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ABSTRACT 

 
Interconnected power systems are prone to cascading outages leading to 

large-area blackouts. Modeling, simulation, analysis, and mitigation of cascading 

outages are still challenges for power system operators and planners. 

Firstly, the interaction model and interaction graph proposed by [27] are 

demonstrated on a realistic Northeastern Power Coordinating Council (NPCC) 

power system, identifying key links and components that contribute most to the 

propagation of cascading outages. Then a multi-layer interaction graph for 

analysis and mitigation of cascading outages is proposed. It provides a practical, 

comprehensive framework for prediction of outage propagation and decision 

making on mitigation strategies. It has multiple layers to respectively identify key 

links and components, which contribute the most to outage propagation. Based 

on the multi-layer interaction graph, effective mitigation strategies can be further 

developed. A three-layer interaction graph is constructed and demonstrated on 

the NPCC power system. 

Secondly, this thesis proposes a novel steady-state approach for 

simulating cascading outages. The approach employs a power flow-based model 

that considers static power-frequency characteristics of both generators and 

loads. Thus, the system frequency deviation can be calculated under cascading 

outages and control actions such as under-frequency load shedding can be 

simulated. Further, a new AC optimal power flow model considering frequency 

deviation (AC-OPFf) is proposed to simulate remedial control against system 

collapse. Case studies on the two-area, IEEE 39-bus, and NPCC power systems 

show that the proposed approach can more accurately capture the propagation 

of cascading outages when compared with a conventional approach using the 

conventional power flow and AC optimal power flow models. 

Thirdly, in order to reduce the potential risk caused by cascading outages, 

an online strategy of critical component-based active islanding is proposed. It is 

performed when any component belonging to a predefined set of critical 
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components is involved in the propagation path. The set of critical components 

whose fail can cause large risk are identified based on the interaction graph. Test 

results on the NPCC power system show that the cascading outage risk can be 

reduced significantly by performing the proposed active islanding when 

compared with the risk of other scenarios without active islanding. 

 
Index Terms—Blackout; cascading outages; multi-layer interaction graph; 

interaction graph; key link; key component; dynamic load flow; AC-OPA; DC-

OPA; AC optimal power flow considering frequency deviation; Northeastern 

Power Coordinating Council (NPCC) Power System; under-frequency load 

shedding. 
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CHAPTER ONE   

INTRODUCTION AND BACKGROUND INFORMATION  

1.1  Introduction  

Power system is one of the most complex systems in the modern society. 

The modern power system is approaching to the critical operating limits in the 

environment of market. With the increasing of load demand, high capacity and 

long transmission networks are widely used to meet the requirement. With the 

integration of renewable energies such as wind and solar, the uncertainty, 

intermittence bring bigger challenge to the operation of power system. Therefore, 

a random outage or local outage may propagate and thus cause large-scale 

blackout eventually [1].  

Large blackouts, although infrequent, are costly to society with estimates 

of direct costs up to billions of dollars. For example, a blackout happened in Aug. 

14, 2003 in areas of Midwest and Northeast United States, and Ontario in 

Canada. 50 million people are affected and the total cost of it is around 10 billion 

dollars [2]. Some other indirect costs such as the failures of communications, 

natural gas, transportation, water supply and social disruptions are also caused. 

The influences of large blackouts in the Unites States with more than 50,000 

customers or 300 MW load loss are analyzed based on the data sets obtained 

from North American Electric Reliability Corporation (NERC). It is summarized in 

Table 1-1. 

From Table 1-1, the main reasons of the large blackouts are either 

extreme natural events (hurricanes, ice storms, etc.) or cascading outages. Table 

1.2 gives descriptive statistics for these data with and without the smaller events. 

 

 

 

 

https://en.wikipedia.org/wiki/North_American_Electric_Reliability_Corporation
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Table 1-1. The 15 Largest North American Blackouts and Their Causes, 1984-2006. 

 Date Location MW Customers Primary cause 

1 14-Aug-2003 Eastern U.S., 
Canada 

57,669 15,330,850 Cascading outage 

2 13-Mar-1989 Quebec, New York 19,400 5,828,000 Solar flare, cascade 
3 18-Apr-1988 Eastern U.S., 

Canada 
18,500 2,800,000 Ice storm 

4 10-Aug-1996 Western U.S. 12,500 7,500,000 Cascading outage 
5 18-Sep-2003 Southeastern U.S. 10,067 2,590,000 Hurricane Isabel 
6 23-Oct-2005 Southeastern U.S. 10,000 3,200,000 Hurricane Wilma 
7 27-Sep-1985 Southeastern U.S. 9,956 2,991,139 Hurricane Gloria 
8 29-Aug-2005 Southeastern U.S. 9,652 1,091,057 Hurricane Katrina 
9 29-Feb-1984 Western U.S. 7,901 3,159,559 Cascading outage 
10 4-Dec-2002 Southeastern U.S. 7,200 1,140,000 Ice/wind/rain storm 
11 10-Oct-1993 Western U.S. 7,130 2,142,000 Cascading outage 
12 14-Dec-2002 Western U.S. 6,990 2,100,000 Winter storm 
13 4-Sep-2004 Southeastern U.S. 6,018 1,807,881 Hurricane Frances 
14 25-Sep-2004 Southeastern U.S. 6,000 1,700,000 Hurricane Jeanne 
15 14-Sep-1999 Southeastern U.S. 5,525 1,660,000 Hurricane Floyd 

 

 

Table 1-2. Descriptive Statistics for the NERC Disturbance Data, 1984–2006. 

 All events 
≥0 customers/MW 

≥300 MW ≥50k 
customers 

≥300 MW or 
≥50k customers 

Total number of events 856 278 321 438 
Number of blackouts 547 258 304 406 
Number after filling 
missing data 

547 307 382 419 

Number after adjusting 
for growth 

547 317 373 413 

Mean size in MW 524 1508 947 987 
Median size in MW 86 634 300 385 
Standard deviation in 
MW 

2396 4034 3648 3285 

Mean size in customers 164,483 321,984 430,585 317,372 
Median size in 
customers 

1323 85,228 149,500 94,643 

Standard deviation in 
customers 

689,815 1,106,958 1,075,888 939,638 
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From the reports of those blackouts [1], [2], and [3], cascading outage is a 

key factor leading to a large blackout. According to NERC, a cascading outage is 

“the uncontrolled successive loss of system elements triggered by an incident at 

any location [4]-[7].” Actually, sometimes the cascading outage is initiated by 

more than one disturbance. Some cascading outages may stop before they bring 

large influence to the system, while some of them bring disastrous results. 

According to N-1 or N-2 criterion, electric power systems are generally designed 

withstand single or double failure without causing the violation of any operating 

limit. Nevertheless, other possible outages, such as human errors or hidden 

failures in protection relays may enlarge the propagation of outages and lead to a 

cascading outage finally. Generally speaking, the component outages will cause 

the redistribution of the power flow and then cause the overload of other 

components even dynamic instability problems. 

Cascading outage involves a large amount of complex mechanisms, 

which makes it more difficult to understand cascading outage fully. This 

subsection gives an overview on cascading outage from different perspectives 

and highlights its challenge for the analysis and modeling of cascading outages.  

1.1.1 Major Causes of Cascading Outages 

Basically, the causes for cascading outages can be divided into four 

categories [8]: 

 Nature disasters: Fire, lighting, wind/rain, ice storm, hurricane, Tornado, 

earthquake. 

 Human activity: Operator error or inappropriate actions, or fail to take 

actions, inappropriate setting for protection devices, intentional attack. 

 Unexpected component failure: Equipment failure or hidden failure. 

 System failures: Distance relays trigger the transmission line due to 

overcurrent or under-voltage, voltage collapse, abnormal excitation in 

generators, abnormal speed in generators, generators tripped by under-
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frequency, generators tripped by under-voltage, generator tripped by 

out-of-step, insufficient reactive power support, small signal instability.  

The first three categories are common outages that initiate the events, 

whereas the fourth category is failures that commonly enlarge the cascading. It is 

almost impossible to prevent the happen of the outages in the first and second 

categories with modern technology. However, most cascading outage blackouts 

involve the dependent outages in the third and fourth categories. 

1.1.2 Procedure of Cascading Outages 

According to [9], basically, the procedure of cascading outage can be 

divided into two phases, which are remarked by slow phase and fast phase.   

For the slow cascade phase, the outages propagate slowly and have little 

influence on the stability of power system. The time interval for this phase ranges 

from several minutes up to several hours. Most outages in this phase are 

belonging to common problems and the operators cannot identify them easily. 

Thus the operators miss the chance to prevent the propagation of outages. 

Besides, some hidden failures may be exposed during this phase, which trigger 

some transmission lines and components [10]. 

During the fast cascade phase, power system becomes unstable. With the 

redistribution of power flow, the overloaded transmission components are 

triggered in a short time, they may cause voltage collapse, frequency collapse, 

and oscillations. Meanwhile, the dynamic instability may trip the generators, 

which lead to further load and generation imbalance and exaggerate the dynamic 

instability. It is almost impossible for systems operators to stop the propagation of 

the cascading during this phase manually. The time interval for this phase ranges 

milliseconds to tens of seconds [9]. Generally, the overloaded components such 

as transmission lines can still work for several hours under over-load conditions, 

and they can be reclosed if no other fault is found. However, when a large power 

swing happens in power system, the settings of distance relay of zone 2 or zone 

3 may trip the transmission line with short time delay, and they will be acting so 

quickly that the system operator has no time to respond and reclose the line or 
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stop the cascading. Thus, the cascading starts tripping like a domino and 

eventually cause a large blackout. 

Cascading phenomena are complicated because of the diversity of 

failures and the many different mechanisms by which failures can interact. There 

are varying modeling requirements and timescales (milliseconds for 

electromechanical effects and tens of minutes for voltage support and thermal 

heating). Combinations of several of types of failures and interactions can 

typically occur in large blackouts, including cascading overloads, failures of 

protection equipment, transient instability, forced or unforced initiating outages, 

reactive power problems and voltage collapse, software, communication, and 

operational errors. Therefore it is very difficult to analyze it through conventional 

power system analysis approaches and models. Many models and approaches 

have been proposed to try to consider those mechanisms [11-94]. Some models 

and approaches are utilizing complex network theory to investigate the 

relationship between the propagation of cascading outages and topological 

structure. Some are using stochastic approaches to consider the uncertainties in 

a cascading outage. Some are modeling dynamics of system to involve machine, 

voltage and frequency issues. High-level statistical models have also been 

proposed to estimate the average cascading outage propagation and blackout 

distribution sizes, which can provide useful suggestions for power system long-

term planning. Interdependent infrastructures are modeled to analyze the 

interactions between power grids and cyber networks and study the propagation 

of cascading outage between different networks. 

1.2  Modeling, Simulation, and Analysis of Cascading Outages 

A large amount of models and approaches has been proposed in order to 

model, simulate, and analyze the cascading outages [11-94]. However, no 

existing model or approach can capture all the mechanisms during the cascading 

outage. Each model or approach can only focus on one or several aspects, while 

the information of the overall phenomenon is still needed in the simulation. In this 
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subsection, a brief review and summary of the state-of-art cascading outage 

analysis models and methodologies will be presented. According to their different 

perspectives and characteristics, those models and approaches can be divided 

into six categories:  

 High-level statistic approaches 

 Stochastic simulation approaches 

 Quasi-dynamic and dynamic simulation approaches 

 Network theory approaches 

 Interdependent approaches 

 Other approaches 

Note that each model or approach may have characteristics which are 

involved in other categories. The classification in this thesis is based on its main 

feature and characteristic. This is just a rough classification and there are other 

classifications. 

1.2.1 High-Level Statistic Approaches 

This type of approaches investigated the process of cascading outage 

without considering the physics of power systems. For example, they may 

neglect the structure of power systems, times between different outages, and the 

diversity of power system components and interactions. They are very useful to 

understand cascading outage in more detailed models.  

1)  CASCADE Models 

CASCADE model is an analytically tractable model based on load of the 

component [11]. It assumes a random initial load on all identical components and 

a given disturbance load on each component to initiate cascading. Some 

components may fail when load exceeds a certain threshold, where the load of 

other components will be redistributed, thus forming a cascading process. The 

cascading only stops when no overloaded component exists or the whole system 

fails. The redistributed formulas are much simpler when compared with detailed 

models that simulate detailed cascading failure mechanisms such as power 
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flows. It is easier to obtain the total number of component outages as well as the 

probability distribution of the blackout sizes. The model shows how system 

loading affects the risk of a cascading failure [12]. When there is low load level, 

the tail part of component failures is approximately exponential. The probability of 

a large cascading outage is also low. However, when a critical loading level is 

exceed, the distribution of the component outages follows the power law and the 

risk of a large blackout increases significantly. This model is good for 

understanding the general property of cascading outages but it ignores all 

physical properties of power systems.  

The above model is modified further and applied to analyze several 

factors related to cascading outages. The cascading motor stall has been 

analyzed with the CASCADE model in [13]. Reference [14] showed a high risk on 

voltage collapse when a failure triggered a cascade of motor stalling. [15] has 

analyzed the power system reliability by using a modified CASCADE model, the 

time of outage propagation is also considered in [15]. 

2)  Branching Process Models 

Branching process model can be regarded as an improved CASCADE 

model and it is widely used in the theory of probability [16]. This model has been 

used in many areas such as Y chromosome transmission in genetics 

disappearance of surnames in genealogy. [17] first introduced this model to the 

analysis of cascading outages. Based on them, some improvements have been 

made in [18-20], they mentioned the importance for applying the branching 

process models. More recently, some new applications based on such models 

can be found in [21], and [22]. 

Each individual component outage affects the outages in the next stages 

interdependently according to a given distribution in the branching process 

model. The results in [23] have shown that the probability distribution of outages 

from a branching process can match with the simulated CASCADE model as well 

as the historical data. The computation speed to estimate the propagation and 

distribution of the size of blackout is faster by using the branching process model. 
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[24] has investigated the influence of topology on the average propagation of 

cascading outages in power system with this model. A novel and systematic 

approach to discretize the data of load shed has been introduced by [25] and the 

Galton-Watson branching process with a Poisson offspring distribution can be 

used. Further, a multi-type branching process [26] has been applied to analyze 

the statistics and interdependencies of cascading outages. The probability 

distribution of load shed, the isolated buses and their conditional largest possible 

total outages can be predicted by this model. This model needs few samples of 

cascading outages to realize relatively accurate estimation but the disadvantage 

of this model is that it lacks detailed mechanisms of the cascading outages in 

power systems. It can only estimate the blackout size distribution of cascading 

outage. From the perspective of operation, real time prediction and mitigation of 

cascading outages cannot be realized with this model. 

3)  Interaction Model 

Reference [27] proposes a power system’s interaction model that is 

constructed based on a database of cascades from either historical events or 

simulations. That interaction model extracts key information on cascading 

outages of the power system, quantifying how interactions between component 

failures influence the risk of cascading outages and capturing general 

propagation patterns of cascades. Thus, scenarios of cascading outages can be 

simulated and analyzed quickly and effectively in a time-intensive environment 

only using that interaction model for prediction of their propagations and 

mitigation actions without need to conduct time-consuming simulation of the 

original power system model. Thus, the interaction model if available for a power 

system can readily fit into real-time operation for operators’ situational awareness 

and decision support. 

1.2.2 Stochastic Simulation Approaches  

A cascading outage can be described by a sequence of deterministic and 

stochastic events. For example, based on simulations, the features of cascading 
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outages can be reproduced basically if we tune the parameters affecting the 

simulation for well-studied power systems. However, it is another matter entirely 

to be able to predict or simulate the events of a cascading outage before it 

happens. However, cascading outage will rarely proceed as you expect. Due to 

the large uncertainties that initiate and exacerbate the cascading, the stochastic 

simulation, also known as probabilistic simulation is necessary since it can try to 

consider all possible factors. Moreover, some factors such as the misoperation 

because of human error and transmission lines that contact over grown trees due 

to relatively high current flow are very hard to be modeled in the simulation. It is 

thus essential to use stochastic approaches to simulate more possible events.   

1)  Markov Chain Models 

A Markov chain is a type of stochastic process used to describe a system 

that follows a chain of linked events [28]. It is utilized to model the stochastic 

factors in cascading outage of a power grid, such as hidden failure or 

misoperations. The result of this model can be used as an evaluation of overall 

probabilities of all states that depicts the cascading outage. The model can 

normally have a large size.  

In reference [29], a stochastic Markov chain model has been introduced. 

The model was based on power flow redistribution. It took into account the 

uncertainties in the load setting, generation and line flows. The model also 

captured the cascading events with regard to real time signals. The critical 

components have been identified using the metrics provided. Reference [30] 

presented a network-based Markov chain model to study the propagation 

dynamics of the entire power networks. Robustness of the power network has 

been analyzed through the model. An extended Gillespie method was adopted in 

the model [31]. It also showed that small-world network structure would 

propagate cascading outage more widely and rapidly compared with a regular 

power network. A Markovian tree-based multi-timescale cascading outage 

simulation model has been provided in [32], aiming at risk assessment of 

cascading outage. The paper also proposed a novel forward-backward 



 

10 
 

Markovian tree search scheme based on a risk estimation index. In [33], the 

author introduced a continuous-time Markov chain approach modeling the 

system dynamics. The model considered loading level, error in transmission-

capacity estimation, and constraints in performing load shedding. It also allowed 

real-time prediction of blackout evolution probability. Recently, an influenced 

graph model using Markovian chain was described in [34]. Large amounts of 

data from cascading outage simulations were synthesized into a Markovian 

network model. The distribution of the cascading outage results achieved from 

this model matched those from cascading outage simulators. A methodology 

based on this model has been demonstrated to identify the probability of risk 

when a component was upgraded in the power system. 

2)  PRACTICE Models 

A useful stochastic simulation approach of cascading outages has been 

proposed in [35]. In this model, “single-path” mode and “multi-path” mode are 

used. Single-path mode allows uncertainties only relevant to the initial events, 

after which the system will behave “as expected” during the cascading. Multi-path 

mode can simulate uncertainties and the response from protection systems, 

through the whole procedure during the cascading. The hidden failure 

probabilistic model, the overcurrent relay probabilistic model and the event tree-

based probabilistic cascading approaches was adopted in the techniques. The 

model was tested on Italian EHV transmission grid and a comparison was made 

with a detailed overload-based dynamic time domain simulator. It showed that 

the results obtained from the model and the dynamic time domain simulator can 

match well with each other at least for the slow cascade phase [36]. 

