δ(S), e′ = h

0 if e′ ∈ δ(S), e′ 6= h

B∗ + 1 if e′ 6∈ δ(S), e′ = e

B∗ if e′ 6∈ δ(S), e′ 6= e

for alle′ ∈ E

Because we have RS 6= 0, the vectors ue, e ∈ E, are linearly independent. This is easily
verified by considering the upper triangular matrix with the rows ue for e ∈ δ(S) followed
by the rows ue − uh for e 6∈ δ(S). For all e ∈ δ(S), the vector ue satisfies (CSS) with
equality since ∑e′∈δ(S) u

e
e′ = uee = RS by the definition of ue. If e 6∈ δ(S), it follows that∑

e′∈δ(S) u
e
e′ = ueh = RS and again, (CSS) is satisfied with equality.

It remains to show that ue ∈ R(G,B) for all e ∈ E. We fix an arbitrary cut X ⊆ V
such that the subgraphs G[X] and G[V \X] induced by X and V \X, respectively, are
connected. It then remains to show that ue satisfies (CSX) for all e ∈ E. We can assume

Chapter 4 – The Polyhedral Structure of the sRND Problem 101

that X 6= S and that X 6= V \ S since we have already shown validity for those two cases.
Thus, if δ(X) ⊆ δ(S) was true, then either G[X] or G[V \X] would not be connected and
therefore, there exists at least one edge e∗ ∈ δ(X) \ δ(S). Using this observation for any
e ∈ E we have∑

e′∈δ(X)
uee′ ≥

∑
e′∈δ(X)\δ(S)

uee′ ≥ uee∗ ≥ B∗ = max
b∈B

∑
i∈V

∣∣bi∣∣ ≥ max
b∈B

∣∣∣∑
i∈X

bi
∣∣∣

which tells us that ue satisfies (CSX). We conclude that (CSS) defines a face of dimen-
sion |E| − 1 and, therefore, induces a facet of R(G,B).

4.3 Non-Negativity Constraints Induce Facets

We now show that the non-negativity constraints induce facets of R(G,B). This requires
finding |E| − 1 feasible and linearly independent vectors that lie on the hyperplane defined
by ue = 0 for e ∈ E. However, a vector u with ue = 0 can only be feasible if the edge e is
redundant in all scenarios, i.e., if

• removing e from G does not disconnect G or

• the edge e disconnects G into subgraphs G1 = (V1, E1) and G2 = (V2, E2), but the
total balance of V1 (and thus, in V2) is zero in all scenarios.

In all other cases, however, the non-negativity constraints induce facets of R(G,B).

Theorem 4.11. Let G = (V,E) be a connected, undirected graph with |E| ≥ 1 and let
B ⊆ RV be a scenario set. Then, for any e ∈ E, the inequality ue ≥ 0 induces a facet of
R(G,B) if and only if one of the following conditions hold.
1. The edge e is not a bridge or
2. if e is a bridge inducing the partition V = V1 ∪· V2, then

∑
i∈V1 bi = 0 for all b ∈ B.

Proof. We fix some arbitrary edge e∗ ∈ E. Without loss of generality, we can index the
edges in G such that E = {e1, . . . , em} and em = e∗. We also define G′ := (V,E \ {em}). If
em is not a bridge, then G′ is connected and (G′,B) is a valid instance of the sRND problem.
In that case, the face H :=

{
u ∈ RE≥0

∣∣ um = 0
}
∩R(G,B) induced by the inequality um ≥ 0

is exactly the polyhedron R(G′,B) spanned by the integer solutions of the reduced instance
(G′,B). By Lemma 4.4 we have immediately that R(G′,B) is full-dimensional, i.e., the
induced face H has dimension |E \ {em}| = |E| − 1.

If otherwise em is indeed a bridge inducing the partitioning V1∪· V2, then (G,B) decomposes
into two independent instances (G1 = (V1, E1),B1) and (G2 = (V2, E2),B2). Assume w.l.o.g.
that E1 = {e1, . . . , e`} for ` = |E1|. By our assumption that ∑i∈V1 bi = 0 for all b ∈ B, it
follows that both instances are valid sRND instances and therefore, their respective polyhedra
R(G1,B1) and R(G2,B2) are again full-dimensional by Lemma 4.4. As the instances can
be solved independently (any pair of feasible solutions for (G1,B1) and (G2,B2) induces a
feasible solution for (G,B) and vice-versa) we now have H = R(G1,B1)×R(G2,B2)×{0}.
This implies dimH = dimR(G1,B1) + dimR(G2,B2) = |E1|+ |E2| = |E| − 1.

102 4.4 Deriving 3-Partition Facets as Chvátal-Gomory Cuts

For the other direction of the theorem, assume by contraposition that both conditions
are false, i.e., that ∑i∈V1 bi 6= 0 for some b ∈ B. Then, however, the cut-set inequality

um ≥ max
b∈B

∣∣∑
i∈V1

bi
∣∣ > 0

induced by V1 dominates the inequality um ≥ 0 and H cannot be a facet of R(G,B). This
concludes the proof.

4.4 Deriving 3-Partition Facets as Chvátal-Gomory Cuts

For any cut-set S ⊆ V , the cut-set inequality (CSS) gives a lower bound on the capacity
needed between a 2-partition V = S ∪· V \ S of the node set. In general, however, we
could ask for lower bounds on the capacity between any k-partition, k ≥ 2, of the graph;
and in particular, we will consider the case k = 3 in this section. Magnanti, Mirchandani
and Vacchani [MMV93, Equation 11] observe that valid 3-partition inequalities for the
mND problem can be obtained as {0, 1

2}-Chvátal-Gomory Cuts as defined by Caprara and
Fischetti [CF96]. To this purpose, they add up the cut-set inequalities induced by the
partitions S, T and U , divide the resulting inequality by two and round up the right hand
side. We will see that the same procedure works for the sRND problem and moreover, we
generalize the result to arbitrary (i.e., not necessarily disjoint) subdivisions of the node set.
It turns out that the 3-partition inequalities induce facets of R(G,B). As before, we write
(S : T) = δ(S) ∩ δ(T) to denote set the of edges between two node sets S, T ⊆ V .

4.4.1 Chvátal-Gomory Cuts for the sRND Problem

Suppose that we have a 3-partition S, T and U of the node set V = S ∪· T ∪· U . Since T ∪· U
is the complement of S, each edge in δ(S) must have one node in T or in U . Thus, we have
a disjoint partitioning of the cut δ(S) as δ(S) = (S : T) ∪· (S : U). Likewise, the edges in
δ(T) have a node in S or in U and those in δ(U) have a node in S or in T . We can therefore
rewrite the cut-set inequalities induced by S, T and U .∑

{i,j}∈(S:T)
uij +

∑
{i,j}∈(S:U)

uij ≥ RS (CSS)

∑
{i,j}∈(S:T)

uij +
∑

{i,j}∈(T :U)
uij ≥ RT (CST)

+
∑

{i,j}∈(S:U)
uij +

∑
{i,j}∈(T :U)

uij ≥ RU (CSU)

By adding up these cut-set inequalities, we obtain the valid inequality

2 ·
∑

{i,j}∈(S:T)
uij + 2 ·

∑
{i,j}∈(S:U)

uij + 2 ·
∑

{i,j}∈(T :U)
uij ≥ RS +RT +RU

whose left-hand side coefficients are all even.

Chapter 4 – The Polyhedral Structure of the sRND Problem 103

S T

U

(S : T)

(S
: U) (T

: U
)

(a) edges with non-zero coefficient in the resulting {0, 1
2}-cut

(b) edges of δ(S)

(c) edges of δ(T)

(d) edges of δ(U)

Figure 4.1: Adding up the cut-set inequalities induced by S, T and U and dividing by two generates
a {0, 1

2}-cut that we interpret as a 3-partition inequality. We observe that each edge
appears exactly twice in the three cuts.

Therefore, we obtain a valid {0, 1
2}-cut by adding up 1

2 [CSS + CST + CSU] to

1
2
∑

{i,j}∈δ(S)
uij + 1

2
∑

{i,j}∈δ(T)
uij + 1

2
∑

{i,j}∈δ(U)
uij =

∑
{i,j}∈(S:T)

uij +
∑

{i,j}∈(S:U)
uij +

∑
{i,j}∈(T :U)

uij ≥
⌈RS +RT +RU

2
⌉

and because this inequality is induced by the three partitions S, T and U , we call it a
3-partition inequality. The situation is depicted in Figure 4.1. By Observation 4.6, we
can equivalently replace (CSU) by (CSV \U) = CSS∪· T in our construction and still obtain
the same {0, 1

2}-cut as

1
2

[∑
{i,j}∈δ(S)

uij +
∑

{i,j}∈δ(T)
uij +

∑
{i,j}∈δ(S∪T)

uij
]
≥
⌈RS +RT +RS∪T

2
⌉
.

Indeed, Figure 4.2 gives an intuitive argument of why both cuts are equivalent. This
rewritten form will be helpful for our separation algorithms.

Still, the above construction only works if the sets S and T are disjoint. If the intersection
S ∩ T is not empty, then we can observe in Figure 4.3 that∑
{i,j}∈δ(S)

uij +
∑

{i,j}∈δ(T)
uij +

∑
{i,j}∈δ(S∪T)

uij +
∑

{i,j}∈δ(S∩T)
uij = 2

∑
{i,j}∈δ(S∪T)

uij + 2
∑

{i,j}∈(S:T)
uij + 2

∑
{i,j}∈δ(S∩T)

uij .

Therefore, given cut-set inequalities (CSS) and (CST), we obtain a valid zero-half cut by
adding up 1

2((CSS) + (CST) + (CSS∪T) + (CSS∩T)) to∑
{i,j}∈δ(S∪T)

uij +
∑

{i,j}∈(S:T)
uij +

∑
{i,j}∈δ(S∩T)

uij ≥
⌈1

2(RS +RT +RS∪T +RS∩T)
⌉
.

104 4.4 Deriving 3-Partition Facets as Chvátal-Gomory Cuts

(a) δ(S) (b) δ(T) (c) δ(S ∪ T)

Figure 4.2: Summing over the edges in δ(S), δ(T) and δ(S ∪ T) hits every edge either exactly twice
or not at all. Additionally, the sum is the same as summing over (S : T), (S : V \(S∪T))
and (T : V \ (S ∪ T)).

(a) δ(S) (b) δ(T) (c) δ(S ∩ T) (d) δ(S ∪ T)

Figure 4.3: The figure shows that summing over the edges of the cuts δ(S), δ(T), δ(S ∩ T) and
δ(S ∪ T) once is the same as summing over the edges of δ(S ∪ T), δ(S ∩ T) and (S : T)
twice. The colors indicate a mapping of the edges to δ(S ∪ T) [blue], δ(S ∩ T) [green]
and (S : T) [red].

4.4.2 Separating 3-Partition Inequalities by Enumeration

Using the results from the previous subsection, we can separate 3-partition inequalities
heuristically inside a cutting plane algorithm for cut-set inequalities. To do so, we consider
a capacity vector u∗ ∈ RE≥0 and the set I of all cut-set inequalities that are present in
the current linear programming relaxation. We now simply enumerate all pairs of cut-set
inequalities (CSS), (CST) ∈ I. For each such pair, we generate the cut-set inequality induced
by S ∪ T and by S ∩ T . We then combine all four inequalities to a {0, 1

2}-cut as described
above. From the analysis in Section 1.3.4, we know that the resulting {0, 1

2}-cut will be
violated by our current solution u∗ if and only if

• the sum of the right-hand sides of all four participating inequalities is odd and

• the sum of the slacks of the four participating inequalities is strictly less than one.

We only generate the {0, 1
2}-cut if both conditions are satisfied; in particular we can disregard

any cut-set inequality in our enumeration that has a slack of at least one at u∗.
In practice, it can be useful to limit the number of {0, 1

2}-cuts that are separated in a
single run of the algorithm to some fixed parameter ` ∈ Z≥0. In this case, the algorithm
should not return all {0, 1

2}-cuts, but rather the ` “best” {0,
1
2}-cuts that can be generated

Chapter 4 – The Polyhedral Structure of the sRND Problem 105

from the cut-set inequalities in I. Since it is not clear how to measure the quality of a
cut in general, we rely on a heuristic criterion and prefer those cuts that have a high
violation.1 Thus, we seek to generate the ` most violated {0, 1

2}-cuts. The computation is
again a heuristic: First, we group our cut-set inequalities in d ∈ Z>0 brackets according
to their slack at u∗. Bracket i ∈ {0, . . . , d− 1} contains all cut-set inequalities whose slack
lies in [id ,

i+1
d). We then start by combining only those inequalities that are in bracket 0;

subsequently we combine bracket 0 with bracket 1 etc., until the enumeration is complete
or ` violated cuts have been created. In this way, we hope to generate those {0, 1

2}-cuts
with a high violation first.

The resulting algorithm is a heuristic separation method as there is no guarantee that it
will find all violated 3-partition inequalities. First, even if both (CSS) and (CST) have a
small slack, the slack of (CSS∪T) and (CSS∩T) can be arbitrarily large. Second, we cannot
predict if the sum of the right-hand sides of (CSS), (CST), (CSS∪T) and (CSS∩T) will be
odd when we choose S and T . Finally, the set I generally contains only a subset of all
cut-set inequalities: It can happen that a good {0, 1

2}-cut could be generated from a cut-set
inequality that is not part of the current linear programming relaxation.
In the sequel, we refer to this algorithm as EnumZH. It works independently of the

description ofB, but its worst-case running time is O(|I|2|E|) and thus depends quadratically
on the number of cut-set inequalities in the current linear programming relaxation. In the
next chapter, we will see how we can speed up the algorithm when B is given as a finite list
of vertices.

4.4.3 Shrinking Graphs and Lifting Facets
Agarwal [Aga06] considers the mND problem and in particular, the convex hull PmND(G,D)
of all integer capacity vectors that are feasible for the mND instance (G,D). In a different
perspective on k-partition inequalities, Agarwal defines partitions of the graph by iteratively
merging two adjacent nodes into a single super node; we call this process shrinking. The
process can be stopped when the shrunken graph has k nodes and then each node in the
shrunken instance (G, D̄) defines a partition of the node set (consisting of all the nodes
that have been merged into that node). Agarwal shows how to lift any inequality that is
valid for PmND(G, D̄) to be valid for PmND(G,D). Moreover, the lifting procedure maintains
facets: if an inequality induces a facet of PmND(G, D̄), then the lifted inequality induces a
facet of PmND(G,B).
Buchheim, Liers and Sanità [BLS11] observe that the same shrinking strategy works for

the sRND problem and that the lifting still maintains validity. In the sequel, we show that
the lifting also maintains facets of R(G,B). To this aim, we make an easy adaptation of
Agarwal’s [Aga06] proof. Following Agarwal’s strategy, we then show that our 3-partition
inequalities induce facets of R(G,B) by studying the complete graph on three nodes.
We first define what we mean by shrinking in more detail. Consider an sRND instance

(V,E,B). In the beginning of our construction, G represents a partitioning of V = V1∪· . . . Vn
into n := |V | partitions and node i ∈ V represents the partition Vi = {i}. For any edge
{i∗, j∗} ∈ E, we say that we contract {i∗, j∗} by merging i∗ and j∗ into a single super-node p̄.
1A high violation can indicate that the cutting plane will cut “deeply” into the linear programming
relaxation, removing a significant part of the fractional solutions.

106 4.4 Deriving 3-Partition Facets as Chvátal-Gomory Cuts

bi∗

bj∗

G contract−−−−−−−−→

bi∗ + bj∗

make simple−−−−−−−−−−→

bi∗ + bj∗

G

Figure 4.4: Building a shrunken instance by contracting the edge {i∗, j∗}.

We replace every edge {j∗, i} ∈ E that is incident to j∗ by an edge {p, i}; likewise, we
replace any edge {i∗, i} ∈ E by an edge {p, i}. If some node i is adjacent to both i∗

and j∗, this procedure produces two parallel edges and we remove one of them to make
sure that our graph remains simple. The new super node p̄ now represents the partition
Vp := Vi∗ ∪ Vj∗ . To obtain a feasible scenario on the shrunken instance G = (V ,E) we set
bi = bi if i ∈ V \ {i∗, j∗} and bp = bi∗ + bj∗ for all b ∈ B. We denote the resulting new
scenario set as B. Figure 4.4 shows the contraction step. Applying the contraction step
once, we obtain a (|V | − 1)-partition of the original node set. By repeating the contraction
step, however, we can contract edges until we have reduced any sRND instance G = (V,E,B)
to a graph with any number k ≥ 1 of nodes that induce a k-partition V = V1 ∪· . . . ∪· Vk.
The resulting shrunken instance Ḡ = (V̄ , Ē, B̄) is

V̄ :=
{
1̄, . . . , k̄

}
Ē :=

{{
p̄, q̄
} ∣∣ (Vp : Vq)G 6= ∅ for p, q = 1, . . . , k, p < q

}
B̄ :=

{(
b1̄, . . . , bk̄

)
=
(∑
i∈V1

bi, . . . ,
∑
i∈Vk

bi
) ∣∣ b ∈ B

}
.

In this way, an edge {p̄, q̄} in the partitioning graph represents all edges in (Vp : Vq) in the
original graph. The balance of any node p̄ ∈ V is the total balance of Vp. Therefore, for
any p = 1, . . . , `, the maximum total balance maxb∈B |

∑
i∈Vp bi| of partition Vp is exactly

the maximum balance maxb∈B |bp̄| of the shrunken node p̄.
The shrinking is only useful if we can undo it after we found a valid inequality. We first

define how we can undo a single contraction step and then describe what happens if a
sequence of contraction steps is undone. Suppose that we started from an instance (V,E,B)
and arrived at a shrunken instance (V ,E,B) by contracting an edge {i∗, j∗} to a super
node p̄. In order to lift a valid inequality∑

{i,j}∈E
aijuij ≥ B

for R(G,B) to R(G,B), we define a function λ : RE → RE as

λ(a)ij :=

0, if {i, j} = {i∗, j∗}
apj , if {i, j} = {i∗, j} ∈ δ({i∗, j∗})
apj , if {i, j} = {j∗, j} ∈ δ({i∗, j∗})
aij , otherwise

Chapter 4 – The Polyhedral Structure of the sRND Problem 107

i′

21

3

a 2
i
′a

1
i ′

a3i′

lift−−−−→

j∗

i∗

21

3

0

a2i
′a1i ′

a
3i ′

a3i′

Figure 4.5: Lifting a vector from the shrunken instance back to the original instance.

Then, the lifted inequality is ∑
{i,j}∈E

λ(a)ijuij ≥ B.

This means that the contracted edge {i∗, j∗} has a coefficient of 0 in the lifted inequality.
Any edge that is adjacent to i∗ or j∗ and to some other node j inherits the coefficient of the
corresponding edge {p̄, j} in the shrunken graph. Finally, all other edges are present in E
and their coefficient is not changed by the lifting. The situation is depicted in Figure 4.5.
Suppose that we repeat the edge contractions until we have obtained a graph G with k

partitions V = V1 ∪· . . . ∪· Vk, k ∈ {2, . . . , |V |}. Then, we need to apply the lifting procedure
n− k times in order to lift a vector a from G back to a vector a on G. By the following
induction it becomes clear that the lifted vector a = λn−k(a) satisfies for any edge {i, j} ∈ E:

• aij = apq, if {i, j} ∈ (Vp : Vq) crosses between any two partitions p 6= q, and

• aij = 0 if {i, j} completely lies within one partition p, i.e., i ∈ Vp and j ∈ Vp.

The initial vector a satisfies these conditions: In G, any edge {i, j} starts in partition i,
ends in a different partition j and has aij as its corresponding entry in a. We argue that the
same is true in λ`(a) for ` ≥ 1. By induction, λl−1(a) satisfies both conditions and applying
λ once maintains them: Consider an edge {i, j} in the graph after ` lifting operations. If
{i, j} is the edge that is expanded by the lifting, then {i, j} lies completely within some
partition Vp (or represents a bundle of edges that lies completely within Vp) and we correctly
set λ`(a)ij = 0. Otherwise, the edge {i, j} inherits its value λ`(a)ij from the edge that
represented {i, j} in G. By induction, this value has been set correctly in a previous step.
Consequently, lifting the inequality∑

{p̄,q̄}∈Ē
ap̄q̄up̄q̄ ≥ B

from the shrunken graph G to the original graph G yields the lifted inequality
∑

{p̄,q̄}∈Ē

(∑
{i,j}∈(Vp:Vq)

ap̄q̄uij
)
≥ B

and the lifting preserves validity. This was shown by Buchheim, Liers and Sanità.

108 4.4 Deriving 3-Partition Facets as Chvátal-Gomory Cuts

Lemma 4.12 ([BLS11]). Let G = (V,E) be a connected, undirected graph and let B ⊆ RV
be a scenario set. Denote by (V ,E,B) the shrunken instance that is induced by a k-partition
V = V1 ∪· . . . ∪· Vk. If the inequality ∑

{p̄,q̄}∈E
ap̄q̄up̄q̄ ≥ B

is valid for R(G,B), then the lifted inequality∑
{p̄,q̄}∈E

(∑
{i,j}∈(Vp:Vq)

ap̄q̄uij
)
≥ B

is valid for R(G,B).

Proof. We first define a projecting function π that projects any capacity vector u ∈ R(G,B)
to π(u) ∈ R(G,B) by setting the capacity of {p̄, q̄} to the sum of the capacities on (Vp : Vq)

π(u)p̄q̄ :=
∑

{i,j}∈(Vp:Vq)
uij for all{p̄, q̄} ∈ Ē.

The projection π(u) is well-defined, i.e., if u ∈ R(G,B), then indeed π(u) ∈ R(G,B) since
for any S ⊆ V and for S = ⋃

p̄∈S Vp we have∑
{p̄,q̄}∈δ

G
(S)

π(u)p̄q̄ =
∑

{p̄,q̄}∈δ
G

(S)

∑
{i,j}∈(Vp:Vq)G

uij =
∑

{i,j}∈δG(S)
uij ≥ max

b∈B

∣∣∑
i∈S

bi
∣∣ = max

b̄∈B

∣∣∑
p̄∈S̄

b̄p̄
∣∣.

This means that ū satisfies all cut-set inequalities of (G,B). Suppose now that (4.13) is
valid for all ū ∈ R(G,B). We then have for any u ∈ R(G,B):∑

{p̄,q̄}∈E
ap̄q̄

∑
{i,j}∈(Vp:Vq)

uij =
∑

{p̄,q̄}∈E
ap̄q̄π(u)p̄q̄ ≥ B

and (4.13) is valid for R(G,B).

Agarwal [Aga06] proves that for the mND problem, the lifting also preserves facets. The
proof requires a worst-case capacity bound for the edges of the network and we adapt
Agarwal’s choice of this value to make it suitable for the sRND problem. This is the only
modification that needs to be made to translate the proof. We repeat the complete proof
here and mostly follow Agarwal’s structure in doing so (we can omit Agarwal’s technical
global case distinction by using Lemma 1.1); we do, however, use some original pictures
to illustrate technical parts of the proof. Thus, we can verify that the proof works for the
sRND problem.

Theorem 4.13 ([Aga06]). Let G = (V,E) be a connected undirected graph and let V =
V1 ∪· . . . ∪· Vk be a partitioning of the node set V . For a scenario set B, let (V ,E,B) be the
shrunken instance that is induced by V1, . . . , Vk. Moreover, let the inequality∑

{p̄,q̄}∈Ē
ap̄q̄up̄q̄ ≥ B

Chapter 4 – The Polyhedral Structure of the sRND Problem 109

induce a facet of the shrunken instance R(Ḡ, B̄). Then, the lifted inequality∑
{p̄,q̄}∈Ē

(∑
{i,j}∈(Vp:Vq)

ap̄q̄uij
)
≥ B

induces a facet of R(G,B) if G[Vi] is connected for all i = 1, . . . , k and if B > 0.

