24 research outputs found

    Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms

    Get PDF
    available in PMC 2016 June 30For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.National Institutes of Health (U.S.) (NIH/NINDS (DP2 NS082127))Pew Scholars Program in the Biomedical SciencesNational Institutes of Health (U.S.) (NIH/NIGMS (R01-GM084947))American Cancer Society (Research Scholar Award

    The Ran GTPase: Theme and Variations

    Get PDF
    AbstractThe small GTPase Ran has roles in multiple cellular processes, including nuclear transport, mitotic spindle assembly, the regulation of cell cycle progression and nuclear assembly. The past year has seen a remarkable unification of these different roles with respect to the effectors and mechanisms through which they function. Our emergent understanding of Ran suggests that it plays a central role in spatial and temporal organization of the vertebrate cell

    Cytoskeleton (Hoboken)

    Get PDF
    For the last 100 years, Drosophila melanogaster has been a powerhouse genetic system for understanding mechanisms of inheritance, development, and behavior in animals. In recent years, advances in imaging and genetic tools have led to Drosophila becoming one of the most effective systems for unlocking the subcellular functions of proteins (and particularly cytoskeletal proteins) in complex developmental settings. In this review, written for non-Drosophila experts, we will discuss critical technical advances that have enabled these cell biological insights, highlighting three examples of cytoskeletal discoveries that have arisen as a result: (1) regulation of Arp2/3 complex in myoblast fusion, (2) cooperation of the actin filament nucleators Spire and Cappuccino in establishment of oocyte polarity, and (3) coordination of supracellular myosin cables. These specific examples illustrate the unique power of Drosophila both to uncover new cytoskeletal structures and functions, and to place these discoveries in a broader in vivo context, providing insights that would have been impossible in a cell culture model or in vitro. Many of the cellular structures identified in Drosophila have clear counterparts in mammalian cells and tissues, and therefore elucidating cytoskeletal functions in Drosophila will be broadly applicable to other organisms.DP2 NS082127/DP/NCCDPHP CDC HHS/United StatesDP2 NS082127/NS/NINDS NIH HHS/United StatesR01 GM105984/GM/NIGMS NIH HHS/United StatesR01-GM084947/GM/NIGMS NIH HHS/United States2016-06-30T00:00:00Z26074334PMC478218

    A pathogenic mechanism associated with myopathies and structural birth defects involves TPM2-directed myogenesis

    Get PDF
    Nemaline myopathy (NM) is the most common congenital myopathy, characterized by extreme weakness of the respiratory, limb, and facial muscles. Pathogenic variants in Tropomyosin 2 (TPM2), which encodes a skeletal muscle-specific actin binding protein essential for sarcomere function, cause a spectrum of musculoskeletal disorders that include NM as well as cap myopathy, congenital fiber type disproportion, and distal arthrogryposis (DA). The in vivo pathomechanisms underlying TPM2-related disorders are unknown, so we expressed a series of dominant, pathogenic TPM2 variants in Drosophila embryos and found 4 variants significantly affected muscle development and muscle function. Transient overexpression of the 4 variants also disrupted the morphogenesis of mouse myotubes in vitro and negatively affected zebrafish muscle development in vivo. We used transient overexpression assays in zebrafish to characterize 2 potentially novel TPM2 variants and 1 recurring variant that we identified in patients with DA (V129A, E139K, A155T, respectively) and found these variants caused musculoskeletal defects similar to those of known pathogenic variants. The consistency of musculoskeletal phenotypes in our assays correlated with the severity of clinical phenotypes observed in our patients with DA, suggesting disrupted myogenesis is a potentially novel pathomechanism of TPM2 disorders and that our myogenic assays can predict the clinical severity of TPM2 variants

    Light-sheet microscopy: a tutorial

    Get PDF
    This paper is intended to give a comprehensive review of light-sheet (LS) microscopy from an optics perspective. As such, emphasis is placed on the advantages that LS microscope configurations present, given the degree of freedom gained by uncoupling the excitation and detection arms. The new imaging properties are first highlighted in terms of optical parameters and how these have enabled several biomedical applications. Then, the basics are presented for understanding how a LS microscope works. This is followed by a presentation of a tutorial for LS microscope designs, each working at different resolutions and for different applications. Then, based on a numerical Fourier analysis and given the multiple possibilities for generating the LS in the microscope (using Gaussian, Bessel, and Airy beams in the linear and nonlinear regimes), a systematic comparison of their optical performance is presented. Finally, based on advances in optics and photonics, the novel optical implementations possible in a LS microscope are highlighted.Peer ReviewedPostprint (published version

    Spatiotemporal phosphoregulation of Lgl: Finding meaning in multiple on/off buttons

    Get PDF
    Intracellular asymmetries, often termed cell polarity, determine how cells organize and divide to ultimately control cell fate and shape animal tissues. The tumor suppressor Lethal giant larvae (Lgl) functions at the core of the evolutionarily conserved cell polarity machinery that controls apico-basal polarization. This function relies on its restricted basolateral localization via phosphorylation by aPKC. Here, we summarize the spatial and temporal control of Lgl during the cell cycle, highlighting two ideas that emerged from our recent findings: 1) Aurora A directly phosphorylates Lgl during symmetric division to couple reorganization of epithelial polarity with the cell cycle; 2) Phosphorylation of Lgl within three conserved serines controls its localization and function in a site-specific manner. Considering the importance of phosphorylation to regulate the concentration of Lgl at the plasma membrane, we will further discuss how it may work as an on-off switch for the interaction with cortical binding partners, with implications on epithelial polarization and spindle orientation.S.M. holds a PhD fellowship from FCT (FundacĂŁo para a CiĂȘncia e a Tecnologia) SFRH/BD/99898/2014. E.M is currently funded by an Investigator FCT position, was previously supported by a grant from FCT (PTDC/BIA-BMC/120132/2010)