1.2.3 Quasi-Dynamic and Dynamic Simulation Approaches 

Dynamic simulation approaches are similar to conventional methodologies 

that focus on power system dynamic characteristic analysis, while the difference 

is that conventional methodologies are hard to simulate interactions under multi-

contingency cases during the cascading outage. New dynamic simulation models 
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perform well on capturing some specific system dynamics during the cascading. 

In addition, most mechanisms can be included in dynamic simulation models 

under a variety of outages so that a relatively accurate prediction can be made. 

However, due to the large amount of details to be taken into consideration, the 

computation speed will be challenging. Right now, such models will mainly 

contribute to deeply understanding the cascading outage mechanisms rather 

than real time prediction and analysis for industrial utilization. 

1)  OPA Models 

The researchers from Oak Ridge National Laboratory (ORNL), Power 

System Engineering Research Center of Wisconsin University (PSerc) and 

Alaska University (Alaska) proposed this ORNL-PSerc-Alaska (OPA) model [37]. 

It is DC power flow-based model. This model contains two parts: fast dynamic 

process and slow dynamic process. Slow dynamic process is utilized to simulate 

the evolution of power gird such as generation growth, load growth and 

transmission capacity limits upgrade. The fast dynamic process is often used to 

simulate outages and cascading overloading. In this model, a re-dispatch model 

DC-OPF based on linear programing is used to adjust the generation and load. 

The cost function has been taken into consideration to avoid unnecessary load 

shedding. This model described a simplified dynamic process of cascading 

outages and can be used to investigate the self-organization of power systems. 

This OPA model was validated on a 1553-bus WECC network and the simulation 

results were compared with historical WECC data with an acceptable 

approximation [38]. The disadvantage of this model is that it cannot provide an 

accurate simulation on real outages of power systems and it only focus on the 

limited parts of cascading outages such as overloading.   

An improved OPA model [39] has been proposed to improve the 

limitations found in the original model. This improved OPA model has considered 

more important factors such as dispatching, communication, protection relay, 

planning, and operation mode. Two indices have been proposed to quantify the 

cascading outage risk from the perspective of statistics, i.e. Value at Risk (VaR) 
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and Conditional Value at Risk (CVaR). Then this model was validated on the 

Northeast Power Grid in China.  

Another AC OPA model has been proposed by [40]. This model contains 

two dynamic processes: fast dynamics and slow dynamics. Fast dynamics 

involve series blackouts. Slow dynamics can reflect the time evolution of power 

systems. This novel AC OPA model can be used to analyze the voltage stability 

of power systems and it is tested on the IEEE 118-bus power system and the 

results showed that the ratio of total load to system transmission capacity can 

explain SOC of power systems. This model has been modified in [41] further and 

considered slow process such as tree contact and line outages due to line 

heating into the simulation of cascading outages. Utility vegetation management 

was also considered in this model.  

2)  Multi-Timescale Quasi-Dynamic Model 

The multi-timescale quasi-dynamic model has been proposed in [42]. This 

model enabled the consideration of different timescales involved in the process 

of cascading outages which cannot be simulated by the existing approaches. The 

simulation of cascading outages with representation of time evolution can be 

realized. Three categories of timescales: short-term scale, mid-term scale, and 

long-term scale are modeled. Meanwhile, this model can consider some 

dynamics such as load variation and generation excitation protection. An 

improved re-dispatch model has been proposed because that transmission 

loading relief (TLR) and re-dispatch normally took 10–30 min [43]. The above 

improvements enabled more accurate simulation of cascading outages. This 

model was tested on IEEE 30-bus power system to study the role of generation 

protection. The model was also demonstrated on a reduced 410-bus US-Canada 

northeast power grid. The results showed that the simulated event can match 

well with the blackout event happened in 2003.  

3)  Manchester Model 
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Manchester model was proposed by the University of Manchester [44]. It 

is based on AC power flow. A wide variety of mechanisms related to cascading 

outages such as hidden failures, generator instability, under-frequency load 

shedding (UFLS), emergency load shedding and re-dispatch of active and 

reactive power were considered in this model. Monte Cardo simulation was used 

for the risk of assessment of cascading outages with this model. Other research 

[45-47] extended the Manchester model to study the mitigation strategies for 

cascading outages and assess the cost of blackout. 

4)  TRELSS Model 

Transmission Reliability Evaluation of Large Scale Systems (TRELSS) is 

another commercial platform for the simulation and analysis of cascading 

outages [48]. It is developed by EPRI and Southern Company Services. This 

model can simulate the cascading outage as a sequence of quasi-steady state 

system conditions based on AC power flow which are triggered by the tripping 

outages. The actions of breakers have been modeled by the Protection and 

Control Group (PCG). The model was tested on Western Interconnection power 

system [49] to identify the most severe initial outages. 

5)  ASSESS Model 

ASSESS is developed by Reseau de Transport d’Electricite (RTE) in 

France and it is a commercial platform for the simulation and analysis of 

cascading outages [50]. This platform is quite flexible for letting many 

uncertainties to be considered. Four blocks have been provided by this model 

such as quasi-steady state simulator that could model dynamics of systems [51], 

security-constrained AC optimal power flow [52], time-domain simulator that 

could model many control actions such as governors and zone 3 protection relay 

[53], and the access to some tools for the statistical analysis of samples of 

cascading outages. ASSESS provided a wide range of models including 

sequences of events, protection settings, line ratings, fault clearance time, etc. 
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The disadvantage of this model is that it requires a large amount of data and the 

computation speed is still challenge with this platform.  

6)  Dynamic PRA Model 

A two-level dynamic probabilistic risk assessment (PRA) model was 

introduced in [9]. The proposed model divided the process of cascading outage 

into two phases and two different models were used in the two phases. The 

influences some factors such as variation of cross-border power flows, 

maintenance and shut-down of power plants, and the penetration of wind power 

on cascading outages were investigated. This model was tested on New England 

Test System (NETS) and New York Power System (NYPS) 69-bus test system. It 

was found from the results that the thermal effects can contribute to cascading 

outages.  

An improved PRA model was introduced in [54] further. Two 

decomposition models were used to analyze the fast phase and slow phase of 

cascading outages, respectively. The frequency and the influence of severe 

cases can be estimated with this model. The scenarios can be classified with a 

clustering method so that the dynamic analysis was manageable from a 

computational perspective. The dynamic models of generators were considered 

in [55]. 

7)  COSMIC Model 

A novel nonlinear dynamic model for the simulation of cascading outages 

has been proposed in [56]. It is called Cascading Outage Simulator with 

Multiprocess Integration Capabilities (COSMIC). COSMIC was able to simulate 

power system with a set of hybrid discrete and continuous differential algebraic 

equations, as well as protection systems and machine dynamics. The model 

involved a wide variety of mechanisms including rotating machines, exciters, 

governors, power flows using nonlinear power flow equations, load voltage 

responses, discrete changes (e.g. components failure and load shedding) and 

etc. COSMIC used a recursive process to compute the differential algebraic 
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equations, which represented various mechanisms. Four kinds of loads, i.e. 

constant power (P), constant current (I), constant impedance (Z), exponential (E), 

or any combination of them (ZIPE) have been modeled [57]. The results obtained 

from COSMIC model were compared with that from PowerWorld on IEEE 9-bus 

power system [58]. Another simulation has been made and the results were 

compared with a simple dc power-flow QSS model. The cascading processes 

had good consistency during the early stage between two models, while the 

simulation was substantially different during later stages. 

1.2.4 Complex Network Theory Approaches 

Many literature and researches focus on the propagation of cascading 

outage in complex networks that is partially inspired by the propagation of 

failures and congestion in Internets [59], [60], [61]. From the statistically results, it 

is found that power girds have the characteristics of power laws and criticality, 

which suggests the strong connection between the statistical characteristics of 

the topology of the network and the dynamics of cascading. The models consider 

flows of discrete packets that are injected and removed from all nodes and 

transfer the packets along the shortest distance paths between any two nodes. 

The criticality of links or nodes can be quantified by the concept of 

“betweenness”. It is proportional to the number of shortest distance paths 

through the link or node. Based on complex network theory, these models 

abstract the power grid as undirected network or directed network which is 

consisting with vertexes and edges to study the statistical characteristics of 

power grids. These models are very different from the power system models. 

Cascading phase transitions and the vulnerability of network have been studied 

in [62], [63], and [64]. It was found that the typical power girds are small-world 

networks in [65]. Later, some researches have studies power grids based on 

complex network theory by considering more properties and characteristics of 

power girds.  By considering the electrical distances in power systems, it was 

found that the power systems have a scale free structure [66]. Topological graph 

concept has been proposed that was more consistent with the patterns of power 
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system generation and load [67]. An “influence model” has been introduced in 

[68]. It is a tree network that representing the influences between idealized 

components abstractly. Components can be failed or operational according to a 

Markov model that represents both internal component failure and repair 

processes and influences between components that cause failure propagation. A 

Markov model has been proposed for nodal components in [69], it was found that 

the outages can propagate along the transmission lines of power networks with a 

fixed probability.  

1.2.5 Interdependent Approaches 

Analysis of interdependent networks has been done for many years in 

various areas [70]. With the increased coupling between power grid and cyber or 

communication network, the risk between the interdependent networks also 

increases. The possible outages of control systems connecting to the cyber 

networks such as SCADA can contribute to the propagation of cascading 

outages between interdependent networks. At the same time, cyber attack is 

happening frequently in the environment of smart grid [71]. The typical event 

happened in Ukraine in 2015 [72]. The attack on the cyber network caused the 

SCADA distribution management system to be controlled remotely and some 

substations were disconnected for several hours. This attack brought much 

influence to many areas in Ukraine. With the coupling between power grid and 

cyber network, one outage in cyber network may propagate to power grid and 

cause the devices and equipment in power grid to be out of function. Risk 

assessment for interdependent networks has been studies in some researches 

[73-77]. It is still a big challenge since many mechanisms are involved from 

power grid and cyber network. 

1)  Complex Network-Based Interdependent Models 

In real world, there are many interdependent infrastructures. We are 

familiar with some of them such as economic, transportation, and Internet 

networks. Complex network theory has been widely used in the study of these 
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areas [78-79]. The coupling between power grid and cyber network has caused 

much attention [80]. Some researchers begin to investigate the interdependence 

between power grid and cyber network with complex network theory.  

An interdependent model has been introduced in [81], which was used for 

the analysis of robustness of interdependent networks with the propagation of 

cascading outages. This model was tested on a power grid and an Internet 

network involved in Italy blackout happened in 2003. The results showed that by 

removing a set of critical nodes, the cascading outage would be triggered in the 

two interdependent networks and caused a complete fragmentation finally. An 

analytic solution can be obtained with this model. An improved interdependent 

model was proposed in [82], it was used to analyze the robustness of power gird 

with random multiple support-dependence relations. The test results showed that 

the similar conclusion can be obtained from the interdependent networks when 

compared with that from the single networks. An interdependent model was 

introduced in [83], it was used for designing some strategies to mitigate the 

propagation of cascading outages in interdependent networks. The model was 

tested on a power grid and an Internet network involved in Italy blackout 

happened in 2003. It was found that the cascading outage in interdependent 

networks can be suppressed by selecting a small number of autonomous nodes. 

The above models are useful to study the general and overview property of 

interdependent networks but they fail to consider properties of power gird such 

as Kirchhoff laws. Some electrical properties have been considered in the 

coupling model proposed in [84], and the model considered power grid and the 

supporting Control and Communication Network (CCN). For power gird, 

substation and generator were considered. For CCN, the router was considered. 

The minimum number of nodes from both networks was calculated whose fail 

can totally destroy the interdependent networks. A new interdependent model 

was proposed to involve there networks, i.e. power grid, communication network, 

and interdependency network [85]. A sensitivity analysis was performed to 

evaluate the mitigating method in the model. More recently, a more 
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comprehensive model has been proposed in [86]. The model used a mesh 

network that considered power system characteristics. Moreover, bidirectional 

links including data uploading and command downloading channels were 

modeled. These links were supposed to connect all cyber network nodes as well 

as a corresponding physical node in power grids. The fragility of the coupling 

model has been studied under various cyber-attacks, such as denial-of-service 

(DoS) attacks, replay attacks and false data injection attacks. Load shedding and 

relay protection have been involved in the model. 

2)  Flocking-Based Hierarchical Cyber-Physical Models 

A hierarchical cyber-physical multi-agent model of smart grid based on 

flocking theory has been presented in [87-88]. The model considered dynamic 

nodes (generators in this model), PMU and local cyber-controller. The frequency, 

phase angle and other related parameters were involved in the generators which 

were regarded as physical parts. PMU and local cyber-controller served as cyber 

elements. The model concentrated on control strategies for robustness and 

resilience of a coupling system. The potential performance improvement has 

been tested using New England 39-bus power system with various faults and 

communication delays. 

3)  Inter-Dependent Markov Chain Models 

A probabilistic cascading outage analysis framework was provided by the 

Inter-Dependent Markov Chain (IDMC) model to study the effects of 

interdependencies among power grid and physical networks. The IDMC was 

introduced by [89] and it demonstrated that interdependencies between two 

systems can affect each other on distribution sizes of outages significantly. The 

results also showed that systems with exponentially distributed outages sizes 

tend to be less robust as evidenced by the power-law distributed outage sizes for 

the two networks. It assumed that the communication network was more 

vulnerable when an outage occurred, which would increase the probability of 
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outage in power grid. It was also found that when power system components 

failed, it may trigger cyber networks as well with a given probability. 

1.2.6  Other Approaches 

1)   Potential Cascading Models 

Physical and Operational Margins (POM) is based on AC power flow. The 

Potential Cascading Models (PCM) is an integrated function of POM [90]. With 

the initial events, the following events can be simulated with this model. For 

selecting the initial events, cluster approach was used to select the N-1 or N-2 

contingencies. This model was tested on US 2007 Eastern Interconnection 

model with summer peak load. The previous manually analysis was consistent 

with the result obtained. And some unidentified potentially cascading-initiating 

possibilities were found. The model used the same data to test remedial actions 

in [91]. The remedial actions such as active and reactive power dispatch, phase-

shifter adjustment, and transformer tap change, emergency load shedding, line 

switching, and reactor and capacitor switching were applied at each stage during 

the process of cascading outage until the propagation of cascading outage has 

been fully mitigated [92]. It showed that all identified potential cascading outage 

can be stopped using the proposed remedial actions.  

2)  Historical Data-Based Models 

The main purpose of historical data-based models was to reproduce the 

history blackout events with accurate approximation. The models can be 

modified if there is obvious mismatch between the real disturbance data and 

reproduced results. This model would be very helpful for deeply understanding 

the blackout and cascading outages. An event was simulated and reproduced by 

using Electric Power Research Institute (EPRI) ETMSP models [93]. The tested 

event happened on August 10, 1996, the location is in western North America. 

Around 7.49 million people were affected with loss of 30,390 MW of load. In this 

study, the standard WSCC dynamic data was used to reproduce the simulation 

result for this event, however, the result was far away from the real data. Some 
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modifications were made on the data and models and then the simulation results 

could match well with the real data. Many factors that contribute to cascading 

outages need to be considered in the simulation and analysis of cascading 

outages. However, historical data-based models may not be the best models to 

analyze the cascading outage. 

3)  Hidden Failure Models 

Hidden Failure model has been proposed in [94] and hidden failure plays 

important role to the propagation of cascading outages. With the propagation of 

outages, there will be overloaded line in the power system and the lines 

connecting to the overloaded line are exposed to the unexpected tripping. 

Generally, hidden failure model is based on DC power flow. The influences of 

critical factors such as hidden failure probability function, spinning reserve 

capacity, system load level, and power flow distribution were investigated. Critical 

protection relays in the power system can be identified by fast simulation and 

random search. The model was tested on WSCC 179-bus power system with 

mitigation approaches and risk assessments being studied. 

The comparisons between different models and approaches are 

summarized by Table 1-3 [95].  

 

Table 1-3. Comparison of the Models and Approaches of Cascading Outages. 

 Models Advantages Disadvantages 

High-Level 
Statistic 
Approaches 
 

CASCADE 
Models 

Failure probability is related to load level. 

Ignores all 
details of 
cascading. 

Branching 
Process Models 

Can be regarded as an improved 
CASCADE model. 
Consider each failure component from 
early stages through a given distribution.  

Interaction 
Model 

Quantify how interactions between 
component failures. 
Probabilistic method to generate new 
samples of cascading outages. 

Stochastic 
Simulation 
Approaches 

PRACTICE 
Models 

“Single-path” mode and “multi-path” 
mode introduced. 
Event-tree-based approach adopted.  

Fail to consider 
dynamic 
instability and 
cascading 
details. 

Markov Chain 
Models 

Non-locally propagation illustrated. 
Enable quantitative risk assessment. 
Simple and tractable. 



 

21 
 

Table 1-3. Continued. 

 Models Advantages Disadvantages 

Quasi-Dynamic 
and Dynamic 
Simulation 
Approaches 

OPA Models 

Take into consideration the effects of 
dispatching, automation, communication, 
relay protection, operation mode and 
planning. 
Tree contact, failure of lines due to line 
heating, and UVM modeled. 

Slow 
simulation. 
Detailed power 
system data 
required. 

Multi-timescale 
Quasi-Dynamic 
Model 

Employ quasi-dynamic approach. 
Approximate time evolution considered. 
Improved re-dispatch simulation. 

Manchester 
Models 

AC power flow adopted.  
Monte Carlo methods are applied to risk 
assessment.  

TRELSS Model 

Take into account actions of breakers. 
Voltage problems modeled using quasi-
steady state AC power flow. 

ASSESS Model 

Security-constrained AC optimal power 
flow provided.  
Using quasi-steady state simulator to 
model dynamics of system. 
Modeling controls in system through full 
time-domain simulator. 
  Dynamic PRA 

Model 

Two levels of cascading outage 
simulated using two different models. 
 

 

 

COSMIC Model 

Consider non-linear dynamic 
mechanisms. 
Various load and relay modeled. 

 

Complex 
Network Theory 
Approaches 

Topological 
Models 

 
Quickly discover the unexpected 
emergence of collective behavior. 

Lack of 
electrical 
features of 
power systems. 

Interdependent 
Approaches 

Complex 
Network-Based 
Interdependent 
Models 

Interdependencies depicted. 
Computer and cyber risks considered. 