Proof. We index the nodes of G as V = {1, . . . , n} and assume w.l.o.g. that the edge
{n − 1, n} is present in G. We prove our claim for the case that G arises from G by
contracting the edge {n− 1, n} (see Figure 4.6). By iteratively applying the argument, we
can then conclude the proof. Suppose now that∑

{p̄,q̄}∈Ē
ap̄q̄up̄q̄ ≥ B

induces a facet of R(G,B), i.e., there are m := |E| affinely independent vectors u1, . . . , um ∈
R(G,B) with ∑{i,j}∈E aijulij = B for all l = 1, . . . ,m. Because B > 0, the vector 0 ∈ RE

does not lie in the affine subspace spanned by u1, . . . , um and we get from Lemma 1.1 that
the vectors u1, . . . , um are linearly independent, also. Using the vectors u1, . . . , um as rows,
we obtain a m×m matrix U of rank m; in particular, we can order the rows of U such that
all diagonal elements are non-zero (if none of the u1, . . . , um has a non-zero entry in column
j, then row j is 0).
We now need to find m := |E| linearly independent vectors u1, . . . , um ∈ R(G,B) with∑

{i,j}∈E
λ(a)ijulij = B

for all l = 1, . . . ,m (and again, we can use linear independence equivalently to affine
independence by Lemma 1.1). For ease of notation, assume that the edges of G appear in a
particular order in any u ∈ R(G,B). We define ∆ := {i ∈ V | {i, n− 1} ∈ E ∧ {i, n} ∈ E}
as the set of those nodes that are adjacent to both node n and node n− 1. Thus, the edges
in ∆ are exactly the edges that will be combined into a single edge by the shrinking. The
edges that are adjacent to n, but not to n− 1 will be moved to n− 1; the edge {n− 1, n}
disappears by the contraction and all other edges will be left as they are. We suppose
w.l.o.g. that u first contains the entries for the edges that are not affected by the shrinking,
followed by the entries of the edges from n− 1 to the set ∆.

u = (∗ , . . . , ∗
E\(∆:n−1)

, ∗ , . . . , ∗
(∆:n−1)

)

We will furthermore assume that the vectors u ∈ R(G,B) have an identical layout in the
first m′ coordinates and that the following coordinates correspond to the edges from n to
∆. Finally, we assume that the last coordinate corresponds to the shrunken edge.

u = (∗ , . . . , ∗
E\(∆:{n−1,n})

, ∗ , . . . , ∗
(∆:n−1)

, ∗ , . . . , ∗
(∆:n)

, ∗
{n−1,n}

)

110 4.4 Deriving 3-Partition Facets as Chvátal-Gomory Cuts

n − 1

n

∆
contract−−−−−−→

n− 1∆

Figure 4.6: Shrinking the edge {n− 1, n}. The set ∆ contains all nodes that are adjacent to n− 1
and n.

We can now build the first m linearly independent vectors by extending u1, . . . , um. To this
aim, let B∗ = maxb∈B

∑
i∈V |bi| as before.

ul := (ui

E\(∆:{n−1,n}), (∆:n−1)
, 0 , . . . , 0

(∆:n)

, B∗

{n−1,n}
) l = 1, . . . ,m

These vectors are feasible: They can only be infeasible because of edges adjacent to n or
n − 1. Thus, suppose that in some scenario b the flow crosses some edge {i, n − 1} with
i ∈ ∆ and continues to some node j /∈ ∆ via an edge {n− 1, j}. By our extension, we force
the flow to use the edge {i, n− 1} in G also; and because the nodes in ∆ are adjacent to
both n and n− 1, this edge is present and it has the same capacity as in G. Now, it can
happen that j is adjacent n, but not adjacent to n− 1 in G. In this case, we can reroute
the flow via {n− 1, n} to n and because B∗ is an upper bound on the necessary capacity of
any edge, this can always be done. For a more formal proof, we could equivalently check
that ul satisfies all cut-set inequalities. We observe at this point that for all l = 1, . . . ,m:∑
{i,j}∈E

aiju
l
ij =

∑
{i,j}∈E\(∆:{n−1,n})

aiju
l
ij +

∑
{i,j}∈(∆:{n−1})

aiju
l
ij +

∑
{i,j}∈(∆:{n})

aij · 0 + 0 ·B∗

=
∑
{i,j}∈E

aiju
l
ij

= B.

For the next |∆| vectors, consider the lower right |∆| × |∆| submatrix U ′ spanned by the
last |∆| entries of the last |∆| rows of U (i.e., of the vectors um−|∆|+1, . . . , um). Because the
last |∆| entries of the um−|∆|+1, . . . , um correspond2 to the edges from ∆ to the node n− 1,
we know that the l-th diagonal entry dl in U

′ corresponds to the l-th edge in (∆ : n− 1). By
our initial assumption about the ordering of the rows in U , we also know that dl > 0. For
l = 1, . . . , |∆|, we can now construct a new vector um+l from um−|∆|+l. The first m entries
of um+l and um−|∆|+l correspond to E \ (∆ : {n− 1, n}) and to (∆ : {n− 1}). We choose
them to be identical in um+l and um−|∆|+l, except for the entry corresponding to the l-th
edge in (∆ : n− 1) which we set to zero. The following |∆| entries in um−|∆|+l correspond
to (∆ : n) and we set them to zero, with the exception of the entry corresponding to the
l-th edge in (∆ : n); we set this entry to dl. We set the last entry (corresponding to the

2Observe that |(∆ : n− 1)| = |∆|.

Chapter 4 – The Polyhedral Structure of the sRND Problem 111

edge {n− 1, n}) to B∗. Summarizing, the situations is thus:

um+1 :=
(um−|∆|+1

∗, . . . , ∗
E\(∆:{n−1,n})

, 0, ∗, ∗, . . . , ∗
(∆:n−1)

, d1, 0, 0 . . . , 0
(∆:n)

, B∗

{n−1,n}

)

um+2 :=
(um−|∆|+2

∗, . . . , ∗
E\(∆:{n−1,n})

, ∗, 0, ∗, . . . , ∗
(∆:n−1)

, 0, d2, 0, . . . , 0
(∆:n)

, B∗

{n−1,n}

)
...

...
...

...
...

um+|∆| :=
(um−|∆|+|∆|

∗, . . . , ∗
E\(∆:{n−1,n})

, ∗, ∗, ∗, . . . , 0
(∆:n−1)

, 0, 0, 0, . . . , d|∆|
(∆:n)

, B∗

{n−1,n}

)

These vectors are again feasible: Any flow that uses the l-th edge {i, n− 1} of (∆ : n− 1)
in G can be rerouted via {i, n} and {n− 1, n} as in the previous case. Also, by the same
argument as before, the ul satisfy ∑{i,j}∈E aijulij = B for all l = m+ 1, . . . ,m+ |∆|.

In total, we now have m+ |∆| vectors, while we would need |E| = m+ |∆|+ 1 many. We
obtain the missing vector um+|∆|+1 by changing the last entry of u1 to B∗ + 1.

um+|∆|+1 := (u1

E\(∆:{n−1,n}), (∆:n−1)
, 0 , . . . , 0

(∆:n)

, B∗ + 1
{n−1,n}

)

This vector is feasible and again satisfies ∑{i,j}∈E aijum+|∆|+1
ij = B. By construction the

vectors are linearly independent and this concludes our proof.

4.4.4 3-Partition Inequalities Induce Facets

We can now proceed to show that 3-partition inequalities induce facets of R(G,B) if they
are induced by connected partitions. To this aim, we suppose that an arbitrary graph
G = (V,E) has been shrunken to the triangle graph G3 (the complete graph on three nodes)
whose three nodes σ, τ, υ represent the partitions S ∪· T ∪· U = V and whose edges {σ, τ},
{σ, υ}, {τ, υ} represent the three cuts (S : T), (S : U) and (T : U), respectively. We show
that for any choice of B, the resulting 3-partition inequality

uστ + uσυ + uτυ ≥
⌈RS +RT +RU

2
⌉

(4.6)

defines a facet of R(G3,B3) if and only if RS +RT +RU is odd (which, in particular, implies
that RS +RT +RU > 0) and all three partitions induce connected subgraphs.
As the dimension of R(G3,B3) is 3, we have to show that for any choice of B and of

S, T and U , there are always three integer feasible, linearly independent solutions that all

112 4.4 Deriving 3-Partition Facets as Chvátal-Gomory Cuts

satisfy (4.6) with equality. We claim that the following capacity assignment works

u1
στ :=

⌊RS +RT −RU
2

⌋
u1
συ :=

⌈RS +RU −RT
2

⌉
u1
τυ :=

⌈RT +RU −RS
2

⌉
u2
στ :=

⌈RS +RT −RU
2

⌉
u2
συ :=

⌊RS +RU −RT
2

⌋
u2
τυ :=

⌈RT +RU −RS
2

⌉
u3
στ :=

⌈RS +RT −RU
2

⌉
u3
συ :=

⌈RS +RU −RT
2

⌉
u3
τυ :=

⌊RT +RU −RS
2

⌋
.

Our key argument in the following analysis is that the sum ±RS ±RT ±RU has the same
parity independently of the sign of ±RS , ±RT and ±RU ; in particular, either we round in
all of u`στ , u`συ and u`τυ, ` = 1, 2, 3, or for none of them.

To check that our assignment is feasible, we verify that it satisfies all cut-set constraints
on (G3,B3). For all three vectors u1, u2 and u3, we check the cut-set inequalities induced
by {σ}, {τ} and {υ}. We do not need to check the cut-sets of size two because their
complement is one of {σ}, {τ} and {υ}.

u1
στ + u1

συ =
⌊RS +RT −RU

2
⌋

+
⌈RS +RU −RT

2
⌉

(CS{σ})

obs.= RS +RT −RU
2 + RS +RU −RT

2 = RS

u1
στ + u1

τυ =
⌊RS +RT −RU

2
⌋

+
⌈RT +RU −RS

2
⌉

(CS{τ})

obs.= RS +RT −RU
2 + RT +RU −RS

2 = RT

u1
συ + u1

τυ =
⌈RS +RU −RT

2
⌉

+
⌈RT +RU −RS

2
⌉

(CS{υ})

≥ RS +RU −RT
2 + RT +RU −RS

2 = RU

u2
στ + u2

συ =
⌈RS +RT −RU

2
⌉

+
⌊RS +RU −RT

2
⌋

(CS{σ})

obs.= RS +RT −RU
2 + RS +RU −RT

2 = RS

u2
στ + u2

τυ =
⌈RS +RT −RU

2
⌉

+
⌈RT +RU −RS

2
⌉

(CS{τ})

≥ RS +RT −RU
2 + RT +RU −RS

2 = RT

u2
συ + u2

τυ =
⌊RS +RU −RT

2
⌋

+
⌈RT +RU −RS

2
⌉

(CS{υ})

obs.= RS +RU −RT
2 + RT +RU −RS

2 = RU

Chapter 4 – The Polyhedral Structure of the sRND Problem 113

u3
στ + u3

συ =
⌈RS +RT −RU

2
⌉

+
⌊RS +RU −RT

2
⌋

(CS{σ})

obs.= RS +RT −RU
2 + RS +RU −RT

2 = RS

u3
στ + u3

τυ =
⌈RS +RT −RU

2
⌉

+
⌈RT +RU −RS

2
⌉

(CS{τ})

≥ RS +RT −RU
2 + RT +RU −RS

2 = RT

u3
συ + u3

τυ =
⌊RS +RU −RT

2
⌋

+
⌈RT +RU −RS

2
⌉

(CS{υ})

obs.= RS +RU −RT
2 + RT +RU −RS

2 = RU

If RS +RT +RU is odd, the vectors u1, u2, u3 are linearly independent3 and for all l = 1, 2, 3,
our assignment ul satisfies (4.6) with equality.

u1
στ + u1

συ + u1
τυ = RS +RT −RU

2 − 1
2 + RS +RU −RT

2 + 1
2 + RT +RU −RS

2 + 1
2

= RS +RT +RU
2 + 1

2 =
⌈RS +RT +RU

2
⌉
.

u2
στ + u2

συ + u2
τυ = RS +RT −RU

2 + 1
2 + RS +RU −RT

2 − 1
2 + RT +RU −RS

2 + 1
2

= RS +RT +RU
2 + 1

2 =
⌈RS +RT +RU

2
⌉
.

u3
στ + u3

συ + u3
τυ = RS +RT −RU

2 + 1
2 + RS +RU −RT

2 + 1
2 + RT +RU −RS

2 − 1
2

= RS +RT +RU
2 + 1

2 =
⌈RS +RT +RU

2
⌉
.

Therefore, the inequality (4.6) induces a facet of R(G3,B3). We can now apply Agarwal’s
lifting Theorem 4.13.
Theorem 4.14. Let G = (V,E) be a connected, undirected graph with a scenario set
B ⊆ RV . Furthermore, let S ∪· T ∪· U = V be a partitioning of the node set. Then the
3-partition inequality∑

{i,j}∈(S:T)
uij +

∑
{i,j}∈(S:U)

uij +
∑

{i,j}∈(T :U)
uij ≥

⌈RS +RT +RU
2

⌉
given by the partitions S, T and U induces a facet of R(G,B) if
1. the induced subgraphs G[S], G[T] and G[U] are connected and
2. RS +RT +RU > 0 is odd.

3Otherwise, we know from our analysis in Section 1.3.4 that the corresponding 3-partition inequality cannot
be a facet; and indeed, if RA +RB +RC is even, then the vectors u1, u2 and u3 are identical and the
proof breaks down.

114 4.5 Degeneracy

d
a

b
c

r

obj.

Figure 4.7: A 3-dimensional pyramid as an example for a degenerate polytope from [Grö04]. The
vertex r is degenerate as it lies in the intersection of four of the pyramid’s facets.
Removing any of these facets changes the polytope. In red: The normal vector of the
objective function. The optimum is attained at the vertex a in this example.

4.5 Degeneracy

A standard approach to solving linear programs min{cTx | Ax ≥ b} (where A ∈ Rm×n
and b ∈ Rm) is to use the Simplex algorithm by Dantzig [Dan51]. On a high level, the
algorithm selects n rows I ⊆ {1, . . . ,m} of A and solves the system AI∗x = bI , thus
intersecting the hyperplanes which bound ATi∗x ≥ bi for i ∈ I. If AI∗ has full rank (we ignore
the other case in this high-level description), then the unique solution x∗ is a vertex of the
polyhedron A spanned by Ax ≥ b. The algorithm then does a pivoting step by swapping a
row i ∈ I for a row j 6∈ I and obtains a new set J = I \{i}∪{j}. It then resolves AJ∗x ≥ bJ
for a new x∗ and iterates until all pivoting steps would increase the objective value of x∗.
The pivoting is done such that the objective value of x∗ can never increase, however, it can
happen that several different choices of I yield the same vertex x∗. In this case, we say
that x∗, and thus A, is degenerate.

The Simplex algorithm can get stuck at degenerate vertices and therefore, they can have
a bad impact on the algorithm’s performance. One such example is depicted in Figure 4.7.
There, the optimum solution of the problem is attained at the vertex a. Suppose that the
Simplex algorithm is currently at the vertex c, having selected the hyperplanes spanned
by {a, b, c, d}, by {b, c, r} and by {c, d, r}. From there, it can reach the vertices b, d and r.
All three vertices have the same objective value. If the algorithms keeps the hyperplane
{a, b, c, d} and chooses b or d, it can reach the optimum vertex a within one additional
pivoting step. Alternatively, it can replace {a, b, c, d} with {a, b, r} or {a, d, r}, thus changing
to vertex r. Then, however, two additional pivoting steps are necessary to reach vertex a.

We show next that R(G,B) can be highly degenerate as there are simple instances (G,B)
where Ω(2dimR(G,B)/2) facets of R(G,B) intersect in a single vertex.

Consider the instance (Gd, {bd}) in Figure 4.8. In its unique scenario bd, it has a unique
source s with balance bds = d. Any node i that is adjacent to s has a balance of bdi = −1,
i = 1, . . . , d and the auxiliary node a has zero balance bda = 0. The instance has exactly
2d edges and thus, the dimension of R(Gd, {bd}) is 2d. The vector u∗ with u∗si = 1 and
u∗it = 0 for all i = 1, . . . , d is a feasible solution for (Gd, {bd}) and in fact, it is a vertex
of R(Gd, {bd}): Given any set X ⊆ T := {1, . . . , d}, the vector u∗ satisfies the cut-set

Chapter 4 – The Polyhedral Structure of the sRND Problem 115

sd

1
−1

2
−1

3
−1

d

−1

a 0

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4.8: An instance with a degenerate polytope.

inequality ∑
{i,j}∈δ({s}∪X)

u∗ij =
∑
i∈X

u∗ia +
∑

i∈T\X
u∗si = 0 + |T | − |X| = d− |X| =

∑
i∈{s}∪X

bdi

induced by {s} ∪ X with equality. Because both the subgraph induced by {s} ∪ X and
the one induced by its complement {a} ∪ (T \ X) are connected, this cut-set inequality
induces a facet if and only if the total balance of {s} ∪X is non-zero. This is true if and
only if X 6= T . Thus, there remain 2d − 1 facet-inducing choices for X and we have at least
2d − 1 = 2dimR(Gd,{bd})/2 − 1 facets that intersect in u∗.

Lemma 4.15. For any d ≥ 1 there is an instance (Gd,Bd) of the sRND problem such that
the corresponding polytope R(Gd,Bd) has dimension 2d and such that there is a vertex of
R(Gd,Bd) in which Ω(2dimR(Gd,Bd)/2) facets of R(Gd,Bd) intersect.

Suppose that our degenerate instance arises from a larger instance (G′, {b′}) by a series
of edge contractions. Then, by Agarwal’s Lifting Theorem 4.13, all the facets intersecting
in u∗ are also facets of R(G′, {b′}) and they intersect in the lifted vector corresponding to
u∗. This means that if an sRND instance has a parallel structure like the one in Figure 4.8
as a minor – and if it has the appropriate scenario structure – it is degenerate, too.

Chapter 5

Separation Under Uncertainty

From Chapter 4 we know that if a vector u∗ ∈ RE≥0 is infeasible for a sRND instance (V,E,B),
then there is a violated cut-set inequality and a cut-set S certifying the infeasibility. In this
chapter, we will see how to find such a certificate cut-set. This will enable us to decide
the feasibility of u∗, to solve the separation problem for the cut-set inequalities and, in
particular, to solve the linear programming relaxation of our capacity formulation (4.3)
of the sRND problem without having to enumerate all of its exponentially many cut-set
constraints. We show that the separation problem for the sRND-F problem is polynomial
time solvable while the separation problem (and thus, deciding feasibility) for the sRND-P
problem is NP-hard. The latter holds true even for basic scenario polytopes that essentially
consist of box constraints. Accordingly, we introduce a MIP-separation algorithm for this
case. Finally, we show a heuristic that separates 3-partition inequalities in the sRND-F case.
The results in this Chapter were obtained in a collaboration with Eduardo Álvarez-Miranda,
Valentina Cacchiani, Tim Dorneth, Michael Jünger, Frauke Liers, Andrea Lodi and Tiziano
Parriani. They have been published in [ACDJ+12] and [CJL+14].

118 5.1 The General Cut-Set Separation Problem

5.1 The General Cut-Set Separation Problem
In general, the size of our cut-set formulation (4.3) is exponential in the encoding size of
an sRND instance (G,B). This remains true even if we use Theorem 4.10 and only include
the cut-set inequalities for all strong cut-sets S ⊆ V . Thus, in order to solve the linear
programming relaxation of (4.3), we need a separation algorithm for cut-set inequalities.
We assume in the sequel that G = (V,E) is a connected, undirected graph and that

B ⊆ RV is a scenario set. A vector u∗ ∈ RE≥0 satisfies all cut-set inequalities of an sRND
instance (G,B) if and only if

min
S⊆V

[∑
{i,j}∈δ(S)

u∗ij − max
b∈B

∣∣∑
i∈S

bi
∣∣] ≥ 0. (5.1)

Thus, problem (5.1) is the separation problem for cut-set inequalities: Any solution (S∗, b∗)
with negative objective value induces a violated cut-set inequality. On the other hand, if
the optimum solution of (5.1) is non-negative, no violated cut-set inequality exists. Still,
the absolute value in the inner sum of the problem makes the further analysis needlessly
complicated and we can remove it without changing the problem. This is (basically) possible
because the sets S and V \ S induce the same cut-set inequality.

Theorem 5.1. Let G = (V,E) be a connected, undirected graph and let B ⊆ RV be a
scenario set. A vector u∗ ∈ R≥0 is fractionally feasible for the sRND instance (G,B) if and
only if

min
S⊆V

[∑
{i,j}∈δ(S)

u∗ij − max
b∈B

∑
i∈S

bi
]

(5.2)

is non-negative. In any any optimum solution (S, b) for (5.2) we have
∑
i∈S bi ≥ 0.

Proof. For the main part of the theorem, let u∗ ∈ RE≥0 be a fractionally feasible capacity
vector for (G,B). Then, the vector u∗ also satisfies all cut-set inequalities and the first
direction of our claim follows:

0 ≤ min
S⊆V

[∑
{i,j}∈δ(S)

u∗ij − max
b∈B

∣∣∑
i∈S

bi
∣∣] ≤ min

S⊆V

[∑
{i,j}∈δ(S)

u∗ij − max
b∈B

∑
i∈S

bi
]

For the other direction, suppose that u∗ ∈ R≥0 is an arbitrary vector and that we have

min
S⊆V

[∑
{i,j}∈δ(S)

u∗ij − max
b∈B

∑
i∈S

bi
]
≥ 0.

We have to show that u∗ satisfies the cut-set inequality induced by any S ⊆ V . Let b∗ ∈ B
be a worst-case scenario for S. By Observation 4.6, the cut-set inequality induced by S
is the same as the one induced by V \ S and therefore, we can assume without loss of
generality that ∑i∈S bi ≥ 0 holds (otherwise, we have ∑i∈V \S bi ≥ 0 because b is balanced).
It follows that∑

{i,j}∈δ(S)
u∗ij −max

b∈B

∣∣∑
i∈S

bi
∣∣ =

∑
{i,j}∈δ(S)

u∗ij −
∑
i∈S

b∗i ≥
∑

{i,j}∈δ(S)
u∗ij −max

b∈B

∑
i∈S

bi ≥ 0.

Chapter 5 – Separation Under Uncertainty 119

For the last part of the theorem, assume that (S, b) is an optimum solution for (5.2) with∑
i∈S bi < 0. Since b is balanced, we have ∑i∈V \S bi = −∑i∈S bi > 0 >∑i∈S bi. Together

with the fact that δ(S) = δ(V \ S) it follows that∑
{i,j}∈δ(S)

u∗ij −
∑
i∈S

bi >
∑

{i,j}∈δ(V \S)
u∗ij −

∑
i∈V \S

bi.

Thus, the solution (V \ S, b) has a better objective value than (S, b). This is a contradiction
to the optimality of (S, b).

The last part of Theorem 5.1 motivates the following definition.

Definition 5.2. For a connected, undirected graph G = (V,E) and a Hose polytope
H(V, bmin, bmax), let S ⊆ V be a cut-set. We say that b ∈ H(V, bmin, bmax) is relevant
for S if

∑
i∈S bi ≥ 0.

Starting from the problem formulation (5.3), we can model the separation problem as a
quadratic program. The interpretation of the variables is that xi = 1 if and only if i ∈ S,
for all i ∈ V . Likewise, we have yij = 1 if and only {i, j} ∈ δ(S), for all {i, j} ∈ E. The
variables given by b select a worst-case scenario for S.

min
∑
{i,j}∈E

u∗ijyij −
∑
i∈V

xibi (5.3)

s.t. xi − xj ≥ yij for all {i, j} ∈ E
xj − xi ≥ yij for all {i, j} ∈ E

b ∈ B

y ∈ {0, 1}E

x ∈ {0, 1}V

In any optimum solution of program (5.3), the second term of the objective function will be
as large as possible. We can therefore omit the explicit maximization.

5.2 General Separation Methods for Robust Linear Programs
We briefly discuss if the general sRND cut-set separation problem can be solved with methods
from the literature. Here, however, the problem is that already the non-robust counterpart
of our cut-set formulation (4.3) has exponential size and must be solved with a separation
algorithm. None of the standard algorithms for robust linear programs in Section 2.4 can
cope with this situation: As discussed in Chapter 4, Soyster’s [Soy73] approach yields our
cut-set formulation, but does not give us a way to separate cut-set inequalities.
The general approach by Ben-Tal and Nemirovski [BTN99] does give us a separation

algorithm, but its running time depends linearly on the number of rows of the non-robust
problem formulation: In order to separate a vector u∗ ∈ RE≥0, it requires to solve the problem

min
b∈B

∑
{i,j}∈δ(S)

u∗ij −
∣∣∑
i∈S

bi
∣∣ (5.4)

120 5.2 General Separation Methods for Robust Linear Programs

for every fixed S ⊆ V , which is equivalent to computing the correct right-hand side for all
cut-set inequalities. In that sense, this is a brute-force separation algorithm that works by
enumerating all cut-sets and in order to avoid the full enumeration, we would need to find a
pair (S, b) such that (5.4) becomes negative. This task, however, leads back to our original
separation problem (5.3).

