341,127 research outputs found

    Analysis And Mitigation Of The Impacts Of Delays In Control Of Power Systems With Renewable Energy Sources

    Get PDF
    ABSTRACT Analysis and Mitigation of the Impacts of Delays in Control of Power Systems with Renewable Energy Sources by Chang Fu Apr. 2019 Advisor : Dr. Caisheng Wang Major : Electrical and Computer Engineering Degree : Doctor of Philosophy With the integration of renewable resources, electric vehicles and other uncertain resources into power grid, varieties of control topology and algorithms have been proposed to increase the stability and reliability of the operation system. Load modeling is an critical part in such analysis since it significantly impacts the accuracy of the simulation in power system, as well as stability and reliability analysis. Traditional power system composite load model parameter identification problems can be essentially ascribed to optimization problems, and the identied parameters are point estimations subject to dierent constraints. These conventional point estimation based composite load modeling approaches suer from disturbances and noises and provide limited information of the system dynamics. In this thesis, a statistic (Bayesian Estimation) based distribution estimation approach is proposed for composite load models, including static (ZIP) and dynamic (Induction Motor) parts, by implementing Gibbs sampling. The proposed method provides a distribution estimation of coecients for load models and is robust to measurement errors. The overvoltage issue is another urgent issues need to be addressed, especially in a high PV penetration level system. Various approaches including the real power control through photovoltaic (PV) inverters have been proposed to mitigate such impact, however, most of the existing methods did not include communication delays in the control loop. Communication delays, short or long, are inevitable in the PV voltage regulation loop and can not only deteriorate the system performance with undesired voltage quality but also cause system instability. In this thesis, a method is presented to convert the overvoltage control problem via PV inverters for multiple PVs into a problem of single-input-single-output (SISO) systems. The method can handle multiple PVs and dierent communication delays. The impact of communication delays is also systematically analyzed and the maximum tolerable delay is rigorously obtained. Dierent from linear matrix inequality (LMI) techniques that have been extensively studied in handling systems with communication delays, the proposed method gives the necessary and sucient condition for obtaining a controller and the design procedure is explicitly and constructively given in the paper. The effectiveness of the proposed method is veried by simulation studies on a distribution feeder and the widely-used 33-bus distribution test system. The similar design strategy can be utilized to mitigate delay impacts in Load frequency control (LFC) as well. LFC has been considered as one of the most important frequency regulation mechanisms in modern power system. One of the inevitable problems involved in LFC over a wide area is communication delay. In this thesis, an alternative design method is proposed to devise delay compensators for LFC in one or multiple control areas. For one-area LFC, a sucient and necessary condition is given for designing a delay compensator. For multiarea LFC with area control errors (ACEs), it is demonstrated that each control area can have its delay controller designed as that in a one-area system if the index of coupling among the areas is below the threshold value determined by the small gain theorem. Effectiveness of the proposed method is veried by simulation studies on LFCs with communication delays in one and multiple interconnected areas with and without time-varying delays, respectively

    Analysis And Mitigation Of The Impacts Of Delays In Control Of Power Systems With Renewable Energy Sources