Difficult to 
validate. 
Detailed 
mechanisms 
ignored. 

Flocking-Based 
Hierarchical 
Cyber-Physical 
Models 

Frequency, phase angle, and other 
related parameters involved. 
Control strategies provided. 

Inter-Dependent 
Markov Chain 
Models 

Enable a system-level prediction with 
tractable details of the system. 
Dynamic nodes, PMU and local cyber-
controller modeled. 

Other 
Approaches 

Potential 
Cascading 
Models 

“Cluster” approach employed.  
Aim at predicting potential cascading 
outages.  Focus only part 

of cascading 
outage 
mechanisms. 

Historical Data-
Based Models 

Accurately reproduce history events. 
Complementary to existing models.  

Hidden Failure 
Models 

Hidden Failure and generator re-dispatch 
considered. 
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1.3  Contributions of this Work  

The main challenges for the modeling, simulation and analysis of 

cascading outages are: 

1) The detailed process of cascading outages in a power system cannot 

be captured accurately by existing steady-state approaches due to ignoring 

dynamics under outages and control actions. Although dynamic simulation can 

provide more detailed dynamic information but its major drawback is intense time 

consumption for large system models. Also, existing power system models are 

not validated well for mid-term or long-term power system simulations over an 

extended time period of tens of minutes to several hours, which, however, are 

the typical time spans for the whole process of cascading outages. Thus, power 

flow based steady-state or quasi-dynamic simulation models are acceptable for 

representing the cascading process at least for the early stage of cascading 

outages since transient behaviors of a power system fade away and system 

often reaches its steady state quickly. Therefore this thesis focuses on the 

development of steady-state approaches for the modeling, simulation, and 

analysis of cascading outages that are able to provide important insights on 

dynamic behaviors of the system under outages and control. The existing steady-

state approaches for cascading outages are mainly for offline analysis. This 

thesis will target at online simulation and analysis of cascading outages for 

proactive mitigation control against a power blackout.  

2) Frequency is an important indicator of the real-time balance between 

active powers of the generation and load in a power system, especially during 

cascading outages. Abnormal frequency may trigger under-frequency load 

shedding (UFLS) and generator frequency protection, causing a large amount of 

loss in generation and load, so it is a significant contributing factor of cascading 

outages and blackouts. However, frequency is seldom considered yet in existing 

steady-state approaches for the simulation and analysis of cascading outages. 
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This thesis introduces the system frequency deviation into the power flow model 

so that frequency-related outages and control actions can be simulated. 

3) Various remedial and emergency actions, including load and generator 

tripping, excitation controls, and intentional islanding, are deployed to prevent 

cascading blackouts. The intentional or active islanding method is a good way for 

mitigation of cascading outages. The computational efficiency of these methods 

is the remaining challenge.  

The main focus of this thesis is for the three challenges mentioned above. 

The contributions of this thesis are summarized by: 

1) The framework of a multi-layer interaction graph is proposed for the 

monitoring and mitigation of cascading outages. This multi-layer interaction graph 

can be constructed offline based on a large number of samples of cascades with 

detailed stated-state models. It can be used online for monitoring and mitigating 

cascading outages.  

2)  A novel steady-state approach for the simulation of cascading outages 

is proposed considering frequency. By using this approach, the propagation of 

cascading outages can be captured more accurately. 

3)  An online strategy of critical component-based active islanding is 

proposed that isolates outages within a designed area so as to reduce the 

cascading outage risk of the system.  
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CHAPTER TWO  

MULTI-LAYER INTERACTION GRAPH FOR SIMULATION 

AND ANALYSIS OF CASCADING OUTAGES 

2.1 Introduction 

The high computational complexity for simulation of cascading outages 

cannot meet the requirements for online applications. Thus, an advisable 

approach for online analysis and mitigation of cascading outages would be 

utilization of a high-level model that is established offline directly from a 

comprehensive database on historical or simulated cascading events. The 

“influence model” which is a tree network is proposed to quantify the influences 

between the components of network [68]. Similar to this general idea, [96] 

quantifies the interactions between transmission lines by line interaction graph in 

order to analyze cascading failures. Ref. [27] constructs an interaction network 

from a database of cascade outages to capture key components and key links 

between component outages that play critical roles in outage propagation. The 

interaction network is useful for understanding the general patterns of outage 

propagation and has potentials in online applications. Then this interaction 

network can be combined with online monitoring and mitigation of cascading 

outages. The valuable information extracted from the samples of cascading 

outages includes the outage components involved, propagation paths of outages, 

amounts of load shedding, geographic distances between two outages, etc., 

which if presented together can provide system operators with a comprehensive 

picture on the propagation patterns of outages and take effective control actions.  

This chapter first demonstrates the application of the interaction model 

and interaction graph to a realistic Northeastern Power Coordinating Council 

(NPCC) power system in Section 2.2 [97]. Then this chapter proposes a multi-

layer interaction graph [98] as the extension and generalization of the single-

layer interaction network in [27]. Different from that interaction network, this multi-
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layer interaction graph integrates multiple layers that respectively identify the key 

intra-layer links and components in each layer contributing the most to outage 

propagation from various perspectives, e.g. the number of line outages, the 

amount of load shedding and the electrical distance on outage propagation. 

Besides, key inter-layer links that connect components from different layers are 

also defined to model the transition from one type of consequences to another 

type. All the key intra-layer links and components and key inter-layer links and 

components together provide comprehensive information on the dominant 

outage propagation patterns, based on which effective mitigation measures can 

be further developed. Section 2.3 introduces the proposed multi-layer interaction 

graph and the method for identifying key intra- and inter-layer links and 

components. Section 2.4 proposes multiple strategies to mitigate the propagation 

of cascading outages and validates the proposed multi-layer interaction graph. 

Section 2.5 proposes a method to determine the minimum number of samples of 

cascading outages needed for constructing a reliable multi-layer interaction 

graph. Section 2.6 demonstrates the multi-layer interaction graph obtained from a 

simulated database of cascading outages on a Northeastern Power Coordinating 

Council (NPCC) 48-machine 140-bus system. Finally conclusions are drawn in 

Section 2.7. 

2.2  Demonstration of Interaction Graph and Interaction Model on 

the NPCC Power System 

2.2.1 Original Cascades and Simulated Cascades 

In this chapter, “original cascades” are the cascading outage sequences 

from utilities or generated by detailed cascading outage models while “simulated 

cascades” are the cascading outages sequences produced directly by the 

interaction model that is built from “original cascades”. 

2.2.2 Interaction Matrix and Interaction Graph 
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The interaction matrix B determines how components (e.g. lines) interact 

with each other based on the original cascades. The nonzero element bij of B is 

the empirical probability that the failure of component i triggers the failure of 

component j. The interaction matrix can be represented by the interaction 

network or graph ( , )C L , for which each link corresponds to one nonzero element 

in B and represents that a failure of the source vertex component causes the 

failure of the destination vertex component with nonzero probability. The vertex 

set C represents all components of the system.  

2.2.3 Identification of Key Links and Components 

In [27] the link weight Il is defined to indicate the contribution of a link l to 

the propagation of cascading outages. The link weight is actually the expected 

value of the number of failures that are propagated through the link. Then, the set 

of key links keyL  can be obtained by  

                                                                                 
max{ | }key

l l lL l I I                                                                                 (2.1) 

where l >0 is a constant to identify the key links with large link weight, max

lI  is the 

largest link weight of all links. 

The vertex out-strength of the interaction network indicating how much a 

component i influences another is         

                                                        
( )out

out

i l

l L i

S I


                                                          (2.2) 

where Lout(i) is the set of links starting from vertex i. The set of key components 

Ckey which contribute mostly to the propagation of cascading outages can be 

obtained by 

       
,max{ | }key out out

i s iC i S S                                                               (2.3) 

where s >0 is a constant to identify key components with large out-strengths, 

and 
max,out

iS  is the largest value of all components. 

2.2.4 Interaction Model  
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As in [27], an interaction model can be used to efficiently simulate 

cascades based on the initial tripping probability of each component and the 

interaction matrix B. All components are assumed to be initially operating and 

each component fails with a small probability. The component 

failures then cause other component failures independently according to the 

empirical probability in interaction matrix B. 

2.2.5 Mitigation Strategies of Cascading outages  

Since key links contribute much to propagation of cascading outages, 

which may be mitigated by weakening the corresponding element in interaction 

matrix B. Thus, mitigation strategies may be suggested, e.g. blocking relays on 

the destination vertices and even controlled islanding [99] to break some key 

lines and isolate cascades. A random mitigation strategy means weakening 

elements in B randomly while an intentional mitigation strategy chooses key links 

in matrix B to weaken. Subsection 2.2.7 will investigate effectiveness of 

mitigation strategies in reducing risks of cascading outages.  

2.2.6  Determining The Line Flow Limits  

In order to apply the interaction model to the NPCC test bed, we first 

generate original cascades by using the fast dynamic process of AC-OPA model 

for which reasonable line flow limits as important parameters are needed. In [40], 

the line flow limits are determined by running the fast dynamics of OPA and the 

slow dynamics of OPA on a base load level that together emulate a long-term 

power system planning process to selectively upgrade lines in response to their 

involvements in daily failures starting from initial guesses of the limits. Then the 

line flow limits at an expected load level (either the base load level or a future 

level) are determined by 

                                          /DC k m

i iLimit Limit                                                        (2.4)          

where 
DC

iLimit represents the line flow limit of component i at the expected load 

level, 
k

iLimit  is the line flow limit of component i on the k-th simulation day, >1 is 
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a constant, representing mean load daily growth factor, and mk. The line flow 

limits to be determined are for the base load level if m=k, or a targeting future 

load level if m<k. In this chapter, satisfaction to the N-1 criterion on each 

simulation day is not required. However, the OPA algorithm can easily be 

modified to consider the N-1 criterion. For example, [100] extended the OPA 

simulation to address the N-1 criterion.  

Fig. 2-1 describes an OPA-based method for obtaining the line flow limits. 

The advantage of using DC-OPA is fast and easy to solve. However, such a DC-

OPA method when determining line flow limits does not consider the influence of 

reactive power. In contrast, the fast dynamic process of AC- OPA to produce a 

database of original cascades does consider reactive power and voltage 

variations. That cause some limits from DC-OPA to be violated at high 

probabilities for lines carrying heavy reactive power flows, e.g. those supporting 

load center areas. 

 

 
Figure 2-1. Flow chart of the DC-OPA method for line flow limits. 

 

Here we have to mention that for a power system, if each bus has a high 

power factor (>0.76 for the IEEE 118-bus system studied in [20] and [27]), the 

impact of reactive power on violations of the line flow limits from the DC-OPA 
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method during the fast dynamic process of AC-OPA is minor. In that case, the 

limits from the DC-OPA method can directly be used. However, for the NPCC 

test bed, there are a few load buses with very low power factors, e.g. buses 3, 92, 

95 and 114 since in those areas, there are a few lines carrying heavy reactive 

power flows to support voltage. The limits from the DC-OPA method will be 

violated in the fast dynamic process of AC-OPA. Therefore, for some power 

system like the NPCC test bed, we need to revise the line flow limits obtained by 

DC-OPA based method using (2.5) to give considerations to the impact from 

reactive power, where AC

iLimit  and DC

iLimit are respectively a corrected line flow 

limit and the limit obtained from the original DC-OPA method, and Qi is the 

planned reactive power flow of component i at the expected load level, which 

may approximately be estimated by, e.g., the reactive power flow at the base 

load level multiplied by k-m if there is no better knowledge on it.  

                                             
2 2( )AC DC

i i iLimit Limit Q                               (2.5) 

Alternatively, an AC-OPA method may substitute AC OPF for DC OPF in 

the procedure of Fig. 2-1 for more accurate limits addressing reactive power. 

However, that will cause greatly increased computation burdens but the limits 

obtained will have similar statistical properties with the limits obtained by the 

aforementioned modified DC-OPA method. 

2.2.7  Simulation Results 

1) Determining Line Flow Limits for the NPCC Test Bed  

The original NPCC 140-bus, 48-machine, 233-branch model comes from 

the Power System Toolbox [101] and represents the backbone transmission of 

the northeast region of the Eastern Interconnection, which was involved in the 

2003 blackout event. The base load level of the model is 28GW. We use 

constant P/Q load models. The first task is to obtain a set of reasonable line flow 

limits for that base load level such that a test bed is developed for cascading 

outages simulation.  
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Figure 2-2. NPCC power system test bed. 

 

Table 2-1. Information of Parameters. 

Parameter DC-OPA AC-OPA Remark 

No. of days 64000 10000 Simulation days 
λ 1.0005 - Daily load and generation growth factor 
µ 1.005 - Line improvement factor 
γ 1.67 1.67 Load variability 
p0 0.0001 0.0001 Probability of initial line outage 

 
 

 

 
Figure 2-3. Simulation results of total line flow limits (the upper one is the total line flow limits for 
the current load level, and the bottom one is the total line flow limits after converting to the basic 
load level). 
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The 2nd column of Table 2-1 gives main parameters of the original DC-

OPA method. Each initial line flow limit takes double of the base line flow. After a 

set of line flow limits DC

iLimit  is obtained. The final line flow limits AC

iLimit are 

calculated from (2.5). Then, the test bed is simulated by an AC-OPA based fast 

dynamic process to generate the original cascades, whose parameters are given 

in the 3rd column. 

Fig. 2-3 gives the total line flow limit from the original DC-OPA method. 

From it, a conclusion is that the total line flow limit is stable after the number of 

simulation days reaches 10000 when two strengths, the load growth to trigger 

cascades and the line upgrading to reduce the risk of cascades, reach their 

balance, i.e. the equilibrium of the slow dynamic process. We compared the 

average variation of each line limit between two stages, i.e. the 10000-th day and 

the 64000-th day. The variation is as small as 6.9% so that we may ignore the 

fluctuation of the total line limit after the 10000-th day and adopt the set of line 

flow limits on that day as the initial limits. 

 

Table 2-2. Line Flow Limits for Original DC-OPA Method. 

Line No. 
MW and MVar flows 

at base load level 
Line flow limit 

by DC-OPA 
Updated limit 

4 3.99MW,43.83Mvar 24.93MVA 50.42MVA 
5 5.07MW,45.91Mvar 24.17MVA 51.88MVA 

223 51.44MW,163.09Mvar 126.09MVA 206.15MVA 

 

Reactive powers of lines 4, 5 and 223 are found larger than the line flow 

limits from the original DC-OPA method. Table 2-2 gives those limits, their 

updated values by using (2.5), and the real and reactive power flows of those 

lines at the base load level for purpose. The updated line flow limits will be used 

in simulation to create original cascades. 

2) Building the Interaction Model 
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Table 2-3. Key Links of NPCC Test Bed. 

i  →  j Line pairs Il 
199 → 198 (126,125)→(126,124) 4156.7 

38 → 6 (33,32)→(4,1) 3005.5 

112 → 105 (81,78)→(75,76) 2041.7 

19 → 24 (13,12)→(15,14) 1549.7 
38 → 8 (33,32)→(5,31) 1377.1 

6  → 36 (4,1)→(31,30) 1330.9 

21 → 6 (14,13)→(4,1) 1278.2 

198  → 201 (126,124)→(127,126) 1277.7 

198 → 204 (126,124)→(128,126) 1254.8 

198 → 225 (126,124)→(138,126) 1253.2 

112 → 197 (81,78)→(125,124) 1186.6 

38 → 42 (33,32)→(35,34) 928.6 

38 → 40 (33,32)→(34,33) 893.5 

18 → 24 (12,7)→(15,14) 832.6 

24 → 29 (15,14)→(18,17) 816.4 

19 → 21 (13,12)→(14,13) 784.0 

105 → 215 (75,76)→(134,132) 780.3 

19 → 23 (13,12)→(15,7) 749.6 

38 → 7 (33,32)→(5,4) 735.1 

32 → 31 (20,19)→(20,17) 721.9 

114 → 166 (83,112)→(113,112) 672.9 

197 → 198 (125,124)→(126,124) 669.1 

162 → 163 (111,108)→(111,109) 650.4 

6 → 35 (4,1)→(30,29) 643.7 

197 → 203 (125,124)→(128,125) 631.0 

 

 

Table 2-4. Key Components of NPCC Test Bed. 

Key component Line   out

iS   

38 (33,32) 8822.2 
6 (4,1) 7339.7 
199 (126,125) 5914.4 
112 (81,78) 5586.7 
105 (75,76) 4473.7 
198 (126,124) 4097.9 
19 (13,12) 3664.8 
24 (15,14) 3302.1 
166 (113,112) 2974.0 
21 (14,13) 2610.3 
8 (5,31) 1994.5 
18 (12,7) 1892.9 
197 (125,124) 1583.9 
215 (134,132) 1580.8 
35 (30,29) 1470.1 
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Following the algorithm of the interaction model, key links and 

components that play important roles in the propagation of cascading outages 

are identified. Those identified key links are actually line pairs in the NPCC test 

bed, and their weights Il for the original cascades are listed in Table 2-3. 

Complementary cumulative probability distribution of link weight of all links 

is displayed in Fig. 2-4. Both l  and s  take 0.15. Key links only take 0.7% of all 

links of the system but the sum of their weights cover 38.5% of the total weights 

of all links. These very few links contribute quite a lot to the propagation of 

cascading outages and together capture highly concentrated key information on 

cascading outages of the NPCC test bed. The identified key components are 

listed in Table 2-4. Failures of these components are the most involved ones in 

cascades. System operators should pay more attentions to those components. 

The number of key components is 15, i.e. 6.43% of all components for the 

original cascades. However, the sum of the out-strengths of key components is 

68.8% of that for all involved components. 

 

 
Figure 2-4. Complementary cumulative probability distribution of link weight. 



 

34 
 

139

133

134

135
132

128

92

120

118

123

117

119
114 89

112
11383

85

86

87

115

116

122

97
96

95

93

94

111
91

13

24

14

25

12

7 15
8

18

17

26
20

19

23

11

22

16

27

29 28

930

6531

4

3

2

121

33

3235

34

73

39

3738

40

41

42

44
45

43

49

77
76

75

80

81125

78

79

82

110

108

109

107

104106

131 130

127
124

129

52

51

61

63

62
58

60 68

66

137

136
138

57

56

53

67

65

64

48
47

50

46

126

69
70

71
72

98

121

55

54

101

102

103

100
99

36

140

59

84

105

10

90

 
Figure 2-5. Key links (red arrows), key components (green lines), and other involved components 
(blue lines) with the rest of the system (faded). 
 