Bertsimas and Sim [BS03] propose to reformulate the robust part of the problem formula-
tion. We could hope to thus obtain a new formulation with constraints that are easier to
separate. Unfortunately, that is not the case. Applied here, Bertsimas’ and Sim’s approach
consists in replacing the right-hand side optimization problem

max
∑
i∈S

bi (5.5)

s.t.
n∑
j=1

aijbi ≥ ri for all i = 1, . . . , k

bi ∈ R for all j = 1, . . . , n

by its dual program

min
k∑
i=1

riyi (5.6)

s.t.
k∑
i=1

aijyi = 1 for all j ∈ S

k∑
i=1

aijyi = 0 for all j ∈ V \ S

yi ≤ 0 for all i = 1, . . . ,m

in each cut-set inequality. The resulting formulation, however, has an exponential number
of variables in addition to an exponential number of constraints because we need a full set
of dual variables for each cut-set inequality.

min
∑
{i,j}∈E

cijuij (5.7)

s.t.
∑

{i,j}∈δ(S)
uij ≥

k∑
i=1

riy
S
i for all S ⊆ V

k∑
i=1

aijy
S
i = 1 for all j ∈ S and all S ⊆ V

k∑
i=1

aijy
S
i = 0 for all j ∈ V \ S and all S ⊆ V

ySi ≤ 0 for all i = 1, . . . ,m and all S ⊆ V
uij ≥ 0 for all {i, j} ∈ E

It is neither clear how to solve the separation, nor the pricing problem of this reformulation.

Chapter 5 – Separation Under Uncertainty 121

5.3 When the Scenario Set is Given As a Finite List
Another way to state the cut-set separation problem (5.1) is the following. A vector u ∈ RE≥0
is feasible for an sRND instance if and only if u∗ satisfies∑

{i,j}∈E
u∗ij ≥

∣∣∑
i∈S

bi
∣∣ (5.8)

for all cut-sets S ⊆ V and all vertices b of B. Therefore, in order to assert the feasibility of
u∗, it suffices to enumerate all vertices b of B and to then check the cut-condition (5.8) for
the fixed b and all cut-sets S. We assume for this section that this enumeration is possible
efficiently, i.e., that the vertices of B are given in the input. The result will be a cut-set
separation algorithm for the sRND-F problem.

5.3.1 Polynomial Time Separation of Cut-Set Inequalities

Let G = (V,E) be an undirected graph and let B = {b1, . . . , bK} be a scenario set given as
a finite list, i.e., in a vertex description. Let us also consider a fixed vertex bq ∈ B, for some
q ∈ {1, . . . ,K} and a capacity vector u∗ ∈ RE≥0. We want to decide if there exists a cut-set
S ⊆ V that induces a violated cut-set inequality with respect to u∗ and bq. To this end, we
define an auxiliary graph Ĝ = (V ∪ {s}, Ê) with

Ê := E ∪
{
{s, i} | i ∈ V

}
.

We also extend the capacities given by u∗ to our auxiliary graph Ĝ by setting

û∗si := −bqi for all i ∈ V and
û∗ij := u∗ij for all {i, j} ∈ E.

We can rewrite the weight w(S ∪ {s}) of any minimum s-cut S ∪ {s} in Ĝ as

w(S ∪ {s}) =
∑

{i,j}∈δ
Ĝ

(S∪{s})
û∗ij =

∑
{i,j}∈δ

Ĝ
(S∪{s})

s 6∈{i,j}

û∗ij +
∑

{i,j}∈δ
Ĝ

(S∪{s})
s∈{i,j}

û∗ij =
∑

{i,j}∈δG(S)
u∗ij −

∑
i∈V \S

bqi .

As before (see Theorem 5.1), this implies that S ∪ {s} satisfies ∑i∈V \S b
q
i ≥ 0; otherwise,

its complement (V \ S) ∪ {s} has a better objective value. It follows that

w(X ∪ {s}) =
∑

{i,j}∈δG(S)
u∗ij −

∣∣∑
i∈V \S

bqi
∣∣ =

∑
{i,j}∈δG(S)

u∗ij −
∣∣∑
i∈S

bqi
∣∣

because bq is balanced. As a consequence, the value of S ∪{s} is exactly the slack of the cut-
set inequality that S would induce if bq was the only scenario. The slack of the true cut-set
inequality induced by S can only be smaller and therefore we know that if w(S ∪ {s}) < 0,
then also

0 >
∑

{i,j}∈δG(S)
u∗ij −

∣∣∑
i∈S

bqi
∣∣ ≥ ∑

{i,j}∈δG(S)
u∗ij − max

b∈B

∣∣∑
i∈S

bi
∣∣

122 5.3 When the Scenario Set is Given As a Finite List

and S defines a violated cut-set inequality in G. This proves that any minimum s-cut on Ĝ
with negative weight induces a violated cut-set inequality.

To show that any violated cut-set inequality implies a negative weight cut, assume that
some S ⊆ V induces a violated cut-set inequality whose right-hand side is determined by a
vertex bq of B. As we observed previously, we can assume ∑i∈V \S b

q
i ≥ 0 without loss of

generality; otherwise, we can just consider V \ S without changing the inequality. It follows
that the weight of the induced cut is negative:∑

{i,j}∈δG(S)
u∗ij −

∑
i∈V \S

bqi =
∑

{i,j}∈δG(S)
u∗ij −

∣∣∑
i∈S

bqi
∣∣ =

∑
{i,j}∈δG(S)

u∗ij − max
b∈B

∣∣∑
i∈S

bi
∣∣ < 0

Thus, by computing a minimum cut on Ĝ for each scenario, we can find up to |B| violated
cut-set inequalities or decide that none exist.

The construction of Ĝ uses mixed (i.e., positive and negative) edge weights and in general,
the problem of finding a minimum cut in an arbitrary graph with mixed weights is NP-
hard [Kar72]. Here, however, all edges with negative weight are incident to a single node s.
McCormick, Rao and Rinaldi show that by connecting all nodes to a new artificial node
t, this star negative case can be reduced to a regular minimum s-t-cut with non-negative
weights, see Theorem 1.16. This construction changes the size of G by a constant only
and because the minimum s-t-cut problem is polynomial time solvable if the weights are
non-negative, we obtain the main theorem of this section.

Theorem 5.3. Let G = (V,E) be an undirected graph and let B = {b1, . . . , bK} be a scenario
set given in a vertex description. Let u∗ ∈ RE≥0. Then, we can find a cut-set inequality that
is violated by u∗ or decide that no such inequality exists in time O(|B| · Tmincut), where
Tmincut denotes the time needed to compute a minimum s-t-cut.

As discussed in detail in Chapter 1, any maximum flow algorithm can be used to
compute a minimum s-t-cut. The Branch-and-Cut-Algorithm in Chapter 6 uses a custom
implementation of preflow-push algorithm by Goldberg and Tarjan [GT88; CG95] with the
highest label strategy and the gap heuristic. We can stop the algorithm when a maximum
preflow is found, thus omitting its second stage. This results in an overall running time
of Θ(|B| · |V |2 ·

√
|E|) for the separation procedure. Using the recent maximum s-t-flow

algorithm by Orlin [Orl13] results in a worst-case running time of Θ(|B| · |V | · |E|), which is
an improvement if |E| ∈ o(|V |2).

5.3.2 Separating 3-Partition Inequalities More Efficiently
The assumption that B is finite does not only help us to find an efficient separation procedure
for cut-set inequalities; it also enables us to find 3-partition inequalities more efficiently. In
the general 3-partition separation algorithm from Section 4.4.2, we observed that we can
obtain valid 3-partition inequalities by combining two cut-set inequalities with small slack.
Instead of enumerating all pairs of binding cut-set inequalities as in Section 4.4.2, however,
we can now develop an algorithm whose running time is linear in the number of binding
cut-set inequalities.
The key observation for this more efficient algorithm is the following: Our cut-set

separation algorithm yields an inequality with maximum violation. Thus, if we try to

Chapter 5 – Separation Under Uncertainty 123

separate a point u∗ that already satisfies all cut-set inequalities, it returns an inequality with
minimum slack. We use this fact to search for candidates for the zero-half cut generation
in our algorithm MinCutZH: For each binding cut-set inequality (CSS) in the current LP
relaxation, we call the cut-set separation from the previous subsection on the subgraph
G[S] that is induced by S. This yields up to |B| cut-sets T1 . . . , Tk ⊂ S. By adding up
(CSTi), (CSS\Ti) and (CSTi∪S\Ti) = (CSS) we thus obtain one 3-partition inequality for
each i = 1, . . . , k. This algorithm has a running time of O(C · |B| · Tmincut) where C is
the number of binding cut-set inequalities in the current LP relaxation and Tmincut again
denotes the time needed to compute a minimum s-t-cut in G. It thus depends linearly on
the number of binding cut-set inequalities.
Apart from the running time, the algorithm has another advantage over EnumZH: There

might be good candidate cut-set inequalities that are not part of the current LP solution –
and these can only be found by MinCutZH. On the other hand, we cannot guarantee that the
right hand side of (CSS) + (CST) + (CSS) is odd and therefore it can happen that MinCutZH
does not find a violated 3-partition inequality even though one exists.

5.4 Separating over Scenarios in a Linear Description

If the scenario set is given in a linear description, we cannot necessarily iterate efficiently
over all its vertices. Thus, we cannot simply separate cut-set inequalities with the procedure
from the previous section. Instead, we have to solve the general separation problem (5.3)
that we discussed at the beginning of this chapter. As described there, we cannot rely
on general robustness approaches from the literature for solving this problem. However,
Mattia [Mat13] shows how to separate metric inequalities for the mRND problem by applying
the dualization technique by Bertsimas and Sim [BS03] to a formulation of the separation
problem. The result is a non-convex quadratic optimization problem that Mattia linearizes
with big-M constraints (her approach is discussed in more detail in Section 2.5.2). Metric
inequalities are more general than our cut-set inequalities, and indeed we have found an
easier way to write the separation problem as a quadratic problem (5.3). We will also find an
easier way to solve (5.3) that does not require big-M constraints and yields a much smaller
mixed integer linear program. This approach is, however, limited to a certain scenario set
that is a single-commodity variant of the standard Hose uncertainty set by Duffield, Goyal,
Greenberg et al. [DGG+99] and by Fingerhut, Suri and Turner [FST97].

5.4.1 The Hose Uncertainty Set for sRND-P

After the results in Chapter 4 that hold for any scenario set, we focus now on a special scenario
polytope that is an adaptation of the Hose model [DGG+99; FST97] from Section 2.5.1 to
single-commodity network design.
As in the original Hose model, we extend the problem input: For each node i ∈ V , we

define an upper bound bmaxi ∈ Z and a lower bound bmini ∈ Z. We then say that any vector
b ∈ RV whose components obey these bounds while remaining balanced is a possible scenario

124 5.4 Separating over Scenarios in a Linear Description

b1

b2

(bmin
1 , bmax

2) (bmax
1 , bmax

2)

(bmin
1 , bmin

2) (bmax
1 , bmin

2)

b1 +
b2 =

0

Figure 5.1: The round vertices span a relaxation of the 2-dimensional Hose Polytope (in gray) that
does not have the balancing equality. The corresponding 2-dimensional Hose polytope
(in blue print) is spanned by the square vertices: It arises from intersecting the relaxed
polytope with the balancing equality.

for our optimization. The resulting uncertainty set is the polytope

H(V, bmin, bmax) :=
{
b ∈ RV

∣∣∣ bi ∈ [bmini , bmaxi] for all i ∈ V and
∑
i∈V

bi = 0
}
.

Due to its similarity to the original Hose uncertainty set for mRND, we call it the single
commodity Hose polytope. Figure 5.1 shows an example polytope in two dimensions. The
condition that all scenarios should be balanced is necessary by Lemma 1.19. It is also
very natural: Any supply or demand that cannot be balanced out will not be shipped
through the network and thus does not require any capacity. We observe that if bmin ∈ ZV
and bmax ∈ ZV are integral, then the vertices of H(V, bmin, bmax) are integral as well and
therefore, the set is indeed a scenario set according to our Definition 2.3.

Lemma 5.4. Let bmin ∈ ZV and bmax ∈ ZV be integral vectors. Then all vertices of
H(V, bmin, bmax) are integral.

Proof. In standard form, the polytope H(V, bmin, bmax) is the set of vectors b ∈ RV that
satisfy the following system of inequalities.

Ab :=

I
−I
eT

−eT

 · b ≥

bmin

−bmax
0
0

where I ∈ RV×V is the |V | × |V | identity matrix and e = (1, . . . , 1)T ∈ RV is the |V |-vector
whose entries are all one. By Lemma 1.13, the blocks containing I and −I are irrelevant for
the total unimodularity of A and therefore, it suffices to show that

E :=
(
eT

−eT

)
=
(

1 · · · 1
−1 · · · −1

)

Chapter 5 – Separation Under Uncertainty 125

is totally unimodular. As all entries of E are 1 or −1, any 1× 1 square submatrix of E is
totally unimodular. Any other square submatrix of E is of size 2× 2 and has the form(

1 1
−1 −1

)

thus having a determinant of 1·(−1)−(−1)·1 = 0. It follows that A is totally unimodular.

In the following, we assume that our uncertainty set B is the polytope H(V, bmin, bmax)
and denote the corresponding sRND problem by sRND-H.
Pesenti, Rinaldi and Ukovich [PRU04] propose a similar uncertainty model for single-

commodity flows. They start from the multi-commodity model and limit the traffic demand
rij for each pair of nodes by an individual upper and lower bound, rmaxij and rminij . Given
any such matrix r = (rij)i,j∈V with rminij ≤ rij ≤ rmaxij , they aggregate the commodities to
a demand vector (bi)i∈V := (∑j∈V rij − rji)i∈V . Any demand vector that can be obtained
in this fashion is a scenario that needs to be considered in the optimization. This problem
is called the Network Containment Problem in the literature. Pesenti, Rinaldi and Ukovich
subsequently propose to solve the problem with a branch-and-cut algorithm based on a
cut-set formulation and a separation MIP, which is exactly the approach that we will follow
in this chapter.
The fundamental difference in the two models is the way that sources are assigned to

sinks. In our model, the assignment can be chosen by the optimization. This means that
the source-sink assignment is made such that the least possible amount of capacity is used.
In that sense, our model optimizes for the best case. In the model by Pesenti, Rinaldi
and Ukovich however, the capacities must be feasible for all source-sink assignments. This
optimizes under the assumption that the sources and sinks are connected in a way that
consumes the greatest possible amount of capacity.

5.4.2 Complexity of sRND with Hose Uncertainties

Finding an optimum integer solution for sRND-H is NP-hard, as the problem still contains
Steiner Tree as a special case. To show this, we can use a similar reduction as in Section 3.1.

Theorem 5.5. The sRND-H problem is NP-hard.

Proof. Let I = (V,E, c, T) be an input for the Steiner Tree problem, i.e., suppose that
G = (V,E) is an undirected graph with edge weights c and that ∅ (T ⊆ V is a set of
terminals that need to be connected with a subtree of minimum cost. Steiner Tree is
NP-hard [Kar72]. Then, finding an optimum solution for I is equivalent to finding an
optimum solution for the following sRND instance J : Select some arbitrary node s ∈ T . We
set bmins = 0 and bmaxs = 1. For all other nodes i ∈ T \ {s}, set bmini = −1 and bmaxi = 0.
Now, the vertices of H(V, bmin, bmax) are exactly the scenarios b where bs = 1 and bi = −1
for some node i ∈ T . This means that in any feasible solution for J , there must be a
path of capacity 1 from s to all terminals i ∈ T \ {s}. Also, if the support of any feasible
integer solution for J contains a cycle, then one edge of the cycle can be deleted. Thus, any
optimum solution for J induces a Steiner Tree and any Steiner Tree solution for I defines a

126 5.4 Separating over Scenarios in a Linear Description

solution for J ; moreover, the costs of the solutions are identical in both cases. Thus, when
B = H(V, bmin, bmax), solving sRND is at least as hard as solving Steiner Tree.

The sRND-H problem is a special case of the more general sRND-P problem.

Corollary 5.6. The sRND-P problem is NP-hard.

We shall see in the remainder of the section that the separation problem for cut-set
inequalities is also NP-hard for sRND-H. This proves that sRND-H remains hard even if we
relax the integrality requirement.

5.4.3 Separating Cut-Set Inequalities over the Hose Polytope

In the beginning of this chapter we have seen that not all combinations of a cut-set S ⊆ V
and a scenario b ∈ B are relevant for the cut-set separation problem: We only need to
consider those combinations where the total balance of S with regard to b is non-negative.
In the Hose case, the total balance of a cut-set is bounded by the upper and lower bounds
on the balance of each node.

Definition 5.7. For a connected, undirected graph G = (V,E) and a Hose polytope
H(V, bmin, bmax), let S ⊆ V be a cut-set. If we have that∑

i∈S
bmaxi ≥ 0 and

∑
i∈V \S

bmini ≤ 0,

then we say that S is a Hose source set.

If the sum of the upper node bounds bmax in S is negative, then S must have a negative
total balance in each scenario. Likewise, if the sum of the lower node bounds bmin in V \ S
is positive, then V \ S must have a positive total balance in all scenarios. However, because
the scenarios are balanced, this implies a negative total balance of S in all scenarios as well.
Thus, there can only be a scenario with a positive total balance in S if S is a Hose source
set. By Definition 5.2, we call such a set relevant.

Lemma 5.8. If b ∈ H(V, bmin, bmax) is relevant for S, then S is a Hose source set.

Proof. Let b ∈ H(V, bmin, bmax) be relevant for S. It follows immediately that ∑i∈S b
max
i ≥∑

i∈S bi ≥ 0. On the other hand, we have ∑i∈V \S b
min
i ≤

∑
i∈V \S bi = −∑i∈S bi ≤ 0.

Our next aim is to prove the existence of a relevant scenario in any Hose source set. The
proof will be constructive, i.e., we propose an algorithm that is able to find a relevant worst
case scenario given a Hose source-set S. To get a better intuition for the algorithm, suppose
for the moment that 0 ∈ H(V, bmin, bmax) and consider the following preliminary method to
find an optimum solution for the optimization problem on the right-hand side of the cut-set

Chapter 5 – Separation Under Uncertainty 127

inequality induced by a fixed Hose source set S ⊆ V :

max
∑
i∈S

bi (5.9)

s.t. bi ≤ bmini for all i ∈ V
bi ≥ bmaxi for all i ∈ V∑

i∈V
bi = 0.

We start with the vector b ≡ 0 ∈ H(V, bmin, bmax) and our aim is to install as much supply
as possible in S. Equivalently, we could try to install as much demand as possible in S, but
since we assumed w.l.o.g. that the maximum total balance of S is non-negative, we rather
stick to the maximum supply case. We now select an arbitrary node i ∈ S with bi < bmaxi

and another arbitrary node j ∈ V \ S with bj > bminj . If no such nodes can be found, the
algorithm stops. Finally, we increase bi by one unit and, at the same time, decrease bj by
one unit to maintain a balanced vector.
Let us analyze this algorithm. It maintains at all times that ∑i∈S b ≤

∑
i∈S b

max
i and

that ∑i∈S bi = −∑i∈V \S bi ≤ −
∑
i∈V \S b

min
i . Also, it stops as soon as equality holds in

one of the conditions. Thus, if b is the vector that we obtain once the algorithm stops,
we have ∑i∈S bi = min{∑i∈S b

max
i ,−

∑
i∈V \S b

min
i }. If equality holds in the first condition,

then the upper bounds in S limit the maximum total supply of S. Otherwise, the maximum
total supply in S is limited by the lower bounds in V \ S.

Definition 5.9. Let G = (V,E) be a connected, undirected graph and let H(V, bmin, bmax)
be a Hose polytope. For any Hose source set S ⊆ V , we say that S is limiting if

∑
i∈S b

max
i ≤

−
∑
i∈V \S b

min
i . Otherwise, we say that V \ S is limiting.

The idea of this preliminary algorithm is to start from a feasible vector and to then
increase its objective value. We follow the same idea in the case that 0 6∈ [bmini , bmaxi] for
some i ∈ V , however, we need a slightly more involved algorithm to do so. The problem is
that the starting vector b ≡ 0 might be infeasible. More verbosely, the node bounds can
force us to install supply on a node in V \S or to install demand on a node in S and thereby
change the amount of imbalance that we have to distribute. This is why, in contrast to the
preliminary algorithm, we start with a vector b that simply satisfies bi ∈ [bmini , bmaxi] for all
i ∈ V and then make sure that ∑i∈V bi = 0 in a second phase.
Additionally, the running time of the preliminary algorithm is only pseudopolynomial,

as the algorithm needs min{∑i∈S b
max
i ,

∑
i∈V \S b

min
i } many iterations. We overcome this

second problem by increasing the b values by as much possible in every iteration. To know
this amount, it is necessary to precompute which of the two bounds is reached first, i.e.,
whether S or V \ S is the limiting set. If S has more limiting bounds than V \ S, we set
bi = bmaxi for all i ∈ S; otherwise, we set bi = bmini for all i ∈ V \ S. In both cases, it only
remains to distribute the imbalance of b among the nodes in the non-limiting set. To do
this, we iterate over all nodes i in the non-limiting set in arbitrary order and decrease or
increase bi as much as possible in the first and second case, respectively. See Algorithm 2 on
page 128 for the pseudo-code of this procedure. When the algorithm stops with a balanced
vector b, we obtain again a solution b of value min{∑i∈S b

max
i ,−

∑
i∈V \S b

min
i }.

128 5.4 Separating over Scenarios in a Linear Description

Algorithm 2: Computing a worst-case scenario for a fixed S.
input : Vectors bmin, bmax, a hose source set S ⊆ V
output : A worst-case scenario b for S.

1 let F := ∅
2 let b ≡ 0

Determine which of S and V \ S is limiting and store the non-limiting set in F . If S is
the limiting set, we choose the bi value for i ∈ S as large as possible. Otherwise, the set
V \ S is limiting and we choose the bi value for i ∈ V \ S as small as possible.

3 if
∑
i∈S b

max ≤ −
∑
i∈V \S b

min then
4 set F := V \ S
5 for i ∈ S do set bi := bmaxi

6 else
7 set F := S
8 for i ∈ V \ S do set bi := bmini

9 end
Choose an initial value bi for all nodes i ∈ F in the non-limiting set. Choose the value
from [bmini , bmaxi] that is closest possible to zero.

10 for i ∈ F with bmini > 0 do set bi := bmini

11 for i ∈ F with bmaxi < 0 do set bi := bmaxi

Compute the current balance of b. If b is not balanced, distribute the imbalance in F .
12 let r := ∑

i∈V bi
13 if r == 0 then return b
14 else if r < 0 then

If the imbalance is negative, we only consider nodes that can take positive b values.
All other nodes cannot reduce the imbalance (due to our choice in lines 10/11).

15 for i ∈ F with bmaxi > 0 do
16 let m := min{bmaxi − bi,−r}
17 set bi := bi +m and set r := r +m
18 if r == 0 then return b

19 end
20 else

If the imbalance is positive, we only consider nodes that can take negative b values.
All other nodes cannot reduce the imbalance (due to our choice in lines 10/11).

21 for i ∈ F with bmini < 0 do
22 let m := max{bmini − bi,−r}
23 set bi := bi +m and set r := r +m
24 if r == 0 then return b

25 end
26 end
27 return “H(V, bmin, bmax) is empty.”

Chapter 5 – Separation Under Uncertainty 129

Lemma 5.10. Given a Hose source set ∅ (S (V , Algorithm 2 computes a relevant
scenario b ∈ H(V, bmin, bmax) with

∑
i∈S

bi = min
{∑
i∈S

bmaxi ,−
∑
i∈V \S

bmini

}

or it correctly decides that H(V, bmin, bmax) is empty.