    Machine learning-based automated segmentation with a feedback loop for 3D synchrotron micro-CT

    Get PDF
    Die Entwicklung von Synchrotronlichtquellen der dritten Generation hat die Grundlage fĂŒr die Untersuchung der 3D-Struktur opaker Proben mit einer Auflösung im Mikrometerbereich und höher geschaffen. Dies fĂŒhrte zur Entwicklung der Röntgen-Synchrotron-Mikro-Computertomographie, welche die Schaffung von Bildgebungseinrichtungen zur Untersuchung von Proben verschiedenster Art förderte, z.B. von Modellorganismen, um die Physiologie komplexer lebender Systeme besser zu verstehen. Die Entwicklung moderner Steuerungssysteme und Robotik ermöglichte die vollstĂ€ndige Automatisierung der Röntgenbildgebungsexperimente und die Kalibrierung der Parameter des Versuchsaufbaus wĂ€hrend des Betriebs. Die Weiterentwicklung der digitalen Detektorsysteme fĂŒhrte zu Verbesserungen der Auflösung, des Dynamikbereichs, der Empfindlichkeit und anderer wesentlicher Eigenschaften. Diese Verbesserungen fĂŒhrten zu einer betrĂ€chtlichen Steigerung des Durchsatzes des Bildgebungsprozesses, aber auf der anderen Seite begannen die Experimente eine wesentlich grĂ¶ĂŸere Datenmenge von bis zu Dutzenden von Terabyte zu generieren, welche anschließend manuell verarbeitet wurden. Somit ebneten diese technischen Fortschritte den Weg fĂŒr die DurchfĂŒhrung effizienterer Hochdurchsatzexperimente zur Untersuchung einer großen Anzahl von Proben, welche DatensĂ€tze von besserer QualitĂ€t produzierten. In der wissenschaftlichen Gemeinschaft besteht daher ein hoher Bedarf an einem effizienten, automatisierten Workflow fĂŒr die Röntgendatenanalyse, welcher eine solche Datenlast bewĂ€ltigen und wertvolle Erkenntnisse fĂŒr die Fachexperten liefern kann. Die bestehenden Lösungen fĂŒr einen solchen Workflow sind nicht direkt auf Hochdurchsatzexperimente anwendbar, da sie fĂŒr Ad-hoc-Szenarien im Bereich der medizinischen Bildgebung entwickelt wurden. Daher sind sie nicht fĂŒr Hochdurchsatzdatenströme optimiert und auch nicht in der Lage, die hierarchische Beschaffenheit von Proben zu nutzen. Die wichtigsten BeitrĂ€ge der vorliegenden Arbeit sind ein neuer automatisierter Analyse-Workflow, der fĂŒr die effiziente Verarbeitung heterogener RöntgendatensĂ€tze hierarchischer Natur geeignet ist. Der entwickelte Workflow basiert auf verbesserten Methoden zur Datenvorverarbeitung, Registrierung, Lokalisierung und Segmentierung. Jede Phase eines Arbeitsablaufs, die eine Trainingsphase beinhaltet, kann automatisch feinabgestimmt werden, um die besten Hyperparameter fĂŒr den spezifischen Datensatz zu finden. FĂŒr die Analyse von Faserstrukturen in Proben wurde eine neue, hochgradig parallelisierbare 3D-Orientierungsanalysemethode entwickelt, die auf einem neuartigen Konzept der emittierenden Strahlen basiert und eine prĂ€zisere morphologische Analyse ermöglicht. Alle entwickelten Methoden wurden grĂŒndlich an synthetischen DatensĂ€tzen validiert, um ihre Anwendbarkeit unter verschiedenen Abbildungsbedingungen quantitativ zu bewerten. Es wurde gezeigt, dass der Workflow in der Lage ist, eine Reihe von DatensĂ€tzen Ă€hnlicher Art zu verarbeiten. DarĂŒber hinaus werden die effizienten CPU/GPU-Implementierungen des entwickelten Workflows und der Methoden vorgestellt und der Gemeinschaft als Module fĂŒr die Sprache Python zur VerfĂŒgung gestellt. Der entwickelte automatisierte Analyse-Workflow wurde erfolgreich fĂŒr Mikro-CT-DatensĂ€tze angewandt, die in Hochdurchsatzröntgenexperimenten im Bereich der Entwicklungsbiologie und Materialwissenschaft gewonnen wurden. Insbesondere wurde dieser Arbeitsablauf fĂŒr die Analyse der Medaka-Fisch-DatensĂ€tze angewandt, was eine automatisierte Segmentierung und anschließende morphologische Analyse von Gehirn, Leber, Kopfnephronen und Herz ermöglichte. DarĂŒber hinaus wurde die entwickelte Methode der 3D-Orientierungsanalyse bei der morphologischen Analyse von PolymergerĂŒst-DatensĂ€tzen eingesetzt, um einen Herstellungsprozess in Richtung wĂŒnschenswerter Eigenschaften zu lenken
    corecore