Fig. 2-5 highlights the key links (red arrows), key components (green 

lines) and other involved components (blue lines), which together determine the 

areas that are most vulnerable to cascading outages. Actually, those areas 

match very well the geographical locations of load center areas in the actual 

NPCC system such as the Connecticut load center and New York City load 

center. From those identified links and components, propagation paths of 

cascading outages are indicated, e.g. the path (75, 76) → (134, 132), (13, 14) → 

(4, 1) and (15, 14) → (18, 17). Observations from Fig. 2-5 on the propagation 

paths are: first, the source and destination vertices of most key links, e.g. at an 

earlier stage of a propagation path, are lines geographically close to each other, 

which indicates that cascading outages often initiate from local problems; 

second, however, at the later stage of a path, some key links may have source 

and destination vertices far away from each other, which means that, at a later 

stage, cascading outages develop to a wider-area or even system-wide problem. 

The second observation indicates that the power system exhibits more nonlinear 

“butterflyeffect” behaviors in a later stage of cascading outages, which are 
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captured by the AC-OPA based fast dynamic process for creating the original 

cascades and consequently can be captured by the interaction model. This 

property is similar to the discussion in [27]. Those observations suggest that 

mitigation strategies should be taken before cascading outages develop to a 

system-wide problem. 

3) Comparison between Original and Simulated Cascades 

 

 
Figure 2-6. Probability distributions of the total number of line failed for original and simulated 
cascades. 

 

The probability distributions of the total number of line outages 

respectively for original cascades and simulated cascades are shown in Fig. 2-6. 

We simulate 20 times and obtain the average probability distribution and the 

standard deviations (vertical axis) for the simulated cascades. It is found that 

those two distributions basically match especially for bigger cascades (with >10 

lines failed). The standard deviations for the simulated cascades are small. It 

indicates that the interaction model authentically captures the statistical 

properties of the original cascades. 

4) Mitigation Strategies for Cascading Outages 
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Figure 2-7. Probability distributions of the total number of line failed for original and simulated 
cascades under different mitigation strategies. 

 

Intentional mitigation strategies that block some relays suggested from the 

interaction model are tested and compared with random relay blocking 

strategies. From Fig. 2-7, the risk of large-scale cascades is greatly reduced with 

the intentional strategies while that for the random strategies is not obvious, 

which suggests the identified key links indeed play important roles in the 

propagation of cascading outages. 

2.3  Multi-Layer Interaction Graph 

The schematic diagram of the multi-layer interaction graph is illustrated in 

Fig. 2-8, which has three layers respectively in terms of the number of line 

outages, the amount of load shedding and the electrical distance of outage 

propagation. In each layer of Fig. 2-8, the key intra-layer links and components 

for one power grid are highlighted respectively by thick arrows and lines. Note 

that the number of key intra-layer links and components can vary based on 

different selection thresholds, which will be discussed later.  
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Figure 2-8. Schematic diagram on how a scenario of cascade outages propagates in and across 

multiple layers of the interaction graph for the NPCC power system. (thick red arrows and green 

lines are key intra-layer links and key intra-layer components; broken lines with arrows indicate 

transitions between layers) 

 

 

C1 C2 C3

l1 l2 l3
C4

l4
C5

 
 

Figure 2-9. Path of a sample scenario of cascade outages. 
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Fig. 2-8 presents a simple scenario on the propagation of cascading 

outages within and across layers. As shown in Fig. 2-9, the path of that scenario 

involves five components C1, C2,..., and C5 connected by four directed intra-layer 

links l1, l2, l3, and l4, which respectively belong to the first, second, third and 

second layers. This entire process of cascading outages can only be observed 

from the multi-layer interaction graph while any single-layer can only provide 

partial information for the entire process. The multi-layer interaction graph 

generated offline provides a big picture on propagation patterns of cascading 

outages, which is valuable for the system operators to take effective control 

actions. 

In this section, three control strategies that weaken key intra-layer links 

located in each layer are studied to mitigate cascading outages respectively from 

three perspectives, i.e. the number of line outages, the amount of load shedding, 

and the propagated electrical distance. Besides, integrated mitigation strategies 

involving key intra-layer links from different layers can be applied. 

2.3.1 Database of Cascades and Links 
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Figure 2-10. Schematic diagram of the cascades. 
 

 

Typically, the transmission lines or transformers can be considered as 

components. For simplicity, “cascade” in the rest of the chapter means one 

sample of cascading outages, whose outages are clustered into multiple 
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generations by time or sequence of outages. Each cascade starts with initial 

component outages in generation 1 and continues to generate outages in the 

following generations until there is no outage or the system collapses as 

illustrated by Fig. 2-10. Here Cij,m is the j-th component outage in generation i of 

the m-th cascade, and Loadi,j is the amount of load shedding at the i-th 

generation of the m-th cascade. 

Following the same structure as Fig. 2-10, a large number of independent 

cascades triggered by different initial component outages comprise the database 

of cascades. The component outages in one generation are considered to 

happen almost at the same time, whose sequence can be ignored. Thus, some 

causality between any two component outages respectively from two consecutive 

generations is hypothesized. A component outage Cij,m may potentially be 

caused by several component outages by going through all of the cascades, 

among which the one occurring the most times in the database is assumed to be 

the true cause of Cij,m in ref. [27]. Other links connecting the remaining 

component outages and Cij,m are regarded as the redundant links. Finally, the set 

of links is obtained and denoted by Ltotal. 

2.3.2 Link Weights for Different Layers 

Different link weights are defined for the three layers: 

 The link weight applied in the first layer is the empirical probability 

(denoted by Pl) of the source component outage causing the 

destination component outage [27].  

 The link weight in the second layer is the average amount of load 

shedding (denoted by Wl) triggered by the link. 

 The link weight of the third layer is the electrical distance (denoted by 

Zl) in terms of equivalent impedance between the source and 

destination component outages.  

1) Link Weight in Terms of the Number of Line Outages 

The link weight is calculated by 
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:l i j

l

i

N
P

N


                                                       (2.6) 

where :l i jN   is the number of occurrences for link l and Ni is the number of times 

of outages of the source component i over the entire database. 

2) Link Weight in Terms of the Amount of Load Shedding 

In each cascade, the initial outages propagate to subsequent outages in 

the following generations. For the m-th cascade in the database, the component 

outages in generation g-1 can produce subsequent outages in generation g 

resulting in Loadg,m of load shedding, which can be assigned to the links 

connecting the component outages in generation g-1 and g. The average amount 

of load shedding for link l in the m-th cascade is defined as         

                                                            
,

( 1, ),

g mm

l

g g m

Load
d

N 

                                                           (2.7) 

where Loadg,m represents the amount of load shedding at generation g of the m-

th cascade and N(g-1,g),m is the total number of links connecting generations g-1 

and g. From all of the cascades which involve link l, the average amount of load 

shedding caused by link l is defined as   

                                                                
1

lN
m

l

m
l

l

d

W
N




                                                           (2.8)                  

 

If the true causalities between consecutive generations are unknown, for 

simplicity, we may assume that those N(g-1,g),m links connecting generations g-1 

and g have the same amount of load shedding as shown by (2.7) and hence 

have uniform weights in one cascade. An alternative method may adopt non-

uniform link weights and calculate the link weight by  

                                                    
,

:

( 1, ),

( )

g mm i
l i j

g g m i

i C i

Load F
d

N F









                                             (2.9)       

where the source component i outage and destination component j outage are 

respectively in generations g-1 and g. Fi is the power flow of component i before 
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its outage and C(i) is the set of component outages at generation g-1. An 

interpretation of (2.9) is that the links starting from source component i which 

have large power flows before its outage will be assigned large link weights in 

that cascade, which is reasonable since the outage of component i may cause 

power flow redistribution of some heavily loaded lines nearby. 

3) Link Weight in Terms of Propagated Electrical Distance 

The NERC blackout report [2] shows that outages may propagate to next 

outages either near or far in the network and become widespread in a later stage 

of cascading outages. The statistical characterization of how cascading outages 

typically spread on the network is analyzed in [21] based on standard utility data. 

In this chapter, the links’ spatial spreading is quantified by the electrical distance 

defined by [102-103], which originally quantifies the distance between two buses 

in power systems. Here, we adapt it to quantify the electrical distance between 

two components (i.e. lines) as 

                                  
( , ) ( , )

,

min{ , , , }

2    { , },  { , }

s d s d s s s d d s d d

equ equ equ equ

i i i j j j i j i j i j i j

equ

s d s d

Z Z Z Z Z

Z Z Z Z i i j j      

 

    
                (2.10) 

Where ( , ) ( , )s d s di i i j j jZ   is the electrical distance for the link i→j with source 

component i and destination component j, 
s s

equ

i jZ , 
s d

equ

i jZ , 
d s

equ

i jZ , and 
d d

equ

i jZ  are four 

equivalent impedances which each start from a bus of the source component and 

end at a bus of the destination component as calculated by the above formula. 

Z is the -th row -th column entry of the network impedance matrix, and Z 

and Z are the -th and -th diagonal elements, respectively. 

2.3.3 Construction of Multi-Layer Interaction Graph 

The proposed multi-layer interaction graph has three layers. Each layer is 

comprised of key intra-layer links and components which contribute the most to 

outage propagation from one specific perspective, i.e. the number of line 

outages, the amount of load shedding, and the propagated electrical distance.  
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Figure 2-11. Subgraph influenced by a link in the first layer. 
 

For the first layer, a directed acyclic subgraph starting from the link i→j 

can be extracted from Ltotal as shown in Fig. 2-11, and this subgraph (denoted by 

C(i→j) ) is unique and comprised of all the components influenced by link i→j. To 

identify the key links, an index called the Cascading Outage Contribution (COC) 

is proposed to quantify the contribution of a link to propagation of outages in 

terms of the number of line outages. Given Ni times of component i outage, the 

expectation of the number of component j outages is                                                               

                                              j i ijE N P                                                   (2.11) 

where Pij is the empirical probability that the outage of component i causes the 

outage of component j. For any component ( )c C i j  , c j , the expectation of 

the number of outages given the times of its source component outage is 

                                                              
s sc c c jE E P                                                           (2.12) 

where sc  is the source outage of component c. Then define  

                                                       
( )

I

i j c

c C i j

COC E

 

                                                    (2.13)               

which quantifies the total expected value of component outages that propagate 

through link i→j. It can characterize the extent of the outage propagation in terms 

of the number of line outages. The larger I

i jCOC  , the more critical the link. The 

set of key links can be obtained from those having the largest weights, e.g.  

                                                 max|I I I

key l I lL l COC COC                                           (2.14)              
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where max

I

lCOC  is the largest value of COCI for all links in the database and 1> I

0 is the threshold. 

To quantify the contribution of component i to the propagation of outages, 

define the out-strength index (OS) as 

                                                          
( )

I I

i l

l i

OS COC


                                         (2.15)                                    

where ( )i  is the set of links starting from component i. The out-strength of a 

component quantifies how much a component influences the others components. 

The components with large OSI can cause great consequences and thus play 

crucial roles in the propagation of outages. The set of key components is 

obtained by selecting those components having the largest IOS ’s as 

                                                      max

I I I

key i I iC i OS OS                                       (2.16) 

where max

I

iOS  is the largest OSI for all components and 1> I 0  is the threshold.  

Note that if an isolated key component exists in one layer that is not 

involved in any key link, it should be removed from I

keyC  since it is not very useful 

to analyze the propagation of outages. The same handling is applied to II

keyC  and 

III

keyC  defined later. 
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Figure 2-12. Subgraph influenced by a link in the second layer. 
 

Using directed acyclic subgraph shown in Fig 2-12, the key links in the 

second layer can be identified by means of the COC of link i→j defined in (2.17) 
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to quantify the consequence with propagation of outages in terms of the amount 

of load shedding. 

                                                         
( )

II

i j l

l C i j

COC W

 

                                                   (2.17) 

where Wl is the average amount of load shedding triggered by link l.  
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Figure 2-13. Subgraph influenced by a link in the third layer. 

 

Similarly, using the subgraph in Fig. 2-13, the key links in the third layer 

are identified by the COC of link i→j defined in (2.18), where path

tD  is the total 

electrical distance for the t-th path starting from link i→j, Npath is the number of 

paths starting from component j, Gt is the number of links along the t-th path, and 

kZ  is the electrical distance for the k-th link along the t-th path. III

i jCOC   can 

quantify the average distance of outage propagation starting from link i→j. 

                                   
1

pathN

path

t
III t
i j

path

D

COC
N


 


,    where 

1

 
tG

path

t k

k

D Z


                        (2.18) 

The key links and components in the second and third layers can be 

identified by a method similar to (2.14)-(2.16). Their sets of key links and key 

components are denoted by II

keyL , II

keyC , III

keyL , and III

keyC ,
 
respectively. Note that the 

key links and key components within a single layer are called key intra-layer links 

and components in order to distinguish them with the following inter-layer links 

and inter-layer components.  
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In real-world power systems, for example, consider how the transmission 

line outages spread in the August 10 1996 Western interconnection blackout in 

[104]. Occurrences of early outages did not cause obviously severe 

consequences on the system but did cause some transitions underneath to 

increase vulnerability of the system. In this chapter, inter-layer links are also 

proposed in order to understand the transitioning of the outage propagation 

across different layers.  
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Figure 2-14. An inter-layer link between the first and second layers. 

 

Fig. 2-14 illustrates an inter-layer link connecting the first and second 

layers, where link i→j is an intra-layer link in the first layer and link k→h is an 

intra-layer link of the second layer. Link j→k is an inter-layer link starting with the 

destination component outage of the first link and ending at the source 

component outage of the second link. The total number of candidate inter-layer 

links between any two layers equals the product of the number of their key intra-

layer links. The following two steps can identify the key inter-layer links on the 

most frequent inter-layer transitions and the key inter-layer components involved 

in those transitions: 1) for any two layers s and d, select the top  % links from 

s d

total key keyL L L   as the key inter-layer links; 2) all components involved in the 
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source component outages of those key inter-layer links are defined as key inter-

layer components. 

2.4  Mitigation Strategies 

2.4.1 Weakening of Key Intra-Layer Links 

The propagation of cascading outages could be mitigated by weakening 

key intra-layer links [27]. When the source component of a key intra-layer link is 

tripped and causes the overloading of its destination component, that destination 

component will be tripped at a reduced probability to simulate intentional relay 

blocking as mitigation of outage propagation. In this way, cascades can be 

generated by simulations with that mitigation strategy.  

In this chapter, the following six mitigation strategies that weaken a 

number (denoted by K, e.g. 20-100) of intra-layer links from different 

perspectives are compared:  

 Strategy-LO: Weaken the top-K key intra-layer links in the first layer in 

terms of the number of line outages. 

 Strategy-LS: Weaken the top-K key intra-layer links in the second layer 

in terms of the amount of load shedding. 

 Strategy-ED: Weaken the top-K key intra-layer links in the third layer in 

terms of the propagated electrical distance. 

 Strategy-3L: Weaken the top-K/3 key intra-layer links of the three 

layers. 

 Strategy-LOLS: Weaken the top-K/2 key intra-layer links in the first 

layer and the top-K/2 key intra-layer links in the second layer in 

different stages of cascades. 

 Strategy-R: Weakening randomly selected K intra-layer links for 

comparison purposes. 

Strategy-LO, Strategy-LS, and Strategy-ED are single-layer mitigation 

strategies. Strategy-3L is an integrated mitigation strategy in which the key intra-

layer links are from the three layers. Strategy-LOLS is an integrated mitigation 



 

47 
 

strategy in which the key intra-layer links are from the first and second layers. 

The key intra-layer links from the two layers are weakened in different stages of 

cascading outages. The key intra-layer links in the first layer are weakened in the 

early stage (generation 1 to 2) of cascading outages, and the key intra-layer links 

from the second layer are weakened in the later stage (generations 2 to 3) of 

cascading outages.  

2.4.2 Validation of Mitigation Strategies 

To validate a mitigation strategy, simulation of cascading outages is 

performed with each of the above strategies to generate a new database of 

cascades. Then, compared to the original database without mitigation, each 

mitigation strategy is evaluated by the reduced proportion of the average number 

of line outages, the average amount of load shedding, or the average electrical 

distance of outage propagation for each cascade. More specifically, the 

propagated electrical distance for one cascade is 

                                                  

1

, 1

1

max{ }
genN

cascade g g

g

ED ED







                                     (2.19) 

where max{EDg,g+1} is the maximal electrical distance between generation g and 

g+1 by going through all of links connecting these two generations, and Ngen is 

the number of generations for one cascade. 

In general, a mitigation strategy that weakens the key intra-layer links from 

one layer can significantly mitigate the problem concerned by that layer 

compared to the random intra-layer link weakening and the key intra-layer link 

weakening for a different layer. It is anticipated that Strategy-LO can reduce the 

number of line outages much more effectively than Strategy-R, Strategy-LS, and 

Strategy-ED. Thus, the multi-layer interaction graph provides a way to choose 

the most effective strategy mitigating the most critical type of problems in 

cascading outages.  

2.5  Number of Cascades Needed for a Database 
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More cascades tend to contain more information about the property of 

cascading outages. As a result, the number of identified links will increase and 

the COCs and the rankings of links can change. However, the rankings of the 

top-TL key intra-layer links will stay unchanged after the number of cascades 

exceeds a threshold Mmin. Mmin can be determined by a procedure similar to the 

methods in [26] and [27]: gradually increasing the number of cascades, recording 

the set of top-TL key intra-layer links, and finding the smallest number of 

cascades beyond which the top key intra-layer links do not change. Specifically, 

for the multi-layer interaction graph, the following steps are taken to determine 

Mmin that make every layer have stable top-TL key intra-layer links. Because the 

set of inter-layer links depend on the components of the key intra-layer links, the 

resulting the set of inter-layer links are also stable. 

Let Mi, i=1, 2,…, TM be a series of numbers gradually increased by M as 

candidate numbers of cascades to be included into the database. ( )
LT iS M  is the 

set of top-TL key intra-layer links from Mi cascades. Define  

                                              1( ) | ( ) ( ) | /
L Li T i T i LR M S M S M T                                     (2.20)       

which gives the ratio between the number of common key intra-layer links from 

two consecutive numbers of cascades and TL. Then we calculate the standard 

deviation i of R(Mi) around Mi as (2.21). Then Mmin is determined as the smallest 

Mi with i  less than a given tolerance τ . 