Proof. Let L = S or L = V \ S be the set that limits how much supply we can install
in S. We prove the correctness of the algorithm by showing that Lines 13–27 maintain two
invariants: (1) At all times, b respects all bounds, i.e., bi ∈ [bmini , bmaxi] for all i ∈ V . (2) At
all times, r stores the balance of our current b vector, i.e. r = ∑

i∈V bi.
We establish Invariant 1 in lines 3–9 and 10/11 for i ∈ L and i ∈ F , respectively. Line

12 establishes Invariant 2. Suppose now that r < 0 in line 13 (the other case works
analogously). We already know that both invariants hold before the first iteration of the
loop in lines 14–19 and we assume by induction that the same is true before the j-th
iteration, for some j ≥ 2. Suppose that the j-th iteration considers i ∈ F . Then, bi is at
most increased to bi + bmaxi − bi = bmaxi , i.e. Invariant 1 is maintained. Also, r is changed
by the same value as bi and thus still stores the current balance of b. This means that
Invariant 2 still holds. When the algorithm stops with r = 0, we have found a scenario
b ∈ H(V, bmin, bmax). Also, by our choice in lines 3–9, we have ∑i∈S bi = ∑

i∈S b
max
i if S

is limiting and ∑i∈S bi = −∑i∈V \S = −∑i∈V \S b
min
i otherwise. If the algorithm stops

with r < 0, then m = bmaxi − bi in all iterations and thus, bi = bmaxi for all i ∈ F where
bmaxi > 0. From line 11, we know that bi = bmaxi for all i ∈ F with bmaxi < 0 and our
initialization guarantees 0 = bi = bmaxi for all the i ∈ F with bmaxi = 0. We conclude that
0 > r = ∑

i∈F bi = ∑
i∈F b

max
i . If F = S, we directly have a contradiction to S being a

Hose source set. If F = V \ S instead, we also have bi = bmaxi for all i ∈ L. It follows that∑
i∈V bi = ∑

i∈V b
max
i < 0. Now, let b′ ∈ H(V, bmin, bmax). Then, ∑i∈V b

′
i ≤

∑
i∈V b

max
i < 0,

which is a contradiction to ∑i∈V b
′
i = 0. Consequently, H(V, bmin, bmax) = ∅.

Since Algorithm 2 can compute a relevant scenario for any Hose source set, the necessary
condition in Lemma 5.8 is also sufficient.

Corollary 5.11. There exists a relevant scenario b ∈ H(V, bmin, bmax) for S if and only
if S is a Hose source set.

It remains to show that Algorithm 2 computes an optimum solution for the right-hand
side optimization problem (5.9).

Theorem 5.12. For a connected, undirected graph G = (V,E) and a Hose polytope
H(V, bmin, bmax), let S ⊆ V be a Hose source set. Then,

max
{∑
i∈S

bi
∣∣∣ b ∈ H(V, bmin, bmax)

}
= min

{∑
i∈S

bmaxi , −
∑
i∈V \S

bmini

}
.

In particular, the scenario computed by Algorithm 2 is a worst-case scenario.

130 5.4 Separating over Scenarios in a Linear Description

Proof. For i = 1, . . . , |V |, introduce dual variables υi, λi for the upper/lower bound con-
straints of bi, respectively, and define a dual variable β for the balance constraint. This
gives us the dual (5.10) of (5.9)

min
∑
i∈V

bmaxi υi −
∑
i∈V

bmini λi (5.10)

s.t. υi − λi + β ≥ 1 for all i ∈ S
υi − λi + β ≥ 0 for all i ∈ V \ S

υi, λi ≥ 0 for all i ∈ V.

If ∑i∈S b
max
i ≤ −

∑
i∈V \S b

min
i , running Algorithm 2 gives us a scenario b with ∑i∈S bi =∑

i∈S b
max
i . We choose υi = 1 for all i ∈ S, υi = 0 for all i ∈ V \ S, λi = 0 for all i ∈ V

and finally β = 0. Our choice (υ, λ, β) is feasible for (H∗S) and satisfies complementary
slackness with b. If ∑i∈S b

max
i > −

∑
i∈V \S b

min
i , then Algorithm 2 yields a scenario b with∑

i∈S = −∑i∈V \S b
min
i . Choosing λi = 1 for all i ∈ V \ S, λi = 0 for all i ∈ S, υi = 0 for

all i ∈ V and β = 1 is a feasible solution for (H∗S) and b satisfies complementary slackness
with (υ, λ, β).

We can now write (5.2) as a MIP that is a maximum cut problem with additional
constraints:

min
∑
{i,j}∈E

u∗ijyij −B (5.11)

s.t. B ≤
∑
i∈V

xib
max
i

B ≤ −
∑
i∈V

(1− xi)bmini

xi − xj ≤ yij for all {i, j} ∈ E
xj − xi ≤ yij for all {i, j} ∈ E

xi ∈ {0, 1} for all i ∈ V
yij ∈ {0, 1} for all {i, j} ∈ E

The MIP will not give us an actual worst-case scenario; however, we can easily call
Algorithm 2 on the set S := {i ∈ V | xi = 1} to obtain one. If we want more than one
worst-case scenario, we can even call it several times while permuting the order in which it
considers the nodes.

Unless P = NP, we cannot hope to find a polynomial time separation algorithm for the
cut-set inequalities of the sRND-H problem because separating cut-set inequalities in the
polyhedral case is NP-hard. We demonstrate this by a reduction from minimum expansion.
Chekuri, Oriolo, Scutellà and Shepherd [CSOS07] use a more complicated reduction from
minimum expansion to show the same result for the multi-commodity case.

Chapter 5 – Separation Under Uncertainty 131

Theorem 5.13. Given an instance (G,H(V, bmin, bmax)) of the sRND-H problem and a
fractional capacity vector u ∈ RE, the cut-set separation problem “ Find a cut-set inequality
that is violated by u or prove that none such inequality exists” is NP-complete. In particular,
the feasibility test for u is co-NP-complete.

Proof. It can be decided in polynomial time if a given cut-set inequality is violated by u and
therefore, the cut-set separation problem lies in NP . We prove that it is NP-hard as well by
a reduction from the decision variant of minimum expansion. The variant is defined in the
following way: Given an undirected graph G = (V,E), edge capacities ue for all edges e ∈ E
and a constant r ∈ Z>0, decide if there exists a set ∅ (S (V with |S| ≤ |V |/2 that has an
expansion ∑e∈δ(S) ue/|S| of strictly less than r. Minimum expansion is NP-hard [LR99,
Section 3.2]. We can check in polynomial time if a given set S ⊆ V has an expansion of less
than r and thus, the decision variant of minimum expansion is NP-complete.

If we have an input (V,E, u, r) for minimum expansion, we can define an instance for the
cut-set separation problem on the same graph G = (V,E). Set b̂maxi := r and b̂mini = −r for
all i ∈ V . We claim that G has an expansion of strictly less than r if and only if there is a
violated cut-set inequality with respect to u and H(V, b̂min, b̂max).

By our definition of b̂max and b̂min, we obtain from Theorem 5.12 that the optimum right
hand side BS of the cut-set inequality induced by S is r · |S| for any S ⊆ V with |S| ≤ |V |/2.
Thus there exists a cut-set that is violated by u if and only if∑

e∈δ(S)
ue < BS = r · |S| ⇐⇒

∑
e∈δ(S)

ue/|S| < r

for some S ⊆ V .

Corollary 5.14. Given an instance (G,B) of the sRND-P problem and a fractional capacity
vector u ∈ RE, the cut-set separation problem u is NP-complete. In particular, the feasibility
test for u is co-NP-complete.

Chapter 6

A Branch-and-Cut Algorithm

In the last chapter of this thesis, we use all the theoretical results from the previous chapters
to develop a Branch-and-Cut algorithm that can solve the sRND-F and the sRND-H problem
exactly. For practical efficiency, we will need some additional algorithmic ideas: Several
heuristics will allow us to compute better upper bounds for the sRND problem. Likewise,
we propose modifications of the separation algorithms in order to separate several cut-set
inequalities at once. A particularly important modification will be made in the sRND-H case.
Finally, we analyze the practical performance of the algorithm with several computational
experiments. The results in this Chapter were obtained in a collaboration with Eduardo
Álvarez-Miranda, Valentina Cacchiani, Tim Dorneth, Michael Jünger, Frauke Liers, Andrea
Lodi and Tiziano Parriani. They were published in [ACDJ+12] and [CJL+14].

134 6.1 The Algorithm

6.1 The Algorithm

In this chapter, we propose a Branch-and-Cut algorithm to solve the capacity formula-
tion (4.3) of the sRND problem. Using different separation procedures, the algorithm is
capable of solving the sRND-F and the sRND-H problem to optimality.

6.1.1 Lower Bounds

We compute lower bounds by solving the linear programming relaxation of the capacity
formulation (4.3) and strengthen the formulation with 3-partition inequalities and general
{0, 1

2}-cuts.

Cut-Set Separation for sRND-F

We use the cut-set separation algorithm from Section 5.3 for the sRND-F case. The algorithm
builds on our own implementation of the Preflow-Push algorithm that is originally due
to Goldberg and Tarjan [GT88]. Cherkassky and Goldberg [CG95] experimentally analyze
the algorithm and find that the use of the highest label strategy and of the gap heuristic is
crucial for the performance of the algorithm. We use both in our implementation. Moreover,
it is well-known that in order to find a minimum cut, the Preflow-Push algorithm can be
stopped once a maximum preflow has been found. We therefore do not execute its second
phase that only serves to convert the maximum preflow into a maximum flow. It can happen
that the sRND-F separation returns the same cut-set for different scenarios; it is therefore
important to check the separated inequalities for duplicates before adding them to the linear
programming relaxation. We initialize the linear programming relaxation with all cut-set
inequalities induced by the singletons {i} for all i ∈ V .

Finding Several Cut-Set Inequalities per Iteration. We propose two additional heuristic
separation algorithms to find more violated cut-set inequalities per iteration of the separation
procedure. Experiments show by using these heuristics, we can reduce the number of
iterations that the cut-set separation makes at the root node. However, with the additional
inequalities, the size of the linear programming relaxation increases. This not only increases
the time spent in the LP solver, it also increases the memory usage of the algorithm
significantly. Additionally, it turns out that the time needed to solve the linear programming
relaxation of the cut-set formulation is not a bottleneck of the algorithm – even if the
additional heuristics are not used. Overall, it does not pay to use the addition separation
heuristics; they do not improve the linear programming bounds, yet they decrease the
number of Branch-and-Bound nodes that can be solved in a given amount of time. We thus
describe the heuristics for documentation purposes only.
The first heuristic InterCuts only works for the polynomial cut-set separation from

Section 5.3. We observe that the Preflow-Push algorithm maintains a (possibly suboptimal)
s-t-cut at all times. This cut can change after each push operation. We modify our
implementation of the algorithm such that it returns all these intermediate cuts and use
them to generate potentially violated cut-set inequalities.

Chapter 6 – A Branch-and-Cut Algorithm 135

Call MIP separation
start

Cut-set inequal-
ities found?

Populate
scenario list with

Algorithm 2

Call sRND-F
separation for all
scenarios in list

Cut-set inequal-
ities found?Clear scenario list

Feasible!

Yes

No

Yes

No

Figure 6.1: Flowchart of our separation algorithm for sRND-H cut-set inequalities.

The second heuristic kOPT is a general k-Opt neighborhood search for a fixed parameter
k ∈ Z≥0. It takes the cut-set S of any violated cut-set inequality and tries to swap up to k
nodes from S to V \ S or vice-versa. If the resulting cut-set also defines a violated cut-set
inequality, we add it to our linear programming relaxation.

Cut-Set-Separation for sRND-H

In principle, the MIP-based cut-set separation algorithm for the sRND-H problem would
be sufficient to solve the linear programming relaxation of the sRND-H cut-set formulation.
However, it requires solving a MIP for every separated inequality. To accelerate the
separation procedure, we modify the algorithm in the following way: We first call the MIP
separation algorithm. Once it returns a cut-set S, we make k ∈ Z≥0 calls1 to Algorithm 2 to
find up to k worst-case scenarios for S. We permute the order in which Algorithm 2 considers
the nodes in each call; thus allowing the algorithm to return a different worst-case scenario
in each run. The resulting scenarios are stored in a list L. Before calling the MIP-separation
again, we first make sure that the capacities are sufficient for all scenarios in L. This can
be done by calling the sRND-F cut-set separation from Section 5.3 for all b ∈ L. Once the
capacities are sufficient for all scenarios in L, we call the MIP separation for sRND-H and
iterate. The algorithm is depicted in Figure 6.1.

Separation of 3-Partition Inequalities

In the sRND-F case, we can separate 3-partition using the EnumZH algorithm from Section 4.4.2
and the MinCutZH algorithm from Section 5.3.2. However, our experiments show that EnumZH
is only slightly slower than MinCutZH while providing better bounds; we therefore only use
EnumZH in both the implementation for sRND-F and for sRND-H.
1In our implementation, we use k = 10.

136 6.1 The Algorithm

We only separate 3-partition inequalities at the root node and only if no violated cut-set
inequalities could be found.

Zero-Half-Cuts

If neither violated cut-set inequalities nor violated 3-partition inequalities can be found at
the root node, we call a general {0, 1

2}-cut separation algorithm by Andreello, Caprara and
Fischetti [ACF07]. The algorithm relies on a tabu search and slightly improves the bounds.

6.1.2 Upper Bounds

We compute upper bounds with several sRND problem heuristics. In the description of
these heuristics, let G = (V,E) be a connected undirected graph with edge costs c ∈ RE≥0
and let B be a scenario set. With the exception of the BLSRound and the LNSRound
heuristic, the heuristics do not make any asumption about B. All heuristics are based
on rounding a fractional capacity vector u∗ ∈ R≥0 \ Z≥0 that must be feasible for the full
linear programming relaxation of the cut-set formulation (4.3). We therefore only call the
heuristics if no cut-set inequalities could be separated. In the description of the heuristics,
we use

∆(x) := min{x− bxc, dxe − x}

to denote the fractionality of a non-negative real number x ∈ R≥0. Also, let Gε(u) the
subgraph of G that is induced by the edge set Eε(u) :=

{
e ∈ E

∣∣ ∆(ue) ≤ ε
}
for some ε > 0.

Simple Rounding

Because u∗ is fractionally feasible, the rounded vector defined by uij = du∗ije for all {i, j} ∈ E
is integer feasible (any flow that is feasible under u∗ is feasible under u as well). Thus, a
very simple rounding heuristic is to just round up the solution that is obtained from the
linear programming relaxation. We denote this heuristic as SRound.

Cycle Rounding

Let C = (e1, . . . , el) be a cycle in Gε(u) and assume without loss of generality that e1 is an
edge that minimizes mine∈C ue − buec. Then, set u′e1 := bue1c and u′ei = uei + ue1 − bue1c
for all i = 2, . . . , `. Even though we reduced the capacity of e1, the new solution u′ remains
fractionally feasible: Any flow that used the missing capacity on e1 = {i, j} can now send
the same flow units on the i-j-path (e2, . . . , el) whose capacity we increased. We can thus
iterate the algorithm on Gε(u′) until no more cycles can be found. We then apply the
simple rounding heuristic to make the last solution integer feasible. In the worst case, the
heuristic iterates |E| times because in each iteration, one fractional edge is eliminated. The
actual worst-case running time of the heuristic depends on how it looks for the cycles.

DFS and Shortest Path Rounding

There are different ways to find cycles in Gε(u), each yielding an instantiation of the Cycle
Rounding heuristic from the previous paragraph. In the DFSRound heuristic, we use a depth

Chapter 6 – A Branch-and-Cut Algorithm 137

first search for this purpose. Any time the search finds a back edge, we have found a cycle.
Another possibility is to select an arbitrary edge {i, j} ∈ Eε(u) and to look for a shortest

i-j-path p with respect to the objective function c in (V,Eε(u) \ {i, j}). The result is a cycle
p ∪ {i, j} in Gε(u). The result of the heuristic depends on how we choose the initial edge
{i, j}; in our implementation, we consider the edges by decreasing order of their fractional
part ue−buec. Since the fractional parts change after each rounding operation, we organize
the edges in a binary heap. The resulting heuristic is the SPRound heuristic. We use our
own implementation of Dijkstra’s algorithm [Dij59] for the shortest path search.

Multi-Commodity Flow Rounding

In the cycle rounding heuristics, we have rerouted the fractional parts of the capacities
along a single path. This is an arbitrary restriction and we now propose a heuristic that can
use any number of paths. The multi-path splitting can be realized with a multi-commodity
flow. To this aim, we maintain a list of commodities C that is initially empty and a capacity
vector ū which we initially set to ūij = 1 − (uij − buijc) for all {i, j} ∈ Eε(u). Thus, the
entry ūij is the “slack” capacity that would be additionally installed if we would round up
uij . The heuristic now tries to reroute the flows to use these slack capacities in order to be
able to round down the capacity of some edges.

The heuristic starts by selecting an arbitrary edge {i, j} ∈ Eε(u) and inserting a commodity
that has the node i as its source, the node j as its sink and a demand of uij − buijc. It
also sets ūij = 0. We now check if all commodities in C can be sent in (V,Eε(u) \ {i, j}, ū)
and if not, we remove the commodity (i, j) and revert ūij to 1− (uij − buijc). The check is
performed by solving the multi-commodity flow arc formulation (1.16) as a linear program.
Regardless of the outcome of the check, we iterate the algorithm until all edges in Gε(u)
have been considered. In the end, we obtain a vector u∗ij := buijc+ ūij that is fractionally
feasible. We make it integer feasible with the sRound heuristic.

The result of the heuristic again depends on the order in which the edges are considered.
We observe that rounding down the capacity of an edge {i, j} reduces the costs for that
particular edge by cij · (uij − buijc) and we consider the edges in the decreasing order of
that amount. The result is the MCFRound heuristic.

In the final algorithm, the MCFRound heuristic is disabled: While it occasionally produces
very good solutions, its running time is too high to make an improvement to the overall
algorithm.

A Rounding heuristic by Buchheim, Liers and Sanità [BLS11]

Buchheim, Liers and Sanità propose a heuristic for the sRND-F case that only rounds
indirectly. In a first step, the heuristic rounds the capacity of each edge e ∈ E to ue = duee,
obtaining a vector u ∈ ZE≥0. It then chooses a random cost function c̄ ∈ RE≥0. Given these
two vectors, the heuristic computes a minimum cost b-flow f b in (G, u, c̄) for each scenario b
from the scenario set B := {b1, . . . , bK}. It then returns the integer feasible vector u′ with
u′ij := maxb∈B(f bij + f bji) for all {i, j} ∈ E. The process is repeated k ∈ Z≥0 times. We call
the result the BLSRound heuristic.

138 6.1 The Algorithm

Our experiments have shown that the BLSRound heuristic outperforms all other rounding
heuristics (with the exception of the following LNSRound heuristic) in terms of solution
quality. We make one iteration of the heuristic at the end of each Branch-and-Bound node.

Large Neighborhood Search Heuristic

The large neighborhood search heuristic only works in the sRND-F case. It has two phases:
In the constructive phase, it builds a feasible solution by computing a minimum cost b-flow
f b in (G,∞, c) for each b ∈ B = {b1, . . . , bK}. This results in an integer feasible capacity
vector ū where ūij = maxb∈B(f bij + f bji). In the following improvement phase, the heuristic
tries to reduce the capacities in ū by solving a MIP.

In order to keep the MIP small, we remove any edges that are not used in the constructive
phase. Let thus E := {e ∈ E | ūe > 0}. For Θ ∈ Z≥0, we say that u ∈ RE≥0 is
in the Θ-neighborhood of ū if u uses at most Θ additional units of capacity, i.e., if∑
e∈E ūe ≤

∑
e∈E ue + Θ. The improvement phase now looks for the cheapest feasible

solution in the Θ-neighborhood of u. To this aim, it solves a variant of the arc-flow
formulation (2.17) in which the x variables model the additional capacities.

min
∑
{i,j}∈E

cijuij (6.1)

s.t.
∑
{i,j}∈E

(f qij − f
q
ji) = bqi

for all i ∈ V
and all q = 1, . . . ,K

f qij + f qji ≤ uij
for all i ∈ V
and all q = 1, . . . ,K

uij ≤ ūij + xij for all {i, j} ∈ E∑
{i,j}∈E

xij ≤ Θ

xij , uij ∈ Z≥0 for all {i, j} ∈ E

f qij , f
q
ji ∈ R≥0

for all i ∈ V
and all q = 1, . . . ,K

This MIP is then solved with a general MIP solver. This LNSRound heuristic is only called
in the sRND-F case and only at the beginning and at the end of the root node. For the
second call, we initialize the improvement phase with the output of the SRound heuristic.
Both calls have a time limit of 120 seconds.

6.1.3 Preprocessing
Instead of solving an sRND instance (G = (V,E),B) as a whole, we can decompose it into
its biconnected components, solve the sRND problem independently on all components and
then combine the partial solutions to obtain a solution for (V,E,B). This was shown
by Buchheim, Liers and Sanità [BLS11] for the sRND-F case.
The decomposition works in the following way: We assume that G is connected. If G is

also biconnected, then there is nothing to do. Otherwise, there is at least one biconnected

Chapter 6 – A Branch-and-Cut Algorithm 139

component C1 ⊆ V that contains a single cut-vertex i∗; if not, then the biconnected
components form a cycle which is a contradiction to G not being biconnected. The cut
vertex i∗ decomposes G into a subgraph G[C1] and a remainder subgraph G[C2], where
C1, C2 ⊆ V , that both contain i∗. Since i∗ is the only connection of C to the rest of G, all
flow entering or leaving C must go through i∗. Observe, however, that i∗ can be contained
in several biconnected components in general. We decompose (V,E,B) into two instances
(C1, E[C1],B1) and (C2, E[C2],B2) in the following way.

Vertex Description of the Scenario Set. In the sRND-F case, suppose that the scenario set
is given as B = {b1, . . . , bK}. For all q = 1, . . . ,K, we define a new scenario b1,q ∈ RC1

≥0
on C1 by setting

b1,qi =

bqi , if i 6= i∗∑
i∈C2

bqi , otherwise for all i ∈ C1

and a new scenario b2,q ∈ RC2
≥0 on C2 as

b2,qi =

bqi , if i 6= i∗∑
i∈C1

bqi , otherwise for all i ∈ C2.

The new scenarios are balanced by definition and thus, the two new scenario sets
B1 = {b1,1, . . . , b1,K} and B2 = {b2,1, . . . , b2,K} are valid.

Hose Scenario Set. We extend the definition from [BLS11] to the sRND-H case by defining
two new hose polytopes B1 := H(C1, b1,min, b1,max) and B2 := H(C2, b2,min, b2,max) in
the following way.

b1,min
i =

bmin
i , if i 6= i∗∑
i∈C2

bmin
i , otherwise for all i ∈ C1

b1,max =

bmax
i , if i 6= i∗∑
i∈C2

bmax
i , otherwise for all i ∈ C1

b2,min
i =

bmin
i , if i 6= i∗∑
i∈C1

bmin
i , otherwise for all i ∈ C2

b2,max =

bmax
i , if i 6= i∗∑
i∈C1

bmax
i , otherwise for all i ∈ C2

The idea of both definitions is that C1 and C2 define two sRND instances: In the first one,
the node set C2 is shrunken into a single node (similarly to our construction for 3-partition
inequalities in Section 4.4.3) and only the graph G[C1] remains. In the second one, the

140 6.2 Testbed

node set C1 is shrunken into a single node, leaving only the graph G[C2]. In both cases, the
balance of the shrunken node is the total balance of the node set that it represents.
Suppose now that we have the instances (G[C1],B1) and (G[C2],B2) as defined above.

Since C1 does not contain a cut-vertex, we know that G[C1] is biconnected. It thus remains
to solve (G[C1],B1) with our Branch-and-Cut algorithm and to further decompose G[C2].
For the latter, we now call the decomposition algorithm recursively on (G[C2],B2). We
continue recursively until G has been completely decomposed into biconnected components.
When a recursive step returns, we obtain two solutions u1 for G[C1] and u2 for G[C2] that
can be concatenated to obtain a solution for G.

6.1.4 Additional Settings

Some parameter choices are important for the performance of our Branch-and-Cut algorithm.
We refer to Section 1.3.4 for more details on the meaning of these parameters.