    Get PDF
    ABSTRACT Analysis and Mitigation of the Impacts of Delays in Control of Power Systems with Renewable Energy Sources by Chang Fu Apr. 2019 Advisor : Dr. Caisheng Wang Major : Electrical and Computer Engineering Degree : Doctor of Philosophy With the integration of renewable resources, electric vehicles and other uncertain resources into power grid, varieties of control topology and algorithms have been proposed to increase the stability and reliability of the operation system. Load modeling is an critical part in such analysis since it significantly impacts the accuracy of the simulation in power system, as well as stability and reliability analysis. Traditional power system composite load model parameter identification problems can be essentially ascribed to optimization problems, and the identied parameters are point estimations subject to dierent constraints. These conventional point estimation based composite load modeling approaches suer from disturbances and noises and provide limited information of the system dynamics. In this thesis, a statistic (Bayesian Estimation) based distribution estimation approach is proposed for composite load models, including static (ZIP) and dynamic (Induction Motor) parts, by implementing Gibbs sampling. The proposed method provides a distribution estimation of coecients for load models and is robust to measurement errors. The overvoltage issue is another urgent issues need to be addressed, especially in a high PV penetration level system. Various approaches including the real power control through photovoltaic (PV) inverters have been proposed to mitigate such impact, however, most of the existing methods did not include communication delays in the control loop. Communication delays, short or long, are inevitable in the PV voltage regulation loop and can not only deteriorate the system performance with undesired voltage quality but also cause system instability. In this thesis, a method is presented to convert the overvoltage control problem via PV inverters for multiple PVs into a problem of single-input-single-output (SISO) systems. The method can handle multiple PVs and dierent communication delays. The impact of communication delays is also systematically analyzed and the maximum tolerable delay is rigorously obtained. Dierent from linear matrix inequality (LMI) techniques that have been extensively studied in handling systems with communication delays, the proposed method gives the necessary and sucient condition for obtaining a controller and the design procedure is explicitly and constructively given in the paper. The effectiveness of the proposed method is veried by simulation studies on a distribution feeder and the widely-used 33-bus distribution test system. The similar design strategy can be utilized to mitigate delay impacts in Load frequency control (LFC) as well. LFC has been considered as one of the most important frequency regulation mechanisms in modern power system. One of the inevitable problems involved in LFC over a wide area is communication delay. In this thesis, an alternative design method is proposed to devise delay compensators for LFC in one or multiple control areas. For one-area LFC, a sucient and necessary condition is given for designing a delay compensator. For multiarea LFC with area control errors (ACEs), it is demonstrated that each control area can have its delay controller designed as that in a one-area system if the index of coupling among the areas is below the threshold value determined by the small gain theorem. Effectiveness of the proposed method is veried by simulation studies on LFCs with communication delays in one and multiple interconnected areas with and without time-varying delays, respectively

    An Advance Distributed Control Design for Wide-Area Power System Stability

    Get PDF
    The development of control of a power system that supply electricity is a major concern in the world. Some trends have led to power systems becoming overstated including the rapid growth in the demand for electrical power, the increasing penetration of the system from renewable energy, and uncertainties in power schedules and transfers. To deal with these challenges, power control has to overcome several structural hurdles, a major one of which is dealing with the high dimensionality of the system. Dimensionality reduction of the controller structure produces effective control signals with reduced computational load. In most of the existing studies, the topology of the control and communication structure is known prior to synthesis, and the design of distributed control is performed subject to this particular structure. However, in this thesis we present an advanced model of design for distributed control in which the control systems and their communication structure are designed simultaneously. In such cases, a structure optimization problem is solved involving the incorporation of communication constraints that will punish any communication complexity in the interconnection and thus will be topology dependent. This structure optimization problem can be formulated in the context of Linear Matrix Inequalities and l1-minimization. Interconnected power systems typically show multiple dominant inter-area low-frequency oscillations which lead to widespread blackouts. In this thesis, the specific goal of stability control is to suppress these inter-area oscillations. Simulation results on large-scale power system are presented to show how an optimal structure of distributed control would be designed. Then, this structure is compared with fixed control structures, a completely decentralized control structure and a centralized control structure

    Measurement-Based Monitoring and Control in Power Systems with High Renewable Penetrations

    Get PDF
    Power systems are experiencing rapid changes in their generation mixes because of the increasing integration of inverter-based resources (IBRs) and the retirement of traditional generations. This opens opportunities for a cleaner energy outlook but also poses challenges to the safe operation of the power networks. Enhanced monitoring and control based on the increasingly available measurements are essential in assisting stable operation and effective planning for these evolving systems. First, awareness of the evolving dynamic characteristics is quintessential for secure operation and corrective planning. A quantified monitoring study that keeps track of the inertial response and primary frequency response is conducted on the Eastern Interconnection (EI) for the past decade with field data. Whereas the inertia declined by at least 10%, the primary frequency response experienced an unexpected increase. The findings unveiled in the trending analysis also led to an improved event MW size estimation method, as well as discussions about regional dynamics. Experiencing a faster and deeper renewable integration, the Continental Europe Synchronous Area (CESA) system has been threatened by more frequent occurrences of inter-area oscillations during light-load high-renewable periods. A measurement-based oscillation damping control scheme is proposed for CESA with reduced reliance on system models. The design, implementation, and hardware-in-the-loop (HIL) testing of the controller are discussed in detail. Despite the challenges, the increasing presence of IBRs also brings opportunities for fast and efficient controls. Together with synchronized measurement, IBRs have the potential to flexibly complement traditional frequency and voltage control schemes for improved frequency and voltage recovery. The design, implementation, and HIL testing of the measurement-based frequency and voltage control for the New York State Grid are presented. In addition to the transmission level development, IBRs deployed in distribution networks can also be valuable assets in emergency islanding situations if controlled properly. A power management module is proposed to take advantage of measurements and automatically control the electric boundaries of islanded microgrids for maximized power utilization and improved frequency regulation. The module is designed to be adaptive to arbitrary non-meshed topologies with multiple source locations for increased flexibility, expedited deployment, and reduced cost

    Modeling and analysis of power system oscillations using real-time simulator.