                                2 1([ ( ), ( ), ( )]), 2i i i iR M R M R M i                             (2.21) 

The number of cascades needed is the maximum value among the Mmins 

for the three layers. 

2.6  Case Studies 

A database of 10000 independent cascades is produced by simulations in 

MATLAB using the improved DC OPA model in [39] on an NPCC 140-bus 

system shown in Fig. 2-15. The total time cost is about 13800 seconds on a 

desktop PC with Intel Core i7-3770K 3.40GHz and 4GB RAM. 
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Figure 2-15. NPCC 140-bus system. 

 

Line flow limits are critical parameters in the simulation of cascading 

outages. Here, the “N-1” security criterion is applied to the system and there is no 

overloaded line after any “N-1” contingency. Therefore the initial outages for 

simulations are selected from “N-k” (k≥2) contingencies in the NYISO area. The 

load variation at each load bus is assumed to follow uniform distribution in [0.95, 

1.05]. The probability of the line tripping depends on its loading according to 

Table 2-5 from [90]. 

 
 Table 2-5. Probability of Tripping with Line Loading. 

Line Loading (% of Limit) Probability of Tripping 

100 0.10 

110 0.30 

120 0.60 

130 0.80 

140 0.95 

150 1.00 

 

In the real-time operation environment, if initial outages have occurred and 

tend to spread to a wide area, the system operator needs to make an immediate 

decision to evaluate and mitigate the outages. It would be time consuming to 

simulate a single cascade in time domain using detailed and accurate models on 

all power system components, so it is impossible to online simulate many 

possible cascades starting from the same initial outages in order to predict how 
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the cascading outages might propagate. For example, for the NPCC 140-bus 

system, the time costs for even the powerflow-based DC OPA model and AC 

OPA model to simulate 100 cascades are 128s and 504s on a desktop PC. For a 

utility-scale power system having tens of thousands of buses, simulations on 

even powerflow-based models also become unacceptably slow. Thus, it is more 

reasonable to utilize the proposed interaction graph constructed based on a 

database of offline simulated cascades. The models to be used in offline 

simulation can be detailed sufficiently to consider protective actions and system 

dynamics over a wide range from transient dynamics to mid-term or long-term 

dynamics to ensure the credibility of the database. Thus, online simulation can 

be avoided and the real-time application of this interaction graph constructed 

from the database for real-time prediction will be fast and practical. 

2.6.1 A Multi-Layer Interaction Graph 

A multi-layer interaction graph with three layers is visualized in Figs. 2-16-

2-18. Each layer contains top-100 key intra-layer links and top-20 key intra-layer 

components. All components (i.e. transmission lines) of the NPCC system are 

represented by gray nodes (each located at the middle of the line), key intra-layer 

components are highlighted as green dots and key intra-layer links are 

represented by red arrows.  

Note that the multi-layer interaction graph may vary with changes on the 

system topology and load level. If the changes are large, e.g. global load 

variations on the whole system, the set of key intra-layer links and component in 

each layer can vary significantly. Subsection 2.6.3 compares the interaction 

graphs respectively from the original database and a new database of cascades 

considering global load variations on the whole system. 

Note that if the changes are small, e.g. slight load variations in a local 

area, most of key intra-layer links and components in other areas are still valid 

and important predictors on how outages may propagate. Thus, only some key 

intra-layer links and components in that local area need to be updated using the 

database having new cascades included. It will be investigated in the future work.  
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Figure 2-16. Top-100 key intra-layer links and top-20 key intra-layer components in terms of the 

number of line outages.  

 

 

 
 

Figure 2-17. Top-100 key intra-layer links and top-20 key intra-layer components in terms of the 
amount of load shedding (excluding 2 isolated components). 
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Figure 2-18. Top-100 key intra-layer links and top-20 key intra-layer components in terms of the 
propagated electrical distance (excluding 3 isolated components). 

 

The overlapped links between different layers are very few as listed in 

Table 2-6, indicating the independency of the three types of key intra-layer links.   

 

Table 2-6. Numbers of Overlapped Links between Different Layers. 

Number of Key Intra-
layer Links in Each 

Layer 

Number of Overlapped Links between 
Two layers 

1
st

 and 2
nd

 
Layers 

1
st

 and 3
rd

 
Layers 

2
nd 

and 3
rd

 
Layers 

20 0 0 0 
50 1 4 0 

100 4 7 7 

 

The numbers of occurrences for the top-100 key intra-layer links in 

different layers are given by Fig. 2-19. The key intra-layer links in the first layer 

has much more occurrences than the key intra-layer links in the second layer. It 

indicates that the links with large occurrences have high probabilities to be 

identified as the key intra-layer links of the first layer, which is reasonable from 

the definitions (2.11)-(2.13). Those links with a large number of occurrences have 

high probabilities to be identified as the key intra-layer links in the first layer. 

However, these links may not be identified as the key intra-layer links in terms of 
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the amount of load shedding. For the key intra-layer links in the second layer, 

although they occur much less often than those of the first and third layers, they 

contribute the most to the amount of load shedding. For the key intra-layer links 

in the third layer, the number of occurrences is distributed more dispersedly.  

 

 

Figure 2-19. Numbers of occurrences for key intra-layer links in different layers. 

 

 

Figure 2-20. Comparison for the assessment indices for the top-100 key intra-layer links in 
different layers (Index I - average number of line outages; Index II - average amount of load 
shedding; Index III- average propagated electrical distance). 

 

For a further comparison, the average number of line outages, the 

average amount of load shedding and the average propagated electrical distance 

are calculated as Indices I, II and III, respectively for the top-100 key links from 

different layers and then are normalized to [0,1] as shown in Fig. 2-20. The 

comparison confirms the distinct focuses of three layers; i.e. the index matching 

the focus of the layer has the highest value.  

2.6.2 Key Inter-Layer Links and Components  
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Cascading outages may propagate within a single layer of the interaction 

graph or may cross to a different layer directly or through an inter-layer link. It is 

important for the system operators to monitor the inter-layer transitioning since it 

indicates the consequences of outages becoming less monotype. Here the 

numbers of inter-layer links between different layers for different numbers of key 

intra-layer links are shown in Fig. 2-21. The number of inter-layer links increases 

a lot with the increase of the number of key intra-layer links. 

 

 

Figure 2-21. Numbers of inter-layer links for different numbers of key intra-layer links. 

 

Fig. 2-22 shows only the top-15 key intra-layer links in each layer and the 

key inter-layer links between different layers. The number of inter-layer links 

between the first and second layers, the first and third layers, and the second 

and third layers are 65, 22, and 16, respectively. The sets of key inter-layer links 

between different layers can be selected from the top =50% of candidate inter-

layer links. The number of key inter-layers between the first and second layers, 

the first and third layers, and the second and third layers are determined as 12, 

6, and 4, respectively. The numbers of key inter-layer components involved in the 

key inter-layer links between the first and second layers, the first and third layers, 

and the second and third layers are 7, 5, and 3, respectively, as highlighted in 

Fig. 2-22.  
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Figure 2-22. Schematic diagram of key inter-layer links, key inter-layer components, and key 

intra-layer links (key inter-layer links between the 1
st
 and 2

nd
 layers, between the 1

st
 and 3

rd
 

layers, and between the 2
nd

 and 3
rd

 layers are magenta, brown and cyan arrows, respectively; 

intra-layer links in each layer are red arrows; key inter-layer components involved in the key inter-

layer links between the 1
st
 and 2

nd
 layers, between the 1

st
  and 3

rd
 layers, and between the 2

nd
 

and 3
rd

 layers are orange, pink and black dots; key inter-layer components involved in the key 

inter-layer links between the 1
st
 and 3

rd
 layers are also located in the 1

st
 layer). 
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Note that the set of key inter-layers links depends on the selection of the 

key intra-layer links. An inter-layer link could become an intra-layer link in another 

case and vice versa. From the number of inter-layer links and key inter-layer links 

between different layers, we can find that the correlation between the first and 

second layers is tighter than any other two layers. Many inter-layer links connect 

the key intra-layer links in the first layer to those in the second layer. This 

observation can help to propose an integrated mitigation strategy by combing the 

key intra-layer links from the two layers and weaken them in different stages of 

cascading outages. 

2.6.3 Multi-Layer Interaction Graph for Increased System Load 

The variation of system topology, unit commitments and system load level 

will definitely affect the multi-layer interaction graph. Here the influence of the 

load variation on the multi-layer interaction graph is analyzed. Under this case, 

the load level of the system is scaled up by 10% which is uniformly added to 

each load bus of the system. The new database with the same number of 

cascades as the original database is generated for the new system load level. 

The three layers with key intra-layer links and components are shown by Figs. 2-

23-2-25. 

The identified key intra-layer links in each layer with 110% and 100% load 

levels of the system are compared. The numbers of overlapped links by 

comparing different numbers of key intra-layer links are shown in Fig. 2-26. From 

a sensitivity study on the number of overlapped links, the key intra-layer links in 

the first and second layers are more sensitive to the global load variation of the 

system than those in the third layer. 
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Figure 2-23. Top-100 key intra-layer links and top-20 key intra-layer components in terms of the 
number of line outages at 110% system load (red/blue arrows are overlapped/different links 
compared to 100% system load; green/yellow dots are overlapped/different components 
compared to 100% system load). 

 

 

Figure 2-24. Top-100 key intra-layer links and top-20 key intra-layer components in terms of the 
amount of load shedding with 110% system load. 
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Figure 2-25. Top-100 key intra-layer links and top-20 key intra-layer components in terms of the 
propagated electrical distance with 110% system load (excluding 7 isolated components). 

 

 

Figure 2-26.  Numbers of overlapped links for different numbers of key intra-layer links. 

 

 
Figure 2-27. Distribution of key intra-layer links in transitions of generations. 
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2.6.4 Distribution of Key Intra-Layer Links among Generations 

A key intra-layer link in a specific layer may connect two consecutive 

generations in either early or later stages of a cascade. For each of the three 

layers, the distribution of the top-100 key intra-layer links in transitions between 

generations is shown in Fig. 2-27. The maximum number of generations involved 

in the links is 6. 

The majority of the key intra-layer links of the first layer connect 

generations 1 and 2, and also the majority of the key intra-layer links in the third 

layer connect generations 1 and 2. These observations suggest that reducing 

line outages to limit the spreading of outages should have a high priority in the 

early stage of cascading outages, and the system operators should pay more 

attention to the first and third layers of the interaction graph. The key intra-layer 

links in terms of load shedding are more dispersed and mainly connect 

generations 1, 2, and 3. The increased percentage of key links from generations 

2 to 3 indicates that load shedding is the main problem in later stages. It is 

reasonable to have more load shedding in later stages of a cascading outage.  

These observations enlighten us to propose the Strategy-LOLS mentioned 

in Section 2.4.1, i.e. an integrated mitigation strategy to weaken the key intra-

layer links in the first layer in the early stage (generations 1 to 2) of cascading 

outages and key intra-layer links in the second layer in the later stage of 

cascading outage (generations 2 to 3). In fact, the majority of cascades in the 

database contain 3 generations and the average number of generations is 3.14.  

2.6.5  Validation of Mitigation Strategies 

When the source component of a key intra-layer link fails, the destination 

component may become overloaded and can be tripped by protective relays. 

Each mitigation strategy considered here reduces the probability of the relay 

tripping to 10%. The number (i.e. K) of intra-layer links to be weakened is set up 

as 20 for all the mitigation strategies. For Strategy-3L, the numbers of key intra-

layer links in the first, second, and third layers are set up as 7, 7, and 6, 
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respectively. The case for Strategy-R is simulated for 20 times. These mitigation 

strategies are compared in terms of three assessment indices as shown in Table 

2-7.  

Strategy-LO can significantly reduce the average number of line outages 

by 24.36%. Strategy-ED can reduce the average number of line outage but not 

significantly because the first and third layers show relevant properties from Fig. 

2-19 and Fig. 2-20. Strategy-LS and Strategy-R may even increase the number.  

Similarly, Strategy-LS significantly reduces the average amount of load 

shedding by 69.21%. However, Strategy-ED and Strategy-LO reduce it slightly 

and Strategy-R even increases it for some cascades. 

The average propagated electrical distance can be reduced by 18.87% by 

Strategy-ED. Strategy-LO only reduces it slightly and Strategy-LS and Strategy-R 

may even increase the propagation. 

The results validate that a specific problem, e.g. number of line outages, 

amount of load shedding, and propagated electrical distance, can be effectively 

mitigated by a strategy that weakens key intra-layer links from a matched layer. 

Strategy-R may even increase the average number of line outages, load 

shedding and average electrical distance, which indicates the ineffectiveness of 

the random mitigation strategy. 

Strategy-LS increases the average number of line outages and the 

average propagated electrical distance. This is because the mitigation strategy is 

not to stop the propagation of outages but change the direction of propagation. 

Weakening key links of a wrong type may even bring negative impacts. 

Strategy-3L reduces the average number of line outages, the average 

amount of load shedding, and the average propagated electrical distance by 

26.54%, 65.31%, and 15.65%. It is obvious since the key intra-layer links are 

combined from the three layers. 

Strategy-LOLS is applied to different stages of cascading outages with the 

key intra-layer links from the two layers. A link will be weakened if it is between 

generations 1 and 2 and belongs to the top-10 key links of the first layer, or if it is 
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between generations 2 and 3 and belongs to the top-10 key links of the second 

layer. It reduces the average number of line outages and average amount of load 

shedding by 25.78% and 56.46%, respectively. This validates that the key links in 

the first layer are highly relevant to early stages of outages and key links in the 

second layer are more involved in later stages of outages. 

In general, for each link, the number of its mitigation under Strategy-3L is 

larger than that under Strategy-LOLS. That is because a link may appear in 

different stages of outages varying from different cascades. Strategy-3L will 

weaken it wherever it appears. However, Strategy-LOLS only weaken it when it 

appears in a pre-determined stage of cascading outages. 

 

Table 2-7. Influences of Different Mitigation Strategies on Different Assessment Indices. 

Mitigation 

Strategies 

Average Number 

of Line Outages 

Average Amount of 

Load Shedding 

Average Propagated 

Electrical Distance 

Strategy-LO -24.36% -3.29% -6.44% 

Strategy-LS +3.67% -69.21% +4.52% 

Strategy-ED -8.15% -4.73% -18.87% 

Strategy-3L -26.54% -65.31% -15.65% 

Strategy-LOLS -25.78% -56.46% -9.11% 

Strategy-R -3.23% to +4.21% -6.59% to +7.94% -1.66% to +2.79% 

 

It is suggested that the system operators can monitor the propagation of 

outages based on the first and third layers of the interaction graph during the 

early stage of outages. With the spread of cascading outages, more attentions 

should be paid to the second layer. Then the strategy of weakening key intra-

layer links of the corresponding layer can be applied, which is shown by 

Strategy-LOLS as one example. Incomplete information from a single layer 

interaction graph could mislead the system operators to take inappropriate 

control actions and may enlarge the propagation of outages undesignedly. The 

multi-layer interaction graph can provide comprehensive information helpful for 

online monitoring and mitigation of cascading outages. 

2.6.6  Determining the Number of Cascades 
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As an example, the number of cascades for identifying top-100 key intra-

layer links in the second layer is presented here. The number of cascades in 

other layers can be determined by the same approach. 

Set TM =100, M1=100, M =100, and  =0.01. Fig. 2-28 shows how R(Mi) 

and its standard deviation i change with the number of cascades. They become 

flat when cascades reach a specific number Mmin, which is around 3600, meaning 

that the top-100 key links in the second layer can be identified using 3600 

cascades. The number of cascades needed for a database can be determined as 

5200, which is the maximum value among all Mmin’s for three layers. The number 

of cascades used in this chapter, i.e. 10000, is large enough. 

 

 
Figure 2-28. R and   for different numbers of cascades. 

 

2.7  Conclusions of this Chapter 

This chapter first extends the interaction network and interaction model 

proposed in [27] to the NPCC power system to identify the key links and 

components that play important roles to the propagation of cascading outages. 

Then it proposes a multi-layer interaction graph on cascading outages of power 

systems as an extension of the single layer interaction network proposed in [27]. 

It intends to assist the system operators in predicting propagation of outages and 

making decisions on mitigation actions. The multi-layer interaction graph can be 

obtained offline from a database of simulated or historical cascades and then 

applied online. The graph comprises multiple layers respectively depicting key 
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components and key links that contribute the most to outage propagation from 

different perspectives, i.e. the number of line outages, the amount of load 

shedding and the electrical distance of outage propagation. Two types of key 

links, i.e. key intra-layer link and key inter-layer link and their corresponding key 

components are proposed and defined. They together provide comprehensive 

information for the monitoring and mitigation of cascading outages. Meanwhile, 

key intra-layer link based mitigation strategies corresponding to each layer and 

two integrated mitigation strategies are also proposed and validated on the 

NPCC 140-bus system.  
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CHAPTER THREE  

SIMULATION OF CASCADING OUTAGES USING A 

POWER-FLOW MODEL CONSIDERING FREQUENCY 

3.1 Introduction    

Many models and approaches for the simulation of cascading outages 

mentioned in Chapter 1 can be categorized as steady-state models, quasi-

dynamic models and dynamic models basically. For instance, the CASCADE, 

DCSIMSEP, branching process, OPA, Hidden failure, and Interaction model can 

be characterized as steady-state models. The multi-timescale quasi-dynamic 

model considers system steady-state behaviors in different timescales. And the 

COSMIC and Hybrid models are uses dynamic simulation to simulate cascading 

outages.  

The major drawback of dynamic simulation is its intense time consumption 

in large system models. Also as mentioned by [42], although nonlinear transients 

are often prominent in fast cascade stages, in other cases the transients fade 

away and system reaches steady state quickly, so the power flow based steady-

state or quasi-dynamic models are sufficient for representing the cascading 

process instead of dynamic simulation.  

Frequency is an important indicator of the real-time balance between 

active power of generation and load, especially during cascading outages. 