First of all, we obtained the best results when using Strong Branching. We use an
aggressive variant in which we solve the linear programming relaxation of all candidate
subproblems to optimality, i.e., we do not bound the number of iterations that the simplex
algorithm performs. However, we do not use the cut-set separation in the candidate
subproblems and this is why the bounds computed in the candidate subproblems are still
estimates only.
Second of all, the linear programming relaxation of the cut-set formulation can grow

large even though a separation algorithm is used. We counter this behavior by using
aging and remove constraints from the relaxation that have been non-binding for more
than 10 iterations of the separation procedure. In choosing this parameter, we have to
make a threefold trade-off: Keeping the constraints for too long results in a large linear
programming relaxation that uses up valuable memory and solution time. On the other
hand, discarding constraints too early not only implies otherwise unnecessary calls to
the separation algorithm: Since our 3-partition separation algorithms rely on the cut-set
inequalities from the linear programming relaxation, we get less 3-partition inequalities if
we remove cut-set inequalities prematurely.

Third of all, we found that traversing the Branch-and-Cut tree in Best-First order works
better than using Depth-First order or a Dive-and-Best strategy.

6.2 Testbed

Any benchmark instance for the sRND problem consists of a network topology, edge costs
and a scenario set. This section starts with a description of suitable network topologies and
then describes how we generate scenario sets for the sRND-F and the sRND-H case.

6.2.1 Network Topologies

The network topologies in the benchmark set should be both realistic and computationally
challenging. At the same time, we try to use existing instances from the literature in order
to compare with previous works.

Chapter 6 – A Branch-and-Cut Algorithm 141

BLS instances. The first class of instances has been derived from real world network
topologies and was compiled by Altın, Amaldi, Belotti and Pınar [AABP07]. The
instances were built out of standard backbone networks from the literature, Steiner
tree instances and general multi-commodity flow instances. Buchheim, Liers and
Sanità [BLS11] use the instances to benchmark their sRND-F Branch-and-Cut approach.
The instances include edge costs that, depending on the instance, vary from different
ranges.

JMP instances. Johnson, Minkoff and Phillips [JMP00] propose the following method to
generate realistic Steiner Tree instances: Distribute n nodes uniformly at random in
the unit square. Then, connect any two nodes i and j by an edge if and only if the
Euclidean distance between i and j is less than α/

√
n, where α = 2 is a parameter for

the generator. Edge costs are proportional to the Euclidean distance of the incident
nodes. The instances of this class originate from [MCL+14].

PA instances. The preferential attachment model by Barabási and Albert [BA99] depends
on a parameter β ∈ Z≥0. It starts the graph generation with a complete graph
on β nodes. Then, the generator iteratively inserts additional nodes. When the
generator inserts node i, it also inserts exactly β edges that connect i with β of
the previously inserted nodes. The probability that i is connected to a node j is
inversely proportional to the degree of j, i.e., new nodes prefer to be connected to
existing nodes with high degree. Consequently, a PA instance with n nodes has exactly
(n− β) · β + β · (β − 1)/2 = βn− β · (β − 1)/2 many edges. We choose the edge costs
uniformly at random from {0, . . . , 100}. The class contains one network topology of
size |V | = 20, 25, . . . , 50, 60, . . . , 100 for each choice of β = 2, 3, . . . , 7. Two example
instances are depicted in Figure 6.3.

SND instances. The SNDLib [OPTW07] is an established standard benchmark set consist-
ing of real world network topologies. The instances include uniform edge costs.

6.2.2 Generating Vertex Descriptions of Scenario Sets

BLS instances. Buchheim, Liers and Sanità [BLS11] generated vertex-description based
scenario sets for the instances of the BLS class. We use the same set. For each of the
76 base network topologies, the class contains an instance with k = 2, 3, 4, 5 scenarios
and a percentage of p = 0.25, 0.5, 0.75, 1.0 of terminals. In theory, this results in a
total of 1216 instances, however, some trivial instances have been removed in [BLS11]
in order to obtain a fair average. We group the remaining 1156 instances in three
classes according to their size: Small instances are those that have up to 149 nodes;
instances with 150–299 nodes are medium sized and those instances with more than
300 nodes are large. In order to generate node balances, Buchheim, Liers and Sanità
make use of a demand value di for each node i that was provided by the underlying
network topologies from [AABP07]. In a first phase, the balance of terminal i is
randomly set to +di or to −di. In the second phase, a terminal is chosen at random
and its demand is decreased by one. The second phase iterates until the scenario is

142 6.2 Testbed

balanced.2 The absolute node balances in the BLS class tend to be larger than in the
other instance classes that we consider.

Other Instances. Our theoretical results in Section 3.3.1 suggest that instances with binary
supplies and demands are hard for Branch-and-Bound based algorithms. This was
confirmed by our experimental results in [ACDJ+12]. This is why we generate binary
demands on the JMP, PA and SNDLib instance classes. For each scenario, we select
a percentage of p = 0.25, 0.5, 1.0 terminals and generate distinct terminal pairs s, t
accordingly. We set the balance of each pair s, t to 1 and −1, respectively. On the
JMP instances we generate one instance for each network topology, each choice of p
and each choice of k = 5, 10. For the PA instances, we generate 10 instances for each
network topology, each choice of p and each number k = 5, 10, 20, 30, 50, 75, 100 of
scenarios.

6.2.3 Generating Linear Descriptions of Scenario Sets

In the polyhedral case, we consider the SNDLib and the PA instances. To define a Hose
polytope on these network topologies, we need a value bmini and a value bmaxi for each
terminal i (for each non-terminal i, we set bmini = bmaxi = 0). These values are chosen by
selecting a center b̄i and a radius b̂i for each terminal i. Then, we set bmini = b̄i − b̂i and
bmaxi = b̄i + b̂i. The choice of b̂ and b̄ follows three different distributions.

uniform The centers and the radii are chosen uniformly at random from {−5, . . . , 5}
and {0, . . . , 5}, respectively.

geometric The radii of the demand intervals are chosen randomly according to a geometric
distribution, i.e., there are many nodes with narrow demand intervals and few nodes
with broad intervals. The expected radius is 2. The center of the intervals is chosen
uniformly at random from {−5, . . . , 5}.

zero-one We set b̂i = 0 and b̄i = 1 for all terminals.

It can happen that a randomly generated instance is infeasible; in that case, we gener-
ate another one. The class contains ten instances for each network topology and each
percentage p = 0.25, 0.5, 0.75, 1.0 of terminals.

6.2.4 Software and Hardware for the Experiments

Our Branch-and-Cut algorithm is implemented in C++ using several libraries.

ABACUS Writing a Branch-and-Cut algorithm from scratch is tedious: The algorithm must
maintain a Branch-and-Bound tree, store LP bases and cutting planes, make calls to
a linear programming solver etc. All these things require large implementation and
debugging efforts. For these tasks, we rely on “A-Branch-And-CUt-System (ABACUS)”
that is based at the University of Cologne. The C++ library is due to Jünger and

2The scenario generation was detailed to the author in a private communication with the authors of [BLS11]
in October 2011.

Chapter 6 – A Branch-and-Cut Algorithm 143

Thienel [JT00]. Many state-of-the-art techniques for Branch-and-Cut algorithms are
included in this package and are ready to use. We use ABACUS 3.2beta U2 for our
code. The library depends on the Open Solver Interface (COIN-OSI) cite that we use
in the version provided with Clp 1.14.8.

OGDF The Open Graph Drawing Framework [OGDF] is developed in a cooperation of the
TU Dortmund, the Osnabrück University, the University of Cologne, the University
of Sydney and the oreas GmbH. We use it for its extensive graph data structures,
although its intention is to provide algorithms for the automated layouting and drawing
of graphs. The framework also provides some basic graph algorithms.

CPLEX We use ILOG Cplex 12.1 with ILOG Concert 2.9 as the underlying linear pro-
gramming solver. In our implementation, the MIP functionality is only used for
the improvement phase of the LNS heuristic and for the Hose separation of cut-set
inequalities. We use CPLEX in sequential (i.e., non-parallel) mode in all experiments.

All code has been compiled with the GNU Compiler Collection (GCC) in version 4.7 on
Debian 7. The experiments were conducted on Debian 7 as well and ran on a single core
of a Intel(R) Xeon(R) E5410 cpu running at 2.33GHz. We use a time limit of four hours
and limit the algorithms to 3 GB of memory in all experiments.

6.3 Computational Results
6.3.1 Collected Data
We use the following data in our comparison. All numbers are averages over those instances
that were solved to optimality within the time and memory constraints. Wherever two
algorithms are compared, the average is over those instances only that were solved to
optimality by both algorithms.

lp-gap Denote by I the value of an optimum solution of the cut-set IP formulation (4.3)
and by L the optimum value of the corresponding LP relaxation (4.2). Then the
lp-gap is the ratio (I −L)/(I · 100). This is the gap that the algorithm needs to close
to prove optimality.

#solved The number of instances that were solved to optimality within the time limit.
The number in brackets denotes the number of instances that could not be solved to
optimality due to the memory limit.

cputime This column depicts the average cpu time in seconds used on those instances that
were solved to optimality.

#nodes The average number of branch-and-cut nodes that were used on those instances
that were solved to optimality.

root gap The root gap is the quotient (I − R)/(I · 100) where I is again the value of
an optimum solution of the cut-set IP formulation (4.3) and R is the value of an
optimum solution of the linear programming relaxation at the end of the root node,

144 6.3 Computational Results

Cut-Set formulation (CS) [BLS11]

|V
|

|B
|

#
in
st

lp
-g
ap

#
so
lv
ed

(m
)

cp
ut
im

e

#
no

de
s

ro
ot
-g
ap

re
la
x-
tim

e
(m

)

se
p-
tim

e

he
ur
-t
im

e

#
so
lv
ed

cp
ut
im

e

0 ≤ |V | ≤ 149 2 153 0.02% 153 (0) 2 111 0.00% 0 (0) 0 0 153 0.7
0 ≤ |V | ≤ 149 3 153 0.03% 152 (1) 7 265 0.00% 0 (0) 0 0 152 1.1
0 ≤ |V | ≤ 149 4 153 0.03% 151 (2) 2 105 0.00% 0 (0) 0 0 150 4.8
0 ≤ |V | ≤ 149 5 185 0.02% 182 (3) 0 127 0.00% 0 (0) 0 0 183 5.9

150 ≤ |V | ≤ 299 2 68 0.00% 67 (1) 2 78 0.00% 0 (0) 1 0 66 85.6
150 ≤ |V | ≤ 299 3 68 0.01% 68 (0) 45 205 0.00% 0 (0) 8 0 61 4.9
150 ≤ |V | ≤ 299 4 68 0.00% 66 (2) 2 95 0.00% 0 (0) 1 0 63 27.3
150 ≤ |V | ≤ 299 5 68 0.00% 67 (1) 82 186 0.00% 0 (0) 11 0 62 141.2
300 ≤ |V | ≤ 499 2 60 0.00% 60 (0) 0 197 0.00% 0 (0) 0 0 60 81.3
300 ≤ |V | ≤ 499 3 60 0.00% 60 (0) 0 169 0.00% 0 (0) 0 0 60 103.4
300 ≤ |V | ≤ 499 4 60 0.00% 60 (0) 0 221 0.00% 0 (0) 0 0 59 129.8
300 ≤ |V | ≤ 499 5 60 0.00% 60 (0) 0 547 0.00% 0 (0) 0 0 55 166.8

Table 6.1: Comparison with the previous approach by Buchheim, Liers and Sanità [BLS11]. The
experiments were conducted on the same machine. The experiment shows that our
approach is faster in terms of CPU time and solves slightly more instances (except for
one case). The instances are not solved at the root node even though the relative root
gap is 0.00%, as the absolute root gap is not 0. This is because the solution values are
large.

i.e., including separated 3-partition inequalities and general {0, 1
2}-cuts. The number

in the table is the average over those instances that were solved to optimality.

relax time The time (in seconds) needed to solve the linear programming relaxation of
the cut-set formulation (4.3) at the root node, averaged over the instances that were
solved to optimality. The number in brackets gives the number of instances where the
linear programming relaxation could not be solved due to the time limit.

sep-time The time (in seconds) spent in separation routines during the run of the algorithm,
averaged over all instances that were solved to optimality.

heur-time The time (in seconds) spent in heuristics during the run of the algorithm,
averaged over all instances that were solved to optimality.

6.3.2 The Previous Approach by Buchheim, Liers and Sanità

The aim of our first experiment is to show that our new algorithm is competitive. As a
reference point, we use the previous Branch-and-Cut algorithm by Buchheim, Liers and
Sanità [BLS11]. This algorithm uses an arc-flow formulation with additional target-cuts
and is described in Section 2.5.2 of this thesis. It also builds on the ABACUS framework.
We run our algorithm on the same instances and the same machines that were used

by [BLS11]. We then report on the number of instances that could be solved within four
hours of time and 3GB of memory. These are the same settings as used in [BLS11]. Since we
have access to the raw computational results of [BLS11], this allows for a direct comparison.
Buchheim, Liers and Sanità analyze the performance of their algorithm depending on a

Chapter 6 – A Branch-and-Cut Algorithm 145

Figure 6.2: The instance stein_50_9_100_K04_t075 is hard for our algorithm.

parameter choice for the target cut algorithm. In each instance group, we compare with the
best parameter choice from [BLS11] for that group.
The computational results of this experiment are depicted in Table 6.1 using the same

grouping as in [BLS11]. The results from [BLS11] are depicted on the right, the ones of our
algorithm are on the left.
The table shows that our algorithm is competitive: It is faster in most cases and solves

slightly more instances than the previous algorithm from [BLS11]. Our algorithm is
significantly faster on the largest instances and in contrast to the previous algorithm, it
can solve all instances from this class. In total, only 10 instances could not be solved; in
all cases, the algorithm aborted due to the memory limit of 3GB. The unsolved instances
stem from different subsets of the BLS class as defined in [AABP07]. One instance (see
Figure 6.2) is part of the steiner50 subset (46 nodes and 96 edges), five instances stem
from the steiner75 subset (69 nodes and 144 edges) and the remaining four instances are
part of the g200a subset (199 nodes and 913 edges).
Buchheim, Liers and Sanità also report memory issues due to the large Branch-and-Cut

tree, although some instances could not be solved by their algorithm due to the time limit.
The small root gap of the instances is misleading: The actual solution values are in the

order of 105 to 107 and the actual relative root gap therefore has more than 2 significant
decimal places. The absolute root gaps are large enough to pose problems to Branch-and-Cut
algorithms. We conclude that our algorithm improves on the previous one.

146 6.3 Computational Results

Figure 6.3: Two 50 node instances of the PA class. In the left instance with β = 2, a large hub node
and three lesser hub nodes are visible. The right instance with β = 7 has a much denser
structure.

6.3.3 Impact of our Problem Specific Cutting Planes

In Section 4.4 we have proposed 3-partition inequalities as problem specific cutting planes.
We want to use these inequalities to strengthen the linear programming relaxation of the cut-
set formulation and give experimental evidence for the effectiveness of these cutting planes in
this experiment on the PA instances. To show that the new cutting planes indeed strengthen
the relaxation, we measure by how much they advance the linear programming bound: Let
LC and L be the value of an optimum solution of the LP relaxation of the cut-set formulation
with and without some additional set of cutting planes C, respectively. Then, the relative
progress made by the cutting planes in C is (LC −L)/L ·100. We depict the average relative
progress made with different separation strategies in Table 6.2. In the table, the separation
strategy EnumZH refers to the enumerative 3-partition separation from Section 4.4.2, the
strategy MinCutZH uses the minimum-cut based separation procedure from Section 5.3.2
and the strategy ACF uses the tabu search by Andreello, Caprara and Fischetti [ACF07], as
described in Section 6.1.1. In particular, this algorithm can combine an arbitrary number of
inequalities to build a {0, 1

2}-cut. It can also compute higher rank {0, 1
2}-cuts because it is

not limited to combining cut-set inequalities. Finally, the EnumZH+ACF strategy first executes
the EnumZH algorithm and only if this call is not successful, it starts the ACF separation.

From the pure algorithms (EnumZH, MinCutZH and ACF) the enumerative algorithm EnumZH
makes the largest progress in closing the root gap. On all instance sizes, it performs
significantly better than the other two algorithms. The MinCutZH algorithm is never worse
than ACF and starting from instances with 45 nodes, it is significantly better. The mixed
algorithm EnumZH+ACF is marginally better than the other three variants. In total, the
average relative progress made with any of the four separation strategies decreases with the
instance size.

Chapter 6 – A Branch-and-Cut Algorithm 147

|V
|

En
um

ZH

Mi
nC

ut
ZH

AC
F

En
um

ZH
+A

CF

20 5.5% 3.2% 3.2% 5.6%
25 5.1% 2.6% 2.3% 5.2%
30 3.6% 1.7% 1.3% 3.6%
35 4.2% 2.0% 1.7% 4.3%
40 3.7% 1.8% 1.6% 3.8%
45 3.2% 1.4% 1.0% 3.2%
50 3.6% 1.8% 1.3% 3.7%
60 3.3% 1.6% 1.2% 3.4%
70 2.9% 1.4% 0.9% 2.9%
80 2.9% 1.4% 0.9% 2.9%
90 3.0% 1.5% 1.0% 3.0%
100 2.9% 1.4% 0.8% 2.9%

Table 6.2: Progress made with the problem specific cutting planes at the root node on the PA sRND-F
instances.

In total, the best choice for our algorithm is EnumZH+ACF and we will see in the next
experiment that this remains true if we also consider the running time of the algorithms.
It is surprising that the general {0, 1

2}-cut separation ACF does not improve significantly
on EnumZH, even though it can separate much more general cutting planes in theory. This
behavior could indicate that most of the general cutting planes found by ACF are actually
3-partition inequalities.

6.3.4 Comparison with a Default CPLEX Implementation
The next experiment answers several questions at the same time.

• Ideally, the theoretical results from the previous chapters should have practical
implications. Can our algorithm compete with a state-of-the-art MIP solver that
would be used in a “hands-on” practical approach?

• In which way is the performance of our algorithm influenced by an instance’s charac-
teristics?

• What are the boundaries of our approach? In particular, what is the maximum size
of an instance that we can expect to solve?

The arc-flow formulation from Chapter 2 yields a very simple approach for the sRND-F
problem: Since no separation algorithm is needed to solve its linear programming relaxation,
a practitioner could easily put it into a state-of-the-art commercial MIP solver and hope
to solve the problem with the solver’s general machinery for MIP problems. Due to the
results from Chapter 4, the LP relaxation of the arc-flow formulation yields the same lower
bounds as the LP relaxation of our new cut-set formulation and thus, this algorithm might
yield comparable results with much less effort. We emulate this approach by solving the
arc-flow formulation with CPLEX in sequential mode using the default parameter setting. In
particular, we allow CPLEX to use all general MIP cuts. The sequential mode is chosen for
fairness: ABACUS does not allow for solving in parallel.

148 6.3 Computational Results

Cut-Set formulation (CS) Flow formulation (CPLEX)
|V
|

|E
|

|B
|

lp
-g
ap

in
%

#
so
lv
ed

(m
)

cp
ut
im

e

#
no

de
s

ro
ot
-g
ap

in
%

re
la
x-
tim

e
(t
)

se
p-
tim

e

he
ur
-t
im

e

#
so
lv
ed

(m
)

cp
ut
im

e

#
no

de
s

ro
ot
-g
ap

in
%

re
la
x-
tim

e
(t
)

25 104 5 13.3 3 (0) 1 46 2.9 0 (0) 0 0 3 (0) 0 410 7.7 0 (0)
25 104 10 17.1 3 (0) 24 2016 7.1 0 (0) 3 0 3 (0) 26 2701 12.2 0 (0)
30 121 5 10.6 3 (0) 7 436 2.5 0 (0) 1 0 3 (0) 5 1175 5.6 0 (0)
30 121 10 14.3 3 (0) 125 6875 6.6 0 (0) 15 1 3 (0) 123 12661 9.5 0 (0)
35 155 5 12.3 3 (0) 75 6157 5.3 0 (0) 7 0 3 (0) 9 1808 7.1 0 (0)
35 155 10 12.3 3 (0) 1196 47858 6.2 0 (0) 115 20 3 (0) 597 31355 9.2 0 (0)
40 182 5 17.2 2 (1) 51 1886 6.8 0 (0) 8 0 3 (0) 6 1121 12.0 0 (0)
40 182 10 — 0 (3) — — — 0 (0) — — 3 (0) — — — 0 (0)
45 223 5 16.1 1 (2) 15 243 5.6 0 (0) 6 0 3 (0) 10 1106 8.4 0 (0)
45 223 10 — 0 (3) — — — 0 (0) — — 1 (0) — — — 0 (0)
50 254 5 — 0 (3) — — — 0 (0) — — 2 (0) — — — 0 (0)
50 274 10 — 0 (3) — — — 0 (0) — — 0 (0) — — — 0 (0)

Table 6.3: Comparison with the CPLEX flow formulation approach on the JMP instances. All values
are averages over those instances that could be solved by both algorithms.

The comparison takes place on two different instance sets: We choose the JMP instances
because they are particularly hard; if we can compete on these instances, then we have
an indication that our algorithm can compete on many other instances as well. We also
compare on the PA class because it has realistic instances with adjustable features. In both
cases, we set the time limit to four hours and limit the algorithms to 3GB of memory.

JMP instances.

We show the comparison with the JMP instances in Table 6.3. All entries in the table are
averages over those instances that could be solved by both algorithms.

We can solve the JMP instances consistently up to size 35. However, the table shows that
with increasing instance size, we have a rapid increase of the running time and the size of
the Branch-and-Bound tree. This is particularly true on the instances with 10 scenarios, as
the instances with 5 scenarios seem to be slightly easier to solve. We can also see that our
separation algorithms are fast; only 10–15 percent of the overall running time are spent in
the separation routines. Nonetheless, the 3-partition inequalities and the {0, 1

2}-cuts can
reduce the gap between the optimum integer solution and the best linear programming
bound significantly already at the root node. This can be seen by comparing the lp-gap
column with the root gap column. The linear programming relaxation at the root node is
solved in less than a second in all cases. The heuristics also work very quickly, despite the
fact that the rounding heuristics are called at each Branch-and-Bound node.
With the CPLEX arc-flow formulation, it is possible to solve all instances with up to 45

nodes, while for larger instances, CPLEX starts to reach the time limit. Memory, however,
is not an issue for the CPLEX implementation. For instances with up to 30 nodes, CPLEX
needs a significantly larger Branch-and-Bound tree than we do, even though the instances
are solved in comparable time. This behavior changes as the instances grow larger than 30
nodes; then, CPLEX needs less computing time and generates less Branch-and-Bound nodes
than our Cut-Set approach. This is despite the fact that the cut-set formulation closes a

Chapter 6 – A Branch-and-Cut Algorithm 149

RND CPLEX
|V
|

p |B
|

lp
-o
pt

op
t

ro
ot
-lb

ro
ot
-u
b

#
no

de
s

ro
ot
-lb

ro
ot
-u
b

#
no

de
s

40 0.25 5 25275 32350 30228 38257 3519 27146 38417 1583
40 0.5 5 22619 25849 24780 30502 255 23806 26166 660
40 1 5 38035 44964 41225 51384 57033M 39210 53044 84197
40 0.25 10 33995 42848 38167 50280 61547M 35577 54045 462188
40 0.5 10 39436 49114 44239 59830 55607M 41721 63156 160860
40 1 10 50240 57958 53412 68162 53627M 52232 81339 201836
45 0.25 5 23000 27417 25892 30265 244 25109 30841 1106
45 0.5 5 49970 57780 53694 66873 46829M 51933 73722 73475
45 1 5 58736 65339 61530 76289 47971M 60609 79176 92424
45 0.25 10 36081 – 40639 50368 48291M 37639 55133 308260T
45 0.5 10 51550 – 55678 71383 44615M 54277 71861 151060T
45 1 10 71695 77205 74121 84471 47683M 72885 88967 86614

Table 6.4: More detailed picture of the comparison with the CPLEX flow formulation approach. The
instances in the table were (mostly) solved to optimality by CPLEX, but not by our
approach. The superscripts T and M denote the instances where an algorithm reached
the time or the memory limit, respectively.

significantly larger part of the root gap.
Table 6.4 shows a more detailed picture of those instances that could be solved by CPLEX,

but not by our Cut-Set formulation. We observe that the lower bounds provided by our
separation algorithms are stronger than the ones computed by CPLEX in all cases. Likewise,
with the exception of one instance, the upper bounds computed by our heuristics are better
than the ones derived by CPLEX. Still, the highly space efficient commercial Branch-and-
Bound implementation of the CPLEX MIP solver is able to fit (at least) ten times more
Branch-and-Bound nodes in the 3GB of available memory.
We conclude that on this instance set, the naïve CPLEX approach solves more and larger

instances than our problem specific algorithm. Part of this success is due to the commercial
implementation that is able to process Branch-and-Bound nodes in less time and space than
our research code, enabling it to solve a formulation with weaker bounds through brute
force enumeration. However, the fact that the CPLEX implementation sometimes needs fewer
Branch-and-Bound nodes than our algorithm could indicate a superior branching rule. It
could also be a consequence of CPLEX separating general MIP cuts in the Branch-and-Bound
nodes. This is opposed to our implementation that separates integer feasibility cuts (i.e.,
3-partition inequalities) only at the root node. Still, the CPLEX implementation could be
immediately improved by initializing it with our better bounds. In a sense, the better
performance of the CPLEX implementation is not unexpected: The JMP instances have
relatively few scenarios, making the arc-flow formulation a reasonable choice.