    Get PDF
    In this thesis a version of the Kundur two-area model has been developed for Simulink and real time simulator software and hardware from OPAL-RT. This model should be used for testing the rotor angle oscillations load variations create. A review of the different control elements found in basic power systems has been reviewed and implemented. The main component that will be manipulated in the model is the active load, so a zip-load model had to be developed for Simulink to make the system work. It was necessary to build multiple models of the same figure in Simulink, one fixed step version to run in RT-lab, and one variable step to do Simulink tests on. Frequency and voltage stability are not a focus but are mentioned throughout because each of them do affect the system. The lack of secondary frequency reserves leads to never regain nominal rotor speed, and voltage stability affects the simulations done on the RT-lab model. Linear analysis of the stability was done using PST software. The linear results were compared to the variable step model. The results show that the different models behave similarly and manages to simulate what happens with the stability during load changes

    Modeling, Simulation, and Analysis of Cascading Outages in Power Systems

    Get PDF
    Interconnected power systems are prone to cascading outages leading to large-area blackouts. Modeling, simulation, analysis, and mitigation of cascading outages are still challenges for power system operators and planners.Firstly, the interaction model and interaction graph proposed by [27] are demonstrated on a realistic Northeastern Power Coordinating Council (NPCC) power system, identifying key links and components that contribute most to the propagation of cascading outages. Then a multi-layer interaction graph for analysis and mitigation of cascading outages is proposed. It provides a practical, comprehensive framework for prediction of outage propagation and decision making on mitigation strategies. It has multiple layers to respectively identify key links and components, which contribute the most to outage propagation. Based on the multi-layer interaction graph, effective mitigation strategies can be further developed. A three-layer interaction graph is constructed and demonstrated on the NPCC power system.Secondly, this thesis proposes a novel steady-state approach for simulating cascading outages. The approach employs a power flow-based model that considers static power-frequency characteristics of both generators and loads. Thus, the system frequency deviation can be calculated under cascading outages and control actions such as under-frequency load shedding can be simulated. Further, a new AC optimal power flow model considering frequency deviation (AC-OPFf) is proposed to simulate remedial control against system collapse. Case studies on the two-area, IEEE 39-bus, and NPCC power systems show that the proposed approach can more accurately capture the propagation of cascading outages when compared with a conventional approach using the conventional power flow and AC optimal power flow models.Thirdly, in order to reduce the potential risk caused by cascading outages, an online strategy of critical component-based active islanding is proposed. It is performed when any component belonging to a predefined set of critical components is involved in the propagation path. The set of critical components whose fail can cause large risk are identified based on the interaction graph. Test results on the NPCC power system show that the cascading outage risk can be reduced significantly by performing the proposed active islanding when compared with the risk of other scenarios without active islanding

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Unified reference controller for flexible primary control and inertia sharing in multi-terminal voltage source converter-HVDC grids

    Get PDF
    Multi-terminal dc (MTDC) grids are expected to be built and experience rapid expansion in the near future as they have emerged as a competitive solution for transmitting offshore wind generation and overlaying their ac counterpart. The concept of inertia sharing for the control and operation of MTDC grids, which can be achieved by the proposed unified reference controller. The control objectives of the MTDC grids voltage source converter (VSC) stations are no longer limited to the stabilisation of MTDC grid, instead, the requirements of ac side are also met. The interaction dynamics between the ac and dc grid is analysed to illustrate the proposed concept. In addition, the voltage source converter stations can work in different operation modes based on the proposed unified control structure, and can switch among the operation modes smoothly following the secondary control commands. Simulation results exhibit the merits and satisfactory performance of the proposed control strategy for stable MTDC grid operation.Peer ReviewedPostprint (author's final draft
    • 

    corecore