Abnormal frequency deviation may trigger under-frequency load shedding 

(UFLS) [105][106] and generator frequency protection, causing large amount of 

loss in generation and load, so it is a significant contributing factor of cascading 

outages and blackouts [107]. A conventional power flow model assumes the 

system frequency to be always constant by means of one or multiple swing 

buses to eliminate any active power imbalance. However, ideal swing buses with 

infinite capability of power balancing and frequency regulation do not exist in real 

power systems. In practice, frequency is regulated in a distributed way: first, 
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governors of generators regulate their speeds and active power outputs following 

their designed regulation strategies; second, frequency-sensitive loads in a 

system also vary their actual power consumptions with the frequency deviation. 

Therefore, it is important to consider frequency-related system behaviors and 

operations in the simulation of cascading outages.  

Since the 1970’s, efforts have been made to include frequency deviation 

in power flow models [108]. In ref. [109] published in 1986, a “dynamic load flow” 

(DLF) algorithm in which the unbalanced active power is allocated among all 

generators with speed controllers was proposed, but such a model cannot obtain 

the frequency. In ref. [110], the frequency is taken as an unknown variable in 

DLF calculation. In recent decades, for the purposes of fast simulation or 

analysis with large power systems, many power flow models considering 

frequency have been proposed [111]-[121], which mainly incorporate power-

frequency characteristics into a power-flow model and consider power-frequency 

characteristics with loads, speed governors of generators or automatic 

generation control (AGC). Refs. [112] and [113] consider power-frequency and 

voltage dependent characteristics of loads and speed governors of generators in 

power flow models with dispatcher training simulators. Ref. [114] considers 

power-frequency and voltage dependent characteristics with loads, voltage-

reactive power characteristic of generators, speed governors of generators in 

power flow models for security assessment of power systems. Refs. [115]-[117] 

incorporate power-frequency characteristics of active loads and speed governors 

of generators into power flow models for risk assessment. Other fields to apply 

such power-flow models include microgrid control [118][119] and analyses 

involving wind generation [120][121]. Analysis and simulation of cascading 

outages can also apply such models. Refs. [122] and [123] incorporate frequency 

deviation into cascading outage simulation based on a DC power flow model, in 

which frequency deviation is calculated directly from power-frequency 

characteristics of generators and loads. 

This chapter proposes a novel steady-state approach for simulation of 



 

66 
 

cascading outages with frequency-related system characteristics and operation 

actions such as frequency deviation, power-frequency characteristics of 

generators and loads, UFLS scheme, and generator frequency protection [124]. 

The contributions of this chapter are mainly in these three aspects. First, the 

proposed approach integrates calculation of frequency deviation into a power 

flow model like [109] (called “DLF model” in the rest of the chapter since it is 

developed and inspired from the DLF algorithm in [108]-[116]). Thus, power flow 

results are able to reflect active power imbalance and address power-frequency 

characteristics of generators and loads. Second, an AC optimal power flow 

model considering frequency deviation (for short, AC-OPFf) is proposed, which 

determines remedial control against system collapse indicated by divergent 

power flow calculation. Thanks to the consideration of frequency deviation, the 

DLF and AC-OPFf models enable more credible steady-state simulation on a 

power system under cascading outages. Third, the proposed approach enables 

the UFLS scheme and generator frequency protection to be modeled, which is 

critical but has not yet been addressed by existing steady-state approaches for 

simulation of cascading outages.  

The rest of this chapter is organized as follows. Section 3.2 presents the 

proposed simulation approach for cascading outages. It first introduces the DLF 

model employed in the proposed approach, proposes the novel AC-OPFf model, 

and then presents the UFLS scheme as well as generator frequency and line 

protection models used in the proposed approach, and finally compares the 

procedure of the proposed approach with a conventional approach for simulation 

of cascading outages. Comprehensive case studies are presented in Section 3.3, 

which first benchmarks the results of the DLF model with that of time-domain 

simulation on a two-area system, and then tests the proposed approach using 

many cascading outage scenarios on the IEEE 39-bus system and NPCC 48-

machine, 140-bus systems. The simulated cascading outages are analyzed and 

compared with those from the conventional approach. Finally, Section 3.4 draws 

the conclusions. 
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3.2  Proposed Simulation Approach for Cascading Outages 

This section first briefly introduces the DLF model and proposes the AC-

OPFf model, which is compared with a conventional AC-OPF model. Then, the 

section presents the UFLS scheme, as well as the generator and line protection 

models to be used in the proposed simulation approach. 

3.2.1 DLF Model 

The static power-frequency characteristics (SPFCs) of a load at bus i can 

be approximated by                      

                                       0 (1 )Di D i i dP P D f  , d nf f f                                   (3.1) 

where f is the system frequency, fn is the nominal frequency, fd is the frequency 

deviation, PD0i is the active power load at fn, and constant Di quantifies frequency-

sensitivity of the load, showing how active the load changes with frequency 

deviation. 

When active power balance of the system cannot be maintained at the 

nominal frequency, a frequency deviation exists. The speed governor of a 

generator at bus i can automatically regulate its steady-state output PGi according 

to its regulation factor Ri: 

                                    0 /Gi G i d iP P f R  , ,min ,maxGi Gi GiP P P                           (3.2)  

where PG0i is its active power output at fn, and PGi.min and PGi.max are the lower and 

upper limits of active power output.  

Consider an n-bus power system having m PQ buses (numbered from 1 to 

m), n-m-1 PV buses (numbered from m+1 to n-1), and a slack bus with No. n. 

The DPF calculation targets at eliminating active power mismatches at all n 

buses and reactive power mismatches at m PQ buses.  

                                    ( cos sin ) 1,...,i Gi Di i j ij ij ij ij

j i

P P P V V G B i n 


                    (3.3) 

                               ( sin cos ) 1,...,i Gi Di i j ij ij ij ij

j i

Q Q Q V V G B i m 


                (3.4) 
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where PGi and PDi are calculated from (3.1)-(3.2), QGi and QDi are the reactive 

power of generation and load at bus i, which are assumed frequency-

independent. Vi is the voltage magnitude at bus i, ij=i-j is the phase angle 

difference between buses i and j, and Gij and Bij are the real and imaginary 

elements in the bus admittance matrix.  

Mismatches Pi and Qi make up an n-vector 1nP for all buses and an m-

vector 1mQ for all PQ buses. Note that there are n+m unknown variables 

including frequency deviation fd, n-1 voltage angles and m voltage magnitudes. 

The DPF problem can be solved using the Newton-Raphson method by solving 

the corrections: 
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1 1
1 1
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In (3.5), nP  is the active power mismatch of the slack bus, which will be 

eliminated unlike that in conventional power flow calculation,  ( 1) 1n P  includes 

active power mismatches of the other buses, ( 1) 1n θ is the vector of angle 

corrections for all buses except for the slack bus, df  is the correction of system 

frequency deviation, 
1

m m



V  is a diagonal matrix made of the reciprocals of Vi’s of 

m PQ buses, and 1mV  is the vector of corrections of Vi’s for all PQ buses.   

The Jacobian matrix J is an (n+m)-dimensional square matrix containing 

partial derivatives of the active and reactive power injections with respect to 

voltage angles, magnitudes and fd. The elements of J1, J2, J3 and J4 in the i-th 
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row and j-th column are 
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, i.e. the same as the 

corresponding elements in the Jacobian matrix of conventional power flow 

model. Let the bus angle n of the slack bus be zero. The other elements of J 

are: 
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Solving the DLF model by the N-R method does not bring much more 

computational burden than solving a conventional power flow model because 

only one unknown variable and one equation are added. Note that by considering 

the active power generation limits, constraint ,min 0 ,max/Gi G i d i GiP P f R P    is 

checked with updated fd at each iteration of the N-R method. If the constraint is 

violated, freeze GiP  at the limit. 

From (3.5), the Jacobian matrix J with the DLF model has the similar 

sparsity to that with the conventional power flow model, but has more nonzero 

elements because of the introduced frequency deviation fd. J with the DLF model 

has at most 2n+m-1 more nonzero elements than that of the conventional power 

flow model. Consider the total number of elements of the J is (n+m-1)2 for a 

conventional power flow model or to be (n+m)2  for the DLF model, the ratio of 

2n+m-1 to (n+m-1)2  or (n+m)2 is very small for a large power system. Therefore, 

the J with the DLF model is still quite sparse. For example, the ratio (2n+m-

1)/(n+m-1)2  is just equal to 0.007 for the NPCC 48-machine, 140-bus power 

system.  
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Finally, there are the following remarks on the DLF model used in the 

proposed approach: 

Remarks:  

1) In industry practices, AGC is usually disabled in simulation of cascading 

outages, so this chapter does not consider AGC or secondary frequency 

regulation in the proposed approach. 

2) Reactive power loads are less sensitive to a frequency deviation than 

active power loads, and are often assumed frequency-independent in refs. [115]-

[117], which is also assumed so in this chapter. 

3) In a conventional power flow model, buses are categorized into PQ 

buses, PV buses and swing buses. The DLF model may inherit those bus types 

[125], which indicate the quantities that are basically unchanged. For instance, 

PD0i in (3.1) and PG0i in (3.2) respectively correspond to “P” components in PQ 

and PV buses. In fact, PD0i and PG0i slightly vary with frequency deviation around 

certain constant values. Strictly speaking, PV and PQ buses in a DLF model only 

maintain constant voltage magnitudes and reactive power injections. Finally, only 

one swing bus is needed for the DLF model, which is mainly used as a reference 

bus for voltage angles. 

3.2.2 Dynamic Load Flow Model 

During cascading outage simulation, calculation with the DLF model 

described by (3.1)-(3.8) may diverge, indicating a significantly stressed condition 

or event system collapse, which can be mitigated by remedial control such as 

generation redispatch and load shedding. The proposed AC-OPFf model is 

presented as (3.9) in Table 3-1 to model a centralized remedial control scheme. 

It is compared with a conventional AC-OPF model (3.10) side by side about the 

objective function and constraints. 

In the AC-OPFf model, the objective function is to keep the largest 

remaining active power load after remedial control. The weighting factor i 

quantifies the importance of load at bus i. The control variables of AC-OPFf 
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model are PGi, PDi, QGi, QDi, Vi, i, and fd, respectively. Here PGi and PDi are 

corresponding to equations (3.1) and (3.2). First two constraints are power flow 

equations (3.9a and 3.9b). The rest of constraints are about power generations 

(3.9c and 3.9d), bus voltage magnitudes (3.9e and 3.9f), loads (3.9g and 3.9h), 

branch flows (3.9i), constant power factor (3.9j), and frequency deviation (3.9k). 

Note that in the AC-OPFf model, one equality constraint (3.9a) and three 

inequality constraints, (3.9c), (3.9g), and (3.9k), involve frequency deviation, so 

the final calculated frequency deviation may not meet its upper or lower limit in 

(3.9k) if a limit in (3.9c) or (3.9g) is met.  

 

Table 3-1. AC-OPFf and AC-OPF Models. 
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In the conventional AC-OPF model, the objective function is also to keep 

the largest remaining active power load after control. The control variables of AC-

OPF model are PGi, PDi, QGi, QDi, Vi, and i, respectively. The constraints shown 
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by (3.10a)-(3.10j) are similar to those of the AC-OPFf model except that 

frequency deviation is not considered. 

Compared with the AC-OPF model, the AC-OPFf model is more general 

with consideration of frequency deviation. In fact, the AC-OPF model can be 

regarded as a special case of the AC-OPFf model with fd equals zero. 

The optimality of the final AC-OPF or AC-OPFf solution depends on what 

algorithm is used and how much gap to the true global optimum is acceptable. In 

the simulation of cascading outages, introduction of the AC-OPF or AC-OPFf 

model does not aim at finding the best control strategy; rather, the mainly 

purpose is to mimic remedial control by the central control room like the OPF 

module in OPA models [39,40,126]. Therefore, the AC-OPF or AC-OPFf model 

aims to find a new feasible power flow solution when system collapse happens. 

In reality, if the proposed simulation approach is applied by power companies, 

they may easily replace the AC-OPF or AC-OPFf model by their central remedial 

control strategies. 

3.2.3 Under-Frequency Load Shedding Scheme 

The inclusion of frequency deviation in the DLF model also enables UFLS 

to be simulated when there is a substantial, unacceptable frequency decline. A 

practical UFLS scheme is typically designed to shed 25-30% of the system load 

in steps with pre-designated loads in each reliability coordinator region when 

frequency drops to a low threshold [2]. In addition, more load will be 

progressively shed if frequency decline continues.  

As given in Table 3-2, this chapter adopts an UFLS scheme in the 

simulation of cascading outages for the proposed approach based on the NERC 

UFLS reliability standard “PRC-006 NPCC” [127] for NPCC region.  
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Table 3-2. UFLS Scheme of NPCC for Different Load Buses.  

100MW or More 
Load 

50 MW or more and 
less than 100 MW 

25 MW or more and less 
than 50 MW 

ft (Hz) Lp(%) ft (Hz) Lp (%) ft (Hz) Lp (%) 
59.5 6.5 59.5 14 59.5 28 
59.3 6.5 59.1 14 - - 
59.1 6.5 - - - - 
58.9 6.5 - - - - 

Note: ft and Lp stand for frequency threshold and percentage of load shed. 
 

In general, shedding active power load ,Di UFLSP  also cause curtailment of 

an amount of reactive power load ,Di UFLSQ . If the UFLS scheme is triggered, the 

percentage of active power load to be shed is determined by frequency 

thresholds in Table 3-2. Then the change in reactive power load is calculated by 

(3.11) assuming a constant power factor to be maintained. 

                                                 
,

,

Di UFLS Di

Di UFLS Di

Q Q

P P





                                                        (3.11) 

3.2.4  Generator Frequency and Transmission Line Protections  

Protective actions with generators and transmission lines may introduce 

additonal failures and uncertainties to system operations under cascading 

outages [128], [129]. Utilization of the DLF model enables simulatons of some 

frequency-related protecitve actions. Generator frequency and transmission line 

protections are modeled in the proposed approach. 

As illustrated by Fig. 3-1, according to the characteristics of the turbine 

and power plant auxiliaries, the frequency span of a generator can be divided 

into three types of ranges [129]: (1) the normal operation range bounded by f1 

and f2, (2) two restricted time operation ranges outside the normal range 

bounded by a lower limit fL and an upper limit fU, i.e. intervals [fL, f1] and [f2, fU], 

and (3) prohibited ranges lower than  fL or higher than  fU. 
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Figure 3-1. Relationship between generator trip probability and frequency. 

 

The tripping probability (f) of generator i as a function of its frequency 

relay is shown in Fig. 3-1 and (3.12), where 0 is the unexpected action 

probability of generator frequency relay.  
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                                  (3.12) 

The proposed approach models both the UFLS scheme and generator 

frequency protection, whose relay actions are in different timeframes. For 

example, the typical time delay of a UFLS scheme is 0.1s for the Eastern 

Interconnection [127] while the time delays of generator frequency relays vary 

from 0.1s to several hundreds of seconds depending on the severity of frequency 

deviation. Accordingly, the proposed simulation approach uses a module shown 

in Fig. 3-2 to coordinate the UFLS scheme and generator frequency protection, 

which performs UFLS for a higher priority than generator frequency protection as 

long as the criterion of triggering UFLS is satisfied. Only if UFLS is not triggered, 

generator frequency protection might be triggered at probability (f) defined by 

(3.12). This module is embedded into the proposed approach shown by Fig. 3-3 

and represented by the block “UFLS and generator frequency protection 

module”. 
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Figure 3-2. UFLS and generator frequency protection module. 

 

With the propagation of cascading outages, a transmission line i-j is 

overloaded if its apparent power Sij exceeds transmission capacity Sij,max. Each 

overloaded line is tripped at a probability denoted by β and the probability of 

tripping the rest of lines is assumed to be 
,max

ij

ij

S

S



  . Here,  is a base probability 

of any unwanted protection operation and should increase with the loading ratio 

of the line [39]. 

Remark: the proposed approach is based on a steady-state power flow 

model, so there is no explicit time evolution information. Unlike time-domain 

simulation, the tripping sequence and dynamic process on generators are not 

modeled in detail. In simulation by the proposed approach, once a generator is 

tripped, it will not be recovered until the end of simulation.  

3.2.5  Simulation Procedure of the Proposed Approach 

The proposed approach for the simulation of cascading outages is shown 

in Fig. 3-3. For comparison, a conventional approach for simulating cascading 

outages is shown in Fig. 3-4, which replaces the DLF and AC-OPFf models by 

the conventional power flow and AC-OPF models and does not consider the 

UFLS scheme and generator frequency protection. The block “Parameters and 

power network initialization” in both Fig. 3-3 and Fig. 3-4 performs conventional 

power flow calculation to obtain a base operating condition with nominal system 

frequency at 60Hz before the initial line outage is added at the next step. 
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Figure 3-3. Simulation procedure of the proposed approach. 

      

 
Figure 3-4. Simulation procedure of a conventional approach for comparison. 
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If the system separates into islands during cascading outages, the bus 

with the largest active power generation limit in each island can be chosen as the 

swing bus for that island according to the suggestions from [130]. For the DLF 

model, the function of the swing bus in each island is not to eliminate active 

power imbalance by itself; rather, it and other PV buses will compensate the 

active power imbalance depending on their power-frequency characteristics. The 

swing bus is then used as a reference bus for voltage angles in each island. If 

divergence is caused by a large imbalance in real power of any, the AC-OPFf or 

AC-OPF model will be performed to search for a new solution. 

3.3  Case Studies 

This section first uses Kundur’s two-area, 4-machine power system [131] 

to benchmark the frequency calculated by the DLF model with the steady-state 

frequency obtained from time-domain simulation. Then, the section compares the 

simulation results from the proposed and conventional simulation approaches on 

the IEEE 39-bus power system and NPCC 48-machine, 140-bus power system 

[97], [132]. Both simulation approaches are implemented in MATLAB. Time-

domain simulations are performed by TSAT of Powertech Labs. Parameters in 

test cases are following. 

3.3.1 Selection of Parameters 

In the DLF model, let Di = 1 pu for all loads in (3.1), and Ri = 0.0056 pu in 

(3.2) for all generators, which is based on the system base (100 MVA) after the 

conversion from the value of R in Table III based on the generator base. Let 
i =1 

for all loads in AC-OPFf and AC-OPF models. Assume a maximum 0.5 Hz 

frequency deviation in constraint (3.9k), i.e. fdmin=-0.5 Hz, fdmax=0.5 Hz. The 

threshold to trigger the UFLS scheme is 59.5 Hz.  