PA instances.

The PA instances allow for a more detailed analysis; in particular, we explore how the
balance of the comparison shifts as the scenario set grows larger.

Table 6.5 shows the results of the comparison. Here, we can solve instances with up to 45
nodes and 100 scenarios consistently using our Cut-Set based Branch-and-Cut algorithm
where, on average, our algorithm stops successfully after less than 2 minutes.

150 6.3 Computational Results

Cut-Set formulation (CS) Flow formulation (CPLEX)
|V
|

|E
|

|B
|

lp
-g
ap

in
%

#
so
lv
ed

(m
)

cp
ut
im

e

#
no

de
s

ro
ot
-g
ap

in
%

re
la
x-
ti
m
e
(t
)

se
p-
ti
m
e

he
ur
-t
im

e

#
so
lv
ed

(m
)

cp
ut
im

e

#
no

de
s

ro
ot
-g
ap

in
%

re
la
x-
ti
m
e
(t
)

20 76 5 8.1 180 (0) 0 21 2.5 0 (0) 0 0 180 (0) 0 43 4.6 0 (0)
20 76 10 8.6 180 (0) 0 51 3.2 0 (0) 0 0 180 (0) 0 101 5.5 0 (0)
20 76 30 7.8 180 (0) 0 45 3.0 0 (0) 0 0 180 (0) 3 102 5.0 0 (0)
20 76 50 7.3 180 (0) 0 42 2.7 0 (0) 0 0 180 (0) 7 88 4.8 0 (0)
20 76 75 6.8 180 (0) 0 31 2.4 0 (0) 0 0 180 (0) 15 80 4.4 0 (0)
20 76 100 6.3 180 (0) 0 25 2.0 0 (0) 0 0 180 (0) 19 63 4.0 1 (0)
25 98 5 9.3 180 (0) 1 163 3.7 0 (0) 0 0 180 (0) 0 258 6.0 0 (0)
25 98 10 9.7 180 (0) 5 489 4.4 0 (0) 1 0 180 (0) 7 651 6.8 0 (0)
25 98 30 8.4 180 (0) 6 366 3.9 0 (0) 2 0 180 (0) 57 684 6.2 0 (0)
25 98 50 8.0 180 (0) 7 323 3.7 0 (0) 3 0 180 (0) 140 681 6.0 1 (0)
25 98 75 7.7 180 (0) 9 312 3.6 0 (0) 4 0 180 (0) 306 693 5.8 2 (0)
25 98 100 7.4 180 (0) 10 319 3.4 0 (0) 6 0 180 (0) 497 689 5.6 4 (0)
30 121 5 6.3 180 (0) 3 213 2.5 0 (0) 0 0 180 (0) 1 212 4.0 0 (0)
30 121 10 6.6 180 (0) 9 529 2.8 0 (0) 2 0 180 (0) 15 469 4.5 0 (0)
30 121 30 5.9 180 (0) 8 322 2.6 0 (0) 3 0 180 (0) 122 469 4.1 0 (0)
30 121 50 5.4 180 (0) 12 365 2.4 0 (0) 5 0 180 (0) 399 541 3.9 2 (0)
30 121 75 5.2 180 (0) 10 233 2.4 0 (0) 5 0 178 (0) 544 397 3.8 5 (0)
30 121 100 4.9 180 (0) 9 178 2.3 0 (0) 5 0 172 (0) 792 368 3.6 8 (0)
35 143 5 7.7 180 (0) 8 399 3.2 0 (0) 1 0 180 (0) 2 326 4.9 0 (0)
35 143 10 8.2 180 (0) 36 1610 3.9 0 (0) 6 0 180 (0) 39 967 5.7 0 (0)
35 143 30 7.6 180 (0) 79 2609 3.8 0 (0) 21 2 180 (0) 582 1950 5.7 1 (0)
35 143 50 7.1 180 (0) 57 1539 3.6 0 (0) 21 2 180 (0) 1327 1447 5.3 4 (0)
35 143 75 6.6 180 (0) 45 998 3.3 0 (0) 21 2 174 (0) 2540 1216 5.0 10 (0)
35 143 100 5.6 180 (0) 30 488 2.8 0 (0) 16 2 158 (0) 2906 729 4.2 14 (0)
40 166 5 6.6 180 (0) 6 259 2.4 0 (0) 1 0 180 (0) 2 283 3.8 0 (0)
40 166 10 6.7 180 (0) 15 568 2.8 0 (0) 3 0 180 (0) 24 510 4.2 0 (0)
40 166 30 6.0 180 (0) 28 772 2.5 0 (0) 9 0 180 (0) 338 788 4.0 2 (0)
40 166 50 5.5 180 (0) 26 582 2.4 0 (0) 11 1 179 (0) 944 742 3.8 6 (0)
40 166 75 4.9 180 (0) 18 357 2.1 0 (0) 10 1 169 (0) 1496 550 3.4 13 (0)
40 166 100 4.4 180 (0) 11 187 1.8 0 (0) 7 0 132 (30) 1405 387 3.1 21 (0)
45 188 5 5.8 180 (0) 6 226 2.1 0 (0) 2 0 180 (0) 1 235 3.2 0 (0)
45 188 10 6.2 180 (0) 15 576 2.6 0 (0) 5 0 180 (0) 27 518 4.0 0 (0)
45 188 30 5.2 180 (0) 21 553 2.3 0 (0) 9 0 180 (0) 318 645 3.6 2 (0)
45 188 50 4.8 180 (0) 23 477 2.2 0 (0) 13 0 180 (0) 999 629 3.4 9 (0)
45 188 75 4.3 180 (0) 20 322 2.0 0 (0) 13 1 174 (0) 1985 572 3.2 21 (0)
45 188 100 4.2 180 (0) 21 374 1.9 0 (0) 13 1 89 (90) 1883 645 3.0 26 (30)
50 211 5 6.9 173 (7) 113 3042 2.9 0 (0) 14 0 180 (0) 17 909 4.0 0 (0)
50 211 10 6.2 152 (28) 196 4766 2.8 0 (0) 29 2 180 (0) 102 1372 4.0 0 (0)
50 211 30 5.2 146 (34) 192 3900 2.4 0 (0) 52 5 146 (0) 913 1743 3.5 5 (0)
50 211 50 4.7 143 (37) 167 3083 2.2 0 (0) 61 6 133 (0) 1664 1721 3.2 18 (0)
50 211 75 4.4 153 (27) 92 1672 2.0 0 (0) 46 5 117 (29) 2101 1064 3.0 38 (0)
50 211 100 4.7 152 (28) 58 1099 2.5 0 (0) 33 3 45 (120) 1356 888 3.1 23 (60)
60 256 5 6.3 169 (11) 165 3272 2.7 0 (0) 20 1 180 (0) 20 842 3.7 0 (0)
60 256 10 5.3 133 (47) 269 5525 2.4 0 (0) 43 4 177 (0) 125 1407 3.3 0 (0)
60 256 30 4.5 135 (45) 279 4841 2.2 0 (0) 79 9 142 (0) 1290 1884 3.0 12 (0)
60 256 50 3.9 134 (46) 154 2409 1.9 0 (0) 61 6 119 (0) 2523 1458 2.6 40 (0)
60 256 75 3.8 138 (42) 103 1623 1.8 0 (0) 52 5 68 (90) 2112 1188 2.6 56 (30)
60 256 100 4.0 141 (39) 24 477 1.5 0 (0) 17 1 30 (150) 382 509 2.3 169 (60)
70 301 5 4.5 135 (45) 181 2909 1.9 0 (0) 23 1 180 (0) 21 694 2.5 0 (0)
70 301 10 3.5 109 (71) 228 3921 1.5 0 (0) 40 3 160 (0) 92 919 2.2 1 (0)
70 301 30 3.0 107 (73) 212 2979 1.3 0 (0) 61 5 120 (0) 821 1042 1.9 18 (0)
70 301 50 2.6 110 (70) 219 2399 1.3 0 (0) 77 7 111 (0) 2278 867 1.8 80 (0)
70 301 75 3.3 110 (70) 279 3899 1.4 0 (0) 138 13 44 (120) 1431 1111 2.2 121 (60)
70 301 100 — 107 (72) — — — 0 (0) — — 0 (180) — — — 129 (120)
80 346 5 3.3 107 (73) 169 2260 1.2 0 (0) 21 1 180 (0) 10 405 1.8 0 (0)
80 346 10 2.6 91 (89) 148 2649 1.1 0 (0) 28 1 145 (0) 48 440 1.5 2 (0)
80 346 30 2.5 93 (87) 368 3951 1.3 0 (0) 95 7 100 (0) 1215 765 1.6 39 (0)
80 346 50 3.2 93 (85) 366 3652 1.5 0 (0) 131 12 66 (60) 2402 781 2.0 131 (0)
80 346 75 3.6 89 (87) 102 1527 1.3 0 (0) 64 4 30 (150) 512 634 2.0 304 (60)
80 346 100 — 88 (90) — — — 0 (0) — — 0 (180) — — — 29 (150)
90 391 5 2.7 88 (92) 330 4393 1.1 0 (0) 41 2 177 (0) 11 381 1.4 0 (0)
90 391 10 1.2 68 (111) 136 2142 0.6 0 (0) 30 1 121 (0) 31 223 0.7 3 (0)
90 391 30 1.0 67 (111) 261 1603 0.7 0 (0) 55 3 85 (0) 2070 640 0.8 66 (0)
90 391 50 1.6 71 (109) 634 7437 0.9 0 (0) 262 21 49 (90) 1544 1814 1.1 141 (30)
90 391 75 2.1 72 (108) 1285 11281 1.2 0 (0) 586 47 23 (150) 1767 1426 1.4 220 (120)
90 391 100 — 72 (107) — — — — — — 0 (180) — — — —

100 436 5 2.0 81 (99) 186 2042 0.7 0 (0) 25 0 170 (0) 6 230 1.0 0 (0)
100 436 10 1.3 71 (109) 264 3055 0.7 0 (0) 49 2 103 (0) 104 382 0.8 4 (0)
100 436 30 1.2 67 (108) 383 3043 0.7 1 (0) 100 7 63 (0) 1753 774 0.9 104 (0)
100 436 50 1.7 66 (108) 817 6624 1.0 1 (0) 311 23 38 (90) 2010 1425 1.2 221 (30)
100 436 75 — 62 (107) — — — 0 (0) — — 0 (180) — — — 20 (150)
100 436 100 — 59 (110) — — — — — — 0 (180) — — — —

Table 6.5: Comparison of the arc-flow formulation and the cut-set formulation on the instances of
the PA set.

Chapter 6 – A Branch-and-Cut Algorithm 151

Still, the number of solved instances decreases as the size of the instances increases above
45. Here, if the algorithm failed to solve an instance, it was due to the memory limit in
the large majority of cases. Generally, instances with 5 scenarios seem to be easier for our
algorithm than instances with more than 5 scenarios. Nonetheless, we are able to solve 59
out of the 180 largest instances (100 nodes, 100 scenarios).

As before, our separation algorithms already close a significant amount of the lp-gap at
the root node, although the effect is less pronounced than in the JMP instances. This could
be because the lp-gap is generally smaller here. The separation is still fast, but we observe
a clear dependence of the separation time on the number of scenarios. On the instances
with 100 scenarios, about one half of the cputime is spent in separation routines. This
is despite the fact that the size of the cut-set formulation itself does not depend on the
number of scenarios. Yet, the cut-set formulation at the root node can be solved in less
than 2 seconds for all instances sizes. The heuristics remain fast even for large instances,
regardless of the size of the scenario set.
On the other hand, we can (at least) solve instances of up to 100 nodes with the CPLEX

implementation if the scenario set is small. As the size of the scenario set increases, however,
the CPLEX implementation needs more and more time to solve the linear programming
relaxation at the root node. Starting from the 45 node instances, the CPLEX implementation
can no longer solve the root linear programming relaxation of a larger part of the instances
with large scenario sets. Given that the size of the arc-flow formulation depends on the
number of scenarios, this is to be expected. This effect has a clear impact on the overall
performance of the CPLEX implementation; starting at the instances with 30 nodes, the
CPLEX implementation has difficulties solving instances with 75 or 100 scenarios. This is
in contrast to the performance of the cut-set based algorithm. Finally, starting from 70
nodes, the CPLEX implementation is no longer able to solve any of the instances with 100
scenarios to optimality. Additionally, on the instances that can be solved to optimality, our
Cut-Set based algorithm needs significantly less cpu time than the CPLEX implementation if
the scenarios set size is at least 30. As before, the CPLEX implementation closes less lp gap
than our cut-set based approach.

Table 6.6 shows the same computational results of our cut-set formulation based algorithm
in a different grouping. It allows us to analyze the influence of the network’s density on the
performance of the algorithm. From left to right, the network topologies become denser as
the β parameter of the preferential attachment model increases (we have argued previously
that an instance with n nodes has roughly βn edges). As before, all instances with at most
45 nodes are solved without problems, but it is apparent now that both the running time
of our algorithm and the number of Branch-and-Bound nodes that it generates tend to
increase with the instance’s density. This is why the sparse instances generated with β = 2
can be consistently solved to optimality even if they have 80 nodes. At the same time, the
algorithm starts to fail on instances with 60 nodes if we suppose a medium density (i.e.,
β = 3, 4, 5). For the higher values of β, instances with 50 nodes and many scenarios cause
problems. Looking at the maximum size instances with 100 nodes and 100 scenarios, the
algorithm still solves almost two thirds of the instances if β = 2, yet, only few instances can
be solved to optimality for the highest density level β = 7. Still, the density of an instance
cannot be the only difficulty: The PA instances with 20 nodes and β = 7 have approximately
the same number of edges as the PA instances with 70 nodes and β = 2. However, the (thus

152 6.3 Computational Results

β = 2 β = 3 β = 4 β = 5 β = 6 β = 7
|V
|

|B
|

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

20 5 30 0 45 30 0 4 30 0 12 30 0 33 30 0 16 30 0 22
20 10 30 0 98 30 0 9 30 0 12 30 0 128 30 0 24 30 0 44
20 30 30 0 123 30 0 11 30 0 13 30 0 79 30 0 20 30 0 33
20 50 30 0 129 30 0 10 30 0 9 30 1 65 30 0 21 30 1 27
20 75 30 0 91 30 0 9 30 0 9 30 1 35 30 1 22 30 1 30
20 100 30 0 82 30 0 6 30 0 8 30 1 21 30 1 13 30 1 26
25 5 30 1 284 30 0 50 30 4 462 30 0 38 30 0 23 30 2 128
25 10 30 4 681 30 0 103 30 20 1615 30 1 59 30 0 38 30 7 445
25 30 30 6 740 30 1 91 30 19 1015 30 1 52 30 2 47 30 6 260
25 50 30 7 598 30 1 99 30 21 888 30 2 53 30 2 35 30 8 271
25 75 30 7 438 30 1 59 30 30 1041 30 3 79 30 2 38 30 9 222
25 100 30 9 493 30 2 85 30 33 1019 30 3 57 30 3 44 30 10 225
30 5 30 0 18 30 0 46 30 0 46 30 0 53 30 0 25 30 18 1097
30 10 30 0 18 30 1 135 30 0 68 30 1 106 30 1 36 30 53 2817
30 30 30 0 19 30 1 82 30 1 58 30 3 97 30 2 37 30 44 1649
30 50 30 0 18 30 2 115 30 2 51 30 4 97 30 3 35 30 62 1882
30 75 30 0 28 30 3 123 30 2 58 30 5 96 30 3 29 30 73 1699
30 100 30 0 27 30 3 132 30 3 54 30 7 137 30 4 32 30 76 1588
35 5 30 0 86 30 0 24 30 13 663 30 10 494 30 9 464 30 13 671
35 10 30 1 146 30 0 21 30 97 4458 30 14 743 30 38 1631 30 66 2670
35 30 30 2 179 30 1 42 30 331 10608 30 19 703 30 55 1834 30 69 2293
35 50 30 2 129 30 1 36 30 174 4793 30 13 312 30 61 1710 30 93 2260
35 75 30 3 119 30 2 45 30 148 3660 30 17 349 30 65 1430 30 92 1904
35 100 30 4 150 30 2 33 30 165 3522 30 17 272 30 63 1178 30 96 1773
40 5 30 0 68 30 2 180 30 2 127 30 20 813 30 5 206 30 5 166
40 10 30 1 175 30 4 259 30 6 332 30 59 1803 30 10 448 30 9 398
40 30 30 2 180 30 6 263 30 8 267 30 115 2853 30 16 503 30 18 573
40 50 30 2 101 30 7 210 30 8 187 30 148 2782 30 17 399 30 19 431
40 75 30 3 115 30 7 170 30 10 205 30 152 2874 30 22 434 30 27 550
40 100 30 3 99 30 8 140 30 11 198 30 169 2442 30 22 340 30 28 448
45 5 30 1 158 30 1 83 30 7 283 30 5 150 30 14 502 30 8 185
45 10 30 5 506 30 4 268 30 17 599 30 6 191 30 44 1379 30 17 522
45 30 30 4 213 30 5 220 30 27 670 30 9 176 30 54 1460 30 27 583
45 50 30 6 240 30 7 238 30 23 461 30 12 171 30 63 1255 30 29 499
45 75 30 7 222 30 8 175 30 29 457 30 14 164 30 76 1310 30 24 296
45 100 30 11 277 30 12 279 30 48 790 30 16 156 30 81 1228 30 32 350
50 5 30 7 658 30 163 5906 30 5 211 30 36 1046 29 208 4779 24 300 6385
50 10 30 50 3687 26 418 11498 30 6 216 30 111 3092 24 464 7177 12 233 3626
50 30 30 46 2233 25 588 12595 30 7 171 30 119 2714 17 626 6734 14 452 4444
50 50 30 32 1292 24 714 12435 30 10 204 30 200 3618 19 815 8719 10 24 97
50 75 30 32 994 29 528 9049 30 11 179 30 161 2576 23 1057 10113 11 213 1406
50 100 30 38 969 29 889 13116 30 14 204 30 179 2502 22 1302 10172 11 254 1713
60 5 30 5 274 30 104 3302 30 113 2730 30 116 2417 25 416 6593 24 310 5274
60 10 30 9 467 26 394 10179 27 375 8200 24 315 6060 13 377 4318 13 205 2566
60 30 30 12 494 27 428 8884 26 318 5281 29 463 7999 11 295 1736 12 292 2177
60 50 30 16 486 27 287 5302 27 736 10219 26 393 5327 11 402 2222 13 546 6058
60 75 30 16 382 28 293 4616 29 783 9798 28 467 5627 12 675 4027 11 137 1040
60 100 30 24 478 29 492 7019 29 769 8329 29 547 6151 10 34 64 14 866 5624
70 5 30 45 1813 26 284 5962 11 55 577 30 91 1550 19 364 4003 19 283 2873
70 10 30 138 4404 17 460 7760 10 18 63 29 286 4257 12 278 2398 11 100 961
70 30 29 91 2533 18 762 10006 10 79 196 30 155 2055 10 60 129 10 24 36
70 50 30 76 1684 18 894 9856 10 164 317 30 99 1012 12 423 2442 10 47 75
70 75 30 160 3102 19 1218 10847 10 244 415 30 194 1768 11 422 1517 10 90 128
70 100 30 130 2060 17 958 8340 10 416 653 30 187 1527 10 109 164 10 81 102
80 5 30 25 883 29 335 5429 10 4 8 12 250 2071 11 48 354 15 268 1949
80 10 30 128 4297 20 351 4897 10 51 107 11 160 1142 10 15 28 10 17 37
80 30 30 180 4848 21 1059 9704 10 369 586 11 157 551 10 97 205 11 186 664
80 50 30 91 1660 22 1081 9763 10 947 1091 10 212 429 10 112 168 11 307 1321
80 75 30 102 1528 19 915 6746 10 2274 2446 10 116 198 10 130 181 10 141 197
80 100 30 163 2236 18 1166 7204 9 2020 1873 11 435 1646 10 226 264 10 192 291
90 5 24 437 9192 21 585 5893 13 467 3236 10 5 5 10 9 9 10 11 13
90 10 18 436 7975 10 5 17 10 10 21 10 30 64 10 33 47 10 62 68
90 30 15 401 4986 12 321 1991 10 20 34 10 54 79 10 180 204 10 612 531
90 50 18 1292 15610 12 662 3079 11 392 1319 10 258 353 10 276 259 10 1101 803
90 75 17 1285 11282 14 926 4422 11 534 1423 10 220 267 10 433 333 10 1013 616
90 100 19 1646 14305 14 1091 4987 10 77 99 10 228 247 10 765 552 9 4693 2505

100 5 28 288 4151 12 329 2727 11 248 1473 10 9 6 10 14 11 10 9 11
100 10 21 673 10124 10 15 39 10 13 22 10 66 77 10 264 212 10 104 88
100 30 18 813 8393 10 39 86 10 28 36 10 228 185 9 3081 1526 10 1966 1286
100 50 19 1258 10399 10 56 113 10 63 77 10 1283 931 7 6148 2325 10 2806 1353
100 75 19 1378 10285 10 88 154 10 52 54 10 1342 863 6 5186 2111 7 5246 2186
100 100 18 1644 10274 10 139 206 10 99 106 10 2990 1761 5 4606 1154 6 3523 1306

Table 6.6: Computational results of the cut-set set based Branch-and-Cut algorithm. The results
are grouped according to the density of the instances. An instance with n nodes has
approximately βn edges.

Chapter 6 – A Branch-and-Cut Algorithm 153

sparser) instances with 70 nodes are clearly more difficult for our algorithm. Additionally,
there are some unexplained outliers in the β = 4 case (instances with 25 and 35 nodes).
From Tables 6.5 and 6.6 we conclude that the PA instances are generally easier for our

algorithm than the JMP instances. Comparing the average number of edges, they are also
slightly sparser, i.e., for a fixed number of nodes, the PA instances have less edges. Indeed,
Table 6.6 confirms that the running time of our algorithm increases with the density of an
instance if the number of nodes is fixed. The running time also increases with the size of
the instances, regardless of its density.
The running time of both the arc-flow and the cut-set based algorithm depends on the

number of scenarios; however, the dependency of the cut-set based algorithm is much less
pronounced. This makes the cut-set based algorithm a better choice for instances with more
than 10 scenarios: Here it clearly outperforms the “hands-on” CPLEX implementation. We
see an improvement not only in terms of bounds and CPU time, but also in the number of
instances that can be solved.
Even though the worst-case running time of the cut-set separation algorithm has a

dependency on the size of the scenario set, it is easily possible to solve the linear programming
relaxation of the cut-set formulation even on large instances with many scenarios. This is
not true for the arc-flow formulation that seems to grow too large to be solved efficiently on
medium sized instances with a medium number of scenarios. This is a clear advantage of
the cut-set formulation.

Conclusions

Our experiments show that the cut-set based algorithm improves upon a previous algorithm
by Buchheim, Liers and Sanità [BLS11]: it is mostly faster and solves more instances.
If the scenario set has up to 10 scenarios, a simple arc-flow based Branch-and-Bound

implementation in a commercial solver is faster than our algorithm. However, it is not
clear how much of the speedup is due to the streamlined commercial code. Still, even on
very hard instances, we can handle networks of up to 35 nodes. If the scenario set has 15
or more scenarios, the cut-set based algorithm is preferable. It is able to solve the larger
part of the PA instances with up to 70 nodes and up to 100 scenarios. On these instance
sizes, the commercial solver is no longer able to consistently solve the linear programming
relaxation at the root node. Also, the solutions are computed in reasonable time. The
difficulty of the instances increases with their density and, in general, with the number of
edges in the instance, but also with the size of the scenario set. This is true for both the
cut-set based and the arc-flow based algorithm. In all cases, memory is more limiting for our
algorithm than time. Our algorithm generally produces much better root-bounds than the
arc-flow formulation, however, it does not always make use of this advantage. Here, a better
branching rule could help. Nonetheless, our problem specific separation routines are fast
and effective, with the EnumZH+ACF separation being method of choice for the 3-partition
separation.

154 6.3 Computational Results

t
|V | a 0.25 0.5 0.75 1.0
10 2 8 7 7 6
10 3 9 8 9 6
10 4 7 9 6 5
10 5 7 6 9 9
10 6 6 8 8 5
10 7 7 9 7 7
15 2 8 5 7 4
15 3 6 9 8 8
15 4 7 9 7 7
15 5 6 8 10 8
15 6 8 8 6 8
15 7 7 5 6 8
20 2 9 10 7 8
20 3 6 7 7 6
20 4 8 9 3 7
20 5 7 9 7 8
20 6 4 7 9 9
20 7 8 9 6 7
25 2 7 8 5 5
25 3 8 7 6 6
25 4 6 6 8 1
25 5 7 9 7 5
25 6 8 8 8 6
25 7 5 7 6 6

t
|V | a 0.25 0.5 0.75 1
10 2 1 11 39 153
10 3 1 3 18 117
10 4 1 8 34 89
10 5 1 8 21 144
10 6 1 8 25 92
10 7 1 8 20 207
15 2 2 7 263 2625
15 3 2 36 205 1433
15 4 2 12 95 2051
15 5 2 28 235 1217
15 6 2 15 358 1489
15 7 3 19 71 1443
20 2 7 207 7090 29302
20 3 6 126 594 9668
20 4 6 86 2848 12644
20 5 9 82 4110 72987
20 6 3 118 1323 15300
20 7 6 95 1134 15654
25 2 6 297 8556 49176
25 3 17 307 1355 109225
25 4 10 442 19433 115704
25 5 10 210 4542 84910
25 6 8 808 5126 52224
25 7 9 321 9294 106710

Table 6.7: Using PORTA to convert the linear description of the instances from the PA Hose class
in the geometric demand distribution. The grouping in the table is by the percentage
t ∈ {0.25, 0.5, 0.75, 1.0} of terminal nodes. On the left: The number of instances that
could be converted within 1800 seconds. On the right: Resulting average number of
vertices of the demand polytope.

6.3.5 Results on the Hose Instance Sets

The arc-flow formulation only works on a Hose instance if we first find all the vertices
of its uncertainty set. We evaluate this approach by computing the vertices of the Hose
uncertainty sets on the PA-geometric instances. To that aim, we use the PORTA software
package [CL08] with a time limit of 1800s. The results are depicted in Table 6.7.

We see that only in very few cases, we are able to convert all ten instances of a given size
and density, even if the instance size is tiny. If the conversion is successful the resulting
finite description can be large; on instances with 10 nodes we obtain up to 200 scenarios.
On instances with 25 nodes, the number of scenarios already ranges in the order of 105

to 106 on average. Looking at the results from the previous section, we cannot expect to
solve these sRND-F instances with the CPLEX arc-flow based algorithm. Instances with few
terminals would be solvable with both sRND-F algorithms, but even those instances cannot
be converted reliably.
We conclude that it is no longer possible to compare with the CPLEX flow formulation.

There is also no algorithm that we could use as a reference point for a comparison. However,
we can still analyze the practical performance of our sRND-H Branch-and-Cut algorithm and
try to find answers to the following questions.

• Can we solve instances of non-trivial size with our sRND-H algorithm? In particular,
is the MIP separation practical?

• Does the distribution of the Hose intervals influence the running time of our algorithm?

• Where are the limits of our algorithm?

Chapter 6 – A Branch-and-Cut Algorithm 155

β = 2 β = 3 β = 4 β = 5 β = 6 β = 7
|V
|

|E
|

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

ge
om

et
ri

c

10 42 40 0 21 40 0 21 40 0 23 40 0 25 40 0 26 40 0 29
15 77 40 0 17 40 0 40 40 0 41 40 0 56 40 0 54 40 0 52
20 112 40 0 56 40 0 69 40 0 83 40 0 77 40 0 75 40 0 82
25 147 40 0 86 40 0 76 40 4 138 40 0 106 40 0 115 40 0 121
30 182 40 0 97 40 0 116 40 0 114 40 0 148 40 0 161 40 21 216
35 217 40 0 118 40 0 140 40 3 193 40 0 175 40 3 261 40 5 274
40 252 40 0 128 40 0 225 40 0 213 40 2 293 40 3 270 40 2 265
45 287 40 0 185 40 0 161 40 1 299 40 9 277 40 10 369 40 0 253
50 322 40 0 208 40 5 417 40 1 281 40 33 583 40 344 573 40 224 649
60 392 40 0 278 40 6 429 40 25 757 40 57 774 39 579 898 39 680 973
70 462 40 3 361 40 13 920 36 731 2121 40 4 821 37 357 1830 40 46 1400
80 532 40 1 499 40 11 1035 31 436 2908 40 207 2083 38 547 2418 39 322 2366
90 602 40 7 824 40 98 1917 40 23 2068 35 785 3212 37 1041 3938 34 677 4799

100 672 40 56 1410 39 400 3524 40 525 3442 31 968 6508 19 645 7996 19 965 7299

un
if

or
m

10 42 40 0 23 40 0 24 40 0 23 40 0 29 40 0 29 40 0 28
15 77 40 0 21 40 0 41 40 0 44 40 0 54 40 0 51 40 0 56
20 112 40 0 59 40 0 71 40 0 85 40 0 90 40 0 92 40 0 92
25 147 40 0 92 40 0 92 40 25 166 40 0 117 40 0 116 40 5 130
30 182 40 0 98 40 0 125 40 0 125 40 0 154 40 1 174 40 84 259
35 217 40 0 131 40 0 142 40 1 215 40 1 197 40 5 278 40 8 292
40 252 40 0 144 40 0 220 40 1 242 40 6 322 40 4 328 40 3 264
45 287 40 1 200 40 0 190 40 3 336 40 1 313 40 10 384 40 0 290
50 322 40 1 240 40 53 445 40 0 311 40 45 639 40 139 718 40 94 720
60 392 40 1 297 40 11 492 40 255 862 40 125 962 37 638 988 38 162 1250
70 462 40 5 436 40 42 1018 28 1808 2539 40 5 818 38 698 2030 40 708 1735
80 532 40 7 547 40 16 1172 30 1142 3588 37 364 2302 31 459 2628 37 852 2544
90 602 40 119 977 39 381 2066 40 20 2045 37 1090 3705 34 1081 3823 33 944 5423

100 672 40 213 1782 35 806 4401 40 163 3770 33 1439 7469 12 1232 7347 18 1730 7706

ze
ro

-o
ne

10 42 40 0 18 40 0 18 40 0 19 40 0 24 40 0 27 40 0 20
15 77 40 0 21 40 0 35 40 0 33 40 0 52 40 0 39 40 0 35
20 112 40 0 67 40 0 62 40 0 93 40 0 80 40 0 82 40 0 90
25 147 40 0 83 40 0 76 40 1 211 40 0 111 40 0 117 40 0 137
30 182 40 0 87 40 0 106 40 0 118 40 0 141 40 0 181 40 4 329
35 217 40 0 115 40 0 118 40 0 163 40 0 119 40 0 245 40 0 247
40 252 40 0 149 40 0 231 40 0 213 40 0 321 40 0 376 40 1 285
45 287 40 0 154 40 0 114 40 0 230 40 0 213 40 2 332 40 0 169
50 322 40 0 184 40 1 372 40 0 211 40 1 506 40 6 600 40 4 565
60 392 40 0 217 40 0 346 40 2 667 40 14 1063 40 37 1169 40 3 873
70 462 40 0 315 40 2 681 40 37 2718 40 1 540 40 12 2010 40 7 1245
80 532 40 0 390 40 3 842 40 19 2896 40 7 1682 40 317 3399 40 13 2352
90 602 40 1 506 40 4 1062 40 7 1365 40 21 2756 40 19 2546 40 30 3733

100 672 40 6 1131 40 16 2380 40 16 2391 40 58 6271 31 924 14748 39 100 7632

Table 6.8: Computational results on the Hose PA instances.

PA instances

In our first experiment, we run the cut-set based Branch-and-Cut algorithm for the sRND-H
problem on the PA instances and report the aggregated results in Table 6.8. The algorithm
was limited to four hours of time and 3GB of memory.

The table shows that for all three interval distributions (geometric, uniform and
zero-one), the running time of our algorithm increases with the instance size and density.
The higher the density and the higher the size, the fewer instances can be solved, the more
running time is needed to solve the instances and the more Branch-and-Cut nodes are gen-
erated. Still, we are able to solve almost all PA-geometric and PA-uniform instances with
up to 100 nodes if β ∈ {2, 3, 4}. Equally, we can solve all instances with at most 50 nodes,
regardless of their density. The PA-geometric and PA-uniform instances with more than
80 nodes and a density parameter of β = 6, 7 cannot be solved reliably. In comparison, the
PA-uniform instances require slightly more running time than the PA-geometric instances
on average, and not as many of the instances can be solved. This is true independently of
size and density. On the other hand, we were able to solve all but one of the PA-zero-one
instances in less than two minutes. Still, also on these instances, more effort is needed as

156 6.3 Computational Results

|V
|

|E
|

lp
-g
ap

(i
n
%
)

#
so
lv
ed

(m
)

cp
ut
im

e

#
no

de
s

ro
ot
-g
ap

(i
n
%
)

re
la
x-
ti
m
e
(m

)

se
p-
ti
m
e

ip
-s
ep
-t
im

e

ip
se
p
ca
lls

(i
n
%
)

he
ur
-t
im

e

ge
om

et
ri

c

10 39 0.32 40 (0) 0 25 0.00 0 (0) 0 0 14.07 0
15 69 0.24 40 (0) 0 53 0.03 0 (0) 0 0 10.45 0
20 99 0.17 40 (0) 0 74 0.03 0 (0) 0 0 10.42 0
25 129 0.22 40 (0) 0 114 0.03 0 (0) 0 0 9.33 0
30 159 0.08 40 (0) 0 160 0.02 0 (0) 0 0 10.27 0
35 189 0.16 40 (0) 3 260 0.08 0 (0) 2 2 12.60 0
40 219 0.10 40 (0) 3 269 0.04 0 (0) 3 2 9.92 0
45 249 0.19 40 (0) 10 368 0.09 0 (0) 8 6 13.10 0
50 279 0.15 40 (0) 344 572 0.10 2 (0) 300 284 16.88 0
60 339 0.13 39 (0) 579 897 0.11 6 (0) 517 486 16.26 0
70 399 0.12 37 (0) 357 1829 0.09 15 (0) 330 303 8.31 0
80 459 0.08 38 (0) 547 2417 0.06 26 (0) 481 440 11.93 0
90 519 0.13 37 (0) 1041 3937 0.10 43 (0) 897 751 8.74 0

100 579 0.07 19 (0) 645 7995 0.06 219 (0) 519 373 3.93 0

un
if

or
m

10 39 0.28 40 (0) 0 28 0.01 0 (0) 0 0 14.68 0
15 69 0.31 40 (0) 0 50 0.05 0 (0) 0 0 13.50 0
20 99 0.32 40 (0) 0 91 0.06 0 (0) 0 0 11.70 0
25 129 0.16 40 (0) 0 115 0.05 0 (0) 0 0 11.59 0
30 159 0.37 40 (0) 1 173 0.08 0 (0) 0 0 13.47 0
35 189 0.20 40 (0) 5 277 0.11 0 (0) 4 3 14.83 0
40 219 0.19 40 (0) 4 327 0.08 0 (0) 3 2 13.90 0
45 249 0.11 40 (0) 10 383 0.07 1 (0) 8 7 13.06 0
50 279 0.16 40 (0) 139 717 0.11 4 (0) 127 120 18.38 0
60 339 0.13 37 (0) 638 987 0.10 9 (0) 570 543 18.25 0
70 399 0.11 38 (0) 698 2029 0.09 17 (0) 631 572 12.69 0
80 459 0.06 31 (0) 459 2627 0.05 38 (0) 413 382 11.66 0
90 519 0.08 34 (0) 1081 3822 0.07 50 (0) 962 849 10.00 0

100 579 0.12 12 (0) 1232 7346 0.10 391 (0) 1065 877 4.57 0

ze
ro

-o
ne

10 39 1.53 40 (0) 0 26 0.00 0 (0) 0 0 15.81 0
15 69 2.03 40 (0) 0 38 0.31 0 (0) 0 0 17.27 0
20 99 1.11 40 (0) 0 81 0.10 0 (0) 0 0 12.87 0
25 129 0.22 40 (0) 0 116 0.09 0 (0) 0 0 10.31 0
30 159 0.66 40 (0) 0 180 0.07 0 (0) 0 0 10.64 0
35 189 0.19 40 (0) 0 244 0.08 0 (0) 0 0 8.17 0
40 219 0.05 40 (0) 0 375 0.05 0 (0) 0 0 7.13 0
45 249 0.51 40 (0) 2 331 0.16 0 (0) 2 0 10.17 0
50 279 0.22 40 (0) 6 599 0.10 2 (0) 5 3 9.70 0
60 339 0.49 40 (0) 37 1168 0.24 10 (0) 33 25 13.97 0
70 399 0.07 40 (0) 12 2009 0.00 11 (0) 9 3 3.52 0
80 459 0.32 40 (0) 317 3398 0.32 47 (0) 293 269 14.46 0
90 519 0.00 40 (0) 19 2545 0.00 17 (0) 13 2 2.00 0

100 579 0.26 31 (0) 924 14747 0.17 604 (0) 832 713 6.98 0

Table 6.9: Detailed computational results on the Hose PA instances with β = 6.

instance size and density increase.
In conclusion, we are able to solve instances of non-trivial size in all three interval

distribution models. The running time of our algorithm clearly depends on both instance
size and density. The zero-one distribution of the intervals seems to be easier for our
algorithm than the other two.
In Table 6.8 our algorithm performs worst for β = 6. We consider the computational

results for this case in more detail in Table 6.9. The more detailed table reveals that on
the depicted PA Hose instances, memory is no longer the limiting factor (as it was in the
sRND-F case): If the algorithm failed to solve an instance, then it did so because of the time
limit of four hours. Also, the time needed for the separation increases with the instance size
and makes up a large part of the overall running time of the algorithm. This is in contrast
to the sRND-F case as well. The ip-sep-time column shows how much time was spent
by solving the separation MIP for Hose cut-set inequalities. The ip-sep-time increases
with the instance size and we see that in almost all cases, the Hose MIP separation makes
the largest contribution to both the separation time and the overall running time. In the

Chapter 6 – A Branch-and-Cut Algorithm 157

geometric uniform zero-one

|V
|

|E
|

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

#
so
lv
ed

cp
ut
im

e

#
no

de
s

pdh 11 34 39 5 30 40 0 33 40 1 45
newyork 16 49 40 19 58 38 61 59 40 0 98

ta1 24 55 40 154 74 39 331 73 40 0 70
france 25 45 31 13 63 30 38 64 40 0 54
norway 27 51 38 189 109 39 34 114 40 0 84

cost266 37 57 38 15 183 37 423 217 40 7 203
germany50 50 88 31 411 498 30 239 662 40 172 575

ta2 65 108 39 558 525 39 38 510 40 0 413

Table 6.10: Computational results on the Hose SNDLib instances.

ipsep-calls column, we see the proportion of the number of Hose MIP cut-set separations
to the total number of cut-set separations (i.e., if k calls to the cut-set separation were
made and i out of these calls required to solve a MIP, then the column depicts the value
(i/k) ·100). The proportion of MIP calls decreases with increasing instance size; on instances
with up to 70 nodes, roughly every 10th to 7th call requires the algorithm to solve a MIP.
The table also reveals that the algorithm closes less of the lp-gap the larger the instances
grow. On all instances, the running time consumed by the heuristics is negligible. All these
observations are independent of the interval distribution.
In total, the MIP cut-set separation is clearly less efficient than the polynomial cut-set

separation from the previous section. This had to be expected. However, even though
the MIP separation solves an NP-hard problem and is called at least once per Branch-
and-Bound node, it still allows us to solve a large part of the instances. Here, clearly the
combination with the polynomial time separation algorithm pays off. In light of these
observations, the running times of the algorithm are very reasonable. The increased running
time of the separation algorithm also seems to be the reason why memory is no longer
a problem: with more time spent in the separation, the Branch-and-Bound nodes are
processed more slowly and thus do not fill the memory as quickly. We conjecture that the
ip-sep-calls decrease on the larger instances because only those instances that require
few calls can be solved.

SNDLib instances.

We close this section with a brief experiment which shows that our algorithm is useful on
real-world instances as well. To this aim, we try to solve the SNDLib instances within four
hours time and 3GB of memory. Table 6.10 shows the results of the experiments. We
see from the table that apart from germany50 and france, most of the SNDLib instances
can be solved reliably in less than 10 minutes and with less than 700 Branch-and-Bound
nodes. Even on germany50 and france, we are able to solve at least 75% of the instances.
These two instances are problematic in both the uniform and the geometric case, while
the zero-one case seems to be generally easier.
We conclude that also on the real world instances of the SNDLib, our algorithm is able

to quickly and reliably solve large parts of the instance set. As before, the zero-one
case seems to be easier than the other cases, although it does not necessarily use fewer
Branch-and-Bound nodes.

158 6.3 Computational Results

Conclusion

The experiments confirm that the Branch-and-Cut algorithm can solve realistic instances of
the sRND-H problem reliably and in reasonable time. In particular, the MIP cut-set separation
is practical, even though a significant number of calls to the separation routine are made.
As before, the difficulty of an instance depends on its size and on its density. Additionally,
we can observe a dependency on the distribution of the Hose bounds: Independently of
the instance class, the uniform distribution of the bounds seems to be hardest for our
algorithm. Instances with a geometric Hose bound distribution are slightly easier. The
zero-one Hose bound distribution seems to be easy to solve. Our 3-partition inequalities
continue to be effective.

Conclusion

In this thesis, we have considered the task to design single-commodity networks that work in
different traffic scenarios. The scenario set for the problem is a polytope that can be given
in an explicit vertex based description or in an implicit description by linear inequalities.
Our new cut-set IP formulation is based only on capacity variables and works in both

cases. This is possible because the formulation does not need flow variables for every
vertex of the scenario set. The new formulation allows us to find 3-partition inequalities
as new problem specific cutting planes and to develop a Branch-and-Cut algorithm. Our
experiments show that the algorithm is practical, that it improves on other approaches and
that the new cutting planes are essential for its success. This is despite the fact that for
scenario sets in a linear description, an NP-hard separation problem must be solved.

This result is interesting in the context of multi-commodity network design. Here, capacity
formulations exist as well and in principle, they allow us to cope with scenario sets that
are given in an implicit linear description. However, these formulations require solving
the separation problem for metric inequalities. With the current state-of-the-art, this is
only possible by solving a non-convex quadratic problem [Mat13]. So far, this quadratic
problem can only be avoided by switching to the static routing model that produces more
conservative solutions. Our algorithm provides another alternative: If the application allows
for it, we can switch to a single-commodity flow model where the separation problem can
be solved by a simple MIP. However, it is not likely that this simple MIP separation can
be translated to the multi-commodity case: The key result that allowed us to develop this
separation procedure is a simplified description of the right-hand side of a cut-set inequality.
This simplified right-hand side turns out to be a closed-form formula for a static maximum
flow problem on a path. In the multi-commodity case, this flow problem must be solved on
a bipartite graph, making it much more difficult to find a closed-form solution.

Even though we were able to show that both cut-set inequalities and 3-partition inequalities
induce facets of the sRND polyhedron, we have not yet fully understood its structure. In
particular, it is an open question if the 3-partition inequalities are exactly the rank-1
{0, 1

2}-cuts of the cut-set formulation. It is also not clear if higher rank {0, 1
2}-cuts have a

similar combinatorial interpretation: We conjecture that {0, 1
2}-cuts of rank k correspond

to (k + 2)-partition inequalities.
In the multi-commodity case, all valid inequalities for the capacity formulation are tight

metric inequalities. The analogous inequality for the single-commodity robust network
design problem on an instance (V,E,B) is given by∑

{i,j}∈E
µijuij ≥ max

b∈B
MCF(V,E, b, µ)

where MCF(V,E, b, µ) is the value of an uncapacitated minimum cost b-flow with respect
to costs defined by a metric µ. This inequality is valid, but it is not clear if it is also
facet-inducing. We do not know a separation algorithm for this inequality class.

160 6.3 Computational Results

The Branch-and-Cut algorithm also invites future research questions. First, we conjecture
that symmetry breaking branching rules have a great potential for a speedup of the algorithm.
We observe that the difficult hypercube instances from Chapter 3 have a large number
of symmetric solutions that are induced by disjoint paths between terminals. Exploiting
symmetries should lead to a better branching rule. Second, the performance of the cut-set
separation in the linear description case could be enhanced by further heuristic separation
procedures. This should be done such that, ideally, the MIP separation would be called
only at the end of each Branch-and-Bound node. Third, in this case, the MIP models a
special Max-Cut problem. Using more sophisticated solution algorithms from the Max-Cut
literature would probably speed up the separation.

Bibliography

[AABP07] A. Altın, E. Amaldi, P. Belotti and M. Ç. Pınar, Provisioning virtual private networks
under traffic uncertainty, Networks, vol. 49, no. 1, pp. 100–115, 2007.

[ACDJ+12] E. Álvarez-Miranda, V. Cacchiani, T. Dorneth, M. Jünger, F. Liers, A. Lodi, T.
Parriani and D. R. Schmidt, Models and Algorithms for Robust Network Design with
Several Traffic Scenarios, in ISCO 2012, Revised Selected Papers, A. Ridha Mahjoub,
V. Markakis, I. Milis and V. T. Paschos, Eds., ser. Lecture Notes in Computer Science,
vol. 7422, Springer, 2012, pp. 261–272.

[ACF07] G. Andreello, A. Caprara and M. Fischetti, Embedding {0, 1
2}-Cuts in a Branch-and-

Cut Framework: A Computational Study, INFORMS Journal on Computing, vol. 19,
pp. 229–238, 2007.

[Aga06] Y. K. Agarwal, k-Partition-based facets of the network design problem, Networks, vol.
47, no. 3, pp. 123–139, 2006.

[AMO93] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, 1993.

[AMS04] P. Avella, S. Mattia and A. Sassano, Metric Inequalities and the Network Loading
Problem, in Integer Programming and Combinatorial Optimization, D. Bienstock and
G. Nemhauser, Eds., ser. Lecture Notes in Computer Science, vol. 3064, Springer,
2004, pp. 401–421.

[Ata02] A. Atamtürk, On Capacitated Network Design Cut-Set Polyhedra, Mathematical Pro-
gramming Series B, vol. 92, no. 3, pp. 425–437, 2002.

[AYP11] A. Altın, H. Yaman and M. Ç. Pınar, The Robust Network Loading Problem Under
Hose Demand Uncertainty: Formulation, Polyhedral Analysis, and Computations,
INFORMS Journal on Computing, vol. 23, no. 1, pp. 75–89, 2011.

[BA99] A.-L. Barabási and R. Albert, Emergence of Scaling in Random Networks, Science,
vol. 286, no. 5439, pp. 509–512, 1999.

[BAK05] W. Ben-Ameur and H. Kerivin, Routing of Uncertain Traffic Demands, Optimization
and Engineering, vol. 6, pp. 283–313, 3 2005.

[Bar96] F. Barahona, Network Design Using Cut Inequalities, SIAM Journal on Optimization,
vol. 6, no. 3, pp. 823–837, 1996.

[BCGT98] D. Bienstock, S. Chopra, O. Günlük and C.-Y. Tsai, Minimum cost capacity installation
for multicommodity network flows, Mathematical Programming, vol. 81, no. 2, pp. 177–
199, 1998.

[Ben62] J. F. Benders, Partitioning procedures for solving mixed-variables programming prob-
lems, Numerische Mathematik, vol. 4, no. 1, pp. 238–252, 1962.