For generator frequency protection, set 0, fL , f1, fn, f2, and fU as 0.002, 57 

Hz, 59.5Hz, 60Hz, 60.5Hz, 61.7Hz, respectively in (3.12). For transmission line 

protection, let β=0.999,  =0.001, and  =10, the same as [39]. 
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Table 3-3. Parameters for the Turbine-Governor Model. 

Parameter Value Unit 

Speed regulation factor R 0.05 pu 

Turbine damping coefficient Dt 0 pu 

Main steam control valve max limit  Vmax 1 pu 

Main steam control valve min limit Vmin 0.3 pu 

Governor time constant  T1 0.5 s 

Steam chest time constant T2 1.0 s 

Reheater time constant T3 1.0 s 

 

For time-domain simulation on the two-area system as a benchmark for 

frequency, all generators use the 2nd order classic model equipped with steam 

turbine-governor model “TGOV1” [133].  

For the time-domain simulation on the NPCC power system, 24 

generators are represented by a detailed round rotor model “GENROU” with an 

exciter model “ESDC1A” with PSS/E v32. [134] and the other 24 generators use 

the classic model. All generators are equipped with the “TGOV1” governor model 

using the same parameters in Table 3-3. All loads are modeled as frequency-

dependent loads, i.e. “IEELBL” in PSS/E v32 and reactive powers of loads are 

assumed to be constant. 

Transmission capacity limit Sij,max of each line of the IEEE 39-bus system 

is from the data with MATPOWER 6.0 toolbox. For the NPCC power system, 

Sij,max of each line is generated by two steps: 1) finding initial limits to make sure 

no overloading after any N-1 contingency; 2) increasing all limits by 20% to 

ensure some reliability margin. 

3.3.2 Tests on the Two-area System 

The two-area system has loads at buses 7 and 9. To compare steady-

state system frequencies from the DLF model and time-domain simulation, three 

scenarios of load changes are tested: a) shedding the load on bus 7; b) shedding 

loads on both buses; c) increasing loads on both buses. 
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     (a)                   (b)  

    
       (c) 

Figure 3-5. Frequency variations from the DPF model and time-domain simulation. 

 
From Fig. 3-5, the steady-state frequencies from the DLF model in all 

three scenarios match well the time-domain simulation results, which verifies the 

accuracy of the steady-state frequency calculated from the DLF model. 

3.3.3 Tests on the IEEE 39-bus System 

The following four groups of tests are performed on the IEEE 39-bus 

system, whose purposes are provided: 

1) Verifying the accuracy of steady-state frequency and the convergence 

characteristics with the DLF model. Two scenarios are designed, i.e. Scenarios 1 

and 2. 

2) Testing the UFLS and generator frequency protection module and the 

influence of SPFCs of loads on frequency. One scenario is used, i.e. Scenario 3. 

3) Studying the influence of active power generation limits on frequency. 

Scenario 4 is designed to intentionally make the active power outputs of some 

generators reach their generation limits after the line outages. 

4) Comparing the simulated cascading outages from the proposed 

approach based on Fig. 3-3 and conventional approach based on Fig. 3-4 

statistically. Scenarios starting from all N-2 initial outages are considered. 
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Scenarios 1, 2, 3, and 4 of the above 1)-3) are shown on the IEEE 39-bus 

system in Fig. 3-6, distinguished in color. 

 

 
Figure 3-6. Scenarios 1, 2, 3, and 4 on the IEEE 39-bus system (outages are marked with 

crosses and labeled with stages). 

 

1) Verification of Steady-state Frequency 

Scenario 1 represents the line outages without causing system separation, 

and Scenario 2 represents the line outages that cause the system to separate 

into islands. Those two typical scenarios both introduce major disturbances, i.e. 

line outages, to cause large power imbalances and significant frequency 

deviations. The steady-state values of frequencies following the line outages are 

obtained from both the DLF model and time-domain simulation, and the results 

are compared.  

Scenario 1: trip line 10-32, line 17-18, and line 3-18 in stage 1 and then 

trip line 25-37 in stage 2. 

In time-domain simulation, two stages are intentionally separated by 100 

seconds to make sure that the frequency can reach its steady-state before the 

next outage. Frequencies from time-domain and the DLF model for all stages are 

shown in Fig. 3-7. Only steady-state frequencies are compared. Generator 32 is 

tripped at stage 2 and then generator 37 is tripped at stage 3. The frequencies 
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calculated by the DLF model for the remaining system at stages 2 and 3 are 

close to those from time-domain so as to verify the accuracy of frequency 

calculated by the DLF model. The slight mismatch for the frequencies between 

them is because the power flow results of them are not exactly the same.  

 

 

                           (a) From time-domain simulation                     (b) From the DPF model 

Figure 3-7. Frequency variations of scenario 1. 

 

Scenario 2: trip lines 2-25, 3-18 in stage 1 and trip line 17-27 in stage 2. 

The system separates into two islands after line outages in stage 2, 

including a main island with 8 generators and a smaller island with generators 37 

and 38 indicated by a dashed box in Fig. 3-8. The steady-state frequencies from 

the DLF model in stages 1 and 2 are very close to those from simulation as 

compared in Fig. 3-8. 

 

  
                              (a) From time-domain                                  (b) From the DPF model  

Figure 3-8. Frequency variations of scenario 2. 
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The convergence of N-R method in the DLF model is tested for Scenarios 

1 and 2. Fig. 3-9 shows how mismatches of equations in solving the DLF model 

changed with iterations for the two stages of outages. Mismatches drop below 

the tolerance of 10-9 (pu) and power flows converge after 3 or 4 iterations. The 

mismatch (y-axis) takes the largest value among all iP  and iQ  at each 

iteration. 

 

 
                              (a)  From Scenario 1                              (b) From Scenario 2 

Figure 3-9. Convergence of N-R method with the DLF model. 

 

Table 3-4. Estimation of Convergence Rate of DLF Calculation. 

Scenarios 
ρk 

k=0 k=1 k=2 

Scenario 1 
Stage 1 0.040 0.325 0.380 
Stage 2 0.829 1.353 0.000 

Scenario 2 
Stage 1 0.027 0.468 0.394 
Stage 2 0.460 0.341 0.413 

 

Iterations with the N-R method converge at a quadratic rate to the solution 

when the initial guess is sufficiently close to the solution. For a series {xk} 

converging to x* with a quadratic rate, eq. (3.13) should be satisfied [135][136].  
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                                 (3.13) 

For the DLF model or a conventional power flow model, function h in 

(3.13) represents (3.3) and (3.4) and h’ and h” are the first derivate and second 

derivate of h. Treat the power flow results at the last iteration on the DLF as the 
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solution x*. Table 3-4 calculates 1

2

| |

| |

k
k

k

x x

x x












 at each iteration step k of the N-R 

method on the DLF model. From the results, the values of k  for different k’s are 

basically of the same scale, which demonstrates quadratic convergence of the N-

R method in solving the DLF model. 

2) Tests on UFLS and Generator Frequency Protection Module and Influence of 

SPFCs of Load on Frequency 

In the proposed approach for simulation of cascading outages, the UFLS 

and generator frequency protection module in Fig. 3-2 will be activated together 

with some scenarios. Here Scenario 3 tripping lines 32-10 and 38-29 is illustrated. 

After tripping lines 32-10 and 38-29, the DLF model gives frequency 

f=59.39Hz, which falls into the range of 57Hz to 59.5Hz. Then, the UFLS scheme 

is triggered to shed 384.07MW load and then f increases to 59.55Hz. Since the 

new frequency f after DLF falls into the range of 59.5Hz to 60.5Hz, generator 

frequency protections are triggered at a probability of 0.002. Finally, in this 

scenario, no generator is tripped.  

Additionally, the influence of SPFCs of loads on frequency is analyzed in 

Scenario 3. Fig. 3-10 shows that the larger the parameter D, the smaller is the 

frequency deviation.  

 

Figure 3-10. Frequency vs D of Scenario 3. 

 

3) Influence of Active Power Generation Limits on Frequency 
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Active power generation limits are considered in the DLF model. Here, the 

impact of active power generation limits on frequency is studied on Scenario 4. 

Table V compares active power outputs of generators and system frequencies 

after tripping lines 10-32 and 25-37 with and without considering active power 

generation limits, respectively. 

From Table 3-5, the frequency deviation of -1.29Hz considering active 

power generation limits is larger than the deviation of -0.49Hz without 

considering active power generation limits. If some generators reach their active 

power generation limits, their active power outputs will be fixed at the limits while 

the other generators such as generator 31 with sufficient margin will continue 

increasing active power. If active power generation limits are omitted, the 

frequency deviation may be underestimated.     

 

Table 3-5. Generator Power Outputs and System Frequencies. 

Generator PGmax (MW) 
Without limits With limits 

PG (MW) fd (Hz) PG (MW) fd(Hz) 

30 350.00 395.66 

-0.49 

350.00 

-1.29 

31 1145.60 507.88 749.74 

33 732.00 777.66 732.00 

34 608.00 653.66 608.00 

35 750.00 795.66 750.00 

36 660.00 705.66 660.00 

38 930.00 975.66 930.00 

39 1100.00 1145.66 1100.00 

32 750.00 - - - - 

37 640.00 - - - - 

 

4) Statistical Comparison of Two Simulation Approaches 

Some indices evaluating the severity of cascading outages can be used to 

compare the scenarios of cascading outages generated by the two approaches 

based on Figs. 3-3 and 3-4, such as the number of line outages and amount of 
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load shed. The cascading outage simulations of the two approaches are tested 

and compared on cascading outage scenarios starting from all N-2 initial outages. 

Note that the system is N-1 secure, or in other words, it has no overloaded line 

after any N-1 line outage. Of all the 1035 pairs of cascading outage scenarios 

derived by the two approaches, the ones which do not propagate beyond the 

initial outages for both approaches are excluded from comparison. Totally 

K=1028 scenarios for each approach are compared here. 

Define the following two indices to compare the cascading outages 

simulated by the two approaches. 

                              
, ,

| |
, , 1,2,..,

| |

i

i

Ai
i path i load

i B

LoadA
R R i K

B Load
                              (3.14)       

where Ai and LoadAi  are the set of line outages and amount of load shed on 

scenario i of cascading outages from the conventional approach; Bi and LoadBi 

are the set of line outages and amount of load shed on scenario i from the 

proposed approach;   represents the number of elements in a set.  

                                 

   
                          (a) Length of cascading outage       (b) Load shed of cascading outage  

Figure 3-11. Ratios between two approaches. 

 

Fig. 3-11(a) shows that for most scenarios, Ri,path<1, indicating that line 

outages propagate more as simulated by the proposed approach than the 

conventional approach. From Fig. 3-11(b) and Table 3-6, the proposed approach 

tends to have more load shed than the conventional approach due to the 

consideration of the UFLS scheme and generator frequency protection. It can be 

inferred that the conventional approach underestimates the extent of outage 

propagation due to ignoring frequency variations, frequency-related remedial 
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actions and protections. The proposed approach better captures the propagation 

of outages and losses of load due to frequency-related factors. 

Furthermore, the overlaps between the sets of line outages of cascading 

outages generated by two approaches are evaluated to compare the simulated 

cascading outage paths. Define the average overlap ratio Ravg [56] for the sets of 

line outages of cascading outages between two approaches as 

                                       ,

1

1 K

avg i overlap

i

R R
K 

  , ,

| |

| |

i i
i overlap

i i

A B
R

A B





              (3.15) 

Ravg is 0.61, indicating distinct characteristics of outage propagations 

simulated by the two approaches.  

 
Table 3-6. Statistical Comparison of the Two Approaches with 1028 Samples. 

Approaches 
Average No. of  

line outages 
Average amount  

of load shed (MW) 

Conventional  7.76 1848.9 
Proposed  12.89 3376.5 

 
 

UFLS is triggered in 255 of the 1028 scenarios. The average, maximum, 

and minimum amounts of load shed by UFLS scheme are 282.23MW, 

599.60MW and 40.85MW, respectively. This study shows that if impacts of 

frequency deviation and the UFLS scheme are ignored in simulation, the risk of 

cascading outages will be underestimated.   

3.3.4 Tests on the NPCC System 

1) Verification of Steady-state Frequency 

The steady-state frequency calculated by the DLF model is also verified 

on the NPCC 48-machine, 140-bus power system.  

Two scenarios (numbered Scenarios 5 and 6 below) of cascading outages 

are selected for verifying the frequencies calculated by the DLF model. The 

scenarios cause large active power imbalances leading to over- and under-

frequency conditions. Note that the purpose of the tests here is only to verify the 
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calculated steady-state frequency, so the AC-OPFf model, the UFLS scheme 

and generator frequency protection module are deactivated in the two scenarios. 

Scenario 5 has two stages of outages as listed in Table 3-7. The steady-

state frequencies obtained from the DLF model and time-domain simulation are 

compared in Table 3-8. Scenario 6 has three stages of outages shown by Table 

3-9. The frequencies are compared in Table 3-10. From the comparisons, the 

results derived from the DLF model is very close to the benchmarking results, 

which verifies the accuracy for capturing the steady-state frequency by the DLF 

model. 

 

Table 3-7. Propagation Path of Cascading Outages in Scenario 5. 

Stages Line Outages 

1 130-131, 131-133, 131-135, 131-139 

2 
124-128, 125-128, 126-128, 127-128, 

128-130 

 
 

Table 3-8. Comparison of Steady-state Frequencies for Scenario 5. 

Approaches 
  Frequency (Hz) 

Stage 1 Stage 2 

DPF 
Time-domain 

60.137 
60.147 

60.244 
60.268 

 

Table 3-9. Propagation Path of Cascading Outages in Scenario 6. 

Stages Line Outages 

1 85-86, 85-105 
2 78-79 
3 131-133, 132-133, 133-135 

 

Table 3-10. Comparison of Steady-state Frequencies for Scenario 6. 

Approaches 
Frequency (Hz) 

Stage 1 Stage 2 Stage 3 

DPF 
Time-domain  

59.779 
59.802 

59.622 
59.649 

59.498 
59.532 

     Note: three generators are tripped one by one after stages 1, 2 and 3. 
 

2) Detailed Comparison of Two Simulation Approaches 

This section conducts detailed comparisons between the proposed 

approach and conventional approaches on two more scenarios numbered 7 and 
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8. Figs. 3-12-3-13 show the outage paths, amounts of load shed and frequency 

variations of two scenarios. 

For Scenario 7, the outage propagation paths from the same initial 

outages simulated by two approaches are the same (in Fig. 3-12), and the 

frequency deviation is not significant. After stage 2, the frequency only deviates 

by -0.033Hz. After the line outages in stage 3, power flow calculations by the 

DLF model and conventional power flow model both diverge, indicating system 

stress, and then AC-OPF and AC-OPFf are invoked to find new operating points, 

respectively. The system frequency after AC-OPFf is 60.498 Hz, which is within 

the normal range, so the UFLS scheme is not triggered. After AC-OPF and AC-

OPFf, there are no other lines tripped and outages stop for both approaches. The 

comparison on Scenario 7 indicates that the two approaches behave similarly 

with small frequency deviation. However, with the proposed approach, the 

operators can monitor the variation of system frequency, which is more practical 

than the conventional approach.   

 

 
 

Figure 3-12. Comparison of two approaches on Scenario 7. 
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Figure 3-13. Comparison of two approaches on Scenario 8. 

 

For Scenario 8, the outage propagation paths simulated by two 

approaches from the same initial outage coincide at the first stage and then differ 

from stage 2 (Fig. 3-13). In the simulation with the proposed approach, after line 

outages at stage 2, the frequency deviation for the remaining system hits -0.51 

Hz, so UFLS is triggered to shed load and recover the system frequency to 

59.634 Hz. The frequency for the remaining system after stage 3 is 59.694 Hz 

and UFLS is not further triggered. The outage propagations and the resulting 

power flow profiles from the two approaches are relatively close in the first stage 

and then become distinct from stage 2. This indicates that variations of system 

frequency cannot be ignored during the propagation of cascading outage, 

especially for the later stages of outages. Otherwise, the impacts of cascading 

outages may be significantly underestimated. 

3) Detailed Comparison of Two Simulation Approaches 

A large number of cascading outage scenarios are simulated on the 

NPCC system using the proposed and conventional approaches to further 

compare the outage propagation patterns. Each scenario starts from an “N-2” 

contingency.  
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For the two approaches, Table 3-11 compares the average numbers of 

line outages, the average amounts of load shed by remedial actions, and the 

average amounts of load shed by the UFLS scheme in 10000 independent 

scenarios. Cascading outages with the proposed approach tend to propagate 

more and are more severe than those from the conventional approach. This 

again indicates the significance of considering frequency variations and 

frequency-related actions in the simulation of cascading outages. 

 
Table 3-11. Statistical Comparison of the Two approaches with 10000 Samples. 

Approaches 
Average No. of 

line outages 
Average load 

shed (MW) 
Average load shed 

by UFLS (MW) 

Conventional 8.79 222.45 0 
Proposed  14.27 985.02 146.97 

 

The time performances of two approaches are tested on a desktop 

computer with Intel Core i7-3770K 3.40GHz and 4GB RAM. The total time costs 

for the same number of scenarios created by two approaches are compared in 

Table 3-12. The proposed approach takes about 16% more time than the 

conventional approach because for a number of scenarios with large frequency 

deviations, the cascading outages simulated by the proposed approach 

propagate for more stages and hence require more N-R computations. 

 

Table 3-12. Comparison in Time Performance 

Number of scenarios Conventional approach Proposed approach 

10000 14.50 hours 16.78 hours 

3.4 Conclusion of this Chapter 

In this chapter, a novel steady-state cascading outage simulation 

approach is proposed, which integrates a DLF model and a novel AC-OPFf 

model considering frequency deviation. The chapter discusses the significance of 

considering frequency variations in simulation of cascading outages. The 

proposed approach can accurately capture the steady-state frequency. Also, the 

proposed AC-OPFf model considering frequency deviation can simulate the 
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control actions against system collapse. Thus, the proposed approach is able to 

model loss of load due to both frequency insecurity and voltage collapse, and 

hence can better match practical grid operations than the conventional steady-

state approach that ignores the variation of frequency. The proposed approach 

enables the modeling of frequency related remedial actions and protections such 

as UFLS scheme and generator frequency protection. The frequency calculated 

by the DLF model has been benchmarked with time-domain simulation results on 

both small and large systems. Detailed and statistical comparisons between the 

proposed and conventional approaches have been conducted to demonstrate the 

merits of the proposed approach. The proposed approach only focuses on 

capturing steady-state frequency variations in the simulation of cascading 

outages and is unable to provide detailed dynamic behaviors of frequency 

following each disturbance.  
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CHAPTER FOUR  

CRITICAL COMPONENT-BASED ACTIVE ISLANDING 

FOR REDUCING CASCADING OUTAGE RISK 

4.1 Introduction 

According to [9], basically, the procedure of cascading outage can be 

divided into two phases, which are remarked by slow phase and fast phase. If the 

cascading outage propagates to the fast phase, a fast transient instability 

process unfolds resulting in a collapse of the entire system [137]. However, it is 

possible for the system operators to evaluate the system status and take some 

remedial and control actions to prevent the propagation of cascading outages.  