[BG96] D. Bienstock and O. Günlük, Capacitated Network Design – Polyhedral Structure and
Computation, INFORMS Journal on Computing, vol. 8, no. 3, pp. 243–259, 1996.

[BLO08] C. Buchheim, F. Liers and M. Oswald, Local cuts revisited, Operations Research Letters,
vol. 36, no. 4, pp. 430–433, 2008.

162 Bibliography

[BLS11] C. Buchheim, F. Liers and L. Sanità, An Exact Algorithm for Robust Network Design,
in Proceedings of the INOC, J. Pahl, T. Reiners and S. Voß, Eds., ser. INOC’11,
Springer, 2011, pp. 7–17.

[BS03] D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Mathemat-
ical Programming Series B, vol. 98, pp. 49–71, 2003.

[BS04] ——, The Price of Robustness, Operations Research, vol. 52, no. 1, pp. 35–53, 2004.
[BTEN09] A. Ben-Tal, L. El Ghaoui and A. S. Nemirovski, Robust Optimization, ser. Princeton

Series in Applied Mathematics. Princeton University Press, Oct. 2009.
[BTN99] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Opera-

tions Research Letters, vol. 25, no. 1, pp. 1–13, 1999.
[CCG09] A. M. Costa, J.-F. Cordeau and B. Gendron, Benders, metric and cutset inequalities

for multicommodity capacitated network design, Computational Optimization and
Applications, vol. 42, no. 3, pp. 371–392, 2009.

[CF96] A. Caprara and M. Fischetti, {0, 1
2}-Chvátal-Gomory cuts, Mathematical Programming,

vol. 74, no. 3, pp. 221–235, 1996.
[CG95] B. V. Cherkassky and A. V. Goldberg, On implementing push-relabel method for the

maximum flow problem, in Proceedings of IPCO, E. Balas and J. Clausen, Eds., ser.
Lecture Notes in Computer Science, vol. 920, Springer, 1995, pp. 157–171.

[Chi60] R. T. Chien, Synthesis of a Communication Net, IBM Journal of Research and
Development, vol. 4, no. 3, pp. 311–320, 1960.

[Chv73] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete
Mathematics, vol. 4, no. 4, pp. 305–337, 1973.

[CJL+14] V. Cacchiani, M. Jünger, F. Liers, A. Lodi and D. R. Schmidt, Single-Commodity
Robust Network Design with Finite and Hose Demand Sets, Universität zu Köln,
Technical Report, 2014, Also appeared as technical report OR-14-11 at the University
of Bologna, Italy.

[CL08] T. Christof and A. Löbel, PORTA — POlyhedron Representation Transformation
Algorithm, http://typo.zib.de/opt-long_projects/Software/Porta/, 2008.

[CR94] S. Chopra and M. R. Rao, The Steiner tree problem I: Formulations, compositions
and extension of facets, Mathematical Programming, vol. 64, pp. 209–229, 1 1994.

[CSOS07] C. Chekuri, B. F. Shepherd, G. Oriolo and M. Scutellà, Hardness of robust network
design, Networks, vol. 50, no. 1, pp. 50–54, 2007.

[Dan51] G. B. Dantzig, Maximization of a linear function of variables subject to linear inequal-
ities, in Activity Analysis of Production and Allocation, T. C. Koopmans, Ed., Wiley,
1951, pp. 339–347.

[DGG+99] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan and J. E. van
der Merwe, A flexible model for resource management in virtual private networks, in
Proceedings of the conference on Applications, technologies, architectures, and protocols
for computer communication, ser. SIGCOMM ’99, ACM, 1999, pp. 95–108.

[Dij59] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[Dor12] T. Dorneth, Ein Branch-and-Cut-Verfahren für robustes Netzwerkdesign, Diplomarbeit,
Universität zu Köln, Nov. 2012.

http://typo.zib.de/opt-long_projects/Software/Porta/

Bibliography 163

[EGJR01] M. Elf, C. Gutwenger, M. Jünger and G. Rinaldi, Branch-and-Cut Algorithms for
Combinatorial Optimization and Their Implementation in ABACUS, in Computational
Combinatorial Optimization, ser. Lecture Notes in Computer Science, M. Jünger and
D. Naddef, Eds., vol. 2241, Springer, 2001, pp. 157–222.

[EIS76] S. Even, A. Itai and A. Shamir, On the Complexity of Timetable and Multicommodity
Flow Problems, SIAM Journal on Computing, vol. 5, no. 4, pp. 691–703, 1976.

[Eis99] F. Eisenbrand, On the membership problem for the elementary closure of a polyhedron,
Combinatorica, vol. 19, no. 2, pp. 297–300, 1999.

[ER04] T. Erlebach and M. Rüegg, Optimal Bandwidth Reservation in Hose-Model VPNs with
Multi-Path Routing, Proceedings of the INFOCOM, vol. 4, pp. 2275–2282, 2004.

[FF54] L. R. Ford Jr. and D. R. Fulkerson, Maximal flow through a network, The RAND Cor-
poration, Santa Monica, California, Research Memorandum RM-1400, 1954, published
in [FF56].

[FF56] ——, Maximal Flow through a Network, Canadian J. of Mathematics, vol. 8, pp. 399–
404, 1956.

[FF58] ——, A Suggested Computation for Maximal Multi-Commodity Network Flows, Man-
agement Science, vol. 5, no. 1, pp. 97–101, 1958.

[FL07] M. Fischetti and A. Lodi, Optimizing over the first chvátal closure, Mathematical
Programming B, vol. 110, no. 1, pp. 3–20, 2007.

[FST97] J. A. Fingerhut, S. Suri and J. S. Turner, Designing Least-Cost Nonblocking Broadband
Networks, Journal of Algorithms, vol. 24, no. 2, pp. 287–309, 1997.

[Gal57] D. Gale, A theorem on flows in networks. Pacific Journal of Mathematics, vol. 7, no.
2, pp. 1073–1082, 1957.

[GH61] R. E. Gomory and T. C. Hu, Multi-terminal Network Flow, SIAM Journal on Applied
Mathematics, vol. 9, pp. 551–570, 1961.

[GH62] R. Gomory and T. Hu, An Application of Generalized Linear Programming to Network
Flows, Journal of the Society for Industrial and Applied Mathematics, vol. 10, no. 2,
pp. 260–283, 1962.

[GH64] R. E. Gomory and T. C. Hu, Synthesis of a Communication Network, Journal of the
Society for Industrial and Applied Mathematics, vol. 12, no. 2, pp. 348–369, 1964.

[GJ00] E. Gawrilow and M. Joswig, polymake: a Framework for Analyzing Convex Polytopes,
in Polytopes – Combinatorics and Computation, G. Kalai and G. M. Ziegler, Eds.,
Birkhäuser, 2000, pp. 43–74.

[GKK+01] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi and B. Yener, Provisioning a virtual
private network: a network design problem for multicommodity flow, in Proceedings
of the thirty-third annual ACM symposium on Theory of computing, ser. STOC ’01,
ACM, 2001, pp. 389–398.

[GLS81] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its consequences
in combinatorial optimization, Combinatorica, vol. 1, no. 2, pp. 169–197, 1981, corri-
gendum: [GLS84].

[GLS84] ——, Corrigendum to our paper “The ellipsoid method and its consequences in combi-
natorial optimization”, Combinatorica, vol. 4, no. 4, pp. 291–295, 1984.

[Gom58] R. E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin
of the American Mathematical Society, vol. 64, no. 5, pp. 275–278, Sep. 1958.

164 Bibliography

[GOS08] N. Goyal, N. Olver and B. Shepherd, The VPN conjecture is true, Proceedings of the
STOC, pp. 443–450, 2008.

[Grö04] M. Grötschel, Lineare Optimierung, http://www.zib.de/groetschel/teaching/
skriptADMII.pdf, Lecture script in the version of February 27th, 2004. In german.,
2004.

[GT88] A. V. Goldberg and R. E. Tarjan, A New Approach to the Maximum-flow Problem,
Journal of the ACM, vol. 35, no. 4, pp. 921–940, 1988.

[Gus90] D. Gusfield, Very Simple Methods for All Pairs Network Flow Analysis, SIAM Journal
on Computing, vol. 19, no. 1, pp. 143–155, 1990.

[Gün02] O. Günlük, A New Min-Cut Max-Flow Ratio for Multicommodity Flows, in Proceedings
of IPCO, ser. Lecture Notes in Computer Science, W. J. Cook and A. S. Schulz, Eds.,
vol. 2337, Springer, 2002, pp. 54–66.

[Gün07] ——, A New Min-Cut Max-Flow Ratio for Multicommodity Flows, SIAM Journal on
Discrete Mathematics, vol. 21, no. 1, pp. 1–15, 2007.

[Gün99] ——, A branch-and-cut algorithm for capacitated network design problems, Mathemat-
ical Programming, vol. 86, pp. 17–39, 1 1999.

[HHW88] F. Harary, J. P. Hayes and H.-J. Wu, A survey of the theory of hypercube graphs,
Computers & Mathematics with Applications, vol. 15, no. 4, pp. 277–289, 1988.

[Hoc97] D. S. Hochbaum, Ed., Approximation Algorithms for NP-hard Problems. PWS Pub-
lishing, 1997.

[Iri70] M. Iri, On an Extension of the Maximum-Flow Minimum-Cut Theorem to Multicom-
modity Flows, Journal of the Operations Research Society of Japan, vol. 13, no. 3,
1970.

[Jai01] K. Jain, A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem, Combinatorica, vol. 21, no. 1, pp. 39–60, 2001.

[JMP00] D. S. Johnson, M. Minkoff and S. Phillips, The Prize Collecting Steiner Tree Problem:
Theory and Practice, in Proceedings of the SODA, ser. SODA ’00, SIAM, 2000, pp. 760–
769.

[JT00] M. Jünger and S. Thienel, The ABACUS System for Branch-and-Cut-and-Price Algo-
rithms in Integer Programming and Combinatorial Optimization, Software: Practice
and Experience, vol. 30, no. 11, pp. 1325–1352, 2000.

[Kar72] R. M. Karp, Reducibility Among Combinatorial Problems, in Complexity of Computer
Computations, 1972, pp. 85–103.

[Kar75] ——, On the complexity of combinatorial problems, Networks, no. 5, pp. 45–68, 1975.
[KKR13] A. M. C. A. Koster, M. Kutschka and C. Raack, Robust network design: Formulations,

valid inequalities, and computations, Networks, vol. 61, no. 2, pp. 128–149, 2013.
[KOR+09] A. M. C. A. Koster, S. Orlowski, C. Raack, G. Baier, T. Engel and P. Belotti, Branch-

and-cut techniques for solving realistic two-layer network design problems, in Graphs
and Algorithms in Communication Networks, Springer, 2009, pp. 95–118.

[KP80] R. M. Karp and C. Papadimitriou, On linear characterizations of combinatorial
optimization problems, in Foundations of Computer Science, 1980., 21st Annual
Symposium on, Oct. 1980, pp. 1–9.

[KP82] ——, On Linear Characterizations of Combinatorial Optimization Problems, SIAM
Journal on Computing, vol. 11, no. 4, pp. 620–632, 1982, first appeared as [KP80].

http://www.zib.de/groetschel/teaching/skriptADMII.pdf
http://www.zib.de/groetschel/teaching/skriptADMII.pdf

Bibliography 165

[KV12] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, 5th, ser.
Algorithms and Combinatorics. Springer, 2012, vol. 21 2012.

[KYDN09] S. N. Kabadi, J. Yan, D. Du and K. P. K. Nair, Integer exact network synthesis
problem, SIAM Journal on Discrete Mathematics, vol. 23, no. 1, pp. 136–154, 2009.

[LLP13] C. Lee, K. Lee and S. Park, Benders decomposition approach for the robust network
design problem with flow bifurcations, Networks, vol. 62, no. 1, pp. 1–16, 2013.

[LPSG12] I. Ljubić, P. Putz and J.-J. Salazar-González, Exact approaches to the single-source
network loading problem, Networks, vol. 59, no. 1, pp. 89–106, 2012.

[LR99] T. Leighton and S. Rao, Multicommodity Max-flow Min-cut Theorems and Their Use in
Designing Approximation Algorithms, Journal of the ACM, vol. 46, no. 6, pp. 787–832,
1999.

[LSSW99] M. Labbé, R. Séguin, P. Soriano and C. Wynants, Network Synthesis with Non-
Simultaneous Multicommodity Flow Requirements: Bounds and Heuristics, 1999.

[Mac87a] N. Maculan, The Steiner problem in graphs, Annals of Discrete Mathematics, vol. 21,
185––212, 1987, also appeared as [Mac87b].

[Mac87b] ——, The Steiner Problem in Graphs, in Surveys in Combinatorial Optimization,
ser. North-Holland Mathematics Studies, S. Martello, G. Laporte, M. Minoux and
C. Ribeiro, Eds., vol. 132, North-Holland, 1987, pp. 185–211.

[Mar01] A. Martin, General mixed integer programming: computational issues for branch-and-
cut algorithms, in Computational Combinatorial Optimization, ser. Lecture Notes in
Computer Science, M. Jünger and D. Naddef, Eds., vol. 2241, Springer, 2001, pp. 1–25,
isbn: 978-3-540-42877-0.

[Mat10a] S. Mattia, The Robust Network Loading Problem with Dynamic Routing, Università di
Roma la Sapienza, Tech. Rep. 3, 2010.

[Mat10b] ——, The Robust Network Loading Problem with Dynamic Routing, http://www.
optimization-online.org/DB_FILE/2010/11/2826.pdf, 2010.

[Mat12] ——, Separating tight metric inequalities by bilevel programming, Operations Research
Letters, vol. 40, no. 6, pp. 568–572, 2012.

[Mat13] ——, The robust network loading problem with dynamic routing, Computational Opti-
mization and Applications, vol. 54, pp. 619–643, 2013.

[MCL+14] E. Álvarez Miranda, V. Cacchiani, A. Lodi, T. Parriani and D. R. Schmidt, Single-
commodity robust network design problem: Complexity, instances and heuristic solu-
tions, European Journal of Operational Research, vol. 238, no. 3, pp. 711–723, 2014.

[Men27] K. Menger, Zur allgemeinen Kurventheorie, Fundamenta Mathematicae, vol. 10, no. 1,
pp. 96–115, 1927.

[Min81] M. Minoux, Optimum Synthesis of a Network with Non-Simultaneous Multicommodity
Flow Requirements, in Annals of Discrete Mathematics (11) Studies on Graphs and
Discrete Programming, vol. 59, North-Holland, 1981, pp. 269–277.

[Min89] ——, Networks synthesis and optimum network design problems: Models, solution
methods and applications, Networks, vol. 19, no. 3, pp. 313–360, 1989.

[Mir00] P. Mirchandani, Projections of the capacitated network loading problem, European
Journal of Operational Research, vol. 122, no. 3, pp. 534–560, 2000.

[MM93] T. L. Magnanti and P. Mirchandani, Shortest paths, single origin-destination network
design, and associated polyhedra, Networks, vol. 23, no. 2, pp. 103–121, 1993.

http://www.optimization-online.org/DB_FILE/2010/11/2826.pdf
http://www.optimization-online.org/DB_FILE/2010/11/2826.pdf

166 Bibliography

[MMV91] T. L. Magnanti, P. Mirchandani and R. Vachani, Modeling and Solving the Capacitated
Network Loading Problem, MIT, Technical Report OR-239-91, 1991.

[MMV93] ——, The convex hull of two core capacitated network design problems, Mathematical
Programming, vol. 60, no. 1–3, pp. 233–250, 1993.

[MMV95] ——, Modeling and Solving the Two-Facility Capacitated Network Loading Problem,
Operations Research, vol. 43, no. 1, pp. 142–157, 1995.

[MOL08] S. Mudchanatongsuk, F. Ordóñez and J. Liu, Robust solutions for network design
under transportation cost and demand uncertainty, Journal of the Operational Research
Society, vol. 59, no. 5, pp. 652–662, 2008.

[MRR03] S. T. McCormick, M. R. Rao and G. Rinaldi, Easy and difficult objective functions
for max-cut, Mathematical Programming B, vol. 94, pp. 459–466, 2003.

[MW81] T. L. Magnanti and R. T. Wong, Accelerating Benders Decomposition: Algorithmic
Enhancement and Model Selection Criteria, Operations Research, vol. 29, no. 3, pp. 464–
484, 1981.

[MW84] ——, Network Design and Transportation Planning: Models and Algorithms. Trans-
portation Science, vol. 18, no. 1, pp. 1–55, 1984.

[netlib] Netlib, http://www.netlib.org/lp/.
[NW88] G. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization. Wiley,

1988.
[OGDF] The Open Graph Drawing Framework, http://www.ogdf.net.
[OK71] K. Onaga and O. Kakusho, On feasibility conditions of multicommodity flows in

networks, IEEE Transactions on Circuit Theory, vol. 18, no. 4, pp. 425–429, 1971.
[OPTW07] S. Orlowski, M. Pióro, A. Tomaszewski and R. Wessäly, SNDlib 1.0–Survivable Network

Design Library, in Proceedings of the INOC 2007, http://sndlib.zib.de, extended version
accepted in Networks, 2009., 2007.

[Orl13] J. B. Orlin, Max flows in o(nm) time, or better, in Proceedings of the Forty-fifth Annual
ACM Symposium on Theory of Computing, ser. STOC ’13, Palo Alto, California, USA:
ACM, 2013, pp. 765–774.

[OS81] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, Journal of
Combinatorial Theory, Series B, vol. 31, no. 1, pp. 75–81, 1981.

[OSZ13] G. Oriolo, L. Sanità and R. Zenklusen, Network design with a discrete set of traffic
matrices, Operations Research Letters, vol. 41, no. 4, pp. 390–396, 2013.

[OW03] F. Ortega and L. A. Wolsey, A branch-and-cut algorithm for the single-commodity,
uncapacitated, fixed-charge network flow problem, Networks, vol. 41, no. 3, pp. 143–158,
2003.

[PR11] M. Poss and C. Raack, Affine Recourse for the Robust Network Design Problem:
Between Static and Dynamic Routing, in Network Optimization, ser. Lecture Notes in
Computer Science, J. Pahl, T. Reiners and S. Voß, Eds., vol. 6701, Springer, 2011,
pp. 150–155.

[PR81] M. W. Padberg and M. R. Rao, The Russian method for linear inequalities III:
bounded integer programming, INRIA, Tech. Rep. RR-0078, May 1981, also appeared
as Research Report 81-39, New York University, 1981.

[PRU04] R. Pesenti, F. Rinaldi and W. Ukovich, An exact algorithm for the min-cost network
containment problem, Networks, vol. 43, no. 2, pp. 87–102, 2004.

Bibliography 167

[RKOW11] C. Raack, A. M. C. A. Koster, S. Orlowski and R. Wessäly, On cut-based inequalities
for capacitated network design polyhedra, Networks, vol. 57, no. 2, pp. 141–156, 2011.

[San09] L. Sanità, Robust Network Design, PhD thesis, Università La Sapienza, Roma, 2009.
[San13] ——, Private communication, 2013.
[Sch86] A. Schrijver, Theory of Linear and Integer Programming. Wiley, 1986.
[Soy73] A. L. Soyster, Convex Programming with Set-Inclusive Constraints and Applications

to Inexact Linear Programming, Operations Research, vol. 21, no. 5, pp. 1154–1157,
1973.

[SS85] Y. Saad and M. H. Schultz, Topological properties of hypercubes, Yale University, Tech.
Rep. YALEU/DCS/TR389, 1985, published in [SS88].

[SS88] ——, Topological properties of hypercubes, IEEE Transactions on Computers, vol. 37,
no. 7, pp. 867–872, Jul. 1988, first appeared as [SS85].

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die
benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder
dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht
habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung
vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht
veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des
Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung
sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Michael Jünger
betreut worden.

Köln, 29. September 2014

D. Schmidt

Teilpublikationen
• E. Álvarez-Miranda, V. Cacchiani, T. Dorneth, M. Jünger, F. Liers, A. Lodi, T.

Parriani and D. R. Schmidt, Models and Algorithms for Robust Network Design with
Several Traffic Scenarios, in ISCO 2012, Revised Selected Papers, A. Ridha Mahjoub,
V. Markakis, I. Milis and V. T. Paschos, Eds., ser. Lecture Notes in Computer Science,
vol. 7422, Springer, 2012, pp. 261–272

• E. Álvarez Miranda, V. Cacchiani, A. Lodi, T. Parriani and D. R. Schmidt, Single-
commodity robust network design problem: Complexity, instances and heuristic so-
lutions, European Journal of Operational Research, vol. 238, no. 3, pp. 711–723,
2014

• V. Cacchiani, M. Jünger, F. Liers, A. Lodi and D. R. Schmidt, Single-Commodity
Robust Network Design with Finite and Hose Demand Sets, Universität zu Köln,
Technical Report, 2014, Also appeared as technical report OR-14-11 at the University
of Bologna, Italy.

	Preliminaries
	Basic Linear Algebra
	Vectors and Functions
	Matrices
	Combinations of Vectors, Subspaces and Convexity
	Independence of Vectors
	Dimension
	Hyperplanes and Half-Spaces

	Polyhedral Theory
	Convex Sets, Extreme Points and Rays
	Polyhedra

	Linear Programming
	Optimum Solutions
	Duality
	Cutting Plane Algorithms
	Integer Linear Programs

	Graphs and networks
	Adjacency, Paths and Cycles
	Connectivity

	Cuts and flows in networks
	Cuts
	Single-Commodity Flows

	Multi-Commodity Flows

	Network Design and Robustness
	What Robustness Means
	Single-Commodity Robust Network Design
	Non-Robust Capacitated Network Design
	Communication Network Design Terminology
	Non-Robust Formulations for the sND Problem
	Non-Robust Formulations for the mND Problem

	Tractable Worst-Case Robustness Models
	Column-Wise Uncertainty: Soyster's Model for Robustness
	Tractable Robust Counterparts by Ben-Tal and Nemirovski
	Gamma-Robustness: Bertsimas' and Sim's Less Conservative Model

	Worst-Case Robust Capacitated Network Design
	Terminology
	Formulations for Robust Capacitated Network Design Problems

	More Valid Inequalities
	More General Metric Inequalities for the mND
	Cut-Set Inequalities for Various Network Design Problems
	Additional Partitioning Based Inequalities

	An Overview of Related Works

	Scenarios with a Single Source and Sink
	Problem Complexity
	The Network Synthesis Problem
	A Decompositioning Technique by Gomory and Hu

	An Algorithm for Hypercube Graphs
	When Supplies and Demands are Binary
	Uniform Supplies and Demands that are not Binary

	Extensions

	The Polyhedral Structure of the sRND Problem
	Dimension of the sRND Polyhedron
	An IP-Formulation with Facet-Inducing Cut-Set Inequalities
	Characterizing the sRND Problem with Cut-Set Inequalities
	Cut-Set Formulation vs. Arc-Flow Formulation
	Relationship to the Robustness Models from the Literature
	Cut-Set Inequalities Induce Facets

	Non-Negativity Constraints Induce Facets
	Deriving 3-Partition Facets as Chvátal-Gomory Cuts
	Chvátal-Gomory Cuts for the sRND Problem
	Separating 3-Partition Inequalities by Enumeration
	Shrinking Graphs and Lifting Facets
	3-Partition Inequalities Induce Facets

	Degeneracy

	Separation Under Uncertainty
	The General Cut-Set Separation Problem
	General Separation Methods for Robust Linear Programs
	When the Scenario Set is Given As a Finite List
	Polynomial Time Separation of Cut-Set Inequalities
	Separating 3-Partition Inequalities More Efficiently

	Separating over Scenarios in a Linear Description
	The Hose Uncertainty Set for sRND-P
	Complexity of sRND with Hose Uncertainties
	Separating Cut-Set Inequalities over the Hose Polytope

	A Branch-and-Cut Algorithm
	The Algorithm
	Lower Bounds
	Upper Bounds
	Preprocessing
	Additional Settings

	Testbed
	Network Topologies
	Generating Vertex Descriptions of Scenario Sets
	Generating Linear Descriptions of Scenario Sets
	Software and Hardware for the Experiments

	Computational Results
	Collected Data
	The Previous Approach by BLS2011
	Impact of our Problem Specific Cutting Planes
	Comparison with a Default CPLEX Implementation
	Results on the Hose Instance Sets