        Many remedial actions have been reported in [138]. These remedial actions 

include generator excitation, re-dispatch of generation, load shedding, generator 

tripping, and Intentional controlled islanding (ICI).  

        Intentional controlled islanding (ICI) has been proposed as an effective 

remedial action [139, 140] for systems under emergency status [139–143]. After 

a severe contingency, ICI intentionally separates the power system into several 

self-sustaining isolated islands. Generally, to obtain an islanding solution, ICI can 

be formulated as a constrained optimization problem. However, to solve this 

optimization problem in real-time or within a limited timeframe such as a few 

seconds is extremely complicated and the complexity increases exponentially 

with the system size [144–149]. To search for the set of lines splitting the system, 

multiple constraints need to be considered. Some typical constraints include 

load-generation balance, coherency generator, thermal limits, voltage and 

transient stability. It is very complicated obtain a solution with a limited timeframe 

with considering all the constraints. It is practical to consider only part of the 

constraints [151]. Among these constraints, the constraint generator coherency is 

crucial for successful controlled islanding since it enhances the transient stability 

of the islands [146, 147, 152]. The existing ICI approaches can be classified as 
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two classes. The objective of the first class is to minimize power imbalance [143–

149]. The objective of second class is to minimize power flow disruption [150, 

151, 153]. These approaches may obtain different islanding solutions but they 

can be regarded as ‘NP-hard’ searching problems [154]. For these problems, 

there is no general ‘polynomial time’ algorithm to find the optimal solution [155]. 

More efficient methods should be investigated in order to realize fast searching 

for the islanding solution [146–148]. 

   For the second class approaches, Spectral clustering-based methods have 

been proposed [156], belonging to graph theoretic techniques. The eigenvalues 

and eigenvectors of a matrix representing the power system can be calculated to 

determine the islanding solution within ‘polynomial time’. Even though this 

method requires less computation burden, it does not include the generator 

coherency constraint. Later, a spectral clustering controlled islanding (SCCI) 

algorithm has been introduced in [151]. The SCCI algorithm minimizes the power 

flow disruption, while ensuring that each island contains only coherent 

generators. However, an islanding solution can only be directly determined when 

the number of islands is two.  

In this chapter, the perspective for studying active islanding is quite 

different with the existing researches. It is assumed that the set of lines that 

splitting the power system into islands are predefined. It is a reasonable since the 

tie lines connecting to the remaining system for an area operated by the ISO are 

always under monitoring and the strategy for isolating this area is also 

predesigned. The focus of this chapter is to investigate the effective stage to 

perform active islanding during the propagation of cascading outages. A critical 

component-based active islanding for reducing the cascading outage risk is 

proposed. Critical components whose fail can cause large cascading outage risk 

are identified based on the interaction graph. With the propagation of outages, if 

any component belonging to the critical components is involved in this cascade, 

active islanding will be performed in real time to change the propagation path of 

outages in order to reduce the cascading outage risk. The remaining sections are 
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organized as follows. Section 4.2 presents the proposed strategy of active 

islanding in detail. Section 4.3 tests the proposed strategy of active islanding on 

an NPCC power system and validates it. Conclusion is drawn in Section 4.4. 

4.2 Proposed Strategy of Active Islanding 

4.2.1 Illustration of Active Islanding 

Here one scenario of cascading outage on the NPCC power system is 

used to illustrate the procedure for performing active islanding. This scenario 

contains twelve line outages involved in four stages. 

Stage 1: Lines 1-2 and 1-21.  

Stage 2: Line 6-7.  

Stage 3: Lines 7-8, 9-30, and 30-31.  

Stage 4: Lines 32-35, 35-39(double lines), 37-39, 50-52 and 52-54.  

A simulator for the simulation of cascading outage is shown by Fig. 4-1. 

 

 

Figure 4-1. Simulation procedure of cascading outage without active islanding. 

 
The DC power flow results show that there are no overloaded lines after 

line outages in stage 4. The propagation of cascading outage stops. These line 

outages are remarked by colors in Fig. 4-2. 
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Figure 4-2. One scenario of cascading outage without active islanding. 

 

Figure 4-3. One scenario of cascading outage with active islanding. 
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As comparison, when line 7-6 becomes overloaded with the propagation 

of outages following the same initial line outages, rather than tripping it, active 

islanding is performed to isolate ISO New England area, then lines 29-37 and 35-

73 are tripped intentionally. After performing active islanding, the DC power flow 

results show that lines 7-8, 8-9, 9-30, and 30-31 become overloaded and they 

are tripped in the next stage. After tripping them, they are no other overloaded 

lines. They are remarked by colors in Fig. 4-3. 

By comparing Figs. 4-2 and 4-3, we can know that the propagation path of 

outages has been changed after performing active islanding. This strategy is 

effective if the cascading outage risk of Fig. 4-3 is smaller than that of Fig. 4-2. 

Then two problems need to be answered. First, for one scenario of 

outages, should active islanding be performed? Second, if the answer is yes, 

which stage to perform active islanding? 

In this chapter, a strategy of critical component-based active islanding is 

proposed to reduce the cascading outage risk online. The basic idea is to 

perform active islanding when any critical component whose fail can cause large 

cascading outage risk is involved in the propagation path. The identification of 

critical components is based on the interaction graph constructed offline. 

4.2.2 Critical Components With Interaction Graph 

In [27], the interaction graph comprising by the key links and components 

is constructed. A link i → j  is quantified for the criticality to the propagation of 

cascading outages in terms of amount of load shed, which is remarked by link 

weight ijI : 
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where ,ij mI  represents the link weight for the link i → j in the m-th cascade; Ls, m is 

the amount of load shed at the generation s of m-th cascade; Ns-1,m and Ns,m are 

the numbers of line outages at the generations s-1 and s of the m-th cascade; 
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ijN  is the number of cascades involving the link i → j; k1 is the non-negative 

scaling parameters.  

A unique subgraph influenced by the link i → j can be extracted from the 

interaction graph shown by Fig. 4-4.  
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Figure 4-4. Subgraph influenced by the link i → j. 

 

For the link i → j, ijP represents the occurrence probability of link i → j.  
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where iN  is the number of times of component outage i. 

The expected load shed triggered by the link i → j and other links in the 

subgraph is defined as 
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where ( )ij is the set of links in the subgraph influenced by the link i → j; 
scP  is 

the occurrence probability of the source component outage of link l. 
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Figure 4-5. Component i and involved links. 

 
The links involved in component i are shown by Fig. 4.5. The total risk in 

terms of amount of load shed triggered by the component i is defined as: 

                                                         
( )

i ic

c i

S COC


                                                   (4.4) 

where ( )i  is the set of components starting from component i.  

The top ranking components with large Si can be regarded as critical 

compoents, remarked by Cb. They are crucial to the cascading outage risk in 

terms of load shed.                     

4.2.3 Strategies of Active Islanding 

The basic idea of the proposed active islanding can be described: with the 

propagation of outages, when any component belonging to the set of critical 

components becomes overloaded which means it is involved in the propagation 

path of outages, rather than tripping it, active islanding is performed intentionally 

to change the propagation path of outages. It is named as critical component-

based active islanding in this chapter. 

As comparison, another non-critical component-based active islanding is 

proposed. With the propagation of outages, if any component not belonging to 

the set of critical components becomes overloaded, active islanding will be 

performed instantaneously. 

The effectiveness of the critical component-based active islanding can be 

verified if the cascading outage risk in those scenarios performing active 

islanding can be reduced. However, for the strategy of non-critical component-

based active islanding, it can increase the cascading outage risk in those 

scenarios performing active islanding. Based on the above two strategies, two 

simulation procedures of cascading outages are shown by Figs. 4-6-4-7. 
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Figure 4-6. Simulation procedure of cascading outages with the strategy of critical component-
based active islanding. 

 

 

Figure 4-7. Simulation procedure of cascading outages with the strategy of non-critical 
component-based active islanding. 
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4.3 Case Studies 

The proposed strategies of active islanding are tested and compared on 

the NPCC power system. For simplicity, it is assumed that the area for isolation 

is pre-determined that is to isolate ISO New England area. We do not consider 

isolating other areas in the strategy of active islanding. Then the initial "N-2" 

component outages located in the ISO New England area are considered. The 

number is 861. 

4.3.1 Different Classes of Cascades 

Here seven classes of cascades are simulated, which are remarked by: 

Class 1: 861 original cascades without active islanding following the 

procedure in Fig. 4.1 are simulated.  

Classes 2, 3, 4, 5, and 6: 861 cascades with active islanding following the 

procedure in Fig. 4-6 are simulate in each class. 10, 20, 30, 40, and 50 critical 

components are used, respectively. 

Class 7: 861 cascades with active islanding following the procedure in Fig. 

4-7 are simulated. 

Remarks:  

1) The cascades in Class 1 are also used for identifying the critical 

components.  

2) For each cascade of Class 2, active islanding will be performed 

instantaneously if any component belonging to the 10 critical components is 

involved in stage 2 or the later stages.  

3) For Classes 3, 4, 5, and 6, the difference when compared with Class 2 

is the number of critical components used. 

4) For each cascade of Class 7, active islanding will be performed 

instantaneously if any component rather than 50 critical components is involved 

in stage 2 or the later stages. 

4.3.2 Comparison between Different Classes 
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For different classes, the number of cascades that performing active 

islanding is different. It is shown in Fig. 4-8. 

 

 

Figure 4-8. Number of cascades performing active islanding. 

 

From Fig. 4-8, we can know that the number of cascades performing 

active islanding increases with the increased number of critical components. 

In order to compare the variation of cascading outage risk, for each 

cascade that performing active islanding in Classes 2, 3, 4, 5, 6, and 7, the 

amount of load load is compared with that of the corresponding cascade in Class 

1 following the same initial outages. They are shown in Figs. 4-9-4-11. 

For Figs. 4-9-4-11, the average amount of load shed between different 

classes of cascades is compared and listed in Table 4-1. Here we consider six 

comparisons between different classes. 

Comparison 1: Class 1 \& Class 2 

Comparison 2: Class 1 \& Class 3 

Comparison 3: Class 1 \& Class 4 

Comparison 4: Class 1 \& Class 5 

Comparison 5: Class 1 \& Class 6 

Comparison 6: Class 1 \& Class 7 
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                     (a) Class 1 and Class 2                                (b) Class 1 and Class 3 

Figure 4-9. Comparison of load shed between cascades with and without active islanding for 
Classes 1, 2, and 3. 

 

 

                     (a) Class 1 and Class 4                                (b) Class 1 and Class 5 

Figure 4-10. Comparison of load shed between cascades with and without active islanding for 
Classes 1, 4, and 5. 

 

 

                     (a) Class 1 and Class 6                                (b) Class 1 and Class 7 

Figure 4-11. Comparison of load shed between cascades with and without active islanding for 
Classes 1, 6, and 7. 



 

103 
 

Table 4-1. Average Amount of Load Shed 

Comparison number Class 1 Compared Class 

1 3064.1MW 1605.3MW 

2 2958.9MW 1680.5MW 

3 2517.5MW 1608.4MW 

4 2098.2MW 1584.9MW 

5 2145.1MW 1611.3MW 

6 1474.8MW 1823.5MW 

 

From Table 4-1, we can know that the cascading outage risk has 

decreased for the class (Classes 2, 3, 4, 5, and 6) with critical component-based 

active islanding when compared with the cascades without active islanding. The 

cascading outage risk has increased for the class (Class 7) with non-critical 

component-based active islanding when compared with the cascades without 

active islanding.  

Specifically, active islanding is performed in 43 cascades for Class 2, 

among these cascades, the amount of load loss for 40 cascades with active 

islanding is smaller than that of the original cascades without active islanding. 

The average amount of load loss for 40 cascades with and without active 

islanding is 1569.6MW and 3151.5MW. 

For Class 3, active islanding is performed in 48 cascades, among these 

cascades, the amount of load loss for 39 cascades with active islanding is 

smaller than that of the original cascades without active islanding. The average 

amount of load loss for 39 cascades with and without active islanding is 

1578.0MW and 3165.4MW. 

For Class 4, active islanding is performed in 69 cascades, among these 

cascades, the amount of load loss for 40 cascades with active islanding is 

smaller than that of the original cascades without active islanding. The average 

amount of load loss for 40 cascades with and without active islanding is 

1569.6MW and 3151.5MW. 
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For Class 5, active islanding is performed in 114 cascades, among these 

cascades, the amount of load shed for 77 cascades with active islanding is 

smaller than that of the original cascades without active islanding. The average 

amount of load shed for 77 cascades with and without active islanding is 

1561.6MW and 2423.5MW.   

For Class 6, active islanding is performed in 118 cascades, among these 

cascades, the amount of load shed for the 79 cascades with active islanding is 

smaller than that of the original cascades without active islanding. The average 

amount of load shed for 79 cascades with and without active islanding is 

1556.8MW and 2243.2MW. 

For Class 7, active islanding is performed in 119 cascades, among them, 

the amount of load loss for 96 cascades is larger than that of the corresponding 

cascades without active islanding. The average amount of load loss for 96 

cascades with and without active islanding is 1725.5MW and 1128.1MW, 

respectively. 

4.3.3 Selection of Number of Critical Components 

Here the ratio for the number of cascades with reduced cascading outage 

risk for different number of critical components is given by Fig. 4-12. 

 

 

Figure 4-12. Ratio of the number of cascades. 
(with reduced and equal risk: consider the cascades with reduced and equal risk; with reduced 

risk: consider the cascades with reduced risk) 
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From Fig. 4-12, we can know that the ratio for the strategy of critical 

component-based active islanding is much higher than that of non-critical 

component-based active islanding, which verifies the effectiveness and high 

accuracy of proposed critical component-based active islanding. The larger the 

ratio is, the better the performance is. With the increasing number of critical 

components, the performance will change. Considering the cascades with 

reduced and equal risk, the ratio will increase and then decrease. The strategy 

with 30 critical components has the best performance. By only considering the 

cascades with reduced risk, the ratio will decrease and then increase. It suggests 

that it is better to select 10 critical components in order to have a good 

performance. 

 

Figure 4-13. Average reduced amount of load shed for those cascades with reduced risk. 
 

Fig. 4-13 gives the average reduced amount of load shed for those 

cascades not only performing active islanding but also reducing the amount of 

load shed when compared with the corresponding cascades without active 

islanding. For 10, 20, and 30 critical components, the performance for reducing 

the amount of load shed is stable. However, the performance becomes worse 

when the amount of critical components reaches to 40. This suggests to select 

10, 20, or 30 critical components.  

Fig. 4-14 gives the ratio of the number of cascades for those cascades not 

only performing active islanding but also increasing the amount of load shed 

when compared with the corresponding cascades without active islanding. Fig. 4-
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15 gives the average increased amount of load shed. With the increasing number 

of critical components, the average increased amount of load shed decreases 

first and then increases. This suggests it is better to select 30 critical 

components. 

By combing the results from Figs. 4-12-4-15, we would like to recommend 

10 critical components to be used. 

 

 

Figure 4-14. Ratio of the number of cascades with increased risk. 
 
 

 

Figure 4-15. Average increased amount of load shed for those cascades with increased risk. 
 
 

4.4 Conclusion of this Chapter 

An online strategy of critical component-based active islanding designed 

to perform online with the propagation of outages to reduce the cascading outage 

risk is proposed. Active islanding will be performed instantaneously if any critical 
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component whose fail can cause large cascading outage in terms of load shed is 

involved in order to change the propagation path of cascading outage and reduce 

cascading outage risk. The critical components are identified based on the 

interaction graph constructed offline. Tests on the NPCC power system validate 

the proposed strategy of active islanding. 

 

  



 

108 
 

CHAPTER FIVE  

SUMMARY AND FUTURE WORKS 

 

5.1 Summary 

A test bed based on the Northeastern Power Coordinating Council 

(NPCC) 48-machine, 140-bus power system model for simulating cascading 

outages is developed. Then a multi-layer interaction graph on cascading outages 

of power systems is proposed as an extension of the single-layer interaction 

model. This multi-layer interaction graph provides a practical framework for 

prediction of outage propagation and decision making on mitigation actions. It 

has multiple layers to respectively identify key components and key intra-layer 

links of components within each layer and key inter-layer links between layers, 

which contribute the most to outage propagation. Each layer focuses on one of 

several aspects that are critical for system operators’ decision support, such as 

the number of line outages, the amount of load shedding, and the electrical 

distance of outage propagation. Besides, the proposed integrated mitigation 

strategies can limit the propagation of cascading outages by weakening key 

links.               

A novel dynamic load flow (DLF) model for cascading outage simulation 

considering static power-frequency characteristics (SPFCs) of generators and 

loads is proposed such that system frequency deviations due to active power 

imbalance can be calculated during cascading outages. Further, a new AC 

optimal power flow model considering frequency deviation (AC-OPFf) is 

proposed to represent remedial control actions when system collapse happens 

as indicated by power flows divergence. Test results verify that the proposed 

approach can capture frequency variations under cascading outages and 

simulate the mechanism of outage propagation more accurately.  
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A strategy of active islanding designed to perform in real time with the 

propagation of outages to reduce the potential cascading outage risk is 

proposed. In order to mitigate cascading outages, active islanding will be 

performed if critical branches whose fail can cause a huge loss of load are 

involved. The critical branches are identified based on the interaction graph 

offline. Tests on the NPCC power system validate the proposed strategy of active 

islanding.  

5.2 Future Works 

The future works will be: 

1) Integration of the steady-state simulation approach proposed in Chapter 

3 and time-domain simulation for an efficient hybrid simulation approach for 

cascading outages.   

2) Investigation of more effective online strategies for reducing the 

cascading outage risk based on the multi-layer interaction graph. 
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